WorldWideScience

Sample records for building integrated photovoltaics

  1. Building integrated photovoltaic; Photovaltaique integre aux batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Durable, modular and flexible in use, as demonstrated by the different case studies in this publication, photovoltaic can replace diverse building elements, from glass facades to weather proof roofs. This leaflet towards architects describes aesthetic, technical, economic and environmental interest of building integrated photovoltaic. (author)

  2. Connector device for building integrated photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  3. Design of planar light guide concentrators for building integrated photovoltaics

    Science.gov (United States)

    Fennig, Eryn; Schmidt, Greg; Moore, Duncan T.

    2017-11-01

    There are advantages to using planar light guide (PLG) concentrators instead of Fresnel concentrators for glass building façade photovoltaic systems. This paper details the main components of a PLG concentrator and describes how the concentrator works. The design of a PLG concentrator is constrained by the limitations of the diamond turning process used to make the microlens array. These manufacturing limitations and their effects on the lens design and system performance are reviewed. We report on the design of a 25 × 100 mm planar light guide concentrator with a 50x geometric concentration and an 85.0-88.1% theoretical optical efficiency for use in building integrated photovoltaics.

  4. Building integration of photovoltaic systems in cold climates

    Science.gov (United States)

    Athienitis, Andreas K.; Candanedo, José A.

    2010-06-01

    This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.

  5. Luminescent solar concentrators for building-integrated photovoltaics

    Science.gov (United States)

    Meinardi, Francesco; Bruni, Francesco; Brovelli, Sergio

    2017-12-01

    The transition to fully energetically sustainable architecture through the realization of so-called net zero-energy buildings is currently in progress in areas with low population density. However, this is not yet true in cities, where the cost of land for the installation of ground photovoltaic (PV) is prohibitively high and the rooftop space is too scarce to accommodate the PV modules necessary for sustaining the electrical requirements of tall buildings. Thus, new technologies are being investigated to integrate solar-harvesting devices into building façades in the form of PV windows or envelope elements. Luminescent solar concentrators (LSCs) are the most promising technology for semi-transparent, electrodeless PV glazing systems that can be integrated 'invisibly' into the built environment without detrimental effects to the aesthetics of the building or the quality of life of the inhabitants. After 40 years of research, recent breakthroughs in the realization of reabsorption-free emitters with broadband absorption have boosted the performance of LSCs to such a degree that they might be commercialized in the near future. In this Perspective, we explore the successful strategies that have allowed this change of pace, examining and comparing the different types of chromophores and waveguide materials, and discuss the issues that remain to be investigated for further progress.

  6. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    Energy Technology Data Exchange (ETDEWEB)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  7. Large-scale building integrated photovoltaics field trial. First technical report - installation phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the results of the first eighteen months of the Large-Scale Building Integrated Photovoltaic Field Trial focussing on technical aspects. The project aims included increasing awareness and application of the technology, raising the UK capabilities in application of the technology, and assessing the potential for building integrated photovoltaics (BIPV). Details are given of technology choices; project organisation, cost, and status; and the evaluation criteria. Installations of BIPV described include University buildings, commercial centres, and a sports stadium, wildlife park, church hall, and district council building. Lessons learnt are discussed, and a further report covering monitoring aspects is planned.

  8. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  9. U.S. guidelines for the economic analysis of building-integrated photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Eiffert, P.

    2000-02-28

    Traditionally, electrical service for buildings has been provided by one pre-determined supplier, the utility company. An unexpected side effect of the privatization and deregulation of the electricity industry, initiated during the late 1980s and early 1990s, is the opportunity for consumers to purchase electricity from a variety of energy service companies or to generate electricity themselves. Concurrently, the US Department of Energy, national energy laboratories, universities, and photovoltaic (PV) manufacturers have technically evaluated, tested, and demonstrated building-integrated photovoltaics (BIPV) to be a viable technology. Electricity industry restructuring and successful PV research and development raise a dilemma for building owners: is it worth the investment and effort to engage in the process of generating electricity with photovoltaics for individual buildings? A BIPV power system operates as a multifunctional building construction material; it generates energy as well as serves as part of the building envelope. The objective of the US Guidelines for the Economic Assessment of Building-Integrated Photovoltaic Power Systems is to identify the economic parameters of BIPV systems. Identifying these parameters will enable the decision-makers to appraise the economic feasibility and implications of investments in such building systems.

  10. Building Integrated Photovoltaic Systems: specific non-idealities from solar cell to grid

    OpenAIRE

    Corona, Fabio

    2014-01-01

    After an initial phase of great diffusion of large Photovoltaic (PV) systems installed on the ground, the recent evolution of the feed-in tariffs makes the Building Integrated PV (BIPV) systems for residential, commercial and industrial users, the more befitting application of the PV technology. Unfortunately, the building integration implies some critical issues on the operation of principal components, such as the PV panels or the grid-connected inverter, typical of this kind of installatio...

  11. A key review of building integrated photovoltaic (BIPV systems

    Directory of Open Access Journals (Sweden)

    Emrah Biyik

    2017-06-01

    The two fundamental research areas in the BIPV and BIPVT systems are observed to be i improvements on system efficiency by ventilation, hence obtaining a higher yield with lowering the panel temperature ii new thin film technologies that are well suited for building integration. Several approaches to achieve these objectives are reported in the literature as presented in this paper. It is expected that this comprehensive review will be beneficial to researchers and practitioners involved or interested in the design, analysis, simulation, and performance evaluation, financial development and incentives, new methods and trends of BIPV systems.

  12. Multi-criteria assesment of building integrated photovoltaics

    Directory of Open Access Journals (Sweden)

    Violeta Motuzienė

    2015-10-01

    Full Text Available To make reasonable solutions concerning integration of PV into the façade, complex assessment must be performed at the design stage of the building, taking into account all benefits and losses. The paper presents multi-criteria analysis of semi-transparent BIPV. It is based on 4 criteria: energy, ecology, economy, comfort – 3e+c. Results show that because of twice lower solar heat gains, PV window enables to save almost half of cooling energy, it also significantly improves thermal comfort. Total primary energy demand of the office after application of PV drops from 171 kWh/m2 to 96 kWh/m2. Multi-criteria analysis shows that office with BIPV is more sustainable than the one with transparent window.

  13. Building-integrated photovoltaics (BIPV): Analysis and US market potential. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frantzis, L.; Friedman, D.; Hill, S.; Teagan, P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Strong, S.; Strong, M. [Solar Design Associates, Harvard, MA (United States)

    1995-02-01

    Arthur D. Little, Inc., in conjunction with Solar Design Associates, conducted a study for the US Department of Energy (DOE), Office of Building Technologies (OBT) to determine the market potential for grid-connected, building-integrated photovoltaics (BIPV). This study defines BIPV as two types of applications: (1) where the PV modules are an integral part of the building, often serving as the exterior weathering skin; and (2) the PV modules are mounted on the existing building exterior. Both of these systems are fully integrated with the energy usage of the building and have potential for significant market penetration in the US. Off-grid building applications also offer a near-term market for BIPV, but are not included in the scope of this study.

  14. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  15. Building integrated photovoltaics (BIPV). Review, potentials, barriers and myths

    Energy Technology Data Exchange (ETDEWEB)

    Heinstein, Patrick; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Neuchatel (Switzerland). Photovoltaics and Thin Film Electronics Lab.; Perret-Aebi, Laure-Emmanuelle [CSEM, Neuchatel (Switzerland). PV-Center

    2013-07-01

    To date, none of the predictions that have been made about the emerging BIPV industry have really hit the target. The anticipated boom has so far stalled and despite developing and promoting a number of excellent systems and products, many producers around the world have been forced to quit on purely economic grounds. The authors believe that after this painful cleansing of the market, a massive counter trend will follow, enlivened and carried forward by more advanced PV technologies and ever-stricter climate policies designed to achieve energy neutrality in a cost-effective way. As a result, the need for BIPV products for use in construction will undergo first a gradual and then a massive increase. The planning of buildings with multifunctional, integrated roof and facade elements capable of fulfilling the technical and legal demands will become an essential, accepted part of the architectonic mainstream and will also contribute to an aesthetic valorisation. Until then, various barriers need to be overcome in order to facilitate and accelerate BIPV. Besides issues related to mere cost-efficiency ratio, psychological and social factors also play an evident role. The goal of energy change linked to greater use of renewables can be successfully achieved only when all aspects are taken into account and when visual appeal and energy efficiency thus no longer appear to be an oxymoron. (orig.)

  16. A Solar Atlas for Building-Integrated Photovoltaic Electricity Resource Assessment

    DEFF Research Database (Denmark)

    Möller, Bernd; Nielsen, Steffen; Sperling, Karl

    While photovoltaic energy gathers momentum as power costs increase and panel costs decrease, the total technical and economic potentials for building integrated solar energy in Denmark remain largely unidentified. The current net metering feed-in scheme is restricted to 6kW plant size, limiting...... large scale application. This paper presents a solar atlas based on a high-resolution digital elevation model (DEM) of all 2.9 million buildings in the country, combined with a building register. The 1.6 m resolution DEM has been processed into global radiation input, solar energy output and production....... The continuous assessment of solar electricity generation potentials by marginal costs, ownership and plant type presented in the paper may be used for defining long term policies for the development of photovoltaic energy, as well as political instruments such as a multi-tier feed-in tariff....

  17. See-Through Dye-Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics

    KAUST Repository

    Heiniger, Leo-Philipp

    2013-08-21

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Status and Outlook for Building Integrated Photovoltaics (BIPV) in Relation to Educational needs in the BIPV Sector

    NARCIS (Netherlands)

    Tabakovic, Momir; Fechner, Hubert; Van Sark, Wilfried; Louwen, Atse; Georghiou, George; Makrides, George; Loucaidou, Eliza; Ioannidou, Monica; Weiss, Ingrid; Arancon, Sofia; Betz, Stephanie

    2017-01-01

    This paper reviews the present status and outlook of the building integrated photovoltaics (BIPV) market on a global and European scale. In particular, it provides a comprehensive review of the market situation and the future trends for Austria, Cyprus, France, Germany, Italy and the Netherlands

  19. Integration of Photovoltaics into Building Energy Usage through Advanced Control of Rooftop Unit

    OpenAIRE

    Starke, Michael; Nutaro, James; Kuruganti, Teja; Fugate, David

    2014-01-01

    As the United States sees the continued expansion of photovoltaic (PV) and other distributed solar generation technologies into the distribution grid, there is an increased need to find approaches to mitigate integration challenges associated with renewable resources. Depending on the renewable resource, the integration challenges will vary. Much of the challenge with integration is associated with the uncontrolled oscillations of output power, for example, from a PV array. Both solar and win...

  20. Status and Outlook for Building Integrated Photovoltaics (BIPV) in Relation to Educational needs in the BIPV Sector

    OpenAIRE

    Tabakovic, Momir; Fechner, Hubert; Van Sark, Wilfried; Louwen, Atse; Georghiou, George; Makrides, George; Loucaidou, Eliza; Ioannidou, Monica; Weiss, Ingrid; Arancon, Sofia; Betz, Stephanie

    2017-01-01

    This paper reviews the present status and outlook of the building integrated photovoltaics (BIPV) market on a global and European scale. In particular, it provides a comprehensive review of the market situation and the future trends for Austria, Cyprus, France, Germany, Italy and the Netherlands until the year 2020. In addition, as education is seen as one of the barriers for BIPV deployment, results of a survey are presented that was conducted among BIPV stakeholders with the aim to identify...

  1. Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2015-12-01

    Full Text Available Building integrated photovoltaics (BIPV offer an aesthetical, economical and technical solution to integrate solar cells harvesting solar radiation to produce electricity within the climate envelopes of buildings. Photovoltaic (PV cells may be mounted above or onto the existing or traditional roofing or wall systems. However, BIPV systems replace the outer building envelope skin, i.e., the climate screen, hence serving simultanously as both a climate screen and a power source generating electricity. Thus, BIPV may provide savings in materials and labor, in addition to reducing the electricity costs. Hence, for the BIPV products, in addition to specific requirements put on the solar cell technology, it is of major importance to have satisfactory or strict requirements of rain tightness and durability, where building physical issues like e.g., heat and moisture transport in the building envelope also have to be considered and accounted for. This work, from both a technological and scientific point of view, summarizes briefly the current state-of-the-art of BIPV, including both BIPV foil, tiles, modules and solar cell glazing products, and addresses possible research pathways for BIPV in the years to come.

  2. The impact of building-integrated photovoltaics on the energy demand of multi-family dwellings in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ordenes, Martin; Marinoski, Deivis Luis; Braun, Priscila; Ruther, Ricardo [Laboratorio de Eficiencia Energetica em Edificacoes (LabEEE), Universidade Federal de Santa Catarina/UFSC, Caixa Postal 476, Florianopolis, SC 88040-900, (Brazil); Laboratorio de Energia Solar (LABSOLAR), Universidade Federal de Santa Catarina/UFSC, Caixa Postal 476, Florianopolis, SC 88040-900, (Brazil)

    2007-06-15

    Brazil faces a continuous increase of energy demand and a decrease of available resources to expand the generation system. Residential buildings are responsible for 23% of the national electricity demand. Thus, it is necessary to search for new energy sources to both diversify and complement the energy mix. Building-integrated photovoltaic (BIPV) is building momentum worldwide and can be an interesting alternative for Brazil due its solar radiation characteristics. This work analyses the potential of seven BIPV technologies implemented in a residential prototype simulated in three different cities in Brazil (Natal, Brasilia and Florianopolis). Simulations were performed using the software tool EnergyPlus to integrate PV power supply with building energy demand (domestic equipment and HVAC systems). The building model is a typical low-cost residential building for middle-class families, as massively constructed all over the country. Architectural input and heat gain schedules are defined from statistical data (Instituto Brasileiro de Geografia e Estatistica - Brazilian Institute for Geography and Statistics (IBGE) and Sistema de Informacoes de Posses de Eletrodomesticos e Habitos de Consumo - Consumer Habits and Appliance Ownership Information System (SIMPHA)). BIPV is considered in all opaque surfaces of the envelope. Results present an interesting potential for decentralized PV power supply even for vertical surfaces at low-latitude sites. In each facade, BIPV power supply can be directly linked to local climatic conditions. In general, for 30% of the year photovoltaic systems generate more energy than building demand, i.e., during this period it could be supplying the energy excess to the public electricity grid. Contrary to the common belief that vertical integration of PV is only suitable for high latitude countries, we show that there is a considerable amount of energy to be harvested from vertical facades at the sites investigated. (Author)

  3. An overview of worldwide development activity in building-integrated photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Strong, S.J. [Solar Design Associates, Inc., Harvard, MA (United States)

    1995-12-31

    The last two decades have brought significant charges to the design profession. Architects with vision have come to understand it is no longer the goal of good design to simply create a building that is pleasing; buildings of the future must be environmentally responsive as well. Increased levels of thermal insulation, healthier interiors, higher-efficiency lighting, better glazings and HVAC equipment, air to air heat exchangers and heat recovery ventilation systems are important steps in the right direction. However, more needs to be done and the area of photovoltaics is one of the most promising renewable energy technologies. This paper is a country by country description of component and system development along with selected examples of Solar Electric architecture. Countries described include Japan, Germany, Switzerland, United Kingdom, Spain, Sweden, Italy, Canada, Norway.

  4. Demosite - Demonstration of the integration of photovoltaic elements in buildings; DEMOSITE. Site de demonstration d'elements de construction photovoltaiques integres au batiment

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, C.; Affolter, P.; Muller, A.N.; Ould-Yenia, A.

    2003-07-01

    This final report for the Swiss Federal Office of Energy summarises Phase 4 of the DEMOSITE project and concludes 10 years of DEMOSITE activities. The DEMOSITE project, started in 1992, demonstrates various ways of integrating photovoltaic elements in buildings by providing stands, pavilions and monitoring facilities at its site in Lausanne, Switzerland. Here, at the Swiss Federal Institute of Technology, roof-mounted installations can be found as well as mock-ups of buildings and roofing systems that also serve as covered parking facilities. The DEMOSITE web site and graphical presentations are also reviewed. Furthermore, the six newest pavilions are presented in detail. The report also presents several sets of data from measurements made on the installations and discusses the dissemination of information and results obtained from the project. A comprehensive annex provides illustrations of examples of building-integrated photovoltaics from around the world.

  5. Guidelines for the Economic Evaluation of Building-Integrated Photovoltaic Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Eiffert, P.; International Energy Agency (IEA) PVPS Task 7

    2003-01-01

    This report identifies the economic parameters of building-integrated PV (BIPV) systems. The guidelines are structured in three major parts: the investment analysis (methods and ownership issues), benefits, and costs. Measurement and verification are also discussed briefly.

  6. Investigation the Advantages of CPV for Building Integrated PV : 28th European Photovoltaic Solar Energy Conference

    NARCIS (Netherlands)

    A.R. Sparemberger; Piet Sonneveld; J.V. Sahedi; S. van der Craats; R.G. Catau

    2013-01-01

    The objective of this concept is a significant reduction of energy consumption in greenhouses and buildings with large facades and windows by using available solar energy. The scope of this investigation is to study the advantages of a building integrated CPV system. The basic idea is that a larger

  7. Renewable Energy Potential by the Application of a Building Integrated Photovoltaic and Wind Turbine System in Global Urban Areas

    Directory of Open Access Journals (Sweden)

    Jaewook Lee

    2017-12-01

    Full Text Available Globally, maintaining equilibrium between energy supply and demand is critical in urban areas facing increasing energy consumption and high-speed economic development. As an alternative, the large-scale application of renewable energy, such as solar and wind power, might be a long-term solution in an urban context. This study assessed the overall utilization potential of a building-integrated photovoltaic and wind turbine (BIPvWt system, which can be applied to a building skin in global urban areas. The first step of this study was to reorganize the large volume of global annual climate data. The data were analyzed by computational fluid dynamic analysis and an energy simulation applicable to the BIPvWt system, which can generate a Pmax 300 Wp/module with a 15% conversion efficiency from a photovoltaic (PV system and a 0.149 power coefficient/module from wind turbines in categorized urban contexts and office buildings in specific cities; it was constructed to evaluate and optimize the ratio that can cover the current energy consumption. A diagram of the distribution of the solar and wind energy potential and design guidelines for a building skin were developed. The perspective of balancing the increasing energy consumption using renewable energy in urban areas can be visualized positively in the near future.

  8. A Novel Method for Technology Forecasting and Developing R&D Strategy of Building Integrated Photovoltaic Technology Industry

    Directory of Open Access Journals (Sweden)

    Yu-Jing Chiu

    2012-01-01

    Full Text Available Because of global warming, renewable energy technologies have become more essential currently, with solar energy technology advancing worldwide. Therefore, interdisciplinary integration is an important trend, and building-integrated photovoltaic (BIPV is an emerging technology involving the photovoltaic and building fields. The purpose of this study is to understand the technology evolution of BIPV and to determine the R&D planning direction. This paper proposes a hybrid approach to explore the life cycle of BIPV technology and develop the R&D strategy of related industries. The proposed approach comprises the following submodules. First, patent analysis is employed to transform patent documents into structured data. Second, the logistic growth model is used to explore the life cycle of BIPV technology. Third, a patent matrix map analysis is used to develop the R&D strategy of the BIPV industry. Through the analysis by the logistic model, the BIPV technology is transformed from the emerging stage to the growth stage of a long-term life cycle. The other important result is created by the three-dimensional matrix for R&D strategies in this paper.

  9. Transmittance and Reflectance Studies of Thermotropic Material for a Novel Building Integrated Concentrating Photovoltaic (BICPV ‘Smart Window’ System

    Directory of Open Access Journals (Sweden)

    Karen Connelly

    2017-11-01

    Full Text Available A novel Building Integrated Concentrating Photovoltaic (BICPV Smart Window has been designed and developed as a next generation intelligent window system. In response to climatic conditions, the smart window varies solar light transmission into the building for provision of light and heat with the reflection of light to the photovoltaic (PV for electricity generation. This unique function is realised using an integrated thermotropic layer in conjunction with embedded PVs. As commercial PVs are readily available, the success of this novel BICPV design depends solely on the performance of the thermotropic material. This study aimed to develop a suitable reflective thermotropic layer for the proposed smart Concentrating Photovoltaic (CPV system. A Hydroxypropyl cellulose (HPC polymer was tested for its applicability as a potential reflective thermotropic material for this purpose. HPC concentration was systematically varied from 1 wt. % to 6 wt. % in aqueous solution so as to provide insight into the relationship between transmittance/reflectance properties, the concentration of the thermotropic material and their dependence upon the environmental temperature. The degree of hysteresis of light transmittance upon subjecting HPC to heating and cooling cycles was also investigated. Specifically, for the HPC liquid samples the measured threshold temperature/transition temperature (Ts was observed to be approximately 40 °C for 6 wt. % HPC, increasing to approximately 44 °C for 1 wt. % HPC. No hysteresis was observed upon heating and cooling HPC samples. Reflectance below the Ts was recorded at ~10%, increasing up to ~70% above the Ts for 6 wt. % HPC. Finally, a HPC-based hydrogel membrane sample was developed and exhibited good thermotropic activity therefore demonstrating its suitability for use within the BICPV smart window. This study corroborates that HPC is a suitable thermotropic material in the application of next generation BICPV smart window

  10. Monte Carlo Simulations of Luminescent Solar Concentrators with Front-Facing Photovoltaic Cells for Building Integrated Photovoltaics

    Science.gov (United States)

    Leow, Shin; Corrado, Carley; Osborn, Melissa; Carter, Sue

    2013-03-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles and concentrate the captured light on to small photo active areas. This enables LSCs to be integrated more extensively into buildings as windows and wall claddings on top of roof installations. LSCs with front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. It also allows for flexibility in determining the placement and percentage coverage of PV cells when designing panels to balance reabsorption losses, power output and the level of concentration desired. A Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels and aid in design optimization. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters. Interactions of photons with the LSC panel are determined by comparing calculated probabilities with random number generators. Simulation results reveal optimal panel dimensions and PV cell layouts to achieve maximum power output.

  11. Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics

    Science.gov (United States)

    Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.

    2013-09-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.

  12. Retrofits for Energy Efficient Office Buildings: Integration of Optimized Photovoltaics in the Form of Responsive Shading Devices

    Directory of Open Access Journals (Sweden)

    Hardi K. Abdullah

    2017-11-01

    Full Text Available This study presents a retrofit strategy: integrating optimized photovoltaics (PV in the form of responsive shading devices using a dual-axis solar tracking system. A prototype-based model was fabricated to compare the efficiency of PV in this implementation with the conventional fixed installation. The office building, T1 Empire World in Erbil, was selected as a retrofit case study and for the application of the proposed integration system. In order to assess the effectiveness of the proposed retrofit method, the energy performance of the base case is simulated to be compared later with the energy performance simulations after the integration technique. The amount of generated electricity from the PV surfaces of the integrated shading elements is calculated. The energy simulations were performed using OpenStudio® (NREL, Washington, DC, USA, EnergyPlusTM (NREL, Washington, DC, USA, and Grasshopper/ Ladybug tools in which the essential results were recorded for the baseline reference, as well as the energy performance of the retrofitted building. The results emphasize that the PV-integrated responsive shading devices can maximize the efficiency of PV cells by 36.8% in comparison to the fixed installation. The integrated system can provide approximately 15.39% of the electricity demand for operating the building. This retrofit method has reduced the total site energy consumption by 33.2% compared to the existing building performance. Total electricity end-use of the various utilities was lowered by 33.5%, and the total natural gas end-use of heating demand was reduced by 30.9%. Therefore, the percentage reduction in electricity cooling demand in July and August is 42.7% due to minimizing the heat gain in summer through blocking the sun’s harsh rays from penetrating into interior spaces of the building. In general, this system has multiple benefits, starting with being extremely efficient and viable in generating sustainable alternative energy

  13. Numerical and Experimental Investigation of Natural Convection in Open-Ended Channels with Application to Building Integrated Photovoltaic (BIPV Systems

    Directory of Open Access Journals (Sweden)

    Timchenko V.

    2015-01-01

    Full Text Available Numerical and experimental investigations of the flow and heat transfer in open-ended channel formed by the double skin façade have been undertaken in order to improve understanding of the phenomena and to apply it to passive cooling of building integrated photovoltaic systems. Both uniform heating and non-uniform heating configurations in which heat sources alternated with unheated zones on both skins were studied. Different periodic and asymmetric heating modes have been considered for the same aspect ratio 1/15 of wall distance to wall height and for periodicity 1/15 and 4/15 of heated/unheated zones and heat input, 220 W/m2. In computational study three dimensional transient LES simulation was carried out. It is shown that in comparison to uniformly heating configuration, non-uniformly heating configuration enhances both convective heat transfer and chimney effect.

  14. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  15. The integration of photovoltaics within high rise buildings in the dense urban environments of SE Asia, considerations of legislation to promote it and to maintain solar energy access

    Energy Technology Data Exchange (ETDEWEB)

    Close, J. [University of Hong Kong (Hong Kong). Dept. of Architecture

    1996-05-01

    The consensus of the `92 Rio summit was that all development should aim for sustainable development. The major growth region for the next decade is SE Asia, particularly the cities of South China for which Hong Kong is a role model. Current buildings are heavily dependent on air-conditioning while planning legislation plus cost factors have inhibited the use of external shading devices and building codes have failed to introduce comprehensive integrated standards for energy conservation. Photovoltaics are a renewable energy resource without harmful effects on the environment. The technology is maturing and high efficiency low-cost cells starting in commercial production. Opportunities exist for photovoltaic arrays as shading and cladding panels in high-rise construction. Hong Kong`s solar radiation has been analysed, and the power potential of photovoltaic cladding and shading of a commercial building simulated. A 12 month study of photovoltaics has been set up to monitor real values in the urban context. Changes in present energy generation strategies are discussed, through NFFO and DSM, to assist the take-up of photovoltaics in buildings as well as the need for legislation to maintain solar access. (author)

  16. Photovoltaic building blocks

    DEFF Research Database (Denmark)

    Hanberg, Peter Jesper; Jørgensen, Anders Michael

    2014-01-01

    efficiency of about 15% for commercial Silicon solar cells there is still much to gain. DTU Danchip provides research facilities, equipment and expertise for the building blocks that comprises fabricating the efficient solar cell. In order to get more of the sun light into the device we provide thin film...... coating tools to depositand develop anti-reflection filters by means of sputtering or e-beam evaporation. To reduce the area taken up by metallic contacts transparent conducting oxides like Aluminium doped ZincOxide (AZO) and Indium Tin Oxide (ITO) can be deposited. We also support research.......7%2. Such efforts we also provide service for through our tools designed for this material system.Our team of process generalists can guide and advice you to utilize our clean room facilities most efficiently while our process specialists can help you to develop new processes and fabrication recipes. Our dedicated...

  17. A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong

    Directory of Open Access Journals (Sweden)

    Aotian Song

    2016-08-01

    Full Text Available Installing sustainable and renewable energy systems is a promising way of relieving Hong Kong’s dependence on imported fossil fuels. Solar photovoltaic (PV technology is a perfect solution for Hong Kong as it fits the economic and geographic situation. Through a review of the PV development history of five leading PV countries, Germany, Japan, Italy, Mainland China, and the USA, this paper serves as a useful policy toolbox to aid PV development. Based on the forerunners’ successful PV industry experiences and Hong Kong’s unique local situations, a series of incentive strategies were proposed for Hong Kong to help promote the utilization of solar PV systems by reducing the initial investment and providing reasonable subsidies at the initial stages and during the operation period of the PV systems. These results could be a practical reference for promoting renewable energy applications for local policy-makers.

  18. Integration of thermal photovoltaic hybrid sensors to the building. Final report july 2004. Integrated research project 6.2; Integration de capteurs hybrides photovoltaiques thermiques au bati. Rapport final juillet 2004. Projet de recherche integre 6.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The electricity and the heat are two complementary energies necessary for the accommodation. A thermal solar installation needs the electric power for the coolant fluid flow. This research project concerns the optimization of integrated solutions to the building, providing simultaneously these two energies. This document presents the proposed researches programs: analysis of the socio-economic aspects, the physical phenomena knowledge, simulation of the behavior, experimentation, hybrid components integration, simulation of the photovoltaic modules operating and thermal simulation of an electric converter. (A.L.B.)

  19. Integration of solar energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Mennola, T.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.; Rasinkoski, A.; Spiers, D.; Eenilae, P. [Neste Advanced Power Systems (Finland)

    1998-12-31

    New photovoltaic building elements were developed and the uses of various solar technologies in buildings were optimised with computational design tools. The novel amorphous silicon photovoltaic elements allow for economic integration of photovoltaics in large facades. The cost of grid-connected systems may be reduced by approximately 20 % through the advanced design approaches developed. (orig.)

  20. Integrated lighting systems in building at 15° S latitude: Use of photovoltaic generation as a complement

    Directory of Open Access Journals (Sweden)

    Luciane Durante

    2014-12-01

    Full Text Available The objective of this article is to evaluate building energy and illumination performance considering situations of total sun protection and exposure of building openings. The specific objectives were: to estimate equal illuminance curves with measurements and computer simulations; to estimate the energy savings provided by a supplementary lighting system controlled by the user (Scenario 1 - real and another system that ignores the contribution of natural lighting (Scenario 2 - simulated; to quantify photovoltaic panel areas to meet these artificial lighting scenarios (1 and 2 and to estimate the CO2 emissions avoided by the use of natural light. It was demonstrated that Scenario 1 presented average Contribution of Natural Lighting (CIN values of 2% and saved 10.5% of total annual energy when compared to Scenario 2. The last CIN presented was up to 17 times higher than Scenario 1, which provided excessive illumination in the room studied. It would be necessary to cover 3% and 37% of the roof with photovoltaic panels to supply energy for Scenarios 1 and 2, respectively. The installation of a photovoltaic panel system would be economically unviable, with a payback period of 60 years, longer than its lifetime. However, it was possible to demonstrate its environmental benefits, the elimination of 689kg of CO2 emissions/year, which is equivalent to the neutralization provided by four arboreal units in the same period.

  1. Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.

    2008-01-01

    heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photovoltaic integrated facades or roofs and those using these effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered...... that a description of the non-linear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component....

  2. SOL-IND. Photovoltaics integrated in an industrialised building process. Final report; SOL-IND. Solceller integreret i industrielt byggeri. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Frederiksen, K.H.B.; Vestersager Engdal, J. (EnergiMidt A/S, Silkeborg (Denmark))

    2008-06-15

    The purpose of the project, EFP06 - Photovoltaics integrated in an industrialised building process (SOLIND), has been to examine the possibilities for PV (photovoltaics) in an industrialized building process. The project is an information gathering and development project with basis in knowledge about the possibilities for PV in relation to specific housing projects in Skanska Bolig A/S, including BoKlok, developed in cooperation with IKEA. During the project a workshop with participating architectural students has been carried through resulting in detailed concepts. The concepts have in general terms been introduced nationally to the press and were invited to a poster presentation at the world's largest PV conference. In addition to this, a number of prototypes are produced together with other presentation material. The projects has been divided into three phases. The report is divided into these three phases. 1) Knowledge gathering and unravelling 2) Analysis, development and evaluation, workshop for students. 3) Promotion and demonstration of results The main results are: 4) The project has resulted in increased knowledge about the possibilities with photovoltaics in industrialized building processes. 5) A number of concepts have been developed to fit PV in the project phase of an industrialized building process. 6) The most promising concepts has been demonstrated as prototypes in different scale together with other presentation materials The project continues in SOL-IND2, with the purpose to prepare and carry out an integration of a PV system in an industrialized building process. A subsidy is granted in 2008 from the EFP to prepare the construction. (au)

  3. Campus and community micro grids integration of building integrated photovoltaic renewable energy sources: Case study of Split 3 area, Croatia - part A

    Directory of Open Access Journals (Sweden)

    Gašparović Goran

    2016-01-01

    Full Text Available Micro grids interconnect loads and distributed energy resources as a single controllable entity. New installations of renewable energy sources (RES in urban areas, such as Building Integrated Photovoltaic (BIPV, provide opportunities to increase energy independence and diversify energy sources in the energy system. This paper explores the integration of RES into two case study communities in an urban agglomeration to provide optimal conditions to meet a share of the electrical loads. Energy planning case studies for decentralized generation of renewable energy are conducted in H2RES energy planning software for hourly energy balances. The results indicate that BIPV and PV in the case study communities can cover about 17% of the recorded electrical demand of both areas. On a yearly basis, there will be a 0.025 GWh surplus of PV production with a maximum value of 1.25 MWh in one hour of operation unless grid storage is used. This amounts to a total investment cost of 13.36 million EUR. The results are useful for proposing future directions for the various case study communities targeting sustainable development.

  4. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, N. [Freelance Consultant, Hillside House, Swindon SN1 3QA (United Kingdom); Thornycroft, J. [Halcrow Group Ltd, Burderop Park, Swindon SN4 0QD (United Kingdom); Collinson, A. [EA Technology, Capenhurst Technology Park, Chester CH1 6ES (United Kingdom)

    2002-03-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents the results of a risk analysis concerning photovoltaic power systems islanding in low-voltage distribution networks. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. The purpose of this study was to apply formal risk analysis techniques to the issue of islanding of photovoltaic power systems within low voltage distribution networks. The aim was to determine the additional level of risk that islanding could present to the safety of customers and network maintenance staff. The study identified the reliability required for islanding detection and control systems based on standard procedures for developing a safety assurance strategy. The main conclusions are presented and discussed and recommendations are made. The report is concluded with an appendix that lists the relative risks involved.

  5. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  6. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  7. Photovoltaic building sheathing element with anti-slide features

    Science.gov (United States)

    Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.

    2015-09-08

    The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.

  8. IEA PVPS Task 5 'Grid interconnection of building integrated and other dispersed photovoltaic power systems'; IEA PVPS Task 5 'Grid interconnection of building integrated and other dispersed photovoltaic power systems'

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D. [Enecolo AG, Moenchaltorf (Switzerland); Taiano, S. [Elektrizitaetswerk der Stadt Zuerich, Zuerich (Switzerland)

    2002-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of the Task 5 project, a task originally set up by the International Energy Agency (IEA) in 1993 to study the effects of photovoltaic (PV) systems that are interconnected via the electricity grid. The task's subtasks are described that reviewed existing PV interconnection guidelines, grid structures and experience made with previously installed PV, studied theoretical aspects of grid interconnection and which carried out experimental tests in various test facilities. The report discusses the results of a further subtask that studied issues concerning the interconnection of highly concentrated PV systems and the problem of islanding. The effectiveness of co-operation between the task's international participators from inverter manufacturers, electricity utilities, engineering companies and testing institutes is emphasised. The authors are of the opinion that the IEA Task 5 has made a significant contribution to a better understanding of the islanding problem and will help enable the widespread deployment of solar energy.

  9. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations

    DEFF Research Database (Denmark)

    Lodi, C.; Bacher, Peder; Cipriano, J.

    2012-01-01

    prediction of the most influential variables. The experimental data originates from tests carried out with an air-based BIPV system installed in a Test Reference Environment. BIPV systems represent an interesting application for achieving the requirements of the EU EPBD Directive. Indeed, these systems could...... reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...

  10. Design and Optimization of Slot Aluminum Alloy Connectors of Photovoltaics Applied to High-rise Building Facades

    Science.gov (United States)

    Liang, Ya-Wei; Zhang, Hong-Mei; Dong, Jin-Zhi; Shi, Zhen-Hua

    2016-05-01

    Building Integrated Photovoltaic (BIPV) is a resort to save energy and reduce heat gain of buildings, utilize new and renewable energy, solve environment problems and alleviate electricity shortage in large cities. The area needed to generate power makes facade integrated photovoltaic panel a superb choice, especially in high-rise buildings. Numerous scholars have hitherto explored Building Facade Integrated Photovoltaic, however, focusing mainly on thermal performance, which fails to ensure seismic safety of high-rise buildings integrated photovoltaic. Based on connecting forms of the glass curtain wall, a connector jointing photovoltaic panel and facade was designed, which underwent loading position and size optimization. Static loading scenarios were conducted to test and verify the connector's mechanical properties under gravity and wind loading by means of HyperWorks. Compared to the unoptimized design, the optimized one saved material and managed to reduce maximum deflection by 74.64%.

  11. Analysis and Monitoring Results of a Building Integrated Photovoltaic Façade Using PV Ceramic Tiles in Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Huang

    2014-01-01

    Full Text Available Single-crystal silicon-based solar cells laminated with tempered-glass and ceramic tiles for use in a building’s façade have been developed. The optical, thermal, and electrical properties of the proposed PV module are first evaluated, and then a wind-resistance test is carried out to evaluate the feasibility of installing it in Taiwan. The electrical and deflection characteristics of the proposed PV module did not change significantly after a 50 thermal cycling test and a 200-hour humidity-freeze test, based on IEC 61215 and a wind-resistance test. Finally, the electrical power generation ability of the proposed BIPV system with 1 kWp electrical power capacity was examined. Building information modeling software tools were used to simulate the BIPV system and carry out the energy analysis. The simulation results show a very consistent trend with regard to the actual monthly electricity production of the BIPV system designed in this work. The BIPV system was able to produce an accumulative electrical power of 185 kWh during the 6-month experimental period. In addition, the exterior temperature of the demonstration house was about 10°C lower than the surface of the BIPV system, which could reduce indoor temperature.

  12. Photovoltaics in buildings. Final report; Photovoltaik in Gebaeuden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Erge, T.; Hullmann, H.; Kaiser, R.; Kovach-Hebling, A.; Laukamp, H.; Reise, C.; Sauer, D.U.; Schmid, J.; Schmidt, H.; Sick, F.

    1996-08-31

    The feasibility in principle of photovoltaic plants integrated in buildings was proved in the 1980`s in the context of several pilot and demonstration projects both in Germany and internationally. However, the realisation and operation of these plants showed the necessity for further research and development work both in the system technique and particularly in the architectural area. The research project `Photovoltaics in buildings` reached the target of establishing a bridge between the technically orientated work of the researchers, developers and manufacturers of photovoltaic components on the one hand, and the architects and town planners on the other hand. (orig./AKF) [Deutsch] Die prinzipielle Machbarkeit gebaeudeintegrierter Photovoltaikanlagen wurde in den 80er Jahren im Rahmen mehrerer Pilot- und Demonstrationsprojekte sowohl in der Bundesrepublik Deutschland als auch international nachgewiesen. Die Realisierung und der Betrieb dieser Anlagen zeigte jedoch die Notwendigkeit weiterer Forschungs- und Entwicklungsarbeiten sowohl im systemtechnischen als insbesondere auch im architektonischen Bereich auf. Mit dem Forschungsprojekt `Photovoltaik in Gebaeuden` wurde das Ziel erreicht, eine Bruecke zu schlagen zwischen den eher technisch orientierten Arbeiten der Forscher, Entwickler und Hersteller von Photovoltaikkomponenten auf der einen Seite und den Architekten und Stadtplanern auf der anderen. (orig./AKF)

  13. Integration of photovoltaic technology in public buildings. Case study of Palmas Forum, Tocantins, Brazil; Integracao de tecnologia fotovoltaica em edificios publicos. Estudo de caso do Forum de Palmas, TO

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Elen Oliveira

    2010-03-15

    The energy issue follows the history of mankind and nowadays has triggered a multidisciplinary debate. Within this discussion, there is the main topic of this study: the focus on the high electric power consumption in public buildings. The approach is in consonance with the sustainability of architecture and the use of solar photovoltaic energy as a technological tool that brings into alliance the renewable alternative energy sources and the buildings which are connected to the urban electric power lines. This study aims to demystify the use of alternative energy sources in conjunction with the contemporary architectonic production. In the first part the sustainability, the world energy issue and the use of active solar systems in architecture were contextualized and then, the main objective was to measure an Integrated Photovoltaic System in a public building- the Court of Justice in Palmas, Tocantins. For that reason, it was necessary to evaluate the energy efficiency in the building and to achieve that objective the energy consumption in the so-called rush hours and the 19:00 to 21:00 period of time were considered. Subsequently, the study tested several possibilities of photovoltaic panels and analyzed which one had the best performance, according to the local characteristic such as: the solar orientation, the latitude, the monthly and annual solar radiation average. There has been done a simulation of an ideal photovoltaic solar system with the proper calculus of its productivity, in order to provide a compensation to the energy consumption of the building- or a part of it- through the use of the alternative energy source in question. The objective is to demystify the generation of electric power from the use of solar energy and thus evaluating the contribution of the system to the conventional electric energy. Finally, a partial economic analysis of the system was carried out, driving to characterize the contribution potential of the Integrated Photovoltaic

  14. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ......The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration...

  15. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  16. Integration of photovoltaic solar panels in residential buildings and its contribution in a power feeder of a mixed urban region; Integracao de paineis solares fotovoltaicos em edificacoes residenciais e sua contribuicao em um alimentador de energia de zona urbana mista

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isis Portolan dos

    2009-02-15

    Energy generation is one of the main pollution sources in the world. Photovoltaic solar energy is a way to guarantee the electric energy generation using a clean and renewable source, the sun. With the photovoltaic modules integration in buildings, it is possible to generate energy in urban areas, using areas already constructed and also minimizing the energy loss with transmission and distribution. Direct connection of a photovoltaic system to the electric grid avoids the necessity of a storage system, and allows the generated energy to be used by any consumer connected to the grid. This thesis proposes the creation and propagation of predefined kits including photovoltaic modules and other equipment, in order to complete installation and connection of photovoltaic generator, resulting in solar roofs in urban houses. The kits could be installed on roofs of existent residences or in new ones, making the installation easier and minimizing the necessity and the costs of a specific project for each case. With the definition of standard components, like the modules, inverters, and others equipment, there would be an industrial production scale, minimizing costs. In addition, the kits also make the training of the installers easier. The simulation of this concept in a residential area in Florianopolis, demonstrates that there is enough area in the roofs to locate one kit in all residences, and that this generation is able to contribute to the energy demand of the area. So all energy generated by the kits will be immediately consumed inside the area, relieving the concessionaire load. His argue that kits can be an interesting way of bringing this energy generation technology to mainstream. (author)

  17. Environmental impact comparison of a ventilated and a non-ventilated building-integrated photovoltaic rooftop design in the Netherlands: Electricity output, energy payback time, and land claim

    NARCIS (Netherlands)

    Ritzen, M.J.; Vroon, Z.A.E.P.; Rovers, R.; Lupíšek, A.; Geurts, C.P.W.

    2017-01-01

    Building Integrated PV (BIPV) is considered as a key development for successful deployment of PV in the built environment. However, the effect of PV integration on environmental impact is not fully understood. In this study a single indicator for environmental impact assessment of BIPV is

  18. ATLSS Integrated Building System

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    The AIBS (ATLSS Integrated Building Systems) program was developed to coordinate ongoing research projects in automated construction and connection systems. The objective of this technology is to design, fabricate, erect, and evaluate cost-effective building systems with a focus on providing a computer integrated approach to these activities.

  19. Research and Development Needs for Building-Integrated Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  20. Integration of Photovoltaics in Buildings—Support Policies Addressing Technical and Formal Aspects

    Directory of Open Access Journals (Sweden)

    Thorsten Schuetze

    2013-06-01

    Full Text Available The integration of photovoltaic (PV generators in the envelope of a building by means of building-integrated photovoltaics (BIPV offers an immense potential, both in market development and the production of renewable electric energy that is close to the point of electricity consumption. In Germany, for example, by integrating photovoltaics in buildings up to 50% of the electricity demand can be covered. The political support of BIPV would contribute to the development and installation of BIPV components and therefore also promote the development of new business areas for industries dealing with components used in building envelopes and photovoltaic generators. BIPV can be separated into three different integration types: “technical”, “formal” and “technical & formal”. Political instruments for the support of PV-installations, particularly BIPV are discussed in this paper using Germany and France as examples. Due to successful financial support policies, PV became the most powerful electricity production technology in Germany. In France, the unique financial support of BIPV is resulting in an exemplary development and growth of certified BIPV components available on the market and, from a technical, aesthetic architectural and legal certainty point of view, facilitating the easy and widespread integration of photovoltaic generators in buildings.

