WorldWideScience

Sample records for building integrated photovoltaic-thermal

  1. Exergy analysis of building integrated semitransparent photovoltaic thermal (BiSPVT system

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2017-02-01

    Full Text Available In this paper, an exergy analysis of building integrated semitransparent photovoltaic thermal (BiSPVT system has been carried out. In the proposed system, the room below building integrated semitransparent photovoltaic thermal system has been considered as an air-conditioned (constant room temperature. Energy balance equation for each components namely semitransparent photovoltaic roof, floor and room air have been given. Based on energy balance, an analytical expression for room air, solar cell and room floor temperatures have been derived along with solar cell electrical efficiency. Further by considering the day lighting parameters, an overall exergy of the proposed system has been derived for different number of air change between the room and ambient air. It has been observed that there is reduction in room air and solar cell temperatures with an increase of number of air changes. However, solar cell electrical efficiency increases with decrease in temperature of solar cell. Further, it is found that an electrical power and illumination inside the room are more dominating in comparison with thermal exergy. An increase of 1.15% in an overall exergy is observed for the number of air changes varies from 0 to 4. Experimental validation of theoretical model has also been carried out.

  2. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  3. Building integrated photovoltaics

    NARCIS (Netherlands)

    Ritzen, M.J.; Vroon, Z.A.E.P.; Geurts, C.P.W.; Reinders, Angèle; Verlinden, Pierre; Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Photovoltaic (PV) installations can be realized in different situations and on different scales, such as at a building level. PV installations at the building level can either be added to the building envelope, which is called building added PV (BAPV), or they can be integrated into the building

  4. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  5. Building integrated photovoltaic; Photovaltaique integre aux batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Durable, modular and flexible in use, as demonstrated by the different case studies in this publication, photovoltaic can replace diverse building elements, from glass facades to weather proof roofs. This leaflet towards architects describes aesthetic, technical, economic and environmental interest of building integrated photovoltaic. (author)

  6. Annual performance of building-integrated photovoltaic/water-heating system for warm climate application

    International Nuclear Information System (INIS)

    Chow, T.T.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; He, W.; Ji, J.

    2009-01-01

    A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system has economic advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities. (author)

  7. Building integrated concentrating photovoltaics: A review

    International Nuclear Information System (INIS)

    Chemisana, Daniel

    2011-01-01

    For building integration, Concentrating Photovoltaic (CPV) systems can offer a host of advantages over conventional flat panel devices, the most notable being: a higher electrical conversion efficiency in the PV cells, better use of space, ease of recycling of constituent materials, and reduced use of toxic products involved in the PV cells' production process. However, the viability of Building-Integrated Concentrating PV (BICPV) systems is dependent on their ability to offer a comparative economic advantage over flat panel photovoltaic technologies whose market prices are decreasing from day to day and which offer other advantages such as ease of replacement of structural elements. A comparative analysis is presented of the main existing CPV systems' suitability for use in buildings, in which the different challenges specific to integration of each system are discussed. The systems are categorized by type of concentration technology and concentration factor. (author)

  8. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  9. Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system

    International Nuclear Information System (INIS)

    Yang, Tingting; Athienitis, Andreas K.

    2015-01-01

    Highlights: • BIPV/T system thermal efficiency is 5% higher using two inlets compared to one. • BIPV/T thermal efficiency is 7.6% higher using semi-transparent than opaque PV. • Detailed air temperature profile in BIPV/T channel is obtained. • Nusselt number correlations are developed. - Abstract: An experimental study of thermal characteristics of a novel two-inlet air-based open-loop building integrated photovoltaic/thermal (BIPV/T) system using a full-scale solar simulator is presented. Experimental prototypes of one-inlet and two-inlet BIPV/T systems were constructed for conducting comparative experiments. Variations of BIPV/T systems are also investigated including systems employing opaque mono-crystalline silicon photovoltaic (PV) panels and systems employing semi-transparent mono-crystalline PV panels. Experimental results demonstrate that an equivalent two-inlet system with frameless PV panels can increase the thermal efficiency by 5% compared to a conventional one-inlet system, and that the BIPV/T system with semi-transparent PV panels achieves 7.6% higher thermal efficiency due to the absorption of some solar radiation at the bottom surface in the BIPV/T system cavity. Also, the two-inlet BIPV/T design is easily implemented and does not add significant cost. Detailed air temperature measurements reveal that the mixing of the warm outlet air from the first section and the cool ambient air drawn in from the second inlet contributes to the improved performance of the two-inlet system. Based on a thermal network model of the BIPV/T system and experimental data, correlations are developed for the convective heat transfer coefficients in the two sections. These are necessary for further analysis and development of BIPV/T system with multiple inlets.

  10. Integration of thermal photovoltaic hybrid sensors to the building. Final report july 2004. Integrated research project 6.2; Integration de capteurs hybrides photovoltaiques thermiques au bati. Rapport final juillet 2004. Projet de recherche integre 6.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The electricity and the heat are two complementary energies necessary for the accommodation. A thermal solar installation needs the electric power for the coolant fluid flow. This research project concerns the optimization of integrated solutions to the building, providing simultaneously these two energies. This document presents the proposed researches programs: analysis of the socio-economic aspects, the physical phenomena knowledge, simulation of the behavior, experimentation, hybrid components integration, simulation of the photovoltaic modules operating and thermal simulation of an electric converter. (A.L.B.)

  11. A Review of the Dutch Ecosystem for Building Integrated Photovoltaics

    NARCIS (Netherlands)

    Osseweijer, Floor J W; Van Den Hurk, Linda B P; Teunissen, Erik J H M; Van Sark, Wilfried G J H M

    2017-01-01

    Building integrated photovoltaics (BIPV) is one of the most promising solutions to generate renewable electricity in the built environment. BIPV applications can replace regular building components into prefab integrated components that at the same time generate electricity, contributing to the

  12. Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel

    International Nuclear Information System (INIS)

    Chen, Fangliang; Yin, Huiming

    2016-01-01

    Highlights: • A BIPVT solar panel is designed and fabricated for energy efficient buildings. • A high-speed manufacture method is developed to produce the functionally graded materials. • Laboratory tests demonstrate BIPVT’s energy efficiency improvement and innovations. • The PV efficiency is enhanced ∼24% through temperature control of the panel by water flow. • The combined electric and thermal efficiency reaches >75% of solar irradiation. - Abstract: A building integrated photovoltaic-thermal (BIPVT) multifunctional roofing panel has been developed in this study to harvest solar energy in the form of PV electricity as well as heat energy through the collection of warm water. As a key component of the multifunctional building envelope, an aluminum/high-density polyethylene (HDPE) functionally graded material (FGM) panel embedded with aluminum water tubes has been fabricated through the vibration-sedimentation approach. The FGM layer gradually transits material phases from well-conductive side (with aluminum dominated) to another highly insulated side (with HDPE). The heat in the PV cells can be easily transferred into the conductive side of the FGM and then collected by the water flow in the embedded tubes. Therefore, the operational temperature of the PV cells can be significantly lowered down, which recovers the PV efficiency in hot weather. In this way, the developed BIPVT panel is able to efficiently harvest solar energy in the form of both PV electricity and heat. The performance of a prototype BIPVT panel has been evaluated in terms of its thermal efficiency via warm water collection and PV efficiency via the output electricity. The laboratory test results demonstrate that significant energy conversion efficiency improvement can be achieved for both electricity generation and heat collection by the presented BIPVT roofing system. Overall, the performance indicates a very promising prospective of the new BIPVT multifunctional roofing panel.

  13. Energy Payback Time Calculation for a Building Integrated Semitransparent Thermal (BISPVT) System with Air Duct

    OpenAIRE

    Kanchan Mudgil; Deepali Kamthania

    2013-01-01

    This paper evaluates the energy payback time (EPBT) of building integrated photovoltaic thermal (BISPVT) system for Srinagar, India. Three different photovoltaic (PV) modules namely mono crystalline silicon (m-Si), poly crystalline silicon (p-Si), and amorphous silicon (a-Si) have been considered for calculation of EPBT. It is found that, the EPBT is lowest in m-Si. Hence, integration of m-Si PV modules on the roof of a room is economical.

  14. Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors

    International Nuclear Information System (INIS)

    Daghigh, Ronak; Ibrahim, Adnan; Jin, Goh Li; Ruslan, Mohd Hafidz; Sopian, Kamaruzzaman

    2011-01-01

    BIPVT is an application where solar PV/T modules are integrated into the building structure. System design parameters such as thermal conductivity and fin efficiency, type of cells, type of coolant and operating conditions are factors which influence the performance of BIPVT. Attempts have been made to improve the efficiency of building-integrated photovoltaic thermal (BIPVT). A new design concept of water-based PVT collector for building-integrated applications has been designed and evaluated. The results of simulation study of amorphous silicon (a-Si) PV/T and crystalline silicon (c-Si) module types are based on the metrological condition of Malaysia for a typical day in March. At a flow rate of 0.02 kg/s, solar radiation level between 700 and 900 W/m 2 and ambient temperature between 22 and 32 o C, the electrical, thermal and combined photovoltaic thermal efficiencies for the PV/T (a-Si) were 4.9%, 72% and 77%, respectively. Moreover, the electrical, thermal and combined photovoltaic thermal efficiencies of the PV/T (c-Si) were 11.6%, 51% and 63%.

  15. Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof

    Energy Technology Data Exchange (ETDEWEB)

    Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

    2009-10-15

    Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

  16. Large-scale building integrated photovoltaics field trial. First technical report - installation phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the results of the first eighteen months of the Large-Scale Building Integrated Photovoltaic Field Trial focussing on technical aspects. The project aims included increasing awareness and application of the technology, raising the UK capabilities in application of the technology, and assessing the potential for building integrated photovoltaics (BIPV). Details are given of technology choices; project organisation, cost, and status; and the evaluation criteria. Installations of BIPV described include University buildings, commercial centres, and a sports stadium, wildlife park, church hall, and district council building. Lessons learnt are discussed, and a further report covering monitoring aspects is planned.

  17. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  18. Characterization of a photovoltaic-thermal module for Fresnel linear concentrator

    International Nuclear Information System (INIS)

    Chemisana, D.; Ibanez, M.; Rosell, J.I.

    2011-01-01

    Highlights: → A combined domed Fresnel lens - CPC PVT system is designed and characterized. → Electrical and thermal experiments have been performed. → CFD analysis has been used to determine thermal characteristic dimensionless numbers. - Abstract: An advanced solar unit is designed to match the needs of building integration and concentrating photovoltaic/thermal generation. The unit proposed accurately combines three elements: a domed linear Fresnel lens as primary concentrator, a compound parabolic reflector as secondary concentrator and a photovoltaic-thermal module. In this work the photovoltaic-thermal generator is built, analysed and characterized. Models for the electrical and thermal behaviour of the module are developed and validated experimentally. Applying a thermal resistances approach the results from both models are combined. Finally, efficiency electrical and thermal curves are derived from theoretical analysis showing good agreement with experimental measurements.

  19. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  20. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  1. Research and Development Needs for Building-Integrated Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  2. A Solar Atlas for Building-Integrated Photovoltaic Electricity Resource Assessment

    DEFF Research Database (Denmark)

    Möller, Bernd; Nielsen, Steffen; Sperling, Karl

    While photovoltaic energy gathers momentum as power costs increase and panel costs decrease, the total technical and economic potentials for building integrated solar energy in Denmark remain largely unidentified. The current net metering feed-in scheme is restricted to 6kW plant size, limiting...... large scale application. This paper presents a solar atlas based on a high-resolution digital elevation model (DEM) of all 2.9 million buildings in the country, combined with a building register. The 1.6 m resolution DEM has been processed into global radiation input, solar energy output and production....... The continuous assessment of solar electricity generation potentials by marginal costs, ownership and plant type presented in the paper may be used for defining long term policies for the development of photovoltaic energy, as well as political instruments such as a multi-tier feed-in tariff....

  3. With building integrated photovoltaic in a daylight optimized passive house to energy autonomy; Mit gebaeudeintegrierter PV im tageslichtoptimierten Passivhaus zur bilanziellen Energieautarkie

    Energy Technology Data Exchange (ETDEWEB)

    Miloni, R.P. [Miloni Lichtplanung und Architektur, Hausen (Switzerland)

    2008-07-01

    With the introduction of a cost recovering energy feeding law, new possibilities open up for the building integration of photovoltaics and for the solar power generation at the ''Point of sale ''. Still, the appropriate Swiss market is marginal. Not all legal, technical and financial hurdles are removed. Here the photovoltaics with its building integration is in touch with an emotional factor of revaluation: An integration of photovoltaics adresses the building owner beyond their technical-economic value at a culturally abstract level - a wing of a butterfly oscillating in the sunlight also touches on a completely different level. Exactly the same the integration of photovoltaics makes the building to a unique piece of jewellery. In the pioneer phase of the photovoltaics market, architectonically successful integrations of photovoltaics succeeded in a break-through of the solar power generation. Photovoltaics at building coverings is more than a ''fashion '': it becomes a lever arm, with which the solarization of our society transports significant values. Apart from rational-technical considerations this effect has to be used to favour a broad application of photovoltaics with the building integration more purposefully.

  4. Joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids

    International Nuclear Information System (INIS)

    Baldi, Simone; Karagevrekis, Athanasios; Michailidis, Iakovos T.; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • Energy efficient operation of photovoltaic-equipped interconnected microgrids. • Optimized energy demand for a block of heterogeneous buildings with different sizes. • Multiobjective optimization: matching demand and supply taking into account thermal comfort. • Intelligent control mechanism for heating, ventilating, and air conditioning units. • Optimization of energy consumption and thermal comfort at the aggregate microgrid level. - Abstract: Electrical smart microgrids equipped with small-scale renewable-energy generation systems are emerging progressively as an alternative or an enhancement to the central electrical grid: due to the intermittent nature of the renewable energy sources, appropriate algorithms are required to integrate these two typologies of grids and, in particular, to perform efficiently dynamic energy demand and distributed generation management, while guaranteeing satisfactory thermal comfort for the occupants. This paper presents a novel control algorithm for joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids. Energy demand shaping is achieved via an intelligent control mechanism for heating, ventilating, and air conditioning units. The intelligent control mechanism takes into account the available solar energy, the building dynamics and the thermal comfort of the buildings’ occupants. The control design is accomplished in a simulation-based fashion using an energy simulation model, developed in EnergyPlus, of an interconnected microgrid. Rather than focusing only on how each building behaves individually, the optimization algorithm employs a central controller that allows interaction among the buildings of the microgrid. The control objective is to optimize the aggregate microgrid performance. Simulation results demonstrate that the optimization algorithm efficiently integrates the microgrid with the photovoltaic system that provides free electric energy: in

  5. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  6. Luminescent solar concentrators for building-integrated photovoltaics

    Science.gov (United States)

    Meinardi, Francesco; Bruni, Francesco; Brovelli, Sergio

    2017-12-01

    The transition to fully energetically sustainable architecture through the realization of so-called net zero-energy buildings is currently in progress in areas with low population density. However, this is not yet true in cities, where the cost of land for the installation of ground photovoltaic (PV) is prohibitively high and the rooftop space is too scarce to accommodate the PV modules necessary for sustaining the electrical requirements of tall buildings. Thus, new technologies are being investigated to integrate solar-harvesting devices into building façades in the form of PV windows or envelope elements. Luminescent solar concentrators (LSCs) are the most promising technology for semi-transparent, electrodeless PV glazing systems that can be integrated 'invisibly' into the built environment without detrimental effects to the aesthetics of the building or the quality of life of the inhabitants. After 40 years of research, recent breakthroughs in the realization of reabsorption-free emitters with broadband absorption have boosted the performance of LSCs to such a degree that they might be commercialized in the near future. In this Perspective, we explore the successful strategies that have allowed this change of pace, examining and comparing the different types of chromophores and waveguide materials, and discuss the issues that remain to be investigated for further progress.

  7. Thermal performances of ETFE cushion roof integrated amorphous silicon photovoltaic

    International Nuclear Information System (INIS)

    Hu, Jianhui; Chen, Wujun; Qiu, Zhenyu; Zhao, Bing; Zhou, Jinyu; Qu, Yegao

    2015-01-01

    Highlights: • Thermal performances of a three layer ETFE cushion integrated a-Si PV is evaluated. • Temperature of a-Si PV obviously affects temperature field and temperature boundary. • The maximum temperature difference of 3.4 K between measured and numerical results. • Main transport mechanisms in upper and lower chambers are convection and conduction. • Heat transfer coefficients of this roof are less than those of other ETFE cushion roofs. - Abstract: Thermal performances of the ETFE cushion roof integrated amorphous silicon photovoltaic (a-Si PV) are essential to estimate building performances, such as temperature distribution and heat transfer coefficient. To investigate these thermal performances, an experimental mock-up composed of a-Si PV and a three-layer ETFE cushion roof was built and the experiment was carried out under summer sunny condition. Meanwhile, numerical model with real boundary conditions was performed in this paper. The experimental results show that the temperature sequence of the three layers was the middle, top and bottom layer and that the PV temperature caused by solar irradiance was 353.8 K. This gives evidence that the PV has a significant effect on the temperature distribution. The experimental temperature was in good agreement with the corresponding location of the numerical temperature since the maximum temperature difference was only 3.4 K. Therefore, the numerical results were justified and then used to analyze the airflow characteristics and calculate the thermal performances. For the airflow characteristics, it is found that the temperature distribution was not uniform and the main transport mechanisms in the upper and lower chambers formed by the three layers were the convection and conduction, respectively. For the thermal performances, the surface convective heat transfer coefficients were obtained, which have validated that thermal performances of the three-layer ETFE cushion integrated a-Si PV are better than

  8. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  9. A thermal model for amorphous silicon photovoltaic integrated in ETFE cushion roofs

    International Nuclear Information System (INIS)

    Zhao, Bing; Chen, Wujun; Hu, Jianhui; Qiu, Zhenyu; Qu, Yegao; Ge, Binbin

    2015-01-01

    Highlights: • A thermal model is proposed to estimate temperature of a-Si PV integrated in ETFE cushion. • Nonlinear equation is solved by Runge–Kutta method integrated in a new program. • Temperature profiles varying with weather conditions are obtained and analyzed. • Numerical results are in good line with experimental results with coefficients of 0.821–0.985. • Reasons for temperature difference of 0.9–4.6 K are solar irradiance and varying parameters. - Abstract: Temperature characteristics of amorphous silicon photovoltaic (a-Si PV) integrated in building roofs (e.g. the ETFE cushions) are indispensible for evaluating the thermal performances of a-Si PV and buildings. To investigate the temperature characteristics and temperature value, field experiments and numerical modeling were performed and compared in this paper. An experimental mock-up composed of a-Si PV and a three-layer ETFE cushion structure was constructed and experiments were carried out under four typical weather conditions (winter sunny, winter cloudy, summer sunny and summer cloudy). The measured solar irradiance and air temperature were used as the real weather conditions for the thermal model. On the other side, a theoretical thermal model was developed based on energy balance equation which was expressed as that absorbed energy was equal to converted energy and energy loss. The corresponding differential equation of PV temperature varying with weather conditions was solved by the Runge–Kutta method. The comparisons between the experimental and numerical results were focusing on the temperature characteristics and temperature value. For the temperature characteristics, good agreement was obtained by correlation analysis with the coefficients of 0.821–0.985, which validated the feasibility of the thermal model. For the temperature value, the temperature difference between the experimental and numerical results was only 0.9–4.6 K and the reasons could be the dramatical

  10. Photovoltaics for Buildings Cutting-Edge PV

    International Nuclear Information System (INIS)

    Hayter, S. J.; Martin, R. L.

    1998-01-01

    Photovoltaic (PV) technology development for building-integrated applications (commonly called PV for Buildings) is one of the fastest growing areas in the PV industry. Buildings represent a huge potential market for photovoltaics because they consume approximately two-thirds of the electricity consumed in the US. The PV and buildings industries are beginning to work together to address issues including building codes and standards, integration, after-market servicing, education, and building energy efficiency. One of the most notable programs to encourage development of new PV-for-buildings products is the PV:BONUS program, supported by the US Department of Energy. Demand for these products from building designers has escalated since the program was initiated in 1993. This paper presents a range of PV-for-buildings issues and products that are currently influencing today's PV and buildings markets

  11. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations

    DEFF Research Database (Denmark)

    Lodi, C.; Bacher, Peder; Cipriano, J.

    2012-01-01

    reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...... and heat transfer coefficients is fundamental in order to improve the thermo-electrical production.The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement......This paper deals with grey-box modelling of the energy transfer of a double skin Building Integrated Photovoltaic (BIPV) system. Grey-box models are based on a combination of prior physical knowledge and statistics, which enable identification of the unknown parameters in the system and accurate...

  12. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  13. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    International Nuclear Information System (INIS)

    Khan, M Reyasudin Basir; Jidin, Razali; Shaaya, Sharifah Azwa; Pasupuleti, Jagadeesh

    2013-01-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  14. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    Science.gov (United States)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Azwa Shaaya, Sharifah

    2013-06-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  15. A Simulation Method to Find the Optimal Design of Photovoltaic Home System in Malaysia, Case Study: A Building Integrated Photovoltaic in Putra Jaya

    OpenAIRE

    Riza Muhida; Maisarah Ali; Puteri Shireen Jahn Kassim; Muhammad Abu Eusuf; Agus G.E. Sutjipto; Afzeri

    2009-01-01

    Over recent years, the number of building integrated photovoltaic (BIPV) installations for home systems have been increasing in Malaysia. The paper concerns an analysis - as part of current Research and Development (R&D) efforts - to integrate photovoltaics as an architectural feature of a detached house in the new satellite township of Putrajaya, Malaysia. The analysis was undertaken using calculation and simulation tools to optimize performance of BIPV home system. In this study, a the simu...

  16. Integrated photovoltaic-thermal solar energy conversion systems

    Science.gov (United States)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  17. Economic viability of a residential building integrated photovoltaic generator in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziuku, Sosten; Meyer, Edson L. [Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700 (South Africa)

    2012-07-01

    A photovoltaic (PV) generator was integrated onto the north facing roof of an energy efficient house in South Africa. The building integrated photovoltaic generator (BIPV) supplies power to the household loads and the grid and is also the roof facade. This paper presents an economic evaluation of the viability of the BIPV system using methods of investment analysis. The capital cost and life cycle cost of energy were found to be ZAR 52 631-58/kWp and ZAR 1-94/kWh respectively. The payback period was 8 years and adjusted internal rate of return 9.3%. Parametric sensitivity analysis revealed that a 50% decrease in module price results in a 29% reduction in life cycle cost of energy and more than 50% reduction in payback period.

  18. An analysis of the performance of a 2.6 kWp building integrated photovoltaic installation

    International Nuclear Information System (INIS)

    Sulaiman Shaari

    2000-01-01

    This paper presents a summary of an analysis of the performance results of a 2.6 kWp Building integrated Photovoltaic (BIPV) installation. The building has fifty Siemens M55 photovoltaic (PV) modules integrated as part of the roof of the building, grid-interactive via an SMA inverter. Data have been compiled and a detailed analysis of its performance was done using a dedicated BIPV computer model called PVSYST2.0. It was found that the general performance of the system was at the lower end of the spectrum mainly due to inherent architectural design of the building. This came by way of shading on the modules casted by shadow: of existing roofs of the building, and adverse effects from temperature increases on the modules due to the heating regimes in the building and lack of ventilation of the modules. The problem was exacerbated by an inverter-to-PV size ratio mismatch. In addition there had been some teething problems during the earlier periods of operation. Lessons from this experience are drawn up to serve as a precautionary note in designing other BIPV installations, especially valuable for applications in tropical climate countries, like Malaysia. (Author)

  19. Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building

    NARCIS (Netherlands)

    Robledo, C.B.; Oldenbroek, V.D.W.M.; Abbruzzese, F.; van Wijk, A.J.M.

    2018-01-01

    This paper presents the results of a demonstration project, including building-integrated photovoltaic (BIPV) solar panels, a residential building and a hydrogen fuel cell electric vehicle (FCEV) for combined mobility and power generation, aiming to achieve a net zero-energy residential building

  20. Thermoelectric cooling in combination with photovoltaics and thermal energy storage

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2017-01-01

    Full Text Available The article deals with the use of modern technologies that can improve the thermal comfort in buildings. The article describes the usage of thermal energy storage device based on the phase change material (PCM. The technology improves the thermal capacity of the building and it is possible to use it for active heating and cooling. It is designed as a “green technology” so it is able to use renewable energy sources, e.g., photovoltaic panels, solar thermal collectors, and heat pump. Moreover, an interesting possibility is the ability to use thermal energy storage in combination with a photovoltaic system and thermoelectric coolers. In the research, there were made measurements of the different operating modes and the results are presented in the text.

  1. Experimental integrated photovoltaic systems

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan; Markovska, Natasha; Dimitrov, D.; Kocev, K.; Dimitrovski, D.

    2000-01-01

    Recently, the interest in building-integrated photovoltaic installations has started to increase within governmental and municipality authorities, as well as some industrial companies. To serve a national public-awareness program of solar electricity promotion and education, the indigenous solar energy potential, optimization of possible PV installation, and three test cases of building-integrated grid-connected experimental facilities have been studied. The results showed the feasibility and performance of the proposed concepts. (Original)

  2. Performance Analysis of a Photovoltaic-Thermal Integrated System

    International Nuclear Information System (INIS)

    Radziemska, E.

    2009-01-01

    The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is highly desirable to obtain efficiency increase. The total efficiency of 60-80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings the destroyed exergy has been called energy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiencies in a system. This information, which cannot be provided by other means (e.g., an energy analysis), is very useful for the improvement and cost-effectiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solar watt module.

  3. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  4. Integration of solar energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Mennola, T.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.; Rasinkoski, A.; Spiers, D.; Eenilae, P. [Neste Advanced Power Systems (Finland)

    1998-12-31

    New photovoltaic building elements were developed and the uses of various solar technologies in buildings were optimised with computational design tools. The novel amorphous silicon photovoltaic elements allow for economic integration of photovoltaics in large facades. The cost of grid-connected systems may be reduced by approximately 20 % through the advanced design approaches developed. (orig.)