  1. The photovoltaic and the buildings architecture design; Le photovoltaique et la conception architecturale des batiments

    Energy Technology Data Exchange (ETDEWEB)

    Fleuret, J.L. [Conseil Regional Rhone-Alpes (France); Juquois, F.; Beutin, Ph. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Jautard, Y. [Office du Tourisme d' Ales, 30 (France); Fromont, R.; Detry, N. [Auberge Royale des Pauvres (Italy); Ferrier, J. [Total 92 - Courbevoie (France); Prignot, I. [Association de Promotion des Energies Renouvelables Wallonie, Bruxelles (APERe) (Belgium); Pellegrin, F. [Union National des Architectes (UNSFA), 75 - Paris (France); Greipmeier, K. [Zentrum fur Rationelle Energieanwendung und Umwelt Gmbh ZREU (Germany); Jedlizka, M.; Lenoire, D. [Cler/ Hespul, 69 - Villeurbanne (France); Mansot, J. [Ademe, 69 - Lyon (France)

    2003-07-01

    This second conference of the thematic work package ''building integrated photovoltaic'' was held exclusively in French. Primarily aimed at architects and technical services of local municipalities, this conference was opened by Jean-Loup FLEURET, Vice President of the Regional Government (Region Rhone Alpes). Following this opening speech, Didier LENOIR, President of the CLER, discussed the current energy context, followed by Fabrice JUQUOIS of the ADEME Renewable Energies Department who presented the French photovoltaic market. Alain GUIAVARCH, from the Ecole des Mines, Paris presented their new software for simulating the thermal impact of photovoltaic on buildings. The first Round Table gave architects the opportunity to discuss their past and future projects, whilst a series of images illustrating their projects were projected. Alain BANSAC, Vice-President of the National Architects Union (UNSFA) summarised the round table. The afternoon session of this conference was opened by PREDAC partner Klaus GREIPMEIER (ZREU) with a stimulating overview of the German BIPV market. Alain RICAUD from Cythelia then presented their software for sizing photovoltaic for building integration. The second Round Table gave the microphone to system owners - from private individuals to local councils and special use buildings, demonstrating the varied motivations and needs of final-end Clients. Marc JEDLICZKA (CLER Vice-president and Hespul General Director) and Philippe BEUTIN (ADEME RES Department Head) summarised the second round tables, before Jose MANSOT, the Regional ADEME Delegate, closed the day. (author)

  2. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  3. Integrating Responsive Building Elements in Buildings

    DEFF Research Database (Denmark)

    Haase, Matthias; Amato, Alex; Heiselberg, Per

    2006-01-01

    There is a global need for a more sustainable building development. About 50% of energy is used in buildings indicating that buildings provide a considerable potential for operational energy savings. Studies were conducted with the following objectives: to perform a state-of-the-art review...... of responsive building elements, of integrated building concepts and of environmental performance assessment methods to improve and optimize responsive building elements to develop and optimize new building concepts with integration of responsive building elements, HVAC-systems as well as natural and renewable...... energy strategies to develop guidelines and procedures for estimation of environmental performance of responsive building elements and integrated building concepts This paper introduces the ideas of this collaborative work and discusses its usefulness for Hong Kong and China. Special focus was put...

  4. Utilization of photovoltaic panels in urban build-up areas – grid on

    Directory of Open Access Journals (Sweden)

    Rybár Radim

    2001-12-01

    Full Text Available Photovoltaic systems belong to the most perspective alternative sources of energy. We expect that during a relatively short period of time, the photovoltaic systems will slowly cover 5 to 10 % of the whole consumption of the electricity. One of the conditions of integration to European Community is the rising of the part of alternative sources in the production of energy. Besides another technologies, it’s also possible to reach it with an installation of the photovoltaic systems in already-existed building-up area. The photovoltaic systems “Grid on” are used especially in places with the advanced net of electric lines – in big cities. The invertors developed especially for the photovoltaic systems "Grid on" have the effeciency higher than 90 % and they are absolute safe against the bias voltage.From the entire number of days of an year in Slovakia the sun shines from 1300 to 2200 hours, in Košice it’s 2100 hours. An average amount of energy falling down by one day is 3,3 kW.h.m-2. An average effective power of one m2 of the photovoltaic panels is 110 W.m-2 of the standard illuminance 1000 W.m-2 and the solar spectrum AM 1,5. Annually it’s possible to make from the photovoltaic panel (1 m2 120,45 kW.h. Average amount of the solar energy shape to the south-orient area in Košice is 101,5 kW.h.m-2. In Košice is an ideal inclination of the absorption area of the photovoltaic panels from horizontal plains from 58° to 65° for the year-around operation. At optimal conditions it’s possible by integrating photovoltaic panels with the construction of the balcony barrier from one block of flats about 10 MW.h per year. If we utilise the all areas applicable for the installation of photovoltaic panels (building exteriors, roofs, shady component,.., we able to cast about a few multiple of these value just for one block of flat.Today, the cost of the photovoltaic systems is many times higher than the cost of the electric energy. But the cost

  5. Wafer integrated micro-scale concentrating photovoltaics

    Science.gov (United States)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  6. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  7. Integrating photovoltaics into utility distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., San Jose, CA (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Electric utility distribution system impacts associated with the integration of distributed photovoltaic (PV) energy sources vary from site to site and utility to utility. The objective of this paper is to examine several utility- and site-specific conditions which may affect economic viability of distributed PV applications to utility systems. Assessment methodology compatible with technical and economic assessment techniques employed by utility engineers and planners is employed to determine PV benefits for seven different utility systems. The seven case studies are performed using utility system characteristics and assumptions obtained from appropriate utility personnel. The resulting site-specific distributed PV benefits increase nonsite-specific generation system benefits available to central station PV plants as much as 46%, for one utility located in the Southwest.

  8. Photovoltaic Design Integration at Battery Park City, New York

    Directory of Open Access Journals (Sweden)

    Simone Medio

    2013-04-01

    Full Text Available This paper is a study of the photovoltaic (PV systems in the buildings’ design of the Battery Park City (BPC residential development, in New York. The BPC development is the first in the US to mandate, through the 2000 Battery Park City Authority (BPCA guidelines, the use of PV as a renewable energy generation system in its individual buildings. The scope of this study is to show how PV is integrated in the BPC buildings’ design process, and what can be learned for future PV applications. The study draws directly from the design decision making sources, investigating on the concerns and suggestions of the BPCA director of sustainability and the BPC architects and PV installers. It attempts to contrast a theoretical approach that sees PV as a technology to domesticate in architecture and bring, through grounded research, PV industry closer to the architectural design process. The findings of the study suggest that while stringent environmental mandates help, in the short term, to kick-start the use of PV systems in buildings, it is the recognition of the PV’s primary role as energy provider, its assimilation in the building industry, and its use in a less confining building program that allows for its evolution in architecture.

  9. Large-area smart glass and integrated photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M. [Star Science, 8730 Water Road, Cotati, CA 94931-4252 (United States)

    2003-04-01

    Several companies throughout the world are developing dynamic glazing and large-area flat panel displays. University and National Laboratory groups are researching new materials and processes to improve these products. The concept of a switchable glazing for building and vehicle application is very attractive. Conventional glazing only offers fixed transmittance and control of energy passing through it. Given the wide range of illumination conditions and glare, a dynamic glazing with adjustable transmittance offers the best solution. Photovoltaics can be integrated as power sources for smart windows. In this way a switchable window could be a completely stand alone smart system. A new range of large-area flat panel display including light-weight and flexible displays are being developed. These displays can be used for banner advertising, dynamic pricing in stores, electronic paper, and electronic books, to name only a few applications. This study covers selected switching technologies including electrochromism, suspended particles, and encapsulated liquid crystals.

  10. A Techno-Economic Analysis of Photovoltaic System Design as Specifically Applied to Commercial Buildings in Ireland

    Directory of Open Access Journals (Sweden)

    Jonathan Blackledge

    2012-11-01

    Full Text Available This paper evaluates the viability of installing photovoltaic (PV systems in existing commercial buildings in Dublin. Data collected from previously installed photovoltaic systems at the Dublin Institute of Technology was analysed in order to determine the potential solar resource available in Ireland. A 1.1 kWp photovoltaic system installed in Dublin can produce over 900 kWh of electricity in a given year depending on the available solar resource for that year. A feasibility study was conducted in Dublin city centre in order to evaluate the technical, financial and environmental aspects of integrating a PV system into an existing building. The intention is that the results from this work will help in demonstrating the benefits and challenges associated with installing PV systems in existing commercial buildings in Ireland.

  11. Integrated Building Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected...

  12. Photovoltaic module mounting clip with integral grounding

    Science.gov (United States)

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  13. Integrated Building Design

    DEFF Research Database (Denmark)

    Heiselberg, Per

    In the first half of the 20th century, HVAC systems and artificial lighting were developed to meet indoor comfort needs. Before the introduction of mechanical systems, climate - not building style or appearance - was the major determinant of building form. Comfort was achieved through passive means...... and architectural features built into the design. However, with the advent of new technologies, architects were no longer constrained by the need to ensure that buildings had ample daylighting, remained airy and cool in the summer and warm in the winter. Since HVAC systems and artificial lighting could satisfy...

  14. Integrated Building Management System (IBMS)

    Energy Technology Data Exchange (ETDEWEB)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  15. Overview of design issues in product-integrated Photovoltaics

    NARCIS (Netherlands)

    Apostolou, G.; Reinders, Angelina H.M.E.

    2014-01-01

    This paper presents an overview of the design features and characteristics of photovoltaic (PV)-powered products based on a literature study on product-integrated PV and an analysis of 90 PV-powered products executed during 2011–2013. The aim of this paper is to provide insight into the current

  16. Integrating advanced facades into high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  17. Photovoltaics merging with the active integrated grid

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Baccaro, Federica; De Felice, Matteo

    have already taken radical steps to adapt to this new situation [4]. The benefits of PV generation in terms of environmental impact and energy security are well documented [5]. This is why the European PV Technology Platform aims at enabling the massive deployment of photovoltaics into the power system...... architecture of existing grids. Together with other renewable energy sources, it challenges the business models of incumbents in the power sector, be they network operators or power generators. Some of these incumbents may be tempted to exaggerate the negative impact of PV, and minimise its benefits. Others....... Economic as well as technical issues are put forward. Indeed, PV power generation has moved in just a decade from a curiosity to a significant part of power systems around the world. Global investment in new PV generation capacity was US$ 173.6 billion in 2013, nearly two thirds of the gross investment...

  18. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because of the controll......This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...

  19. Integrating Environmentally Responsive Elements in Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Andresen, Inger; Perino, Marco

    2006-01-01

    Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie...... with technologies that promote the integration of responsive building elements and building services in integrated building concepts. In order to address some of these issues an international research effort, IEA-ECBCS Annex 44 has been initiated. The paper especially presents the annex activities regarding...

  20. Integrating CFD and building simulation

    DEFF Research Database (Denmark)

    Bartak, M.; Beausoleil-Morrison, I.; Clarke, J.A.

    2002-01-01

    To provide practitioners with the means to tackle problems related to poor indoor environments, building simulation and computational 3uid dynamics can usefully be integrated within a single computational framework. This paper describes the outcomes from a research project sponsored by the European...... Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model, describes the method used to integrate the thermal and 3ow domains and reports the outcome from an empirical validation exercise. © 2002 Published by Elsevier Science Ltd....

  1. Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2015-07-01

    Full Text Available A Net Zero Energy Building (NZEB considerably reduces the building energy load through high efficiency equipment and passive elements such as building orientation, high insulation, natural daylighting, and ventilation in order to achieve zero energy balance with on-site energy production from renewable energy systems applied to the building. For a Zero Energy Building (ZEB, the heating energy demand can be significantly reduced with high insulation and air tightness, while the cooling energy demand can be curtailed by applying shading device, cross ventilation, etc. As such, the electrical energy demand for a ZEB is relatively higher than its heat energy demand. Therefore, the application of a Renewable Energy System (RES to produce electricity is necessary for a ZEB. In particular, Building Integrated Photovoltaic (BIPV systems that generate electricity can play an important role for achieving zero energy balance in buildings; BIPVs are multi-functional and there are many ways to apply them into buildings. This study comprehensively analyzes photovoltaic (PV applications in ZEB cases through the International Energy Agency Solar Heating and Cooling Programme (IEA SHC/Energy in Buildings and Communities Programme (EBC Task 40/Annex 52 activities, which include PV installation methods, PV cell type, and electricity generation. The most widely applied RES is the PV system, corresponding to 29 out of a total of 30 cases. Among the roof type PV systems, 71% were non-integrated. In addition, 14 of the 27 cases in which PV systems were applied, satisfied over 100% of the electricity energy demand from the PV system and were found to generate surplus electrical power.

  2. Building-integrated photovoltaics (BIPV); GISS Gebaeude-Integrierte Solarstrom-Systeme (Building Integrated Photovoltaic BIPV)

    Energy Technology Data Exchange (ETDEWEB)

    Hof, R. [Geilinger Fassaden AG, Winterthur (Switzerland); Mikesch, W. [Colt Solar Technology AG, Baar (Switzerland); Miloni, R. [Lichtplanung und Architektur, Muelligen (Switzerland); Kaelin, T. [Jaakko Poeyry Infra, Zuerich (Switzerland); Nordmann, T. [TNC Consulting AG, Erlenbach (Switzerland); Meier, Ch. [Energiebuero Die Solarplaner, Zuerich (Switzerland); Locher, R. [Schweizerische Zentrale Fenster und Fassaden (SZFF), Dietikon (Switzerland)

    2005-07-01

    This extensive report for the Swiss Federal Office of Energy (SFOE) by the Swiss Central Association for Window and Facade Construction (SZFF) takes a look at the research project it launched to develop a basis for estimating existing potentials between facade builders and solar specialists and for the reduction of the technical impediments and mental barriers involved. The goals of the project are listed and the results expected are noted. Part-projects included are described and the results obtained so far are examined. These include information acquisition and analysis, surveys developed in co-operation with the University of Applied Sciences in Horw, Switzerland, a market survey and the development of a handbook and argumentation-aid available on the Internet and as a CD-ROM.

  3. The implication of the architects in photovoltaic integration; La implicacion de los arquitectos en la integracion fotovoltaica

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.

    2008-07-01

    There is no doubt that Building Integrated Photovoltaic (BIPV) has an enormous potential, but in order to achieve the expected success the implication of architects is necessary. A good understanding between them and PV engineers is more than desirable in order to develop good building integrated examples. This will redound on the social reliance of this technology in urban and industrial areas. Photovoltaic should be included from the beginning of the building design and, to achieve this, architects must know about the characteristics, possibilities and limits of this technology and, at the same time, about the design criteria related to PV generation. On the other side PV modules designs should be adapted to the architectonic requirements. (Author)

  4. Building opportunities for photovoltaics in the U.S. Final report [PV BONUS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Nicklas

    1999-09-08

    The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the

  5. National Center for Photovoltaics Process Integration Project: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, B.; Robbins, S.; Sheldon, P.

    2004-08-01

    The research staff of the National Center for Photovoltaics (NCPV) has excelled in increasing solar cell efficiencies and advancing the understanding of photovoltaic-related materials and devices using their existing deposition, processing, and characterization tool base. However, using our existing equipment, it is becoming increasingly difficult to gain new knowledge about important issues related to process sequencing, growth chemistry and kinetics, interface characteristics, and the understanding of how these interfaces affect device performance. This is due in part to the state of our existing tool set, which lacks sufficient in-situ or real-time measurement capabilities, or lacks access to analytical tools where the sample remains in a controlled environment between deposition or processing and measurement. The existing tool set is difficult to upgrade with these capabilities because they are mostly ''standalone,'' which means that they operate independently of each other and without a common substrate size or type. As a result, the NCPV has embarked on a project to provide the infrastructure to allow researchers to gain new knowledge that is difficult--if not impossible--to obtain with existing equipment. This infrastructure consists of providing flexible and robust integration of deposition, processing, and characterization tools via a standardized transfer interface such that samples move between tools in a controlled ambient. Standardization of control and data management software will enhance the utility of the integrated tools. This concept will also requires the cooperation of experts from various material technologies and characterization disciplines to work directly with each other to obtain answers to key scientific and technological questions. Ultimately, it will be this synergistic effort between NREL staff, universities, and the photovoltaic (PV) industry around an integrated tool base that will add to the knowledge base

  6. Photovoltaic System Test Platform with Integrated Battery Energy Storage Emulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Stroe, Daniel-Ioan

    2017-01-01

    In this work, we present a hybrid simulation and a real-time test platform for developing control systems for photovoltaic (PV) inverters with integrated battery energy storage (BES). The platform consists of a dual-stage single-phase PV inverter system, DC coupled with a full-bridge grid connected...... or directly to a physical PV array. The platform enables real-time testing of PV+BES control systems, including battery (BMS) and energy management systems (EMS), for a variety of battery technologies, which can be modelled in detail and emulated by the full-bridge grid connected inverter. Such flexibility...

  7. Effect of the Changeable Organic Semi-Transparent Solar Cell Window on Building Energy Efficiency and User Comfort

    National Research Council Canada - National Science Library

    Sehyun Tak; Soomin Woo; Jiyoung Park; Sungjin Park

    2017-01-01

    Building-integrated photovoltaics (BIPV) are one of the most important sustainability technologies for building energy, and the semi-transparent solar cell is one of the most promising photovoltaic systems for building integration because...

  8. Effect of the Changeable Organic Semi-Transparent Solar Cell Window on Building Energy Efficiency and User Comfort

    National Research Council Canada - National Science Library

    Sehyun Tak; Soomin Woo; Jiyoung Park; Sungjin Park

    2017-01-01

    Building-integrated photovoltaics (BIPV) are one of the most important sustainability technologies for building energy, and the semi-transparent solar cell is one of the most promising photovoltaic systems for building integration...

  9. Photovoltaic roofs in the city centre of Unterseen: photovoltaic roof integration in a protected old-city environment; PV Daecher Altstadt Unterseen: Photovoltaik Dachintegration in geschuetzter Altstadtumgebung

    Energy Technology Data Exchange (ETDEWEB)

    Bigler, F.

    2001-07-01

    Unterseen, Switzerland, a part of the city of Interlaken, located on the river Aare between the two lakes of Thun and Brienz, has a historical centre, which is marked by an old town house and other historical monuments. The integration of photovoltaic modules into the roof of a newly designed building in an old town, taking historical aspects into account, represented a special challenge in terms of a combination of modern technology and a traditional townscape. A clever module design and lot of convincing was necessary in order to have the photovoltaic project approved by the local townscape authority, the cantonal as well as the national preservation of historical monuments. The installed power is 6 kWp and the energy production so far meets the expected output. (author)

  10. Investigations of a building-integrated ducted wind turbine module

    Science.gov (United States)

    Dannecker, Robert K. W.; Grant, Andrew D.

    2002-01-01

    So far, wind energy has not played a major role in the group of technologies for embedded generation in the built environment. However, the wind flow around conventional tall buildings generates differential pressures, which may cause an enhanced mass flow through a building-integrated turbine. As a first step, a prototype of a small-scale ducted wind turbine has been developed and tested, which seems to be feasible for integration into the leading roof edge of such a building. Here an experimental and numerical investigation of the flow through building-integrated ducting is presented. Pressure and wind speed measurements have been carried out on a wind tunnel model at different angles of incident wind, and different duct configurations have been tested. It was confirmed that wind speeds up to 30% higher than in the approaching freestream may be induced in the duct, and good performance was obtained for angles of incident wind up to ±60°. The experimental work proceeded in parallel with computational fluid dynamics (CFD) modelling. The geometry of the system was difficult to represent to the required level of accuracy, and modelling was restricted to a few simple cases, for which the flow field in the building-integrated duct was compared with experimental results. Generally good agreement was obtained, indicating that CFD techniques could play a major role in the design process. Predicted power of the proposed device suggests that it will compare favourably with conventional small wind turbines and photovoltaics in an urban environment.

  11. Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

    2005-10-01

    This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

  12. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    Science.gov (United States)

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    Science.gov (United States)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Azwa Shaaya, Sharifah

    2013-06-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  14. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  15. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  16. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  17. Use of standalone photovoltaic system for office building: the case ...

    African Journals Online (AJOL)

    , is considered as a cost effective system for the building, as compared to one in category 2 with the load of an average consumption of 198.1kWh/d. Keywords: Renewable Energy, Insolation, Electrical Load Demand, Self Sufficient, Grid ...

  18. The feasibility of using photovoltaic panels to illuminate the entryway to an apartment building

    Directory of Open Access Journals (Sweden)

    Sumarokova Liudmila

    2017-01-01

    Full Text Available The article considers the possibility of using an LED lighting system with a power source from solar modules in the climatic conditions of Siberia. The technical possibility of implementing an autonomous house lighting system is shown for example in the lighting of a residential five-story building located in Tomsk. The choice and justification of the neces-sary electrical equipment for solar panels was made. Calculations have been made for the energy consumption of the existing lighting system and a system with LED light sources from photovoltaic panels. The payback period of the project is determined. On the example of an autonomous sys-tem of interior lighting of an apartment building, conclusions were made about the feasibility and efficiency of using photovoltaic panels in the cli-matic conditions of Tomsk region.

  19. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    OpenAIRE

    Mohammad Hosein Mohammadnezami; Mehdi Ali Ehyaei; Marc A. Rosen; Mohammad Hossein Ahmadi

    2015-01-01

    A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid sy...

  20. Building integrated PV for commercial and institutional structures, a sourcebook for architects

    Energy Technology Data Exchange (ETDEWEB)

    Eiffert, P.; Kiss, G.

    2000-02-14

    This sourcebook on building-integrated photovoltaics (BIPV) is intended for architects and designers interested in learning more about today's sustainable solar buildings. The booklet includes 16 design briefs describing actual structures; they illustrate how electricity-generating BIPV products (such as special roofing systems, vertical-wall systems, skylights, and awnings, all of which contain PV cells, modules, and films) can be integrated successfully into many different kinds of buildings. It also contains basic information about BIPV technologies, an overview of US product development activities and development programs, descriptions of major software design tools, and a bibliography.

  1. Integrated sustainable urban infrastructures in building projects

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Quitzau, Maj-Britt; Elle, Morten

    2007-01-01

    Current strategies in urban planning and development merely promote standardized building solutions, while failing to prioritize innovative approaches of integration between building projects and sustainable urban infrastructures. As a result of this, urban infrastructures – the urban veins...... – are outdated from a sustainability perspective. This paper looks into more holistic ways of approaching building projects and discuss whether this provide a basis for an increased integration of urban infrastructures within building projects. In our study, we especially emphasise how conventional ways...... of approaching building projects are influenced by lock-in of existing infrastructural systems and compare this with two examples of more holistic ways of approaching building projects, developed by two architecture firms. The paper points out that such holistic perspective in building projects provide...

  2. Integrating Copper Nanowire Electrodes for Low Temperature Perovskite Photovoltaic Cells

    Science.gov (United States)

    Mankowski, Trent

    Recent advances in third generation photovoltaics, particularly the rapid increase in perovskite power conversion efficiencies, may provide a cheap alternative to silicon solar cells in the near future. A key component to these devices is the transparent front electrode, and in the case of Dye Sensitized Solar Cells, it is the most expensive part. A lightweight, cost-effective, robust, and easy-to-fabricate new generation TCE is required to enable competition with silicon. Indium Tin Oxide, commonly used in touchscreen devices, Organic Light Emitting Diodes (OLEDs), and thin film photovoltaics, is widely used and commonly referred to as the industry standard. As the global supply of indium decreases and the demand for this TCE increases, a similar alternative TCE is required to accompany the next generation solar cells that promise energy with lighter and significantly cheaper modules. This alternative TCE needs to provide similar sheet resistance and optical transmittance to ITO, while also being mechanically and chemically robust. The work in this thesis begins with an exploration of several synthesized ITO replacement materials, such as copper nanowires, conductive polymer PEDOT:PSS, zinc oxide thin films, reduced graphene oxide and combinations of the above. A guiding philosophy to this work was prioritizing cheap, easy deposition methods and overall scalability. Shortcomings of these TCEs were investigated and different materials were hybridized to take advantage of each layers strengths for development of an ideal ITO replacement. For CuNW-based composite electrodes, 85% optical transmittance and 25 O/sq were observed and characterized to understand the underlying mechanisms for optimization. The second half of this work is an examination of many different perovskite synthesis methods first to achieve highest performance, and then to integrate compatible methods with our CuNW TCEs. Several literature methods investigated were irreproducible, and those that

  3. Integration of PV modules in existing Romanian buildings from rural areas

    Energy Technology Data Exchange (ETDEWEB)

    Fara, S.; Finta, D. [IPA SA Research Development, Engineering and Manufacturing for Automation Equipment and Systems, Bucharest (Romania); Fara, L.; Comaneci, D. [Polytechnic Univ. of Bucharest (Romania); Dabija, A.M. [Univ. of Architecture and Urbanism Ion Mincu, Bucharest (Romania); Tulcan-Paulescu, E. [West Univ. of Timisoara, Timisoara (Romania)

    2010-07-01

    Romania has launched a national research project to promote the use of distributed solar architecture and the use of BIPV systems. These systems include solar tunnels and active solar photovoltaic (PV) systems installed on the roofs and facades of buildings in rural areas. In contrast to other EU states, Romania does not have a photovoltaic building construction branch. The number of isolated cases are insufficient to identify a starting point regarding the PV market in the building industry. The main objective of the project is to demonstrate the efficiency of integrating various PV elements in buildings from rural areas, to test them and to make them known so that they can be used on a large scale. This will be accomplished by installing new products on 2 buildings in Bucharest and in 1 building in Timisoara. The PV modules will be integrated with the architecture. One of the buildings will be a historical building while the other 2 will be new buildings with different typologies. The installed power for each building will be of about 1.000 Wp, including some technologies with PV modules.

  4. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  5. An Integrated Performance Evaluation Model for the Photovoltaics Industry

    Directory of Open Access Journals (Sweden)

    He-Yau Kang

    2012-04-01

    Full Text Available Global warming is causing damaging changes to climate around the World. For environmental protection and natural resource scarcity, alternative forms of energy, such as wind energy, fire energy, hydropower energy, geothermal energy, solar energy, biomass energy, ocean power and natural gas, are gaining attention as means of meeting global energy demands. Due to Japan’s nuclear plant disaster in March 2011, people are demanding a good alternative energy resource, which not only produces zero or little air pollutants and greenhouse gases, but also with a high safety level to protect the World. Solar energy, which depends on an infinite resource, the sun, is one of the most promising renewable energy sources from the perspective of environmental sustainability. Currently, the manufacturing cost of solar cells is still very high, and the power conversion efficiency is low. Therefore, photovoltaics (PV firms must continue to invest in research and development, commit to product differentiation, achieve economies of scale, and consider the possibility of vertical integration, in order to strengthen their competitiveness and to acquire the maximum benefit from the PV market. This research proposes a performance evaluation model by integrating analytic hierarchy process (AHP and data envelopment analysis (DEA to assess the current business performance of PV firms. AHP is applied to obtain experts’ opinions on the importance of the factors, and DEA is used to determine which firms are efficient. A case study is performed on the crystalline silicon PV firms in Taiwan. The findings shall help the firms determine their strengths and weaknesses and provide directions for future improvements in business operations.

  6. European conferences. Integration of renewable energies in buildings; Conferences europeennes. Integration des energies renouvelables dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    Bal, J.L. [ADEME, Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France); Letz, T. [Asder, 73 - Saint Alban Leysse (France); Tuille, F. [Observ' er, 75 - Paris (France)] [and others

    2001-07-01

    This document comprises 2 parts. First part is a detailed program of the exhibition with a press dossier which presents the different topics discussed during conferences and round tables, the market of renewable energies, and a list of agencies and companies involved in renewable energies development and products. The second part is the abstracts of the lectures presented during the European conferences on the integration of renewable energies in buildings (solar-thermal and photovoltaic systems, wood fuel and biomass). (J.S.)

  7. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. PV for rural electrification in developing countries - A guide to capacity building requirements

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.; Gunning, R. [IT Power Ltd, The Manor house, Chineham (United Kingdom); Stapleton, G. [Global Sustainable Energy Solutions Pty Ltd, GSES, Ulladulla 2539 (Australia)

    2003-03-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the topic of 'capacity building' in rural electrification projects. Capacity building is defined here as the development of an organisation's or individual's core knowledge, skills and capabilities in order to build and enhance the organisation's effectiveness and sustainability. This document identifies capacity building measures that should be undertaken as an integral component of a PV-based rural electrification implementation programme. Capacity building is to be facilitated through the provision of technical support activities, training, specific technical assistance and resource networking. The assessment of existing knowledge and the identification of training needs are discussed and training needs and their implementation by governmental and commercial players is discussed. Eleven case studies complete the report.

  8. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  9. A techno-economic assessment of grid connected photovoltaic system for hospital building in Malaysia

    Science.gov (United States)

    Mat Isa, Normazlina; Tan, Chee Wei; Yatim, AHM

    2017-07-01

    Conventionally, electricity in hospital building are supplied by the utility grid which uses mix fuel including coal and gas. Due to enhancement in renewable technology, many building shall moving forward to install their own PV panel along with the grid to employ the advantages of the renewable energy. This paper present an analysis of grid connected photovoltaic (GCPV) system for hospital building in Malaysia. A discussion is emphasized on the economic analysis based on Levelized Cost of Energy (LCOE) and total Net Present Post (TNPC) in regards with the annual interest rate. The analysis is performed using Hybrid Optimization Model for Electric Renewables (HOMER) software which give optimization and sensitivity analysis result. An optimization result followed by the sensitivity analysis also being discuss in this article thus the impact of the grid connected PV system has be evaluated. In addition, the benefit from Net Metering (NeM) mechanism also discussed.

  10. Roof Photovoltaic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In order to accurately predict the annual energy production of photovoltaic systems for any given geographical location, building orientation, and photovoltaic cell...

  11. Supporting Theory Building in Integrated Services Research

    Science.gov (United States)

    Robinson, Mark; Atkinson, Mary; Downing, Dick

    2008-01-01

    This literature review was commissioned by the National Foundation for Educational Research (NFER) to draw together current and recent studies of integrated working, in order to build an overview of the theories and models of such working. The review is important for current work on evaluating the early impact of integrated children's services and…

  12. Duke Energy Photovoltaic Integration Study: Carolinas Service Areas

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuai [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Samaan, Nader A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meng, Da [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chassin, Forrest S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Yu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vyakaranam, Bharat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Warwick, William M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fuller, Jason C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diao, Ruisheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nguyen, Tony B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jin, Chunlian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-01

    Solar energy collected using photovoltaic (PV) technology is a clean and renewable energy source that offers multiple benefits to the electric utility industry and its customers, such as cost predictability, reduced emissions, and loss reduction by distributed installations. Renewable energy goals established in North Carolina Senate Bill 3 (SB3), in combination with the state tax credit and decreases in the cost of energy from PV panels, have resulted in rapid solar power penetration within the Carolinas services areas of Duke Energy. Continued decreases in PV prices are expected to lead to greater PV penetration rates than currently required in SB3. Despite the potential benefits, significant penetration of PV energy is of concern to the utility industry because of its impact on operating reliability and integration cost to customers, and equally important, how any additional costs may be allocated to different customer groups. Some of these impacts might become limiting factors for PV energy, especially growing distributed generation installed at customer sites. Recognizing the importance of renewable energy developments for a sustainable energy future and economic growth, Duke Energy has commissioned this study to simulate the effects of high-PV penetration rates and to initiate the process of quantifying the impacts. The objective of the study is to inform resource plans, guide operation improvements, and drive infrastructure investments for a steady and smooth transition to a new energy mix that provides optimal values to customers. The study team consists of experts from Pacific Northwest National Laboratory (PNNL), Power Costs, Inc. (PCI), Clean Power Research (CPR), Alstom Grid, and Duke Energy. PNNL, PCI, and CPR performed the study on generation impacts; Duke Energy modeled the transmission cases; and distribution simulations were conducted by Alstom Grid. PNNL analyzed the results from each work stream and produced the report.

  13. Integrated building automation; Integrierte Gebaeudeautomation

    Energy Technology Data Exchange (ETDEWEB)

    Uhlemann, F. [Eckelmann, AG, Wiesbaden (Germany)

    2003-07-01

    Refrigeration control systems today as a rule are integrated in alarm and remote servicing systems. The author therefore suggests that other technical facilities, e.g. heating, ventilation, air conditioning and lighting, should be integrated in a common alarm system as well. This will result in a standardized user interface and will reduce the investment cost. In the case of the food industry, technical facilities tend to be distributed, and systems of different providers must be kept separate. The author therefore presents a decentralized, intelligent control structure on the basis of a field bus system. [German] Stand der Technik ist, dass die fuer die Kaeltetechnik erforderlichen Regelungs- und Steuerungseinrichtungen in Alarmierungs- und Fernwartungssysteme eingebunden werden. Es liegt daher nahe, in einem ersten Schritt auch die uebrigen Gewerke, wie Heizungs-, Lueftungs-, Klima- und Lichttechnik meldungsseitig zu integrieren. Hieraus entsteht nicht nur eine einheitliche Loesung fuer das ''Bedienen- und Beobachten'' vor Ort im Markt, sondern auch fuer die gesamte Ueberwachung, Alarmierung und Fernwartung. Somit besteht ein Potential Investitionskosten verringern zu koennen. Im Lebensmitteleinzelhandel liegt der Anteil der Betriebskosten fuer die Kaeltetechnik meist an erster Stelle. Zur Kostensenkung werden nicht nur intelligente Regler eingesetzt, mit zunehmender Tendenz wird auch ein gewerkeuebergreifender Ansatz (z.B. Lastabwurf, WRG-Betrieb) verfolgt. Aufbauend auf einer einheitlichen Bus- und Systemtechnik bieten daher moderne Systeme die Moeglichkeit, geeignete Eingriffe in die Steuerungs- und Regelungskreise dieser Gewerke vorzunehmen. Auf Grund der raeumlichen Verteilung der Gewerke und der Anforderung, Funktionseinheiten unterschiedlicher Lieferanten voneinander trennen zu koennen, wird eine feldbusbasierende, dezentrale Gesamtstruktur mit eigener Intelligenz zur Abdeckung der Anwenderanforderungen vorgestellt. (orig.)

  14. Integration of Solar Photovoltaics and Electric Vehicles in Residential Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte

    2013-01-01

    In the last few years, there is an increased penetration of solar photovoltaic (SPV) units in low voltage (LV) distribution grids. Also electric vehicles (EVs) are introduced to these LV networks. This has caused the distribution networks to be more active and complex as these local generation...

  15. Large scale rooftop photovoltaics grid connected system at Charoenphol-Rama I green building

    Energy Technology Data Exchange (ETDEWEB)

    Ketjoy, N.; Rakwichian, W. [School of Renewable Energy Technology (SERT) (Thailand); Wongchupan, V. [Panya Consultants Co., Ltd (Thailand); Sankarat, T. [Tesco Lotus, Ek-Chai Distribution System Co., Ltd. (Thailand)

    2004-07-01

    This paper presents a technical feasibility study project for the large scale rooftop photovoltaics (PV) grid connected system at Charoenphol-Rama I green building super store of TESCO LOTUS (TL) in Thailand. The objective of this project is (i) to study the technical feasibility of installation 350 kWp PV systems on the top of the roof in this site (ii) and to determine the energy produce from this system. The technical factors are examined using a computerized PVS 2000 simulation and assessment tool. This super store building located in Bangkok, with latitude 14 N, longitude 100 E and the building direction is 16 from North direction. The building roof area is 14,000 m2; with 3 degree face East and 3 degree face West pitch. Average daily solar energy in this area is approximately 5.0 kWh. The study team for this project consists of educational institution as School of Renewable Energy Technology (SERT) and private institution as Panya Consultants (PC). TL is the project owner, PC is responsible for project management, and SERT is a third party and responsible for PV system study, conceptual design and all technical process. In this feasibility studies SERT will identify the most attractive scenarios of photovoltaic cell technology (mono, poly-crystalline or thin film amorphous), system design concepts for owners (TL) and determine possibility of the energy yield of the system from different module orientation and tilt angle. The result of this study is a guide to help TL to make decision to select proper rooftop PV system option for this store with proper technology view. The economic view will not be considered in this study. (orig.)

  16. Advances in integration of photovoltaic power and energy production in practical systems

    Science.gov (United States)

    Fartaria, Tomas Oliveira

    This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.

  17. Photovoltaics: New opportunities for utilities

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  18. Integrated coastal policy via Building with Nature

    NARCIS (Netherlands)

    Waterman, R.E.

    2010-01-01

    The thesis which appears here is excerpted from the book Integrated Coastal Zone Development via Building with Nature® (Waterman 2008a, 2008b). Although this approach was first applied in the Netherlands, it has gradually been recognized worldwide as a harmonious means of creating land areas for

  19. Integrated photovoltaic-thermal solar energy conversion systems

    Science.gov (United States)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  20. Standard Test Methods for Determining Mechanical Integrity of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover procedures for determining the ability of photovoltaic modules to withstand the mechanical loads, stresses and deflections used to simulate, on an accelerated basis, high wind conditions, heavy snow and ice accumulation, and non-planar installation effects. 1.1.1 A static load test to 2400 Pa is used to simulate wind loads on both module surfaces 1.1.2 A static load test to 5400 Pa is used to simulate heavy snow and ice accumulation on the module front surface. 1.1.3 A twist test is used to simulate the non-planar mounting of a photovoltaic module by subjecting it to a twist angle of 1.2°. 1.1.4 A cyclic load test of 10 000 cycles duration and peak loading to 1440 Pa is used to simulate dynamic wind or other flexural loading. Such loading might occur during shipment or after installation at a particular location. 1.2 These test methods define photovoltaic test specimens and mounting methods, and specify parameters that must be recorded and reported. 1.3 Any individual mech...

  1. Photothermal performance of an amorphous silicon photovoltaic panel integrated in a membrane structure

    Science.gov (United States)

    Zhao, Bing; Hu, Jianhui; Chen, Wujun; Qiu, Zhenyu; Zhou, Jinyu; Qu, Yegao; Ge, Binbin

    2016-10-01

    The amorphous silicon photovoltaic (a-Si PV) cells are widely used for electricity generation from solar energy. When the a-Si PV cells are integrated into building roofs, such as ETFE (ethylene-tetrafouoroethylene) cushions, the temperature characteristics are indispensible for evaluating the thermal performances of a-Si PV and its constructions. This temperature value is directly dependent on the solar irradiance, wind velocity, ambient temperature and installation form. This paper concerns the field experiments and numerical modeling on the temperature characteristics and temperature value of the a-Si PV integrated in a double-layer ETFE cushion structure. To this end, an experimental model composed of two a-Si PV cells and a double-layer ETFE cushion was developed, and the corresponding experiments were carried out under two typical weather conditions (summer sunny and summer cloudy). The theoretical thermal model was developed based on an energy balance equation taking the short wave radiation, long wave radiation, convection and generated power into account. The measured solar irradiance and air temperature were used as real weather conditions for the thermal model. The corresponding differential equation of the a-Si PV temperature varying with the solar irradiance and air temperature was solved by a newly developed program based on the numerical method. The measured results show that the influence of solar irradiance on the temperature is much more significant than the other parameters, and the maximum temperature variation under sunny conditions is greater than that under cloudy conditions. The comparative study between the experimental and numerical results shows the correct predictions of the a-Si PV temperature under the sunny and cloudy conditions. The maximum difference is 3.9 °C with the acceptable reasons of the solar irradiance fluctuation and the PV thermal response time. These findings will provide useful observations and explanations for

  2. Synthesis, characterization and photovoltaic integration of type II nanorod heterostructures

    Science.gov (United States)

    McDaniel, Hunter Y.

    absorbed photons rapidly produce separated electrons and holes which we suspect could make these attractive materials for photovoltaics. Also in chapter three, we observe unexpectedly high levels of strain in these structures and develop a technique using an aberration corrected scanning transmission electron microscope to argue a hypothesis as to its cause. In chapter four we develop a synthetic strategy to forming alloyed type II nanorod heterostructures and show that we can tune their heterojunction energies. Also in chapter four, we take a further step in developing the structural characterization technique from chapter three by using it to spatially quantify composition in alloyed nanorod heterostructures. In chapter five we explore the time resolved absorption spectra of the various nanorod heterostructures discussed in previous chapters in order to probe carrier dynamics in these materials. Finally, in chapter six we tie together the previous chapters by developing a new type of solar cell integrating type II nanorod heterostructures. In a systematic comparison between different nanorod heterostructures with single component nanorods, we uncover the conditions under which the attractive qualities of type II nanorod heterostructures can be capitalized on.

  3. Technologies for building integrated energy supply; Teknologier for bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Katic, I.

    2011-07-15

    The current report is part of the deliverables from the project ''Building Integrated Energy Supply'' supported by the Danish Energy Authority R and D program. It describes a range of technologies for individual supply of heat and/or electricity to dwellings with respect to their stage of development and possible application in the near future. Energy supply of buildings is becoming more and more complex, partly as a result of increasing demands for comfort, efficiency and reduced emissions, partly as a result of rising oil prices and improved competitiveness of alternative energy sources. The days where ordinary boilers were the dominant source of individual supply of dwellings are becoming past these years. The challenge of the new range of technologies lies to a high extent in the fluctuating nature of their energy conversion and their interaction with the supply grids for heat and electricity. There is thus an increasing demand to understand the nature of the different supply technologies, besides a regular update of their economical key figures. The technologies briefly described in this study are: Solar heating, passive solar energy, biofuel boilers, heat pumps, micro CHP, solar photovoltaic and energy storage systems. The selected technologies are all assessed to play an important role in future's mix of supply technologies in Denmark, especially heat pumps and solar. (Author)

  4. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    Science.gov (United States)

    2013-09-10

    Conclusion Pass Pass Pass Pass Pass Pass Pass Pass Page 1 of 2 147 Test ASTM Overall Thickness pef ASTM 075 1 04434 Type Ill...Chango pef 0 4434 m ax. 0 .5% · .05o/o Pass ASTM 0 1204 (6 hrs @ 80’ C) Cross Type ttl Machine Diredion linear Dimensional Change per 04434 max. 0

  5. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    Science.gov (United States)

    2014-04-01

    In addition, the emergence of new CIGS and CdTe PV modules and vendors have led to a much more diverse group of designs since this study started and...California CdTe Cadmium Telluride CIGS Copper Indium Gallium Di-Selenide DC Direct Current DoD Department of Defense DOE Department of...roof and PV system installed separately. The form of BIPV roof in this study used amorphous silicon (a-Si) PV modules adhered to a reflective polyvinyl

  6. Integrated energy system for a high performance building

    Science.gov (United States)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  7. Photovoltaic concentrator technology development project. Sixth project integration meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  8. Magnetically integrated high step-up resonant DC-DC converter for distributed photovoltaic systems

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2017-01-01

    In this paper magnetically integrated resonant single-switch quasi-Z-source DC-DC converter is evaluated as a candidate topology for the low-cost photovoltaic microconverter. The derivation of the topology and its basic operation principle are explained. Generalized design guidelines...

  9. Whole-building systems integration laboratory survey

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B. (American Consulting Engineers Council, Washington, DC (USA). Research and Management Foundation)

    1989-09-01

    This report was prepared for the Pacific Northwest Laboratory as a subcontracted activity by the Research Management Foundation of the American Consulting Engineers Council. The objective of the survey reported herein was to independently assess the need for a Building System Integration Laboratory from the viewpoint of academicians in the field of building science. The subcontractor-developed questionnaire was sent to 200 professors of architecture and engineering at US universities. In view of this diverse population, the 10% rate of return on the questionnaire was considered acceptable. Although the responses probably do not reflect an unbiased summary of the collective perceptions of the original population surveyed, they do provide a valid insight into the interests and concerns of the academic community with respect to building sciences issues.

  10. Low concentration solar louvres for building integration

    Science.gov (United States)

    Vincenzi, D.; Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Calabrese, G.; Guidi, V.; Pozzetti, L.

    2013-09-01

    The building integration of CPV modules offers several advantages over the integration of flat panel systems, but the decreasing price trend of standard modules observed in the last years has hampered the market expansion of CPV systems, which still don't rely on a low-cost mass production supply chain. To overcome this contingent issue and to foster the diffusion of innovative PV systems we developed a low concentration BIPV module with added functionalities, such as sunlight shading and building illumination. The electrical performances, retrieved under outdoor conditions, and the lighting performances of the Solar F-Light are shown. The latter indicate that it is suitable for ambient lighting, with a very limited power draw.

  11. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...... project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building’s façades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1...... place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of façades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part...

  12. Approaches to Integrated Building Design Environments

    DEFF Research Database (Denmark)

    Bagger-Petersen, Susanne C; Andersen, Tom

    1996-01-01

    This report discusses functional requirements and specification which needs to be defined and fulfilled to initiate development of an integrated building design environment. The purpose is to outline specifications for further discussion and development. The report documents the first phase...... in an ongoing project at the Technical University of Denmark. The overall project objective is to provide a theoretically well-founded prototype of an integrated IT-system which can serve as a device of feedback from practice and as a test-bed for the developed concept and architecture....

  13. Smart integrated energy monitoring and management system for standalone photovoltaic systems

    Science.gov (United States)

    Abou-Elnour, Ali; Murad, Fahd S.; Al-Tayasna, Ibrahim S.; Abo-Elnor, Ossama

    2013-04-01

    In the present work, a computer based smart integrated energy monitoring and management system for standalone photovoltaic systems is designed and implemented. Monitoring, controlling, and recording features are fully obtained in the present system using an efficient programming environment. All required data are monitored as real-time data therefore the system status is continuously evaluated and decisions are made to take immediate actions. The energy consumption of different appliances are automatically controlled and optimized using a hierarchical self adaptive algorithm based on input data and real-time information provided by the system sensors. The proposed system is successfully implemented for photovoltaic modules under realistic operating conditions.

  14. Storage systems for improved grid integration of photovoltaic systems; Speichersysteme fuer eine verbesserte Netzintegration von Photovoltaikanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Shaoqing [Brandenburgische Technische Univ. Cottbus (Germany). CEBra-Research

    2013-07-15

    Since the enactment of the Renewable Energy Law in the year 2000 Germany has seen a massive increase in capacity for energy production from renewable resources. Of these, wind power and photovoltaics show heavily fluctuating supply profiles, with significant impact on energy supply grids. One approach to lessening the load on power grids, aside from their expansion, is to install energy storage systems. Recent studies on the use of such storage systems for improved grid integration of photovoltaic systems have shown the viability of this approach for ground-mounted plants connected to the medium or high voltage level as well as for roof-mounted plants for the low-voltage level.

  15. Assessment of building integrated energy supply and energy saving schemes on a national level in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.; Morthorst, P.E.; Birkl, C.

    2011-06-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The results of these analyses were integrated in five scenarios to examine the consequences at national level of implementing insulation together with solar panels, photovoltaics and heat pumps in single-family houses. The simulations focused on the building period between 1961 and 1972 characterised by high building activity and low energy performance. The five scenarios - a baseline scenario, a maximum savings scenario, a maximum production scenario, and a combination scenario - showed that regardless of scenario, a consequent use of individual heat pumps leads to the greatest energy savings and CO{sub 2} reductions. (ln)

  16. Design considerations for large roof-integrated photovoltaic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, M.E.; Begovic, M.; Rohatgi, A. [Georgia Inst. of Tech., Atlanta, GA (United States); Long, R. [Georgia Institute of Technology, Atlanta (United States). Office of Facilities

    1997-01-01

    This paper describes calculations and modeling used in the design of the photovoltaic (PV) array built on the roof of the Georgia Tech Aquatic Center, the aquatic sports venue for the 1996 Olympic and Paralympic Games. The software package PVFORM (version 3.3) was extensively utilized; because of its importance to this work, it is thoroughly reviewed here. Procedures required to adapt PVFORM to this particular installation are described. The expected behavior and performance of the system, including maximum power output, annual energy output and maximum expected temperature, are then presented, and the use of this information in making informed design decisions is described. Finally, since the orientation of the PV array is not optimal, the effect of the unoptimized array orientation on the system`s performance is quantified. (author)

  17. Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid

    Directory of Open Access Journals (Sweden)

    Manuela Sechilariu

    2015-07-01

    Full Text Available In the context of sustainable buildings, this paper investigates power flow management for an isolated DC microgrid and focuses on efficiency and energy cost reduction by optimal scheduling. Aiming at high efficiency, the local produced power has to be used where, when, and how it is generated. Thus, based on photovoltaic sources, storage, and a biofuel generator, the proposed DC microgrid is coupled with the DC distribution network of the building. The DC bus distribution maximizes the efficiency of the overall production-consumption system by avoiding some energy conversion losses and absence of reactive power. The isolated DC microgrid aims to minimize the total energy cost and thus, based on forecasting data, a cost function is formulated. Using a mixed integer linear programming optimization, the optimal power flow scheduling is obtained which leads to an optimization-based strategy for real-time power balancing. Three experimental tests, operated under different meteorological conditions, validate the feasibility of the proposed control and demonstrate the problem formulation of minimizing total energy cost.

  18. Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management

    Directory of Open Access Journals (Sweden)

    Giovani Almeida Dávi

    2017-08-01

    Full Text Available On-site photovoltaic (PV and battery systems intend to improve buildings energy performance, however battery costs and monetary incentives are a major drawback for the introduction of these technologies into the electricity grids. This paper proposes an energy refurbishment of an office building based on multi-objective simulations. An innovative demand-side management approach is analyzed through the PV and battery control with the purpose of reducing grid power peaks and grid imported energy, as well as improving the project economy. Optimization results of load matching and grid interaction parameters, complemented with an economic analysis, are investigated in different scenarios. By means of battery use, the equivalent use of the grid connection is reduced by 12%, enhancing the grid interaction potential, and 10% of load matching rates can be increased. Project improvements indicate the grid connection capacity can be reduced by 13% and significant savings of up to 48% are achieved on yearly bills. The economy demonstrates the grid parity is only achieved for battery costs below 100 €/kWh and the payback period is large: 28 years. In the case with only PV system, the grid parity achieves better outcomes and the payback time is reduced by a half, making this a more attractive option.

  19. Integrated energy design of the building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Vraa Nielsen, M.

    2012-07-01

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building's facades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1) the importance of integrating knowledge in the early stages of design, and how it can be done; 2) understanding the facade's typology; and 3) the complex notion of comfort. The project touched not only on the technical capabilities and requirements governing facade design, but also the process by which it takes place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of facades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages of design not only can qualify the geometrical processing, but also facilitate the design development of the facade. Thereby a more holistic performance optimisation can be obtained through parameters such as overall facade geometry and orientation, functional organisation, room height and depth, facade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over

  20. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  1. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used......This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...

  2. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  3. Recent Developments of Photovoltaics Integrated with Battery Storage Systems and Related Feed-In Tariff Policies: A Review

    National Research Council Canada - National Science Library

    Angel A. Bayod-Rújula; Alessandro Burgio; Zbigniew Leonowicz; Daniele Menniti; Anna Pinnarelli; Nicola Sorrentino

    2017-01-01

    ...) and related to feed-in tariff policies. The integrated photovoltaic battery systems are separately discussed in the regulatory context of Germany, Italy, Spain, United Kingdom, Australia, and Greece...

  4. Design and market study of retrofit photovoltaic systems for commercial buildings and applications. Volume 1: Executive summary

    Science.gov (United States)

    Noel, G. T.; Hagely, J. R.; Broehl, J. H.; Stember, L. H.; Ruckman, J. L.; Huss, W. R.

    1982-03-01

    A study was performed of the potential market for retrofit photovoltaic systems in commercial, institutional, and industrial applications. It includes assessments of the inventory of potential applications and of PV systems related characteristics of buildings. Detailed PV systems designs appropriate for 12 highly ranked retrofit applications are presented along with estimated costs. Retrofit construction and installation techniques are illustrated and the results of life-cycle costing and market penetration analyses are discussed.

  5. Review on the integration of photovoltaic renewable energy in developing countries

    DEFF Research Database (Denmark)

    Khoury, J.; Mbayed, R.; Salloum, George

    2016-01-01

    limited means and potential to achieve such goals. This paper assesses the status of renewable energy systems in developing countries, and concentrates on the solar photovoltaic energy production due to its abundant availability in these countries relatively to other clean energy production methods...... the countries into categories that share similar constraints and limitations in the integration of such installations. Furthermore, the paper analyzes the state of energy generation based on photovoltaic systems in Lebanon in contrast to other developing countries.......Following the 2005 Kyoto protocol, developed countries made commitments to reduce the emission of greenhouse gases, mostly by integrating renewable energy technologies into their power production systems. It is a more challenging procedure for third world countries, including Lebanon, that have...

  6. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  7. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  8. Photovoltaic solar power in building engineering. Experience feedback in France of the European Hip Hip project. Advances and realizations; L'electricite solaire photovoltaique dans le batiment. Retour d'experience en France du Projet Europeen Hip Hip. Avancees et realisations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The European demonstration project Hip Hip (house integrated photovoltaic high-tech in public) led the French photovoltaic market to reach a level comparable to those of the other European countries in terms of relevance of implemented solutions and costs. This document presents the best realizations and the experience gained through the Hip Hip project. Its aim is to convince the designers and managers of building projects of the advantages of photovoltaic installations integrated to the structure and connected to the power distribution grid: 1 - presentation of the technology; 2 - status of the Hip Hip demonstration project (goals, results: main innovations and impact on the French market); 3 - different possibilities of integration to the building structure; 4 - examples of projects realized in France in the framework of the Hip Hip project: integration in glass roof, frontage, added elements, fitting on roofs. (J.S.)

  9. Results. Building integrated energy supply; Resultater. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations of which the best combinations were selected. The final result takes form of a single top-50 list with the best combinations of energy systems according to CO{sub 2} emission, energy consumption and economics. The present report contains the conclusions of and comments on the project's results. (ln)

  10. Building a relational contracting culture and integrated teams

    National Research Council Canada - National Science Library

    Rahman, M M; Kumaraswamy, Mohan M; Ling, Florence Y.Y

    2007-01-01

    Targeting integration in construction, this study compares the suitability of various factors and strategies to provide suitable contractual and noncontractual incentives for building a relational contracting (RC...

  11. Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System

    Science.gov (United States)

    Jain, Vipul

    In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .

  12. Design reference year for development of photovoltaic envelope systems

    Science.gov (United States)

    Mihalka, Peter; Matiasovsky, Peter

    2017-07-01

    An application of photovoltaic cells on external surfaces of building envelope represents a development of new construction element. A mutual coupling between thermal behaviour of photovoltaic layer and the other layers of the structure, with special properties, requires a specific selection of the characteristic outdoor thermal boundary conditions, necessary for optimum design of the envelope from the aspect of structure, material composition and geometry. The main design criteria are the effectiveness and elimination of overheating of photovoltaic module and the optimisation of heat distribution in the envelope structure during particular year seasons. The paper contains the results of the analysis of time courses of climatic elements during a real year as the boundary conditions for simulation of photovoltaic integrated building envelope systems, used in simulations of thermal behaviour of photovoltaics integrated with building envelope systems.

  13. Design Process for Integrated Concepts with Responsive Building Elements

    DEFF Research Database (Denmark)

    Aa, Van der A.; Heiselberg, Per

    2008-01-01

    is needed. The hard question is however: how to make the right choice of the combination of individual measures from building components and building services elements. Within the framework of IEA-ECBCS Annex 44 research has been conducted about the design process for integrated building concepts......An integrated building concept is a prerequisite to come to an energy efficient building with a good and healthy IAQ indoor comfort. A design process that defines the targets and boundary conditions in the very first stage of the design and guarantees them until the building is finished and used...... with responsive building elements. The (Dutch) Toolkit Sustainable Residential Buildings is one of the examples of tools for an integrated design process....

  14. Evaluating Maximum Photovoltaic Integration in District Distribution Systems Considering Optimal Inverter Dispatch and Cloud Shading Conditions

    DEFF Research Database (Denmark)

    Ding, Tao; Kou, Yu; Yang, Yongheng

    2017-01-01

    guaranteeing the entire system operating constraints (e.g., network voltage magnitude) within reasonable ranges in this paper. Meanwhile, optimal inverter dispatch is employed to further improve the PV integration by ensuring the optimal set-points of both active power and reactive power for the PV inverters......As photovoltaic (PV) integration increases in distribution systems, to investigate the maximum allowable PV integration capacity for a district distribution system becomes necessary in the planning phase, an optimization model is thus proposed to evaluate the maximum PV integration capacity while....... However, the intermittency of solar PV energy (e.g., due to passing clouds) may affect the PV generation in the district distribution network. To address this issue, the voltage magnitude constraints under the cloud shading conditions should be taken into account in the optimization model, which can...

  15. Integrated cascade of photovoltaic cells as a power supply for integrated circuits

    NARCIS (Netherlands)

    Mouthaan, A.J.

    1984-01-01

    ICs can be powered directly when a supply voltage source capable of generating a multiple of the open circuit voltage of one pn-junction is available on a chip. Two schemes have been investigated for cascading photovoltaic cells on the chip. The structures can be made compatible with standard

  16. Optimization of Photovoltaic Performance Through the Integration of Electrodynamic Dust Shield Layers

    Science.gov (United States)

    Nason, Steven; Davis, Kris; Hickman, Nicoleta; McFall, Judith; Arens, Ellen; Calle, Carlos

    2009-01-01

    The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.

  17. Integrated Research and Capacity Building in Geophysics

    Science.gov (United States)

    Willemann, R. J.; Lerner-Lam, A.; Nyblade, A.

    2008-05-01

    monitoring agencies, strategic international university partnerships, commitments to open data, and installation of permanent analysis systems that include open- source software. Such projects are intrinsically more complex than pure research - partly because they require funding from multiple sources to address diverse goals - but experience in Africa suggests that integrated programs contribute to long-term capacity building in ways that projects founded on basic research questions may not.

  18. Integrated cascade of photovoltaic cells as a power supply for integrated circuits

    OpenAIRE

    Mouthaan, A.J.

    1984-01-01

    ICs can be powered directly when a supply voltage source capable of generating a multiple of the open circuit voltage of one pn-junction is available on a chip. Two schemes have been investigated for cascading photovoltaic cells on the chip. The structures can be made compatible with standard bipolar processes. Deep ion implantations have been used here to realize the multiple-junction structure. Power losses due to photocurrents originating from insulation junctions in the cascade can be kep...

  19. Integrated refurbishment planning for sustainable office buildings

    NARCIS (Netherlands)

    Ebbert, T.

    2012-01-01

    Europe's cities are full of office buildings which are technically and visually outdated. Research has demonstrated that more than 60% of German office stock is in acute need for refurbishment. Building planning needs intelligent approaches to façade refurbishment in order to tackle this enormous

  20. Building Excellence in Project Execution: Integrated Project Management

    Science.gov (United States)

    2015-04-30

    challenge by adopting and refining the CMMI Model and building the tenets of integrated project management (IPM) into project planning and execution...Systems Center Pacific (SSC Pacific) is addressing this challenge by adopting and refining the CMMI Model, and building the tenets of integrated project...successfully managing stakeholder expectations and meeting requirements. Under the Capability Maturity Model Integration ( CMMI ), IPM is defined as

  1. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  2. Integrating nanostructured electrodes in organic photovoltaic devices for enhancing near-infrared photoresponse

    Energy Technology Data Exchange (ETDEWEB)

    Nardes, Alexandre M.; Ahn, Sungmo; Rourke, Devin; Mao, Chenchen; van de Lagemaat, Jao; Ferguson, Andrew J.; Park, Wounjhang; Kopidakis, Nikos

    2016-12-01

    We introduce a simple methodology to integrate prefabricated nanostructured-electrodes in solution-processed organic photovoltaic (OPV) devices. The tailored 'photonic electrode' nanostructure is used for light management in the device and for hole collection. This approach opens up new possibilities for designing photonically active structures that can enhance the absorption of sub-bandgap photons in the active layer. We discuss the design, fabrication and characterization of photonic electrodes, and the methodology for integrating them to OPV devices using a simple lamination technique. We demonstrate theoretically and experimentally that OPV devices using photonic electrodes show a factor of ca. 5 enhancement in external quantum efficiency (EQE) in the near infrared region. We use simulations to trace this observed efficiency enhancement to surface plasmon polariton modes in the nanostructure.

  3. Prospects for integrating utility-scale solar photovoltaics and industrial agriculture in the U.S

    Science.gov (United States)

    Dahlin, K.; Anderegg, W.; Hernandez, R. R.; Hiza, N.; Johnson, J. E.; Maltais-landry, G.; Wolf, A.; Zimmerman, N. B.

    2011-12-01

    One of the key challenges to many alternative energy options is land use competition, such as conflict with food production (e.g., corn or sugar cane ethanol) or natural resource protection (e.g., solar panels in desert habitat). Wind power has largely avoided these conflicts by leasing land from farmers and maintaining a small footprint on the landscape. Here, we ask whether similar opportunities exist for solar photovoltaics in agricultural settings. Our test case consists of a soybean field in Ames, Iowa (USA), with south-facing solar panels in rows spaced 16 m apart (~3 times further than typical), a center pole height of 3 m (3 times higher than in a typical ground-mounted system), and a fixed tilt of 25 degrees. Using a geometric shade model coupled to a common crop model (DSSAT) and driven by 14 years of weather data, we find that the average annual soybean yield is not significantly reduced (renewable energy with little or no reduction in yields. Using the National Renewable Energy Laboratory (NREL) System Advisor Model and assuming 18 to 20% efficient panels, we estimate that this configuration at this location will produce 295 MWh ha-1 in the first year of operation. With this configuration the United States' current (2007) electricity production could be met by incorporating photovoltaic panels into as little as 11% of currently cropped land. We are currently developing an independent model that will complement our DSSAT analyses by simulating the effects of solar photovoltaics on available light, albedo and temperature on a range of different crops. We also review some of the major challenges to and potential benefits of integrated solar-agricultural systems in different regions and cropping systems.

  4. Protection against lightning and surges in photovoltaic installations; Protecao contra descargas atmosfericas e surtos em instalacoes fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Brigitte [Siemens AG (Germany); Wettingfeld, Juergen [W. Wettingfeld GmbH (Germany)

    2010-09-15

    Besides damaging in the photovoltaic panels, lightning can also involve electronic equipment through cables that penetrate in buildings. A supplement for photovoltaic systems located on the roof of buildings was published by the German standardization committees in order to integrate them into lightning protection. In this paper, it is analyzed the requirements of the standards and application case studies.

  5. Exploring the Client-AEC Interface in Building Lifecycle Integration

    National Research Council Canada - National Science Library

    John M Kamara

    2013-01-01

    .... This paper explores client-AEC interactions at the project development and handover stages, with a view to discovering insights into client-AEC interface management for effective building lifecycle integration (BLI...

  6. Ten questions concerning integrating smart buildings into the smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve; Henze, Gregor; Mohammadpour, Javad; Noonan, Doug; Patteeuw, Dieter; Pless, Shanti; Watson, Richard T.

    2016-11-01

    Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demand response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.

  7. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  8. Calculation steps. Building integrated energy supply; Beregningsgang. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations. The present report describes the applied simulation models, and explains the results and computer codes. The parameter variations are described for each house as well as the common calculation steps for each house. The results are presented in case sheets, as performance graphs, and top-50 lists for the best cases regarding CO{sub 2} emission, energy consumption and economics. (ln)

  9. Building integration of photovoltaic solar systems in the ZAE office building in Germany

    Directory of Open Access Journals (Sweden)

    Julia Mundo Hernández

    2015-03-01

    Full Text Available El acceso a energía de manera segura y constante es actualmente una de las grandes preocupaciones mundiales. La continuación de la vida humana en el planeta y de los estilos de vida actuales están sujetos a la disponibilidad energética. Desde hace varias décadas numerosas investigaciones se han concentrado en buscar fuentes de energía limpias, seguras y renovables. Una de esas fuentes es la solar fotovoltaica, a través de la cual se puede obtener electricidad a partir de la radiación solar. Aquí se presenta un caso de estudio de integración, dimensionamiento y ubicación de módulos fotovoltaicos en un edificio de oficinas y laboratorios ubicado en Erlangen, Alemania. El trabajo se realizó a través de un levantamiento arquitectónico del sitio, un modelo en 3D del edificio, un estudio de sombras y simulaciones de sistemas fotovoltaicos utilizando el programa Polysun Simulation Software v.5.3 (Vela Solaris, 2012. Los resultados obtenidos demuestran las múltiples posibilidades que existen para integrar módulos fotovoltaicos en edificios, así como las ventajas y desventajas de cada opción en términos de producción de energía, orientación, dimensiones de los paneles, estética y de ahorro de CO2. Además se demuestran las ventajas que ofrece la utilización de un software especializado para tomar decisiones de diseño con mayor certeza.

  10. A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid

    Directory of Open Access Journals (Sweden)

    Damilola A. Asaleye

    2017-11-01

    Full Text Available The objective of this study was to create a tool that will enable renewable energy microgrid (REμG facility users to make informed decisions on the utilization of electrical power output from a building integrated REμG connected to a smart grid. A decision support tool for renewable energy microgrids (DSTREM capable of predicting photovoltaic array and wind turbine power outputs was developed. The tool simulated users’ daily electricity consumption costs, avoided CO2 emissions and incurred monetary income relative to the usage of the building integrated REμG connected to the national electricity smart grid. DSTREM forecasted climate variables, which were used to predict REμG power output over a period of seven days. Control logic was used to prioritize supply of electricity to consumers from the renewable energy sources and the national smart grid. Across the evaluated REμG electricity supply options and during working days, electricity exported by the REμG to the national smart grid ranged from 0% to 61% of total daily generation. The results demonstrated that both monetary saving and CO2 offsets can be substantially improved through the application of DSTREM to a REμG connected to a building.

  11. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... of solar energy. Moreover, a novel transformer configuration enables variable turns ratio controlled by the phase between the two current excitations subjected to the primary windings, allowing a wider input/output range. 1 kW experimental prototype has been built to demonstrate a wellmanaged power flow...... different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature...

  12. Cross-correlation of output fluctuation and system-balancing cost in photovoltaic integration

    Directory of Open Access Journals (Sweden)

    Yuichi Ikeda

    2014-10-01

    Full Text Available The authors analysed the cross-correlation of photovoltaic (PV output fluctuation for the actual PV output time series data in both the Tokyo area and the whole of Japan using the principal component analysis with the random matrix theory. Based on the obtained cross-correlation coefficients, the forecast error for PV output was estimated with/without considering the cross-correlations. Then the operation schedule of thermal plants is calculated to integrate PV output using the proposed unit commitment model with the estimated forecast error. The system-balancing cost of PV system was also estimated with or without demand response. Finally, validity of the concept of ‘local production for local consumption of renewable energy’ and alternative policy implications were discussed.

  13. Integrating Photovoltaic Systems in Power System: Power Quality Impacts and Optimal Planning Challenges

    Directory of Open Access Journals (Sweden)

    Aida Fazliana Abdul Kadir

    2014-01-01

    Full Text Available This paper is an overview of some of the main issues in photovoltaic based distributed generation (PVDG. A discussion of the harmonic distortion produced by PVDG units is presented. The maximum permissible penetration level of PVDG in distribution system is also considered. The general procedures of optimal planning for PVDG placement and sizing are also explained in this paper. The result of this review shows that there are different challenges for integrating PVDG in the power systems. One of these challenges is integrated system reliability whereas the amount of power produced by renewable energy source is consistent. Thus, the high penetration of PVDG into grid can decrease the reliability of the power system network. On the other hand, power quality is considered one of the challenges of PVDG whereas the high penetration of PVDGs can lead to more harmonic propagation into the power system network. In addition to that, voltage fluctuation of the integrated PVDG and reverse power flow are two important challenges to this technology. Finally, protection of power system with integrated PVDG is one of the most critical challenges to this technology as the current protection schemes are designed for unidirectional not bidirectional power flow pattern.

  14. Integration of Real-Time Data Into Building Automation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  15. The photovoltaic power system of Geneva Palexpo Building 6; Installation photovoltaique sur la halle 6 de Geneva Palexpo

    Energy Technology Data Exchange (ETDEWEB)

    Keller, L.; Rhyner, R.

    2004-07-01

    A 70 kW photovoltaic installation has been constructed on the roof of the new Building 6 of Geneva Palexpo, a compound that hosts various conferences, exhibitions and sporting or other events, counting almost 1.5 million visitors a year, including the International Car Show, which alone attracts more than 700,000 visitors each year. The purpose of this installation is the indirect supply of recharging terminals for electric vehicles. The solar installation and the electric vehicle recharging terminals support an information campaign on solar energy and 'sustainable' mobility. For this purpose various explanatory signs have been placed inside the Geneva Palexpo halls and a promotional stand for renewable energy and 'sustainable' transport was placed inside the International Car Show 2003. This stand had some success: more than 4,000 people took part in the competition organised on this occasion. (author)

  16. Co-simulation of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  17. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  18. Building an integrative framework for national systems of innovation

    DEFF Research Database (Denmark)

    Wang, Yuandi; Zhou, Zhao

    2011-01-01

    approaches. Findings – The paper argues that these three approaches reflect different perspectives of national systems of innovation. Instead of contradicting each other, they could be integrated into a coherent framework. Originality/value – The paper builds an integrative framework to bring different...

  19. Artist Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Shui-Yang Lien

    2016-07-01

    Full Text Available In this paper, a full-color photovoltaic (PV module, called the artist PV module, is developed by laser processes. A full-color image source is printed on the back of a protective glass using an inkjet printer, and a brightened grayscale mask is used to precisely define regions on the module where colors need to be revealed. Artist PV modules with 1.1 × 1.4 m2 area have high a retaining power output of 139 W and an aesthetic appearance making them more competitive than other building-integrated photovoltaic (BIPV products. Furthermore, the installation of artist PV modules as curtain walls without metal frames is also demonstrated. This type of installation offers an aesthetic advantage by introducing supporting fittings, originating from the field of glass technology. Hence, this paper is expected to elevate BIPV modules to an art form and generate research interests in developing more functional PV modules.

  20. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  1. Photovoltaic device and method

    Energy Technology Data Exchange (ETDEWEB)

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  2. Effect of Different Photovoltaic Materials on Energetic and Exergetic Performance of Photovoltaic Thermal Arrays

    Directory of Open Access Journals (Sweden)

    Rajoria C.S.

    2017-01-01

    Full Text Available The study presents the effect of packing factor of Photovoltaic (PV module on the room temperature, cell temperature and efficiency of a proposed Building Integrated Semi-transparent Photovoltaic Thermal (BiSPVT and Building Integrated Opaque Photovoltaic Thermal (BiOPVT systems with duct mounted on the roof of the building. Different PV materials like mono-crystalline silicon (m-Si, amorphous silicon (a-Si, poly-crystalline silicon (p-Si, cadmium telluride (CdTe, copper indium selenide (CIS and hetero-junction with intrinsic thin layer (HIT have been considered in the analysis under the cold climatic condition of India. Since Srinagar (India has the cold climatic condition, therefore, its climatic data has been considered in the present analysis.

  3. Coordination and Control of Flexible Building Loads for Renewable Integration; Demonstrations using VOLTTRON

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivation and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate

  4. Probabilistic Harmonic Analysis on Distributed Photovoltaic Integration Considering Typical Weather Scenarios

    Science.gov (United States)

    Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang

    2017-05-01

    Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.

  5. CPV for the rooftop market: novel approaches to tracking integration in photovoltaic modules

    Science.gov (United States)

    Apostoleris, Harry; Stefancich, Marco; Alexander-Katz, Alfredo; Chiesa, Matteo

    2016-03-01

    Concentrated photovoltaics (CPV) has long been recognized as an effective approach to enabling the use of high cost, high-efficiency solar cells for enhanced solar energy conversion, but is excluded from the domestic rooftop market due to the requirement that solar concentrators track the sun. This market may be opened up by integrating of the tracking mechanism into the module itself. Tracking integration may take the form of a miniaturization of a conventional tracking apparatus, or optical tracking, in which tracking is achieved through variation of optical properties such as refractive index or transparency rather than mechanical movement of the receiver. We have demonstrated a simple system using a heat-responsive transparency switching material to create a moving aperture that tracks the position of a moving light spot. We use this behavior to create a concentrating light trap with a moving aperture that reactively tracks the sun. Taking the other approach, we have fabricated 3D-printed parabolic mini-concentrators which can track the sun using small motors in a low-profile geometry. We characterize the performance of the concentrators and consider the impact of tracking integration on the broader PV market.

  6. Conjugated block copolymers: A building block for high-performance organic photovoltaics

    Science.gov (United States)

    Guo, Changhe

    State-of-the-art organic photovoltaics rely on kinetically trapped, partially phase-separated structures of donor/acceptor mixtures to create a high interfacial area for exciton dissociation and networks of bicontinuous phases for charge transport. Nevertheless, intrinsic structural disorder and weak intermolecular interactions in polymer blends limit the performance and stability of organic electronic devices. We demonstrate a potential strategy to control morphology and donor/acceptor heterojunctions through conjugated block copolymer poly(3-hexylthiophene)- block-poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (P3HT-b-PFTBT). Block copolymers can self-assemble into well-ordered nanostructures ideal for photovoltaic applications. When utilized as the photovoltaic active layer, P3HT-b-PFTBT block copolymer devices demonstrate thermal stability and photoconversion efficiency of 3% well beyond devices composed of the constituent polymer blends. Resonant soft X-ray scattering (RSOXS) is used to elucidate the structural origin for efficient block copolymer photovoltaics. Energy tuning in soft X-ray ranges gives RSOXS chemical sensitivity to characterize organic thin films with compositionally similar phases or complicated multiphase systems. RSOXS reveals that the remarkable performance of P3HT-b-PFTBT devices is due to self-assembly into nanoscale in-plane lamellar morphology, which not only establishes an equilibrium microstructure amenable for exciton dissociation but also provides pathways for efficient charge transport. Furthermore, we find evidence that covalent control of donor/acceptor interfaces in block copolymers has the potential to promote charge separation and optimize the photoconversion process by limiting charge recombination. To visualize the nanostructure in organic thin films, we introduce low energy-loss energy-filtered transmission electron microscopy (EFTEM) as an important alternative

  7. Exploration of Team Integration in Spanish Multifamily Residential Building Construction

    OpenAIRE

    Pellicer, Eugenio; Sanz Benlloch, María Amalia; Esmaeili, B; MOLENAAR, KEITH ROBERT

    2016-01-01

    Project delivery team integration generally involves early involvement of general contractors and key specialty contractors in the design process. Team integration has been found to improve an owner’s probability of success. However, during difficult economic times, owners can forego early team involvement and move toward low bid procurement to take advantage of competitive markets. This study explores the performance of integrated teams in the Spanish multifamily building constructi...

  8. METABOLIC INTEGRATION: BEYOND THE BUILDING BLOCKS

    Directory of Open Access Journals (Sweden)

    M. D.V. Machado

    2015-08-01

    Full Text Available The theme "metabolic Integration" discussed during Biochemistry classes is considered by many students a complex issue. It could be due to their difficulty in understanding that the metabolic pathways are not isolated reactions, but a completely interdependent system finely regulated. Given this reality, a didactic game was developed. The main objective was to challenge students to understand the metabolism integration, through a playful, interactive and dynamic way. The class was divided into groups and to each group was given a set of parts that represented an important pathway of energetic metabolism. The aim of each group was to complete the metabolic process assigned to them. However, during the assembly, they realized that was always lacking some part of the puzzle and that the game only succeeds if all the groups exchange parts with each other. After that, the pieces came together in order to assemble all the processes in an integrated way. The game was organized into two situations: metabolic reactions that occur in the fasted state and reactions of the fed state. When the groups realized they needed to join themselves to complete the processes, they also had to get into a consensus that the "body" in which the reactions were happening, was in a fasted state or not, because the pieces didn’t match each other if both metabolic states were being assembled at the same time. It is not suitable to the organism performs the reactions of antagonistic states at the same time/or at the same velocity. Along the schema assembly, key points were didactically marked in some pieces with colors and warnings. The proposal was to open a discussion after assembling of the parts.The game was applied to students at the first year of medicine school and had a great acceptance.Key words: metabolism, integration, game.

  9. Studi Kasus Kelayakan Penerapan Sistem Hybrid Building Applied Photovoltaics (BAPV-PLN pada Atap Gedung Politeknik Aceh

    Directory of Open Access Journals (Sweden)

    Rachmad Ikhsan

    2017-04-01

    Full Text Available With the undeveloped BAPV(Building Applied Photovoltaics at Office Building and Public Facilities, Caused the high price of solar modules and the lack the economic study on the use of solar modules that housed in the Banda Aceh region. Furthermore, the price of solar modules is expensive, so people think it will cost so much funds to building a BAPV’s system. These problems could be overcomed if the existing technical studies and economic studies of the application of the BAPV’s system. This study aims to assess the application of the BAPV’s system on institutions  building in terms of technical and economic value, in this case the building that is used as the study object is the Polytechnic Aceh’s Building. The method that used in the technical studies are theoretical calculations and simulations using helioscope software, while the methods used for economic studies is using the methods of cost-benefit analysis (cost benefit analysis. The method used to find the NPV (Net Present Value, PP (Payback Period, IRR (Internal Rate of Return, and BCR (Benefit Cost Ratio. If the average value of solar radiation reaching 4.79 kWh / m2 / day and the average daily energy requirement is 592 kWh, the energy generated from BAPV-PLN hybrid system on the roof of the object building will reach the amount of 237 MWh/year with the capacity charge controller used is 7490 A and the capacity of the battery used is 64.487 Ah. Panel tilt angle used is 25o and the type of panel used is Monocrystalline manifold. From the economic value will obtained NPV value of Rp. 20.022.106.937, PP during 5,2 years, IRR of 36% and 3,49 of BCR. Based on the evaluation results of the feasibility study, the project of hybrid BAPV-PLN’s system on the roof of the Polytechnic  Aceh’s  building can be realized, because its already meet the criteria of the feasibility study to make the systems get established in real term.

  10. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  11. Predictive Solar-Integrated Commercial Building Load Control

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, Nathan [EdgePower Inc., Aspen, CO (United States)

    2017-01-31

    This report is the final technical report for the Department of Energy SunShot award number EE0007180 to EdgePower Inc., for the project entitled “Predictive Solar-Integrated Commercial Building Load Control.” The goal of this project was to successfully prove that the integration of solar forecasting and building load control can reduce demand charge costs for commercial building owners with solar PV. This proof of concept Tier 0 project demonstrated its value through a pilot project at a commercial building. This final report contains a summary of the work completed through he duration of the project. Clean Power Research was a sub-recipient on the award.

  12. The informed application of building-integrated wind power

    Energy Technology Data Exchange (ETDEWEB)

    Breshears, J.; Briscoe, C. [Zimmer Gunsal Frasca Architects, Portland, OR (United States)

    2009-07-01

    This paper reported on an exercise that was undertaken to integrate small-scale wind turbines into the design of an urban high-rise in Portland, Oregon. Wind behaviour in the urban environment is very complex, as the flow of wind over and around buildings often triggers multiple transitions of the air from laminar flow to turbulent. The study documented the process of moving beyond a simplistic approach to a truly informed application of building-integrated wind generation. The 4 key issues addressed in the study process were quantifying the geographical wind regime; predicting wind flow over the building; turbine selection; and pragmatics regarding the design of roof mounting to accommodate structural loads and mitigate vibration. The results suggested that the turbine array should produce in the range of only 1 per cent of the electrical load of the building. 13 refs., 11 figs.

  13. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  15. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  16. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  17. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  18. Biaxial Solar Tracking System Based on the MPPT Approach Integrating ICTs for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Raúl Gregor

    2015-01-01

    Full Text Available The smart grid and distributed generation based on renewable energy applications often involve the use of information and communication technology (ICT coupled with advanced control and monitoring algorithms to improve the efficiency and reliability of the electrical grid and renewable generation systems. Photovoltaic (PV systems have been recently applied with success in the fields of distributed generation due to their lower environmental impact where the electrical energy generation is related to the amount of solar irradiation and thus the angle of incident ray of the sun on the surface of the modules. This paper introduces an integration of ICTs in order to achieve the maximum power point tracking (MPPT using a biaxial solar tracking system for PV power applications. To generate the references for the digital control of azimuth and elevation angles a Global Positioning System (GPS by satellites is used which enables acquiring the geographic coordinates of the sun in real-time. As a total integration of the system a communication platform based on the 802.15.4 protocol for the wireless sensor networks (WSNs is adopted for supervising and monitoring the PV plant. A 2.4 kW prototype system is implemented to validate the proposed control scheme performance.

  19. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  20. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-06-01

    The sixth volume of the Building America Best Practices Series presents information that is useful throughout the U.S. for enhancing the energy efficiency practices in the specific climate zones that are presented in each of the volumes.

  1. Energy Supply In A Building Via A Photovoltaic-Thermal Power System

    Directory of Open Access Journals (Sweden)

    Saban Yilmaz

    2015-04-01

    Full Text Available Abstract The fact that a PV-thermal energy system can supply energy for hot water and heating in a building is of vital importance for the proliferation of renewable energy sources. Central heating boilers are used in case of insufficient solar energy. This study mainly focuses on the planning of a PV-thermal power system for optimal energy supply in a building and a simulated performance analysis.

  2. 23. Symposium photovoltaic solar energy; 23. Symposium Photovoltaische Sonnenenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    of solar lighting systems with LED (N. Pfanner); (19) 40 years of development of photovoltaics in Germany (W. Roth); (20) The long way to a popular power plant (D. Koenemann); (21) Is Switzerland on the way to the champions league of photovoltaics after introduction of a cost efficient reimbursement? (T. Nordmann); (22) Qualification of specialists - Training to photovoltaics engineer and photovoltaics planner (T. Becker); (23) Tasks for an interdisciplinary instruction in mathematics (K. Brinkmann); (24) Energy meteorology - an outline using photovoltaic as an example (D. Heinemann); (25) Diffuse relations at the irradiation? About the input data for prognosis of revenues (C. Reise); (26) Dynamical expandable simulation of photovoltaic systems with DESIRE (V. Quaschning); (27) Modelling of voltage dependences of the degree of efficiency of inverters (H. Schmidt); (28) Building.integrated photovoltaic components (T. Fellenberg); (29) Five steps to a building-integrated photovoltaics (I. Eisenschmidt); (30) With building integrated photovoltaics in a daylight optimized passive house to energy autonomy (R.P. Miloni); (31) 100 % Renewable energy (H. Lehmann); (32) Total quality assurance as an instrument for optimization of profit of photovoltaics projects - An added value for producers, planners and investors (K. Kreissler); (33) A solar plant pass with inspection certificate as a new instrument forquality insurance for handicraft and customer (G. Stryi-Hipp); (34) Reduction of risks and quality assurance: Liability and warranty at photovoltaic plants (S. Flaig); (35) Weathering of photovoltaic modules inside and outside (M. Koehl), (C.Ferrara); (36) Operating costs and maintenance costs of photovoltaic plants (S. Stettler); (37) multifunctional photovoltaic products - strategy for new products with high potential of cost reduction (C. Bendel); (38) Electricity storage systems in networks with a high amount of renewable energy (D.U. Sauer); (39) Active regulation of

  3. Characterization of Novel Thin-Films and Structures for Integrated Circuit and Photovoltaic Applications

    Science.gov (United States)

    Zhao, Zhao

    Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing. For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer

  4. Integrating Building Functions into Massive External Walls

    Directory of Open Access Journals (Sweden)

    Ahmed Hisham Hafez

    2017-11-01

    Full Text Available Well into the twentieth century, brick and stone were the materials used. Bricklaying and stonemasonry were the construction technologies employed for the exterior walls of virtually all major structures. However, with the rise in quality of life, the massive walls alone became incapable of fulfilling all the developed needs. Adjacent systems and layers had then to be attached to the massive layer. Nowadays, the external wall is usually composed of a layered construction. Each external wall function is usually represented by a separate layer or system. The massive layer of the wall is usually responsible for the load-bearing function. Traditional massive external walls vary in terms of their external appearance, their composition and attached layers. However, their design and construction process is usually a repeated process. It is a linear process where each discipline is concerned with a separate layer or system. These disciplines usually take their tasks away and bring them back to be re-integrated in a layered manner. New massive technologies with additional function have recently become available. Such technologies can provide the external wall with other functions in addition to its load-bearing function. The purpose of this research is to map the changes required to the traditional design and construction process when massive technologies with additional function are applied in external walls. Moreover, the research aims at assessing the performance of massive solutions with additional function when compared to traditional solutions in two different contexts, the Netherlands and Egypt. Through the analysis of different additional function technologies in external walls, a guidance scheme for different stakeholders is generated. It shows the expected process changes as related to the product level and customization level. Moreover, the research concludes that the performance of additional insulating technologies, and specifically

  5. Capacity building through integration and transformational leadership - A case study

    Directory of Open Access Journals (Sweden)

    Sacha Michael Stocklin

    2011-04-01

    Full Text Available This article suggests that educational managers can have an influence through leadership by establishing certain moderators that integrate and shape the faculty into a solid team working towards a high performing organisation. The study looks at a case in China and draws suggestions that could be used in other similar settings. The conclusion is to make integration a crucial part of capacity building. DOI: 10.18870/hlrc.v1i1.28

  6. Topology Optimization of Building Blocks for Photonic Integrated Circuits

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    Photonic integrated circuits are likely candidates as high speed replacements for the standard electrical integrated circuits of today. However, in order to obtain a satisfactorily performance many design prob- lems that up until now have resulted in too high losses must be resolved. In this work...... we demonstrate how the method of topology optimization can be used to design a variety of high performance building blocks for the future circuits....

  7. The Optimization of Distributed Photovoltaic Comprehensive Efficiency Based on the Construction of Regional Integrated Energy Management System in China

    Directory of Open Access Journals (Sweden)

    Xiaohua Song

    2016-11-01

    Full Text Available In the context of energy crisis, environmental pollution, and energy abandoning in the large-scale centralized clean energy generation, distributed energy has become an inevitable trend in the development of China’s energy system. Distributed photovoltaic boasts great potential for development in China due to resource advantages and policy support. However, we need improve the efficiency of photovoltaic generation, which is restricted by technology and dislocation of supply and demand. With a view to optimizing the efficiency of distributed photovoltaic, based on the concept of comprehensive efficiency, this paper discusses the influencing factors and chooses the optimization direction according to system dynamics (SD. The optimizing content is further clarified on the basis of energy management system. From the perspective of technology, this paper puts forward optimization methods from resource side, energy conversion and demand side, and the simulation results of applying the three methods verify the feasibility of the method. Comprehensive efficiency would be improved as the result of regional integrated energy management system and policy mechanisms. The conclusions of this paper will provide theoretical basis and optimized reference for the improvement of distributed photovoltaic comprehensive utilization in China.