  5. The photovoltaic and the buildings architecture design; Le photovoltaique et la conception architecturale des batiments

    Energy Technology Data Exchange (ETDEWEB)

    Fleuret, J.L. [Conseil Regional Rhone-Alpes (France); Juquois, F.; Beutin, Ph. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Jautard, Y. [Office du Tourisme d' Ales, 30 (France); Fromont, R.; Detry, N. [Auberge Royale des Pauvres (Italy); Ferrier, J. [Total 92 - Courbevoie (France); Prignot, I. [Association de Promotion des Energies Renouvelables Wallonie, Bruxelles (APERe) (Belgium); Pellegrin, F. [Union National des Architectes (UNSFA), 75 - Paris (France); Greipmeier, K. [Zentrum fur Rationelle Energieanwendung und Umwelt Gmbh ZREU (Germany); Jedlizka, M.; Lenoire, D. [Cler/ Hespul, 69 - Villeurbanne (France); Mansot, J. [Ademe, 69 - Lyon (France)

    2003-07-01

    This second conference of the thematic work package ''building integrated photovoltaic'' was held exclusively in French. Primarily aimed at architects and technical services of local municipalities, this conference was opened by Jean-Loup FLEURET, Vice President of the Regional Government (Region Rhone Alpes). Following this opening speech, Didier LENOIR, President of the CLER, discussed the current energy context, followed by Fabrice JUQUOIS of the ADEME Renewable Energies Department who presented the French photovoltaic market. Alain GUIAVARCH, from the Ecole des Mines, Paris presented their new software for simulating the thermal impact of photovoltaic on buildings. The first Round Table gave architects the opportunity to discuss their past and future projects, whilst a series of images illustrating their projects were projected. Alain BANSAC, Vice-President of the National Architects Union (UNSFA) summarised the round table. The afternoon session of this conference was opened by PREDAC partner Klaus GREIPMEIER (ZREU) with a stimulating overview of the German BIPV market. Alain RICAUD from Cythelia then presented their software for sizing photovoltaic for building integration. The second Round Table gave the microphone to system owners - from private individuals to local councils and special use buildings, demonstrating the varied motivations and needs of final-end Clients. Marc JEDLICZKA (CLER Vice-president and Hespul General Director) and Philippe BEUTIN (ADEME RES Department Head) summarised the second round tables, before Jose MANSOT, the Regional ADEME Delegate, closed the day. (author)

  6. Photovoltaic-Thermal New Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McNutt, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Dennis [Group14 Engineering, Inc., Denver, CO (United States); Heinicke, David [Group14 Engineering, Inc., Denver, CO (United States)

    2015-01-01

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  7. Demosite - Demonstration of the integration of photovoltaic elements in buildings; DEMOSITE. Site de demonstration d'elements de construction photovoltaiques integres au batiment

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, C.; Affolter, P.; Muller, A.N.; Ould-Yenia, A.

    2003-07-01

    This final report for the Swiss Federal Office of Energy summarises Phase 4 of the DEMOSITE project and concludes 10 years of DEMOSITE activities. The DEMOSITE project, started in 1992, demonstrates various ways of integrating photovoltaic elements in buildings by providing stands, pavilions and monitoring facilities at its site in Lausanne, Switzerland. Here, at the Swiss Federal Institute of Technology, roof-mounted installations can be found as well as mock-ups of buildings and roofing systems that also serve as covered parking facilities. The DEMOSITE web site and graphical presentations are also reviewed. Furthermore, the six newest pavilions are presented in detail. The report also presents several sets of data from measurements made on the installations and discusses the dissemination of information and results obtained from the project. A comprehensive annex provides illustrations of examples of building-integrated photovoltaics from around the world.

  8. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    Energy Technology Data Exchange (ETDEWEB)

    Chemisana, Daniel, E-mail: daniel.chemisana@macs.udl.cat [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain); Ignasi Rosell, Joan [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain)

    2011-09-15

    Highlights: {yields} The designed concentrator has an important potential for building integration. {yields} The device concentrates radiation toward a static receiver. {yields} Tracking performed by a single driver, representing an important mechanical advantage. {yields} The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  9. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    International Nuclear Information System (INIS)

    Chemisana, Daniel; Ignasi Rosell, Joan

    2011-01-01

    Highlights: → The designed concentrator has an important potential for building integration. → The device concentrates radiation toward a static receiver. → Tracking performed by a single driver, representing an important mechanical advantage. → The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  10. Building Integrated Photovoltaics - A State-of-the-Art Review, Future Research Opportunities and Large-Scale Experimental Wind-Driven Rain Exposure Investigations

    OpenAIRE

    Breivik, Christer

    2012-01-01

    This work consists of three scientific journal articles on the subject building integrated photovoltaics (BIPVs), and was initiated by a student project work which consisted of a major revision and extension of an article on BIPVs (appendix A). BIPVs are photovoltaic materials that replace conventional building materials in parts of the building envelopes, such as the roof covering or facades. BIPV systems may represent a powerful and versatile tool for achieving the ever increasing demand fo...

  11. Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2015-12-01

    Full Text Available Building integrated photovoltaics (BIPV offer an aesthetical, economical and technical solution to integrate solar cells harvesting solar radiation to produce electricity within the climate envelopes of buildings. Photovoltaic (PV cells may be mounted above or onto the existing or traditional roofing or wall systems. However, BIPV systems replace the outer building envelope skin, i.e., the climate screen, hence serving simultanously as both a climate screen and a power source generating electricity. Thus, BIPV may provide savings in materials and labor, in addition to reducing the electricity costs. Hence, for the BIPV products, in addition to specific requirements put on the solar cell technology, it is of major importance to have satisfactory or strict requirements of rain tightness and durability, where building physical issues like e.g., heat and moisture transport in the building envelope also have to be considered and accounted for. This work, from both a technological and scientific point of view, summarizes briefly the current state-of-the-art of BIPV, including both BIPV foil, tiles, modules and solar cell glazing products, and addresses possible research pathways for BIPV in the years to come.

  12. See-Through Dye-Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics

    KAUST Repository

    Heiniger, Leo-Philipp

    2013-08-21

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Large scale integration of photovoltaics in cities

    International Nuclear Information System (INIS)

    Strzalka, Aneta; Alam, Nazmul; Duminil, Eric; Coors, Volker; Eicker, Ursula

    2012-01-01

    Highlights: ► We implement the photovoltaics on a large scale. ► We use three-dimensional modelling for accurate photovoltaic simulations. ► We consider the shadowing effect in the photovoltaic simulation. ► We validate the simulated results using detailed hourly measured data. - Abstract: For a large scale implementation of photovoltaics (PV) in the urban environment, building integration is a major issue. This includes installations on roof or facade surfaces with orientations that are not ideal for maximum energy production. To evaluate the performance of PV systems in urban settings and compare it with the building user’s electricity consumption, three-dimensional geometry modelling was combined with photovoltaic system simulations. As an example, the modern residential district of Scharnhauser Park (SHP) near Stuttgart/Germany was used to calculate the potential of photovoltaic energy and to evaluate the local own consumption of the energy produced. For most buildings of the district only annual electrical consumption data was available and only selected buildings have electronic metering equipment. The available roof area for one of these multi-family case study buildings was used for a detailed hourly simulation of the PV power production, which was then compared to the hourly measured electricity consumption. The results were extrapolated to all buildings of the analyzed area by normalizing them to the annual consumption data. The PV systems can produce 35% of the quarter’s total electricity consumption and half of this generated electricity is directly used within the buildings.

  14. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  15. Integration of Photovoltaics in Buildings—Support Policies Addressing Technical and Formal Aspects

    Directory of Open Access Journals (Sweden)

    Thorsten Schuetze

    2013-06-01

    Full Text Available The integration of photovoltaic (PV generators in the envelope of a building by means of building-integrated photovoltaics (BIPV offers an immense potential, both in market development and the production of renewable electric energy that is close to the point of electricity consumption. In Germany, for example, by integrating photovoltaics in buildings up to 50% of the electricity demand can be covered. The political support of BIPV would contribute to the development and installation of BIPV components and therefore also promote the development of new business areas for industries dealing with components used in building envelopes and photovoltaic generators. BIPV can be separated into three different integration types: “technical”, “formal” and “technical & formal”. Political instruments for the support of PV-installations, particularly BIPV are discussed in this paper using Germany and France as examples. Due to successful financial support policies, PV became the most powerful electricity production technology in Germany. In France, the unique financial support of BIPV is resulting in an exemplary development and growth of certified BIPV components available on the market and, from a technical, aesthetic architectural and legal certainty point of view, facilitating the easy and widespread integration of photovoltaic generators in buildings.

  16. Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Seng, Lim Yun [Department of Physical Science, Electrical and Electronic Engineering, Tunku Abdul Rahman University, 53300 Setapak, Kuala Lumpur (Malaysia); Lalchand, G.; Sow Lin, Gladys Mak [Malaysia Energy Centre, Building Integrated Photovoltaic Project (Malaysia)

    2008-06-15

    Malaysia has identified photovoltaic systems as one of the most promising renewable sources. A great deal of efforts has been undertaken to promote the wide applications of PV systems. With the recent launch of a PV market induction programme known as SURIA 1000 in conjunction with other relevant activities undertaken under the national project of Malaysia Building Integrated Photovoltaic (MBIPV), the market of PV systems begins to be stimulated in the country. As a result, a wide range of technical, environmental and economic issues with regard to the connection of PV systems to local distribution networks becomes apparent. Numerous studies were therefore carried out in collaboration with Malaysian Energy Centre to address a number of those important issues. The findings of the studies are presented in the paper and can be served as supplementary information to parties who are directly and indirectly involved in the PV sector in Malaysia. (author)

  17. Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia

    International Nuclear Information System (INIS)

    Seng, Lim Yun; Lalchand, G.; Sow Lin, Gladys Mak

    2008-01-01

    Malaysia has identified photovoltaic systems as one of the most promising renewable sources. A great deal of efforts has been undertaken to promote the wide applications of PV systems. With the recent launch of a PV market induction programme known as SURIA 1000 in conjunction with other relevant activities undertaken under the national project of Malaysia Building Integrated Photovoltaic (MBIPV), the market of PV systems begins to be stimulated in the country. As a result, a wide range of technical, environmental and economic issues with regard to the connection of PV systems to local distribution networks becomes apparent. Numerous studies were therefore carried out in collaboration with Malaysian Energy Centre to address a number of those important issues. The findings of the studies are presented in the paper and can be served as supplementary information to parties who are directly and indirectly involved in the PV sector in Malaysia. (author)

  18. Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade

    Science.gov (United States)

    Hudişteanu, Sebastian Valeriu; Popovici, Cătălin George; Cherecheş, Nelu-Cristian

    2018-02-01

    The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30). The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF) and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.

  19. Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade

    Directory of Open Access Journals (Sweden)

    Hudişteanu Sebastian Valeriu

    2018-01-01

    Full Text Available The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30. The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.

  20. Status and Outlook for Building Integrated Photovoltaics (BIPV) in Relation to Educational needs in the BIPV Sector

    NARCIS (Netherlands)

    Tabakovic, Momir; Fechner, Hubert; Van Sark, Wilfried; Louwen, Atse; Georghiou, George; Makrides, George; Loucaidou, Eliza; Ioannidou, Monica; Weiss, Ingrid; Arancon, Sofia; Betz, Stephanie

    2017-01-01

    This paper reviews the present status and outlook of the building integrated photovoltaics (BIPV) market on a global and European scale. In particular, it provides a comprehensive review of the market situation and the future trends for Austria, Cyprus, France, Germany, Italy and the Netherlands

  1. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  2. The impact of building-integrated photovoltaics on the energy demand of multi-family dwellings in Brazil

    International Nuclear Information System (INIS)

    Ordenes, Martin; Marinoski, Deivis Luis; Braun, Priscila; Ruther, Ricardo

    2007-01-01

    Brazil faces a continuous increase of energy demand and a decrease of available resources to expand the generation system. Residential buildings are responsible for 23% of the national electricity demand. Thus, it is necessary to search for new energy sources to both diversify and complement the energy mix. Building-integrated photovoltaic (BIPV) is building momentum worldwide and can be an interesting alternative for Brazil due its solar radiation characteristics. This work analyses the potential of seven BIPV technologies implemented in a residential prototype simulated in three different cities in Brazil (Natal, Brasilia and Florianopolis). Simulations were performed using the software tool EnergyPlus to integrate PV power supply with building energy demand (domestic equipment and HVAC systems). The building model is a typical low-cost residential building for middle-class families, as massively constructed all over the country. Architectural input and heat gain schedules are defined from statistical data (Instituto Brasileiro de Geografia e Estatistica - Brazilian Institute for Geography and Statistics (IBGE) and Sistema de Informacoes de Posses de Eletrodomesticos e Habitos de Consumo - Consumer Habits and Appliance Ownership Information System (SIMPHA)). BIPV is considered in all opaque surfaces of the envelope. Results present an interesting potential for decentralized PV power supply even for vertical surfaces at low-latitude sites. In each facade, BIPV power supply can be directly linked to local climatic conditions. In general, for 30% of the year photovoltaic systems generate more energy than building demand, i.e., during this period it could be supplying the energy excess to the public electricity grid. Contrary to the common belief that vertical integration of PV is only suitable for high latitude countries, we show that there is a considerable amount of energy to be harvested from vertical facades at the sites investigated. (Author)

  3. Building integration photovoltaic module with reference to Ghana: using triple junction amorphous silicon

    OpenAIRE

    Essah, Emmanuel Adu

    2010-01-01

    This paper assesses the potential for using building integrated photovoltaic (BIPV) \\ud roof shingles made from triple-junction amorphous silicon (3a-Si) for electrification \\ud and as a roofing material in tropical countries, such as Accra, Ghana. A model roof \\ud was constructed using triple-junction amorphous (3a-Si) PV on one section and \\ud conventional roofing tiles on the other. The performance of the PV module and tiles \\ud were measured, over a range of ambient temperatures and solar...

  4. Retrofits for Energy Efficient Office Buildings: Integration of Optimized Photovoltaics in the Form of Responsive Shading Devices

    Directory of Open Access Journals (Sweden)

    Hardi K. Abdullah

    2017-11-01

    Full Text Available This study presents a retrofit strategy: integrating optimized photovoltaics (PV in the form of responsive shading devices using a dual-axis solar tracking system. A prototype-based model was fabricated to compare the efficiency of PV in this implementation with the conventional fixed installation. The office building, T1 Empire World in Erbil, was selected as a retrofit case study and for the application of the proposed integration system. In order to assess the effectiveness of the proposed retrofit method, the energy performance of the base case is simulated to be compared later with the energy performance simulations after the integration technique. The amount of generated electricity from the PV surfaces of the integrated shading elements is calculated. The energy simulations were performed using OpenStudio® (NREL, Washington, DC, USA, EnergyPlusTM (NREL, Washington, DC, USA, and Grasshopper/ Ladybug tools in which the essential results were recorded for the baseline reference, as well as the energy performance of the retrofitted building. The results emphasize that the PV-integrated responsive shading devices can maximize the efficiency of PV cells by 36.8% in comparison to the fixed installation. The integrated system can provide approximately 15.39% of the electricity demand for operating the building. This retrofit method has reduced the total site energy consumption by 33.2% compared to the existing building performance. Total electricity end-use of the various utilities was lowered by 33.5%, and the total natural gas end-use of heating demand was reduced by 30.9%. Therefore, the percentage reduction in electricity cooling demand in July and August is 42.7% due to minimizing the heat gain in summer through blocking the sun’s harsh rays from penetrating into interior spaces of the building. In general, this system has multiple benefits, starting with being extremely efficient and viable in generating sustainable alternative energy

  5. Technology of building Integrated photovoltaic and engineering application%光伏建筑一体化技术与工程应用

    Institute of Scientific and Technical Information of China (English)

    高树鹏

    2014-01-01

    可持续发展是人类社会的共同追求,太阳能作为清洁、可再生能源,具有巨大的开发利用价值。光伏建筑一体化技术是将光伏发电与建筑完美结合,将光伏组件融合到建筑成为建筑的整体结构的一部分,实现太阳能利用与建筑物的完美结合,体现现代建筑的环保绿色设计理念。%Sustainable development is the common pursuit of human society, the solar energy as a clean, renewable energy, has great value of development and utilization. Photovoltaic building integrated technology perfect combination of the photovoltaic power generation and building photovoltaic component integration will become a part of the overall structure of the building to building, to achieve the perfect combination of solar energy utilization and building, environmental protection green design principle of modern architecture.

  6. Building opportunities for photovoltaics in the U.S. Final report [PV BONUS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Nicklas

    1999-09-08

    The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the

  7. Experimental investigation of a building integrated photovoltaic/thermal roof collector combined with a liquid desiccant enhanced indirect evaporative cooling system

    International Nuclear Information System (INIS)

    Buker, Mahmut Sami; Mempouo, Blaise; Riffat, Saffa B.

    2015-01-01

    Highlights: • Novel solar thermal collector for liquid desiccant air conditioning was introduced. • Low cost poly heat exchanger loop underneath the photovoltaic modules was proposed. • The ability of the combined system was experimentally investigated. • Water temperature in the loop could reach up to 35.5 °C during the tests. • This tri-gen system can supply 3 kW heating, 5.2 kW cooling and 10.3 MW h/year power. - Abstract: Large consumption of limited conventional fossil fuel resources, economic and environmental problems associated with the global warming and climate change have emphasized the immediate need to transition to renewable energy resources. Solar thermal applications along with renewable energy based cooling practices have attracted considerable interest towards sustainable solutions promising various technical, economic and environmental benefits. This study introduces a new concept on solar thermal energy driven liquid desiccant based dew point cooling system that integrates several green technologies; including photovoltaic modules, polyethylene heat exchanger loop and a combined liquid desiccant dehumidification-indirect evaporative air conditioning unit. A pilot scale experimental set-up was developed and tested to investigate the performance of the proposed system and influence of the various parameters such as weather condition, air flow and regeneration temperature. A cost effective, easy-to-make polyethylene heat exchanger loop was employed underneath PV panels for heat generation. In addition, a liquid desiccant enhanced dew point cooling unit was utilized to provide air conditioning through dehumidification of humid air and indirect evaporative cooling. The experimental results show that the proposed tri-generation system is capable of providing about 3 kW of heating, 5.2 kW of cooling power and 10.3 MW h/year power generation, respectively. The findings confirm the potential of the examined technology, and elucidate the

  8. SOL-IND. Photovoltaics integrated in an industrialised building process. Final report; SOL-IND. Solceller integreret i industrielt byggeri. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Frederiksen, K.H.B.; Vestersager Engdal, J. (EnergiMidt A/S, Silkeborg (Denmark))

    2008-06-15

    The purpose of the project, EFP06 - Photovoltaics integrated in an industrialised building process (SOLIND), has been to examine the possibilities for PV (photovoltaics) in an industrialized building process. The project is an information gathering and development project with basis in knowledge about the possibilities for PV in relation to specific housing projects in Skanska Bolig A/S, including BoKlok, developed in cooperation with IKEA. During the project a workshop with participating architectural students has been carried through resulting in detailed concepts. The concepts have in general terms been introduced nationally to the press and were invited to a poster presentation at the world's largest PV conference. In addition to this, a number of prototypes are produced together with other presentation material. The projects has been divided into three phases. The report is divided into these three phases. 1) Knowledge gathering and unravelling 2) Analysis, development and evaluation, workshop for students. 3) Promotion and demonstration of results The main results are: 4) The project has resulted in increased knowledge about the possibilities with photovoltaics in industrialized building processes. 5) A number of concepts have been developed to fit PV in the project phase of an industrialized building process. 6) The most promising concepts has been demonstrated as prototypes in different scale together with other presentation materials The project continues in SOL-IND2, with the purpose to prepare and carry out an integration of a PV system in an industrialized building process. A subsidy is granted in 2008 from the EFP to prepare the construction. (au)

  9. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  10. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Sohel, M. Imroz; Ma, Zhenjun; Cooper, Paul; Adams, Jamie; Scott, Robert

    2014-01-01

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  11. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  12. Acceleration of the solar-thermal energy development but still some brakes upon photovoltaic conversion

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    France shows today the highest growth rate for solar thermal energy with respect to other European countries. This market is structuring and tries to favour quality. A label for systems certification has been presented in January 2007. Photovoltaic conversion has been tied up for a long time by poorly attractive power repurchase tariffs. It benefits now from a propitious framework for its development even if some financial incentive questions relative to the integration of solar panels to buildings remain unanswered. (J.S.)

  13. Photovoltaic building sheathing element with anti-slide features

    Science.gov (United States)

    Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.

    2015-09-08

    The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.

  14. Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials

    International Nuclear Information System (INIS)

    Lin, Wenye; Ma, Zhenjun; Sohel, M. Imroz; Cooper, Paul

    2014-01-01

    Highlights: • A novel ceiling ventilation system enhanced by PVT and PCMs was proposed. • PCM was used to increase the local thermal mass and to serve as a storage unit. • The proposed system can enhance indoor thermal comfort in winter and summer. - Abstract: This paper presents the development and performance evaluation of a novel ceiling ventilation system integrated with solar photovoltaic thermal (PVT) collectors and phase change materials (PCMs). The PVT collectors are used to generate electricity and provide low grade heating and cooling energy for buildings by using winter daytime solar radiation and summer night-time sky radiative cooling, respectively. The PCM is integrated into the building ceiling as a part of the ceiling insulation and at the same time, as a centralized thermal energy storage to temporally store low grade energy collected from the PVT collectors. The performance of the proposed system was numerically evaluated based on a Solar Decathlon house using TRNSYS. The results showed that, in winter conditions, the proposed PVT–PCM integrated ventilation system can significantly improve the indoor thermal comfort of passive buildings without using air-conditioning systems with a maximum air temperature rise of 23.1 °C from the PVT collectors. Compared with the system using PCM but without using PVT collectors, the coefficient of thermal comfort enhancement in the kitchen, dining room and living room of the case building studied using the proposed system improved from almost zero to 0.9823 while the coefficient of thermal comfort enhancement in the study room improved from 0.0060 to 0.9921. In summer conditions, the proposed system can also enhance indoor thermal comfort through night-time sky radiative cooling

  15. Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, N. [University of Stuttgart, Institute of Energy Economics and the Rational Use of Energy (IER), Hessbruehlstr. 49a, 70565 Stuttgart (Germany); Glueck, C. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Schmidt, F.P. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2011-05-15

    We present a comparison of solar thermal and solar electric cooling for a typical small office building exposed to two different European climates (Freiburg and Madrid). The investigation is based on load series for heating and cooling obtained previously from annual building simulations in TRNSYS. A conventional compression chiller is used as the reference system against which the solar options are evaluated with respect to primary energy savings and additional cost. A parametric study on collector and storage size is carried out for the solar thermal system to reach achieve the minimal cost per unit of primary energy saved. The simulated solar electric system consists of the reference system, equipped with a grid connected photovoltaic module, which can be varied in size. For cost comparison of the two systems, the electric grid is assumed to function as a cost-free storage. A method to include macroeconomic effects in the comparison is presented and discussed. Within the system parameters and assumptions used here, the grid coupled PV system leads to lower costs of primary energy savings than the solar thermal system at both locations. The presumed macroeconomic advantages of the solar thermal system, due to the non-usage of energy during peak demand, can be confirmed for Madrid. (author)

  16. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  17. A program plan for photovoltaic buildings in Florida

    International Nuclear Information System (INIS)

    Ventre, Gerard G.

    1999-01-01

    The Florida Photovoltaic (PV) Buildings Program will conduct a variety of application experiments over the next decade to gather information that will help define the costs, value and benefits of using photovoltaics with buildings. Four main sources of revenue will support the program: a photovoltaic system buy down (from the present through December 2001), green pricing (present to 2010 and beyond), buy up by end users, and contracts, grants and other subsidies. To give the program sufficient breadth, three different application experiments are planned for each of nine target groups. The data and information from these experiments will help reduce or eliminate key barriers to the commercialisation of photovoltaic buildings. (Author)

  18. Characteristics Study of Photovoltaic Thermal System with Emphasis on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Yong Chuah Yee

    2018-01-01

    Full Text Available Solar energy is typically collected through photovoltaic (PV to generate electricity or through thermal collectors as heat energy, they are generally utilised separately. This project is done with the purpose of integrating the two systems to improve the energy efficiency. The idea of this photovoltaic-thermal (PVT setup design is to simultaneously cool the PV panel so it can operate at a lower temperature thus higher electrical efficiency and also store the thermal energy. The experimental data shows that the PVT setup increased the electrical efficiency of the standard PV setup from 1.64% to 2.15%. The integration of the thermal collector also allowed 37.25% of solar energy to be stored as thermal energy. The standard PV setup harnessed only 1.64% of the solar energy, whereas the PVT setup achieved 39.4%. Different flowrates were tested to determine its effects on the PVT setup’s electrical and thermal efficiency. The various flowrate does not significantly impact the electrical efficiency since it did not significantly impact the cooling of the panel. The various flowrates resulted in fluctuating thermal efficiencies, the relation between the two is inconclusive in this project.

  19. European conferences. Integration of renewable energies in buildings; Conferences europeennes. Integration des energies renouvelables dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    Bal, J.L. [ADEME, Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France); Letz, T. [Asder, 73 - Saint Alban Leysse (France); Tuille, F. [Observ' er, 75 - Paris (France)] [and others

    2001-07-01

    This document comprises 2 parts. First part is a detailed program of the exhibition with a press dossier which presents the different topics discussed during conferences and round tables, the market of renewable energies, and a list of agencies and companies involved in renewable energies development and products. The second part is the abstracts of the lectures presented during the European conferences on the integration of renewable energies in buildings (solar-thermal and photovoltaic systems, wood fuel and biomass). (J.S.)

  20. Energy Saving Assessment of Semi-Transparent Photovoltaic Modules Integrated into NZEB

    Directory of Open Access Journals (Sweden)

    Cristina Cornaro

    2017-01-01

    Full Text Available Photovoltaic semi-transparent materials (STPV integrated into glazing systems can offer good potential for energy saving to buildings, influencing heating loads, cooling loads, and lighting, as well as electricity production. Moreover, with the new stringent regulations issued by various European countries, following the Energy Performance of Buildings Directive (EPBD, 2010/31/EC, the building envelope, including the glazing elements, needs to have high thermal performance to guarantee Nearly Zero Energy Building (NZEB behavior. This work presents an assessment of energy saving potential of 4 different types of STPV with respect to conventional double pane glass. Dye sensitized solar modules (DSM and thin film modules were considered in the study. Simulations based on an IEA reference office building (STD and on reference buildings prescribed by the new Italian building energy performance regulation (NZEB were carried out. All the glazing peculiarities could be simulated using only one simulation tool, namely IDA ICE 4.7.1. Dye sensitized solar modules resulted as the best performing devices for all orientations and climate zones. The work also evidenced how the requirements of NZEB seem to be too stringent for insulation properties, especially for the climate zone of Rome.

  1. Building-integrated PV -- Analysis and US market potential

    International Nuclear Information System (INIS)

    Frantzis, L.; Hill, S.; Teagan, P.; Friedman, D.

    1994-01-01

    Arthur D Little, Inc., in conjunction with Solar Design Associates, conducted a study for the US Department of Energy (DOE), Office of Building Technologies (OBT) to determine the market potential for building-integrated photovoltaics (BIPV). This study defines BIPV as two types of applications: (1) where the PV modules are an integral part of the building, often serving as the exterior weathering skin, and (2) the PV modules are mounted on the existing building exterior. Both of these systems are fully integrated with the energy usage of the building and have potential for significant market penetration in the US

  2. Photovoltaics in buildings. Final report; Photovoltaik in Gebaeuden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Erge, T.; Hullmann, H.; Kaiser, R.; Kovach-Hebling, A.; Laukamp, H.; Reise, C.; Sauer, D.U.; Schmid, J.; Schmidt, H.; Sick, F.

    1996-08-31

    The feasibility in principle of photovoltaic plants integrated in buildings was proved in the 1980`s in the context of several pilot and demonstration projects both in Germany and internationally. However, the realisation and operation of these plants showed the necessity for further research and development work both in the system technique and particularly in the architectural area. The research project `Photovoltaics in buildings` reached the target of establishing a bridge between the technically orientated work of the researchers, developers and manufacturers of photovoltaic components on the one hand, and the architects and town planners on the other hand. (orig./AKF) [Deutsch] Die prinzipielle Machbarkeit gebaeudeintegrierter Photovoltaikanlagen wurde in den 80er Jahren im Rahmen mehrerer Pilot- und Demonstrationsprojekte sowohl in der Bundesrepublik Deutschland als auch international nachgewiesen. Die Realisierung und der Betrieb dieser Anlagen zeigte jedoch die Notwendigkeit weiterer Forschungs- und Entwicklungsarbeiten sowohl im systemtechnischen als insbesondere auch im architektonischen Bereich auf. Mit dem Forschungsprojekt `Photovoltaik in Gebaeuden` wurde das Ziel erreicht, eine Bruecke zu schlagen zwischen den eher technisch orientierten Arbeiten der Forscher, Entwickler und Hersteller von Photovoltaikkomponenten auf der einen Seite und den Architekten und Stadtplanern auf der anderen. (orig./AKF)

  3. Effect of urban climate on building integrated photovoltaics performance

    International Nuclear Information System (INIS)

    Tian Wei; Wang Yiping; Ren Jianbo; Zhu Li

    2007-01-01

    It is generally recognized that BIPV (building integrated photovoltaics) has the potential to become a major source of renewable energy in the urban environment. The actual output of a PV module in the field is a function of orientation, total irradiance, spectral irradiance, wind speed, air temperature, soiling and various system-related losses. In urban areas, the attenuation of solar radiation due to air pollution is obvious, and the solar spectral content subsequently changes. The urban air temperature is higher than that in the surrounding countryside, and the wind speed in urban areas is usually less than that in rural areas. Three different models of PV power are used to investigate the effect of urban climate on PV performance. The results show that the dimming of solar radiation in the urban environment is the main reason for the decrease of PV module output using the climatic data of urban and rural sites in Mexico City for year 2003. The urban PV conversion efficiency is higher than that of the rural PV system because the PV module temperature in the urban areas is slightly lower than that in the rural areas in the case. The DC power output of PV seems to be underestimated if the spectral response of PV in the urban environment is not taken into account based on the urban hourly meteorological data of Sao Paulo for year 2004

  4. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  5. Flexible all-carbon photovoltaics with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C., E-mail: ctung@ucmerced.edu

    2015-04-15

    The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C{sub 60}s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C{sub 60}s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that “lock up” the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C{sub 60}s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C{sub 60}s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current–voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C{sub 60}:SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests. - Graphical abstract: The incorporation of solvent resistant, mechanically flexible and electrically addressable 2-D soft graphene nanoribbons facilitates the assembly of photoconductive carbon nano-p/n junctions for thermally stable and flexible photovoltaic cells.

  6. Flexible all-carbon photovoltaics with improved thermal stability

    International Nuclear Information System (INIS)

    Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C.

    2015-01-01

    The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C 60 s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C 60 s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that “lock up” the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C 60 s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C 60 s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current–voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C 60 :SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests. - Graphical abstract: The incorporation of solvent resistant, mechanically flexible and electrically addressable 2-D soft graphene nanoribbons facilitates the assembly of photoconductive carbon nano-p/n junctions for thermally stable and flexible photovoltaic cells.

  7. Applications of photovoltaics

    International Nuclear Information System (INIS)

    Pearsall, N.

    1999-01-01

    The author points out that although photovoltaics can be used for generating electricity for the same applications as many other means of generation, they really come into their own where disadvantages associated with an intermittent unpredictable supply are not severe. The paper discusses the advantages and disadvantages to be taken into account when considering a photovoltaic power system. Five main applications, based on the system features, are listed and explained. They are: consumer, professional, rural electrification, building-integrated, centralised grid connected and space power. A brief history of the applications of photovoltaics is presented with statistical data on the growth of installed capacity since 1992. The developing market for photovoltaics is discussed together with how environmental issues have become a driver for development of building-integrated photovoltaics

  8. The RENUE resource centre. Design study of building-integrated PV in a zero-carbon exhibition building

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R.

    2001-07-01

    Studies at the RENUE building in London are described. The RENUE project is a renewable energy and urban sustainability demonstration of comfortable and elegant buildings which are zero-carbon users. Building-Integrated Photovoltaic (BIPV) systems are a factor in the zero-CO{sub 2} building. The building should be of special interest to protagonists of renewable energy, building designers and the PV industry.

  9. A Techno-Economic Analysis of Photovoltaic System Design as Specifically Applied to Commercial Buildings in Ireland

    Directory of Open Access Journals (Sweden)

    Jonathan Blackledge

    2012-11-01

    Full Text Available This paper evaluates the viability of installing photovoltaic (PV systems in existing commercial buildings in Dublin. Data collected from previously installed photovoltaic systems at the Dublin Institute of Technology was analysed in order to determine the potential solar resource available in Ireland. A 1.1 kWp photovoltaic system installed in Dublin can produce over 900 kWh of electricity in a given year depending on the available solar resource for that year. A feasibility study was conducted in Dublin city centre in order to evaluate the technical, financial and environmental aspects of integrating a PV system into an existing building. The intention is that the results from this work will help in demonstrating the benefits and challenges associated with installing PV systems in existing commercial buildings in Ireland.

  10. Perspectives for solar thermal applications in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Leu, Tzong-Shyng; Chung, Kung-Ming

    2016-01-01

    Taiwan has long depended on imported fossil energy. The government is thus actively promoting the use of renewable energy. Since 2000, domestic installations of solar water heaters have increased substantially because of the long-term subsidies provided for such systems. However, data on the annual installation area of solar collectors in recent years indicated that the solar thermal industry in Taiwan has reached a bottleneck. The long-term policy providing subsidies must thus be revised. It is proposed that future thermal applications in Taiwan should focus on building-integrated solar thermal, photovoltaic/thermal, and industrial heating processes. Regarding building-integrated solar thermal systems, the current subsidy model can be continued (according to area of solar collectors); nevertheless, the application of photovoltaic/thermal and industrial heating systems must be determined according to the thermal output of such systems. - Highlights: •The long-term subsidization for solar water heaters has lost effectiveness. •Solar thermal applications include BIST, PV/T and industrial heating process. •A performance-based subsidy policy should be implemented.

  11. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  12. Photovoltaic. Solar thermal. Solar thermal electricity

    International Nuclear Information System (INIS)

    2009-01-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  13. Design and simulation of a low concentrating photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Rosell, J.I.; Vallverdu, X.; Lechon, M.A.; Ibanez, M.

    2005-01-01

    The advantages of photovoltaic/thermal (PV/T) collectors and low solar concentration technologies are combined into a photovoltaic/thermal system to increase the solar energy conversion efficiency. This paper presents a prototype 11X concentration rate and two axis tracking system. The main novelty is the coupling of a linear Fresnel concentrator with a channel photovoltaic/thermal collector. An analytical model to simulate the thermal behaviour of the prototype is proposed and validated. Measured thermal performance of the solar system gives values above 60%. Theoretical analysis confirms that thermal conduction between the PV cells and the absorber plate is a critical parameter

  14. Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

    OpenAIRE

    Rohit Tripathi; Sumit Tiwari; G. N. Tiwari

    2016-01-01

    In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...

  15. Integrated energy system for a high performance building

    Science.gov (United States)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  16. Integrating advanced facades into high performance buildings

    International Nuclear Information System (INIS)

    Selkowitz, Stephen E.

    2001-01-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  17. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  18. Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT)

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Vanoli, Laura

    2012-01-01

    Highlights: ► Sheet and tube photovoltaic/thermal (PVT) solar collector are investigated. ► PVT is integrated in a novel solar trigeneration system. ► The trigeneration system is dynamically investigated for a mediterranean climate. ► PVT performance is excellent during the summer. ► During the winter PVT thermal energy significantly decreases. - Abstract: In this paper, a Solar Heating and Cooling (SHC) system including photovoltaic/thermal (PVT) collectors is considered, implementing a novel polygeneration system producing electricity, space heating and cooling and domestic hot water. In particular, PVT collectors operating up to 80 °C are considered. A case study for a university building located in Naples (Italy) is developed and discussed. The system is mainly composed by: PVT collectors, a single-stage LiBr–H 2 O absorption chiller, storage tanks and auxiliary heaters. The system also includes additional balance-of-plant devices: heat exchangers, pumps, controllers, cooling tower, etc. The PVT produces electricity which is utilized in part by the building lights and equipments and in part by the system parasitic loads; the rest is eventually sold to the grid. Simultaneously, the PVT system provides the heat required to drive the absorption chiller. The system performance is analyzed from both energetic and economic points of view by means of a zero-dimensional transient simulation model, developed with TRNSYS. The economic results show that the system under investigation can be profitable, provided that an appropriate funding policy is available. In addition, the overall energetic and economic results are comparable to those reported in literature for similar systems.

  19. Thermal and Performance Analysis of a Photovoltaic Module with an Integrated Energy Storage System

    Directory of Open Access Journals (Sweden)

    Manel Hammami

    2017-10-01

    Full Text Available This paper is proposing and analyzing an electric energy storage system fully integrated with a photovoltaic PV module, composed by a set of lithium-iron-phosphate (LiFePO4 flat batteries, which constitutes a generation-storage PV unit. The batteries were surface-mounted on the back side of the PV module, distant from the PV backsheet, without exceeding the PV frame size. An additional low-emissivity sheet was introduced to shield the batteries from the backsheet thermal irradiance. The challenge addressed in this paper is to evaluate the PV cell temperature increase, due to the reduced thermal exchanges on the back of the module, and to estimate the temperature of the batteries, verifying their thermal constraints. Two one-dimensional (1D thermal models, numerically implemented by using the thermal library of Simulink-Matlab accounting for all the heat exchanges, are here proposed: one related to the original PV module, the other related to the portion of the area of the PV module in correspondence of the proposed energy-storage system. Convective and radiative coefficients were then calculated in relation to different configurations and ambient conditions. The model validation has been carried out considering the PV module to be at the nominal operating cell temperature (NOCT, and by specific experimental measurements with a thermographic camera. Finally, appropriate models were used to evaluate the increasing cell batteries temperature in different environmental conditions.

  20. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Yin, Ershuai; Li, Qiang; Xuan, Yimin

    2017-01-01

    Highlights: • A detailed thermal resistance analysis of the PV-TE hybrid system is proposed. • c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system. • Some criteria for selecting coupling devices and optimal design are obtained. • A detailed process of designing the practical PV-TE hybrid system is provided. - Abstract: The thermal resistance theory is introduced into the theoretical model of the photovoltaic-thermoelectric (PV-TE) hybrid system. A detailed thermal resistance analysis is proposed to optimize the design of the coupled system in terms of optimal total conversion efficiency. Systems using four types of photovoltaic cells are investigated, including monocrystalline silicon photovoltaic cell, polycrystalline silicon photovoltaic cell, amorphous silicon photovoltaic cell and polymer photovoltaic cell. Three cooling methods, including natural cooling, forced air cooling and water cooling, are compared, which demonstrates a significant superiority of water cooling for the concentrating photovoltaic-thermoelectric hybrid system. Influences of the optical concentrating ratio and velocity of water are studied together and the optimal values are revealed. The impacts of the thermal resistances of the contact surface, TE generator and the upper heat loss thermal resistance on the property of the coupled system are investigated, respectively. The results indicate that amorphous silicon PV cell and polymer PV cell are more appropriate for the concentrating hybrid system. Enlarging the thermal resistance of the thermoelectric generator can significantly increase the performance of the coupled system using amorphous silicon PV cell or polymer PV cell.

  1. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  2. Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.

    2008-01-01

    This paper focuses on a method for linear or non-linear continuous time modelling of physical systems using discrete time data. This approach facilitates a more appropriate modelling of more realistic non-linear systems. Particularly concerning advanced building components, convective and radiati...... that a description of the non-linear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component....... heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photovoltaic integrated facades or roofs and those using these effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered...

  3. Analysis of the impact of thermal resistance of the roof on the performance of photovoltaic roof tiles

    Directory of Open Access Journals (Sweden)

    Kurz Dariusz

    2017-01-01

    Full Text Available The paper explores the issues related to the impact of thermal resistance of the roof on the electrical parameters of photovoltaic roof tiles. The methodology of determination of the thermal resistance and thermal transmittance factor was presented in accordance with the applicable legal regulations and standards. A test station was presented for the purpose of measurement of the parameters of photovoltaic roof tiles depending on the structure of the roof substrate. Detailed analysis of selected building components as well as their impact on the design thermal resistance factor and thermal transmittance factor was carried out. Results of our own studies, which indicated a relation between the type of the roof structure and the values of the electricity generated by photovoltaic tiles, were presented. Based on the calculations, it was concluded that the generated outputs in the respective constructions differ by maximum 6%. For cells with the highest temperature, the performance of the PV roof tiles on the respective roof constructions fell within the range between 0.4% and 1.2% (depending on the conducted measurement and amounted to 8.76% (in reference to 9.97% for roof tiles with the lowest temperature.

  4. Integration of PV modules in existing Romanian buildings from rural areas

    Energy Technology Data Exchange (ETDEWEB)

    Fara, S.; Finta, D. [IPA SA Research Development, Engineering and Manufacturing for Automation Equipment and Systems, Bucharest (Romania); Fara, L.; Comaneci, D. [Polytechnic Univ. of Bucharest (Romania); Dabija, A.M. [Univ. of Architecture and Urbanism Ion Mincu, Bucharest (Romania); Tulcan-Paulescu, E. [West Univ. of Timisoara, Timisoara (Romania)

    2010-07-01

    Romania has launched a national research project to promote the use of distributed solar architecture and the use of BIPV systems. These systems include solar tunnels and active solar photovoltaic (PV) systems installed on the roofs and facades of buildings in rural areas. In contrast to other EU states, Romania does not have a photovoltaic building construction branch. The number of isolated cases are insufficient to identify a starting point regarding the PV market in the building industry. The main objective of the project is to demonstrate the efficiency of integrating various PV elements in buildings from rural areas, to test them and to make them known so that they can be used on a large scale. This will be accomplished by installing new products on 2 buildings in Bucharest and in 1 building in Timisoara. The PV modules will be integrated with the architecture. One of the buildings will be a historical building while the other 2 will be new buildings with different typologies. The installed power for each building will be of about 1.000 Wp, including some technologies with PV modules.

  5. Integration of photovoltaic technology in public buildings. Case study of Palmas Forum, Tocantins, Brazil; Integracao de tecnologia fotovoltaica em edificios publicos. Estudo de caso do Forum de Palmas, TO

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Elen Oliveira

    2010-03-15

    The energy issue follows the history of mankind and nowadays has triggered a multidisciplinary debate. Within this discussion, there is the main topic of this study: the focus on the high electric power consumption in public buildings. The approach is in consonance with the sustainability of architecture and the use of solar photovoltaic energy as a technological tool that brings into alliance the renewable alternative energy sources and the buildings which are connected to the urban electric power lines. This study aims to demystify the use of alternative energy sources in conjunction with the contemporary architectonic production. In the first part the sustainability, the world energy issue and the use of active solar systems in architecture were contextualized and then, the main objective was to measure an Integrated Photovoltaic System in a public building- the Court of Justice in Palmas, Tocantins. For that reason, it was necessary to evaluate the energy efficiency in the building and to achieve that objective the energy consumption in the so-called rush hours and the 19:00 to 21:00 period of time were considered. Subsequently, the study tested several possibilities of photovoltaic panels and analyzed which one had the best performance, according to the local characteristic such as: the solar orientation, the latitude, the monthly and annual solar radiation average. There has been done a simulation of an ideal photovoltaic solar system with the proper calculus of its productivity, in order to provide a compensation to the energy consumption of the building- or a part of it- through the use of the alternative energy source in question. The objective is to demystify the generation of electric power from the use of solar energy and thus evaluating the contribution of the system to the conventional electric energy. Finally, a partial economic analysis of the system was carried out, driving to characterize the contribution potential of the Integrated Photovoltaic

  6. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    International Nuclear Information System (INIS)

    Wu, Chihhui; Neuner III, Burton; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2012-01-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley–Queisser limit for emitter temperatures above T e = 1200 K, and achieves an efficiency as high as 41% for T e = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented

  7. Temperature and color management of silicon solar cells for building integrated photovoltaic

    Science.gov (United States)

    Amara, Mohamed; Mandorlo, Fabien; Couderc, Romain; Gerenton, Félix; Lemiti, Mustapha

    2018-01-01

    Color management of integrated photovoltaics must meet two criteria of performance: provide maximum conversion efficiency and allow getting the chosen colors with an appropriate brightness, more particularly when using side by side solar cells of different colors. As the cooling conditions are not necessarily optimal, we need to take into account the influence of the heat transfer and temperature. In this article, we focus on the color space and brightness achieved by varying the antireflective properties of flat silicon solar cells. We demonstrate that taking into account the thermal effects allows freely choosing the color and adapting the brightness with a small impact on the conversion efficiency, except for dark blue solar cells. This behavior is especially true when heat exchange by convection is low. Our optical simulations show that the perceived color, for single layer ARC, is not varying with the position of the observer, whatever the chosen color. The use of a double layer ARC adds flexibility to tune the wanted color since the color space is greatly increased in the green and yellow directions. Last, choosing the accurate material allows both bright colors and high conversion efficiency at the same time.

  8. Temperature and color management of silicon solar cells for building integrated photovoltaic

    Directory of Open Access Journals (Sweden)

    Amara Mohamed

    2018-01-01

    Full Text Available Color management of integrated photovoltaics must meet two criteria of performance: provide maximum conversion efficiency and allow getting the chosen colors with an appropriate brightness, more particularly when using side by side solar cells of different colors. As the cooling conditions are not necessarily optimal, we need to take into account the influence of the heat transfer and temperature. In this article, we focus on the color space and brightness achieved by varying the antireflective properties of flat silicon solar cells. We demonstrate that taking into account the thermal effects allows freely choosing the color and adapting the brightness with a small impact on the conversion efficiency, except for dark blue solar cells. This behavior is especially true when heat exchange by convection is low. Our optical simulations show that the perceived color, for single layer ARC, is not varying with the position of the observer, whatever the chosen color. The use of a double layer ARC adds flexibility to tune the wanted color since the color space is greatly increased in the green and yellow directions. Last, choosing the accurate material allows both bright colors and high conversion efficiency at the same time.

  9. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    Science.gov (United States)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  10. Integrated Thermal-Energy Analysis of Innovative Translucent White Marble for Building Envelope Application

    Directory of Open Access Journals (Sweden)

    Federica Rosso

    2014-08-01

    Full Text Available Marble is a natural material, used in the construction field since antiquity. It has always been used to communicate monumentality and solidity. Nowadays new technologies permit marble to express new languages: particularly, translucent marble technology overturns the concept of solidity. The main issue to address is the lack of thermal-energy performance of such a thin stone layer as the only facade component. Conversely, Bianco Carrara and Statuario marbles, for instance, have intrinsic benefits as natural cool materials, due to their high solar reflectance and thermal emissivity. Thus, this paper analyzes the thermal-energy and environmental behavior of marble facade for a new designed building in New York City. An integrated analysis of the energy performance of the marble skin is performed through a preliminary experimental characterization, carried out for two different types of naturally white marble, for comparative purposes. Then, a dynamic simulation model of the building is developed to evaluate year-round benefits and drawbacks of the translucent marble envelope in terms of indoor thermal comfort and air-conditioning requirement. The analysis showed how the proposed marble facade is able to decrease the energy requirement for cooling up to 6%, demonstrating possible relevant perspectives for marble-based facades, even in energy-efficient buildings.

  11. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  12. Power of design - the future of building-integrated PV

    International Nuclear Information System (INIS)

    Abbate, Cinzia

    2001-01-01

    This paper discusses strategies to make building integrated photovoltaic (PV) systems more acceptable and to allow PV material to compete with conventional construction material. The history of developments in building integration and difficulties encountered by architects wishing to use PV products are explored, and the Dutch Amersfoot project in Utrecht involving a new suburb of 501 house covered with PV panels is described. Questions raised regarding architectural integration of PV systems, and PV systems and the construction market are discussed. The Italian PV programme, financial and political constraints, and the positioning of PV on existing structures are reported

  13. The role of grid-connected, building-integrated photovoltaic generation in commercial building energy and power loads in a warm and sunny climate

    International Nuclear Information System (INIS)

    Braun, P.; Ruether, R.

    2010-01-01

    For large commercial buildings, power load delivery limits are contracted with the local electricity distribution utility, and are usually fixed at one or more levels over the year, according to the seasonal building loads, and depending on the specific country regulations. Especially in warm and sunny climates, solar electricity generation using building-integrated photovoltaics (BIPV) can assist in reducing commercial building loads, offering peak-shaving (power) benefits on top of the on-site generation of electricity (energy). This on-site power delivery capability gives these consumers the possibility of renegotiating demand contracts with their distribution utility. Commercial buildings that operate during daytime quite often have an energy consumption profile that is well matched by solar radiation availability, and depending on the building's available surface areas, BIPV can generate considerable portions of the energy requirements. In this work we present the role of grid-connected BIPV in reducing the load demands of a large and urban commercial building located in a warm climate in Brazil. The building and adjacent car parking lots can accommodate a 1 MWp BIPV generator, which closely matches the building's typical maximum power demands. Based on real solar radiation data and simultaneous building electricity demands for the year 2007, simulation of the annual solar generation profile of this on-site generator showed that the 1 MWp BIPV system could account for around 30% of the total building's energy consumption. In addition to the energy benefit, maximum power demands were reduced due to a good match between midday air-conditioning cooling loads and solar radiation availability on both a daily and seasonal basis. Furthermore, we have simulated the effect of this considerably large urban-sited generator on the local distribution network load, and have shown that the 1 MWp BIPV installation can also offer considerable benefits to the local utility in

  14. Photovoltaics for Buildings: Key Issues in Pursuit of Market Readiness

    International Nuclear Information System (INIS)

    Sheila, J.; Hayter, P.E.

    1998-01-01

    The photovoltaic (PV) industry is rapidly beginning to recognize the market potential of the buildings sector. New PV-for-buildings products have recently become commercially available, and numerous products that are under development will be introduced within the next 5 years. To ensure that these new products will be adopted and used in common building practices, the PV industry should recognize and address important buildings industry issues. These issues include building codes and standards, after-market servicing, education, and warranties and insurance policies. Photovoltaic systems are also still very expensive. The simplest method for increasing their value for a building is to decrease the building's electrical loads through energy efficiency and conservation. Meeting these goals can only be accomplished through partnerships with the U.S. Department of Energy (DOE), private industry, and public institutions

  15. A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation

    Science.gov (United States)

    Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang

    2017-07-01

    Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.

  16. Systems Integration | Photovoltaic Research | NREL

    Science.gov (United States)

    Integration Systems Integration The National Center for Photovoltaics (NCPV) at NREL provides grid integration support, system-level testing, and systems analysis for the Department of Energy's solar distributed grid integration projects supported by the SunShot Initiative. These projects address technical

  17. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    Science.gov (United States)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  18. Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Harajli, Hassan A.; Jones, Craig I.; Winnett, Adrian B.

    2012-01-01

    Energy analysis, environmental life-cycle assessment (LCA) and economic appraisals have been utilised to study the performance of a domestic building integrated photovoltaic (BIPV) system on a ‘whole systems’ basis. Energy analysis determined that the system paid back its embodied energy in just 4.5 years. LCA revealed that the embodied impacts were offset by the electricity generated to provide a net environmental benefit in most categories. Only carcinogens, ecotoxicity and minerals had a small net lifetime burden. A financial analysis was undertaken from the householder's perspective, alongside cost-benefit analysis from a societal perspective. The results of both indicated that the systems are unlikely to pay back their investment over the 25 year lifetime. However, the UK is in an important period (2010/11) of policy transition with a move away from the ‘technology subsidies’ of the Low Carbon Buildings Programme (LCBP) and towards a ‘market development policy’ of feed-in tariffs. Representing the next stage on an innovation S-curve this is expected to facilitate rapid PV uptake, as experienced in countries such as Germany, Denmark, and Spain. The results of the present study clearly demonstrate the importance of the new government support scheme to the future uptake of BIPV. - Highlights: ► LCA and economic appraisals of a UK domestic building integrated PV system. ► Energy analysis determined that the system paid back its embodied energy in 4.5 years. ► UK moved towards a market development policy of feed-in tariffs. ► Financial analysis shows the importance of the new FiT scheme to the uptake of PV.

  19. Experimental investigation of an optical water filter for Photovoltaic/Thermal conversion module

    International Nuclear Information System (INIS)

    Al-Shohani, Wisam A.M.; Sabouri, Aydin; Al-Dadah, Raya; Mahmoud, Saad; Butt, Haider

    2016-01-01

    Highlights: • New design of Photovoltaic/Thermal system is proposed. • Using the optical water layer as a spectrum splitter is tested experimentally. • Optical rig is developed to study the optical performance of water layer. • Energy conversion under different water layer thicknesses is determined. - Abstract: This paper presents an experimental investigation of a novel optical water filter used for Photovoltaic/Thermal and Concentrating Photovoltaic/Thermal modules. A water layer is used as a spectrum splitter of solar radiation placed above the photovoltaic cells and as a thermal working fluid simultaneously. The water layer absorbs the ultraviolet and part of infrared, which are not used by the photovoltaic, but transmits the visible and some of infrared to the solar cell surface which are used by the photovoltaic. In this work, the transmittance of the optical water filter was measured for different water thicknesses (1, 2, 3, 4, and 5 cm) and radiation wavelength ranging from 0.35 to 1 μm. Results show that there is a significant effect of the water layer thickness on the transmittance of the spectra where the transmittance decreases as the water layer increases. Moreover, energy conversion rate of photovoltaic with the optical water filter at different water layer thicknesses has been determined.

  20. Inventory of the solar thermal and photovoltaic energy potential in the Ardennes district

    International Nuclear Information System (INIS)

    Gal, Henri-Louis

    2010-03-01

    Based on the use of cartographic tool, the objective of this study was to assess the potential production of solar thermal and solar photovoltaic systems, social-economic data, regulatory data, and environmental, heritage-related, and urban constraints, and natural risks. For each type of installation, the possible reachable potential has been assessed while taking these constraints, building typology (housing, industrial, heritage, and so on), building orientation, project construction dynamics into account. The report analyses solar resource, housing characteristics, building typology, regulatory constraints related to the protection of the built environment, exploitation constraints (shade), building orientation constraints. It presents an assessment of net resources for both sectors, an assessment of plausible production potentials by 2030. It also presents and discusses environmental (avoided emissions) and financial indicators related to both solar sectors

  1. Architectural integration of solar thermal systems and photovoltaic: study of Spanish legislation by thermal collectors in buildings; Integracion arquitectonica de sistemas solares termicos y fotovoltaicos: estudio de la legislacion espanola sobre captadores termicos en edificios

    Energy Technology Data Exchange (ETDEWEB)

    Bosqued, G. R.; Heras, C. M. R.