  8. Integrating Building Information Modeling and Augmented Reality to Improve Investigation of Historical Buildings

    Directory of Open Access Journals (Sweden)

    Francesco Chionna

    2015-12-01

    Full Text Available This paper describes an experimental system to support investigation of historical buildings using Building Information Modeling (BIM and Augmented Reality (AR. The system requires the use of an off-line software to build the BIM representation and defines a method to integrate diagnostic data into BIM. The system offers access to such information during site investigation using AR glasses supported by marker and marker-less technologies. The main innovation is the possibility to contextualize through AR not only existing BIM properties but also results from non-invasive tools. User evaluations show how the use of the system may enhance the perception of engineers during the investigation process.

  9. Power System Modeling in the View of Large Scale Photovoltaic Plant Integration: Case Study of Burkina Faso Power System

    OpenAIRE

    BAGRE, Ahmed O; Bagre, Ahmed Ousmane; IKNI, Djamel

    2016-01-01

    With increasing demand for energy, the goal to reduce fossil-fuel dependence can be addressed in multiple ways: renewable-energy generation system, storage technologies, demand response, etc. For the developed countries, it is high time to introduce renewable energy such as solar in the power system dominated nowadays by thermal power plants using mainly fossil fuel.  This paper expands the modeling and simulation of a power system in the view of large-scale photovoltaic integration into an u...

  10. Integral management of buildings: Everyone benefits; Integrales Gebaeudemanagement: Jeder profitiert

    Energy Technology Data Exchange (ETDEWEB)

    Bochsler, K. [Sulzer Infra (Schweiz) AG, Winterthur (Switzerland); Frutig, D. [Sulzer Infra (Schweiz) AG, Winterthur (Switzerland); Knauer, V. [Sulzer Infra (Schweiz) AG, Winterthur (Switzerland); Wuethrich, R. [Sulzer Infra (Schweiz) AG, Winterthur (Switzerland)

    1996-01-01

    Whereas, formerly, estates were merely administrated, the demand is now for efficient management. This is possible only if the management of buildings is comprehensively taken into account already at the planning stage. Building management comprises a great number of integrated measures destined to safeguard a high overall benefit. The paper informs on the current state of the integral management of buildings. Such process optimization is necessarily based on efficient information acquision. (BWI) [Deutsch] Wurde frueher die reine Verwaltung von Immobilien gefragt, so ist heute die effiziente Bewirtschaftung erforderlich. Dies setzt voraus, dass bereits in der Planungsphase die Bewirtschaftung des Gebaeudes umfassend beruecksichtigt wird. Das hierzu notwendige Gebaeudemanagement umfasst eine Vielzahl ganzheitlich ausgerichteter Massnahmen zur Sicherung eines hohen Gesamtnutzens. Der vorliegende Beitrag gibt einen Ueberblick ueber den Stand des integralen Gebaeudemanagement. Effizientes Informationsmanagement bildet dabei die Basis fuer jede Prozessoptimierung. (BWI)

  11. The photovoltaic energy in Japan; Energie photovoltaique au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Georgel, O

    2005-07-15

    Today the Japan is the leader of the photovoltaic energy. The first reason of this success is an action of the government integrating subventions for the installation of photovoltaic systems and a support of the scientific research. To explain this success, the author presents the energy situation in Japan, details the national programs, the industrial sector (market, silicon needs, recycling, manufacturers, building industry) and presents the main actors. (A.L.B.)

  12. Grapes (Vitis vinifera) drying by semitransparent photovoltaic module (SPVM) integrated solar dryer: an experimental study

    Science.gov (United States)

    Tiwari, Sumit; Tiwari, G. N.

    2017-12-01

    In present research paper, semi-transparent photovoltaic module (SPVM) integrated greenhouse solar drying system has been used for grapes (Vitis vinifera) drying. Based on hourly experimental information namely solar intensity, moisture evaporated, ambient air temperature, grape surface temperatures, relative humidity and greenhouse air temperature etc. heat and mass transfer coefficient for the SPVM drying system have been evaluated. It has been seen that the convective heat transfer coefficients for grapes found between 3.1-0.84 W/m2 K. Also, there is a fair agreement between theoretical and practical mass transfer (moisture evaporated) during drying of grapes with a correlation coefficient (r) and root mean square percentage deviation (e) of 0.88 and 11.56 respectively. Further, nonlinear regression procedure has been used to fit various drying models namely Henderson and Pabis model, Newton's model, and Page's model. From the analysis, it was found that Page's model is best fitted for grapes drying in SPV greenhouse as well as open sun drying. Further, net electrical energy, thermal energy and equivalent thermal energy were found to be 3.61, 17.66 and 27.15 kWh during six days of drying respectively.

  13. Architectures and Control of Submodule Integrated DC-DC Converters for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Olalla, C; Clement, D; Rodriguez, M; Maksimovic, D

    2013-06-01

    This paper describes photovoltaic (PV) module architectures with parallel-connected submodule-integrated dc-dc converters (subMICs) that improve efficiency of energy capture in the presence of partial shading or other mismatch conditions. The subMICs are bidirectional isolated dc-dc converters capable of injecting or subtracting currents to balance the module substring voltages. When no mismatches are present, the subMICs are simply shut down, resulting in zero insertion losses. It is shown that the objective of minimum subMIC power processing can be solved as a linear programming problem. A simple close-to-optimal distributed control approach is presented that allows autonomous subMIC control without the need for a central controller or any communication among the subMICs. Furthermore, the proposed control approach is well suited for an isolated-port architecture, which yields additional practical advantages including reduced subMIC power and voltage ratings. The architectures and the control approach are validated by simulations and experimental results using three bidirectional flyback subMICs attached to a standard 180-W, 72-cell PV module, yielding greater than 98% module-level power processing efficiency for a mismatch less than 25%.

  14. Experimental Verification of a Battery Energy Storage System for Integration with Photovoltaic Generators

    Directory of Open Access Journals (Sweden)

    Rajkiran Singh

    2017-01-01

    Full Text Available This paper presents the experimental verification of a 2 kW battery energy storage system (BESS. The BESS comprises a full-bridge bidirectional isolated dc-dc converter and a PWM converter that is intended for integration with a photovoltaic (PV generator, resulting in leveling of the intermittent output power from the PV generator at the utility side. A phase-shift controller is also employed to manage the charging and discharging operations of the BESS based on PV output power and battery voltage. Moreover, a current controller that uses the d-q synchronous reference frame is proposed to regulate the dc voltage at the high-voltage side (HVS to ensure that the voltage ratio of the HVS with low-voltage side (LVS is equivalent to the transformer turns ratio. The proposed controllers allow fast response to changes in real power requirements and results in unity power factor current injection at the utility side. In addition, the efficient active power injection is achieved as the switching losses are minimized. The peak efficiency of the bidirectional isolated dc-dc converter is measured up to 95.4% during battery charging and 95.1% for battery discharging.

  15. Thermal and Performance Analysis of a Photovoltaic Module with an Integrated Energy Storage System

    Directory of Open Access Journals (Sweden)

    Manel Hammami

    2017-10-01

    Full Text Available This paper is proposing and analyzing an electric energy storage system fully integrated with a photovoltaic PV module, composed by a set of lithium-iron-phosphate (LiFePO4 flat batteries, which constitutes a generation-storage PV unit. The batteries were surface-mounted on the back side of the PV module, distant from the PV backsheet, without exceeding the PV frame size. An additional low-emissivity sheet was introduced to shield the batteries from the backsheet thermal irradiance. The challenge addressed in this paper is to evaluate the PV cell temperature increase, due to the reduced thermal exchanges on the back of the module, and to estimate the temperature of the batteries, verifying their thermal constraints. Two one-dimensional (1D thermal models, numerically implemented by using the thermal library of Simulink-Matlab accounting for all the heat exchanges, are here proposed: one related to the original PV module, the other related to the portion of the area of the PV module in correspondence of the proposed energy-storage system. Convective and radiative coefficients were then calculated in relation to different configurations and ambient conditions. The model validation has been carried out considering the PV module to be at the nominal operating cell temperature (NOCT, and by specific experimental measurements with a thermographic camera. Finally, appropriate models were used to evaluate the increasing cell batteries temperature in different environmental conditions.

  16. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...... is simple, if the demands for safety and health are incorporated early on in the solving of a building assignment, then it becomes much easier to organise the executing phase in a responsible manner safety-wise. But, the problem is that very few of the designers have knowledge or experience of how to do so....... The purpose of this article is to demonstrate how safety and health can be integrated in the design phases integrated in the management delivery systems within construction, The method for the research was to go through the building delivery system step by step and create a normative description of what, when...

  17. Integrating DC/DC Conversion with Possible Reconfiguration within Submodule Solar Photovoltaic Systems

    Science.gov (United States)

    Huang, Peter Jen-Hung

    This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost

  18. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability

  19. Implementing agreement on photovoltaic power systems - Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2000. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance and design of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, the grid interconnection of building-integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, very large scale photovoltaic power generation systems and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  20. Implementing agreement on photovoltaic power systems - Annual report 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2001. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  1. Implementing agreement on photovoltaic power systems - Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2003. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. The programme's tenth anniversary is noted. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system, the deployment of photovoltaic technologies in developing countries and urban-scale PV applications. The status and prospects in the 20 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  2. Experience with building integrated solar collectors; Erfaring med bygningsintegrerte solfangere

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Ingeborg; Time, Berit; Andresen, Inger

    2011-07-01

    The main objective of the research 'Zero Emission Buildings' ZEB is to develop products and solutions that provide buildings with zero greenhouse gas emissions associated with the production, operation and disposal. Can we make this happen must the building produce more energy than it needs to compensate for greenhouse gas emissions from the production of materials and the actual construction.To build up knowledge on experience with building integrated solar collectors in Norway, we have in this study made interviews with suppliers and manufacturers of solar collectors and some building owners. Since the focus is on climate shell, we have limited the study to include solar collectors to replace a part of the cladding or roofing. Construction upstairs roofing, outside facade or freestanding rack is not considered as building integrated in this context. The providers we have been in contact with appeals to slightly different parts of the market. This is reflected in the product's development, assembly and approach to the calculation of energy delivery. Overall, providers may offer a range of products suitable for both the professional and skilled carpenter, the interested 'man in the street' . The feedback we have received shows generally good experiences with the product and the installation. Because of the preliminary short operating periods of the investigated plants we have little data on energy supply from these plants. In summary, we can say that the knowledge and the products are available and it is up to use to use them.(Author)

  3. Integration of inaccurate data into model building and uncertainty assessment

    Energy Technology Data Exchange (ETDEWEB)

    Coleou, Thierry

    1998-12-31

    Model building can be seen as integrating numerous measurements and mapping through data points considered as exact. As the exact data set is usually sparse, using additional non-exact data improves the modelling and reduces the uncertainties. Several examples of non-exact data are discussed and a methodology to honor them in a single pass, along with the exact data is presented. This automatic procedure is valid for both ``base case`` model building and stochastic simulations for uncertainty analysis. 5 refs., 3 figs.

  4. Guide: Photovoltaic plants. 3. rev. ed.; Leitfaden Photovoltaische Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Haselhuhn, Ralf; Hemmerle, Claudia

    2008-07-01

    The guide under consideration contains comprehensive information on all aspects of photovoltaic systems. The up-to-date knowledge of the photovoltaics is presented practically oriented and founded in order to make progress with the innovative, sustainable and environmentally careful power supply on the basis of local sources of energy. Contents: (a) Fundamentals; (b) Components of photovoltaic systems; (c) In situ analysis, site analysis and shading analysis; (d) Planning and dimensioning of grid-connected photovoltaic plants; (e) Planning and dimensioning of autonomous systems; (f) Computer programs and simulation; (g) Assembly systems and building integration; (h) Installation, start-up and operation of photovoltaic systems; (i) Market, economic efficiency and ecology; (i) Marketing; (j) Presentation of companies.

  5. Guide: Photovoltaic plants.. 4. compl. rev. ed.; Leitfaden Photovoltaische Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Haselhuhn, Ralf

    2010-07-01

    The guide under consideration contains comprehensive information on all aspects of photovoltaic systems. The up-to-date knowledge of the photovoltaics is presented practically oriented and founded in order to make progress with the innovative, sustainable and environmentally careful power supply on the basis of local sources of energy. Contents: (a) Fundamentals; (b) Components of photovoltaic systems; (c) In situ analysis, site analysis and shading analysis; (d) Planning and dimensioning of grid-connected photovoltaic plants; (e) Planning and dimensioning of autonomous systems; (f) Computer programs and simulation; (g) Assembly systems and building integration; (h) Installation, start-up and operation of photovoltaic systems; (i) Market, economic efficiency and ecology; (i) Marketing; (j) Presentation of companies.

  6. Laser generated nanoparticles based photovoltaics.

    Science.gov (United States)

    Petridis, C; Savva, K; Kymakis, E; Stratakis, E

    2017-03-01

    The exploitation of nanoparticles (NP), synthesized via laser ablation in liquids, in photovoltaic devices is reviewed. In particular, the impact of NPs' incorporation into various building blocks within the solar cell architecture on the photovoltaic performance and stability is presented and analysed for the current state of the art photovoltaic technologies. Copyright © 2016. Published by Elsevier Inc.

  7. The role of Photovoltaics towards 100% Renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; David, Andrei; Petersen, Silas

    . The review and analysis are focused on the integration of photovoltaics from a system perspective, analysed in the light of socio-economics. By building on this approach, a set of recommendations is proposed, which are structured on the system benefits and feasibility of photovoltaics, the land use...... for the future energy mix. The purpose of this report is to describe what will be role of photovoltaics in a future 100% renewable energy system in Denmark towards the year 2050, but also to propose how the future public regulation schemes should adapt to intake the correct type and capacity for PV. The report...

  8. Building Integrated Ontological Knowledge Structures with Efficient Approximation Algorithms

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    2015-01-01

    Full Text Available The integration of ontologies builds knowledge structures which brings new understanding on existing terminologies and their associations. With the steady increase in the number of ontologies, automatic integration of ontologies is preferable over manual solutions in many applications. However, available works on ontology integration are largely heuristic without guarantees on the quality of the integration results. In this work, we focus on the integration of ontologies with hierarchical structures. We identified optimal structures in this problem and proposed optimal and efficient approximation algorithms for integrating a pair of ontologies. Furthermore, we extend the basic problem to address the integration of a large number of ontologies, and correspondingly we proposed an efficient approximation algorithm for integrating multiple ontologies. The empirical study on both real ontologies and synthetic data demonstrates the effectiveness of our proposed approaches. In addition, the results of integration between gene ontology and National Drug File Reference Terminology suggest that our method provides a novel way to perform association studies between biomedical terms.

  9. Building integrated ontological knowledge structures with efficient approximation algorithms.

    Science.gov (United States)

    Xiang, Yang; Janga, Sarath Chandra

    2015-01-01

    The integration of ontologies builds knowledge structures which brings new understanding on existing terminologies and their associations. With the steady increase in the number of ontologies, automatic integration of ontologies is preferable over manual solutions in many applications. However, available works on ontology integration are largely heuristic without guarantees on the quality of the integration results. In this work, we focus on the integration of ontologies with hierarchical structures. We identified optimal structures in this problem and proposed optimal and efficient approximation algorithms for integrating a pair of ontologies. Furthermore, we extend the basic problem to address the integration of a large number of ontologies, and correspondingly we proposed an efficient approximation algorithm for integrating multiple ontologies. The empirical study on both real ontologies and synthetic data demonstrates the effectiveness of our proposed approaches. In addition, the results of integration between gene ontology and National Drug File Reference Terminology suggest that our method provides a novel way to perform association studies between biomedical terms.

  10. Application of Copper Indium Gallium Diselenide Photovoltaic Cells to Extend the Endurance and Capabilities of Unmanned Aerial Vehicles

    Science.gov (United States)

    2009-09-01

    Challenger (From [10]).............................................................................7 Figure 5. World Average Photovoltaic Module Cost per...Typical Configuration for a CdTe Cell (From [71]). .......................................51 Figure 55. Roll-to-Roll Manufacture of CIGS Solar Cells...Vehicle BDA Battle Damage Assessment BIPV Building Integrated Photovoltaics CdTe Cadmium Telluride CIGS Copper Indium Gallium Diselenide

  11. Apparatus and method for mounting photovoltaic power generating systems on buildings

    Science.gov (United States)

    Russell, Miles Clayton [Lincoln, MA

    2008-10-14

    Rectangular PV modules (6) are mounted on a building roof (4) by mounting stands that are distributed in rows and columns. Each stand comprises a base plate (10) that rests on the building roof (4) and first and second brackets (12, 14) of different height attached to opposite ends of the base plate (10). Each bracket (12, 14) has dual members for supporting two different PV modules (6), and each PV module (6) has a mounting pin (84) adjacent to each of its four corners. Each module (6) is supported by attachment of two of its mounting pins (84) to different first brackets (12), whereby the modules (6) and their supporting stands are able to resist uplift forces resulting from high velocity winds without the base plates (10) being physically attached to the supporting roof structure (4). Preferably the second brackets (14) have a telescoping construction that permits their effective height to vary from less than to substantially the same as that of the first brackets (12).

  12. Information delivery manuals to integrate building product information into design

    DEFF Research Database (Denmark)

    Berard, Ole Bengt; Karlshøj, Jan

    2011-01-01

    . Traditional business process modeling languages often fail to completely cover all four perspectives. BuildingSMART has proposed Information Delivery Manuals (IDMs) to model and re-engineer processes that address the four perspectives through a collaborative methodology in order to standardize and implement...... them in information systems. BIM implies that objects are bearers of information and logic. The present study has three main aims: (1) to explore IDMs capability to capture all four perspectives, (2) to determine whether an IDM’s collaborative methodology is valid for developing standardized processes......, and (3) to ascertain whether IDM’s business rules can support the development of information and logic-bearing BIM objects. The research is based on a case study of re-engineering the bidding process for a design-build project to integrate building product manufacturers, subcontractors...

  13. Information delivery manuals to integrate building product information into design

    DEFF Research Database (Denmark)

    Berard, Ole Bengt; Karlshøj, Jan

    2013-01-01

    . Traditional business process modeling languages often fail to completely cover all four perspectives. BuildingSMART has proposed Information Delivery Manuals (IDMs) to model and re-engineer processes that address the four perspectives through a collaborative methodology in order to standardize and implement...... them in information systems. BIM implies that objects are bearers of information and logic. The present study has three main aims: (1) to explore IDMs capability to capture all four perspectives, (2) to determine whether an IDM's collaborative methodology is valid for developing standardized processes......, and (3) to ascertain whether IDM's business rules can support the development of information and logic-bearing BIM objects. The research is based on a case study of reengineering the bidding process for a design-build project to integrate building product manufacturers, subcontractors and their knowledge...

  14. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  15. Architectural Building A Public Key Infrastructure Integrated Information Space

    Directory of Open Access Journals (Sweden)

    Vadim Ivanovich Korolev

    2015-10-01

    Full Text Available The article keeps under consideration the mattersto apply the cryptographic system having a public key to provide information security and to implya digital signature. It performs the analysis of trust models at the formation of certificates and their use. The article describes the relationships between the trust model and the architecture public key infrastructure. It contains conclusions in respect of the options for building the public key infrastructure for integrated informationspace.

  16. Integrated wireless sensor network and real time smart controlling and monitoring system for efficient energy management in standalone photovoltaic systems

    Science.gov (United States)

    Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama

    2014-04-01

    In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.

  17. Attractive economy and durability of building integrated solar collector systems

    Energy Technology Data Exchange (ETDEWEB)

    Vejsig Pedersen, P.; Vejsig Pedersen, P.

    1986-05-01

    An advantage of building integrated solar collector systems is that often the solar components also function as a building envelope. Two demonstration projects with large roof integrated, site-built solar collectors for DHW built near Copenhagen are described. One solar collector has 208 m/sup 2/ of collector area integrated in an existing building and forming part of a roof renovation. The other solar collector has a collector area of 160 m/sup 2/ and was used in a new building project. The solar collector was developed with a special acrylic glazing which is easy to install. It is completely rain tight and well ventilated. In a building project north of Copenhagen, where 40 out of 55 solar low energy houses were equipped with a new type of compact thermosyphon solar water heater, originally developed at the Thermal Insulation Laboratory is described. Integrated in the wall in the living room, a selective absorber and 16 cm thick, 150 liter DHW tank with an electric heater as back-up, were installed behind an ordinary 3.5 m/sup 2/ window with a tilt of 57 deg. 3 monitored systems show that a yearly system efficiency of 50% is possible for a daily DHW demand of 200 liter being equal to a solar fraction of 65% or a coefficient of performance of 3.0 Economic aspects are also dealt with. At the Thermal Insulation Laboratory, several passive solar heating research projects have also been carried out. However, to obtain better possibilities for control, which can be necessary in an unstable climate like the Danish, various hybrid heating systems have been investigated. An example is the so-called loft room solar collector. This system is an ordinary, black painted loft room with a transparent roofing. A rock-bed storage is charged by air heated in the loft room. This is an inexpensive solar system with a quite high solar fraction. The importance of using solar technology in new building projects is discussed. 11 refs.

  18. Impacts of Voltage Control Methods on Distribution Circuit’s Photovoltaic (PV Integration Limits

    Directory of Open Access Journals (Sweden)

    Anamika Dubey

    2017-10-01

    Full Text Available The widespread integration of photovoltaic (PV units may result in a number of operational issues for the utility distribution system. The advances in smart-grid technologies with better communication and control capabilities may help to mitigate these challenges. The objective of this paper is to evaluate multiple voltage control methods and compare their effectiveness in mitigating the impacts of high levels of PV penetrations on distribution system voltages. A Monte Carlo based stochastic analysis framework is used to evaluate the impacts of PV integration, with and without voltage control. Both snapshot power flow and time-series analysis are conducted for the feeder with varying levels of PV penetrations. The methods are compared for their impacts on (1 the feeder’s PV hosting capacity; (2 the number of voltage violations and the magnitude of the largest bus voltage; (3 the net reactive power demand from the substation; and (4 the number of switching operations of feeder’s legacy voltage support devices i.e., capacitor banks and load tap changers (LTCs. The simulation results show that voltage control help in mitigating overvoltage concerns and increasing the feeder’s hosting capacity. Although, the legacy control solves the voltage concerns for primary feeders, a smart inverter control is required to mitigate both primary and secondary feeder voltage regulation issues. The smart inverter control, however, increases the feeder’s reactive power demand and the number of LTC and capacitor switching operations. For the 34.5-kV test circuit, it is observed that the reactive power demand increases from 0 to 6.8 MVAR on enabling Volt-VAR control for PV inverters. The total number of capacitor and LTC operations over a 1-year period also increases from 455 operations to 1991 operations with Volt-VAR control mode. It is also demonstrated that by simply changing the control mode of capacitor banks, a significant reduction in the unnecessary

  19. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  20. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - Research and development of solar beam power generation and utilization systems and ancillary technologies (Research and development of building material integrated modules - glass curtain walls); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (kenzai ittaigata module no kenkyu kaihatsu (glass curtain wall))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Photovoltaic power generation modules capable of being utilized as curtain walls are fabricated in poly-crystalline type, and evaluations are being made on their durability as building materials and power generation facility. A large demonstration test facility installed in Chofu City, Tokyo was used to have measured the power generation characteristics (IV curve), insolation, outdoor and in-the-wall temperature and humidity, and observed the device insulation performance and appearance. The test device consisted of two units, whose one unit was installed as a vertical wall and another as a slanted wall, without having been connected to the electric power supply system. From the data obtained from the modules whose surface area was 34.49 m{sup 2}, development was done on a technology to estimate power generation amount from the modules, and analysis was performed on the correlation between the heat insulating structure and the module temperatures. After 30 months since the installation, the module temperature rises higher by more than 50 degrees C at the maximum than the outdoor temperature, but no anomalies were recognized in the functions. However, while the developed power generation amount estimating system is capable of making estimation with accuracy of 1.4%, the seasonal variation in the estimation error was found too great. The system requires improvements. (NEDO)

  1. Simulation Tools and Techniques for Analyzing the Impacts of Photovoltaic System Integration

    Science.gov (United States)

    Hariri, Ali

    Solar photovoltaic (PV) energy integration in distribution networks is one of the fastest growing sectors of distributed energy integration. The growth in solar PV integration is incentivized by various clean power policies, global interest in solar energy, and reduction in manufacturing and installation costs of solar energy systems. The increase in solar PV integration has raised a number of concerns regarding the potential impacts that might arise as a result of high PV penetration. Some impacts have already been recorded in networks with high PV penetration such as in China, Germany, and USA (Hawaii and California). Therefore, network planning is becoming more intricate as new technologies are integrated into the existing electric grid. The integrated new technologies pose certain compatibility concerns regarding the existing electric grid infrastructure. Therefore, PV integration impact studies are becoming more essential in order to have a better understanding of how to advance the solar PV integration efforts without introducing adverse impacts into the network. PV impact studies are important for understanding the nature of the new introduced phenomena. Understanding the nature of the potential impacts is a key factor for mitigating and accommodating for said impacts. Traditionally, electric power utilities relied on phasor-based power flow simulations for planning their electric networks. However, the conventional, commercially available, phasor-based simulation tools do not provide proper visibility across a wide spectrum of electric phenomena. Moreover, different types of simulation approaches are suitable for specific types of studies. For instance, power flow software cannot be used for studying time varying phenomena. At the same time, it is not practical to use electromagnetic transient (EMT) tools to perform power flow solutions. Therefore, some electric phenomena caused by the variability of PV generation are not visible using the conventional

  2. Exploring the Client–AEC Interface in Building Lifecycle Integration

    Directory of Open Access Journals (Sweden)

    John M. Kamara

    2013-07-01

    Full Text Available The creation and management of buildings over their lifecycle involves the cooperation of many organizations, which broadly fall into a client domain and AEC (architecture, engineering, construction domain. While this mix of expertise is essential, the ineffective management of the boundaries between these organizations can undermine building lifecycle performance. This paper explores client–AEC interactions at the project development and handover stages, with a view to discovering insights into client–AEC interface management for effective building lifecycle integration (BLI. The concept of boundary objects provided the theoretical framework to discuss findings from two case studies on the project development phase of a private finance initiative project, and the asset development process in a repeat client organization. The findings suggest that there are different emphases in boundary crossing activities at different stages, with boundary roles that relate to decision-making and authority to commit resources being more relevant at the project development stage, whereas the need to explain meanings appear to be more relevant at the handover stage. AEC professionals in client organizations play a crucial role in bridging knowledge boundaries about buildings, but this professional/functional strand to BLI needs to be effectively managed alongside the organizational boundaries, since the authority to resource BLI efforts resides within organizations.

  3. Delta-Connected Cascaded H-Bridge Multilevel Converters for Large-Scale Photovoltaic Grid Integration

    DEFF Research Database (Denmark)

    Yu, Yifan; Konstantinou, Georgios; Townsend, Christopher D.

    2017-01-01

    The cascaded H-bridge (CHB) converter is becoming a promising candidate for use in next generation large-scale photovoltaic (PV) power plants. However, solar power generation in the three converter phase-legs can be significantly unbalanced, especially in a large geographically-dispersed plant...

  4. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew; Ahlstrom, Mark; Brower, Michael; Ellis, Abraham; George, Ray; Hoff, Tom; Kroposki, Benjamin; Lenox, Carl; Miller, Nicholas; Stein, Joshua; Wan, Yih-huei

    2009-12-07

    Data and analysis are needed to understand the variability of photovoltaic (PV) plants to avoid unnecessary barriers to the interconnection of PV. Several datasets show clouds can cause rapid changes in solar insolation. Smoothing of rapid ramps, however, occurs within PV plants. The degree of smoothing depends on plant size. Smoothing occurs on even longer time-scales between separate plants.

  5. Superstrate and substrate type cadmium telluride solar cells and monolithic integration of photovoltaic modules

    Science.gov (United States)

    Matulionis, Ilvydas

    This dissertation describes the fabrication of polycrystalline CdTe-based solar cells and monolithic integration of photovoltaic devices into modules using laser scribing. We have improved the efficiency of sputtered superstrate type CdTe solar cells, including devices with unconventionally thin absorber, built world-record efficiency substrate type CdTe solar cells, observed effects related to interfacial layers, and investigated the use of 7 different types of lasers for scribing of materials used for CdTe and CuInGaSe2 solar cells. We have fabricated CdTe/CdS solar cells using magnetron sputtering with conversion efficiencies of 12.5%. As the thickness of CdTe is reduced to less than 1 mum, devices still maintain efficiencies near 10%. Thinning of the CdTe layer would make manufacturing of solar modules more economical. We have built inverted (substrate) configuration CdTe solar cells with state-of-the-art efficiencies of 7.8%. We find that tellurium and sulfur interdiffusion is strongly inhibited in substrate type cells due to the fact that the CdS is grown on fully formed CdTe grains. We have optimized a sputtering process for aluminum-doped ZnO, achieved a resistivity of 5 x 10-4 O-cm, and fabricated 5.8% efficient substrate type CdTe solar cells with the ZnO:Al top contact. We have researched the effect of a high resistivity (HR) layer between the CdS and a transparent conducting oxide. Cells with the HR layer maintain higher efficiencies as the thickness of the CdS is reduced to 60 nm and less. We have investigated the use of 7 different types of lasers for scribing of the polycrystalline materials used for CdTe and CuIn(Ga)Se2 (CIGS) thin-film solar cells. The lasers included four different Nd:YAG (532 and 1064 nm), a Cu vapor (511 and 578 nm) and two excimers (308 and 248 nm). Pulse durations ranged from 0.1 to 250 ns. We find that most wavelength and pulse duration combinations work well for the thin-film materials. ZnO should be scribed with an

  6. Supporting Building Portfolio Investment and Policy Decision Making through an Integrated Building Utility Data Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Azizan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lasternas, Bertrand [Carnegie Mellon Univ., Pittsburgh, PA (United States); Alschuler, Elena [US DOE; View Inc; Loftness, Vivian [Carnegie Mellon Univ., Pittsburgh, PA (United States); Wang, Haopeng [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mo, Yunjeong [Carnegie Mellon Univ., Pittsburgh, PA (United States); Wang, Ting [Carnegie Mellon Univ., Pittsburgh, PA (United States); Zhang, Chenlu [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sharma, Shilpi [Carnegie Mellon; Stevens, Ivana [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-03-18

    The American Recovery and Reinvestment Act stimulus funding of 2009 for smart grid projects resulted in the tripling of smart meters deployment. In 2012, the Green Button initiative provided utility customers with access to their real-time1 energy usage. The availability of finely granular data provides an enormous potential for energy data analytics and energy benchmarking. The sheer volume of time-series utility data from a large number of buildings also poses challenges in data collection, quality control, and database management for rigorous and meaningful analyses. In this paper, we will describe a building portfolio-level data analytics tool for operational optimization, business investment and policy assessment using 15-minute to monthly intervals utility data. The analytics tool is developed on top of the U.S. Department of Energy’s Standard Energy Efficiency Data (SEED) platform, an open source software application that manages energy performance data of large groups of buildings. To support the significantly large volume of granular interval data, we integrated a parallel time-series database to the existing relational database. The time-series database improves on the current utility data input, focusing on real-time data collection, storage, analytics and data quality control. The fully integrated data platform supports APIs for utility apps development by third party software developers. These apps will provide actionable intelligence for building owners and facilities managers. Unlike a commercial system, this platform is an open source platform funded by the U.S. Government, accessible to the public, researchers and other developers, to support initiatives in reducing building energy consumption.

  7. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  8. Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (EAHE) for space heating/cooling of adobe house in New Delhi (India)

    Energy Technology Data Exchange (ETDEWEB)

    Chel, Arvind; Tiwari, G.N. [Center for Energy Studies (CES), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2010-03-15

    This paper deals with an experimental outdoor annual performance evaluation of 2.32 kW{sub P} photovoltaic (PV) power system located at solar energy park in New Delhi composite climatic conditions. This PV system operates the daily electrical load nearly 10 kW h/day which comprises of various applications such as electric air blower of an earth to air heat exchanger (EAHE) used for heating/cooling of adobe house, ceiling fan, fluorescent tube-light, computer, submersible water pump, etc. The outdoor efficiencies, power generated and lost in PV system components were determined using hourly experimental measured data for 1 year on typical clear day in each month. These realistic data are useful for design engineers for outdoor assessment of PV system components. The energy conservation, mitigation of CO{sub 2} emission and carbon credit potential of the existing PV integrated EAHE system is presented in this paper. Also, the energy payback time (EPBT) and unit cost of electricity were determined for both stand-alone PV (SAPV) and building roof integrated PV (BIPV) systems. (author)

  9. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  10. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  11. Development of the building integrated ducted wind turbine module

    Energy Technology Data Exchange (ETDEWEB)

    Dannecker, R.; Varela, G. Quinonez; Grant, A. [Strathclyde Univ., Dept. of Mechanical Engineering, Glasgow (United Kingdom)

    2000-07-01

    Wind is now established as a major renewable energy resource, but its exploitation is generally confined to sparsely populated areas and may in future be increasingly limited by environmental constraints. The paper describes the development of a small axial flow turbine with vertical shaft, situated in a curved duct, which is intended to be completely integrated in a high rise building in an urban environment. The design is intended to make optimal use of the differential pressures which result from wind flow around a building. A small scale model and prototypes for field trials have been tested as free standing devices and their performance shown to be competitive with conventional small machines for low power applications. The aerodynamical response to different design options is subject to computational fluid dynamic analysis and will be used in conjunction with wind tunnel testing to refine rotor, stator and duct geometries. A trial deployment will shortly commence as a demonstration project on a newly refurbished building of historical significance in the center of Glasgow. (Author)

  12. Integration of Models of Building Interiors with Cadastral Data

    Science.gov (United States)

    Gotlib, Dariusz; Karabin, Marcin

    2017-12-01

    Demands for applications which use models of building interiors is growing and highly diversified. Those models are applied at the stage of designing and construction of a building, in applications which support real estate management, in navigation and marketing systems and, finally, in crisis management and security systems. They are created on the basis of different data: architectural and construction plans, both, in the analogue form, as well as CAD files, BIM data files, by means of laser scanning (TLS) and conventional surveys. In this context the issue of searching solutions which would integrate the existing models and lead to elimination of data redundancy is becoming more important. The authors analysed the possible input- of cadastral data (legal extent of premises) at the stage of the creation and updating different models of building's interiors. The paper focuses on one issue - the way of describing the geometry of premises basing on the most popular source data, i.e. architectural and construction plans. However, the described rules may be considered as universal and also may be applied in practice concerned may be used during the process of creation and updating indoor models based on BIM dataset or laser scanning clouds

  13. An Integrated Experimental/Theoretical Study of Structurally Related Poly-Thiophenes Used in Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Davide Vanossi

    2016-01-01

    Full Text Available In this work, a series of eight thiophene-based polymers (exploited as “donors” in bulk heterojunction photovoltaics cells, whose structures were designed to be suitably tuned with the electronic characteristics of the [6,6]-Phenyl C61 butyric acid methyl ester (PCBM, is considered,. The electronic properties of the mono-, di-, trimeric oligomers are reckoned (at the Hartree-Fock and DFT level of the theory and compared to experimental spectroscopic and electrochemical results. Indeed, electrochemical and spectroscopic results show a systematic difference whose physical nature is assessed and related to the exciton (electron-hole binding energy ( J e , h . The critical comparison of the experimental and theoretical band gaps, i.e., the HOMO-LUMO energy difference, suggests that electrochemical and DFT values are the most suited to being used in the design of a polythiophene-based p-n junction for photovoltaics.

  14. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  15. NUCLEAR NEW BUILD-INTEGRATING CULTURAL DIFFERENCES IN RADIATION PROTECTION.

    Science.gov (United States)

    Haemmerli, Valentin; Bryant, Peter A; Cole, Peter

    2017-04-01

    Across the world, we are seeing a resurgence in Nuclear New Build. In the UK alone, plans are under way for the construction of 10 new reactors, using 4 different reactor designs all of which are to be provided by foreign vendors, and operated by 3 newly formed licensees within the UK. As these new licensees embark on the task of establishing themselves and progressing the design and build of these reactors, there are challenges faced in integrating the Radiation Protection Requirements and Culture from the various Foreign Investors and Vendors into the UK 'Context'. The following paper identifies the origin of the Radiation Protection Requirements within the UK and foreign investor/vendor countries, in an attempt to integrate them into the UK licensing and approval process. Thus, allowing due credit to be taken for the regulatory regime of the foreign countries where these reactors originate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Pusat Tenaga Malaysia's Zero Energy Office (ZEO) Building

    DEFF Research Database (Denmark)

    Tang, C.K.; Reimann, Gregers Peter; Kristensen, Poul Erik

    Technical Review of the Zero Energy Office building in Malaysia. The building, which has an energy index of 50 kWh/m2/year, reaches a net annual energy of zero through the use of building integrated photovoltaic panels. For reference, ordinary offices in Malaysia consume 200 - 300 kWh/m2/year...

  17. State-of-the-art Review : Vol. 2B. Integrated Building Concepts

    DEFF Research Database (Denmark)

    van der Aa, Ad; Andresen, Inger; Asada, Hideo

    The purpose of this report is to give examples of integrated building concepts and related available performance data and information. The report does not aspire to give a complete overview of all possible integrated building concepts and processes. The buildings included in the report have been...... an overview of 23 case study buildings from 9 countries with integrated building concepts. The overview provides descriptions of the buildings and their contexts, a description of the integrated energy systems, and the overall performance of the building with respect to energy, indoor environment and costs......, where available. Also, barriers towards implementation and lessons learnt from the projects are summarized. The last section gives a summary of barriers and opportunities for wide scale realization of integrated building concepts that can be deducted from the examples given in the review....

  18. Integration of Rooftop Photovoltaic Systems in St. Paul Ford Site's Redevelopment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Olis, D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mosey, G. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    The purpose of this analysis is to estimate how much electricity the redeveloped Ford Motor Company assembly plant site in St. Paul, Minnesota, might consume under different development scenarios and how much rooftop photovoltaic (PV) generation might be possible at the site. Because the current development scenarios are high-level, preliminary sketches that describe mixes of residential, retail, commercial, and industrial spaces, electricity consumption and available rooftop area for PV under each scenario can only be grossly estimated. These results are only indicative and should be used for estimating purposes only and to help inform development goals and requirements moving forward.

  19. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  20. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  1. Critical Care Organizations: Building and Integrating Academic Programs.

    Science.gov (United States)

    Moore, Jason E; Oropello, John M; Stoltzfus, Daniel; Masur, Henry; Coopersmith, Craig M; Nates, Joseph; Doig, Christopher; Christman, John; Hite, R Duncan; Angus, Derek C; Pastores, Stephen M; Kvetan, Vladimir

    2017-12-16

    Academic medical centers in North America are expanding their missions from the traditional triad of patient care, research, and education to include the broader issue of healthcare delivery improvement. In recent years, integrated Critical Care Organizations have developed within academic centers to better meet the challenges of this broadening mission. The goal of this article was to provide interested administrators and intensivists with the proper resources, lines of communication, and organizational approach to accomplish integration and Critical Care Organization formation effectively. The Academic Critical Care Organization Building section workgroup of the taskforce established regular monthly conference calls to reach consensus on the development of a toolkit utilizing methods proven to advance the development of their own academic Critical Care Organizations. Relevant medical literature was reviewed by literature search. Materials from federal agencies and other national organizations were accessed through the Internet. The Society of Critical Care Medicine convened a taskforce entitled "Academic Leaders in Critical Care Medicine" on February 22, 2016 at the 45th Critical Care Congress using the expertise of successful leaders of advanced governance Critical Care Organizations in North America to develop a toolkit for advancing Critical Care Organizations. Key elements of an academic Critical Care Organization are outlined. The vital missions of multidisciplinary patient care, safety, and quality are linked to the research, education, and professional development missions that enhance the value of such organizations. Core features, benefits, barriers, and recommendations for integration of academic programs within Critical Care Organizations are described. Selected readings and resources to successfully implement the recommendations are provided. Communication with medical school and hospital leadership is discussed. We present the rationale for critical

  2. A New Building-Integrated Wind Turbine System Utilizing the Building

    Directory of Open Access Journals (Sweden)

    Jeongsu Park

    2015-10-01

    Full Text Available This paper proposes an innovative building-integrated wind turbine (BIWT system by directly utilizing the building skin, which is an unused and unavailable area in all conventional BIWT systems. The proposed system has been developed by combining a guide vane that is able to effectively collect the incoming wind and increase its speed and a rotor with an appropriate shape for specific conditions. To this end, several important design issues for the guide vane as well as the rotor were thoroughly investigated and accordingly addressed in this paper. A series of computational fluid dynamics (CFD analyses was performed to determine the optimal configuration of the proposed system. Finally, it is demonstrated from performance evaluation tests that the prototype with the specially designed guide vane and rotor for the proposed BIWT system accelerates the wind speed to a sufficient level and consequently increases the power coefficient significantly. Thus, it was confirmed that the proposed system is a promising environment-friendly energy production system for urban areas.

  3. Consequence Based Design. An approach for integrating computational collaborative models (Integrated Dynamic Models) in the building design phase

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    that secures validity and quality assurance with a simulationist while sustaining autonomous control of building design with the building designer. Consequence based design is defined by the specific use of integrated dynamic models. These models include the parametric capabilities of a visual programming tool...... case studies. All case studies concern building design projects performed in collaboration with Grontmij and various Danish architectural studios. Different types of integrated dynamic models have been implemented and tested for the individual projects. The findings from each project were used to alter......In the wake of uncompromising requirements on building performance and the current emphasis on building energy consumption and indoor environment, designing buildings has become an increasingly difficult task. However, building performance analyses, including those of building energy consumption...

  4. Integrated management of information inside maintenance processes. From the building registry to BIM systems

    Directory of Open Access Journals (Sweden)

    Cinzia Talamo

    2014-10-01

    Full Text Available The paper presents objec- tives, methods and results of two researches dealing with the improvement of integrated information management within maintenance processes. Focusing on information needs regarding the last phases of the building process, the two researches draft approaches characterizing a path of progressive improve- ment of strategies for integration: from a building registry, unique for the whole construction process, to an integrated management of the building process with the support of BIM systems.

  5. Building a federated data infrastructure for integrating the European Supersites

    Science.gov (United States)

    Freda, Carmela; Cocco, Massimo; Puglisi, Giuseppe; Borgstrom, Sven; Vogfjord, Kristin; Sigmundsson, Freysteinn; Ergintav, Semih; Meral Ozel, Nurcan; Consortium, Epos

    2017-04-01

    The integration of satellite and in-situ Earth observations fostered by the GEO Geohazards Supersites and National Laboratories (GSNL) initiative is aimed at providing access to spaceborne and in-situ geoscience data for selected sites prone to earthquake, volcanic eruptions and/or other environmental hazards. The initiative was launched with the "Frascati declaration" at the conclusion of the 3rd International Geohazards workshop of the Group of Earth Observation (GEO) held in November 2007 in Frascati, Italy. The development of the GSNL and the integration of in-situ and space Earth observations require the implementation of in-situ e-infrastructures and services for scientific users and other stakeholders. The European Commission has funded three projects to support the development of the European supersites: FUTUREVOLC for the Icelandic volcanoes, MED-SUV for Mt. Etna and Campi Flegrei/Vesuvius (Italy), and MARSITE for the Marmara Sea near fault observatory (Turkey). Because the establishment of a network of supersites in Europe will, among other advantages, facilitate the link with the Global Earth Observation System of Systems (GEOSS), EPOS (the European Plate Observing System) has supported these initiatives by integrating the observing systems and infrastructures developed in these three projects in its implementation plan aimed at integrating existing and new research infrastructures for solid Earth sciences. In this contribution we will present the EPOS federated approach and the key actions needed to: i) develop sustainable long-term Earth observation strategies preceding and following earthquakes and volcanic eruptions; ii) develop an innovative integrated e-infrastructure component necessary to create an effective service for users; iii) promote the strategic and outreach actions to meet the specific user needs; iv) develop expertise in the use and interpretation of Supersites data in order to promote capacity building and timely transfer of scientific

  6. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    Science.gov (United States)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  7. Modelling the heat dynamics of building integrated and ventilated photovoltaic modules

    DEFF Research Database (Denmark)

    Friling, N.; Jimenez, M.J.; Bloem, H.

    2009-01-01

    -up. To identify best set-up, grey-box models consisting of stochastic differential equations are applied. The models are first order stochastic state space models. Maximum likelihood estimation and the extended Kalman filter are applied in the parameter estimation phase. To validate the estimated models, plots......, are applied in the set-up combined with high level of air flow. The improved description by the model is mainly seen in periods with high solar radiation....

  8. A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong

    National Research Council Canada - National Science Library

    Song, Aotian; Lu, Lin; Liu, Zhizhao; Wong, Man

    2016-01-01

    .... Through a review of the PV development history of five leading PV countries, Germany, Japan, Italy, Mainland China, and the USA, this paper serves as a useful policy toolbox to aid PV development...

  9. Experimental results of controlled PV module for building integrated PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Roman, E.; Alonso, R.; Ibanez, P.; Elorduizapatarietxe, S. [Energy Unit, Robotiker Corporacion Tecnologica Tecnalia, Parque Tecnologico de Zamudio. Edif. 202, 48170 Zamudio (Spain); Martinez, V.; Jimeno, J.C. [EHU/UPV Instituto de Tecnologia Microelectronica, Alda. Urquijo s/n, 48013 Bilbao (Spain)

    2008-05-15

    Last issues about Building Integrated Photovoltaic Systems (BIPV) still show average Performance Ratio (PR) values in the range of 0.75-0.80. The main causes well known: partial shadows, temperature effects, PV inverter losses, thermal losses, etc. and mismatching losses. Ideally, all the modules work in the same conditions, but differences between modules really exist due to differences in the working temperature, the inclination or orientation angles, differences in the I-V characteristic coming from the manufacturing process, etc. The effect is that the output power of the complete PV system is lower than the addition of the power of each PV module. These mismatching losses can be decreased by means of suitable electronics. This paper presents the experimental results obtained over PV systems equipped with controlled PV modules, PV modules with low cost and high efficiency DC-DC converters, including MPPT algorithm and other functions, such as power control and Power Line Communications (PLC). Tests have been divided into two great categories: tests on the electronic performance of the DC-DC converter and tests on grid-connected PV systems with multiple DC-DC converters. Many of these tests have been carried out taking advantage of the PV System Test Platform, a powerful tool especially designed by Robotiker to evaluate all kind of PV systems, especially systems with differences between modules. Aspects of the DC-DC converter performance have been detailed and among the most important experiments, the paper analyses different situations such as partial shadows, different inclined planes, PV systems with different PV modules, and finally a comparison between a conventional system and a system composed by controlled PV modules have been described. To sum up, the importance of a good system dimensioning is analysed, with very interesting results. (author)

  10. A Distributed Control Framework for Integrated Photovoltaic-Battery-Based Islanded Microgrids

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad; Shafiee, Qobad; Lu, Dylan Dah-Chuan

    2017-01-01

    This paper proposes a new cooperative control framework for coordination of energy storage units (ESUs), photovoltaic (PV) panels and controllable load units in singlephase low voltage microgrids (MGs). The control objectives are defined and acted upon using a two level structure; primary...... are coordinated based on a leader-follower framework, where the leader restores the MG voltage to the rated value and the followers manage the sharing of power between the ESUs so as to balance the SoCs. Once the ESUs reach the minimum charge level, the information state increases above a positive critical value......, at which point load control units perform load shedding. Similarly, fair PV curtailment is conducted in case the ESUs reach the maximum charge level. Experimental results are presented to demonstrate the efficacy of the proposed method....

  11. Life-Cycle Assessment of Solar Charger with Integrated Organic Photovoltaics

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Espinosa Martinez, Nieves; Krebs, Frederik C

    2017-01-01

    OPV panel, enabling the possibility to be charged from the sun, and not only from the grid. In this paper, two well-established power bank products using amorphous silicon solar panels (a-Si PV) and a regular power bank without any portable solar panel is compared to HeLi-on. The environmental impact...... of the products is quantified with the aim of indicate where eco-design improvements would make a difference and to point out performance of a portable solar panel depending on the context of use (Denmark and China), realistic disposal scenarios and the recycling relevance particularly concerning metals content.......Organic photovoltaics (OPV) applied in a commercial product comprising a solar charged power bank is subjected to a life cycle assessment (LCA) study. Regular power banks harvest electricity from the grid only. The solar power bank (called HeLi-on) is however, a power bank that includes a portable...

  12. Description of case houses. Building integrated energy supply; Beskrivelse af casehuse. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The present report describes typical construction details of the building envelope (windows, floor, outside wall and roof/ceiling) for houses built in the years 1961-1972, 1973-1978 and 1979-1998. Furthermore the report describes the necessary improvements for the buildings' U-value to be the minimum value as stated in the Danish building code of 2010, and to be the values for buildings at the level of low-energy class 2015. Cost estimation for optimizing the houses to an optimum insulation level has been made. (ln)

  13. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  14. Towards Integrated Team Practice: A Case of Malaysian Industrialised Building System (IBS) Construction Projects

    National Research Council Canada - National Science Library

    Mohd Nawi, Mohd Nasrun; Nadarajan, Santhisegaran; Omar, Mohd Faizal; Zaidi, Mohd Azian; Mat Yasin, Mohd Fadzil

    2014-01-01

    .... Integrated team practice is perceived as paramount. Unfortunately, there has a limitation of study focus on the dimension of fully integrated team especially for Malaysian Industrialised Building System (IBS) projects...

  15. Community-scale solar photovoltaics: housing and public development examples

    Energy Technology Data Exchange (ETDEWEB)

    Komoto, K.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at community-scale photovoltaics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The aim of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. This report provides examples of housing developments and incorporated townships that have integrated multiple stakeholder values into business solutions. The authors are of the opinion that builders, developers, architects and engineers need to consider orientation, aesthetics, load diversity, energy efficiency, grid infrastructure and end use. Residential and commercial building owners or occupants need to consider the design of electric services relative to loads, green image, and economic opportunities such as feed-in tariffs. Local government should give preference to granting permission to high-performance building projects. It is suggested that the finance and insurance sector consider the operational savings in overall debt allowances. System manufacturers and integrators should develop standardised systems. In the emerging PV community market, utilities are quickly gaining awareness of business opportunities. The need for professionals and skilled labour is quoted as having grown as drastically as the PV market itself.

  16. Solar architecture and solar building construction. Conference proceedings; Solararchitektur and Solares Bauen. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This is the proceedings volume of the Energy Forum held in Brixen, South Tyrol, on 9/10 December 2008. The following subjects were discussed: 1. Photovoltaic systems integrated in buildings, an introduction; 2. Projecting and implementation of PV projects integrated in buildings; 3. Flexible PV thin film modules for roofs and walls; 4. Intelligent building shells: Integrated building construction with renewable energy sources; 5. Shading, sunshades, daylighting.

  17. Briefing and Building Information Modelling: Potential for integration

    NARCIS (Netherlands)

    Koutamanis, Alexandros

    2017-01-01

    The article brings together the subjects of briefing and Building Information Modelling. It considers the brief as information source for Building Information Modelling and Building Information Modelling as an environment for automating brief-related analysis and guidance. The approach is

  18. Energy self-sufficient micro systems using photovoltaics in buildings as an example; Energieautarke Mikrosysteme am Beispiel von Photovoltaik in Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Monika

    2010-07-01

    The development of energy-optimized electronics with an average power consumption in the range of microwatts enabled the use of ambient energy to power these systems. This energy supply concept is also known as Micro Energy Harvesting. The main characteristics of these energy self-sufficient microsystems are low ambient power densities (microwatts per square centimeter) and an increased importance of higher-order terms in modeling the miniaturized energy converters. Furthermore, possible fields of application are heterogeneous. The range of the energy in the environment is several orders in magnitude. Thus, feasibility studies of regenerative microenergy sytems are bound to the surroundings of specific applications. This individuality raises the planning expenditure and complicates a systematical optimization and commercialization. This research study examines the general characteristic features of regenerative microsystems. The objective is to find modular and general descriptions of rising complexity instead of modeling single components for specialized applications. Thus, regenerative microsystems are treated comprising three main components, i.e. electric power consumption, ambient energy and energy converter. The types of power consumption are reduced into three main groups and the physical minima of required energies are discussed. Energy converters are analyzed in general. Radiant energy in buildings and photovoltaic energy conversion is analyzed analytically, numerically, and experimentally. Firstly, typical optic intensities in buildings are evaluated with radiometric methods. The use of raytracing programs for this application and the influence of user behaviour are examined. The study contains two rooms as well as different weather conditions and geographic positions. Measurements, simulations, and calculations are then carried out to investigate stationary electric light and dynamic solar radiation. A minimum radiation level of about 1-50 Wm{sup -2} is

  19. USING OF NET PRESENT VALUE (NPV) TO TEST THE INTEGRATED MODEL IN BUILDING MANAGEMENT INFORMATION SYSTEMS

    OpenAIRE

    Omar, Mohammad; Abdullah, Khairul

    2017-01-01

    The integrated model is a new model that is recently developed in order to build the management information systems (MIS's) by using the classical approach system development methodology. The integrated model aims to address the drawbacks of the classical approach in consumption additional time and cost while building the MIS's. The integrated model was subjected to two tests by using the mathematical probability theories in order to ensure the validity of the integrated model in it...

  20. Photovoltaics merging with the active integrated grid:Grid integration white paper of the EU PV technology platform, working group on grid integration.

    OpenAIRE

    Alet, Pierre-Jean; Baccaro, Federica; De Felice, Matteo; Efthymiou, Venizelos; Mayr, Christoph; Graditi, Giorgio; JUEL, Mari; Moser, David; Petitta, Marcello; Tselepis, Stathis; Yang, Guangya

    2017-01-01

    How much is too much? Asking this question with respects to photovoltaics would have seemed absurd just a few years ago. Yet from Japan [1] to Europe to the Americas, loud voices are claiming that Photovoltaics (PV) is reaching excessive levels on the grids or, at least, growing at excessive rates. Economic as well as technical issues are put forward. Indeed, PV power generation has moved in just a decade from a curiosity to a significant part of power systems around the world. Global investm...

  1. Mounting support for a photovoltaic module

    Science.gov (United States)

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  2. Building America Systems Integration Research Annual Report. FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  3. Building America Systems Integration Research Annual Report: FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  4. Roof-integrated amorphous silicon photovoltaic installation at the Institute for Micro-Technology; Installation photovoltaique IMT Neuchatel silicium amorphe integre dans toiture

    Energy Technology Data Exchange (ETDEWEB)

    Tscharner, R.; Shah, A.V.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the 6.44 kW grid-connected photovoltaic (PV) power plant that has been in operation since 1996 at the Institute for Micro-Technology in Neuchatel, Switzerland. The PV plant, which features large-area, fully integrated modules using amorphous silicon cells was the first of its kind in Switzerland. Experience gained with the installation, which has been fully operational since its construction, as well as the power produced and efficiencies measured are presented and commented. The role of the installation as the forerunner of new, so-called 'micro-morph' thin-film solar cell technology developed at the institute is stressed. Technical details of the plant and its performance are given.

  5. Intelligence, integration & industrialisation for the building services technologies of the future

    DEFF Research Database (Denmark)

    Marsh, Rob

    2007-01-01

    The hypothesis of this paper is that the construction sector's industrial transformation needs to focus on integrating building services technologies in the buildings of the future. This can be achieved by analysing developments in intelligent building services, exploring design strategies for ef...... industrial processes....

  6. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  7. Characterization of a Bifacial Photovoltaic Panel Integrated with External Diffuse and Semimirror Type Reflectors

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Silicon wafer accounts for almost one-half the cost of a photovoltaic (PV panel. A bifacial silicon solar cell is attractive due to its potential of enhancing power generation from the same silicon wafer in comparison with a conventional monofacial solar cell. The bifacial PV cell is able to capture solar radiation by back surface. This ability requires a suitable reflector appropriately oriented and separated from the cell’s rear surface. In order to optimize the bifacial solar cell performance with respect to an external back surface reflector, diffuse and semimirror reflectors were investigated at various angles and separations from the back surface. A simple bifacial solar panel, consisting of four monocrystalline Si solar cells, was designed and built. Reflection from the rear surface was provided by an extended semimirror and a white-painted diffuse reflector. Maximum power generation was observed at 30° with respect to ground for the semimirror reflector and 10° for diffuse reflector at an optimized reflector-panel separation of 115 mm. Output power enhancement of 20% and 15% from semimirror and diffuse reflectors, respectively, were observed. This loss from diffuse reflector is attributed to scattering of light beyond the rear surface capture cross-section of the bifacial solar panel.

  8. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  9. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  10. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  11. Energy performance of a 1.2 MWp photovoltaic system distributed over nine buildings at Utrecht University campus

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; de Waal, A.C.; Uithol, Jasper; Dols, Niekol; Houben, Frederique; Kuepers, Richarrd; Sterrenburg, Michiel; van Lith, Benno; Benjamin, Ferry

    2017-01-01

    A distributed PV system comprising of eight subsystems on separate buildings totaling an installed capacity of 1.2 MWp has been realized at buildings of the Utrecht University campus Utrecht Science Park. A detailed design process was followed taking into account the presence of surrounding

  12. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    Science.gov (United States)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  13. Air Quality Improvements of Increased Integration of Renewables: Solar Photovoltaics Penetration Scenarios

    Science.gov (United States)

    Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.

    2011-12-01

    Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV

  14. PV-to-EV schemes for photovoltaics integration and power balance

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, J.; Niemi, R.; Lund, P.D. [Aalto Univ. School of Science, Espoo-Otaniemi (Finland). New Energy Technologies Group

    2012-07-01

    In this paper the combined energy system effects from combined integrated schemes of renewable electricity (PV) and electrified vehicles (EV) are investigated. The analyses include optimized control of EVs, effects of large EV fleets on electricity price, and PV-EV integration. Key results show that optimal control strategy of EV may yield a 7 % improvement to the electric mileage. With these strategies, the market price of electricity market would be marginally affected by large EV schemes. Optimized EV-schemes would also enable PV integration into the electric system with minimal grid impact. (orig.)

  15. Integrated Strip Foundation Systems for Small Residential Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2010-01-01

    Building Regulations. The base of the two individual buildings was cast in one working operation and completed within two working days. Produced and shaped as one coherent element of expanded polystyrene, the element was designed to be handled on site by one man. Non-freezing ground was established...

  16. Person and consumption profiles. Building integrated energy supply; Person- og forbrugsprofiler. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The present report describes how person and consumption profiles used in this project are developed, and which data that form the basis for these profiles. The increasing requirements for energy in the building sector mean that the primary energy consumption ends close to or below zero within the next years. Therefore, the consumption in buildings becomes a relatively larger and larger part of the total energy demand in dwellings. It is important to investigate whether there are seasonal distributions of power and water consumption, because it might give a more exact result and describe the reality better than by using yearly values. First, the personal load determined, and then humidity and consumption of both power and hot water is defined. Second, the hourly profiles are developed based on analyses of seasonal distributions. These profiles also include cold domestic water to see whether there is a correlation between this and hot domestic water. (ln)

  17. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  18. A web-based three-tier control and monitoring application for integrated facility management of photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Apostolos Meliones

    2014-01-01

    Full Text Available The architecture of a control system can be designed vertically with the distinction between functional levels. We adopt this layered approach for the design and implementation of a network-based control and monitoring application. In this paper we present the design and implementation of a network-based management application for controlling and monitoring the input and output data of remote equipment aiming at performance macro-observation, alarm detection, handling operation failures, installation security, access control, collection and recording of statistical data and provisioning of reports. The main services provided to the user and operating over the public internet and/or mobile network include control, monitoring, notification, reporting and data export. Our proposed system consists of a front-end for field (site-level control and monitoring as well as a service back-end which undertakes to collect, store and manage data from all remote installations. Hierarchical data acquisition methodology and performance macro-observation are according to the IEC 61724 standard. We have successfully used our control and monitoring application for integrated facility management of photovoltaic plant installations; nevertheless it can be easily migrated to other renewable energy generation installations and remote automation applications in general.

  19. Assessment of Building Integrated Energy Supply and Energy Saving Schemes on a National Level in Denmark

    DEFF Research Database (Denmark)

    Münster, Marie; Morthorst, Poul Erik; Birkl, Christoph

    Until now buildings are most seen as creating a demand for energy. However, if we want to develop an energy system being independent of fossil fuels in the future, this will require new higher standards for energy efficiency and a radical introduction of new and renewable energy technologies, all...... together implying that buildings in the future might act as prosumers that is both demanding and producing energy. In this report we look at the overall consequences for the energy system of introducing new technologies as photovoltaics and heat pumps in combination with strong energy conservation measures....... A number of energy system scenarios are prepared based on technical simulations for single-family houses carried out by the University of Aalborg....

  20. Environmental benefits of parking-integrated photovoltaics: A 222kWp experience

    DEFF Research Database (Denmark)

    Serrano-Luján, Lucía; García-Valverde, Rafael; Espinosa, Nieves

    2015-01-01

    in the system, the energy payback time, and the energy return factor of the facility have been obtained and are 6.31TJ equivalent primary energy, 2.06 and 12.16years, respectively. The average performance ratio is 0.8 with a slight monthly variation. Additionally, the environmental benefits of the architectural...... integration (in this case parking integration) have been quantified using a standard methodology for the calculation of several environmental parameters. Finally, the environmental benefits of renewable energy generation because of the savings of producing the same amount of electricity by the Spanish grid...

  1. Integrated solar thermal facade component for building energy retrofit

    OpenAIRE

    Giovanardi, Alessia

    2012-01-01

    In the perspective of the "Net Zero Energy Buildings" as specified in the EPBP 2010/31/EU, herein a modular unglazed solar thermal facade component for facilitating the installation of active solar thermal facades has been conceived and designed to answer three considerations: (1) easily installable elements, offering high modularity to be sized for the specific needs of the buildings considered, (2) low-price unglazed technology, given by the industrial process already developed for the frid...

  2. Integrated Building Energy Design of a Danish Office Building Based on Monte Carlo Simulation Method

    DEFF Research Database (Denmark)

    Sørensen, Mathias Juul; Myhre, Sindre Hammer; Hansen, Kasper Kingo

    2017-01-01

    and improve the collaboration efficiency. Monte Carlo Simulation method is adopted to simulate both the energy performance and indoor climate of the building. Building physics parameters, including characteristics of facades, walls, windows, etc., are taken into consideration, and thousands of combinations......The focus on reducing buildings energy consumption is gradually increasing, and the optimization of a building’s performance and maximizing its potential leads to great challenges between architects and engineers. In this study, we collaborate with a group of architects on a design project of a new...... office building located in Aarhus, Denmark. Building geometry, floor plans and employee schedules were obtained from the architects which is the basis for this study. This study aims to simplify the iterative design process that is based on the traditional trial and error method in the late design phases...

  3. Evaluating Maximum Photovoltaic Integration in District Distribution Systems Considering Optimal Inverter Dispatch and Cloud Shading Conditions

    DEFF Research Database (Denmark)

    Ding, Tao; Kou, Yu; Yang, Yongheng

    2017-01-01

    guaranteeing the entire system operating constraints (e.g., network voltage magnitude) within reasonable ranges in this paper. Meanwhile, optimal inverter dispatch is employed to further improve the PV integration by ensuring the optimal set-points of both active power and reactive power for the PV inverters...

  4. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  5. Theoretical limits for visibly transparent photovoltaics

    Science.gov (United States)

    Lunt, Richard R.

    2012-07-01

    Transparent photovoltaics (PVs) provide a potentially facile route to building-integrated PVs and seamless energy-harvesting within non-window surfaces such as electronic displays, autonomously powered electronic-glazings, and mobile-electronic accessories. Such devices have been enabled by manipulation of excitons in organic and molecular semiconductors that allow for selective ultraviolet and near-infrared solar conversion. Here, the theoretical efficiency limits of transparent photovoltaics are determined as a function of transparency. Power-production from ultraviolet and near-infrared photons alone leads to a theoretical single-junction efficiency of 21% in transparent structures, compared to 33% for opaque-junctions. Reducing thermal losses via transparent multi-junction stacking these limits increase to 37%.

  6. Building a cognitive map by assembling multiple path integration systems.

    Science.gov (United States)

    Wang, Ranxiao Frances

    2016-06-01

    Path integration and cognitive mapping are two of the most important mechanisms for navigation. Path integration is a primitive navigation system which computes a homing vector based on an animal's self-motion estimation, while cognitive map is an advanced spatial representation containing richer spatial information about the environment that is persistent and can be used to guide flexible navigation to multiple locations. Most theories of navigation conceptualize them as two distinctive, independent mechanisms, although the path integration system may provide useful information for the integration of cognitive maps. This paper demonstrates a fundamentally different scenario, where a cognitive map is constructed in three simple steps by assembling multiple path integrators and extending their basic features. The fact that a collection of path integration systems can be turned into a cognitive map suggests the possibility that cognitive maps may have evolved directly from the path integration system.

  7. Costs and Operating Dynamics of Integrating Distributed Energy Resources in Commercial and Industrial Buildings with Electric Vehicle Charging

    Science.gov (United States)

    Flores, Robert Joseph

    Growing concerns over greenhouse gas and pollutant emissions have increased the pressure to shift energy conversion paradigms from current forms to more sustainable methods, such as through the use of distributed energy resources (DER) at industrial and commercial buildings. This dissertation is concerned with the optimal design and dispatch of a DER system installed at an industrial or commercial building. An optimization model that accurately captures typical utility costs and the physical constraints of a combined cooling, heating, and power (CCHP) system is designed to size and operate a DER system at a building. The optimization model is then used with cooperative game theory to evaluate the financial performance of a CCHP investment. The CCHP model is then modified to include energy storage, solar powered generators, alternative fuel sources, carbon emission limits, and building interactions with public and fleet PEVs. Then, a separate plugin electric vehicle (PEV) refueling model is developed to determine the cost to operate a public Level 3 fast charging station. The CCHP design and dispatch results show the size of the building load and consistency of the thermal loads are critical to positive financial performance. While using the CCHP system to produce cooling can provide savings, heat production drives positive financial performance. When designing the DER system to reduce carbon emissions, the use of renewable fuels can allow for a gas turbine system with heat recovery to reduce carbon emissions for a large university by 67%. Further reductions require large photovoltaic installations coupled with energy storage or the ability to export electricity back to the grid if costs are to remain relatively low. When considering Level 3 fast charging equipment, demand charges at low PEV travel levels are sufficiently high to discourage adoption. Integration of the equipment can reduce demand charge costs only if the building maximum demand does not coincide

  8. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  9. Emergence of highly transparent photovoltaics for distributed applications

    Science.gov (United States)

    Traverse, Christopher J.; Pandey, Richa; Barr, Miles C.; Lunt, Richard R.

    2017-11-01

    Solar energy offers a viable solution to our growing energy need. While adoption of conventional photovoltaics on rooftops and in solar farms has grown rapidly in the last decade, there is still plenty of opportunity for expansion. See-through solar technologies with partial light transmission developed over the past 30 years have initiated methods of integration not possible with conventional modules. The large-scale deployment necessary to offset global energy consumption could be further accelerated by developing fully invisible solar cells that selectively absorb ultraviolet and near-infrared light, allowing many of the surfaces of our built environment to be turned into solar harvesting arrays without impacting the function or aesthetics. Here, we review recent advances in photovoltaics with varying degrees of visible light transparency. We discuss the figures of merit necessary to characterize transparent photovoltaics, and outline the requirements to enable their widespread adoption in buildings, windows, electronic device displays, and automobiles.

  10. Urban turbines (Part 2): Integrating wind turbines in high rise buildings[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bries, E. de

    2002-07-01

    For the majority of wind turbine designers as well as architects and civil engineers, the concept of integrating a wind turbine in buildings can be regarded a new phenomenon. Integration of two different technologies requires novel ways of thinking, and competence in dealing with complexities in cost in relation to the shape of a building and its user functions. A recently completed research project in the Netherlands at the Technical University of Delft's department of civil engineering looks at structural building aspects as well as integration of wind turbines in buildings - a so-called Wind Turbine Building (WTB) - as a means to cover a sizable part of the internal energy use. (au)

  11. An empirical study on energy efficiency improvement through photovoltaic systems and a LED lighting control system

    Science.gov (United States)

    Choi, Young Kwan; Lee, Jae Hyeong

    2015-09-01

    In this research, a facility was constructed and its performance was analyzed to improve the energy efficiency of a vertical-type water treatment building. After the design and construction of a fixed tilt Photovoltaic in Building (PVIB) on the rooftop using a crystalline silicon solar cell module and photovoltaic generator integrated with the building by using a Building Integrated Photovoltaic System (BIPV), a thin-film module on the rooftop and outer wall of water treatment building, and the generation efficiency was analyzed. Also, a DC distribution was established for use of a brushless DC (BLDC) pump motor, and the existing lighting-facility-based manual on-off method was turned into a system for energy conservation by controlling light emitting diode (LED) through a wireless motion sensor and dimming control. In addition, a Building Energy Management System (BEMS) for a real-time analysis of the energy efficiency for a vertical0type water treatment building was prepared and tested. The vertical-type water treatment building developed in this study is currently operating the BEMS. The vertical-type water treatment building reported in this paper is expected to reduce energy consumption by about 30% compared to existing water treatment systems.

  12. Conception et réalisation des capteurs hybrides photovoltaïque ...

    African Journals Online (AJOL)

    The present work reports thermal and electrical efficiencies for two solar hybrid photovoltaic-thermal air collectors integrated into the roof of the buildings. In these hybrid collectors, the PV cells are insulated with the enclosed air film or with the empty gap cavity. The unsteady and two-dimensional heat transfer equations are ...

  13. Integrated Building Energy Design of a Danish Office Building Based on Monte Carlo Simulation Method

    DEFF Research Database (Denmark)

    Sørensen, Mathias Juul; Myhre, Sindre Hammer; Hansen, Kasper Kingo

    2017-01-01

    and improve the collaboration efficiency. Monte Carlo Simulation method is adopted to simulate both the energy performance and indoor climate of the building. Building physics parameters, including characteristics of facades, walls, windows, etc., are taken into consideration, and thousands of combinations...... fulfil the requirements and leaves additional design freedom for the architects. This study utilizes global design exploration with Monte Carlo Simulations, in order to form feasible solutions for architects and improves the collaboration efficiency between architects and engineers....... office building located in Aarhus, Denmark. Building geometry, floor plans and employee schedules were obtained from the architects which is the basis for this study. This study aims to simplify the iterative design process that is based on the traditional trial and error method in the late design phases...

  14. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  15. Sustainable building assessment tool: integrating sustainability into current design and building processes

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2008-09-01

    Full Text Available alignment there should be a stronger emphasis on operational issues. Specifically, criteria on the availability of ‘low ecological footprint food’ such as vegetarian meals in buildings as well as criteria that aim to minimize the ecological footprint.... • Building-human interface: An understanding of how the built environment can influence and structure human behavior should inform the design of assessment tools. For instance, easy access to ‘low ecological’ footprint food such as vegetarian meals...

  16. Features of Functioning the Integrated Building Thermal Model

    Directory of Open Access Journals (Sweden)

    Morozov Maxim N.

    2017-01-01

    Full Text Available A model of the building heating system, consisting of energy source, a distributed automatic control system, elements of individual heating unit and heating system is designed. Application Simulink of mathematical package Matlab is selected as a platform for the model. There are the specialized application Simscape libraries in aggregate with a wide range of Matlab mathematical tools allow to apply the “acausal” modeling concept. Implementation the “physical” representation of the object model gave improving the accuracy of the models. Principle of operation and features of the functioning of the thermal model is described. The investigations of building cooling dynamics were carried out.

  17. Cooley building opens in Houston. Demonstrates value of fully integrated marketing communications.

    Science.gov (United States)

    Rees, Tom

    2002-01-01

    The Texas Heart Institute at St. Luke's Episcopal HospiTal in Houston dedicated its new 10-story Denton A. Cooley Building in January. The structure opened with a fanfare, thanks to a well-integrated marketing communications program.

  18. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  19. Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: The case of Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salaymeh, A.; Abdelkader, M.R. [Mechanical Engineering Department, Faculty of Engineering and Technology, University of Jordan, Amman 11942 (Jordan); Al-Hamamre, Z. [Chemical Engineering Department, Faculty of Engineering and Technology, University of Jordan, Amman 11942 (Jordan); Sharaf, F. [Architecture Engineering Department, Faculty of Engineering and Technology, University of Jordan, Amman 11942 (Jordan)

    2010-08-15

    This paper studies the feasibility of utilizing photovoltaic systems in a standard residential apartment in Amman city in Jordan. Data on solar radiation, sunshine duration and the ambient temperature has been recorded in Amman city. An apartment in Amman was chosen as a case study to conduct energy and economic calculations. The electrical power needs and cost were calculated for the apartment. The component design and cost of PV system required to supply required energy was calculated and the payback period for the suggested stand-alone PV system in this paper was estimated in a constant inflation rate in electricity price similar to that of interest rate. The calculated payback period was high in a stand-alone system, to decrease payback period a grid-connected PV system is suggested. Considering an annual increase of 3% in electricity price, 15% of payback period was decreased in a stand-alone PV system and 21% in a grid-connected PV system. The output results of this study show that installation of PV system in a residential flat in Jordan may not be economically rewarding owing to the high cost of PV system compared to the cost of grid electricity. A feed-in tariff law of solar electricity may help to reduce PV system cost like the case of Germany. Additional conclusions are PV systems may be economically rewarding in Jordan if applied in locations far from electrical grid or in remote large scale PV power installations to overcome economical limitations of PV technology. (author)

  20. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use (International cooperation project - collection of information on IEA photovoltaic power generation program); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development, verification, analysis and information exchange have been performed based on the 'Treaty to Execute the Research and Cooperation Program on Photovoltaic Power Generation System'. The IEA/REWP/PVPS activities in fiscal 1999 include the participation to the two executive committee meetings (Valencia and Sydney), and the subcommittee activities. The subcommittee activities are as follows: Task I: information exchange on and proliferation of the photovoltaic power generation systems, Task II: operation performance and design of the photovoltaic power generation systems, Task III: design and operation of the independent type and the island use power plants, Task VII: Building integrated photovoltaic power generation systems, Task VI, Sub-task 5: investigations and researches on possibility for photovoltaic power generation systems utilizing unutilized lands including deserts, and Task IX: technical cooperation to expand photovoltaic power generation system markets. (NEDO)

  1. Method for integrated design of low energy buildings with high quality indoor environment

    DEFF Research Database (Denmark)

    Petersen, Steffen

    2008-01-01

    Energy performance and indoor environment have due to new increased regulatory demands become decisive design parameters in the building design process. In order to comply with the increased regulatory demands, we present an integrated design method which argues that the design of buildings must ...

  2. Generating consistent buildings: A semantic approach for integrating procedural techniques

    NARCIS (Netherlands)

    Tutenel, T.; Smelik, R.M.; Lopes, R.; Kraker, K.J. de; Bidarra, R.

    2011-01-01

    Computer games often take place in extensive virtual worlds, attractive for roaming and exploring. Unfortunately, current virtual cities can strongly hinder this kind of gameplay, since the buildings they feature typically have replicated interiors, or no interiors at all. Procedural content

  3. MEMS CHIP CO2 SENSOR FOR BUILDING SYSTEMS INTEGRATION

    Energy Technology Data Exchange (ETDEWEB)

    Anton Carl Greenwald

    2005-09-14

    The objective of this research was to develop an affordable, reliable sensor to enable demand controlled ventilation (DCV). A significant portion of total energy consumption in the United States is used for heating or air conditioning (HVAC) buildings. To assure occupant safety and fresh air levels in large buildings, and especially those with sealed windows, HVAC systems are frequently run in excess of true requirements as automated systems cannot now tell the occupancy level of interior spaces. If such a sensor (e.g. thermostat sized device) were available, it would reduce energy use between 10 and 20% in such buildings. A quantitative measure of ''fresh air'' is the concentration of carbon dioxide (CO{sub 2}) present. An inert gas, CO{sub 2} is not easily detected by chemical sensors and is usually measured by infrared spectroscopy. Ion Optics research developed a complete infrared sensor package on a single MEMS chip. It contains the infrared (IR) source, IR detector and IR filter. The device resulting from this DOE sponsored research has sufficient sensitivity, lifetime, and drift rate to meet the specifications of commercial instrument manufacturers who are now testing the device for use in their building systems.

  4. Feasibility Study of a Building-Integrated PV Manager to Power a Last-Mile Electric Vehicle Sharing System

    Directory of Open Access Journals (Sweden)

    Manuel Fuentes

    2017-01-01

    Full Text Available Transportation is one of the largest single sources of air pollution in urban areas. This paper analyzes a model of solar-powered vehicle sharing system using building-integrated photovoltaics (BIPV, resulting in a zero-emission and zero-energy mobility system for last-mile employee transportation. As a case study, an electric bicycle sharing system between a public transportation hub and a work center is modeled mathematically and optimized in order to minimize the number of pickup trips to satisfy the demand, while minimizing the total energy consumption of the system. The whole mobility system is fully powered with BIPV-generated energy. Results show a positive energy balance in e-bike batteries and pickup vehicle batteries in the worst day of the year regarding solar radiation. Even in this worst-case scenario, we achieve reuse rates of 3.8 people per bike, using actual data. The proposed system manages PV energy using only the batteries from the electric vehicles, without requiring supportive energy storage devices. Energy requirements and PV generation have been analyzed in detail to ensure the feasibility of this approach.

  5. Simulation-based support for integrated design of new low-energy office buildings

    DEFF Research Database (Denmark)

    Petersen, Steffen

    design disciplines (structural, fire, architecture etc.) to the integrated building design process. The research therefore revolves around the hypothesis that parametric analyses on the energy performance, indoor environment and total economy of rooms with respect to geometry and characteristics...... control systems, while improving thermal comfort for building occupants. The method furthermore automates the configuration of buildings systems operation. This eliminates time consuming manual configuration of building systems operation when using building simulation for parametric analyses in the design......This thesis reports on four years of research with the aim to contribute to the implementation of low-energy office buildings with high quality of indoor environment and good total economy. Focus has been on the design decisions made in the early stages of the building design process. The objective...

  6. The integrated design of building services by an equipped and eco-efficient module (MOTE2

    Directory of Open Access Journals (Sweden)

    Roberto Giordano

    2016-12-01

    Full Text Available The targets set out by European Directives concerning the energy savings in the construction sector refer both to building envelope and to its services. With regard to building services it is mandatory meeting requirements related to heating, cooling, lighting and ventilation. Building services take up a variable space in the buildings that cannot be considered anymore negligible and they would always be fully integrated into buildings. Equipped and Eco-efficient Technological Module (MOTE2 is a research project aimed at implementing the integration in a unique services cupboard of some building services: heating and cooling; domestic hot water; mechanical ventilation. The project was organized according to four main phases. In phase 1 a set of rules was defined matching requirements related to the energy efficiency to environmental building design standards. During the phase 2 six building models were studied in order to size the corresponding building services according to scenario analysis set down for existing buildings. In phase 3 the project was focused on designing the assembly among services. The cupboard design is like a Tetris® game through the planning of the best combination among services shape. Based on the drawings developed a first mock-up was built up and monitored. Finally, in phase 4 the paper deals with the MOTE2’s expected performances. Outlook and some conclusions point out the future steps of the research activities.

  7. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete. MARCH

  8. Building an Integrative Model for Managing Exploratory Innovation

    DEFF Research Database (Denmark)

    Zarmeen, Parisha; Turri, Vanessa Gina; Sanchez, Ron

    2014-01-01

    ’ (2008) framework for strategically assessing the benefits of segregation versus integration of innovation processes. We develop and apply our model working with managers in two company contexts to assure the ability of our Integrated Model to identify key organizational and strategic variables that need......Purpose: In this paper we develop an integrated model identifying the key factors involved in managing exploratory innovation processes while also maintaining current business models and processes. Methodology/approach: We first characterize the problem of innovation as consisting of “the four...... central problems” organizations face when trying to manage innovation processes (Van de Ven, 1986). We develop an enhanced version of O’Connor’s (2008) Discovery, Incubation and Acceleration (DIA) model by integrating elements of Sanchez’ (2012) theory of architectural isomorphism as well as Markides...

  9. Integration and Implementation Sciences: Building a New Specialization

    Directory of Open Access Journals (Sweden)

    Gabriele Bammer

    2005-12-01

    Full Text Available Developing a new specialization - Integration and Implementation Sciences - may be an effective way to draw together and significantly strengthen the theory and methods necessary to tackle complex societal issues and problems. This paper presents an argument for such a specialization, beginning with a brief review of calls for new research approaches that combine disciplines and interact more closely with policy and practice. It posits that the core elements of Integration and Implementation Sciences already exist, but that the field is currently characterized by fragmentation and marginalization. The paper then outlines three sets of characteristics that will delineate Integration and Implementation Sciences. First is that the specialization will aim to find better ways to deal with the defining elements of many current societal issues and problems: namely complexity, uncertainty, change, and imperfection. Second is that there will be three theoretical and methodological pillars for doing this: 1 systems thinking and complexity science, 2 participatory methods, and 3 knowledge management, exchange, and implementation. Third, operationally, Integration and Implementation Sciences will be grounded in practical application, and generally involve large-scale collaboration. The paper concludes by examining where Integration and Implementation Sciences would sit in universities, and outlines a program for further development of the field. An appendix provides examples of Integration and Implementation Sciences in action.

  10. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  11. Optimum Arrangement of Photovoltaic Systems in Housing at Khartoum: Application of Renewable Energy in Urban Design

    Directory of Open Access Journals (Sweden)

    Zeinab Abdallah M. Elhassan

    2011-01-01

    Full Text Available This paper searches to find out of building integrated photovoltaic system designs in Khartoum. It discussed technical issues and designed an integrated of photovoltaic in domestic using, within an urban approach towards sustainability in energy. Photovoltaic systems can be used to develop the solar energy in almost all kinds of applications. Exploiting of solar energy for domestic use is one avenue where the energy produced from the sun is converted into electricity to power most if not all the appliances available at our homes and residences. Building a photovoltaic system is the process of designing, selecting, and calculating the ratings of the equipments employed in the system. This process depends on a range of factors such as geographical location, solar irradiation, and load requirements. I introduce the procedures utilize, in building and selecting the equipments of a grid-connected photovoltaic system based on the Watt-hour demand of 3.8 kw. As a case study, a residence in Khartoum with low-energy consumption is selected.

  12. Collaborative Knowledge Building and Integral Theory: On Perspectives, Uncertainty, and Mutual Regard

    Directory of Open Access Journals (Sweden)

    Tom Murray

    2006-06-01

    Full Text Available Uncertainty in knowing and communicating affect all aspects of modern life. Ubiquitous and inevitable uncertainty, including ambiguity and paradox, is particularly salient and important in knowledge building communities. Because knowledge building communities represent and evolve knowledge explicitly, the causes, effects, and approaches to this “epistemological indeterminacy” can be directly addressed in knowledge building practices. Integral theory’s approach (including “methodological pluralism” involves accepting and integrating diverse perspectives in ways that transcend and include them. This approach accentuates the problems of epistemological indeterminacy and highlights the general need to deal creatively with it. This article begins with a cursory analysis of textual dialogs among integral theorists, showing that, while integral theory itself points to leading-edge ways of dealing with epistemological indeterminacy, the knowledge building practices of integral theorists, by and large, exhibit the same limitations as traditional intellectual discourses. Yet, due to its values and core methods, the integral theory community is in a unique position to develop novel and more adequate modes of inquiry and dialog. This text explores how epistemological indeterminacy impacts the activities and products of groups engaged in collaborative knowledge building. Approaching the issue from three perspectives–mutual understanding, mutual agreement, and mutual regard—I show the interdependence of those perspectives and ground them in relation to integral theory’s concerns. This article proposes three phases of developing constructive alternatives drawn from the knowledge building field: awareness of the phenomena, understanding the phenomena, and offering some tools (and some hope for dealing with it. Though here I focus on the integral theory community (or communities, the conclusions of the article are meant to be applicable to any

  13. Collaborative Knowledge Building and Integral Theory:On Perspectives,Uncertainty, and Mutual Regard

    Directory of Open Access Journals (Sweden)

    Tom Murray

    2006-06-01

    Full Text Available Uncertainty in knowing and communicating affect all aspects of modern life. Ubiquitous and inevitable uncertainty, including ambiguity and paradox, is particularly salient and important in knowledge building communities. Because knowledge building communities represent and evolve knowledge explicitly, the causes, effects, and approaches to this “epistemological indeterminacy” can be directly addressed in knowledge building practices. Integral theory's approach (including “methodological pluralism” involves accepting and integrating diverse perspectives in ways that transcend and include them. This approach accentuates the problems of epistemological indeterminacy and highlights the general need to deal creatively with it. This article begins with a cursory analysis of textual dialogs among integral theorists, showing that, while integral theory itself points to leading-edge ways of dealing with epistemological indeterminacy, the knowledge building practices of integral theorists, by and large, exhibit the same limitations as traditional intellectual discourses. Yet, due to its values and core methods, the integral theory community is in a unique position to develop novel and more adequate modes of inquiry and dialog. This text explores how epistemological indeterminacy impacts the activities and products of groups engaged in collaborative knowledge building. Approaching the issue from three perspectives—mutual understanding, mutual agreement, and mutual regard—I show the interdependence of those perspectives and ground them in relation to integral theory’s concerns. This article proposes three phases of developing constructive alternatives drawn from the knowledge building field: awareness of the phenomena, understanding the phenomena, and offering some tools (and some hope for dealing with it. Though here I focus on the integral theory community (or communities, the conclusions of the article are meant to be applicable to any

  14. The technical and economic feasibility of establishing a building system integration laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B.; Drost, M.K.; Johnson, B.M.

    1989-09-01

    On December 22, 1987, the US Congress provided funding to the US Department of Energy (DOE) to study the feasibility and conceptual design of a whole building system integration laboratory'' (Title II of Pub. L. 100--202). A whole-building system integration laboratory would be a full-scale experimental facility in which the energy performance interactions of two or more building components, e.g., walls, windows, lighting, could be tested under actual operating conditions. At DOE's request, the Pacific Northwest Laboratory (PNL) conducted the study with the assistance of a technical review and representing other federal agencies and the academic and private sectors, including professional societies, building component manufacturers, and building research organizations. The results of the feasibility study are presented in this report.