    2004-07-01

    In this article the legal dispositions are studied relating to architectural integration and urban landscape, considered in the different mandatories and Spanish local legislation on the use of thermal solar systems in construction, new and rehabilitated. As consequence some of the multiple possibilities that exist, are analyzed to place the external part of the system, the solar collectors, in the envelop of the building, without any aesthetic reduction on the building and urban set, and in this way fulfill with specified in the normative to contribute to a bigger respect to the environment. (Author)

  2. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  3. Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations

    International Nuclear Information System (INIS)

    Eke, Rustu; Senturk, Ali

    2013-01-01

    Highlights: • The first and the largest BIPV of Turkey were installed. • Single and triple junction amorphous module performances in BIPV applications are analyzed. • Total generated electricity of the BIPV system is measured as 103,702 kW h for 36 months of operation. • Annual energy rating is calculated as 856 kW h/kWp for a non-optimally oriented plant. • The PR of the system is found 0.74 and 0.81 for PV systems on towers and facade respectively. - Abstract: Mugla is located in south west Turkey at 37°13′N latitude and 28°36′E longitude with yearly sum of horizontal global irradiation exceeding 1700 kW h per square meter. Mugla has a Mediterranean Climate which is characterized by long, hot and dry summers with cool and wet winters. Mugla Sıtkı Kocman University is the largest “PV Park” in Turkey consisting of 100 kWp installed Photovoltaic Power Systems (PVPSs) with different PV applications. The 40 kWp building integrated photovoltaic (BIPV) system which is the first and largest in Turkey was installed on the façade and the two towers of the “Staff Block of the Education Faculty’s Building” of Mugla Sıtkı Kocman University in February 2008. Triple junction amorphous silicon photovoltaic modules are used on the façade and single junction amorphous silicon PV modules are used on the East and West towers of the building. In this paper, the 40 kWp BIPV system in Mugla, Turkey is presented, and its performance is evaluated. Energy rating (kW h/kWp energy yield), efficiencies and performance ratios of both applications are also evaluated for 36 months of operation. Daily, monthly and seasonal variations in performance parameters of the BIPV system in relation to solar data and meteorological parameters and outdoor performance of two reference modules (representing the modules on façade and towers) in a summer and a winter day are also investigated

  4. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2018-06-01

    Full Text Available The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC along with the thermal photovoltaic module (PVT where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work. Keywords: Photovoltaic thermal collectors, Electrical performance, Thermal performance, Compound parabolic concentrator, Jet impingement

  5. Multi criteria sizing approach for Photovoltaic Thermal collectors supplying desalination plant

    International Nuclear Information System (INIS)

    Ammous, Mahmoud; Chaabene, Maher

    2015-01-01

    Highlights: • Concept of reverse osmosis desalination plant supplied by hybrid collectors. • Energy consumption optimization. • Plant modeling. • Sizing approach for a desalination plant supplied by hybrid collectors. - Abstract: Reverse osmosis desalination plants require both thermal and electrical energies in order to produce water. As Photovoltaic Thermal panels are able to provide the two energies, they become suitable to supply reverse osmosis plants mainly while installed in remote areas. Autonomous based desalination plants must be optimally sized to meet the criteria related to the reverse osmosis operating temperature, the plant autonomy, the needed water, etc. This paper presents a sizing approach for Photovoltaic Thermal collectors supplying reverse osmosis desalination plant to compute the optimal surface of Photovoltaic Thermal collectors and the tank volume with respect to the operating criteria. The approach is composed of three optimization consideration steps: the monthly average data, the fulfillment of the water need and a three day of autonomy for the water tank volume. The algorithm is tested for a case of study of 10 ha of tomato irrigation. The results converged to 700 m 2 of Photovoltaic Thermal collector’s surface and 3000 m 3 of water tank volume

  6. Energizing architecture. Design and photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lueling, Claudia (ed.)

    2009-07-01

    Power generation by photovoltaic systems and buildings is much more than just an alternative to traditional electric power generation. As the planning and design of photovoltaics is increasingly shifting to the forefront, it is rapidly becoming a new challenge for architecture. This book describes the whole spectrum of possible applications - from inspiration to detail - of photovoltaics as an integral part of building envelopes and introduces groundbreaking examples and visions for the future, in which photovoltaic elements work as a successful part of exterior facades - combined with highly luminous and economical illuminated wallpaper and curtains inside buildings. Its range extends from early designs by artists such as Daniel Hausig to aspects of material selection to detail drawings of implemented solutions. The enormous variety of possible applications of this new (building) material demonstrates the huge potential it possesses. (orig.)

  7. Campus and community micro grids integration of building integrated photovoltaic renewable energy sources: Case study of Split 3 area, Croatia - part A

    Directory of Open Access Journals (Sweden)

    Gašparović Goran

    2016-01-01

    Full Text Available Micro grids interconnect loads and distributed energy resources as a single controllable entity. New installations of renewable energy sources (RES in urban areas, such as Building Integrated Photovoltaic (BIPV, provide opportunities to increase energy independence and diversify energy sources in the energy system. This paper explores the integration of RES into two case study communities in an urban agglomeration to provide optimal conditions to meet a share of the electrical loads. Energy planning case studies for decentralized generation of renewable energy are conducted in H2RES energy planning software for hourly energy balances. The results indicate that BIPV and PV in the case study communities can cover about 17% of the recorded electrical demand of both areas. On a yearly basis, there will be a 0.025 GWh surplus of PV production with a maximum value of 1.25 MWh in one hour of operation unless grid storage is used. This amounts to a total investment cost of 13.36 million EUR. The results are useful for proposing future directions for the various case study communities targeting sustainable development.

  8. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ......The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration...

  9. Building-integrated renewable energy policy analysis in China

    Institute of Scientific and Technical Information of China (English)

    姚春妮; 郝斌

    2009-01-01

    With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.

  10. Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

    OpenAIRE

    K. Touafek; A. Khelifa; E. H. Khettaf; A. Embarek

    2013-01-01

    Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a h...

  11. Building integrated PV for commercial and institutional structures, a sourcebook for architects

    Energy Technology Data Exchange (ETDEWEB)

    Eiffert, P.; Kiss, G.

    2000-02-14

    This sourcebook on building-integrated photovoltaics (BIPV) is intended for architects and designers interested in learning more about today's sustainable solar buildings. The booklet includes 16 design briefs describing actual structures; they illustrate how electricity-generating BIPV products (such as special roofing systems, vertical-wall systems, skylights, and awnings, all of which contain PV cells, modules, and films) can be integrated successfully into many different kinds of buildings. It also contains basic information about BIPV technologies, an overview of US product development activities and development programs, descriptions of major software design tools, and a bibliography.

  12. Outdoor thermal and electrical characterisation of photovoltaic modules and systems

    OpenAIRE

    Herteleer, Bert

    2016-01-01

    Current and future investors in photovoltaic systems are interested in how well the system performs, and how predictable this is over the expected lifetime. To do so, models have been developed and measurements of photovoltaic systems have been done. This dissertation presents the outdoor measurement set-up that has been developed for thermal and electrical characterisation of photovoltaic modules and systems, aimed at measuring transient effects and changes. The main design decisions and ...

  13. Modeling the thermal absorption factor of photovoltaic/thermal combi-panels

    NARCIS (Netherlands)

    Santbergen, R.; Zolingen, van R.J.C.

    2006-01-01

    In a photovoltaic/thermal combi-panel solar cells generate electricity while residual heat is extracted to be used for tap water heating or room heating. In such a panel the entire solar spectrum can be used in principle. Unfortunately long wavelength solar irradiance is poorly absorbed by the

  14. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  15. Institutional barriers for building integrated PV

    International Nuclear Information System (INIS)

    Mierlo, B. van

    2000-01-01

    Being an alternative for fossil fuels photovoltaics have to overcome traditional structures, procedures, cultures and values. As a new building material photovoltaics also have to deal with the structure and culture of the building sector. In this paper the institutional bottlenecks for the introduction of PV on a large scale are explored in five areas: financing, administration, structure of energy sector, architecture, communication and marketing. Nevertheless, on the whole the developments are encouraging. (author)

  16. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    Science.gov (United States)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  17. Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2015-07-01

    Full Text Available A Net Zero Energy Building (NZEB considerably reduces the building energy load through high efficiency equipment and passive elements such as building orientation, high insulation, natural daylighting, and ventilation in order to achieve zero energy balance with on-site energy production from renewable energy systems applied to the building. For a Zero Energy Building (ZEB, the heating energy demand can be significantly reduced with high insulation and air tightness, while the cooling energy demand can be curtailed by applying shading device, cross ventilation, etc. As such, the electrical energy demand for a ZEB is relatively higher than its heat energy demand. Therefore, the application of a Renewable Energy System (RES to produce electricity is necessary for a ZEB. In particular, Building Integrated Photovoltaic (BIPV systems that generate electricity can play an important role for achieving zero energy balance in buildings; BIPVs are multi-functional and there are many ways to apply them into buildings. This study comprehensively analyzes photovoltaic (PV applications in ZEB cases through the International Energy Agency Solar Heating and Cooling Programme (IEA SHC/Energy in Buildings and Communities Programme (EBC Task 40/Annex 52 activities, which include PV installation methods, PV cell type, and electricity generation. The most widely applied RES is the PV system, corresponding to 29 out of a total of 30 cases. Among the roof type PV systems, 71% were non-integrated. In addition, 14 of the 27 cases in which PV systems were applied, satisfied over 100% of the electricity energy demand from the PV system and were found to generate surplus electrical power.

  18. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  19. Building envelope

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-01-01

    Full Text Available for use in the building. This is done through photovoltaic and solar water heating panels and wind turbines. Ideally these are integrated in the design of the building envelope to improve the aesthetic quality of the building and minimise material... are naturally ventilated. Renewable energy The building envelope includes renewable energy generation such as photovoltaics, wind turbines and solar water heaters and 10% of the building’s energy requirements are generated from these sources. Views All...

  20. Optimising building net energy demand with dynamic BIPV shading

    International Nuclear Information System (INIS)

    Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A.

    2017-01-01

    Highlights: •Coupled analysis of PV generation and building energy using adaptive BIPV shading. •20–80% net energy saving compared to an equivalent static system. •The system can in some cases compensate for the entire heating/cooling/lighting load. •High resolution radiation simulation including impacts of module self shading. -- Abstract: The utilisation of a dynamic photovoltaic system for adaptive shading can improve building energy performance by controlling solar heat gains and natural lighting, while simultaneously generating electricity on site. This paper firstly presents an integrated simulation framework to couple photovoltaic electricity generation to building energy savings through adaptive shading. A high-resolution radiance and photovoltaic model calculates the photovoltaic electricity yield while taking into account partial shading between modules. The remaining solar irradiation that penetrates the window is used in a resistance-capacitance building thermal model. A simulation of all possible dynamic configurations is conducted for each hourly time step, of which the most energy efficient configuration is chosen. We then utilise this framework to determine the optimal orientation of the photovoltaic panels to maximise the electricity generation while minimising the building’s heating, lighting and cooling demand. An existing adaptive photovoltaic facade was used as a case study for evaluation. Our results report a 20–80% net energy saving compared to an equivalent static photovoltaic shading system depending on the efficiency of the heating and cooling system. In some cases the Adaptive Solar Facade can almost compensate for the entire energy demand of the office space behind it. The control of photovoltaic production on the facade, simultaneously with the building energy demand, opens up new methods of building management as the facade can control both the production and consumption of electricity.

  1. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  2. Coordination and Control of Flexible Building Loads for Renewable Integration; Demonstrations using VOLTTRON

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivation and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate

  3. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  4. Solar on the brink : more and more engineers are being asked to integrate solar technologies into building designs

    International Nuclear Information System (INIS)

    Sinclair, I.

    2010-01-01

    Methods of integrating solar technologies into building designs were discussed in this article. Ontario's feed-in-tariff (FIT) program will make Ontario a centre for solar technology and is expected to generate new jobs in the alternative energy industry. While photovoltaic (PV) systems eliminate the need for building new electricity and distribution networks, PV systems are the least efficient solar technology in relation to economics, carbon dioxide (CO 2 ) offsets, and energy generation. Many buildings in Canada have significant ventilation air heating loads that are not best served by heat recovery technologies. The economic performance of solar thermal systems can only be understood in relation to the operational efficiency of a building's heating plant. Solar PV systems can provide returns on investment when considered alongside Ontario's FIT program tariffs. Without the tariffs, many payback periods are in excess of PV system product lifetimes. Maintenance contracts and budgets must be carefully considered when commissioning solar energy projects. 3 figs.

  5. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  6. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    Science.gov (United States)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  7. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  8. Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China

    International Nuclear Information System (INIS)

    Zhao, Bin; Hu, Mingke; Ao, Xianze; Pei, Gang

    2017-01-01

    Highlights: •A specific spectral characteristic for both PV and RC was proposed. •The PV/RC hybrid system based on spectral characteristic is original. •A thermal model of the system was established and the performance was analyzed. •The performance comparison with the conventional PV system was conducted. •The system shows considerable performance for both PV and RC. -- Abstract: Building-integrated photovoltaic/thermal (BIPV/T) technology has been receiving considerable research attention because of its ability to generate electricity and thermal energy simultaneously. However, space cooling is crucial for buildings in hot regions where space heating is of little use. This study proposed a building-integrated photovoltaic–radiative cooling system (BIPV–RC) that can generate electricity via photovoltaic (PV) conversion during daytime and generate cooling energy via radiative cooling (RC) during nighttime to satisfy the demand in such areas. The selective plate, which is the main component of the BIPV–RC system, exhibits high spectral absorptivity (emissivity) in the PV conversion band of crystalline silicon solar cells and in the atmospheric window band (i.e., 0.3–1.1 μm and 8–13 μm), as well as low spectral absorptivity (emissivity) in other bands. A quasi-steady-state mathematical model was built, and its performance under realistic ambient conditions was analyzed. The electrical efficiencies of the BIPV–RC and conventional BIPV systems were then compared under different solar radiations. Comparison results show that the annual electricity production and cooling energy gain of the BIPV–RC system in Hefei reached 156.74 kW h m −2 (equivalent to 564.26 MJ m −2 ) and 579.91 MJ m −2 , respectively. The total electricity production and cooling energy gain of this system are 96.96% higher than those of the BIPV system. Parametric studies show that the precipitable water vapor amount has remarkable effects on the nocturnal RC performance

  9. Features of Functioning the Integrated Building Thermal Model

    Directory of Open Access Journals (Sweden)

    Morozov Maxim N.

    2017-01-01

    Full Text Available A model of the building heating system, consisting of energy source, a distributed automatic control system, elements of individual heating unit and heating system is designed. Application Simulink of mathematical package Matlab is selected as a platform for the model. There are the specialized application Simscape libraries in aggregate with a wide range of Matlab mathematical tools allow to apply the “acausal” modeling concept. Implementation the “physical” representation of the object model gave improving the accuracy of the models. Principle of operation and features of the functioning of the thermal model is described. The investigations of building cooling dynamics were carried out.

  10. Solar technologies for buildings. Fundamentals and practice examples. 2. rev. ed.; Solare Technologien fuer Gebaeude. Grundlagen und Praxisbeispiele

    Energy Technology Data Exchange (ETDEWEB)

    Eicker, Ursula

    2012-07-01

    Active and passive utilization of solar energy makes a significant contribution to energy supply in buildings. Solar heating and cooling systems, photovoltaic energy conversion systems and efficient daylighting and passive solar systems are available on the market and need to gain acceptance. The book presents the physical fundamentals and calculated examples for students. It also addresses engineers in practice, who are given concrete design procedures for solar technologies in domestic and administrative buildings. Subjects are, among others: Energy consumption of buildings and solar coverage potential - meteorological basis - solar powered heating - solar cooling - grid-connected photovoltaic systems - thermal analysis of building-integrated solar components - passive utilization of solar energy - lighting engineering and utilization of daylight.

  11. Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Sujata; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2010-10-15

    In this paper, a study is carried out to evaluate the annual thermal and exergy performance of a photovoltaic/thermal (PV/T) and earth air heat exchanger (EAHE) system, integrated with a greenhouse, located at IIT Delhi, India, for different climatic conditions of Srinagar, Mumbai, Jodhpur, New Delhi and Bangalore. A comparison is made of various energy metrics, such as energy payback time (EPBT), electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system by considering four weather conditions (a-d type) for five climatic zones. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. The annual overall thermal energy, annual electrical energy savings and annual exergy was found to be best for the climatic condition of Jodhpur at 29,156.8 kWh, 1185 kWh and 1366.4 kWh, respectively when compared with other weather stations covered in the study, due to higher solar intensity I and sunshine hours, and is lowest for Srinagar station. The results also showed that energy payback time for Jodhpur station is lowest at 16.7 years and highest for Srinagar station at 21.6 years. Electricity production factor (EPF) is highest for Jodhpur, i.e. 2.04 and Life cycle conversion efficiency (LCCE) is highest for Srinagar station. It is also observed that LCCE increases with increase in life cycle. (author)

  12. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material

    International Nuclear Information System (INIS)

    Jouhara, H.; Milko, J.; Danielewicz, J.; Sayegh, M.A.; Szulgowska-Zgrzywa, M.; Ramos, J.B.; Lester, S.P.

    2016-01-01

    A novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name “heat mat” and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system. - Highlights: • A new flat heat pipe PV/T system that can be used as building materials is reported. • The new solar collector enhanced the performance of the PV by about 15%. • The new solar collector is capable of absorbing heat from ambient efficiently. • The new system is efficient from the solar/thermal conversion point of view.

  13. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  14. Photovoltaic building blocks

    DEFF Research Database (Denmark)

    Hanberg, Peter Jesper; Jørgensen, Anders Michael

    2014-01-01

    efficiency of about 15% for commercial Silicon solar cells there is still much to gain. DTU Danchip provides research facilities, equipment and expertise for the building blocks that comprises fabricating the efficient solar cell. In order to get more of the sun light into the device we provide thin film......Photovoltaics (PV), better known as solar cells, are now a common day sight on many rooftops in Denmark.The installed capacity of PV systems worldwide is growing exponentially1 and is the third most importantrenewable energy source today. The cost of PV is decreasing fast with ~10%/year but to make...... it directcompetitive with fossil energy sources a further reduction is needed. By increasing the efficiency of the solar cells one gain an advantage through the whole chain of cost. So that per produced Watt of power less material is spent, installation costs are lower, less area is used etc. With an average...

  15. Guidelines for the Economic Evaluation of Building-Integrated Photovoltaic Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Eiffert, P.; International Energy Agency (IEA) PVPS Task 7

    2003-01-01

    This report identifies the economic parameters of building-integrated PV (BIPV) systems. The guidelines are structured in three major parts: the investment analysis (methods and ownership issues), benefits, and costs. Measurement and verification are also discussed briefly.

  16. Study of the heat transfers spectral radiation - conduction - natural convection in hybrid photovoltaic systems for buildings

    International Nuclear Information System (INIS)

    Muresan, C.

    2005-01-01

    The present work is supported by the CSTB and the ADEME and is a part of an Integrated Research Project - Energy Program of CNRS - (http://www.imp.cnrs.fr/energie/) coordinated by the CETHIL: 'Integration of hybrid Thermal - Photovoltaic solar collector in buildings'. In this context, this thesis represents upstream studies led in the I.R.P., pursuing the study itself of these hybrid components in stage of integration to the framework of buildings (thermal/electric management in response to the needs). Its objective falls under an action to identify and look further into knowledge of the limiting factors of the efficiency of these hybrid components (the operating temperature of the photosensitive cells), to identify the enduring scientific bolts persisting and to contribute to removing them. To reach this aim, predictive numerical tools are developed in order to guide and follow the future evolutions of these active wall elements. The problems related to the Photovoltaic components of Mono or Poly crystalline type, namely the risk of heating of the modules included within the built framework that can lead to a degradation of their energy efficiency. The developed model aims at obtaining the evaluation of the internal field of temperature. The modeling of the radiative behavior of multi-layer components of not scattering semi-transparent media is carried out. Propagation of a collimated flux corresponds to the direct solar radiation, and a diffuse flux represents the solar radiation diffused and that resulting from the other external sources (environment). Both are treated in a separate way. The incidental radiation power and radiative net flux are thus evaluated by a superposition of the values obtained at the time of the separate studies of the two components. The collimated component of incidental flux is treated according to an approach of 'ray tracing' type. The Discrete Ordinates Method (DOM) associated to the method of finite volumes, is employed for the

  17. Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin–fin flow channel for building integration

    International Nuclear Information System (INIS)

    Shen, Jingchun; Zhang, Xingxing; Yang, Tong; Tang, Llewellyn; Cheshmehzangi, Ali; Wu, Yupeng; Huang, Guiqin; Zhong, Dan; Xu, Peng; Liu, Shengchun

    2016-01-01

    Highlights: • A novel compact STF with internally extruded pin–fin flow channel is proposed. • Thermal performance of the STF is characterized in different operation modes. • This STF is with simple structure, low cost and high feasibility in building design. • Such STF can achieve better thermal performance as conventional ones. - Abstract: The fully building integrated Solar Thermal Facade (STF) systems can become potential solutions for aesthetics architectural design, as well as for the enhancement of energy efficiency and reduction of operational cost in the contemporary built environment. As a result, this article introduces a novel compact STF with internally extruded pin–fin flow channel that is particularly suitable for the building integration. A dedicated simulation model was developed on basis of the heat transfer and the flow mechanics. A prototype of this STF was fabricated and then it was tested under a series of controlled environmental conditions. The experimental validation illustrated a good agreement with the simulation results, indicating the established model was able to predict the STF’s thermal performance at a reasonable accuracy (i.e. mean deviation of less than 5.46%). The impacts of several operational parameters, i.e. equivalent solar radiation, air temperature, air velocity, water mass flow rate and inlet water temperature, on the STF thermal performance were then discussed respectively. Given the baseline testing condition, the collector efficiency factor F′ is almost 0.9930, leading to a relatively high nominal thermal efficiency at about 63.21%, which demonstrates such STF, with simpler structure, lower cost and higher feasibility in architectural design, can achieve an equivalent or better thermal performance than recent bionic STF or the conventional ones. It is also concluded that the thermal efficiency varies proportionally with solar radiation, air temperature, and mass flow rate of water, but oppositely to air

  18. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  19. Optimization Design Method and Experimental Validation of a Solar PVT Cogeneration System Based on Building Energy Demand

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2017-08-01

    Full Text Available Photovoltaic-thermal (PVT technology refers to the integration of a photovoltaic (PV and a conventional solar thermal collector, representing the deep exploitation and utilization of solar energy. In this paper, we evaluate the performance of a solar PVT cogeneration system based on specific building energy demand using theoretical modeling and experimental study. Through calculation and simulation, the dynamic heating load and electricity load is obtained as the basis of the system design. An analytical expression for the connection of PVT collector array is derived by using basic energy balance equations and thermal models. Based on analytical results, an optimized design method was carried out for the system. In addition, the fuzzy control method of frequency conversion circulating water pumps and pipeline switching by electromagnetic valves is introduced in this paper to maintain the system at an optimal working point. Meanwhile, an experimental setup is established, which includes 36 PVT collectors with every 6 PVT collectors connected in series. The thermal energy generation, thermal efficiency, power generation and photovoltaic efficiency have been given in this paper. The results demonstrate that the demonstration solar PVT cogeneration system can meet the building energy demand in the daytime in the heating season.

  20. Update of the database of photovoltaic installations in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.; Bruhns, H.

    1999-07-01

    The article describes an updated database of photovoltaic (PV) installations in the UK. The database contains more than 300 records representing over 40,000 photovoltaic installations with more than 100 buildings that use photovoltaic arrays. Figures show: (i) a chart of cumulative PV applications to date; (ii) a chart of cumulative installations in the database; (iii) the growth of Building Integrated PV installed to date; (iv) the cumulative growth of peak power of PV for buildings installed every year since 1985; (v) the distribution by application of all PV installations in the database and (vi) the various applications of PV installations.

  1. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  2. Indoor Thermal Environment in Tropical Climate Residential Building

    Directory of Open Access Journals (Sweden)

    Jamaludin Nazhatulzalkis

    2014-01-01

    Full Text Available Indoor thermal environment is one of the criteria in sustainable building. This criterion is important in ensuring a healthy indoor environment for the occupants. The consideration of environmental concerns at the early design stage would effectively integrate the sustainability of the building environment. Global climate changes such as global warming do affect human comfort since people spend most of their time and activities in the building. The increasing of urban population required additional housing for households, as well as places to shop, office and other facilities. Occupants are now more conscious the importance of sustainability for a better quality of life. Good thermal environment is essential for human wellness and comfort. A residential environment will influence residents’ health and safety. The global warming increase the earth’s temperature and greenhouse emission to the atmosphere cause adverse effects to the outdoor environment. Residential developments modify the materials, structure and energy balance in urban climate effects of human economic activities. As an indoor environment is influenced by the outdoor condition, the factors affecting indoor thermal environment are crucial in improving a comfortable and healthy environment in residential building. The microclimatic of a site such as temperature and relative humidity, and wind movement led to the variation of indoor thermal environment in the building.

  3. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  4. Press document. Photovoltaic energy: boosting the evolution

    International Nuclear Information System (INIS)

    2009-04-01

    The french potential in the photovoltaic energy is considerable but not very exploited. In this context the CEA, by its function of applied research institute in the domain of the low carbon energies can be a major actor of the sector development. This document presents the research programs in the photovoltaic domain, developed at the CEA, especially on the silicon performance, the photovoltaic solar cells and their integration in the buildings. (A.L.B.)

  5. Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT System

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2017-04-01

    Full Text Available In recent years, with the development of photovoltaic system and photo-thermal system technology, hybrid photovoltaic-thermal (PVT technology has been a breakthrough in many aspects. This paper describes the movable hybrid PVT system from the aspects of appearance structure, energy flow, and control circuit. The system is equipped with rolling wheels and the simulated light sources also can be removed so that the system can be used in the outdoor conditions. The movable system is also suitable for the PVT system and its related applications without any external power supply. This system combines two technologies: photovoltaic power generation and photo-thermal utilization. The first part of the power supply is for the systems own output power supply, and the second part is for generating thermal energy. The two separate parts can be controlled and monitored respectively through the control circuits and the touch screens. The experimental results show that the system can generate 691 kWh electric energy and 3047.8 kWh thermal energy each year under normal working conditions. The efficiency of the proposed movable hybrid PVT system is calculated to be approximately 42.82% using the revised equations that are proposed in this paper. Therefore, the movable hybrid PVT system can meet the daily demands of hot water and electricity power in remote areas or islands and other non-grid areas. It also can be used to conduct experiment tests for the PVT system.

  6. Proceedings of the Canadian Solar Buildings Conference : the 31. annual conference of the Solar Energy Society of Canada Inc. and the 1. Canadian Solar Buildings Research Network conference

    International Nuclear Information System (INIS)

    Athienitis, A.; Charron, R.; Karava, P.; Stylianou, M.; Tzempelikos, A.

    2006-01-01

    The first conference organized by the newly established Canadian Solar Buildings Research Network (SBRN) was held in conjunction with the thirty-first annual conference of the Solar Energy Society of Canada Inc (SESCI). The conference was attended by top researchers from 10 Canadian Universities to promote innovative research and development in solar energy applications and to advance the awareness of solar energy in Canada. It featured special events such as trade shows, photovoltaic workshops, a course in ESP-r simulation, tours of solar houses and other events focused on the economic, environmental and socio-economic benefits of solar technology, including the potential to reduce greenhouse gas emissions. SBRN was founded on the premise that university researchers should focus on solar energy applications for buildings. Several presentations proposed action plans to accelerate the implementation of solar energy through the use of innovative building technologies and sustainable energy policies. Other major issues of interest were also discussed, including the development of the net-zero energy solar home and grid-connection issues. The sessions of the conference were entitled: solar thermal systems; solar electricity; building integrated photovoltaic systems; design issues and tools; integrating PV and solar thermal in buildings; daylighting and solar radiation modeling; fenestration and shading; PV manufacturing and solar electricity resources. The proceedings featured 41 refereed papers and 13 poster presentations, all of which have been catalogued separately for inclusion in this database. refs., tabs., figs

  7. Development and evaluation of a building integrated aquifer thermal storage model

    NARCIS (Netherlands)

    Bozkaya, B.; Li, R.; Labeodan, T.; Kramer, R.P.; Zeiler, W.

    2017-01-01

    An aquifer thermal energy storage (ATES) in combination with a heat pump is an excellent way to reduce the net energy usage of buildings. The use of ATES has been demonstrated to have the potential to provide a reduction of between 20 and 40% in the cooling and heating energy use of buildings. ATES

  8. The photovoltaic energy in Japan

    International Nuclear Information System (INIS)

    Georgel, O.