  15. Harnessing the hybrid power supply systems of utility grid and photovoltaic panels at retrofit residential single family building in Medan

    Science.gov (United States)

    Pangaribuan, A. B.; Rahmat, R. F.; Lidya, M. S.; Zálešák, M.

    2017-01-01

    The paper describes improvisation mode of energy supply source by collaboration between national utility grid as represented by fossil fuels and PV as independent renewable power resource in order to aim the energy consumptions efficiently in retrofit single family house. In this case, one existing single family house model in Medan, Indonesia was observed for the possibility of future refurbishment. The eco-design version of the house model and prediction analyses regarding nearby potential renewable energy resource (solar system) had been made using Autodesk Revit MEP 2015, Climate Consultant 6.0 and Green Building Studio Analysis. Economical evaluation of using hybrid power supply is discussed as well.

  16. INTEGRATING SMARTPHONE IMAGES AND AIRBORNE LIDAR DATA FOR COMPLETE URBAN BUILDING MODELLING

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-06-01

    Full Text Available A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.

  17. Integrated Solution in an Office Room with Diffuse Ceiling Ventilation and Thermally Activated Building Constructions

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew

    2015-01-01

    An integrated system is proposed in this study to combine diffuse ceiling ventilation with a thermally activated building construction (TABS), aiming to provide cooling/ heating and ventilation to an office room all year around. The performance of the integrated system is evaluated by full...

  18. Safety design integrated in the Building Delivery System

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    It is important to see safety and health in construction as an integrated part of the way in which designers, architects, constructors, engineers and others carry out their consulting services. The purpose of this article is to demonstrate how safety and health can be integrated in the design...... of safety in each process. The group of participants who created the description had a high experience in a combination of research, safety and health in general and especial in construction and knowledge of the lean construction processes both from the clients perspective as well as from the designers...

  19. The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  20. Building Teachers' Research Literacy: Integrating Practice and Research

    Science.gov (United States)

    Evans, Carol; Waring, Michael; Christodoulou, Andri

    2017-01-01

    Supporting early career teacher (ECT) research literacy is essential in promoting research-integrated professional practice, however it remains an area in much need of development. This article discusses the importance and process of developing ECTs' research literacy, through establishing strong collaborative links between universities and…

  1. Building Safer Communities: The Integrated Community Safety Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fawcett, Ricky Lee; Kerr, Thomas A; Jordan, Steven Albert

    2001-03-01

    This paper discusses an integrated community safety approach to creating safer communities. It defines community broadly to include two categories of community members: “industry” and “neighbors.” Potential community members within the “industry” category include facilities, government/regulators, customers, stockholders, and suppliers. Within the “neighbors” category are towns, cities, counties, states; people/commodity flow systems; news media and special interest groups; environment; and families of employees. Each of these potential community members and its characteristics are discussed. The integrated community safety approach consists of three major activities: (1) define the boundaries of the community; (2) facilitate the sense of community; and (3) address the needs of the community. Defining the boundaries of the community includes determining the geographical and social boundaries; this is accomplished through conducting a hazard analysis and community involvement to identify all of the community members. Facilitating the sense of community includes conducting a capability/needs assessment and continuing community involvement to identify the issues and concerns of community members. Addressing the needs of the community involves master planning to consider safety issues in all community development actions and continuing community education and involvement. The integrated community safety approach is a workable approach for existing industries and their neighbors as well as new projects that industries and their neighbors might be considering. By using this socio-technical approach to integrating industry and all of its neighbors into a safer community, the integrated community safety approach will better assure the viability and safety of industry and its neighbors while maintaining or improving the overall quality of life.

  2. A roof-integrated 12.75 kWp photovoltaic system in the heritage-protected village centre of Wettingen, Switzerland; 12.75 kWp Photovoltaik-Anlage Dachintegration Dorfkernzone Wettingen

    Energy Technology Data Exchange (ETDEWEB)

    Koeppel, H.-D.; Koeppel, G. [Eigentuemergemeinschaft P.P. Stoeckli und H.-D. Koeppel Stoeckli, Kienast and Koeppel, Landschaftsarchitekten AG, Wettingen (Switzerland)

    2005-07-01

    This report describes the first two years of operation of the 12.75 kWp photovoltaic installation on the office building of SKK Landschaftsarchitekten AG in Wettingen, Switzerland (www.skk.ch). The unexpectedly high amount of 11'788 kWh produced in the first year of operation was even topped by the second year with an annual production of 13'247 kWh. Both the selection of high efficiency electrical components as well as the professional installation helped - together with the favourable location - achieving an annual production rate of up to 1039 kWh/kWp. The predicted annual production of approx. 10'500 kWh was outbalanced by 2000 kWh on average. The office building is located in the old part of the village Wettingen. Buildings in this area are subjected to special regulations in order to protect and preserve the harmonic village scenery and to retain the superordinate architectonic ensemble. One of the main aspects of these conservation efforts is the impression of the roof-landscape. In the opinion of the owners, who were looking for an exemplary urbanistic solution, the preservation of this roof-landscape was only possible by replacing the existing roof by a roof-integrated PV-installation. The project was realised in close cooperation with the administration and the consulting architect. The choice of material and the layout have been decided together. The building permit was issued without any public or private objections. Many positive reactions from neighbours and passers-by could be registered. Most often it was pointed out that it was advantageous that the whole roof was replaced with panels and not just a portion of it. The new look of the roof, albeit yet unfamiliar, was recognized as consistent and good looking. (author)

  3. ATLAS barrel toroid integration and test area in building 180

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  4. Solar shading how to integrate solar shading in sustainable buildings

    CERN Document Server

    Dolmans, Dick; Dutoo, Gonzague; Hall, Anders; Seppänen, Olli

    2010-01-01

    Solar Shading Guidebook gives a solid background on the physics of solar radiation and its behaviour in window with solar shading systems. Major focus of the Guidebook is on the effect of solar shading in the use of energy for cooling, heating and lighting. The book gives also practical guidance for selection, installation and operation of solar shading as well as future trends in integration of HVAC-systems with solar control.

  5. Energy performance of a concentrated photovoltaic energy system with static linear Fresnel lenses integrated in a greenhouse

    NARCIS (Netherlands)

    Piet Sonneveld; J. Campen; G.P.A Bot; H.J.J. Janssen; B.A.J. van Tuijl; Gert-Jan Swinkels

    2011-01-01

    A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all

  6. Photovoltaic device

    DEFF Research Database (Denmark)

    2011-01-01

    A photovoltaic cell module including a plurality of serially connected photovoltaic cells on a common substrate, each including a first electrode, a printed light-harvesting layer and a printed second electrode, wherein at least one of the electrodes is transparent, and wherein the second electrode...... of a first cell is printed such that it forms an electrical contact with the first electrode of an adjacent second cell without forming an electrical contact with the first electrode of the first cell or the light-harvesting layer of the second cell, and a method of making such photovoltaic cell modules....

  7. Frequencies Studies Applied to Photovoltaic Modules

    OpenAIRE

    Miquel, Clément

    2011-01-01

    This master thesis proposes to study applications of frequencies studies to the case of photovoltaic modules and photovoltaic plants. Such studies are little used in the photovoltaic field, so this project was aimed to determining if such studies could provide satisfactory results or not. The theoretical and experimental works presented here were performed within group E16, department ENERBAT (Energy in buildings and areas) at EDF Research & Development between July and December 2010. The...

  8. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - Research and development of solar beam power generation and utilization systems and ancillary technologies (Research and development of building material integrated modules - investigations and research on analysis of practical use); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (kenzai ittaigata module no kenkyu kaihatsu (jitsuyoka kaiseki ni kansuru chosa kenkyu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Evaluations on performance for power generation and as building materials indispensably require collection and analysis of demonstration data. Demonstration test data were collected and analyzed on the following five systems: the roof panel system, the heat insulating panel system, the glass curtain wall system, the metallic curtain system, and building material responsive flexible module system. Specifically in the evaluation on the long-term reliability, unification was made on indications and criteria for annual power generation characteristics, and characteristics of insolation versus array output, insolation versus array efficiency, and insolation versus temperature rise. Monthly estimation accuracy evaluation was performed collectively on the summary of the power generation estimating method and the estimation results. (NEDO)

  9. Building relationships and facilitating immigrant community integration: An evaluation of a Cultural Navigator Program.

    Science.gov (United States)

    Thomas, Rebecca L; Chiarelli-Helminiak, Christina M; Ferraj, Brunilda; Barrette, Kyle

    2016-04-01

    Despite the long history of immigration in the United States, communities around the country struggle to integrate newcomers into the economic, cultural, and political spheres of society. Utilizing results from the program evaluation of one public library's Cultural Navigator Program, the authors illustrate how communities and public institutions can promote integration and relationship-building between newly arrived immigrants and long-time residents. Existing social networks within receiving communities, conceptualized in this article as social capital, were leveraged to build capacity among newly arrived immigrants and foster inclusivity and integration at the community level. As a place of intervention, public libraries are suggested as a safe and shared space where community integration can be fostered. Insights derived from the evaluation inform a discussion on engaging approaches to immigrant integration. Lessons learned and recommendations for program evaluators and administrators are provided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Photovoltaic Cells

    National Research Council Canada - National Science Library

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots...

  11. The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT)

    OpenAIRE

    Hassam Nasarullah Chaudhry; John Kaiser Calautit; Ben Richard Hughes

    2014-01-01

    A numerical investigation was carried out to determine the impact of structural morphology on the power generation capacity of building-integrated wind turbines. The performance of the turbines was analysed using the specifications of the Bahrain Trade Centre which was taken as the benchmark model, the results of which were compared against triangular, square and circular cross-sections of the same building. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations along with the...

  12. INTEGRATED ASSESSMENT OF BUILDINGS QUALITY IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT PRINCIPLES

    Directory of Open Access Journals (Sweden)

    Mária Kozlovská

    2014-12-01

    Full Text Available Purpose: The aim of the paper is to analyse the assumptions for integrated assessment of buildings quality in the context of sustainable development principles. The sustainable (or “green” buildings are cost effective, environmentally friendly and conserving natural resources. The buildings are comfortable for the users, are also healthy and optimally integrated into socio-cultural environment; thereby have long maintained their high added value – for investors, owners as well as users.Design methodology/approach: The methodology of the paper consists in analyses of certification systems that assess buildings sustainability within wider environmental, economic and social relations. An effort to increase the quality of construction and to provide objectified assessment with measurable and comparable results has evoked the origin and development of the tools for buildings sustainability assessment. In the case study, there are analysed the approaches into assessment of one from few certified sustainable projects in Slovakia “EcoPoint Office Center Kosice”. The results are destined for potential investors perhaps even for present owners that have ambitions and responsibility for building sustainability principles performance when designing and using their properties.Findings: The results of the research imply identification of the key characteristics expressing the comprehensive quality of the building and are leading to specification of practical and social implications that are provided by the sustainability philosophy.Originality/value: The force of the paper is to mention the approaches into integrated assessment of construction quality in the context of sustainability principles and the importance of their more extensive implementation in Slovakia. The approaches into the sustainability principles performance as well as the real benefits of the sustainable building are declared through case study of the building EcoPoint Office

  13. Integrating Virtual Reality and BIM for End-user Involvement in Building Design

    DEFF Research Database (Denmark)

    Petrova, Ekaterina Aleksandrova; Rasmussen, Mai; Jensen, Rasmus Lund

    2017-01-01

    . However, traditional practices place the responsibility of decision-making mostly in the architects’ hands. Virtual Reality technologies coupled with Building Information Modelling have the potential to improve the collaboration and data visualization in the building design. This paper presents...... the findings from a case study on the integration of Building Information Modelling and Virtual Reality for user-centred participatory interior furnishing of a new university building. Besides a significant reduction in the time for generation of alternative proposals, the end results show an increased......The outcome of projects within Architecture, Engineering, and Construction is highly dependent on the quality of the collaboration between the involved actors. The end-users occupy the buildings on a daily basis, and therefore their involvement in the design process is essential to the output...

  14. Promoting more integrative strategies for leadership theory-building.

    Science.gov (United States)

    Avolio, Bruce J

    2007-01-01

    The agenda for theory and research in the field of leadership studies has evolved over the last 100 years from focuses on the internal dispositions associated with effective leaders to broader inquiries that include emphases on the cognitions, attributes, behaviors, and contexts in which leaders and followers are dynamically embedded and interact over time. Leadership theory and research has reached a point in its development at which it needs to move to the next level of integration--considering the dynamic interplay between leaders and followers, taking into account the prior, current, and emerging context--for continued progress to be made in advancing both the science and practice of leadership. ((c) 2007 APA, all rights reserved)

  15. Integrated building energy systems design considering storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Lai, Judy; Aki, Hirohisa (Lawrence Berkeley National Laboratory (United States)). e-mail: MStadler@lbl.gov; Siddiqui, Afzal (Dept. of Statistical Science at Univ. College London (United Kingdom))

    2009-07-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g. PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO{sub 2} emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO{sub 2} emissions. The problem is solved for a given test year at representative customer sites, e.g. nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Dept. of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO{sub 2} minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  16. Integrated Building Energy Systems Design Considering Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  17. Information on Resources Available on the Land Lot for Integrated Building Design

    Directory of Open Access Journals (Sweden)

    Vytautas Martinaitis

    2013-10-01

    Full Text Available The most progress in the area of the sustainable building policy and its implementation has been achieved in certain regions by the Building Certification System regulations such as Passivhaus (Germany and LEED (U.S. These solutions are similar to the more widely discussed and already applied concepts: the Integrated Whole Building Design (IWBD and Building Information Modeling (BIM. Although it may sound trivial, it is vital to acknowledge and understand that a building is an integral component of the land lot. In the stage of development of a building concept, it usually lacks a versatile and professional assessment of available resources, especially those of renewable energy. It is suggested at the beginning of the IWBD concept to conduct such assessment on the resources available and more specifically focusing on renewable energy. The assessment should also meet the expectations of the building’s owner to use effectively the potential of all possible solutions. Thus a certificate is drawn up, defining all the resources available for the particular lot. The structure of the certificate data is orientated towards the possibility of designing modern renewable energy technologies, according to their performance under changing weather conditions during the year. Such assessment certificates contribute to shaping the concept of the building and allow achieving the highest level of its sustainability.Article in Lithuanian

  18. Engineering Integration: Building a Quick and Effective Faculty Seminar

    Directory of Open Access Journals (Sweden)

    Kate Peterson

    2012-12-01

    Full Text Available In the spring of 2010, the Science & Engineering Library of the University of Minnesota-Twin Cities partnered with the Information Literacy Librarian and offered a faculty seminar to the College of Science and Engineering. The seminar’s goals included 1. refreshing and expanding faculty’s knowledge of information and 21st century literacies and 2. creating a community of faculty committed to developing student skills in finding, evaluating and synthesizing information in their academic coursework and into their professional careers. Overall, the seminar increased faculty understanding of services and expertise of the libraries, and 21st century literacies. It also developed and strengthened ties between individual faculty members and their subject librarians, leading to a mix of outcomes from a faculty member partnering on a grant the Libraries applied for to course integrated instruction sessions to faculty participating in an e-textbook pilot. This seminar provides a strong model for re-framing information literacy in the context of teaching and learning in science and engineering, giving librarians an opportunity to strengthen relationships and increase liaison effectiveness.

  19. Integration of Image Data for Refining Building Boundaries Derived from Point Clouds

    Science.gov (United States)

    Perera, S. N.; Hetti Arachchige, N.; Schneider, D.

    2014-08-01

    Geometrically and topologically correct 3D building models are required to satisfy with new demands such as 3D cadastre, map updating, and decision making. More attention on building reconstruction has been paid using Airborne Laser Scanning (ALS) point cloud data. The planimetric accuracy of roof outlines, including step-edges is questionable in building models derived from only point clouds. This paper presents a new approach for the detection of accurate building boundaries by merging point clouds acquired by ALS and aerial photographs. It comprises two major parts: reconstruction of initial roof models from point clouds only, and refinement of their boundaries. A shortest closed circle (graph) analysis method is employed to generate building models in the first step. Having the advantages of high reliability, this method provides reconstruction without prior knowledge of primitive building types even when complex height jumps and various types of building roof are available. The accurate position of boundaries of the initial models is determined by the integration of the edges extracted from aerial photographs. In this process, scene constraints defined based on the initial roof models are introduced as the initial roof models are representing explicit unambiguous geometries about the scene. Experiments were conducted using the ISPRS benchmark test data. Based on test results, we show that the proposed approach can reconstruct 3D building models with higher geometrical (planimetry and vertical) and topological accuracy.

  20. A District Approach to Building Renovation for the Integral Energy Redevelopment of Existing Residential Areas

    Directory of Open Access Journals (Sweden)

    Mira Conci

    2017-05-01

    Full Text Available Building energy renovation quotas are not currently being met due to unfavorable conditions such as complex building regulations, limited investment incentives, historical preservation priorities, and technical limitations. The traditional strategy has been to incrementally lower the energy consumption of the building stock, instead of raising the efficiency of the energy supply through a broader use of renewable sources. This strategy requires an integral redefinition of the approach to energy building renovations. The joint project SWIVT elaborates on a district redevelopment strategy that combines a reduction in the energy demand of existing buildings and their physical interconnection within a local micro-grid and heating network. The district is equipped with energy generation and distribution technologies as well as hybrid thermal and electrical energy storage systems, steered by an optimizing energy management controller. This strategy is explored through three scenarios designed for an existing residential area in Darmstadt, Germany, and benchmarked against measured data. Presented findings show that a total primary energy balance at least 30% lower than that of a standard building renovation can be achieved by a cluster of buildings with different thermal qualities and connected energy generation, conversion, and storage systems, with only minimal physical intervention to existing buildings.

  1. A Multi-Agent Based Energy Management Solution for Integrated Buildings and Microgrid System

    OpenAIRE

    Anvari-Moghaddam, Amjad; Rahimi-Kian, Ashkan; Mirian, Maryam S.; Josep M. Guerrero

    2017-01-01

    In this paper, an ontology-driven multi-agent based energy management system (EMS) is proposed for monitoring and optimal control of an integrated homes/buildings and microgrid system with various renewable energy resources (RESs) and controllable loads. Different agents ranging from simple-reflex to complex learning agents are designed and implemented to cooperate with each other to reach an optimal operating strategy for the mentioned integrated energy system (IES) while meeting the system’...

  2. Integrated approaches for implementing building information modelling (BIM) in engineering education

    OpenAIRE

    Hjelseth, Eilif

    2015-01-01

    The construction industry faces high demand for candidates with relevant Building Information Modelling (BIM) competency, yet higher education continues to struggle in providing such competencies. This conceptual paper explores the use of an integrated approach to implement BIM into the curriculum for undergraduates and graduates in engineering. The curriculum under study employed the Technological Pedagogical Content Knowledge (TPACK) pedagogical framework for integrating three BIM related s...

  3. Research capacity building integrated into PHIT projects: leveraging research and research funding to build national capacity.

    Science.gov (United States)

    Hedt-Gauthier, Bethany L; Chilengi, Roma; Jackson, Elizabeth; Michel, Cathy; Napua, Manuel; Odhiambo, Jackline; Bawah, Ayaga

    2017-12-21

    Inadequate research capacity impedes the development of evidence-based health programming in sub-Saharan Africa. However, funding for research capacity building (RCB) is often insufficient and restricted, limiting institutions' ability to address current RCB needs. The Doris Duke Charitable Foundation's African Health Initiative (AHI) funded Population Health Implementation and Training (PHIT) partnership projects in five African countries (Ghana, Mozambique, Rwanda, Tanzania and Zambia) to implement health systems strengthening initiatives inclusive of RCB. Using Cooke's framework for RCB, RCB activity leaders from each country reported on RCB priorities, activities, program metrics, ongoing challenges and solutions. These were synthesized by the authorship team, identifying common challenges and lessons learned. For most countries, each of the RCB domains from Cooke's framework was a high priority. In about half of the countries, domain specific activities happened prior to PHIT. During PHIT, specific RCB activities varied across countries. However, all five countries used AHI funding to improve research administrative support and infrastructure, implement research trainings and support mentorship activities and research dissemination. While outcomes data were not systematically collected, countries reported holding 54 research trainings, forming 56 mentor-mentee relationships, training 201 individuals and awarding 22 PhD and Masters-level scholarships. Over the 5 years, 116 manuscripts were developed. Of the 59 manuscripts published in peer-reviewed journals, 29 had national first authors and 18 had national senior authors. Trainees participated in 99 conferences and projects held 37 forums with policy makers to facilitate research translation into policy. All five PHIT projects strongly reported an increase in RCB activities and commended the Doris Duke Charitable Foundation for prioritizing RCB, funding RCB at adequate levels and time frames and for allowing

  4. Integral Morphological C-K Design Approach for Multidisciplinary Building Design

    Directory of Open Access Journals (Sweden)

    Wim Zeiler

    2010-05-01

    Full Text Available This paper presents a theoretical approach to collaborative design management. The goal is to integrate design and engineering knowledge in the conceptual phase of building design. Based on an integral design process model, morphological overviews are used as a tool to implement C-K (concept-knowledge theory, to increase knowledge creation and to stimulate knowledge exchange within the building design team. The project was carried out in close cooperation with professional societies within the building design field. The set-ups of the workshops used to implement and to test the theoretical approach are presented as well as the experiences of the participants. More than 100 experienced professionals participated in the workshops and the workshops now have become part of the permanent professional training programme of one of the professional societies. DOI: 10.3763/aedm.2008.0099 Published in the Journal AEDM - Volume 5, Number 4, 2009 , pp. 193-214(22

  5. Building Bridges Across Frames? A Meta-Evaluation of Dutch Integration Policy

    NARCIS (Netherlands)

    P.W.A. Scholten (Peter); F.K.M. van Nispen tot Pannerden (Frans)

    2008-01-01

    textabstractThe integration of immigrants is an intractable policy controversy in Dutch politics: the Blok Committee was established by Parliament to offer a resolution. However, its evaluation study ‘ Building Bridges’, itself became controversial. This paper asks: Why did the policy evaluation of

  6. Trek 21: Building Teachers' Capacity To Develop IT-Integrated Units with Student Engagement.

    Science.gov (United States)

    White, Karissa; Kolar, Barry; Mitchem, Tim; Wells, John

    "Trek 21: Educating Teachers as Agents of Technological Change," is a 3-year PT3 implementation grant from the United States Department of Education designed to build the capacity in teacher educators (teacher education faculty, professional development school faculty, pre-service interns) to integrate technology into their teaching. The goal of…

  7. Solar coolfacades : Framework for the integration of solar cooling technologies in the building envelope

    NARCIS (Netherlands)

    Prieto Hoces, A.I.; Knaack, U.; Auer, Thomas; Klein, T.

    2017-01-01

    Solar cooling systems have gained increased attention these last years, for its potential to lower indoor temperatures using renewable energy. However, architectural integration of these systems in buildings has not been fully explored. Current developments such as small scale solar driven heat

  8. Building Information Modelling: essentials and issues : The need to Integrate BIM and Geoinformation

    NARCIS (Netherlands)

    Zlatanova, S.; Isikdag, Umit

    2016-01-01

    In the construction industry, business relationships are often short-term and one-off. There are many unique processes and activities. The resulting complexity and fragmentation may obstruct quick and effective exchange and integration of information and thus hamper project progress. Building

  9. Integrating Virtual Reality and BIM for End-user Involvement in Building Design

    DEFF Research Database (Denmark)

    Petrova, Ekaterina Aleksandrova; Rasmussen, Mai; Jensen, Rasmus Lund

    2017-01-01

    the findings from a case study on the integration of Building Information Modelling and Virtual Reality for user-centred participatory interior furnishing of a new university building. Besides a significant reduction in the time for generation of alternative proposals, the end results show an increased....... However, traditional practices place the responsibility of decision-making mostly in the architects’ hands. Virtual Reality technologies coupled with Building Information Modelling have the potential to improve the collaboration and data visualization in the building design. This paper presents...... attachment of the employees to their future workplace and a high level of acceptance towards the technology. Finally, the authors present suggestions for further work, which could improve future design processes utilizing the Virtual Reality technology....

  10. Can Carbon Nanomaterials Improve CZTS Photovoltaic Devices? Evaluation of Performance and Impacts Using Integrated Life-Cycle Assessment and Decision Analysis.

    Science.gov (United States)

    Scott, Ryan P; Cullen, Alison C; Fox-Lent, Cate; Linkov, Igor

    2016-10-01

    In emergent photovoltaics, nanoscale materials hold promise for optimizing device characteristics; however, the related impacts remain uncertain, resulting in challenges to decisions on strategic investment in technology innovation. We integrate multi-criteria decision analysis (MCDA) and life-cycle assessment (LCA) results (LCA-MCDA) as a method of incorporating values of a hypothetical federal acquisition manager into the assessment of risks and benefits of emerging photovoltaic materials. Specifically, we compare adoption of copper zinc tin sulfide (CZTS) devices with molybdenum back contacts to alternative devices employing graphite or graphene instead of molybdenum. LCA impact results are interpreted alongside benefits of substitution including cost reductions and performance improvements through application of multi-attribute utility theory. To assess the role of uncertainty we apply Monte Carlo simulation and sensitivity analysis. We find that graphene or graphite back contacts outperform molybdenum under most scenarios and assumptions. The use of decision analysis clarifies potential advantages of adopting graphite as a back contact while emphasizing the importance of mitigating conventional impacts of graphene production processes if graphene is used in emerging CZTS devices. Our research further demonstrates that a combination of LCA and MCDA increases the usability of LCA in assessing product sustainability. In particular, this approach identifies the most influential assumptions and data gaps in the analysis and the areas in which either engineering controls or further data collection may be necessary. © 2016 Society for Risk Analysis.

  11. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  12. Overview of the ITER Tokamak complex building and integration of plant systems toward construction

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, Jean-Jacques, E-mail: jean-jacques.cordier@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Bak, Joo-Shik [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Baudry, Alain [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Benchikhoune, Magali [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Carafa, Leontin; Chiocchio, Stefano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Darbour, Romaric [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Elbez, Joelle; Di Giuseppe, Giovanni; Iwata, Yasuhiro; Jeannoutot, Thomas; Kotamaki, Miikka; Kuehn, Ingo; Lee, Andreas; Levesy, Bruno; Orlandi, Sergio [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Packer, Rachel [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Patisson, Laurent; Reich, Jens; Rigoni, Giuliano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2015-10-15

    The ITER Tokamak complex consists of Tokamak, diagnostic and tritium buildings. The Tokamak machine is located in the bioshield pit of the Tokamak building. Plant systems are implemented in the three buildings and are strongly interfacing with the Tokamak. The reference baseline (3D) configuration is a set of over 1000 models that today defines in an exhaustive way the overall layout of Tokamak and plant systems, needed for fixing the interfaces and to complete the construction design of the buildings. During the last two years, one of the main ITER challenges was to improve the maturity of the plant systems layout in order to confirm their integration in the building final design and freeze the interface definitions in-between the systems and to the buildings. The propagation of safety requirements in the design of the nuclear building like confinement, fire zoning and radiation shielding is of first priority. A major effort was placed by ITER Organization together with the European Domestic Agency (F4E) and the Architect Engineer as a joint team to fix the interfaces and the loading conditions to buildings. The most demanding systems in terms of interface definition are water cooling, cryogenic, detritiation, vacuum, cable trays and building services. All penetrations through the walls for piping, cables and other equipment have been defined, as well as all temporary openings needed for the installation phase. Project change requests (PCR) impacting the Tokamak complex buildings have been implemented in a tight allocated time schedule. The most demanding change was to implement a new design of the Tokamak basic machine supporting system. The 18 supporting columns of the cryostat (2001 baseline) were replaced at the end of 2012 by a concrete crown and radial concrete ribs linked to the basemat and to the bioshield surrounding the Tokamak. The change was implemented successfully in the building construction design to allow basemat construction phase being performed

  13. INTERGRATION OF LiDAR DATA WITH AERIAL IMAGERY FOR ESTIMATING ROOFTOP SOLAR PHOTOVOLTAIC POTENTIALS IN CITY OF CAPE TOWN

    Directory of Open Access Journals (Sweden)

    A. K. Adeleke

    2016-06-01

    Full Text Available Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1 automatic extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its’ outline and areal coverage; and (2 estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient information about the viability of a particular building roof for solar photovoltaic installation.

  14. Applied photovoltaics

    CERN Document Server

    Wenham, Stuart R; Watt, Muriel E; Corkish, Richard; Sproul, Alistair

    2013-01-01

    The new edition of this thoroughly considered textbook provides a reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. Written by a group of award-winning authors it is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, it features a set of detailed technical appendices that provide essential equations, data sources and standards. The new edition has been fully updated with the latest information on photovoltaic cells,

  15. Structural Health Monitoring of Tall Buildings with Numerical Integrator and Convex-Concave Hull Classification

    Directory of Open Access Journals (Sweden)

    Suresh Thenozhi

    2012-01-01

    Full Text Available An important objective of health monitoring systems for tall buildings is to diagnose the state of the building and to evaluate its possible damage. In this paper, we use our prototype to evaluate our data-mining approach for the fault monitoring. The offset cancellation and high-pass filtering techniques are combined effectively to solve common problems in numerical integration of acceleration signals in real-time applications. The integration accuracy is improved compared with other numerical integrators. Then we introduce a novel method for support vector machine (SVM classification, called convex-concave hull. We use the Jarvis march method to decide the concave (nonconvex hull for the inseparable points. Finally the vertices of the convex-concave hull are applied for SVM training.

  16. Photovoltaic systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    Each of the Department of Energy's Photovoltaic Systems Program projects funded and/or in existence during fiscal year 1978 (October 1, 1977 through September 30, 1978) are described. The project sheets list the contractor, principal investigator, and contract number and funding and summarize the programs and status. The program is divided into various elements: program assessment and integration, research and advanced development, technology development, system definition and development, system application experiments, and standards and performance criteria. (WHK)

  17. Integrated design and engineering using Building Information Modelling: A pilot project of small-scale housing development in The Netherlands

    NARCIS (Netherlands)

    Sebastian, R.

    2010-01-01

    During the design phase, decisions aremade that affect, on average, 70% of the life-cycle cost of a building. Therefore, collaborative design relying on multidisciplinary knowledge of the building life cycle is essential. Building information modelling (BIM) makes it possible to integrate knowledge

  18. Building trust and diversity in patient-centered oncology clinical trials: An integrated model.

    Science.gov (United States)

    Hurd, Thelma C; Kaplan, Charles D; Cook, Elise D; Chilton, Janice A; Lytton, Jay S; Hawk, Ernest T; Jones, Lovell A

    2017-04-01

    Trust is the cornerstone of clinical trial recruitment and retention. Efforts to decrease barriers and increase clinical trial participation among diverse populations have yielded modest results. There is an urgent need to better understand the complex interactions between trust and clinical trial participation. The process of trust-building has been a focus of intense research in the business community. Yet, little has been published about trust in oncology clinical trials or the process of building trust in clinical trials. Both clinical trials and business share common dimensions. Business strategies for building trust may be transferable to the clinical trial setting. This study was conducted to understand and utilize contemporary thinking about building trust to develop an Integrated Model of Trust that incorporates both clinical and business perspectives. A key word-directed literature search of the PubMed, Medline, Cochrane, and Google Search databases for entries dated between 1 January 1985 and 1 September 2015 was conducted to obtain information from which to develop an Integrated Model of Trust. Successful trial participation requires both participants and clinical trial team members to build distinctly different types of interpersonal trust to effect recruitment and retention. They are built under conditions of significant emotional stress and time constraints among people who do not know each other and have never worked together before. Swift Trust and Traditional Trust are sequentially built during the clinical trial process. Swift trust operates during the recruitment and very early active treatment phases of the clinical trial process. Traditional trust is built over time and operates during the active treatment and surveillance stages of clinical trials. The Psychological Contract frames the participants' and clinical trial team members' interpersonal trust relationship. The "terms" of interpersonal trust are negotiated through the psychological

  19. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  20. Building Energy Modeling and Control Methods for Optimization and Renewables Integration

    Science.gov (United States)

    Burger, Eric M.

    dynamics within a building by learning from sensor data. Control techniques encompass the application of optimal control theory, model predictive control, and convex distributed optimization to TCLs. First, we present the alternative control trajectory (ACT) representation, a novel method for the approximate optimization of non-convex discrete systems. This approach enables the optimal control of a population of non-convex agents using distributed convex optimization techniques. Second, we present a distributed convex optimization algorithm for the control of a TCL population. Experimental results demonstrate the application of this algorithm to the problem of renewable energy generation following. This dissertation contributes to the development of intelligent energy management systems for buildings by presenting a suite of novel and adaptable modeling and control techniques. Applications focus on optimizing the performance of building operations and on facilitating the integration of renewable energy resources.

  1. Development and evaluation of a building energy model integrated in the TEB scheme

    Directory of Open Access Journals (Sweden)

    B. Bueno

    2012-03-01

    Full Text Available The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the Town Energy Balance (TEB scheme must be improved. This paper presents a new building energy model (BEM that has been integrated in the TEB scheme. BEM-TEB makes it possible to represent the energy effects of buildings and building systems on the urban climate and to estimate the building energy consumption at city scale (~10 km with a resolution of a neighbourhood (~100 m. The physical and geometric definition of buildings in BEM has been intentionally kept as simple as possible, while maintaining the required features of a comprehensive building energy model. The model considers a single thermal zone, where the thermal inertia of building materials associated with multiple levels is represented by a generic thermal mass. The model accounts for heat gains due to transmitted solar radiation, heat conduction through the enclosure, infiltration, ventilation, and internal heat gains. BEM allows for previously unavailable sophistication in the modelling of air-conditioning systems. It accounts for the dependence of the system capacity and efficiency on indoor and outdoor air temperatures and solves the dehumidification of the air passing through the system. Furthermore, BEM includes specific models for passive systems, such as window shadowing devices and natural ventilation. BEM has satisfactorily passed different evaluation processes, including testing its modelling assumptions, verifying that the chosen equations are solved correctly, and validating the model with field data.

  2. Simulation of temperature in office with building integrated heating and cooling system

    DEFF Research Database (Denmark)

    Weitzmann, Peter

    2002-01-01

    by raising the temperature of the concrete to slightly above the desired room temperature. Another way of solving the problem of cooling is by using building integrated cooling in floors. This technique utilizes the thermal mass of concrete in the floors, by integrating PEX pipes in the floor. By maintaining...... the temperature of the concrete to a level slightly below the desired room temperature, the concrete will work as an absorber for the excess heat in the office. This can significantly reduce the need for air conditioning, which will give both improved indoor climate and lower energy costs in the building...... and thermal comfort parameters. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer to the room air and between the room surfaces. The simulation model can be used...

  3. Direct mounted photovoltaic device with improved front clip

    Science.gov (United States)

    Keenihan, James R; Boven, Michelle; Brown, Jr., Claude; Gaston, Ryan S; Hus, Michael; Langmaid, Joe A; Lesniak, Mike

    2013-11-05

    The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent (overlapping) photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

  4. Direct mounted photovoltaic device with improved side clip

    Science.gov (United States)

    Keenihan, James R; Boven, Michelle L; Brown, Jr., Claude; Eurich, Gerald K; Gaston, Ryan S; Hus, Michael

    2013-11-19

    The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

  5. System Integration of Distributed Power for Complete Building Systems: Phase 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R.

    2003-12-01

    This report describes NiSource Energy Technologies Inc.'s second year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of combined heat and power systems in end-user environments and a further understanding of electric interconnection and siting issues. The specific objective of work under this subcontract is to identify the system integration and implementation issues of DG and develop and test potential solutions to these issues. In addition, recommendations are made to resolve identified issues that may hinder or slow the integration of integrated energy systems into the national energy picture.

  6. Crossflex: Concept and early development of a true building integrated wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Tim [Mackintosh Environmental Architecture Research Unit (MEARU), Glasgow School of Art, Glasgow, G3 6RQ, Scotland (United Kingdom); Proven, Gordon [Proven Energy Ltd. Wardhead Park, Stewarton, Ayrshire, KA3 5LH, Scotland (United Kingdom)

    2010-12-15

    This paper describes the concept development and work to date, of an innovative 'true' building integrated wind turbine. The context for this is the role of small-scale renewable energy in addressing climate change. In the UK a number of small wind turbines have reached the market, however, in almost all cases, these are existing HAWT or VAWT tower mounted systems. Due to their inherent design qualities, and issues such as planning requirements, these have much reduced output due to their form and siting and are unable to take advantage of augmented airflow around buildings. The Crossflex proposal is a radical new development of a Darrieus turbine form. As well as having a technically innovative flexible blade system, it also utilises a lightweight cowling system that can provide both augmented airflow and improved visual integration into new and existing building forms. It is a modular form that can be sited on ridges and corners of buildings to provide useful levels of generation. (author)

  7. A Multi-Agent Based Energy Management Solution for Integrated Buildings and Microgrid System

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Rahimi-Kian, Ashkan; Mirian, Maryam S.

    2017-01-01

    In this paper, an ontology-driven multi-agent based energy management system (EMS) is proposed for monitoring and optimal control of an integrated homes/buildings and microgrid system with various renewable energy resources (RESs) and controllable loads. Different agents ranging from simple......-reflex to complex learning agents are designed and implemented to cooperate with each other to reach an optimal operating strategy for the mentioned integrated energy system (IES) while meeting the system’s objectives and related constraints. The optimization process for the EMS is defined as a coordinated...

  8. Bayesian Method for Building Frequent Landsat-Like NDVI Datasets by Integrating MODIS and Landsat NDVI

    OpenAIRE

    Limin Liao; Jinling Song; Jindi Wang; Zhiqiang Xiao; Jian Wang

    2016-01-01

    Studies related to vegetation dynamics in heterogeneous landscapes often require Normalized Difference Vegetation Index (NDVI) datasets with both high spatial resolution and frequent coverage, which cannot be satisfied by a single sensor due to technical limitations. In this study, we propose a new method called NDVI-Bayesian Spatiotemporal Fusion Model (NDVI-BSFM) for accurately and effectively building frequent high spatial resolution Landsat-like NDVI datasets by integrating Moderate Resol...

  9. Integrating Building Energy Efficiency with Land Use and Transportation Planning in Jinan, China

    Directory of Open Access Journals (Sweden)

    Nicolae Duduta

    2013-02-01

    Full Text Available With the rapid growth occurring in the urban regions of China, it is critical to address issues of sustainability through practices that engender holistic energy efficient solutions. In this paper, we present results from a collaborative design project carried out with planning officials from the city of Jinan (population 3.4 million, for the Luokou district, a 3.1 km2 (1.2 mi2 area to the north of the CBD that is expected to house 100,000–130,000 people by 2020. By integrating sustainable building design, land use, urban design, and transportation, our proposal identified opportunities for improving energy efficiency that might have been overlooked by considering buildings and transportation separately. Mixed land uses and walkable neighborhoods were proposed along with highly differentiated street designs, intended to carry different traffic loads and prioritize diverse travel modes. Street widths and building heights were adjusted to maximize the potential for passive solar heating and daylight use within buildings. The district’s environmental performance, analyzed using building energy evaluation and traffic micro simulation models, showed that the design would reduce energy loads by over 25% compared to business as usual. While the proposal complied with national and local policies, and had far better energy performance than conventional designs, the proposal ultimately was not accepted by local officials because initial costs to the developers were higher than for conventional designs.

  10. The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT

    Directory of Open Access Journals (Sweden)

    Hassam Nasarullah Chaudhry

    2014-08-01

    Full Text Available A numerical investigation was carried out to determine the impact of structural morphology on the power generation capacity of building-integrated wind turbines. The performance of the turbines was analysed using the specifications of the Bahrain Trade Centre which was taken as the benchmark model, the results of which were compared against triangular, square and circular cross-sections of the same building. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS equations along with the momentum and continuity equations were solved for obtaining the velocity and pressure field. Simulating a reference wind speed of 6 m/s, the findings from the study quantified an estimate power generation of 6.4 kW indicating a capacity factor of 2.9 % for the benchmark model. The square and circular configurations however determined greater capacity factors of 12.2 % and 19.9 %, recording an estimated power production capability of 26.9 kW and 35.1 kW and confirming the largest extraction of the incoming wind stream. The optimum cross-sectional configuration for installing wind turbines in high-rise buildings was the circular orientation as the average wind speed at the wind turbines was accelerated by 0.3 m/s resulting in an overall augmentation of 5 %. The results from this study therefore highlighted that circular building morphology is the most viable building orientation, particularly suited to regions with a dominant prevailing wind direction.

  11. Municipal programs of photovoltaic energy development; Les programmes municipaux de developpement du photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This study presents some remarkable actions carried out in several European municipalities for the promotion and development of photovoltaic applications: installation of solar cells on public buildings, integration of the photovoltaic energy in the urban plan, application in the transportation sector, programs of public information, of promotion, of incitation, of financing, solar electricity trade, promotion of the 'green current'. After a presentation of the general situation of photovoltaic energy in Europe, and of its development in France, nine case-forms present the experience of nine selected European cities in this domain (Amersfoort (NL), Barcelona (ES), Braedstrup (DK), Karlsruhe (DE), Lausanne (CH), Mataro (ES), Muenchen (ES), Palermo (IT), Zurich (CH)). (J.S.)

  12. Buildings as Power Stations’: An Energy Simulation Tool for Housing

    OpenAIRE

    Coma, Ester; Jones, Phil

    2015-01-01

    The concept of ‘Buildings as Power Stations’ (BAPS) represents a major shift in the way that electricity is generated, stored and used. Buildings are no longer simply consumers of electricity, but active players in the electric power system. Reducing energy demand to ‘PassivHaus’ levels of performance and the full integration of photovoltaic modules and wind turbines with buildings is itself a challenge to architects and house builders. Combining these with the sizing of the batteries for ele...

  13. Microinverters for employment in connection with photovoltaic modules

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Okandan, Murat; Johnson, Brian Benjamin; Krein, Philip T.

    2015-09-22

    Microinverters useable in association with photovoltaic modules are described. A three phase-microinverter receives direct current output generated by a microsystems-enabled photovoltaic cell and converts such direct current output into three-phase alternating current out. The three-phase microinverter is interleaved with other three-phase-microinverters, wherein such microinverters are integrated in a photovoltaic module with the microsystems-enabled photovoltaic cell.

  14. Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These

  15. State-of-the-art Review : Vol. 2B. Methods and Tools for Designing Integrated Building Concepts

    DEFF Research Database (Denmark)

    van der Aa, Ad; Andresen, Inger; Asada, Hideo

    The purpose of this report is to give examples of methods and tools that are used in the design of integrated building. The report does not aspire to give a complete overview of all possible design methods and tool. The report will serve as a common basis for the research and development work...... of integrated building concepts and responsive building elements. At last, the report gives a description of uncertainty modelling in building performance assessment. The descriptions of the design methods and tools include an explanation of how the methods may be applied, any experiences gained by using...

  16. Full scale investigation of the wind loads on a light-weight building-integrated photovoltaic system

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bronkhorst, A.J.; Bentum, C.A. van

    2017-01-01

    The wind loads on solar energy systems are crucial for the engineering of the panels, substructure and fixings. There is a demand for aesthetically more acceptable solutions such as frameless solar systems. For these frameless systems, the wind loads are carried by the panels themselves. Combined

  17. Three dimensional corrugated organic photovoltaics for building integration; improving the efficiency, oblique angle and diffuse performance of solar cells

    DEFF Research Database (Denmark)

    Kettle, Jeff; Bristow, Noel; Sweet, Tracy K. N.