    2005-07-01

    Today the Japan is the leader of the photovoltaic energy. The first reason of this success is an action of the government integrating subventions for the installation of photovoltaic systems and a support of the scientific research. To explain this success, the author presents the energy situation in Japan, details the national programs, the industrial sector (market, silicon needs, recycling, manufacturers, building industry) and presents the main actors. (A.L.B.)

  9. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Science.gov (United States)

    Jaaz, Ahed Hameed; Sopian, Kamaruzzaman; Gaaz, Tayser Sumer

    2018-06-01

    The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV) could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC) along with the thermal photovoltaic module (PVT) where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work.

  10. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  11. A key review of building integrated photovoltaic (BIPV systems

    Directory of Open Access Journals (Sweden)

    Emrah Biyik

    2017-06-01

    The two fundamental research areas in the BIPV and BIPVT systems are observed to be i improvements on system efficiency by ventilation, hence obtaining a higher yield with lowering the panel temperature ii new thin film technologies that are well suited for building integration. Several approaches to achieve these objectives are reported in the literature as presented in this paper. It is expected that this comprehensive review will be beneficial to researchers and practitioners involved or interested in the design, analysis, simulation, and performance evaluation, financial development and incentives, new methods and trends of BIPV systems.

  12. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  13. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  14. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  15. Solar thermal electricity production. A building block for the energy turnaround?; Solarthermische Stromerzeugung. Ein Baustein fuer die Energiewende?

    Energy Technology Data Exchange (ETDEWEB)

    Pitz-Paal, Robert [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) e.V., Koeln (Germany). Inst. fuer Solarforschung

    2012-12-15

    Whereas in Germany enthusiasm for solar thermal power plants has subsided following the inglorious insolvency of Solar Millennium AG, internationally the market is livening up again. This has to do with the fact that many countries have now understood that security of supply cannot be founded on photovoltaics and wind alone in the long term. Solar thermal power could thus yet become an important building block in Germany's energy supply system as it continues to pursue the energy turnaround.

  16. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  17. Solar cooling - comparative study between thermal and electrical use in industrial buildings

    Science.gov (United States)

    Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.

    2016-08-01

    The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.

  18. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  19. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  20. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  1. Solar Photovoltaic Electricity Applications in France. National Survey Report 2007

    International Nuclear Information System (INIS)

    Claverie, Andre; Jacquin, Philippe

    2008-01-01

    The overall power of installed PV systems in France in 2007 was 31,3 MW which represents a significant growth compared to 2006. This increase is mainly due to the national fiscal measures (new feed-in tariff and tax credit) launched in 2006. The implemented feed-in tariff model application supports building integration of photovoltaic generators with a much higher financial incentive than other type of photovoltaic installations. In the same way, local authorities like regional councils and departmental councils developed new policies to promote photovoltaics through specific grants. As the building integration of photovoltaic generators is encouraged by a feed-in tariff bonus, innovative products are appearing on the market or are under development. In parallel, actors like architects, designers, engineers are now paying attention to building integration of photovoltaic components (BIPV). New actors such as financial institutions, energy operators, and private investors have developed ambitious projects. With the increase of the market, new firms have been created including engineering, consultancies, electricity producers, PV products distributors and retailers, installation and maintenance companies. Photovoltaic industrial sector is getting stronger and large investments have been undertaken in order to develop a vertical integration of the photovoltaic value chain, from feedstock silicon production to final photovoltaic products. A new private-public consortium called 'PV Alliance Lab Fab' has been set up and an important R and D project under the name of 'Solar Nano Crystal' should start by the end of 2008. At the same time, R and D activities focus on photovoltaic silicon cells/modules conversion efficiency and long term reliability, production costs, new materials and device design, yield, environmental impact of industrial processes and optimisation of control and monitoring of photovoltaic systems. In addition to the ADEME and ANR

  2. Restoration and construction (buildings). Solar electric power. How to complete a photovoltaic project

    International Nuclear Information System (INIS)

    Bareau, Helene; Juniere, Olivier

    2017-10-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic but comprehensive outlook on the way to complete a solar photovoltaic project in the cases of the restoration or the construction of a building. After a presentation of solar energy, its transformation into electric power, and the installation of solar photovoltaic panels and equipment, the brochure exposes the various steps of a photovoltaic project: economic analysis (cost estimation, budgets, financing incentives, power prices, the choice between selling or using electric power, the contracts, etc.), the planning of the project, the administrative procedure, the selection of a professional installer, how to run the photovoltaic system, how to run the business, etc

  3. Numerical model for the thermal yield estimation of unglazed photovoltaic-thermal collectors using indoor solar simulator testing

    NARCIS (Netherlands)

    Katiyar, M.; van Balkom, M.W.; Rindt, C.C.M.; de Keizer, C.; Zondag, H.A.

    2017-01-01

    It is a common practice to test solar thermal and photovoltaic-thermal (PVT) collectors outdoors. This requires testing over several weeks to account for different weather conditions encountered throughout the year, which is costly and time consuming. The outcome of these tests is an estimation of

  4. Comparison of Buildings\\' Thermal Loads against Building Orientations for Sustainable Housing in Pakistan

    Directory of Open Access Journals (Sweden)

    Arif Khan

    2012-07-01

    Full Text Available As the sustainable settlements have been included as a vital end product of all planning exercises, the architectural layouts should be well integrated with the sun path charts and the orientations of windows. Appropriate orientations can offer thermally indoor conditions besides physical and psychological comfort in any settlement at lesser energy demand. This investigation uses a vast number of computer simulations to visualize and make better decisions about heating and cooling requirements of a building and facades as a function of window orientation in composite climatic condition of Lahore. This study in particular evaluates the solar load in residential buildings responsive to the objective of sustainable new housing leading to thoughtful integration of architecture. The orientation of the buildings could then be essentially integrated to the current architectural and urban design practices in order to optimize the relationship between the given site ant the orientations for sustainable developments.

  5. Daytime space cooling with phase change material ceiling panels discharged using rooftop photovoltaic/thermal panels and night-time ventilation

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Pean, Thibault Quentin; Gennari, Luca

    2016-01-01

    The possibility of using photovoltaic/thermal panels for producing cold water through the process of night-time radiative cooling was experimentally examined. The cold water was used to discharge phase change material in ceiling panels in a climatic chamber. Both night-time radiative cooling...... the photovoltaic/thermal varied from 56% to 122%. The phase change material ceiling panels were thus, capable of providing an acceptable thermal environment and the photovoltaic/thermal panels were able to provide most of the required electricity and cold water needed for cooling....

  6. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings

    International Nuclear Information System (INIS)

    Saber, Esmail M.; Lee, Siew Eang; Manthapuri, Sumanth; Yi, Wang; Deb, Chirag

    2014-01-01

    Air pollution and climate change increased the importance of renewable energy resources like solar energy in the last decades. Rack-mounted PhotoVoltaics (PV) and Building Integrated PhotoVoltaics (BIPV) are the most common photovoltaic systems which convert incident solar radiation on façade or surrounding area to electricity. In this paper the performance of different solar cell types is evaluated for the tropical weather of Singapore. As a case study, on-site measured data of PV systems implemented in a zero energy building in Singapore, is analyzed. Different types of PV systems (silicon wafer and thin film) have been installed on rooftop, façade, car park shelter, railing and etc. The impact of different solar cell generations, arrays environmental conditions (no shading, dappled shading, full shading), orientation (South, North, East or West facing) and inclination (between PV module and horizontal direction) is investigated on performance of modules. In the second stage of research, the whole PV systems in the case study are simulated in EnergyPlus energy simulation software with several PV performance models including Simple, Equivalent one-diode and Sandia. The predicted results by different models are compared with measured data and the validated model is used to provide simulation-based energy yield predictions for wide ranges of scenarios. It has been concluded that orientation of low-slope rooftop PV has negligible impact on annual energy yield but in case of PV external sunshade, east façade and panel slope of 30–40° are the most suitable location and inclination. - Highlights: • Characteristics of PV systems in tropics are analyzed in depth. • The ambiguity toward amorphous panel energy yield in tropics is discussed. • Equivalent-one diode and Sandia models can fairly predict the energy yield. • A general guideline is provided to estimate the energy yield of PV systems in tropics

  7. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  8. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  9. Monitoring of the CIS building-integrated photovoltaic plant in Chur, Switzerland; Monitoring of the CIS BIPV plant Wuerth in Choire

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.; Huerlimann, K. [Enecolo AG, Moenchaltorf (Switzerland)

    2005-07-01

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) describes a project involving the use of semi-transparent, custom-made CIS photovoltaic modules as part of the glass roof of the atrium of an office building in Chur, Switzerland. The results of production-monitoring over a period of two years are presented in detail and commented on. Measurements made and performance values calculated using the performance matrix method are presented and commented on. An increase in module efficiency with time is noted. Also, the effect of the shading provided by the installation on the energy household of the building is looked at. The results of interviews with employees working in the building are discussed.

  10. Large-area smart glass and integrated photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M. [Star Science, 8730 Water Road, Cotati, CA 94931-4252 (United States)

    2003-04-01

    Several companies throughout the world are developing dynamic glazing and large-area flat panel displays. University and National Laboratory groups are researching new materials and processes to improve these products. The concept of a switchable glazing for building and vehicle application is very attractive. Conventional glazing only offers fixed transmittance and control of energy passing through it. Given the wide range of illumination conditions and glare, a dynamic glazing with adjustable transmittance offers the best solution. Photovoltaics can be integrated as power sources for smart windows. In this way a switchable window could be a completely stand alone smart system. A new range of large-area flat panel display including light-weight and flexible displays are being developed. These displays can be used for banner advertising, dynamic pricing in stores, electronic paper, and electronic books, to name only a few applications. This study covers selected switching technologies including electrochromism, suspended particles, and encapsulated liquid crystals.

  11. Modelling characteristics of photovoltaic panels with thermal phenomena taken into account

    International Nuclear Information System (INIS)

    Krac, Ewa; Górecki, Krzysztof

    2016-01-01

    In the paper a new form of the electrothermal model of photovoltaic panels is proposed. This model takes into account the optical, electrical and thermal properties of the considered panels, as well as electrical and thermal properties of the protecting circuit and thermal inertia of the considered panels. The form of this model is described and some results of measurements and calculations of mono-crystalline and poly-crystalline panels are presented

  12. Integrated Photovoltaic System Used as an Alternative Power Source

    Directory of Open Access Journals (Sweden)

    Ionel Laurentiu Alboteanu

    2014-09-01

    Full Text Available This paper presents a solution to use solar energy as an alternative source of electricity to conventional sources. The solution is to use a compact photovoltaic system integrated into a micro smart grid. The studied photovoltaic system is used into concrete application for the power supply lighting in a didactic laboratory.

  13. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

    Directory of Open Access Journals (Sweden)

    Li Zhengzhou

    2016-01-01

    Full Text Available With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation model of single phase grid connected photovoltaic array is proposed. It overcomes the shortcomings of the process of building the model of the PV array by using Simulink component library and provides the basic guarantee for the realization of system simulation, guiding theory research and system design.

  14. Photovoltaic. Solar thermal. Solar thermal electricity;Le Photovoltaique. Le solaire thermique. L'heliothermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  15. Ten questions concerning integrating smart buildings into the smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve; Henze, Gregor; Mohammadpour, Javad; Noonan, Doug; Patteeuw, Dieter; Pless, Shanti; Watson, Richard T.

    2016-11-01

    Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demand response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.

  16. Development and evaluation of a building integrated aquifer thermal storage model

    DEFF Research Database (Denmark)

    Bozkaya, Basar; Li, Rongling; Labeodan, Timilehin

    2017-01-01

    An aquifer thermal energy storage (ATES) in combination with a heat pump is an excellent way to reduce the net energy usage of buildings. The use of ATES has been demonstrated to have the potential to provide a reduction of between 20 and 40% in the cooling and heating energy use of buildings. ATES...... systems are however a complex system to analyse as a number of ground conditions influence heat losses within the aquifer. ATES is also not confined from the sides and is therefore vulnerable to heat losses through conduction, advection and dispersion. The analyses of ATES system is even further...... complicated when the dynamic of a building is considered. When connected to a building, the temperature in the aquifer is influenced by the amount of heat exchange with the varying building load. Given the energy saving potentials of ATES systems in building operation, detailed understanding of the influence...

  17. Photovoltaic solar power in building engineering. Experience feedback in France of the European Hip Hip project. Advances and realizations; L'electricite solaire photovoltaique dans le batiment. Retour d'experience en France du Projet Europeen Hip Hip. Avancees et realisations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The European demonstration project Hip Hip (house integrated photovoltaic high-tech in public) led the French photovoltaic market to reach a level comparable to those of the other European countries in terms of relevance of implemented solutions and costs. This document presents the best realizations and the experience gained through the Hip Hip project. Its aim is to convince the designers and managers of building projects of the advantages of photovoltaic installations integrated to the structure and connected to the power distribution grid: 1 - presentation of the technology; 2 - status of the Hip Hip demonstration project (goals, results: main innovations and impact on the French market); 3 - different possibilities of integration to the building structure; 4 - examples of projects realized in France in the framework of the Hip Hip project: integration in glass roof, frontage, added elements, fitting on roofs. (J.S.)

  18. Built-in future: integration, technical and market-development issues for PV

    International Nuclear Information System (INIS)

    Nordmann, T.

    2005-01-01

    Although large ground-mounted multi-megawatt photovoltaic plants have become common, it is argued that integration of photovoltaics into the fabric of buildings is their optimum use. In Germany, with its well-established grid network, there is a marked imbalance in the deployment of photovoltaics and only 1% are integrated into the roofs or facades of buildings. A similar pattern is found in most other countries in central Europe and the article seeks to discover the reasons for this. The situation in Japan is different in that the relatively high cost of electricity has encouraged a robust market for domestic photovoltaics. It is argued that the market for building-integrated photovoltaics in Europe has massive potential

  19. Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications

    Directory of Open Access Journals (Sweden)

    Julia Marín-Sáez

    2016-07-01

    Full Text Available A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel and Avignon (France—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented. The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon to 20% (Sde Boker. Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.

  20. Sunny Woods, Zurich: photovoltaics integrated in metal roofing; Projekt Sunny Woods, Zuerich - Photovoltaik-Anlage in Blechdach integriert

    Energy Technology Data Exchange (ETDEWEB)

    Naef, R.; Kaempfen, B. [Naef Energietechnik, Architekturbuero, Zuerich (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project aimed at providing proof that the energy needs of an four-storey apartment house built to so-called 'passive-house' zero-energy-consumption standards could be met using energy from a photovoltaic (PV) installation integrated in the building's metal roof. The building's energy-relevant characteristics are briefly presented and its 300 m{sup 2} roof with its 504, 32 W{sub p} amorphous triple-cell solar panels is described. The performance of the photovoltaic installation is analysed. The system supplies excess power to the electricity mains in summer which is then drawn again in winter. Each apartment has its own segment of the PV installation. Figures are presented on total solar power production and on data collected for one of the apartments with respect to comfort and electricity consumption.

  1. Experimental Performance Investigation of Photovoltaic/Thermal (PV–T System

    Directory of Open Access Journals (Sweden)

    Bakir C.

    2013-04-01

    Full Text Available Photovoltaic solar cells convert light energy from the sun into electricity. Photovoltaic cells are produced by semi-conducting materials to convert the energy into electricity and during this process heat is absorbed by the solar radiation. This heat causes a loss of electricity generation efficiencies.In this study, an experimental setup was designed and established to test two separate photovoltaic panel systems with alone PV and with water cooling system PV/T to examine the heat effect on PV systems. The absorbed heat energy behind the photovoltaic cell's surface in insulated ambient was removed by means of a water cooling system and the tests for both systems were simultaneously performed along the July 2011. It is found that without active water cooling, the temperature of the PV module was higher during day time and solar cells could only achieve around 8% conversion efficiency. On the other hand, when the PV module was operated with active water cooling condition, the temperature dropped significantly, leading to an increase in the efficiency of solarcells as much as 13.6%. Gained from absorbed solar heat and maximum thermal conversion efficiencies of the system are determined as 49% and 51% for two different mass flow rates. It is observed that water flow rate is effective on the increasing the conversion efficiency as well as absorption and transitionrates of cover glass in PV/T (PV–Thermal collector, the insulation material and cell efficiency. As a conclusion, the conversion efficiency of the PV system with water cooling might be improved on average about 10%. Therefore, it is recommended that PV system should be designed with most efficient type cooling system to enhance the efficiency and to decrease the payback period.

  2. Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mohammadnia, Ali

    2014-01-01

    Highlights: • Simulation of an enhanced ICSSWH system combined with PV panel was conducted. • The present model dose not uses any photovoltaic driven water pump. • High packing factor and tank water mass are caused to high PVT system efficiency. • Larger area of the collector is resulted to lower total PVT system efficiency. - Abstract: A photovoltaic–thermal (PVT) module is a combination of a photovoltaic (PV) panel and a thermal collector for co-generation of heat and electricity. An integrated collector-storage solar water heater (ICSSWH) system, due to its simple and compact structure, offers a promising approach for the solar water heating in the varied climates. The combination of the ICSSWH system with a PV solar system has not been reported. In this paper, simulation of an enhanced ICSSWH system combined with the PV panel has been conducted. The proposed design acts passive. Therefore, it does not use any photovoltaic driven water pump to maintain a flow of water inside the collector. The effects of the solar cell packing factor, the tank water mass and the collector area on the performance of the present PVT system have been investigated. The simulation results showed that the high solar cell packing factor and the tank water mass are caused to the high total PVT system efficiency. Also, larger area of the collector is resulted to lower total PVT system efficiency

  3. Prismatic TIR (total internal reflection) low-concentration PV (photovoltaics)-integrated façade for low latitudes

    International Nuclear Information System (INIS)

    Sabry, Mohamed

    2016-01-01

    Low-concentration Façade-integrated Photovoltaic system in the form of TIR (total internal reflection) prismatic segmented façade could play an effective role in reducing the direct component of solar radiation transmitting through buildings, hence reducing both cooling and artificial lighting load on such buildings. A prismatic segmented façade is capable of allowing diffused skylight to transmit through it to the building interior, while preventing most of the direct solar radiation and converting it into clean energy by means of the integrated PV (​photovoltaics) cells. A range of prismatic TIR segmented façades with different head angles has been designed based on the geographical latitude of the chosen location. Each façade configuration is simulated by ray-tracing technique and its performance is investigated against realistic direct solar radiation data in two clear sky days representing summer and winter of the targeted location. Ray tracing simulations revealed that all of the selected configurations could collect most of the direct solar radiation in summer. In contrary, larger head angle of the segmented façade could collect wider intervals around the noon time till reaching a head angle of 23° at which most of the incident direct solar radiation could be collected. - Highlights: • 5 different head angles of prismatic segmented PV-integrated Façade are ray-traced. • Transmitted and PV-collected solar radiation percentages are determined. • DNI daily profiles with associated solar altitudes and azimuth data are simulated. • Expected transmitted and PV collected solar radiation are calculated for the proposed segments.

  4. Technologic Information about Photovoltaic Applied in Urban Residences

    OpenAIRE

    Stephanie Fabris Russo; Daiane Costa Guimarães; Jonas Pedro Fabris; Maria Emilia Camargo; Suzana Leitão Russo; José Augusto Andrade Filho

    2016-01-01

    Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban re...

  5. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  6. Grid-Connected Semitransparent Building-Integrated Photovoltaic System: The Comprehensive Case Study of the 120 kWp Plant in Kunming, China

    Directory of Open Access Journals (Sweden)

    Yunfeng Wang

    2018-01-01

    Full Text Available A 120 kWp building-integrated photovoltaic (BIPV system was installed on the south facade of the Solar Energy Research Institute building in Yunnan Normal University. The area of the curtain wall was 1560 m2 (26 m × 60 m, which consisted of 720 semitransparent monocrystalline silicon double-glazing PV panels. This paper studied the yearly and monthly variations of power generation in terms of solar data and meteorological parameters. The total amount of power generation of the BIPV system measured from October 2014 to September 2015 was 64.607 MWh, and the simulation results with TRNSYS (Transient Systems Simulation Program provided the 75.515 MWh predicted value of annual electricity production with the meteorological database of Meteonorm, while, based on the average value of the performance ratio (PR of 60% and the life cycle assessment (LCA of the system, the energy payback time (EPBT of 9.38 years and the potential for pollutant emission reductions have been evaluated and the environmental cost is RMB ¥0.01053 per kWh. Finally, an economic analysis was carried out; the net present value (NPV and the economic payback time of the BIPV system were estimated to be RMB ¥359,347 and 15 years, respectively.

  7. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CM...... and cooling purposes of future low energy buildings. The investigations were conceived as a low temperature concept, where the difference between the temperature of circulating fluid and air in the room was kept in range of 1–4 °C.......The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... HPC layer covering the CMT. This paper shows that CMT integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating (cooling) and at the same time create the comfortable and healthy environment for the occupants. This solution is very suitable for heating...

  8. Presentations given at the Enerplan Conference: facilitating photovoltaic energy integration in the grid

    International Nuclear Information System (INIS)

    Mueth, Thierry; Thomas, Christophe; Loyen, Richard; Masson, Gaetan; Najdawi, Celine; Dubus, Jean-Michel; Carre, Olivier; Resseguier, Stephane de; Alazard, Raymond; Prest, Ignace de; Humez, Herve; Kaiser, Martin; Cassagne, Valerick; Dauphin, Francois; Merley, Jacques; Laffaille, Didier; Gossement, Arnaud; Belon, Daniel; Blanquet, Francois; Bonnet, Jean-Philippe; Sanchez, Louis; Vienot, Raphaelle; Lambert, Karine; Berly, Frederic

    2013-07-01

    Large-scale integration of photovoltaic energy in power grids are present day topics of strategical stakes for the development of the photovoltaic industry and for the success of the energy transition. This conference provided some answers to three main subjects which were the main themes of the 3 round-tables: 1 - Identifying the context elements leading to a large integration of solar energy in Europe and in France; 2 - Identifying the technical solutions facilitating the technical integration of photovoltaic energy in power grids; 3 - Analysing the expected regional schemes for connecting renewable energies to the network, in order to shift from an administrative planning to a dynamical and practical approach profitable to the photovoltaic industry. This document brings together the available presentations (slides) given at the colloquium

  9. Solar photovoltaic systems and their use as grid-connected generators in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Munro, D K; Hacker, R J; Thornycroft, J M [Halcrow Gilbert Associates Ltd., Swindon (United Kingdom)

    1995-10-01

    There is an increasing interest in the use of building-integrated solar photovoltaic generators as grid-connected generators. This paper discusses the experience with this technology in Europe. Typical systems and their integration into domestic and non-domestic buildings are described. Information is provided on the energy output that can be expected from the systems and the economics of their use. The paper provides an overview of the requirements for photovoltaic systems as grid-connected generation plant in the United Kingdom. (Author)

  10. Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Ma, Xinglong

    2016-01-01

    Highlights: • A common design method of a cycloidal transmissive Fresnel solar concentrator was presented. • The gallium arsenide high concentrated solar was used as the receiver. • High efficiency of electric generating could be achieved at noon. • Fresnel solar concentrator was studied and compared in hazy weather and clear weather. - Abstract: A design method of a cycloidal transmissive Fresnel solar concentrator which can provide a certain width focal line was presented in this study. Based on the optical principle of refraction, the dimensions of each wedge-shaped element of Fresnel lens are calculated. An optical simulation has been done to obtain the optical efficiency of the concentrator for different tracking error and axial incidence angle. It has been found that about 80% of the incident sunlight can still be gathered by the absorber when the tracking error is within 0.7°. When the axial angle of incidence is within 10°, it almost has no influence to the receiving rate. The concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator has been designed in this paper. Take the gallium arsenide high concentrated battery as the receiver, experimental research about cylindrical Fresnel concentrating photovoltaic/thermal system is undertaken in the real sky. Main parameters are tested such as the temperature distribution on receiver, electric energy and thermal energy outputs of concentrating photovoltaic/thermal system, the efficiency of multipurpose utilization of electric and heat, and so on. The test results in clear weather show that maximum electric generating efficiency is about 18% at noon, the maximum heat receiving rate of cooling water is about 45%. At noon time (11:00–13:00), the total efficiency of thermal and electricity can reach more than 55%. Performance of this concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator is studied and compared in two types typical weather, hazy

  11. Modelling and system analysis of new photovoltaic thermal solar collectors

    NARCIS (Netherlands)

    Katiyar, M.

    2016-01-01

    This project report is a deliverable within the scope of WenSDak project, which is being carried out by a consortium of a number of photovoltaic-thermal (PVT) panel manufacturers and knowledge institutes. This project is financed by RVO (Rijksdienst voor Ondernemend Nederland) – project number

  12. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  13. Experimental Comparison of Two Configurations of Hybrid Photovoltaic Thermal Collectors

    International Nuclear Information System (INIS)

    Khaled Toufeka; Mourad Haddadib; Ali Mkc

    2011-01-01

    The combination of a thermal collector and a photovoltaic module in a single system allows for increased efficiency of the total conversion of solar energy. A synergistic effect can be obtained in a structure combining these two devices in a judicious manner to those of thermal and photovoltaic system installed separately. Production of total energy from hybrid collector depends on the input (that is to say, the. energy of solar radiation, air temperature and wind speed) and output which is the electric production and the temperature of the system. Thin production also depends on the mode of heal extraction. In this paper, an experimental Study of two configurations of hybrid collectors is described. The configuration that the absorber is made by galvanized steel and in the second, the absorber is a copper serpentine. The advantages of the first configuration are mainly due to low cost and simplicity but the second configuration has the advantage of promoting the heat transfer between cells and fluid. (authors)

  14. A Review on Photovoltaic-Thermal (PV-T) Air and Water Collectors

    International Nuclear Information System (INIS)

    Avezov, R.R.; Akhatov, J. S.; Avezova, N. R.

    2011-01-01

    This paper presents the state-of-the-art on photovoltaic-thermal PV-T collectors. There are presented two main classification groups: -Air and -Water PV-Thermal collectors, design and performance evaluation, comparison of the findings obtained by various researchers. The review also covers the description of different designs of air and water PV-T collectors, the results of theoretical and experimental works, focused to optimization of the technical and economical performances in terms of electrical as well as thermal outputs. (authors)

  15. Assessment of building integrated energy supply and energy saving schemes on a national level in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.; Morthorst, P.E.; Birkl, C.

    2011-06-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The results of these analyses were integrated in five scenarios to examine the consequences at national level of implementing insulation together with solar panels, photovoltaics and heat pumps in single-family houses. The simulations focused on the building period between 1961 and 1972 characterised by high building activity and low energy performance. The five scenarios - a baseline scenario, a maximum savings scenario, a maximum production scenario, and a combination scenario - showed that regardless of scenario, a consequent use of individual heat pumps leads to the greatest energy savings and CO{sub 2} reductions. (ln)

  16. Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

    2005-10-01

    This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

  17. Commercial Application of a Photovoltaic Concentrator system. Phase I. Final report, 1 June 1978-28 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.J.; Anderson, E.R.; Bardwell, K.M.

    1980-04-01

    This report documents the design and analysis of the BDM CAPVC (Commercial Application of a Photovoltaic Concentrator) system. The preliminary design, prototype test and evaluation, system analysis, and final design of a large-scale concentrating photovoltaic system are described. The application is on an attractive new office building which represents a large potential market. The photovoltaic concentrating array is a roof-mounted, single-axis linear parabolic trough, using single crystalline silicon photovoltaic cells. A total of 6720 square feet of aperture is focussed on 13,944 PV cells. The photovoltaic system operates in parallel with the local utility in an augmentary loadsharing operating mode. The array is actively cooled and the thermal energy utilized for building heat during winter months. (WHK)

  18. Thermal and photovoltaic solar system in Urban hotel; Sistema solar termico y fotovoltaico en hotel urbano

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.; Perpinan, O.; Ramirez, F.; Eyras, R.; Vega, J.

    2004-07-01

    The article describes the Solar Energy installations that are being carried out in the Hotel Monte Malaga promoted by the Gabriel Rojas Group. We can consider this project to be pioneer in Spain since it uses Photovoltaic Solar Panels as parasols in facades in order to reduce its frozen load and with the intention of producing electric energy that will be injected to the grid. In addition, solar collectors over roof are being used distributed in a totally integrated way with the building for the preheating of the sanitary hot water producing a saving of around 90% of the natural gas consume. This entire project is carried out in an ultramodern design using different bioclimatic techniques that turns this building into a singular one. (Author)

  19. Photovoltaic systems: state of the art and short-medium term perspectives

    International Nuclear Information System (INIS)

    Brofferio, Sergio C.; Rota, Alberto

    2006-01-01

    The paper presents and discusses, from a technology and economic point of view, the characteristics, performances, issues and perspectives of the thin films and the solar concentrating photovoltaic systems in the short and medium terms. Both have well based motivations to be an evolutionary step of current wafer based Silicon systems: the former as Building Integrated Photovoltaic and the latter as high density and high power photovoltaic systems [it

  20. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absor

    Directory of Open Access Journals (Sweden)

    Mustofa

    2015-10-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperatures were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficiency was about 19%, while thermal efficiency of above 50% and correspondent cell efficiency of 11%, respectively.

  1. A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization

    International Nuclear Information System (INIS)

    Calise, Francesco; Dentice d'Accadia, Massimo; Figaj, Rafal Damian; Vanoli, Laura

    2016-01-01

    This paper presents a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system based on a solar-assisted heat pump and an adsorption chiller, both driven by PVT (photovoltaic/thermal) collectors. The aim of this work is to design and dynamically simulate a novel ultra-high efficient solar heating and cooling system. The overall plant layout is designed to supply electricity, space heating and cooling and domestic hot water for a small residential building. The system combines solar cooling, solar-assisted heat pump and photovoltaic/thermal collector technologies in a novel solar polygeneration system. In fact, the polygeneration system is based on a PVT solar field, coupled with a water-to-water electric heat pump or to an adsorption chiller. PVT collectors simultaneously produce electricity and thermal energy. During the winter, hot water produced by PVT collectors primarily supplies the evaporator of the heat pump, whereas in summer, solar energy supplies an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess is converted into DHW (domestic hot water). The system model was developed in TRNSYS environment. 1-year dynamic simulations are performed for different case studies in various weather conditions. The results are analysed on different time bases presenting energetic, environmental and economic performance data. Finally, a sensitivity analysis and a thermoeconomic optimization were performed, in order to determine the set of system design/control parameters that minimize the simple pay-back period. The results showed a total energy efficiency of the PVT of 49%, a heat pump yearly coefficient of performance for heating mode above 4 and a coefficient of performance of the adsorption chiller of 0.55. Finally, it is also concluded that system performance is highly sensitive to the PVT field area. The system is profitable when a capital investment subsidy of 50% is considered

  2. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    Tsoutsou, Sapfo; Infante Ferreira, Carlos; Krieg, Jan; Ezzahiri, Mohamed

    2014-01-01

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  3. Flat-plate photovoltaic array design optimization

    Science.gov (United States)

    Ross, R. G., Jr.

    1980-01-01

    An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.

  4. Cumulative energy demand and global warming potential of a building-integrated solar thermal system with/without phase change material.

    Science.gov (United States)

    Lamnatou, Chr; Motte, F; Notton, G; Chemisana, D; Cristofari, C

    2018-04-15

    Building-integrated solar thermal (BIST) systems are a specific type of solar thermal systems which are integrated into the building and they participate in building functionality. The present article is about the life-cycle assessment of different options of a BIST system (Mediterranean climatic conditions: Ajaccio, France). The environmental profile of the studied configurations is assessed by means of CED (cumulative energy demand), GWP (global warming potential) and EPBT (energy payback time). The proposed configurations (for the collector) include: i) a system without PCM (phase change material) using only rock wool as insulation and ii) a system with PCM (myristic acid) and rock wool. Concerning life-cycle results based on CED and GWP 100a (scenario without recycling), the configuration without PCM shows 0.67 MJ prim /kWh and 0.06 kg CO 2.eq /kWh while the configuration with PCM presents 0.74 MJ prim /kWh and 0.08 kg CO 2.eq /kWh. Regarding EPBT, if the inputs for pumping/auxiliary heating are not taken into account, both configurations (with/without PCM) have almost the same EPBT (about 1.3 years). On the other hand, if the inputs for pumping/auxiliary heating are considered, EPBT is lower for the system with PCM. In addition, scenarios with recycling have been examined and the results demonstrate that recycling considerably improves the environmental profile of the studied configurations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Investigation of innovative thermochemical energy storage processes and materials for building applications

    OpenAIRE

    Aydin, Devrim

    2016-01-01

    In this study, it is aimed to develop an innovative thermochemical energy storage system through material, reactor and process based investigations for building space heating applications. The developed system could be integrated with solar thermal collectors, photovoltaic panels or heat pumps to store any excess energy in the form of heat for later use. Thereby, it is proposed to address the problem of high operational costs and CO2 emissions released by currently used fossil fuel based heat...

  6. IEA Solar Heating and Cooling Programme Task 16: PV in Buildings

    International Nuclear Information System (INIS)

    Schoen, A.J.N.; Van der Weiden, T.C.J.

    1993-10-01

    In the title program (SHCP), initiated in 1977, twenty countries, including the European Union, participate in a broad spectrum of subjects in the field of thermal, photovoltaic (PV) and passive solar energy. Nineteen Tasks were started so far, of which eleven Tasks are finished. Task 16 deals with the architectural and electrotechnical integration of PV in buildings, aiming at a maximal contribution of solar energy to the energy supply of a building, knowledge increase and transfer with respect to the relation of PV with other components of the energy system of a building, and economic optimization. Task 16 is planned for the period 1990-1995 and is divided in Sub-Tasks A: System Design and Development; B: Building Integration; C: PV-Demonstration Buildings; and D: Technology Communication. In this report the Dutch activities of Task 16, coordinated by Ecofys, are discussed. Reports of 4 Expert Meetings and 3 Workshops are presented. A description (in English) of the first Dutch IEA Demonstration Building, the energy autonomous house in Woubrugge, is given. Finally attention is paid to the activities regarding the Ideas Competition for the design of buildings or urban areas with integrated PV systems. 6 appendices

  7. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  8. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide

  9. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide minimal

  10. Efficiency gains of photovoltaic system using latent heat thermal energy storage

    NARCIS (Netherlands)

    Tan, Lippong; Date, Abhijit; Fernandes, Gabriel; Singh, Baljit; Ganguly, Sayantan

    This paper presents experimental assessments of the thermal and electrical performance of photovoltaic (PV) system by comparing the latent heat-cooled PV panel with the naturally-cooled equivalent. It is commonly known that the energy conversion efficiency of the PV cells declines with the increment

  11. Integrated evaluation of radiative heating systems for residential buildings

    International Nuclear Information System (INIS)

    Anastaselos, Dimitrios; Theodoridou, Ifigeneia; Papadopoulos, Agis M.; Hegger, Manfred

    2011-01-01

    Based on the need to reduce CO 2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  12. Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems

    Directory of Open Access Journals (Sweden)

    Flavio Ciccarelli

    2018-02-01

    Full Text Available The growing interest in the use of energy storage systems to improve the performance of tramways has prompted the development of control techniques and optimal storage devices, displacement, and sizing to obtain the maximum profit and reduce the total installation cost. Recently, the rapid diffusion of renewable energy generation from photovoltaic panels has also created a large interest in coupling renewable energy and storage units. This study analyzed the integration of a photovoltaic power plant, supercapacitor energy storage system, and railway power system. Random optimization was used to verify the feasibility of this integration in a real tramway electric system operating in the city of Naples, and the benefits and total cost of this integration were evaluated.

  13. Photovoltaic

    International Nuclear Information System (INIS)

    Fechner, H.; Heidenreich, M.

    2001-01-01

    In 1993 a wide test for photovoltaic (PV) was carried out in Austria, 110 stations were built and precise measurements were done. At that time the demand of integrating direct current from solar cells into the 50 Hz alternating current network was a weak point. At present four european research projects dealing with security, reliability, network compatibility and its integration in buildings are being developed. The cost development of PVs in Germany from 1983 to 1998 is given. Because of the PV environmental quality, one million of new intallations are demanded (until 2010) by the European commission. In Austria exists ∼5,000 kWp installed capacity and the growth rate average in the last years was 30 %. (nevyjel)

  14. Community-scale solar photovoltaics: housing and public development examples

    Energy Technology Data Exchange (ETDEWEB)

    Komoto, K.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at community-scale photovoltaics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The aim of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. This report provides examples of housing developments and incorporated townships that have integrated multiple stakeholder values into business solutions. The authors are of the opinion that builders, developers, architects and engineers need to consider orientation, aesthetics, load diversity, energy efficiency, grid infrastructure and end use. Residential and commercial building owners or occupants need to consider the design of electric services relative to loads, green image, and economic opportunities such as feed-in tariffs. Local government should give preference to granting permission to high-performance building projects. It is suggested that the finance and insurance sector consider the operational savings in overall debt allowances. System manufacturers and integrators should develop standardised systems. In the emerging PV community market, utilities are quickly gaining awareness of business opportunities. The need for professionals and skilled labour is quoted as having grown as drastically as the PV market itself.

  15. Evaluation of optimal dual axis concentrated photovoltaic thermal system with active ventilation using Frog Leap algorithm

    International Nuclear Information System (INIS)

    Gholami, H.; Sarwat, A.I.; Hosseinian, H.; Khalilnejad, A.

    2015-01-01

    Highlights: • Electro-thermal performance of open-loop controlled dual axis CPVT is investigated. • For using the absorbed heat, active ventilation with a heat storage tank is used. • Economic optimization of the system is performed, using Frog Leap algorithm. • Detailed model of all sections is simulated with their characteristics evaluation. • Triple-junction photovoltaic cells, which are the most recent technology, are used. - Abstract: In this study, design and optimization of a concentrated photovoltaic thermal (CPVT) system considering electrical, mechanical, and economical aspects is investigated. For this purpose, each section of the system is simulated in MATLAB, in detail. Triple-junction photovoltaic cells, which are the most recent technology, are used in this study. They are more efficient in comparison to conventional photovoltaic cells. Unlike ordinary procedures, in this work active ventilation is used for absorbing the thermal power of radiation, using heat storage tanks, which not only results in increasing the electrical efficiency of the system through decreasing the temperature, but also leads to storing and managing produced thermal energy and increasing the total efficiency of the system up to 85 percent. The operation of the CPVT system is investigated for total hours of the year, considering the needed thermal load, meteorological conditions, and hourly radiation of Khuznin, a city in Qazvin province, Iran. Finally, the collector used for this system is optimized economically, using frog leap algorithm, which resulted in the cost of 13.4 $/m"2 for a collector with the optimal distance between tubes of 6.34 cm.

  16. 上海地区绿色建筑中光伏系统应用分析%Application of Photovoltaic Technology in Green Buildings in Shanghai

    Institute of Scientific and Technical Information of China (English)

    胡一东; 谭洪卫

    2017-01-01

    光伏发电作为未来最具潜力的可再生能源之一,在绿色建筑中的应用较少,对其现状问题与发展潜力尚缺乏系统深入的调研、分析与评价.通过对2008—2014年上海地区绿色建筑案例进行调研,梳理和分析了光伏技术在绿色建筑中的应用状况,探讨了建筑中光伏发电的技术适应性、经济性及替代率等问题,为光伏技术的推广应用提供参考.%China has been the first biggest photovoltaic market in the world, which has surpassed Germany now. Photovoltaic power is regarded as one of the most promising renewable energy in the future, but it is not widely applied in green buildings. Solar radiation conditions, building adaptability and economy are the most critical factors that affect the popularization and application of photovoltaic technology. The potential and benefit of photovoltaic building are evaluated, as well as the building adaptation and economy, which meet sustainable development of green building. But it is still lack of systematic and in-depth research, analysis and evaluation on status problems and development potential of photovoltaic technology. In this work, application status of photovoltaic technology is analyzed by surveying cases related to green buildings in Shanghai from 2008 to 2014 . The adaptability in different buildings and economy in different periods of photovoltaic technology are also discussed. The results show that firstly green buildings in Shanghai have been developed fast during 2008-2014 , but the photovoltaic technology' s application ratio in green buildings is relatively lower. Secondly, photovoltaic technology is most widely used in public buildings and partly applied in residence, accounted for 10. 71%, and no application cases in the industrial buildings even. From the perspective of building function, photovoltaic technology is mainly concentrated in the office building accounted for 71. 4%, followed by the exhibition hall and residence

  17. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    Science.gov (United States)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  18. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    Science.gov (United States)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  19. The photovoltaic energy in Japan; Energie photovoltaique au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Georgel, O

    2005-07-15

    Today the Japan is the leader of the photovoltaic energy. The first reason of this success is an action of the government integrating subventions for the installation of photovoltaic systems and a support of the scientific research. To explain this success, the author presents the energy situation in Japan, details the national programs, the industrial sector (market, silicon needs, recycling, manufacturers, building industry) and presents the main actors. (A.L.B.)

  20. Performance analysis of photovoltaic thermal (PVT) water collectors

    International Nuclear Information System (INIS)

    Fudholi, Ahmad; Sopian, Kamaruzzaman; Yazdi, Mohammad H.; Ruslan, Mohd Hafidz; Ibrahim, Adnan; Kazem, Hussein A.

    2014-01-01

    Highlights: • Performances analysis of PVT collector based on energy efficiencies. • New absorber designs of PVT collectors were presented. • Comparison present study with other absorber collector designs was presented. • High efficiencies were obtained for spiral flow absorber. - Abstract: The electrical and thermal performances of photovoltaic thermal (PVT) water collectors were determined under 500–800 W/m 2 solar radiation levels. At each solar radiation level, mass flow rates ranging from 0.011 kg/s to 0.041 kg/s were introduced. The PVT collectors were tested with respect to PV efficiency, thermal efficiency, and a combination of both (PVT efficiency). The results show that the spiral flow absorber exhibited the highest performance at a solar radiation level of 800 W/m 2 and mass flow rate of 0.041 kg/s. This absorber produced a PVT efficiency of 68.4%, a PV efficiency of 13.8%, and a thermal efficiency of 54.6%. It also produced a primary-energy saving efficiency ranging from 79% to 91% at a mass flow rate of 0.011–0.041 kg/s

  1. Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Cristina Cornaro

    2018-01-01

    Full Text Available Dye-sensitized solar cell technology is having an important role in renewable energy research due to its features and low-cost manufacturing processes. Devices based on this technology appear very well suited for integration into glazing systems due to their characteristics of transparency, color tuning and manufacturing directly on glass substrates. Field data of thermal and electrical characteristics of dye-sensitized solar modules (DSM are important since they can be used as input of building simulation models for the evaluation of their energy saving potential when integrated into buildings. However, still few studies in the literature provide this information. The study presented here aims to contribute to fill this lack providing a thermal and electrical characterization of a DSM in real operating conditions using a method developed in house. This method uses experimental data coming from test boxes exposed outdoor and dynamic simulation to provide thermal transmittance (U-value and solar heat gain coefficient (SHGC of a DSM prototype. The device exhibits a U-value of 3.6 W/m2·K, confirmed by an additional measurement carried on in the lab using a heat flux meter, and a SHGC of 0.2, value compliant with literature results. Electrical characterization shows an increase of module power with respect to temperature resulting DSM being suitable for integration in building facades.

  2. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absorbers Design

    Directory of Open Access Journals (Sweden)

    Mustofa Mustofa

    2017-03-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperaturs were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficieny was about 19%, while thermal efficiency of above 50% and correspondeng cell efficiency of 11%, respectively

  3. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  4. The feasibility of using photovoltaic panels to illuminate the entryway to an apartment building

    Directory of Open Access Journals (Sweden)

    Sumarokova Liudmila

    2017-01-01

    Full Text Available The article considers the possibility of using an LED lighting system with a power source from solar modules in the climatic conditions of Siberia. The technical possibility of implementing an autonomous house lighting system is shown for example in the lighting of a residential five-story building located in Tomsk. The choice and justification of the neces-sary electrical equipment for solar panels was made. Calculations have been made for the energy consumption of the existing lighting system and a system with LED light sources from photovoltaic panels. The payback period of the project is determined. On the example of an autonomous sys-tem of interior lighting of an apartment building, conclusions were made about the feasibility and efficiency of using photovoltaic panels in the cli-matic conditions of Tomsk region.

  5. Numerical modelling and experimental studies of thermal behaviour of building integrated thermal energy storage unit in a form of a ceiling panel

    International Nuclear Information System (INIS)

    Jaworski, Maciej; Łapka, Piotr; Furmański, Piotr

    2014-01-01

    Highlights: • A new concept of heat storage in ventilation ducts is described. • Ceiling panel as a part of ventilation system is made of a composite with PCM. • A set-up for experimental investigation of heat storage unit was built. • Numerical model of heat transfer in the storage unit was developed. • Numerical code was validated on the base of experimental measurements. - Abstract: Objective: The paper presents a new concept of building integrated thermal energy storage unit and novel mathematical and numerical models of its operation. This building element is made of gypsum based composite with microencapsulated PCM. The proposed heat storage unit has a form of a ceiling panel with internal channels and is, by assumption, incorporated in a ventilation system. Its task is to reduce daily variations of ambient air temperature through the absorption (and subsequent release) of heat in PCM, without additional consumption of energy. Methods: The operation of the ceiling panel was investigated experimentally on a special set-up equipped with temperature sensors, air flow meter and air temperature control system. Mathematical and numerical models of heat transfer and fluid flow in the panel account for air flow in the panel as well as real thermal properties of the PCM composite, i.e.: thermal conductivity variation with temperature and hysteresis of enthalpy vs. temperature curves for heating and cooling. Proposed novel numerical simulator consists of two strongly coupled sub models: the first one – 1D – which deals with air flowing through the U-shaped channel and the second one – 3D – which deals with heat transfer in the body of the panel. Results: Spatial and temporal air temperature variations, measured on the experimental set-up, were used to validate numerical model as well as to get knowledge of thermal performance of the panel operating in different conditions. Conclusion: Preliminary results of experimental tests confirmed the ability of

  6. Foundation heat transfer analysis for buildings with thermal piles

    International Nuclear Information System (INIS)

    Almanza Huerta, Luis Enrique; Krarti, Moncef

    2015-01-01

    Highlights: • A numerical transient thermal model for thermo-active foundations is developed. • Thermal interactions between thermal piles and building foundations are evaluated. • A simplified analysis method of thermal interactions between thermal piles and building foundations is developed. - Abstract: Thermal piles or thermo-active foundations utilize heat exchangers embedded within foundation footings to heat and/or cool buildings. In this paper, the impact of thermal piles on building foundation heat transfer is investigated. In particular, a simplified analysis method is developed to estimate the annual ground-coupled foundation heat transfer when buildings are equipped with thermal piles. First, a numerical analysis of the thermal performance of thermo-active building foundations is developed and used to assess the interactions between thermal piles and slab-on-grade building foundations. The impact of various design parameters and operating conditions is evaluated including foundation pile depth, building slab width, foundation insulation configuration, and soil thermal properties. Based on the results of a series of parametric analyses, a simplified analysis method is presented to assess the impact of the thermal piles on the annual heat fluxes toward or from the building foundations. A comparative evaluation of the predictions of the simplified analysis method and those obtained from the detailed numerical analysis indicated good agreement with prediction accuracy lower than 5%. Moreover, it is found that thermal piles can affect annual building foundation heat loss/gain by up to 30% depending on foundation size and insulation level

  7. Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?

    International Nuclear Information System (INIS)

    Xu, Peng; Xu, Tengfang; Shen, Pengyuan

    2013-01-01

    Based upon the results from extensive building monitoring and surveys on occupant’s behaviors in a representative nine-story apartment building in northern China, building energy simulations were performed to evaluate the impacts of integrative retrofits implemented. Integrative retrofits required by the newer building energy standard produced significant heating-energy savings (i.e., 53%) when compared with baseline buildings commonly built in early 1980s. Taking into account district-heating-system upgrades as part of integrative retrofit measures, a representative apartment building was 66% more efficient than the baseline building. Contrary to expectation, little behavioral change was found in response to the provisions of monetary incentive, billing-method reform, or metering of heating energy use in individual apartment units. Yet this paper identified sizable energy savings potential if occupants’ behavioral changes were to actually happen. This indicates that provisions of financial incentives or individual metering were insufficient for triggering substantial behavioral changes leading toward more energy savings in the current buildings. It is recommended that innovative energy policies, technology upgrades, and education would be needed to promote behavioral changes toward additional energy savings. Finally, measures and strategies to further enhance thermal integrity criteria (e.g., insulations of roof and balcony) are recommended in China’s future building energy policy reforms. - Highlights: ► Integrative retrofits significantly reduce residential heating energy in north China. ► Energy effects of retrofits, incentive, billing and behavioral changes were studied. ► Monetary incentive, control or metering technologies did not lead to behavior change. ► Potential energy savings due to occupants’ behavioral changes are sizable. ► Thermal integrity needs to be enhanced in future building standards and policies.

  8. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  9. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ...... in different grid codes are first investigated. On this basis, the future advocacy is concluded. Finally, several evaluation indices are proposed to quantify the grid code compliance so that the system operators can validate all these requirements by simulation....

  10. The AC photovoltaic module is here!

    Science.gov (United States)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  11. Investigation the Advantages of CPV for Building Integrated PV : 28th European Photovoltaic Solar Energy Conference

    NARCIS (Netherlands)

    S. van der Craats; R.G. Catau; Piet Sonneveld; J.V. Sahedi; A.R. Sparemberger

    2013-01-01

    The objective of this concept is a significant reduction of energy consumption in greenhouses and buildings with large facades and windows by using available solar energy. The scope of this investigation is to study the advantages of a building integrated CPV system. The basic idea is that a larger

  12. Optimal stochastic management of renewable MG (micro-grids) considering electro-thermal model of PV (photovoltaic)

    International Nuclear Information System (INIS)

    Najibi, Fatemeh; Niknam, Taher; Kavousi-Fard, Abdollah

    2016-01-01

    This paper aims to report the results of the research conducted to one thermal and electrical model for photovoltaic. Moreover, one probabilistic framework is introduced for considering all uncertainties in the optimal energy management of Micro-Grid problem. It should be noted that one typical Micro-Grid is being studied as a case, including different renewable energy sources, such as Photovoltaic, Micro Turbine, Wind Turbine, and one battery as a storage device for storing energy. The uncertainties of market price variation, photovoltaic and wind turbine output power change and load demand error are covered by the suggested probabilistic framework. The Micro-Grid problem is of nonlinear nature because of the stochastic behavior of the renewable energy sources such as Photovoltaic and Wind Turbine units, and hence there is need for a powerful tool to solve the problem. Therefore, in addition to the simulated thermal model and suggested probabilistic framework, a new algorithm is also introduced. The Backtracking Search Optimization Algorithm is described as a useful method to optimize the MG (micro-grids) problem. This algorithm has the benefit of escaping from the local optima while converging fast, too. The proposed algorithm is also tested on the typical Micro-Grid. - Highlights: • Proposing an electro-thermal model for PV. • Proposing a new stochastic formulation for optimal operation of renewable MGs. • Introduction of a new optimization method based on BSO to explore the problem search space.

  13. Second update of the database of photovoltaic installations in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D; Bruhns, H

    2001-07-01

    This update of the database of photovoltaic (PV) installations in the UK developed by Altechnica for the Department of Trade and Industry has double the number of records of the previous edition, and focuses on the use of photovoltaic (PV) installations for buildings, for example using some form of a PV array, building integrated PV module, and building attached PV array. The growth in building related PV installations is examined along with the use of PV in telecommunication equipment, navigation buoys and light vessels, buildings, pumps for solar water heating systems, schools, lighthouses, and petrol stations. Details are given of the electronic data entry form for the database and the increase in the number of fields to allow additional information such as tilt angle and orientation area of the array to be added.

  14. PV and PV/hybrid products for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

    2000-05-15

    Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

  15. Overview of design issues in product-integrated Photovoltaics

    NARCIS (Netherlands)

    Apostolou, G.; Reinders, Angelina H.M.E.

    2014-01-01

    This paper presents an overview of the design features and characteristics of photovoltaic (PV)-powered products based on a literature study on product-integrated PV and an analysis of 90 PV-powered products executed during 2011–2013. The aim of this paper is to provide insight into the current

  16. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  17. Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module

    Directory of Open Access Journals (Sweden)

    Mtunzi Busiso

    2016-01-01

    Full Text Available Electrical energy of photovoltaic modules drops by 0.5% for each degree increase in temperature. Direct water cooling of photovoltaic modules was found to give improved electrical and thermal yield. A prototype was put in place to analyse the field data for a period of a year. The results showed an initial high performance ratio and electrical power output. The monthly energy saving efficiency of the directly water cooled module was found to be approximately 61%. The solar utilisation of the naturally cooled photovoltaic module was found to be 8.79% and for the directly water cooled module its solar utilisation was 47.93%. Implementation of such systems on households may reduce the load from the utility company, bring about huge savings on electricity bills and help in reducing carbon emissions.

  18. Tracking integration in concentrating photovoltaics using laterally moving optics.

    Science.gov (United States)

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2011-05-09

    In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.

  19. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  20. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  1. Renewable energy distributed power system with photovoltaic/ thermal and bio gas power generators

    International Nuclear Information System (INIS)

    Haider, M.U.; Rehman, S.U.

    2011-01-01

    The energy shortage and environmental pollution is becoming an important problem in these days. Hence it is very much important to use renewable power technologies to get rid of these problems. The important renewable energy sources are Bio-Energy, Wind Energy, Hydrogen Energy, Tide Energy, Terrestrial Heat Energy, Solar Energy, Thermal Energy and so on. Pakistan is rich in all these aspects particularly in Solar and Thermal Energies. In major areas of Pakistan like in South Punjab, Sind and Baluchistan the weather condition are very friendly for these types of Renewable Energies. In these areas Solar Energy can be utilized by solar panels in conjunction with thermal panels. The Photovoltaic cells are used to convert Solar Energy directly to Electrical Energy and thermal panels can be uses to convert solar energy into heat energy and this heat energy will be used to drive some turbine to get Electrical Energy. The Solar Energy can be absorbed more efficiently by any given area of Solar Panel if these two technologies can be combined in such a way that they can work together. The first part of this paper shows that how these technologies can be combined. Furthermore it is known to all that photovoltaic/thermal panels depend entirely on weather conditions. So in order to maintain constant power a biogas generator is used in conjunction with these. (author)

  2. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)

    Institute of Scientific and Technical Information of China (English)

    Xing Ju; Chao Xu; Zhirong Liao; Xiaoze Du; Gaosheng Wei; Zhifeng Wang; Yongping Yang

    2017-01-01

    In conventional photovoltaic (PV) systems,a large portion of solar energy is dissipated as waste heat since the generating efficiency is usually less than 30%.As the dissipated heat can be recovered for various applications,the wasted heat recovery concentrator PV/thermal (WHR CPVT) hybrid systems have been developed.They can provide both electricity and usable heat by combining thermal systems with concentrator PV (CPV) module,which dramatically improves the overall conversion efficiency of solar energy.This paper systematically and comprehensively reviews the research and development ofWHR CPVT systems.WHR CPVT systems with innovative design configurations,different theoretical evaluation models and experimental test processes for several implementations are presented in an integrated manner.We aim to provide a global point of view on the research trends,market potential,technical obstacles,and the future work which is required in the development of WHR CPVT technology.Possibly,it will offer a generic guide to the investigators who are interested in the study of WHR CPVT systems.