    2015-01-01

    area. Secondly, the oblique angle performance is enhanced, leading to increased output in the early morning and evening. Indoor characterisation showed a 9-fold enhancement in efficiency was obtainable, when compared to a flat module. Thirdly, an improvement in performance under diffuse lighting...... diffuse light levels and the fact that tilting the module in both ‘latitude’ and ‘longitude’ directions away from normal, leads to the best achievable enhancement in solar cell performance. The approach set out in this paper could yield a product that has profound advantages over existing BIPV products...

  18. Photovoltaic Wire Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  19. Stationary Optical Concentrator Designs and Wafer Scale Monolithic Integration of Semiconductor Devices for Next Generation Photovoltaic Panels

    Science.gov (United States)

    Kim, Jung Min

    A major barrier in utilizing solar energy for large scale deployment is the cost of the photovoltaic (PV) systems. Several approaches have been used for the cost reduction such as by modifying PV system designs in addition to enhancing the efficiency of solar cells. Due to the high cost of materials, minimizing the use of solar cells such as in concentrator type systems is highly attractive for reducing the cost of the PV modules by focusing the incident light onto the PV cell. However concentrator PV systems (CPV) require constant tracking of the sun and hence are complex in design and expensive to operate, except in limited situations such as large scale PV power plants. It is desirable to design new concentrator type systems that do not require continuous tracking of the sun. These systems could ultimately reduce the PV system cost to a minimum while maximizing the power conversion efficiency. In this thesis we propose a simple design for a stationary concentrator photovoltaic (SCPV) system that could significantly reduce the cost of generating electricity using PV devices. Using optical ray tracing simulations, we have been able to design SCPV systems that could reduce the PV module cost by 2--10 times without compromising on the power conversion efficiency of the system. Another alternative approach for sustainable high efficiency PV system design is to develop low cost PV cells for terrestrial applications. To meet the demands of low cost and large scale production, larger and thinner (or flexible) substrates are required. We demonstrated the feasibility of fabricating monolithic interconnected PV devices at the wafer scale (2 inch wafers). In this study, GaSb PV cells grown on semi-insulating GaAs were used as the model material. Crucial device fabrication steps such as a selective etching process have been developed that is necessary for isolating individual devices on the wafer and interconnecting them with sub-micron scale accuracy. Selective etching of

  20. Integrating Delta Building Physics & Economics: Optimizing the Scale of Engineered Avulsions in the Mississippi River Delta

    Science.gov (United States)

    Kenney, M. A.; Mohrig, D.; Hobbs, B. F.; Parker, G.

    2011-12-01

    integrates three models: 1. coarse sediment diversion as a function of the width, depth, and timing of water diversions (using our field measurements of sediment concentration as a function of depth), 2. land building as a function of the location, water, and amount of sediment diverted, accounting for bathymetry, subsidence, and other factors, and 3. cost of building and operating the necessary civil works. Our statistical analysis of past diversions indicates existence of scale economies in width and scale of diseconomies in depth. The analysis explores general relationships between size, cost, and land building, and does not consider specific actual project proposals or locations. Sensitivity to assumptions about fine sediment capture, accumulation rates for organic material, and other inputs will be discussed.

  1. A microsystem integration platform dedicated to build multi-chip-neural interfaces.

    Science.gov (United States)

    Ayoub, Amer E; Gosselin, Benoit; Sawan, Mohamad

    2007-01-01

    In this paper, we present an electrical discharge machining (EDM) technique associated with electrochemical steps to construct an appropriate biological interface to neural tissues. The presented microprobe design permits to short the time of production compared to available techniques, while improving the integrity of the electrodes. In addition, we are using a 3D approach to create compact and independent microsystem integration platefrom incorporating array of electrodes and signal processing chips. System-in-package and die-stacking are used to connect the integrated circuits and the array of electrodes on the platform. This approach enables to build a device that will fit in a volume smaller than 1.7 x 1.7 x 3.0 mm(3). This demonstrates the possibility of creating small devices that are suitable to fit in restricted areas for interfacing the brain.

  2. Structural Integrity Evaluation of Cold Neutron Laboratory Building by Design Change of Guide Shielding Room

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik; Kim, Youngki; Kim, Harkrho

    2007-06-15

    This report summarizes the results of the structural integrity evaluation for the cold neutron laboratory building by design change of guide shielding room. The design of the guide shielding room was changed by making its structure members in normal concrete (2.3 g/cc) instead of heavy concrete (3.5 g/cc) because the heavy concrete could be not supplied to meet its design specification. Therefore, it was decided that the guide shielding room is made of the normal concrete. And, the shielding performance of the normal concrete was recalculated to confirm satisfying its design specification, which is of a 9000 zone according to HANARO radiation region classification. The change makes the shielding wall thicker than existing design, and then it is caused to qualify the structural integrity evaluation of the CNLB. Finally, the structural integrity of the CNLB was re-evaluated by considering the design change of the guide shielding room.

  3. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    Science.gov (United States)

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  4. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    Energy Technology Data Exchange (ETDEWEB)

    Rourke, Devin [Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States); Ahn, Sungmo [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States); Nardes, Alexandre M.; Lagemaat, Jao van de; Kopidakis, Nikos [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Park, Wounjhang, E-mail: won.park@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States); Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303 (United States)

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  5. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    Science.gov (United States)

    Rourke, Devin; Ahn, Sungmo; Nardes, Alexandre M.; van de Lagemaat, Jao; Kopidakis, Nikos; Park, Wounjhang

    2014-09-01

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  6. Modeling and simulation performance of photovoltaic system integration battery and supercapacitor paralellization of MPPT prototipe for solar vehicle

    Science.gov (United States)

    Ajiatmo, Dwi; Robandi, Imam

    2017-03-01

    This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.

  7. Towards Integrated Team Practice: A Case of Malaysian Industrialised Building System (IBS Construction Projects

    Directory of Open Access Journals (Sweden)

    Mohd Nawi Mohd Nasrun

    2014-01-01

    Full Text Available Problems associated with fragmentation in the traditional construction process, such as isolation of professionals, lack of co-ordination between design and construction, and the sequential manner of its processes, has impacted on construction performance leading to a lack of integration, wastage, low productivity and efficiency. Integrated team practice is perceived as paramount. Unfortunately, there has a limitation of study focus on the dimension of fully integrated team especially for Malaysian Industrialised Building System (IBS projects. Accordingly, this research paper explores and identifies the dimension of fully integrated team from the traditional approach and conduct a validation process for implementing it in Malaysian IBS projects. The research presented uses interviews case study to obtain qualitative data. It was found that the dimension of fully integrated team from the traditional construction process could apply to the Malaysian IBS projects. Suggestions on how an integrated team practice in IBS design and construction process in order to minimise the fragmentation gaps will be concluded.

  8. Integrated technique of planning the capital repair of residential buildings and objects of transport infrastructure

    Science.gov (United States)

    Dement’eva, Marina

    2017-10-01

    The paper presents the results of a comparative analysis of two fundamentally different methods for planning capital repairs of objects of transport infrastructure and residential development. The first method was based on perspective long-term plans. Normative service life were the basis for planning the periodicity of repairs. The second method was based on the performance of repairs in fact of the onset of the malfunction. Problems of financing repair work, of the uneven aging of constructs and engineering systems, different wear mechanism in different conditions of exploitation, absence of methods of planning repairs of administrative and production buildings (depots, stations, etc.) justify the need to optimize methods of planning the repair and the relevance of this paper. The aim of the study was to develop the main provisions of an integrated technique for planning the capital repair of buildings of any functional purpose, which combines the advantages of each of the discussed planning methods. For this purpose, the consequences of technical and economic risk were analyzed of the buildings, including stations, depots, transport transfer hubs, administrative buildings, etc when choosing different planning methods. One of the significant results of the study is the possibility of justifying the optimal period of capital repairs on the basis of the proposed technical and economic criteria. The adjustment of the planned repair schedule is carried out taking into account the reliability and cost-effectiveness of the exploitation process.

  9. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings

    Directory of Open Access Journals (Sweden)

    Pascal Querner

    2015-06-01

    Full Text Available Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species, the biscuit beetle (Stegobium paniceum, the cigarette beetle (Lasioderma serricorne, different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp., moths like the webbing clothes moth (Tineola bisselliella, Silverfish (Lepisma saccharina and booklice (Psocoptera can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  10. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings.

    Science.gov (United States)

    Querner, Pascal

    2015-06-16

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  11. High Efficiency Solar Integrated Roof Membrane Product

    Energy Technology Data Exchange (ETDEWEB)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  12. Organic photovoltaics

    Science.gov (United States)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  13. A Review of the Performance of Buildings Integrated with Phase Change Material: Opportunities for Application in Cold Climate

    OpenAIRE

    Madessa, Habtamu B.

    2014-01-01

    Buildings generally need serious attention in order to reduce global energy consumption and greenhouse gas emissions. Phase Change Materials (PCMs) that change phase just above normal room temperature are a promising means of reducing cooling-energy demand, and improving thermal comfort in buildings. This paper reviews the literature from studies of the thermal performance of different types of PCM and different ways of integrating them into buildings. Based on this review, the paper closes w...

  14. Integration between GBC Historic Building® and BIM: the methodological innovation for conservation project workflow

    Directory of Open Access Journals (Sweden)

    Federico Ferrari

    2016-06-01

    Full Text Available The development of design with the support of BIM software represents ideas and forms that result from interdisciplinary integration. The combination of different instrumentation allows the architectural surfaces modeling to develop a 3D model similar to the real architectural characteristics. Through this you can create a database of information collected in situ. The complexity of the data, discretized into a single shared database, sets a level of attention to the conservative project according to the GBC Historic Building® rating system.The use of BIM software in relation to the assessment system allows designers to formulate measurable innovations in the project phase, in the construction phase, and in the entire building life cycle.

  15. From anticipation to integration: the role of integrated action-effects in building sensorimotor contingencies.

    Science.gov (United States)

    Camus, Thomas; Hommel, Bernhard; Brunel, Lionel; Brouillet, Thibaut

    2017-05-23

    Ideomotor approaches to action control have provided evidence that the activation of an anticipatory image of previously learned action-effects plays a decisive role in action selection. This study sought for converging evidence by combining three previous experimental paradigms: the response-effect compatibility protocol introduced by Kunde (Journal of Experimental Psychology: Human Perception and Performance, 27(2), 387-394, 2001), the acquisition-test paradigm developed by Elsner and Hommel (Journal of Experimental Psychology: Human Perception and Performance, 27(1), 229, 2001), and the object-action compatibility manipulation of Tucker and Ellis (Visual Cognition, 8(6), 769-800, 2001). Three groups of participants first performed a response-effect compatibility task, in which they carried out power and precision grasps that produced either grasp-compatible or grasp-incompatible pictures, or no action effects. Performance was better in the compatible than in the incompatible group, which replicates previous observations and extends them to relationships between grasps and objects. Then, participants were to categorize object pictures by carrying out grasp responses. Apart from replicating previous findings of better performance in trials in which object size and grasp type was compatible, we found that this stimulus-response compatibility effect depended on previous response-effect learning. Taken together, these findings support the assumption that the experience of action-effect contingencies establishes durable event files that integrate representations of actions and their effects.

  16. Canadian integrative oncology research priorities: results of a consensus-building process

    Science.gov (United States)

    Weeks, L.C.; Seely, D.; Balneaves, L.G.; Boon, H.S.; Leis, A.; Oneschuk, D.; Sagar, S.M.; Verhoef, M.J.

    2013-01-01

    Background In Canada, many diverse models of integrative oncology care have emerged in response to the growing number of cancer patients who combine complementary therapies with their conventional medical treatments. The increasing interest in integrative oncology emphasizes the need to engage stakeholders and to work toward consensus on research priorities and a collaborative research agenda. The Integrative Canadian Oncology Research Initiative initiated a consensus-building process to meet that need and to develop an action plan that will implement a Canadian research agenda. Methods A two-day consensus workshop was held after completion of a Delphi survey and stakeholder interviews. Results Five interrelated priority research areas were identified as the foundation for a Canadian research agenda: EffectivenessSafetyResource and health services utilizationKnowledge translationDeveloping integrative oncology models Research is needed within each priority area from a range of different perspectives (for example, patient, practitioner, health system) and in a way that reflects a continuum of integration from the addition of a single complementary intervention within conventional cancer care to systemic change. Strategies to implement a Canadian integrative oncology research agenda were identified, and working groups are actively developing projects in line with those strategic areas. Of note is the intention to develop a national network for integrative oncology research and knowledge translation. Conclusions The identified research priorities reflect the needs and perspectives of a spectrum of integrative oncology stakeholders. Ongoing stakeholder consultation, including engagement from new stakeholders, is needed to ensure appropriate uptake and implementation of a Canadian research agenda. PMID:23904767

  17. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    Energy Technology Data Exchange (ETDEWEB)

    Rourke, D; Ahn, S; Nardes, AM; van de Lagemaat, J; Kopidakis, N; Park, W

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer: fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent. (C) 2014 AIP Publishing LLC.

  18. Integrity assessment of grouted posttensioning cables and reinforced concrete of a nuclear containment building

    Directory of Open Access Journals (Sweden)

    Shenton B.

    2011-04-01

    Full Text Available The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA. To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1, Quebec, Canada (250 MWe was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.

  19. Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation

    Science.gov (United States)

    Anwar, F.; Boby, R. I.; Rashid, M. M.; Alam, M. M.; Shaikh, Z.

    2017-11-01

    Fire alarm systems have become increasingly an important lifesaving technology in many aspects, such as applications to detect, monitor and control any fire hazard. A large sum of money is being spent annually to install and maintain the fire alarm systems in buildings to protect property and lives from the unexpected spread of fire. Several methods are already developed and it is improving on a daily basis to reduce the cost as well as increase quality. An integrated Fire Detection and Alarm (FDA) systems with building automation was studied, to reduce cost and improve their reliability by preventing false alarm. This work proposes an improved framework for FDA system to ensure a robust intelligent network of FDA control panels in real-time. A shortest path algorithmic was chosen for series of buildings connected by fiber optic network. The framework shares information and communicates with each fire alarm panels connected in peer to peer configuration and declare the network state using network address declaration from any building connected in network. The fiber-optic connection was proposed to reduce signal noises, thus increasing large area coverage, real-time communication and long-term safety. Based on this proposed method an experimental setup was designed and a prototype system was developed to validate the performance in practice. Also, the distributed network system was proposed to connect with an optional remote monitoring terminal panel to validate proposed network performance and ensure fire survivability where the information is sequentially transmitted. The proposed FDA system is different from traditional fire alarm and detection system in terms of topology as it manages group of buildings in an optimal and efficient manner.Introduction

  20. Lyapunov Based-Distributed Fuzzy-Sliding Mode Control for Building Integrated-DC Microgrid with Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2017-01-01

    This paper presents a distributed control strategy based on Fuzzy-Sliding Mode Control (FSMC) for power control of an infrastructure integrated with a DC-Microgrid, which includes photovoltaic, fuel cell and energy storage systems with Plug-in Electric Vehicles (PEVs). In order to implement...

  1. Photovoltaic Degradation Risk: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  2. Photovoltaic panel clamp

    Science.gov (United States)

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  3. Working Together: Building Successful Policy and Program Partnerships for Immigrant Integration

    Directory of Open Access Journals (Sweden)

    Els de Graauw

    2017-03-01

    Full Text Available Supporting and investing in the integration of immigrants and their children is critically important to US society. Successful integration contributes to the nation’s economic vitality, its civic and political health, and its cultural diversity. But although the United States has a good track record on immigrant integration, outcomes could be better. A national, coherent immigrant integration policy infrastructure is needed. This infrastructure can build on long-standing partnerships between civil society and US public institutions. Such partnerships, advanced under Republican- and Democratic-led administrations, were initially established to facilitate European immigrants’ integration in large American cities, and later extended to help refugees fleeing religious persecution and war. In the twenty-first century, we must expand this foundation by drawing on the growing activism by cities and states, new civil society initiatives, and public-private partnerships that span the country. A robust national integration policy infrastructure must be vertically integrated to include different levels of government and horizontally applied across public and private sector actors and different types of immigrant destinations. The resultant policy should leverage public-private partnerships, drawing on the energy, ideas, and work of community-based nonprofit organizations as well as the leadership and support of philanthropy, business, education, faith-based, and other institutions. A new coordinating office to facilitate interagency cooperation is needed in the executive branch; the mandate and programs of the Office of Refugee Resettlement need to be secured and where possible expanded; the outreach and coordinating role of the Office of Citizenship needs to be extended, including through a more robust grant program to community-based organizations; and Congress needs to develop legislation and appropriate funding for a comprehensive integration

  4. Roof-integrated photovoltaic modules with integrated inverters and hybrid usage on the roof of a farmhouse; PV-Dachintegration von Solarmodulen mit integriertem Inverter und Hybridnutzung am Schindeldach des Bauernhauses 'Zaugg'

    Energy Technology Data Exchange (ETDEWEB)

    Eckmanns, A.; Stucki, B.

    2000-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes a solar system that features photovoltaic shingles used instead of conventional tiles, use of the heat generated under the roof for hay ventilation / drying and module-integrated micro-inverters. The report discusses the findings of the project, which was started to gain practical experience with such a hybrid electrical-thermal system. Beside the monitored electrical power output the results include an appraisal of the effects of the air temperature under the shingles on inverter operation as well as the thermal output power of the system, which exceeded expectations, and the thermal energy yield, which was below expectations due to the limited operation period of the hay drying system.

  5. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  6. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo [KEPCo, Gimcheon (Korea, Republic of)

    2016-05-15

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant.

  7. Engineering Assessment and Certification of Integrity of the Building 943 Tank System

    Energy Technology Data Exchange (ETDEWEB)

    Abri Environmental Engineering Inc.

    2015-01-01

    This Engineering Assessment and Certification of Integrity of Building 943 (B943) Tank System has been prepared using the guidelines of 40 CFR 265.192(a) and 22 CCR 66265.192(a) for tank systems* that manage hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer. This technical assessment has been reviewed by an independent, qualified, California-registered professional engineer, who has certified the tank system for the following: • sufficient structural integrity, • acceptability for storing of hazardous waste, • compatibility with the waste, and • suitability of tank and containment system design to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail.

  8. A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2017-01-01

    Full Text Available Wind power plant (WPP, photovoltaic generators (PV, cell-gas turbine (CGT, and pumped storage power station (PHSP are integrated into multienergy hybrid system (MEHS. Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time.

  9. Design of Incremental Conductance Sliding Mode MPPT Control Applied by Integrated Photovoltaic and Proton Exchange Membrane Fuel Cell System under Various Operating Conditions for BLDC Motor

    Directory of Open Access Journals (Sweden)

    Jehun Hahm

    2015-01-01

    Full Text Available This paper proposes an integrated photovoltaic (PV and proton exchange membrane fuel cell (PEMFC system for continuous energy harvesting under various operating conditions for use with a brushless DC motor. The proposed scheme is based on the incremental conductance (IncCond algorithm combined with the sliding mode technique. Under changing atmospheric conditions, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of maximum power point tracking (MPPT is particularly important. To manage such a hybrid system, control strategies need to be established to achieve the aim of the distributed system. Firstly, a Matlab/Simulink based model of the PV and PEMFC is developed and validated, as well as the incremental conductance sliding (ICS MPPT technique; then, different MPPT algorithms are employed to control the PV array under nonuniform temperature and insolation conditions, to study these algorithms effectiveness under various operating conditions. Conventional techniques are easy to implement but produce oscillations at MPP. Compared to these techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state and provides more precise tracking.

  10. Integrated Thermal-Energy Analysis of Innovative Translucent White Marble for Building Envelope Application

    Directory of Open Access Journals (Sweden)

    Federica Rosso

    2014-08-01

    Full Text Available Marble is a natural material, used in the construction field since antiquity. It has always been used to communicate monumentality and solidity. Nowadays new technologies permit marble to express new languages: particularly, translucent marble technology overturns the concept of solidity. The main issue to address is the lack of thermal-energy performance of such a thin stone layer as the only facade component. Conversely, Bianco Carrara and Statuario marbles, for instance, have intrinsic benefits as natural cool materials, due to their high solar reflectance and thermal emissivity. Thus, this paper analyzes the thermal-energy and environmental behavior of marble facade for a new designed building in New York City. An integrated analysis of the energy performance of the marble skin is performed through a preliminary experimental characterization, carried out for two different types of naturally white marble, for comparative purposes. Then, a dynamic simulation model of the building is developed to evaluate year-round benefits and drawbacks of the translucent marble envelope in terms of indoor thermal comfort and air-conditioning requirement. The analysis showed how the proposed marble facade is able to decrease the energy requirement for cooling up to 6%, demonstrating possible relevant perspectives for marble-based facades, even in energy-efficient buildings.

  11. Integral energy concepts for office and residential buildings; Integrale Energiekonzepte fuer Buero- und Wohngebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Velten, W.

    1998-06-01

    It has been confirmed by practical project experience that integral energy concepts are an excellent basis for the construction of energy-efficient buildings. In the extreme case buildings can even be self-sufficient in their energy supply. Uniting the responsibility for the overall energy and technology concept in the hands of a single contractor can help reduce frictional losses between those involved in the planning as well costs. A good example of this is the use of a simulation calculation for the prescribed demonstration of proper heat insulation. The presented projects show that it is possible to construct ecologically answerable buildings at attractively low costs. The presented concepts appear particularly convincing from the viewpoint of long-term maintenance of value and user-specific advantages such as agreeable working conditions. [Deutsch] Die konkreten Projekterfahrungen bestaetigen, dass durch integrale Energiekonzepte sowohl im Verwaltungs- als auch im Wohnungsbau hervorragende Voraussetzungen fuer energiesparende Gebaeude geschaffen werden koennen. Im Extremfall kann sogar eine autarke Energieversorgung erreicht werden. Durch Zusammenfassung der Gesamtverantwortung fuer das Energie- und Technikkonzept in einer Hand koennen Reibungsverluste zwischen den Planungsbeteiligten reduziert und Kosten gesenkt werden. Ein Beispiel hierfuer ist die Verbindung des vorgeschriebenen Waermeschutznachweises mit einer fuer alle Beteiligten wesentlich aussagekraeftigeren Simulationsrechnung. Die vorgestellten Projekte zeigen, dass oekologisch sinnvolle Gebaeude auch zu oekonomisch attraktiven Kosten erstellt werden koennen, wobei insbesondere der Aspekt des langfristigen Werterhalts und die nutzerspezifischen Vorteile, z.B. durch angenehmere Arbeitsbedingungen, fuer die vorgestellten Konzepte spricht. (orig.)

  12. Comparison of Actual Costs to Integrate Commercial Buildings with the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Black, Doug [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Yin, Rongxin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2016-05-01

    During the past decade, the technology to automate demand response (DR) in buildings and industrial facilities has advanced significantly. Automation allows rapid, repeatable, reliable operation. This study focuses on costs for DR automation in commercial buildings with some discussion on residential buildings and industrial facilities. DR automation technology relies on numerous components, including communication systems, hardware and software gateways, standards-based messaging protocols, controls and integration platforms, and measurement and telemetry systems. This paper discusses the impact factors that contribute to the costs of automated DR systems, with a focus on OpenADR 1.0 and 2.0 systems. In addition, this report compares cost data from several DR automation programs and pilot projects, evaluates trends in the cost per unit of DR and kilowatts (kW) available from automated systems, and applies a standard naming convention and classification or taxonomy for system elements. In summary, median costs for the 56 installed automated DR systems studied here are about $200/kW. The deviation around this median is large with costs in some cases being an order of magnitude greater or less than median. Costs to automate fast DR systems for ancillary services are not fully analyzed in this report because additional research is needed to determine the total such costs.

  13. Photovoltaic Cells and Systems: Current State and Future Trends

    Directory of Open Access Journals (Sweden)

    Hadj Bourdoucen

    2000-12-01

    Full Text Available Photovoltaics is the process of converting solar energy into electrical energy. Any photovoltaic system invariably consists of solar cell arrays and electric power conditioners. Photovoltaic systems are reliable, quiet, safe and both environmentally benign and self-sustaining. In addition, they are cost-effective for applications in remote areas. This paper presents a review of solar system components and integration, manufacturing, applications, and basic research related to photovoltaics. Photovoltaic applications in Oman are also presented. Finally, the existing and the future trends in technologies and materials used for the fabrication of solar cells are summarized.

  14. Fundamental understanding and integration of rapid thermal processing, PECVD, and screen printing for cost-effective, high-efficiency silicon photovoltaic devices

    Science.gov (United States)

    Doshi, Parag Mahendra

    The final hurdle preventing widespread application of photovoltaics is cost-effectiveness. Solar cell efficiencies in the laboratory have reached 24%, but industrial cells, constrained by low-cost, high-throughput processes, are limited to 10-15%. This thesis focuses on industrially relevant technologies such as rapid thermal processing (RTP), PECVD, and screen-printing to simplify and speed up cell processing yet maintain the key features that give high efficiencies in the laboratory. RTP utilizes tungsten-halogen and UV lamps as a source of high energy photons that induce thermal and photophysical effects which can significantly increase the kinetics of semiconductor processes such as diffusion, oxidation, and annealing. PECVD also serves as a promising low-cost candidate for SiN/SiOsb2 antireflection coatings and passivation. Finally, screen printing serves as a very high-throughput technology for contact formation as a low-cost alternative to photolithography. Integration of these technologies into a single cell fabrication sequence, however, revealed the susceptibility to low internal quantum efficiencies in the long and short wavelengths. For example, the inherent rapid cooling during RTP can degrade minority-carrier lifetime and long wavelength response. Lack of knowledge in tailoring RTP emitter diffusion profiles coupled with less than perfect PECVD surface passivation and parasitic SiN absorption was found to limit short wavelength response. Problems like these limited RTP cell efficiencies to only 15.4% prior to this thesis. Through a combination of fundamental understanding of device physics, materials and device characterization, modeling, and cell fabrication these losses were quantified and overcome in this thesis. An in-situ annealing cycle during RTP was optimized to prevent quenching-induced lifetime degradation and to preserve high long wavelength response. Measurement of SiN extinction coefficients to compute parasitic absorption, optimization

  15. Simulation Study of Building Integrated Solar Liquid PV-T Collectors

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2012-01-01

    Full Text Available Influence of building integration of polycrystalline PV modules on their performance and potential for use of active liquid cooling by use of BIPV-T collectors has been investigated by simulation analysis with a detailed model. Integration of PV modules into building envelope could reduce the annual production of electricity by a rate above 5% and negatively influence lifetime due to thermal stresses induced by high operation temperatures above 100°C in the case of warm climate and above 90°C in moderate climate. Two configurations of unglazed PV-T collectors (low-tech, high-tech and their ability to eliminate overheating of BIPV module have been discussed. Simulation study on combined heat and electricity production from given BIPV-T collectors has been presented for three typical applications (5°C: primary circuits of heat pumps; 15°C: cold water preheating; 25°C: pool water preheating. Thermal output of unglazed BIPV-T collectors is up to 10 times higher than electricity. Electricity production could be up to 25% higher than BIPV (without cooling for warm climate and up to 15% in moderate climate.

  16. Photovoltaic sheathing element with one or more tabs

    Science.gov (United States)

    Keenihan, James R; Langmaid, Joseph A; Lopez, Leonardo C.

    2017-02-07

    The present invention is premised upon an assembly that includes at least a photovoltaic sheathing element capable of being affixed on a building structure. The shingle including at least a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly. Wherein the body portion includes one or more top peripheral tabs each capable of fitting under one or more vertically adjoining devices.

  17. Forms and Levels of Integration: Evaluation of an Interdisciplinary Team-Building Project

    Directory of Open Access Journals (Sweden)

    Andrea Armstrong

    2013-01-01

    Full Text Available Team science models are frequently promoted as the best way to study complex societal and environmental problems. Despite increasing popularity, there is relatively little research on the processes and mechanisms that facilitate the emergence of integration of interdisciplinary teams. This article evaluates a suite of recent team-building and grant-writing activities designed to address water management in the Western U.S. We use qualitative methods to document the emergence of integrative capacity at the individual, group, and institutional levels, with particular attention to the role of graduate students and non-academic practitioners in a team science planning project. Our findings highlight the importance of social integration as a basis for conceptual integration and an ability to relate these concepts to real-world problems. The findings also demonstrate the value of qualitative evaluation measures of team readiness, capacity, and intellectual outputs to complement conventional evaluation indicators that rely on quantitative scientific outputs, particularly for team science projects still in the planning stages.

  18. Design and Testing of a Novel Building Integrated Cross Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Wen Tong Chong

    2017-03-01

    Full Text Available The prospect of harnessing wind energy in urban areas is not promising owing to low wind speeds and the turbulence caused by surrounding obstacles. However, these challenges can be overcome through an improved design of wind turbine that can operate efficiently in an urban environment. This paper presents a novel design of a building integrated cross axis wind turbine (CAWT that can operate under dual wind direction, i.e., horizontal wind and vertical wind from the bottom of the turbine. The CAWT consists of six horizontal blades and three vertical blades for enhancing its self-starting behavior and overall performance. The study employed a mock-up building model with gable rooftop where both of the developed CAWT and the conventional straight-bladed vertical axis wind turbine (VAWT are mounted and tested on the rooftop. The height of the CAWT and the VAWT above the rooftop was varied from 100 to 250 mm under the same experimental conditions. The results obtained from the experimental study showed that there is significant improvement in the coefficient of power (Cp and self-starting behavior of the building integrated CAWT compared to the straight-bladed VAWT. At 100 mm height, the Cp,max value of the CAWT increased by 266%, i.e., from 0.0345 to 0.1263, at tip speed ratio (TSR (λ of 1.1 and at wind speed of 4.5 m/s. Similar improvements in performance are also observed for all condition of CAWT heights above the rooftop where the CAWT outperformed the straight-bladed VAWT by 196%, 136% and 71% at TSR of 1.16, 1.08, and 1.12 for Y = 150, 200, and 250 mm, respectively. Moreover, the CAWT performs better at 10° pitch angle of the horizontal blade compared to other pitch angles.

  19. Cost-competitiveness of organic photovoltaics for electricity self-consumption at residential buildings: A comparative study of Denmark and Greece under real market conditions

    DEFF Research Database (Denmark)

    Chatzisideris, Marios Dimos; Laurent, Alexis; Christoforidis, Georgios C.

    2017-01-01

    , we characterise and discuss the influence of three key parameters of the economic performance of PV systems, namely the PV regulatory scheme, the solar irradiation level and the temporal match between the electricity consumption and solar irradiation profiles. Focusing on organic PV systems developed......To address sustainability challenges, photovoltaics (PV) are regarded as a promising renewable energy technology. Decreasing PV module costs and increasing residential electricity prices have made self-consumption of PV-generated electricity financially more attractive than exporting to the grid...... has not been evaluated under real market conditions, especially under PV self-consumption schemes. In this study, we investigate the self-consumption of electricity generation from conventional and organic PV systems installed at residential houses in two different countries, Denmark and Greece, under...

  20. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    Energy Technology Data Exchange (ETDEWEB)

    Birru, Dagnachew [Philips Electronics North America Corporation, Andover, MA (United States); Wen, Yao-Jung [Philips Electronics North America Corporation, Andover, MA (United States); Rubinstein, Francis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Clear, Robert D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the

  1. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  2. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  3. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    Science.gov (United States)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  4. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. International cooperation projects (Collection of information on IEA photovoltaic power generation program); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Items of information were collected on development of technologies to put photovoltaic power generation systems into practical use, the international cooperation projects, and the IEA photovoltaic power generation program. This paper summarizes the achievements in fiscal 1999. In the activities of IEA/REWP/PVPS in the current fiscal year, the 13th and 14th Executive Committee meetings, and the 3rd Executive Conference were held. The Task 1 has performed such activities as ISR, NSR, Newsletters, and opening the Internet homepage. The Task 2 activities included structuring about 260 databases for the operation characteristics of photovoltaic power generation systems, and completing the internal material handbooks on measurement and monitoring. A new work plan was prepared for the Task 3 regarding an independent photovoltaic power generation plant for use in an island. For the building integrated photovoltaic power generation system in the Task 7, survey activities were executed by utilizing expertise conferences on building designs, system technologies, and non-technical impediments. In the feasibility survey and research on large-scale photovoltaic power generation utilizing unused land such as desert for the Task 8, the programs were established. (NEDO)

  5. INTEGRATING COUNTRY-SPECIFIC CULTURE IN THE BRANDING STRATEGY FOR BUILDING GLOBAL SUCCESS

    Directory of Open Access Journals (Sweden)

    Alexandra IOANID

    2014-11-01

    Full Text Available A strong brand is the one that integrates its cultural origins and values with the cultural values of the countries where it operates, building relationships based on trust with the local consumers. The chances for a company to gain share market when starting operations in a new country grows a lot if the management allows enough regional flexibility on how the brands are marketed, according to the cultural characteristics of the potential local customers. In the actual globalized business environment, the brand marketer has the choice to adopt a global or a local approach in the marketing strategy, that most of the times determines the success or the failure of the business in a specific country. An important challenge for any marketer is the integration of the brand-culture with the country-culture and in this context, the paper analyses different cultures and offers some branding strategies valid for both products and services. This paper aims to demonstrate the importance of the country-specific culture integration in the marketing strategy of a company for growing the effectiveness of all its operations. The ideas mentioned in this paper are based on literature research and also on authors’ experience with multicultural environments.

  6. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    Science.gov (United States)

    Menicovich, David

    By 2050 an estimated 9 billion people will inhabit planet earth and almost all the growth in the next 40 years will be in urban areas putting tremendous pressure on creating sustainable cities. The rapid increase in population, rise in land value and decrease in plot sizes in cities around the world positions tall or more importantly slender buildings as the best suited building typology to address the increasingly critical demand for space in this pressing urbanization trend. However, the majority of new tall building urban developments have not followed principles of environmental and/or sustainable design and incentives to innovate, both technological and economic, are urgently required. The biggest climatic challenge to the design, construction and performance of tall buildings is wind sensitivity. This challenge is further emphasized seeing two market driven trends: on one hand as urban population grows, land value rises while plot sizes decrease; on the other, more cost effective modular construction techniques are introducing much lighter tall building structures. The combination of the two suggests a potential increase in the slenderness ratio of tall buildings (typically less than 6:1 but stretching to 20:1 in the near future) where not-so-tall but much lighter buildings will be the bulk of new construction in densely populated cities, providing affordable housing in the face of fast urbanization but also introducing wind sensitivity which was previously the problem of a very limited number of super tall buildings to a much larger number of buildings and communities. The proposed research aims to investigate a novel approach to the interaction between tall buildings and their environment. Through this approach the research proposes a new relationship between buildings and the flows around, through and inside them, where buildings could adapt to better control and manage the air flow around them, and consequently produce significant opportunities to reduce

  7. NREL Photovoltaic Program FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  8. Swiss Photovoltaics Programme, 2004 Edition - Overview (French) for 2003; Programme photovoltaique, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.

    2004-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in French) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland for the year 2003. Progress in future solar cell technologies and in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume also presents a list of 92 projects in the PV area including the appropriate Internet links.

  9. Swiss Photovoltaics Programme, 2004 Edition - Overview (German) for 2003; Programm Photovoltaik, Ausgabe 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.

    2004-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in German) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland for the year 2003. Progress in the area of future solar cell technologies, modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume also presents a list of 92 projects in the PV area including the appropriate Internet links.

  10. A molecular spin-photovoltaic device

    Science.gov (United States)

    Sun, Xiangnan; Vélez, Saül; Atxabal, Ainhoa; Bedoya-Pinto, Amilcar; Parui, Subir; Zhu, Xiangwei; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2017-08-01

    We fabricated a C60 fullerene-based molecular spin-photovoltaic device that integrates a photovoltaic response with the spin transport across the molecular layer. The photovoltaic response can be modified under the application of a small magnetic field, with a magnetophotovoltage of up to 5% at room temperature. Device functionalities include a magnetic current inverter and the presence of diverging magnetocurrent at certain illumination levels that could be useful for sensing. Completely spin-polarized currents can be created by balancing the external partially spin-polarized injection with the photogenerated carriers.

  11. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand....... The analysis also shows that the connection of low-energy buildings to DH networks is potentially a good solution in Denmark for reaching the climatic goals, but a high degree of connection must be reached, especially for detached houses, where most of the buildings in a typical community must be connected......The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...

  12. Photovoltaic evaluation study

    Science.gov (United States)

    Johnson, G.; Heikkilae, M.; Melasuo, T.; Spanner, S.

    Realizing the value and potential of PV-power as well as the growing need for increased cooperation and sharing of knowledge in the field of photovoltaics, FINNIDA and UNICEF decided to undertake a study of selected PV-projects. There were two main objectives for the study: To gather, compile, evaluate and share information on the photovoltaic technology appropriate to developing countries, and to promote the interest and competence of Finnish research institutes, consultants and manufacturers in photovoltaic development. For this purpose a joint evaluation of significant, primarily UN-supported projects providing for the basic needs of rural communities was undertaken. The Gambia and Kenya offered a variety of such projects, and were chosen as target countries for the study. The projects were chosen to be both comparable and complimentary. In the Gambia, the main subject was a partially integrated health and telecommunications project, but a long-operating drinking water pumping system was also studied. In Kenya, a health project in the Turkana area was examined, and also a large scale water pumping installation for fish farming. Field visits were made in order to verify and supplement the data gathered through document research and earlier investigations. Individual data gathering sheets for the project form the core of this study and are intended to give the necessary information in an organized and accessible format. The findings could practically be condensed into one sentence: PV-systems work very well, if properly designed and installed, but the resources and requirements of the recipients must be considered to a higher degree.

  13. WARCProcessor: An Integrative Tool for Building and Management of Web Spam Corpora

    Directory of Open Access Journals (Sweden)

    Miguel Callón

    2017-12-01

    Full Text Available In this work we present the design and implementation of WARCProcessor, a novel multiplatform integrative tool aimed to build scientific datasets to facilitate experimentation in web spam research. The developed application allows the user to specify multiple criteria that change the way in which new corpora are generated whilst reducing the number of repetitive and error prone tasks related with existing corpus maintenance. For this goal, WARCProcessor supports up to six commonly used data sources for web spam research, being able to store output corpus in standard WARC format together with complementary metadata files. Additionally, the application facilitates the automatic and concurrent download of web sites from Internet, giving the possibility of configuring the deep of the links to be followed as well as the behaviour when redirected URLs appear. WARCProcessor supports both an interactive GUI interface and a command line utility for being executed in background.

  14. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2011-03-01

    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  15. System Integration of Distributed Power for Complete Building Systems: Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R.

    2003-12-01

    This report describes NiSource Energy Technologies Inc.'s base year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of CHP systems in end-user environments and a further understanding of electric interconnection and siting issues. Important results from the first year were a survey of the state of the art of interconnection issues associated with distributed generation, a survey of the local zoning requirements for the NiSource service territory, and the acquisition of data about the operation, reliability, interconnection, and performance of CHP systems and components of two test sites.

  16. WARCProcessor: An Integrative Tool for Building and Management of Web Spam Corpora.

    Science.gov (United States)

    Callón, Miguel; Fdez-Glez, Jorge; Ruano-Ordás, David; Laza, Rosalía; Pavón, Reyes; Fdez-Riverola, Florentino; Méndez, Jose Ramón

    2017-12-22

    In this work we present the design and implementation of WARCProcessor, a novel multiplatform integrative tool aimed to build scientific datasets to facilitate experimentation in web spam research. The developed application allows the user to specify multiple criteria that change the way in which new corpora are generated whilst reducing the number of repetitive and error prone tasks related with existing corpus maintenance. For this goal, WARCProcessor supports up to six commonly used data sources for web spam research, being able to store output corpus in standard WARC format together with complementary metadata files. Additionally, the application facilitates the automatic and concurrent download of web sites from Internet, giving the possibility of configuring the deep of the links to be followed as well as the behaviour when redirected URLs appear. WARCProcessor supports both an interactive GUI interface and a command line utility for being executed in background.

  17. Building Damage Estimation by Integration of Seismic Intensity Information and Satellite L-band SAR Imagery

    Directory of Open Access Journals (Sweden)

    Nobuoto Nojima

    2010-09-01

    Full Text Available For a quick and stable estimation of earthquake damaged buildings worldwide, using Phased Array type L-band Synthetic Aperture Radar (PALSAR loaded on the Advanced Land Observing Satellite (ALOS satellite, a model combining the usage of satellite synthetic aperture radar (SAR imagery and Japan Meteorological Agency (JMA-scale seismic intensity is proposed. In order to expand the existing C-band SAR based damage estimation model into L-band SAR, this paper rebuilds a likelihood function for severe damage ratio, on the basis of dataset from Japanese Earth Resource Satellite-1 (JERS-1/SAR (L-band SAR images observed during the 1995 Kobe earthquake and its detailed ground truth data. The model which integrates the fragility functions of building damage in terms of seismic intensity and the proposed likelihood function is then applied to PALSAR images taken over the areas affected by the 2007 earthquake in Pisco, Peru. The accuracy of the proposed damage estimation model is examined by comparing the results of the analyses with field investigations and/or interpretation of high-resolution satellite images.

  18. Additive Manufacturing Enabled Ubiquitous Sensing in Aerospace and Integrated Building Systems

    Science.gov (United States)

    Mantese, Joseph

    2015-03-01

    Ubiquitous sensing is rapidly emerging as a means for globally optimizing systems of systems by providing both real time PHM (prognostics, diagnostics, and health monitoring), as well as expanded in-the-loop control. In closed or proprietary systems, such as in aerospace vehicles and life safety or security building systems; wireless signals and power must be supplied to a sensor network via single or multiple data concentrators in an architecture that ensures reliable/secure interconnectivity. In addition, such networks must be robust to environmental factors, including: corrosion, EMI/RFI, and thermal/mechanical variations. In this talk, we describe the use of additive manufacturing processes guided by physics based models for seamlessly embedding a sensor suite into aerospace and building system components; while maintaining their structural integrity and providing wireless power, sensor interrogation, and real-time diagnostics. We detail this approach as it specifically applies to industrial gas turbines for stationary land power. This work is supported through a grant from the National Energy Technology Laboratory (NETL), a division of the Department of Energy.

  19. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lansing, Carina S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elsethagen, Todd O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hathaway, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guillen, Zoe C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dirks, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skorski, Daniel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephan, Eric G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorrissen, Willy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorton, Ian [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Yan [Concordia Univ., Montreal, QC (Canada)

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  20. A planar, chip-based, dual-beam refractometer using an integrated organic light-emitting diode (OLED) light source and organic photovoltaic (OPV) detectors.

    Science.gov (United States)

    Ratcliff, Erin L; Veneman, P Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel; Saavedra, S Scott; Armstrong, Neal R

    2010-04-01

    We present a simple chip-based refractometer with a central organic light-emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence from an Alq(3)/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine) and light detection with planar heterojunction pentacene/C(60) OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin-film OLEDs that is coupled into guided modes in the IRE, instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions: a "sample" channel and a "reference" channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) that might influence sensor response. The dual-beam configuration permits significantly enhanced sensitivity to refractive index changes, relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (DeltaRI) between 10(-2) and 10(-3) RI units could be detected for single beam operation, with sensitivity increased to DeltaRI approximately 10(-4) RI units when the dual-beam configuration is employed.