  3. An integrated system for the energy production and accumulation from renewable sources: a rural tower prototype

    Science.gov (United States)

    Di Francesco, Silvia; Petrozzi, Alessandro; Montesarchio, Valeria

    2014-05-01

    This research work presents the implementation of an architectural prototype aiming at the complete energy self-sufficiency through an integrated system based on renewable energy. It is suitable for historical buildings in rural areas, isolated but important from natural and architectonical point of view. In addition to the energy aspects, it is important to protect the impact in terms of land-use and environment. This idea is also especially powerful because in the rural countries there are many little building centers abandoned because they are devoid of a connection to the electric energy grid and methane piping. Thus, taking inspiration from dove towers, architectural typology widespread in central Italy, a virtual model has been developed as an integrated system for renewable energy production, storage and supply. While recovering the ancient tower, it is possible to design and assembly an integrated intelligent system, able to combine energy supply and demand: a new tower that should be flexible, efficient and replicable in other contexts as manufacturing, commercial and residential ones. The prototype has been applied to a real case of study, an ancient complex located in Umbria Region. The sources for electric production installed on the tower are photovoltaics, on the head and shaft of the tower, hydropower and a biomass gasifier providing thermal too. A tank at the head of the tower allows an available hydraulic potential energy, for the turbine at any time, to cover photovoltaic lacks, caused by sudden loss of production, for environmental causes. Conversely, photovoltaic peaks, otherwise unusable, can be used to reload the water from the receiving tank at the foot of the tower, up to the tank in the head. The same underground tank acts as a thermal flywheel to optimize the geothermal heat pumps for the heat and cold production. Keywords: hydropower, photovoltaics, dove tower.

  4. Investigating the Effect of Thermal Annealing Process on the Photovoltaic Performance of the Graphene-Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    Lifei Yang

    2015-01-01

    Full Text Available Graphene-silicon (Gr-Si Schottky solar cell has attracted much attention recently as promising candidate for low-cost photovoltaic application. For the fabrication of Gr-Si solar cell, the Gr film is usually transferred onto the Si substrate by wet transfer process. However, the impurities induced by this process at the graphene/silicon (Gr/Si interface, such as H2O and O2, degrade the photovoltaic performance of the Gr-Si solar cell. We found that the thermal annealing process can effectively improve the photovoltaic performance of the Gr-Si solar cell by removing these impurities at the Gr/Si interface. More interestingly, the photovoltaic performance of the Gr-Si solar cell can be improved, furthermore, when exposed to air environment after the thermal annealing process. Through investigating the characteristics of the Gr-Si solar cell and the properties of the Gr film (carrier density and sheet resistance, we point out that this phenomenon is caused by the natural doping effect of the Gr film.

  5. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    Science.gov (United States)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  6. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. PV for rural electrification in developing countries - A guide to capacity building requirements

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.; Gunning, R. [IT Power Ltd, The Manor house, Chineham (United Kingdom); Stapleton, G. [Global Sustainable Energy Solutions Pty Ltd, GSES, Ulladulla 2539 (Australia)

    2003-03-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the topic of 'capacity building' in rural electrification projects. Capacity building is defined here as the development of an organisation's or individual's core knowledge, skills and capabilities in order to build and enhance the organisation's effectiveness and sustainability. This document identifies capacity building measures that should be undertaken as an integral component of a PV-based rural electrification implementation programme. Capacity building is to be facilitated through the provision of technical support activities, training, specific technical assistance and resource networking. The assessment of existing knowledge and the identification of training needs are discussed and training needs and their implementation by governmental and commercial players is discussed. Eleven case studies complete the report.

  7. Modeling the thermal absorption factor of photovoltaic/thermal combi-panels

    International Nuclear Information System (INIS)

    Santbergen, R.; Zolingen, R.J.Ch. van

    2006-01-01

    In a photovoltaic/thermal combi-panel solar cells generate electricity while residual heat is extracted to be used for tap water heating or room heating. In such a panel the entire solar spectrum can be used in principle. Unfortunately long wavelength solar irradiance is poorly absorbed by the semiconductor material in standard solar cells. A computer model was developed to determine the thermal absorption factor of crystalline silicon solar cells. It was found that for a standard untextured solar cell with a silver back contact a relatively large amount of long wavelength irradiance is lost by reflection resulting in an absorption factor of only 74%. The model was then used to investigate ways to increase this absorption factor. One way is absorbing long wavelength irradiance in a second absorber behind a semi-transparent solar cell. According to the model this will increase the total absorption factor to 87%. The second way is to absorb irradiance in the back contact of the solar cell by using rough interfaces in combination with a non-standard metal as back contact. Theoretically the absorption factor can then be increased to 85%

  8. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Tan, Lijun; Ji, Xu; Li, Ming; Leng, Congbin; Luo, Xi; Li, Haili

    2014-01-01

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m 2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m 2 mirror PV/T stage and a 15 m 2 mirror heating stage, or a 1.8 m 2 mirror PV/T stage and a 30 m 2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  9. A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind

    International Nuclear Information System (INIS)

    Park, Hyo Seon; Koo, Choongwan; Hong, Taehoon; Oh, Jeongyoon; Jeong, Kwangbok

    2016-01-01

    Highlights: • A FEM was developed to estimate the techno-economic performance of the BIPB. • The mean absolute percentage error of the FEM_4_-_n_o_d_eBIPB was determined to be 4.54%. • In implementing the BIPB with the GC_i_n_c_l_._S_R_E_C plan, it was superior to the others. • Users can understand the operating mechanism of the proposed model (FEM_4_-_n_o_d_eBIPB). • The proposed model can be extended to any other country in the global environment. - Abstract: This study aims to develop the four-node-based finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind (FEM_4_-_n_o_d_eBIPB), which can be used by decision-maker in the early design phase. In developing the proposed model, this study uses various research methodologies such as energy simulation, finite element method, life cycle cost analysis, policy analysis, and visual basic application. Compared to the simulation results, the mean absolute percentage error of the proposed model was determined to be 4.54%, showing that the prediction accuracy of the proposed model was found to be excellent. Furthermore, the practical application was conducted for the ‘S’ elementary school facility in South Korea, which allows potential readers to easily and clearly understand the operating mechanism of the proposed model as well as its usability and extendability. The proposed model can be used to conduct the detailed analysis of the techno-economic performance of the BIPB by the type of utilization plan and to determine the optimal strategy for maximizing the value of the investment. Furthermore, the proposed research framework can be extended to any other technology, industry, and country in the global environment.

  10. EXERGY AND CARBON CREDITS FOR SERIES CONNECTED N PHOTOVOLTAIC THERMAL - COMPOUND PARABOLIC CONCENTRATOR (PVT-CPC) COLLECTOR: AT CONSTANT OUTLET TEMPERATURE

    OpenAIRE

    Rohit Tripathi 1,*, G. N. Tiwari 2

    2017-01-01

    In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...

  11. Press document. Photovoltaic energy: boosting the evolution; Dossier de presse. Photovoltaique: accelerer l'innovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    The french potential in the photovoltaic energy is considerable but not very exploited. In this context the CEA, by its function of applied research institute in the domain of the low carbon energies can be a major actor of the sector development. This document presents the research programs in the photovoltaic domain, developed at the CEA, especially on the silicon performance, the photovoltaic solar cells and their integration in the buildings. (A.L.B.)

  12. Efficiency maximization and performance evaluation of hybrid dual channel semitransparent photovoltaic thermal module using fuzzyfied genetic algorithm

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay

    2016-01-01

    Highlights: • Thermal modeling of novel dual channel semitransparent photovoltaic thermal hybrid module. • Efficiency maximization and performance evaluation of dual channel photovoltaic thermal module. • Annual performance has been evaluated for Srinagar, Jodhpur, Bangalore and New Delhi (India). • There are improvements in results for optimized system as compared to un-optimized system. - Abstract: The work has been carried out in two steps; firstly the parameters of hybrid dual channel semitransparent photovoltaic thermal module has been optimized using a fuzzyfied genetic algorithm. During the course of optimization, overall exergy efficiency is considered as an objective function and different design parameters of the proposed module have been optimized. Fuzzy controller is used to improve the performance of genetic algorithms and the approach is called as a fuzzyfied genetic algorithm. In the second step, the performance of the module has been analyzed for four cities of India such as Srinagar, Bangalore, Jodhpur and New Delhi. The performance of the module has been evaluated for daytime 08:00 AM to 05:00 PM and annually from January to December. It is to be noted that, an average improvement occurs in electrical efficiency of the optimized module, simultaneously there is also a reduction in solar cell temperature as compared to un-optimized module.

  13. Operation of heat pumps for smart grid integrated buildings with thermal energy storage

    NARCIS (Netherlands)

    Finck, C.J.; Li, R.; Zeiler, W.

    2017-01-01

    A small scale office building consisting of radiant heating, a heat pump, and a water thermal energy storage tank is implemented in an optimal control framework. The optimal control aims to minimize operational electricity costs of the heat pump based on real-time power spot market prices. Optimal

  14. Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover

    International Nuclear Information System (INIS)

    Chow, T.T.; Pei, G.; Fong, K.F.; Lin, Z.; Chan, A.L.S.; Ji, J.

    2009-01-01

    In photovoltaic-thermal (PV/T) technology, the use of glass cover on the flat-plate hybrid solar collector is favorable to the photothermic process but not to the photovoltaic process. Because of the difference in the usefulness of electricity and thermal energy, there is often no straight forward answer on whether a glazed or unglazed collector system is more suitable for a specific application. This glazing issue was tackled in this paper from the viewpoint of thermodynamics. Based on experimental data and validated numerical models, a study of the appropriateness of glass cover on a thermosyphon-based water-heating PV/T system was carried out. The influences of six selected operating parameters were evaluated. From the first law point of view, a glazed PV/T system is found always suitable if we are to maximize the quantity of either the thermal or the overall energy output. From the exergy analysis point of view however, the increase of PV cell efficiency, packing factor, water mass to collector area ratio, and wind velocity are found favorable to go for an unglazed system, whereas the increase of on-site solar radiation and ambient temperature are favorable for a glazed system

  15. Energy balance of photovoltaic elements integrated in buildings; Energiebilanz gebaeudeintegrierter Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    A planning tool for the thermal characteristics of integrated PV modules was to be developed and validated by measurements which provides U and g values as well as heating and cooling loads of such external wall or roof elements. In a cooperative project with medium-sized producers of PV wall systems, two different wall systems (i.e. insulating glass and ventilated warm external walls) were analyzed. [German] In dem Forschungsvorhaben sollte ein messtechnisch validiertes Planungswerkzeug fuer die thermischen Kennwerte von gebaeudeintegrierten Photovoltaikmodulen entwickelt werden, welches Bauteilkennwerte (U- und g-Werte) sowie moegliche Heiz- und Kuehllasten solcher Fassaden- oder Dachsysteme liefert. Durch die Zusammenarbeit mit mittelstaendischen PV-Fassadenherstellern sollten zwei Fassadensysteme - Isolierglasverbund und hinterlueftete Warmfassade - an konkreten Projekten messtechnisch erfasst und analysiert werden. (orig.)

  16. Roof Photovoltaic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In order to accurately predict the annual energy production of photovoltaic systems for any given geographical location, building orientation, and photovoltaic cell...

  17. Transient analysis of the double pass photovoltaic thermal solar collector

    International Nuclear Information System (INIS)

    Alfegi, Ebrahim M.; Sopian, Kamaruzzaman; Abakr, Yousif A.

    2006-01-01

    A mathematical model of a double pass photovoltaic thermal (PV/T) solar collector is reported in this work. It is composed of five couple unsteady nonlinear partial differential equations which are solved by using Gear implicit numerical scheme. That model was validated against experimental data and was found to accurately predict the temperature of the circulated air as well as the temperature distribution of every static elements in a two-pass PV/T solar collector.(Author)

  18. Grid-tied markets for photovoltaics - a new source emerges

    International Nuclear Information System (INIS)

    Rever, B.

    2001-01-01

    Some recent developments in the use of photovoltaics for energy independence and their integration into buildings are discussed, together with the aims of the International Energy Agency. The article discusses (a) development of the PV market; (b) drivers for the growth in PV markets; (c) Kyoto; (d) energy dependence and security issues; (e) increasing costs of conventional sources; (f) ageing or inadequate transmission and distribution infrastructure; (g) IEA goals; (h) building-integrated photovoltaics; (eye) effect of market drivers and (j) likely market developments. Diagrams show (a) how the cost per Watt has fallen, 1976 to 2000; (b) PV application segments and issues; (c) market shipments by global regional segment; (d) market growth expectations 1999 to 2005; (e) effect of the Japanese programme on the PV market, 1994 to 2000; (f) effect of the German programme on the PV market, 1995 to 2000 and (g) the US grid-connected market projection, 2001 to 2012. Five conclusions were drawn from the current market status, and trends identified

  19. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  20. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    Science.gov (United States)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  1. A review on photovoltaic/thermal hybrid solar technology

    International Nuclear Information System (INIS)

    Chow, T.T.

    2010-01-01

    A significant amount of research and development work on the photovoltaic/thermal (PVT) technology has been done since the 1970s. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. A range of theoretical models has been introduced and their appropriateness validated by experimental data. Important design parameters are identified. Collaborations have been underway amongst institutions or countries, helping to sort out the suitable products and systems with the best marketing potential. This article gives a review of the trend of development of the technology, in particular the advancements in recent years and the future work required. (author)

  2. Numerical Investigation of the Thermal Management Performance of MEPCM Modules for PV Applications

    Directory of Open Access Journals (Sweden)

    Chao-Yang Huang

    2013-08-01

    Full Text Available The efficiency of photovoltaic modules decreases as the cell temperature increases. It is necessary to have an adequate thermal management mechanism for a photovoltaic module, especially when combined with a building construction system. This study aims to investigate via computational fluid dynamics simulations the heat transfer characteristics and thermal management performance of microencapsulated phase change material modules for photovoltaic applications under temporal variations of daily solar irradiation. The results show that the aspect ratio of the microencapsulated phase change material layer has significant effects on the heat transfer characteristics and the overall thermal performance of the two cases examined with different melting points (26 °C and 34 °C are approximately the same.

  3. Pusat Tenaga Malaysia's Zero Energy Office (ZEO) Building

    DEFF Research Database (Denmark)

    Tang, C.K.; Reimann, Gregers Peter; Kristensen, Poul Erik

    Technical Review of the Zero Energy Office building in Malaysia. The building, which has an energy index of 50 kWh/m2/year, reaches a net annual energy of zero through the use of building integrated photovoltaic panels. For reference, ordinary offices in Malaysia consume 200 - 300 kWh/m2/year...

  4. Photovoltaic thermal module concepts and their performance analysis: A review

    International Nuclear Information System (INIS)

    Hasan, M. Arif; Sumathy, K.

    2010-01-01

    This paper presents a review of the available literature covering the latest module aspects of different photovoltaic/thermal (PV/T) collectors and their performances in terms of electrical as well as thermal output. The review covers detailed description of flat-plate and concentrating PV/T systems, using liquid or air as the working fluid, numerical model analysis, experimental work and qualitative evaluation of thermal and electrical output. Also an in-depth review on the performance parameters such as, optimum mass flow rate, PV/T dimensions, air channel geometry is presented in this study. Based on the thorough review, it is clear that PV/T modules are very promising devices and there exists lot of scope to further improve their performances. Appropriate recommendations are made which will aid PV/T systems to improve their efficiency and reducing their cost, making them more competitive in the present market. (author)

  5. Photovoltaic thermal module concepts and their performance analysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M. Arif; Sumathy, K. [Department of Mechanical Engineering, North Dakota State University, Fargo, ND (United States)

    2010-09-15

    This paper presents a review of the available literature covering the latest module aspects of different photovoltaic/thermal (PV/T) collectors and their performances in terms of electrical as well as thermal output. The review covers detailed description of flat-plate and concentrating PV/T systems, using liquid or air as the working fluid, numerical model analysis, experimental work and qualitative evaluation of thermal and electrical output. Also an in-depth review on the performance parameters such as, optimum mass flow rate, PV/T dimensions, air channel geometry is presented in this study. Based on the thorough review, it is clear that PV/T modules are very promising devices and there exists lot of scope to further improve their performances. Appropriate recommendations are made which will aid PV/T systems to improve their efficiency and reducing their cost, making them more competitive in the present market. (author)

  6. Temperature compensated photovoltaic array

    Science.gov (United States)

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  7. Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites

    KAUST Repository

    Saliba, Michael; Tan, Kwan Wee; Sai, Hiroaki; Moore, David T.; Scott, Trent; Zhang, Wei; Estroff, Lara A.; Wiesner, Ulrich; Snaith, Henry J.

    2014-01-01

    We investigate the thermally induced morphological and crystalline development of methylammonium lead mixed halide perovskite (CH 3NH3PbI3-xClx) thin films and photovoltaic device performance with meso-superstructured and planar heterojunction architectures. We observe that a short rapid thermal annealing at 130 °C leads to the growth of large micron-sized textured perovskite domains and improved the short circuit currents and power conversion efficiencies up to 13.5% for the planar heterojunction perovskite solar cells. This work highlights the criticality of controlling the thin film crystallization mechanism of hybrid perovskite materials for high-performing photovoltaic applications. © 2014 American Chemical Society.

  8. Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites

    KAUST Repository

    Saliba, Michael

    2014-07-31

    We investigate the thermally induced morphological and crystalline development of methylammonium lead mixed halide perovskite (CH 3NH3PbI3-xClx) thin films and photovoltaic device performance with meso-superstructured and planar heterojunction architectures. We observe that a short rapid thermal annealing at 130 °C leads to the growth of large micron-sized textured perovskite domains and improved the short circuit currents and power conversion efficiencies up to 13.5% for the planar heterojunction perovskite solar cells. This work highlights the criticality of controlling the thin film crystallization mechanism of hybrid perovskite materials for high-performing photovoltaic applications. © 2014 American Chemical Society.

  9. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Zhao Jiafei; Song Yongchen; Lam, Wei-Haur; Liu Weiguo; Liu Yu; Zhang Yi; Wang DaYong

    2011-01-01

    This paper presents the design optimization of a photovoltaic/thermal (PV/T) system using both non-concentrated and concentrated solar radiation. The system consists of a photovoltaic (PV) module using silicon solar cell and a thermal unit based on the direct absorption collector (DAC) concept. First, the working fluid of the thermal unit absorbs the solar infrared radiation. Then, the remaining visible light is transmitted and converted into electricity by the solar cell. This arrangement prevents excessive heating of the solar cell which would otherwise negatively affects its electrical efficiency. The optical properties of the working fluid were modeled based on the damped oscillator Lorentz-Drude model satisfying the Kramers-Kroenig relations. The coefficients of the model were retrieved by inverse method based on genetic algorithm, in order to (i) maximize transmission of solar radiation between 200 nm and 800 nm and (ii) maximize absorption in the infrared part of the spectrum from 800 nm to 2000 nm. The results indicate that the optimum system can effectively and separately use the visible and infrared part of solar radiation. The thermal unit absorbs 89% of the infrared radiation for photothermal conversion and transmits 84% of visible light to the solar cell for photoelectric conversion. When reducing the mass flow rate, the outflow temperature of the working fluid reaches 74 o C, the temperature of the PV module remains around 31 o C at a constant electrical efficiency about 9.6%. Furthermore, when the incident solar irradiance increases from 800 W/m 2 to 8000 W/m 2 , the system generates 196 o C working fluid with constant thermal efficiency around 40%, and the exergetic efficiency increases from 12% to 22%.

  10. PV-PCM integration in glazed building. Co-simulation and genetic optimization study

    DEFF Research Database (Denmark)

    Elarga, Hagar; Dal Monte, Andrea; Andersen, Rune Korsholm

    2017-01-01

    . An exploratory step has also been considered prior to the optimization algorithm: it evaluates the energy profiles before and after the application of PCM to PV module integrated in glazed building. The optimization analysis investigate parameters such as ventilation flow rates and time schedule to obtain......The study describes a multi-objective optimization algorithm for an innovative integration of forced ventilated PV-PCM modules in glazed façade buildings: the aim is to identify and optimize the parameters that most affect thermal and energy performances. 1-D model, finite difference method FDM...

  11. Comparison of Thermal Models for Ground-Mounted South-Facing Photovoltaic Technologies: A Practical Case Study

    Directory of Open Access Journals (Sweden)

    Henrik Zsiborács

    2018-05-01

    Full Text Available This paper examines the thermal properties of free-standing, ground-installed, south-facing crystalline and amorphous silicon photovoltaic modules, the remaining energy and the energy generation of the modules, in ideal and actual summer weather conditions. This work studies the algorithms in other studies used to describe the thermal processes occurring on the surface of photovoltaic modules. Using accurate devices and real, measured data, the deviations and the inaccuracies of theoretical approaches are investigated. The emphasis of the present study is to improve the simulation accuracy of the total emitted long-wave radiation at the module surface and to show the appropriate overall convection coefficient values for ground-mounted south-facing photovoltaic technologies. The innovative aspect of the present paper is an improved model resulting from an improved convective heat transfer and net long-wave radiation calculation. As a result of this research, algorithms describing the energy fluxes were developed. These algorithms have a 1–3% better accuracy of the net long-wave radiation calculations at the module surface. The rate of net energy exchange by convection at the module surface could be improved by 10–12% compared to the previous literature.

  12. A novel solar multifunctional PV/T/D system for green building roofs

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Yu, Xu; Su, Yuehong

    2015-01-01

    Highlights: • A novel transparent roof combines the solar PV/T/D system with green building design. • Novel photovoltaic-thermal roofing design can achieve excellent light control at noon. • The roof has no obvious influence on indoor light intensity in morning and afternoon. • Higher efficiency of solar energy utilization could be achieved with new roofing. - Abstract: A novel transparent roof which is made of solid CPC (Compound Parabolic Concentrator) PV/T/D (Photovoltaic/Thermal/Day lighting) system is presented. It combines the solar PV/T/D system with green building design. The PV/T/D system can achieve excellent light control at noon and adjust the thermal environment in the building, such that high efficiency utilization of solar energy could be achieved in modern architecture. This kind of roof can increase the visual comfort for building occupants; it can also avoid the building interior from overheating and dazzling at noon which is caused by direct sunlight through transparent roof. Optical simulation software is used to track the light path in different incidence angles. CFD (Computational Fluid Dynamics) simulation and steady state experiment have been taken to investigate the thermal characteristic of PV/T/D device. Finally, the PV/T/D experimental system was built; and the PV efficiency, light transmittance and air heating power of the system are tested under real sky conditions

  13. PowerShades. Transparent photovoltaics and solar shading. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bezzel, E. (PhotoSolar ApS, Taastrup (Denmark)); Univ. of Neuchatel, Institute of Microtechnology, Neuchatel (CH)); Savcor Denmark A/S, Ballerup (Denmark)); Chem-Tec Plating A/S, Uldum (Denmark)); Danish Technological Institute (DTI), Taastrup (Denmark))

    2008-06-15

    This report marks the end of the PSO funded R and D project PowerShades. The objective of the project has been to establish knowledge about the manufacturing of PowerShade transparent photovoltaics and to demonstrate the viability of PowerShade, both as a product and when considered a building element. It has not been the objective to demonstrate a full-scale manufacturing of PowerShade, but to establish the knowledge that enables industrial manufacturing. The overall objective of the project has been achieved, and the large majority of the milestones defined have been met to full extent. It has been shown that PowerShade photovoltaic cells with an electrical efficiency of 5% can be reached, and it is expected that future work will lead to even better efficiency. Also, it has been demonstrated by full size side by side comparison that PowerShade transparent photovoltaics may replace exterior solar shading devices without compromise to the thermal properties of the building. The project has identified a number of work areas that must be addressed before an industrial manufacturing can be established. The efficiency of the photovoltaic generator must be increased and the stability of the entire product documented. Also, some of the identified processing steps must be scaled in capacity before manufacturing can be considered. (author)

  14. Building integrated photovoltaics (BIPV). Review, potentials, barriers and myths

    Energy Technology Data Exchange (ETDEWEB)

    Heinstein, Patrick; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Neuchatel (Switzerland). Photovoltaics and Thin Film Electronics Lab.; Perret-Aebi, Laure-Emmanuelle [CSEM, Neuchatel (Switzerland). PV-Center

    2013-07-01

    To date, none of the predictions that have been made about the emerging BIPV industry have really hit the target. The anticipated boom has so far stalled and despite developing and promoting a number of excellent systems and products, many producers around the world have been forced to quit on purely economic grounds. The authors believe that after this painful cleansing of the market, a massive counter trend will follow, enlivened and carried forward by more advanced PV technologies and ever-stricter climate policies designed to achieve energy neutrality in a cost-effective way. As a result, the need for BIPV products for use in construction will undergo first a gradual and then a massive increase. The planning of buildings with multifunctional, integrated roof and facade elements capable of fulfilling the technical and legal demands will become an essential, accepted part of the architectonic mainstream and will also contribute to an aesthetic valorisation. Until then, various barriers need to be overcome in order to facilitate and accelerate BIPV. Besides issues related to mere cost-efficiency ratio, psychological and social factors also play an evident role. The goal of energy change linked to greater use of renewables can be successfully achieved only when all aspects are taken into account and when visual appeal and energy efficiency thus no longer appear to be an oxymoron. (orig.)

  15. Regional mapping of 100 - 999 kWc photovoltaic plants in 2014

    International Nuclear Information System (INIS)

    Tuille, F.

    2014-01-01

    This article presents the distribution over the French soil of intermediate photovoltaic plants in mid 2014. The map gives the number of photovoltaic plants, the total connected capacity per region, and the curves of sunlight. The total number of photovoltaic plants with a capacity ranging from 100 to 999 kWc is 2895 totaling 626,5 MWc. Most of these plants (82%) are integrated into the roofs of buildings while 10% are installed on the roofs. 53% of the solar panels are made of polycrystalline photovoltaic cells while 32% are composed on monocrystalline cells and 7% are based on thin film technology. There are very few plants waiting to be connected to the grid which means that this sector is losing its impetus. (A.C.)

  16. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...... of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control....

  17. Combined photovoltaic and solar-thermal systems: overcoming barriers to market acceptance

    International Nuclear Information System (INIS)

    Collins, M.R.