  1. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo-Young; Lai, Jih-Sheng (Jason) [Future Energy Electronics Center, Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2010-04-15

    This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current. (author)

  2. Integration of Historic Building Information Modeling (HBIM) and 3D GIS for Recording and Managing Cultural Heritage Sites

    OpenAIRE

    Dore, Conor; Murphy, Maurice

    2012-01-01

    This paper outlines a two stage approach for digitally recording cultural heritage sites. This approach involves a 3D modelling stage and the integration of the 3D model into a 3D GIS for further management and analysis. The modelling stage is carried out using a new concept; Historic Building Information Modelling (HBIM) which has been developed at the Dublin Institute of Technology. Historic Building Information Modelling is a system for modelling historic structures from laser scan and pho...

  3. A mini review on the integration of resource recovery from wastewater into sustainability of the green building through phycoremediation

    Science.gov (United States)

    Yulistyorini, Anie

    2017-09-01

    Green building implementation is an important assessment for sustainable development to establish a good quality of the environment. To develop the future green building implementation, resource recovery from the building wastewater is significantly important to consider as a part of the green building development. Discharge of urban wastewater into water bodies trigger of eutrophication in the water catchment, accordingly need further treatment to recover the nutrient before it is reused or discharged into receiving water bodies. In this regard, integration of microalgae cultivation in closed photobioreactor as building façade is critically important to be considered in the implementation of the green building. Microalgae offer multi-function as bioremediation (phycoremediation) of the wastewater, production of the biofuels, and important algal bio-products. At the same time, algae façade boost the reduction of the operating cost in forms of light, thermal energy and add the benefit into the building for energy reduction and architecture function. It promises an environmental benefit to support green building spirit through nutrient recovery and wastewater reuse for algae cultivation and to enhance the aesthetic of the building façade.

  4. Suitable scheme study of Chinese Building Energy Efficiency CDM Projects

    Science.gov (United States)

    Huang, Beijia; Yang, Haizhen; Wang, Shaoping; Wang, Feng

    2010-11-01

    China has great potential to develop Building Energy Efficiency Clean Development Mechanism (BEE CDM) projects, although have many challenges. Our results show that large-scale public buildings and urban residential buildings have relatively high BEE CDM potential, when comparing their characteristics to the CDM project requirements. The building enclosure, illumination energy conservation, air condition energy saving, solar thermal, and solar photovoltaic technology have relatively high application potential while considering the energy saving potential and marginal emission reduction cost. Case study of large-scale buildings shows that technology integration of building enclosure, illumination energy conservation, air condition energy saving, solar thermal can reduce required building number to 130 in order to meet the 1×105 tCO2 e/a reduction criteria. Some suggestions are also given in this paper.

  5. SEíS: A semantic-based system for integrating building energy data

    Directory of Open Access Journals (Sweden)

    Madrazo, L.

    2015-03-01

    Full Text Available Access to reliable energy related data is a fundamental factor when taking decisions that help to improve the energy efficiency of buildings. The increase in the amount of data we have available has led to the need to develop information systems that facilitate the analysis of such data to the agents which are present throughout the building life cycle, from the design phase to maintenance. Semantic web technologies provide a solution to interlink distributed data sources. This requires the construction of shared vocabularies (i.e. ontologies which capture the meaning that users give to the data and facilitate access to them. As yet there are no consolidated methods to build these vocabularies. This article presents the methodology developed to create SEíS, an energy information system that uses semantic technologies to integrate energy related data and to facilitate services to the different agents involved throughout the stages of the building life cycle.El acceso a los datos relacionados con la energía es un factor fundamental para tomar decisiones que ayuden a mejorar la eficiencia energética de los edificios. El incremento de la cantidad de datos disponibles ha llevado a la necesidad de desarrollar sistemas de información que faciliten el análisis de los mismos a los agentes que participan a lo largo del ciclo de vida del edificio, desde el diseño hasta el mantenimiento. Las tecnologías de la web semántica proporcionan una solución para interconectar fuentes de datos distribuidas. Esto requiere la construcción de vocabularios compartidos (i.e. ontologías que capten el significado que le dan los usuarios a la información y faciliten el acceso a los datos. No existen aún métodos consolidados para construir estos vocabularios. En este artículo se presenta la metodología desarrollada para crear SEíS, un sistema de información energética que utiliza tecnologías semánticas para integrar datos energéticos y facilitar

  6. EBES-integrated HEVAC, piping, electrial and building system. EBES - integroitu LVIS- ja rakennejaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, P.; Laine, J.; Muro, O.; Virtanen, M.

    1988-06-01

    The heating, piping, ventilation and electrical systems and the structures in an open BES-element building system of apartment houses have been integrated into an energy economic overall EBES-system. With the aid of the developed installation and dimensioning methods, design instructions and new products, the water and sewage pipes and electrical installations can be placed in the hollows of the bearing floor and wall structures, which are also used for leading of the supply and exhaust air of ventilation. The exploitation of the building mass for storag of energy and as a part of the heating system is profitable when combined radiation and warm air heating is used. The supply air can be led into the room from the side wall outlet close to the external wall such that the supply air is blown in the direction of the external wall across the room. When preheated supply air (t>10 deg C) is led into the hollows of the hollow core slab in indoor air moisture does not condensate on the surface of the hollow core slab. The energy recovered from the heat transmission losses of hollow core slabs insulated on the outside is small and saving of energy marginal. The objective values imposed on the indoor climate of apartment houses meet the recommendations in the Compiled Finnish Building Regulations (D2:1987). The indoor air temperature can also be controlled to 21+-2 deg C, air change is 0.65-1.0 l/h and the highest allowed sound level is 25-30 dB(A). The functional prerequisities of a mechanical, sound attenuated supply and exhaust air ventillation system equipped with heat recovery in an EBES-apartment house are sufficient tightness of the ductwork (maximum leakage air flow rate 0.1 dm/sup 3//sm/sup 2/ at test presof 200 Pa), of the outer building envelope (n/sub 50/<0.5 l/h) and particularly of the floors (n/sub 50/<0.1 dm/sup 3//(sm/sup 2/)) and sufficient static pressure in the air ductwork (p/sub st/>100 Pa). (Abstract Truncated)

  7. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  8. Proceedings of the 1999 Photovoltaic Performance and Reliability Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Basso, T. S.

    2000-01-25

    This report compiles the presentations made at the 1999 Photovoltaic Performance and Reliability Workshop, held on October 18-21, 1999, in Vail, Colorado. The theme of the workshop was ''Setting a Standard for PV Performance and Reliability,'' with the focus on testing, test methods, evaluation, and standards. The workshop provided a venue for technical discussions on four topical areas: module rating, module qualification, power processing, and systems. Includes the following. (1) Module Performance Rating. IEEE PAR 1479 ''Draft Recommended Practice for the Evaluation of Photovoltaic Module Energy Production'' - proceed with validating the models and inputs; look closely at the need to develop a similar activity for system energy rating. (2) Module Qualification Testing. IEEE Std.1262 ''Recommended Practice for Qualification of PV Modules'' - continue validation of proposed new qualification tests at NREL, ISPRA, and US PV industry and test lab facilities. Reliability testing should be done and should include module qualification. (3) Power Processing. The most pressing concerns expressed by individuals included system design and system components integration aspects; reliability assurance; interconnection and the need for a uniform, national approach; testing; and, infrastructure development. (4) Systems Evaluation. The most pressing concerns reiterated the concerns in the power processing session. IEEE PAR 1373 ''Draft Recommended Field Test Methods and Procedures for Grid-Connected Photovoltaic Systems.'' There was much discussion of the appropriate levels of recommended testing. IEEE PAR 1526 - ''Draft Recommended Practice for Testing the Performance of Stand-Alone Photovoltaic Systems'' - build on the completed initial testing validation at four US sites by conducting a validation of the revised practices, and aggressively pursue the previously initiated

  9. Integrating Brazilian health information systems in order to support the building of data warehouses

    Directory of Open Access Journals (Sweden)

    Sergio Miranda Freire

    Full Text Available AbstractIntroductionThis paper's aim is to develop a data warehouse from the integration of the files of three Brazilian health information systems concerned with the production of ambulatory and hospital procedures for cancer care, and cancer mortality. These systems do not have a unique patient identification, which makes their integration difficult even within a single system.MethodsData from the Brazilian Public Hospital Information System (SIH-SUS, the Oncology Module for the Outpatient Information System (APAC-ONCO and the Mortality Information System (SIM for the State of Rio de Janeiro, in the period from January 2000 to December 2004 were used. Each of the systems has the monthly data production compiled in dbase files (dbf. All the files pertaining to the same system were then read into a corresponding table in a MySQL Server 5.1. The SIH-SUS and APAC-ONCO tables were linked internally and with one another through record linkage methods. The APAC-ONCO table was linked to the SIM table. Afterwards a data warehouse was built using Pentaho and the MySQL database management system.ResultsThe sensitivities and specificities of the linkage processes were above 95% and close to 100% respectively. The data warehouse provided several analytical views that are accessed through the Pentaho Schema Workbench.ConclusionThis study presented a proposal for the integration of Brazilian Health Systems to support the building of data warehouses and provide information beyond those currently available with the individual systems.

  10. Building a taxonomy of integrated palliative care initiatives: results from a focus group.

    Science.gov (United States)

    Ewert, Benjamin; Hodiamont, Farina; van Wijngaarden, Jeroen; Payne, Sheila; Groot, Marieke; Hasselaar, Jeroen; Menten, Johann; Radbruch, Lukas

    2016-03-01

    Empirical evidence suggests that integrated palliative care (IPC) increases the quality of care for palliative patients and supports professional caregivers. Existing IPC initiatives in Europe vary in their design and are hardly comparable. InSuP-C, a European Union research project, aimed to build a taxonomy of IPC initiatives applicable across diseases, healthcare sectors and systems. The taxonomy of IPC initiatives was developed in cooperation with an international and multidisciplinary focus group of 18 experts. Subsequently, a consensus meeting of 10 experts revised a preliminary taxonomy and adopted the final classification system. Consisting of eight categories, with two to four items each, the taxonomy covers the process and structure of IPC initiatives. If two items in at least one category apply to an initiative, a minimum level of integration is assumed to have been reached. Categories range from the type of initiative (items: pathway, model or guideline) to patients' key contact (items: non-pc specialist, pc specialist, general practitioner). Experts recommended the inclusion of two new categories: level of care (items: primary, secondary or tertiary) indicating at which stage palliative care is integrated and primary focus of intervention describing IPC givers' different roles (items: treating function, advising/consulting or training) in the care process. Empirical studies are required to investigate how the taxonomy is used in practice and whether it covers the reality of patients in need of palliative care. The InSuP-C project will test this taxonomy empirically in selected initiatives using IPC. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. The Photovoltaic Higher Education National Exemplar Facility (PHENEF). Final report, [August 1, 1980--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Podbielski, V.; Shaff, D.

    1994-04-01

    In August 1980, the US Department of Energy awarded the proposed grant to Georgetown University. The grant covered the following tasks: Task 1, The Department of Energy would participate in the building of an academic facility that would facilitate the integration of flat plate photovoltaic roof modules with an optimally oriented solar architecture. The completion of the facility to be built on the Georgetown University Campus and known as the Georgetown University Intercultural Center was to be a jointly funded endeavor with the Department of Education funding $9.2M through a grant and a loan, Department of Energy funding a maximum of $4M and Georgetown University funding the residual costs. Task II, Georgetown University would provide the necessary skills, services, materials, equipment and facilities to design, furnish, install and make operational the Georgetown University Intercultural Center Photovoltaic System. The specific objective of this effort would be to build an exemplar flat plate electrical grid connected photovoltaic (PV) system which would demonstrate integration of PV modules into a watertight roofing surface. The system capability, measured at the input to the inverter, would be a 300 kilowatt peak power system as measured at the normal cell operating temperature and an isolation of 100 milliwatts per square centimeter at the collector surface. DOE funding under the grant for the PV system would be limited to a system cost of $20.00 per peak watt up to maximum of six million dollars.

  12. Simulation and Modeling of a Five -Level (NPC Inverter Fed by a Photovoltaic Generator and Integrated in a Hybrid Wind-PV Power System

    Directory of Open Access Journals (Sweden)

    M. Rezki,

    2017-08-01

    Full Text Available A distributed hybrid coordinated wind photovoltaic (PV power system was proposed in this paper. As oil and coal reserves are being depleted whilst at the same time the energy demand is growing, it is important to consider alternative energy generating techniques. Today, the five-level (NPC inverter represents a good alternative for several industrial applications. To take advantage of the five-level inverter topology and the benefits of renewable energy represented by a photovoltaic generator, a new scheme of these controllers is proposed in this work. This paper outlines the design of a hybrid power system consisting of a solar photovoltaic (PV and a wind power system. The system is modeled in Matlab Simulink and tested for various conditions. The model and results are discussed in this paper.

  13. Performative Microforests: Investigating the potential benefits of integrating spatial vegetation environments into buildings, in regards to the performance of buildings, their occupants + local ecosystems

    Directory of Open Access Journals (Sweden)

    Giancarlo Mangone

    2015-09-01

    Full Text Available The design of office buildings can substantially improve the building, social, and ecological performance of office building projects. However, existing research on improving the performance of work environments has primarily focused on identifying and evaluating methods to make work environments less bad, rather than focusing on how to develop work environments that are positively performing. Moreover, the potential of building projects to perform positively, in terms of economic, social, and ecological performance, remains relatively unexplored in existing research and building projects. To this end, this PhD research project is focused on exploring the positive economic, social, and ecological performance potential of buildings. Specifically, this research project identifies and evaluates the potential economic, social, and ecological performance benefits of integrating microforests into office buildings. Microforests are defined in this book as dynamic, stimulating, cohesive spatial environments that are composed of vegetation and soil layers that mimic the structural, perceptual, and ecological composition of a forest ecosystem, yet are not large enough to reliably provide the myriad of functions of a robust, mature forest ecosystem. This design research focus is based on findings from existing literature that suggest that natural environments and stimuli can provide a diverse range of economic, social, and ecological performance benefits. The Design Research Methodology [DRM], an established research methodology that facilitates the use of diverse research methods in a rigorous, effective manner, is used in this research project to explore and evaluate the performance potential of microforests, by investigating the following sub research questions:How can microforests improve the performance of office buildings?How can microforests improve employee performance + comfort?How can microforests improve the ecological performance of office

  14. Performative Microforests: Investigating the potential benefits of integrating spatial vegetation environments into buildings, in regards to the performance of buildings, their occupants + local ecosystems

    Directory of Open Access Journals (Sweden)

    Giancarlo Mangone

    2015-09-01

    Full Text Available The design of office buildings can substantially improve the building, social, and ecological performance of office building projects. However, existing research on improving the performance of work environments has primarily focused on identifying and evaluating methods to make work environments less bad, rather than focusing on how to develop work environments that are positively performing. Moreover, the potential of building projects to perform positively, in terms of economic, social, and ecological performance, remains relatively unexplored in existing research and building projects. To this end, this PhD research project is focused on exploring the positive economic, social, and ecological performance potential of buildings. Specifically, this research project identifies and evaluates the potential economic, social, and ecological performance benefits of integrating microforests into office buildings. Microforests are defined in this book as dynamic, stimulating, cohesive spatial environments that are composed of vegetation and soil layers that mimic the structural, perceptual, and ecological composition of a forest ecosystem, yet are not large enough to reliably provide the myriad of functions of a robust, mature forest ecosystem. This design research focus is based on findings from existing literature that suggest that natural environments and stimuli can provide a diverse range of economic, social, and ecological performance benefits. The Design Research Methodology [DRM], an established research methodology that facilitates the use of diverse research methods in a rigorous, effective manner, is used in this research project to explore and evaluate the performance potential of microforests, by investigating the following sub research questions: • How can microforests improve the performance of office buildings? • How can microforests improve employee performance + comfort? • How can microforests improve the ecological performance

  15. Reliability Research for Photovoltaic Modules

    Science.gov (United States)

    Ross, Ronald J., Jr.

    1986-01-01

    Report describes research approach used to improve reliability of photovoltaic modules. Aimed at raising useful module lifetime to 20 to 30 years. Development of cost-effective solutions to module-lifetime problem requires compromises between degradation rates, failure rates, and lifetimes, on one hand, and costs of initial manufacture, maintenance, and lost energy, on other hand. Life-cycle costing integrates disparate economic terms, allowing cost effectiveness to be quantified, allowing comparison of different design alternatives.

  16. Análisis energético de un sistema fotovoltaico integrado a una cubierta plana horizontal; Energetic analysis of a photovoltaic system integrated to a horizontal flatrooftop

    Directory of Open Access Journals (Sweden)

    Liomnis Osorio Laurencio

    2015-12-01

    Full Text Available En el presente trabajo se analiza el desempeño energético de un sistema fotovoltaico a base de silicio amorfo, integrado a la cubierta plana horizontal del Edificio Docente #2 del Instituto Superior Minero Metalúrgico de Moa.Con el software PV syst se determinó la producción anual de energía eléctrica del sistema de 3 kWp conectado a la red, así como las pérdidas por sombras, cableado, electrónica de potencia, modificación del ángulo deinclinación y por efecto de la irradiancia y temperatura. También se calcularon los parámetros característicos de la instalación, útiles para establecer perfiles mensuales para la planificación del consumo eléctrico. Los resultados demostraron que la energía anual generada, es equivalente al consumo eléctrico del Instituto durante dos días y además, constituye una alternativa para la generación de energía, a partir del aprovechamiento de espacios disponibles en azoteas de las áreas docentes y administrativas.In this research the energy performance of a photovoltaic system based on amorphous silicon is analyzed. It is integrated to the flat horizontal rooftop of Teaching Building # 2 of the Metallurgical Mining Institute of Moa. Withthe PVsyst software annual electricity production of 3 kWp system connected to grid, as well as losses shadows, wiring, power electronics, also, tilt angle and the effect of irradiance and temperature were determined. Thecharacteristic parameters of the installation, useful were calculated to establish monthly planning profiles for electrical consumption. The results showed that the annual energy generated is equivalent to the electricityconsumption of the Institute for two days and also an alternative for generation energy from the use of space available on rooftops of teaching and administrative areas.

  17. Photovoltaics for professionals solar electric systems marketing, design and installation

    CERN Document Server

    Falk, Antony; Remmers, Karl-Heinz

    2007-01-01

    For the building industry, the installation of photovoltaic systems has become a new field of activity. Interest in solar energy is growing and future business prospects are excellent. Photovoltaics for Professionals describes the practicalities of marketing, designing and installing photovoltaic systems, both grid-tied and stand-alone. It has been written for electricians, technicians, builders, architects and building engineers who want to get involved in this expanding industry. It answers all the beginner's questions as well as serving as a textbook and work of reference

  18. Advancing Integrated STEM Learning through Engineering Design: Sixth-Grade Students' Design and Construction of Earthquake Resistant Buildings

    Science.gov (United States)

    English, Lyn D.; King, Donna; Smeed, Joanna

    2017-01-01

    As part of a 3-year longitudinal study, 136 sixth-grade students completed an engineering-based problem on earthquakes involving integrated STEM learning. Students employed engineering design processes and STEM disciplinary knowledge to plan, sketch, then construct a building designed to withstand earthquake damage, taking into account a number of…

  19. Photovoltaics program plan, FY 1991--FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This program plan describes the goals and philosophy of DOE National Photovoltaics Program and its major research and development activities for fiscal years (FY) 1991 through 1995. The plan represents a consensus among researchers and manufacturers, as well as current and potential users of photovoltaics (PV). It defines the activites that we believe are necessary to continue the rapid progress toward acceptance of photovoltaics as a serious candidate for cost-competitive electric power generation by the utility, transportation, buildings, and industrial sectors. A succesful National Photovoltaics Program will help achieve many of our national priorities. The mission of the National Photovoltaics Program is to help US industry to develop photovoltaic technology for large-scale generation of economically competitive electric power in the United States, making PV a significant part of our national energy mix. To fully achieve this, we must continue to work toward the long-term goals established in our previous program plan: reducing the price of delivered electricity to 5 to 6 cents per kilowatt-hour (kWh), increasing lifetimes to 30 years, and increasing module efficiencies to 15% for flat-plate and 25% for concentrator technologies. If progress continues at its current pace, we expect that the PV industry will have installed at least 1000 megawatts (MW) of capacity in the United States and 500 MW internationally by the year 2000.

  20. Physicians’ perceptions of capacity building for managing chronic disease in seniors using integrated interprofessional care models

    Science.gov (United States)

    Lee, Linda; Heckman, George; McKelvie, Robert; Jong, Philip; D’Elia, Teresa; Hillier, Loretta M.

    2015-01-01

    Abstract Objective To explore the barriers to and facilitators of adapting and expanding a primary care memory clinic model to integrate care of additional complex chronic geriatric conditions (heart failure, falls, chronic obstructive pulmonary disease, and frailty) into care processes with the goal of improving outcomes for seniors. Design Mixed-methods study using quantitative (questionnaires) and qualitative (interviews) methods. Setting Ontario. Participants Family physicians currently working in primary care memory clinic teams and supporting geriatric specialists. Methods Family physicians currently working in memory clinic teams (n = 29) and supporting geriatric specialists (n = 9) were recruited as survey participants. Interviews were conducted with memory clinic lead physicians (n = 16). Statistical analysis was done to assess differences between family physician ratings and geriatric specialist ratings related to the capacity for managing complex chronic geriatric conditions, the role of interprofessional collaboration within primary care, and funding and staffing to support geriatric care. Results from both study methods were compared to identify common findings. Main findings Results indicate overall support for expanding the memory clinic model to integrate care for other complex conditions. However, the current primary care structure is challenged to support optimal management of patients with multiple comorbidities, particularly as related to limited funding and staffing resources. Structured training, interprofessional teams, and an active role of geriatric specialists within primary care were identified as important facilitators. Conclusion The memory clinic model, as applied to other complex chronic geriatric conditions, has the potential to build capacity for high-quality primary care, improve health outcomes, promote efficient use of health care resources, and reduce health care costs. PMID:25932482

  1. Physicians' perceptions of capacity building for managing chronic disease in seniors using integrated interprofessional care models.

    Science.gov (United States)

    Lee, Linda; Heckman, George; McKelvie, Robert; Jong, Philip; D'Elia, Teresa; Hillier, Loretta M

    2015-03-01

    To explore the barriers to and facilitators of adapting and expanding a primary care memory clinic model to integrate care of additional complex chronic geriatric conditions (heart failure, falls, chronic obstructive pulmonary disease, and frailty) into care processes with the goal of improving outcomes for seniors. Mixed-methods study using quantitative (questionnaires) and qualitative (interviews) methods. Ontario. Family physicians currently working in primary care memory clinic teams and supporting geriatric specialists. Family physicians currently working in memory clinic teams (n = 29) and supporting geriatric specialists(n = 9) were recruited as survey participants. Interviews were conducted with memory clinic lead physicians (n = 16).Statistical analysis was done to assess differences between family physician ratings and geriatric specialist ratings related to the capacity for managing complex chronic geriatric conditions, the role of interprofessional collaboration within primary care, and funding and staffing to support geriatric care. Results from both study methods were compared to identify common findings. Results indicate overall support for expanding the memory clinic model to integrate care for other complex conditions. However, the current primary care structure is challenged to support optimal management of patients with multiple comorbidities, particularly as related to limited funding and staffing resources. Structured training, interprofessional teams, and an active role of geriatric specialists within primary care were identified as important facilitators. The memory clinic model, as applied to other complex chronic geriatric conditions, has the potential to build capacity for high-quality primary care, improve health outcomes,promote efficient use of health care resources, and reduce healthcare costs.

  2. Summary of third international executive conference on photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W.

    2001-07-01

    In December 1990, the International Energy Agency (IEA) invited photovoltaic manufacturers, electrical utilities, and government leaders to a groundbreaking First Congress of Executives conference in Taormina, Italy. The purpose was to develop a strategic approach to PV market development. The Taormina Congress focused on the diffusion of applications based on cost-effectiveness. A second IEA International Conference was held in Sun Valley, Idaho, in September 1995, focusing on the implementation of physical markets based on profit opportunities. Discussions in Sun Valley included the integration of utility and PV businesses into new partnerships in the developing world. By 1995, the strategic interaction of utility activity with photovoltaic technology was recognised and a number of new business opportunities were identified in both industrialised and developing countries. The November 1999 conference, held in Venice, Italy, has taken things a step further. It focused on communicating the 'value of the sun', as well as bringing in the developing business interests and expanding roles of the building construction industries and finance institutions. This theme was considered as being the most important issue of the conference and led to the conclusion that just selling kilowatt-hours is not enough, as the market needs complete products and better concepts. Further, all of the relevant stakeholders, including PV industry, project developers, architects, local, regional and national governments, and the IEA should collaborate in a world-wide effort to accelerate the growth of markets for photovoltaic electricity. The conference was designed to provide a unique forum for senior executives from the energy and building sectors, the photovoltaic industry, financial institutions and governments. The aim was to discuss and jointly develop strategic business opportunities for photovoltaics in a rapidly changing energy market and to take the growing movement

  3. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmetti , R.; Scheib, J.; Pless, S. D.; Torcellini , P.; Petro, R.

    2011-03-01

    Net-zero energy buildings generate as much energy as they consume and are significant in the sustainable future of building design and construction. The role of daylighting (and its simulation) in the design process becomes critical. In this paper we present the process the National Renewable Energy Laboratory embarked on in the procurement, design, and construction of its newest building, the Research Support Facility (RSF) - particularly the roles of daylighting, electric lighting, and simulation. With a rapid construction schedule, the procurement, design, and construction had to be tightly integrated; with low energy use. We outline the process and measures required to manage a building design that could expect to operate at an efficiency previously unheard of for a building of this type, size, and density. Rigorous simulation of the daylighting and the electric lighting control response was a given, but the oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed. The RSF project will be thoroughly evaluated for its performance for one year; preliminary data from the postoccupancy monitoring efforts will also be presented with an eye toward the current efficacy of building energy and lighting simulation.

  4. Efficacy of integrated green design strategies in meeting green building criteria: A South Africa Study

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-05-01

    Full Text Available Green Star Office Design v1 9GBCSA 2008 rating tool. The first study was performed on a proposed new building in Groenkloof in Pretoria, while the second study was performed on a proposed new office building in Lynnwood Pretoria. Both buildings...

  5. Building performance simulation in the early design stage: An introduction to integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2015-01-01

    Designing with building performance simulation feedback in the early design stage has existed since the early days of computational modeling. However, as a consequence of a fragmented building industry building performance simulations (BPSs) in the early design stage are closely related to who...

  6. Photovoltaic cost reduction powered by nuclear spending

    Science.gov (United States)

    Smith, Timothy; Deinert, Mark

    2013-04-01

    Between 1975 to 2010, Japan has spent an average of 2700 Million per year on nuclear R&D and 74 Million per year on solar energy R&D (2010 dollars). While the cost of photovoltaics dropped by a factor of 30 during that time, the overnight cost to build a nuclear power plant has doubled between 2003 and 2009. The price of commercially available photovoltaics has been shown to follow a power law reduction with the number of units produced. This begs the question as to what the current price of these systems would be had some of the available funds used for nuclear R&D been spent on the acquisition of photovoltaics. Here we show the reduction in price for single crystal photovoltaic panels if the Japanese government spent some of their nuclear R&D funds on the installation of these systems. We use historical cost and cumulative production for the world and Japan to build a learning curve model for PV. If the government had spent only 0.07% of its nuclear R&D budget toward PV technology since 1975, photovoltaics would now have reached 1/Watt, the point at which they are cost competitive with conventional resources.

  7. Using the framework of corporate culture in "mergers" to support the development of a cultural basis for integrative medicine - guidance for building an integrative medicine department or service.

    Science.gov (United States)

    Witt, Claudia M; Pérard, Marion; Berman, Brian; Berman, Susan; Birdsall, Timothy C; Defren, Horst; Kümmel, Sherko; Deng, Gary; Dobos, Gustav; Drexler, Atje; Holmberg, Christine; Horneber, Markus; Jütte, Robert; Knutson, Lori; Kummer, Christopher; Volpers, Susanne; Schweiger, David

    2015-01-01

    An increasing number of clinics offer complementary or integrative medicine services; however, clear guidance about how complementary medicine could be successfully and efficiently integrated into conventional health care settings is still lacking. Combining conventional and complementary medicine into integrative medicine can be regarded as a kind of merger. In a merger, two or more organizations - usually companies - are combined into one in order to strengthen the companies financially and strategically. The corporate culture of both merger partners has an important influence on the integration. The aim of this project was to transfer the concept of corporate culture in mergers to the merging of two medical systems. A two-step approach (literature analyses and expert consensus procedure) was used to develop practical guidance for the development of a cultural basis for integrative medicine, based on the framework of corporate culture in "mergers," which could be used to build an integrative medicine department or integrative medicine service. Results include recommendations for general strategic dimensions (definition of the medical model, motivation for integration, clarification of the available resources, development of the integration team, and development of a communication strategy), and recommendations to overcome cultural differences (the clinic environment, the professional language, the professional image, and the implementation of evidence-based medicine). The framework of mergers in corporate culture provides an understanding of the difficulties involved in integrative medicine projects. The specific recommendations provide a good basis for more efficient implementation.

  8. Building the Column: Ground-Up Integration of Multi-Sensor Precipitation Observations

    Science.gov (United States)

    Wingo, S. M.; Marks, D. A.; Wolff, D. B.; Petersen, W. A.

    2016-12-01

    As part of NASA Wallops Flight Facility's GPM Ground-Validation work, the Precipitation Research Facility maintains and operates a suite of ground-based instrumentation comprised of a wide spectrum (S- to W-band) of scanning and vertically pointing radars and multiple types of disdrometers and rain gauges. Presently, routine data collection occurs at locations across the coastal Virginia/Maryland region, and the majority of these platforms were also deployed in each of the GPM field campaigns (HyMEx, GCPEx, MC3E, IFloodS, IPHEx, and OLYMPEX). To enable more efficient statistical, cross-platform, and ground-validation studies, a system for integrating these multi-sensor precipitation measurements throughout the atmospheric column, including space-based GPM GMI and DPR observations, has been developed. Within any set column grid area (user defines the grid center location, horizontal and vertical spacing and total extent), coincident observations are extracted from native data formats and placed into the column framework. After data from all available platforms is set into the column grid, a new data product is written in NetCDF format, affording versatility and portability. These column data files also include original details on each platform's operating parameters obtained from the native data (eg: exact location, scanning sequence, timestamps, etc) as attributes. This presentation will provide an overview of the development of the column building framework and touch on research avenues utilizing the new data product.

  9. Integration of liquid-cooled solar collectors into building walls; Gebaeudeintegration von Sonnenkollektoren mit Fluessigkeitskuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Rockendorf, G.; Bartelsen, B. [Institut fuer Solarenergieforschung GmbH Hameln/Emmerthal (ISFH), Emmerthal (Germany)

    1998-02-01

    Three different methods are presented how to integrate active solar thermal components into building facades. The solar thermal absorber acts as overheating protection and the heat produced can be utilized further. The lower annual yield in comparison to roof-mounted installations is counterbalanced by a more uniform solar gain and an improved wall insulation. The new concept of elastomer-metal-absorbers can be realized in different configurations and material combinations and offers attractive options for collector installation. The methods discussed hold the promise of significant cost reductions. (orig.) [Deutsch] Es werden drei Methoden vorgestellt, aktive solarthermische Komponenten mit Fluessigkeit als Waermetraeger in die Gebaeudehuelle zu integrieren. Dabei dient der solarthermische Absorber als Ueberhitzungsschutz und die abgefuehrte Waerme kann einer Nutzung zugefuehrt werden. Der geringere jaehrliche Waermeertrag im Vergleich zur Dachmontage wird durch ein gleichmaesssiges Ertragsprofil und eine verbesserte Waermedaemmung weitgehend ausgeglichen. Das neu entwickelte Elastomer-Metall-Absorber-Konzept (EMA-Konzept) ist in unterschiedliche Konfigurationen und Materialkombinationen umsetzbar und eroeffnet attraktive Moeglichkeiten der Kollektorinstallation. Die diskutierten Methoden lassen eine deutliche Kostenersparnis erwarten. (orig.)

  10. Design of marine macroalgae photobioreactor integrated into building to support seagriculture for biorefinery and bioeconomy.

    Science.gov (United States)

    Chemodanov, Alexander; Robin, Arthur; Golberg, Alexander

    2017-10-01

    Seagriculture, which can provide offshore grown macroalgae biomass would play a significant role in bioeconomy. Nevertheless, seagriculture development has been hindered by the lack of laboratory photobioreactors that enable fundamental and pilot scale macroalgae research. In this work, a macroalgae photobioreactor (MPBR) was developed and integrated into the building. The MPBR operation was demonstrated for 6months with cultivation of Cladophora sp., Ulva compressa and Ulva rigida green macroalgae species isolated from 3 sites at the Eastern Mediterranean coast. The growth rate, protein, ash, specific energy density, rhamnose, xylose, arabinose, glucose, galactose and glucuronic acid content of the cultivated species were quantified. The maximum accumulated energy rates were 0.033WhL -1 d -1 for Cladophora sp., 0.081WhL -1 d -1 for U. compressa and 0.029WhL -1 d -1 for U. rigida. This work provides a detailed design of an indoor, urban photobioreactor for cultivation, maintenance and energy balance analysis of macroalgae biomass for biorefinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Integrating Building Information Modeling and Health and Safety for Onsite Construction

    Science.gov (United States)

    Ganah, Abdulkadir; John, Godfaurd A.

    2014-01-01

    Background Health and safety (H&S) on a construction site can either make or break a contractor, if not properly managed. The usage of Building Information Modeling (BIM) for H&S on construction execution has the potential to augment practitioner understanding of their sites, and by so doing reduce the probability of accidents. This research explores BIM usage within the construction industry in relation to H&S communication. Methods In addition to an extensive literature review, a questionnaire survey was conducted to gather information on the embedment of H&S planning with the BIM environment for site practitioners. Results The analysis of responses indicated that BIM will enhance the current approach of H&S planning for construction site personnel. Conclusion From the survey, toolbox talk will have to be integrated with the BIM environment, because it is the predominantly used procedure for enhancing H&S issues within construction sites. The advantage is that personnel can visually understand H&S issues as work progresses during the toolbox talk onsite. PMID:25830069

  12. Integrating building information modeling and health and safety for onsite construction.

    Science.gov (United States)

    Ganah, Abdulkadir; John, Godfaurd A

    2015-03-01

    Health and safety (H&S) on a construction site can either make or break a contractor, if not properly managed. The usage of Building Information Modeling (BIM) for H&S on construction execution has the potential to augment practitioner understanding of their sites, and by so doing reduce the probability of accidents. This research explores BIM usage within the construction industry in relation to H&S communication. In addition to an extensive literature review, a questionnaire survey was conducted to gather information on the embedment of H&S planning with the BIM environment for site practitioners. The analysis of responses indicated that BIM will enhance the current approach of H&S planning for construction site personnel. From the survey, toolbox talk will have to be integrated with the BIM environment, because it is the predominantly used procedure for enhancing H&S issues within construction sites. The advantage is that personnel can visually understand H&S issues as work progresses during the toolbox talk onsite.

  13. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This 2007 edition summary report for the Swiss Federal Office of Energy (SFOE), reports on the work done within the framework of the Swiss Photovoltaics Program in 2006. The document contains 46 abstracts on work done in the photovoltaics area. The subjects reported on in the thin-film photovoltaics sector include advanced processing and characterisation of thin film silicon solar cells, high-rate deposition of micro-crystalline silicon, a new large-area VHF reactor for high-rate deposition of micro-crystalline silicon, the stability of zinc oxide in encapsulated thin film silicon solar cells, spectral photocurrent measurement, roll-to-roll technology for the production of thin film silicon modules, advanced thin film technologies, ultra thin silicon wafer cutting, bifacial thin industrial multi-crystalline silicon solar cells, flexible CIGS solar cells and mini-modules, large-area CIS-based thin-film solar modules and advanced thin-film technologies. In the area of dye-sensitised modules, the following projects are reported on: Dye-sensitised nano-crystalline solar cells, voltage enhancement of dye solar cells and molecular orientation as well as low band-gap and new hybrid device concepts for the improvement of flexible organic solar cells. Other projects reported on include a new PV wave making more efficient use of the solar spectrum, photovoltaic textiles, organic photovoltaic devices, photo-electrochemical and photovoltaic conversion and storage of solar energy, PV modules with antireflex glass, improved integration of PV into existing buildings, the seventh program at the LEEE-TISO, the 'PV enlargement' and 'Performance' programs, efficiency and annual electricity production of PV modules, photovoltaics system technology 2005-2006, an update on photovoltaics in view of the 'ecoinvent' v.2.0 tool and environmental information services for solar energy industries. The contributions to four Swiss IEA PVPS tasks and the Swiss

  14. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM and Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-02-01

    Full Text Available The integration of Building Information Modeling (BIM and Geographic Information System (GIS has been identified as a promising but challenging topic to transform information towards the generation of knowledge and intelligence. Achievement of integrating these two concepts and enabling technologies will have a significant impact on solving problems in the civil, building and infrastructure sectors. However, since GIS and BIM were originally developed for different purposes, numerous challenges are being encountered for the integration. To better understand these two different domains, this paper reviews the development and dissimilarities of GIS and BIM, the existing integration methods, and investigates their potential in various applications. This study shows that the integration methods are developed for various reasons and aim to solve different problems. The parameters influencing the choice can be summarized and named as “EEEF” criteria: effectiveness, extensibility, effort, and flexibility. Compared with other methods, semantic web technologies provide a promising and generalized integration solution. However, the biggest challenges of this method are the large efforts required at early stage and the isolated development of ontologies within one particular domain. The isolation problem also applies to other methods. Therefore, openness is the key of the success of BIM and GIS integration.

  15. Photovoltaic venture analysis. Final report. Volume I. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Posner, D.; Schiffel, D.; Doane, J.; Bishop, C.

    1978-07-01

    The objective of the study, government programs under investigation, and a brief review of the approach are presented. Potential markets for photovoltaic systems relevant to the study are described. The response of the photovoltaic supply industry is then considered. A model which integrates the supply and demand characteristics of photovoltaics over time was developed. This model also calculates the economic benefits associated with various government subsidy programs. Results are derived under alternative possible supply, demand, and macroeconomic conditions. A probabilistic analysis of the costs and benefits of a $380 million federal photovoltaic procurement initiative, as well as certain alternative strategies, is summarized. Conclusions and recommendations based on the analysis are presented.

  16. Strategies for incorporation of polymer photovoltaics into garments and textiles

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.; Winther-Jensen, B.

    2006-01-01

    The incorporation of polymer photovoltaics into textiles was demonstrated following two different strategies. Simple incorporation of a polyethyleneterphthalate (PET) substrate carrying the polymer photovoltaic device prepared by a doctor blade technique necessitated the use of the photovoltaic...... device as a structural element. The total area of the device on PET was typically much smaller than the active area due to the decorative design of the aluminium electrode. Elaborate integration of the photovoltaic device into the textile material involved the lamination of a polyethylene (PE) film onto...

  17. The integration of engineering and architecture: A perspective on natural ventilation for the new San Francisco Federal Building

    Energy Technology Data Exchange (ETDEWEB)

    McConahey, Erin; Haves, Philip; Christ, Tim

    2002-05-31

    A description of the in-progress design of a new Federal Office Building for San Francisco is used to illustrate a number of issues arising in the design of large, naturally ventilated office buildings. These issues include the need for an integrated approach to design involving the architects, mechanical and structural engineers, lighting designers and specialist simulation modelers. In particular, the use of natural ventilation, and the avoidance of air-conditioning, depends on the high degree of exposed thermal mass made possible by the structural scheme and by the minimization of solar heat gains while maintaining the good daylighting that results from optimization of the fagade. Another issue was the need for a radical change in interior space planning in order to enhance the natural ventilation; all the individual enclosed offices are located along the central spine of each floorplate rather than at the perimeter. The role of integration in deterring the undermining of the design through value engineering is discussed. The comfort criteria for the building were established based on the recent extension to the ASHRAE comfort standard based on the adaptive model for naturally ventilated buildings. The building energy simulation program EnergyPlus was used to compare the performance of different natural ventilation strategies. The results indicate that, in the San Francisco climate, wind-driven ventilation provides sufficient nocturnal cooling to maintain comfortable conditions and that external chimneys do not provide significant additional ventilation at times when it when it would be beneficial.

  18. Double photovoltaic facades. ''P. V. Skin''. Prototypes research and development; Fachada doble fotovoltaica P. V. Skin Prototipos, investigaacion y desarrollo

    Energy Technology Data Exchange (ETDEWEB)

    Eyras, I.; Arribas, F.; Bofill, M. A.; Vega, J.; Perpinan, O.

    2004-07-01

    Photovoltaic skins in facades give the opportunity to reduce level lightning inside the building to essential levels and to transform solar energy in electric energy instead of refusing the exceeded solar energy. Ventilated double skins also allow the use of thermal energy, produced in air chamber located between both glazed surfaces, with the aim of injecting hot air inside the building and to extract this inside air without mechanical equipment. Due to those reasons ventilated double skins are taken into consideration as one of the most interesting applications of solar energy in integrated photovoltaic buildings. The paper will expound the basis of future investigation on operation of different skins with their respective constructive solutions including examples of executed projects, simulation with specific software and energetic balance sheets. (Author)

  19. Development and Analysis of New Integrated Energy Systems for Sustainable Buildings

    Science.gov (United States)

    Khalid, Farrukh

    Excessive consumption of fossil fuels in the residential sector and their associated negative environmental impacts bring a significant challenge to engineers within research and industrial communities throughout the world to develop more environmentally benign methods of meeting energy needs of residential sector in particular. This thesis addresses potential solutions for the issue of fossils fuel consumption in residential buildings. Three novel renewable energy based multigeneration systems are proposed for different types of residential buildings, and a comprehensive assessment of energetic and exergetic performances is given on the basis of total occupancy, energy load, and climate conditions. System 1 is a multigeneration system based on two renewable energy sources. It uses biomass and solar resources. The outputs of System 1 are electricity, space heating, cooling, and hot water. The energy and exergy efficiencies of System 1 are 91.0% and 34.9%, respectively. The results of the optimisation analysis show that the net present cost of System 1 is 2,700,496 and that the levelised cost of electricity is 0.117/kWh. System 2 is a multigeneration system, integrating three renewable energy based subsystems; wind turbine, concentrated solar collector, and Organic Rankine Cycle supplied by a ground source heat exchanger. The outputs of the System 2 are electricity, hot water, heating and cooling. The optimisation analysis shows that net present cost is 35,502 and levelised cost of electricity is 0.186/kWh. The energy and exergy efficiencies of System 2 are found to be 34.6% and 16.2%, respectively. System 3 is a multigeneration system, comprising two renewable energy subsystems-- geothermal and solar to supply power, cooling, heating, and hot water. The optimisation analysis shows that the net present cost of System 3 is 598,474, and levelised cost of electricity of 0.111/kWh. The energy and exergy efficiencies of System 3 are 20.2% and 19.2%, respectively, with

  20. Capacity building and policy development in Belize marine protected areas, an example for Caribbean integrated coastal management

    Directory of Open Access Journals (Sweden)

    M. James C. Crabbe

    2014-09-01

    Full Text Available Sustainability science can, through capacity building, allow for integrated stakeholder management of the vital Caribbean marine ecosystems. We did a capacity building exercise in two major coral reef areas in Southern Belize. The key outcome was a six-month personal/professional action plan developed by each participant about tactics for leading, educating and supporting issues regarding sustainable development and tactics for collaboration to influence policy decisions. Our results can be applied across the Caribbean. Rev. Biol. Trop. 62 (Suppl. 3: 287-291. Epub 2014 September 01.