    2005-01-01

    Combined Photovoltaic and Solar-Thermal Systems (PV/T Systems) combine Photovoltaic (PV) and solar thermal technologies into one system with both electrical and thermal energy output. PV/T systems have several perceived advantages to stand-alone PV or solar-thermal systems. The increased efficiency and dual nature of the systems make suitable for situations where installation space is limited, and for homeowners who are forced to decide between meeting thermal or electrical needs. The financial benefit of the combined system is also significant, as the long payback of PV systems is joined with a relatively short payback of solar thermal systems. A background of PV/T was presented, with details of classifications and the International Energy Association's program to evaluate the technical status of PV/T systems and formulate a roadmap for future development. It was noted that input from the Solar Heating and Cooling Program (SHCP) is needed to help identify market barriers in PV/T systems. This paper reviewed existing and potential PV/T systems and their technical status, and reported on the methodology established by IEA group 35. The systems were grouped according to thermal collector types of unglazed water collectors, glazed water collectors, unglazed air collectors, glazed air collectors, air-flow windows, and concentrating collectors. It was noted that a number of new systems are currently being developed, including concentrating collectors with water and air heating, unglazed air heating systems, and unglazed water heating systems. It was noted that apart from technical barriers, efficient design and performance prediction are also problematic, as tools for predicting performance do not exist. The same tools will be used to optimize PV/T system designs. It was suggested that standardized reporting methods, simulation and sizing tools and demonstration products need to be created and that regional certification issues need to be identified. Environmental

  18. A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis

    International Nuclear Information System (INIS)

    Calise, Francesco; Figaj, Rafal Damian; Vanoli, Laura

    2017-01-01

    Highlights: • Space heating/cooling, domestic hot water and electrical energy are provided by the system. • Two different users are investigated: fitness center and office. • The influence of the battery system on system economic performance is scarce. • Net metering contract is more profitable compared to simplified purchase/resale arrangement one. - Abstract: In this paper a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system are presented. The system includes photovoltaic/thermal collectors coupled with a solar-assisted heat pump, an adsorption chiller and an electrical energy storage. The modelled plant supplies electrical energy, space heating and cooling and domestic hot water. The produced solar thermal energy is used during the winter to supply the heat pump evaporator, providing the required space heating. In summer, solar thermal energy is used to drive an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess, with respect to the space heating and cooling demand, is used to produce domestic hot water. The produced electrical energy is self-consumed by both user and system auxiliary equipment and/or supplied to the grid. The system model includes a detailed electrical energy model for user storage and exchange with the grid along with a detailed building model. This study is a continuation of previous works recently presented by the authors. In particular, the present paper focuses on the real electrical demands of several types of users and on the analysis of the comfort of building users. Differently from the works previously published by the authors, the present work bases the calculations on measured electrical demands of real users (fitness center and offices). The system performance is analyzed with two different electricity supply contracts: net metering and simplified purchase/resale arrangement. Daily, weekly and yearly results are presented. Finally, a

  19. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  20. Advances in integration of photovoltaic power and energy production in practical systems

    Science.gov (United States)

    Fartaria, Tomas Oliveira

    This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.

  1. Implementing agreement on photovoltaic power systems - Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2000. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance and design of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, the grid interconnection of building-integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, very large scale photovoltaic power generation systems and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  2. Implementing agreement on photovoltaic power systems - Annual report 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2001. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  3. An electron-deficient small molecule accessible from sustainable synthesis and building blocks for use as a fullerene alternative in organic photovoltaics.

    Science.gov (United States)

    McAfee, Seth M; Topple, Jessica M; Payne, Abby-Jo; Sun, Jon-Paul; Hill, Ian G; Welch, Gregory C

    2015-04-27

    An electron-deficient small molecule accessible from sustainable isoindigo and phthalimide building blocks was synthesized via optimized synthetic procedures that incorporate microwave-assisted synthesis and a heterogeneous catalyst for Suzuki coupling, and direct heteroarylation carbon-carbon bond forming reactions. The material was designed as a non-fullerene acceptor with the help of DFT calculations and characterized by optical, electronic, and thermal analysis. Further investigation of the material revealed a differing solid-state morphology with the use of three well-known processing conditions: thermal annealing, solvent vapor annealing and small volume fractions of 1,8-diiodooctane (DIO) additive. These unique morphologies persist in the active layer blends and have demonstrated a distinct influence on device performance. Organic photovoltaic-bulk heterojunction (OPV-BHJ) devices show an inherently high open circuit voltage (Voc ) with the best power conversion efficiency (PCE) cells reaching 1.0 V with 0.4 v/v % DIO as a processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  5. Thermal Comfort and Ventilation Criteria for low Energy Residential Buildings in Building Codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim

    2012-01-01

    of the indoor air quality in such buildings. Currently, there are no global guidelines for specifying the indoor thermal environment in such low-energy buildings. The objective of this paper is to analyse the classification of indoor thermal comfort levels and recommended ventilation rates for different low...

  6. Dimensioning of Solar Thermal Systems for Multi-Family Buildings in Lithuania: an Optimisation Study

    OpenAIRE

    Valančius, Rokas; Jurelionis, Andrius; Vaičiūnas, Juozas; Perednis, Eugenijus

    2017-01-01

    Small-scale solar thermal domestic hot water (DHW) systems in Lithuania can produce up to 523 kWh per year per one square meter of solar collector area. It is therefore one of the most common solar thermal applications in the country with the expected payback period of approximately 10 years. However, the number of solar water heating systems (SWH) installed in the renovated multi-family buildings is quite limited. On the other hand, the potential of integrating solar thermal systems in these...

  7. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    Science.gov (United States)

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, N. [Freelance Consultant, Hillside House, Swindon SN1 3QA (United Kingdom); Thornycroft, J. [Halcrow Group Ltd, Burderop Park, Swindon SN4 0QD (United Kingdom); Collinson, A. [EA Technology, Capenhurst Technology Park, Chester CH1 6ES (United Kingdom)

    2002-03-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents the results of a risk analysis concerning photovoltaic power systems islanding in low-voltage distribution networks. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. The purpose of this study was to apply formal risk analysis techniques to the issue of islanding of photovoltaic power systems within low voltage distribution networks. The aim was to determine the additional level of risk that islanding could present to the safety of customers and network maintenance staff. The study identified the reliability required for islanding detection and control systems based on standard procedures for developing a safety assurance strategy. The main conclusions are presented and discussed and recommendations are made. The report is concluded with an appendix that lists the relative risks involved.

  9. Large scale rooftop photovoltaics grid connected system at Charoenphol-Rama I green building

    Energy Technology Data Exchange (ETDEWEB)

    Ketjoy, N.; Rakwichian, W. [School of Renewable Energy Technology (SERT) (Thailand); Wongchupan, V. [Panya Consultants Co., Ltd (Thailand); Sankarat, T. [Tesco Lotus, Ek-Chai Distribution System Co., Ltd. (Thailand)

    2004-07-01

    This paper presents a technical feasibility study project for the large scale rooftop photovoltaics (PV) grid connected system at Charoenphol-Rama I green building super store of TESCO LOTUS (TL) in Thailand. The objective of this project is (i) to study the technical feasibility of installation 350 kWp PV systems on the top of the roof in this site (ii) and to determine the energy produce from this system. The technical factors are examined using a computerized PVS 2000 simulation and assessment tool. This super store building located in Bangkok, with latitude 14 N, longitude 100 E and the building direction is 16 from North direction. The building roof area is 14,000 m2; with 3 degree face East and 3 degree face West pitch. Average daily solar energy in this area is approximately 5.0 kWh. The study team for this project consists of educational institution as School of Renewable Energy Technology (SERT) and private institution as Panya Consultants (PC). TL is the project owner, PC is responsible for project management, and SERT is a third party and responsible for PV system study, conceptual design and all technical process. In this feasibility studies SERT will identify the most attractive scenarios of photovoltaic cell technology (mono, poly-crystalline or thin film amorphous), system design concepts for owners (TL) and determine possibility of the energy yield of the system from different module orientation and tilt angle. The result of this study is a guide to help TL to make decision to select proper rooftop PV system option for this store with proper technology view. The economic view will not be considered in this study. (orig.)

  10. Design, modeling and performance analysis of dual channel semitransparent photovoltaic thermal hybrid module in the cold environment

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay; Avasthi, D.V.

    2016-01-01

    Highlights: • Thermal modeling of novel dual channel semitransparent PVT hybrid module. • Exergy and carbon credit analysis has been performed. • Annual performance has been evaluated for Srinagar (India). • There are improvements in results for case-I as compared to case-II. - Abstract: In this work, thermal modeling and performance analysis of the dual channel semitransparent photovoltaic thermal (DCSPVT) module has been carried out. For extracting heat associated with the lower and upper surface of the solar cell, two channels have been proposed; (i) one is above the solar cell called upper channel and (ii) second is below the solar cell called lower channel. Firstly, thermal modeling of DCSPVT module has been developed. After that, performance analysis of the above system has been carried out for Srinagar, Indian climatic condition. Performance in terms of electrical gain (EG), thermal gain (TG), overall exergy gain (OEG), overall thermal gain (OTG), electrical efficiency (EE) and overall exergy efficiency (OEE) of the DCSPVT module (case-I) have been compared with single channel semitransparent photovoltaic thermal (SCSPVT) hybrid module (case-II). The average improvement in EG, TG, OEG, OTG of the case-I have been observed by 71.51%, 34.57%, 5.78% and 35.41% respectively as compared to case-II.

  11. Integrating Responsive Building Elements in Buildings

    DEFF Research Database (Denmark)

    Haase, Matthias; Amato, Alex; Heiselberg, Per

    2006-01-01

    energy strategies to develop guidelines and procedures for estimation of environmental performance of responsive building elements and integrated building concepts This paper introduces the ideas of this collaborative work and discusses its usefulness for Hong Kong and China. Special focus was put...

  12. Solar building construction. Special edition of the journal 'Sonnenenergie'; Solares Bauen. Sonderheft der Sonnenenergie

    Energy Technology Data Exchange (ETDEWEB)

    Rust, A. (comp.)

    2003-10-01

    This special issue of October 2003 reviews solar architecture, planning, applications, technology, market and knowledge. Subjects: Falkenweg housing development; Q-Cells solar factory; Modehaus Zara building; Haus Westermayr McCready building; Federal Environmental Office building, Dessau; 'Haus im Himmel' building; NRW state representatives building in Berlin; Zero-emission building 'Sunny Woods', Zurich; Hellerau workshop buildings, Dresden; HOCHTIEF PRISMA Haus building, Frankfurt; Solar government buildings, Berlin; SOLARBAU programme; Energy supply concepts based on photovoltaic power supply; Solar cooling; Photovoltaic lamellas; Solar building construction; Solar contracting; Solar building modernisation; Integrated PV systems in Europe; Living in passive buildings; Funding programmes for renewable energy sources and building construction. (orig./AKF)

  13. Analysis of Thermal Comfort in an Intelligent Building

    Science.gov (United States)

    Majewski, Grzegorz; Telejko, Marek; Orman, Łukasz J.

    2017-06-01

    Analysis of thermal comfort in the ENERGIS Building, an intelligent building in the campus of the Kielce University of Technology, Poland is the focus of this paper. For this purpose, air temperature, air relative humidity, air flow rate and carbon dioxide concentration were measured and the mean radiant temperature was determined. Thermal sensations of the students occupying the rooms of the building were evaluated with the use of a questionnaire. The students used a seven-point scale of thermal comfort. The microclimate measurement results were used to determine the Predicted Mean Vote and the Predicted Percentage Dissatisfied indices.

  14. Adaptive thermal comfort for buildings in Portugal based on occupants' thermal perception

    Energy Technology Data Exchange (ETDEWEB)

    Matias, L.; Pina Santos, C.; Rebelo, M. [LNEC National Laboratory for Civil Engineering, Lisbon (Portugal); Almeida, S. [FCT Foundation for Science and Technology, Lisbon (Portugal); Correia Guedes, M. [IST Higher Technical Inst., Lisbon (Portugal)

    2009-07-01

    The use of air conditioning systems in Portugal has increased in recent years. Most new service buildings are equipped with mechanical air conditioning systems, either due to commercial reasons, productivity, or due to high internal thermal loads, and solar gains through windows. However, a large percentage of older service buildings are still naturally ventilated. In ASHRAE 55 thermal comfort standard, an adaptive model was adopted as an optional method for determining acceptable thermal conditions in naturally conditioned spaces. Recently, Portugal's National Laboratory for Civil Engineering (LNEC) initiated an interdisciplinary research study in this field. The research team of physicists, social scientists, and civil engineers developed better modeling of adaptive thermal strategies. This paper described the adaptive approach that defined indoor thermal comfort requirements applicable to Portuguese buildings. The study focused on assessing, in real use conditions, indoor environments and the response of occupants of office and educational buildings, and homes for the elderly. The results were obtained from 285 field surveys carried out on 40 buildings and a set of 2367 questionnaires completed by occupants. Field surveys assessed and measured the main indoor environmental parameters during summer, winter and mid-season. This paper included the results of the analysis to the occupants' thermal perception and expectation, by relating them to both measured and collected indoor thermal environments and outdoor climate. The relation between the occupants' thermal sensation and preference was analysed for different types of activities, throughout different seasons. Results showed that occupants may tolerate broader temperature ranges than those indicated in current standards, particularly in the heating season. 10 refs., 3 tabs., 9 figs.

  15. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2013-01-01

    After the euphoria of 2011, the European Union's photovoltaic market slowed right down in 2012. EurObserv'ER puts newly connected capacity in 2012 at 16.5 GWp compared to 22 GWp in 2011, which is a 25% drop. At global level the market generally held up, with just over 30 GWp installed, bolstered by the build-up of the American and Asian markets. The photovoltaic electricity generated in the EU reached 68.1 TWh in 2012. The article begins with the description of the worldwide situation of photovoltaic electricity, then details the situation for each EU member with the help of tables and charts and ends with the state of photovoltaic industry at the world scale

  16. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  17. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  18. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  19. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate...... feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT ≈ 1, the CPV/TEG system is more efficient...

  20. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  1. Wafer integrated micro-scale concentrating photovoltaics

    Science.gov (United States)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  2. 1 mm3-sized optical neural stimulator based on CMOS integrated photovoltaic power receiver

    Science.gov (United States)

    Tokuda, Takashi; Ishizu, Takaaki; Nattakarn, Wuthibenjaphonchai; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Sawan, Mohamad; Ohta, Jun

    2018-04-01

    In this work, we present a simple complementary metal-oxide semiconductor (CMOS)-controlled photovoltaic power-transfer platform that is suitable for very small (less than or equal to 1-2 mm) electronic devices such as implantable health-care devices or distributed nodes for the Internet of Things. We designed a 1.25 mm × 1.25 mm CMOS power receiver chip that contains integrated photovoltaic cells. We characterized the CMOS-integrated power receiver and successfully demonstrated blue light-emitting diode (LED) operation powered by infrared light. Then, we integrated the CMOS chip and a few off-chip components into a 1-mm3 implantable optogenetic stimulator, and demonstrated the operation of the device.

  3. Impact of building forms on thermal performance and thermal comfort conditions in religious buildings in hot climates: a case study in Sharjah city

    Science.gov (United States)

    Mushtaha, Emad; Helmy, Omar

    2017-11-01

    The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.

  4. Earthing - Lightning protection - Equipotential bonding. Involvement of photovoltaic power plants at buildings; Erdung - Blitzschutz - Potentialausgleich. Einbindung von Photovoltaik-Anlagen auf Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Hemmann, Bjoern; Mausser, Bettina

    2011-09-15

    There are large uncertainties and different views in the consideration of equipotential bonding, grounding and lightning protection for photovoltaic systems. With this in mind, the contribution under consideration reports on why, when and how photovoltaic systems at buildings must be grounded. The authors report on a grounding of photovoltaic systems from the perspective of the protective grounding, from the view of functional grounding, from the view of lightning protection and frame grounding. At best, the metal frame of a photovoltaic system always is connected with the main earth bar using 16 mm{sup 2} copper. At excessive discharge currents, the module frame must be grounded forever.

  5. The performance and economical analysis of grid-connected photovoltaic systems in Daegu, Korea

    International Nuclear Information System (INIS)

    Kim, Ju-Young; Jeon, Gyu-Yeob; Hong, Won-Hwa

    2009-01-01

    The distribution of the photovoltaic systems is faced with technological and economic problems, and the businesses and corporations feel burdened by the photovoltaic system's dubious economic value and high construction costs. Thus, not too many enterprises or private citizens have been participating in the business of installing photovoltaic systems. Moreover, because of lack of skills in integrating engineering and architectural design, they are experiencing difficulties even in using the technologies that have already been developed and available for application. To provide the basic information and specific data required for making the guidelines for developing photovoltaic technologies, this paper evaluates the system types, the actual state of operation, and performance of the two photovoltaic systems that are installed in Kiemyung University's Osan Building and Dongho Elementary School in Daegu Metropolitan City

  6. Study of the development of solar energy in Rhone-Alpes. Presentation of the photovoltaic sector, Presentation of the solar thermal sector, Sunshine mapping, Assessment of installations by the end 2009, Development potential for solar thermal energy, Development potential for solar photovoltaic energy

    International Nuclear Information System (INIS)

    2010-12-01

    A first part proposes a wide presentation of the photovoltaic sector with an overview of largest plants, a market analysis (on the 2001-2009 period in the World, Europe and France, per technology, in terms of industrial tissue and R and D activity in France, evolution per region and per technology), a presentation of the different technologies (from the first to the third generation, in terms of costs, and of perspective for the different sectors), an environmental assessment of the different sectors (CO 2 emissions and avoided emissions), a presentation of the main actors of the photovoltaic sector (silicon producers, cell producers, thin layer producers, developers), a presentation of tracking technologies (trackers gains), and a perspective for the photovoltaic sector in Europe and in the World. In a same way, a second part presents the solar thermal sector: market analysis, active and passive technologies, solar concentration technology, environmental assessment, future perspective in Europe and in the World. A sunshine mapping is then proposed for the Rhone-Alpes region. The next part discusses various stakes: regulation for roof-based installations and for ground-based photovoltaic plants with respect to various issues (land planning, environment, biodiversity, agriculture, landscape, cultural heritage, natural risks). The next part proposes an assessment of solar thermal and photovoltaic installations at the end of 2009

  7. Action plan for photovoltaic standards

    Energy Technology Data Exchange (ETDEWEB)

    Oldach, R.

    1999-07-01

    This report examines the present situation regarding international standards governing photovoltaic (PV) systems and components, and seeks to identify barriers to the commercialisation of PV systems in the UK due to the absence of standards and codes of practice, and develop an action plan to overcome these barriers. An overview of standardisation bodies and standard generation mechanisms is presented, and the PV cells and modules, stand-alone PV systems, utility interconnection with PV systems, and building integration of PV are reviewed.

  8. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Leen; D' haeseleer, William [Division of Applied Mechanics and Energy Conversion, University of Leuven (K.U.Leuven), Celestijnenlaan 300 A, B-3001 Leuven (Belgium); Dear, Richard de [Division of Environmental and Life Sciences, Macquarie University, Sydney (Australia); Hensen, Jan [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-05-15

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady state laboratory experiments. This, however, is not representing the real situation in buildings, especially not when focusing on residential buildings. Therefore, in present analysis, recent reviews and adaptations are considered to extract acceptable temperature ranges and comfort scales. They will be defined in an algorithm, easily implementable in any BES code. The focus is on comfortable temperature levels in the room, more than on the detailed temperature distribution within that room. (author)

  9. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  10. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  11. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Photovoltaic (PV panels account for a majority of the cost of photovoltaic thermal (PVT panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum efficiencies of 45% to 63% were observed for the double-path-parallel bifacial PVT panel based on the first law of thermodynamics. Single-path bifacial PVT panel represents the highest exergy efficiency (10%. Double-path-parallel bifacial PVT panel is the second preferred design as it generates up to 20% additional total energy compared with the single-path panel. However, the daily average exergy efficiency of a double-path-parallel panel is 0.35% lower than that of a single-path panel.

  12. POLINOTEN Project - Efficiency of development and diffusion of innovative energy technologies policies: the concept of the 'electric vehicle coupled with building-integrated solar photovoltaic electricity' by 2030

    International Nuclear Information System (INIS)

    Popiolek, Nathalie; Bodineau, Luc; Wiss, Olivier; Bougrain, Frederic; Gruson, Jean-Francois; Poix, Michel; Quevarec, Marine; Thais, Francoise; Bodiguel, Aude; Grenier, Anne

    2014-06-01

    Building and transportation sectors are the biggest consumers of energy and therefore the main source of CO 2 emissions. Furthermore, private cars are responsible for more than half of CO 2 emissions from transportation sector. In order to reduce greenhouse gases by 75% by 2050, compared to 1990, as set out by the 'Grenelle de l'environnement' laws (2009, 2010), the French government could exploit a promising solution: fostering the integration of building and transport, by installing, on new positive energy buildings, photovoltaic systems for recharging electric vehicles. The batteries of these vehicles could be a way for stocking intermittent solar electricity for later use. This is what we call solar mobility. However, to succeed in installing a system which would lead to optimal coupling between the photovoltaic production and the electric vehicle, a change in our relationship to buildings, transport and energy, is necessary. This also relies strongly on technological progress, high performing industrial supply and appropriate public action. The objective of this work is to help the State propose public actions to promote solar mobility by 2030, integrating political objectives in energy, climate and industry, while respecting budgetary constraints, as well as social and territorial cohesion. family living in a positive energy house in 2030. Several cases have been studied, varying sun exposition, timetables of battery recharging and mobility needs. Then, with a multi-criteria analysis, mainly studying the carbon saving advantages and the cost for society, we tested the relative performance of a set of public actions aimed at introducing this innovation on a large scale by 2030. To reach these objectives, we worked on: - a deep analysis of the instruments of public policies able to take up the challenge; policies of demand, supply policies, with or without carbon tax, etc. - the construction of a Multi-criteria Decision Aid Model integrating the

  13. The Photovoltaic Higher Education National Exemplar Facility (PHENEF)

    Science.gov (United States)

    Podbielski, V.; Shaff, D.

    1994-04-01

    In August 1980, the US Department of Energy awarded the proposed grant to Georgetown University. The grant covered the following tasks: Task 1, The Department of Energy would participate in the building of an academic facility that would facilitate the integration of flat plate photovoltaic roof modules with an optimally oriented solar architecture. The completion of the facility to be built on the Georgetown University Campus and known as the Georgetown University Intercultural Center was to be a jointly funded endeavor with the Department of Education funding $9.2M through a grant and a loan, Department of Energy funding a maximum of $4M and Georgetown University funding the residual costs. Task 2, Georgetown University would provide the necessary skills, services, materials, equipment and facilities to design, furnish, install and make operational the Georgetown University Intercultural Center Photovoltaic System. The specific objective of this effort would be to build an exemplar flat plate electrical grid connected photovoltaic (PV) system which would demonstrate integration of PV modules into a watertight roofing surface. The system capability, measured at the input to the inverter, would be a 300 kilowatt peak power system as measured at the normal cell operating temperature and an isolation of 100 milliwatts per square centimeter at the collector surface. DOE funding under the grant for the PV system would be limited to a system cost of $20.00 per peak watt up to maximum of six million dollars.

  14. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  15. Quantification of Uncertainty in Thermal Building Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Haghighat, F.; Frier, Christian

    In order to quantify uncertainty in thermal building simulation stochastic modelling is applied on a building model. An application of stochastic differential equations is presented in Part 1 comprising a general heat balance for an arbitrary number of loads and zones in a building to determine...

  16. Analysis on the Performance of Copper Indium Gallium Selenide (CIGS Based Photovoltaic Thermal

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available This paper deals with the efficiency improvement of Copper Indium Gallium Selenide (CIGS Photovoltaic (PV and also solar thermal collector. Photovoltaic thermal (PV/T can improve overall efficiency for PV and also solve the problem of limited roof space at urban area. Objective of this study is to clarify the effect of mass flow rate on the efficiency of the PV/T system. A CIGS solar cell is used with rated output power 65 W and 1.18 m2 of area. 4 set of experiments were carried out, which were: thermal collector with 0.12 kg/s flow rate, PV/T with 0.12 kg/s flow rate, PV/T with 0.09 kg/s flow rate and PV. It was found that PV/T with 0.12 kg/s flow rate had the highest electrical efficiency, 2.92 %. PV/T with 0.09 kg/s flow rate had the lowest electrical efficiency, 2.68 %. It also had 2 % higher overall efficiency. The efficiency gained is low due to several factors. The rated output power of the PV is low for the area of 1.18 m2. The packing factor of the PV also need to be considered as it may not be operated at the optimal packing factor. Furthermore, aluminium sheet of the PV may affect the PV temperature due to high thermal conductivity. Further study on more values of mass flow rate and also other parameters that affect the efficiency of the PV/T is necessary.

  17. Implementing agreement on photovoltaic power systems - Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2003. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. The programme's tenth anniversary is noted. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system, the deployment of photovoltaic technologies in developing countries and urban-scale PV applications. The status and prospects in the 20 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  18. Recent Developments of Photovoltaics Integrated with Battery Storage Systems and Related Feed-In Tariff Policies: A Review

    Directory of Open Access Journals (Sweden)

    Angel A. Bayod-Rújula

    2017-01-01

    Full Text Available The paper presents a review of the recent developments of photovoltaics integrated with battery storage systems (PV-BESs and related to feed-in tariff policies. The integrated photovoltaic battery systems are separately discussed in the regulatory context of Germany, Italy, Spain, United Kingdom, Australia, and Greece; the attention of this paper is focused on those integrated systems subject to incentivisation policies such as feed-in tariff. Most of the contributions reported in this paper consider already existing incentive schemes; the remaining part of the contributions proposes interesting and novel feed-in tariff schemes. All the contributions provide an important resource for carrying out further research on a new era of incentive policies in order to promote storage technologies and integrated photovoltaic battery systems in smart grids and smart cities. Recent incentive policies adopted in Germany, Italy, Spain, and Australia are also discussed.

  19. Optimal controls of building storage systems using both ice storage and thermal mass – Part II: Parametric analysis

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A detailed analysis is presented to assess the performance of thermal energy storage (TES) systems. ► Utility rates have been found to be significant in assessing the operation of TES systems. ► Optimal control strategies for TES systems can save up to 40% of total energy cost of office buildings. - Abstract: This paper presents the results of a series of parametric analysis to investigate the factors that affect the effectiveness of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs (including energy and demand costs) while maintaining adequate occupant comfort conditions in buildings. The analysis is based on a validated model-based simulation environment and includes several parameters including the optimization cost function, base chiller size, and ice storage tank capacity, and weather conditions. It found that the combined use of building thermal mass and active thermal energy storage system can save up to 40% of the total energy costs when integrated optimal control are considered to operate commercial buildings.

  20. Interim performance criteria for photovoltaic energy systems. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  1. PV cool-build

    Energy Technology Data Exchange (ETDEWEB)

    Cross, B.; Nuh, D.

    2004-07-01

    This report summarises the findings of a project to develop a method for calculating the operating temperature of building integrated photovoltaic (BIPV) modules/laminates which are estimated to operate above ambient temperature. The aim of the study was to minimise the temperature of the BIPV in order to increase the production of clean electricity. Details are given of a series of indoor experiments, computer modelling, and outdoor measurements. The production of a readily available, user-friendly design guide for architects and building designers is discussed.

  2. Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage

    DEFF Research Database (Denmark)

    Johra, Hicham; Heiselberg, Per Kvols

    2017-01-01

    The increasing share of intermittent renewable energy on the grid encourages researchers to develop demand-side management strategies. Passive heat storage in the indoor space is a promising solution to improve the building energy flexibility. It relies on an accurate control of the transient...... building temperature. However, many of the current numerical models for building energy systems assume empty rooms and do not account entirely for the internal thermal inertia of objects like furniture. This review article points out that such assumption is not valid for dynamic calculations...

  3. Modeling electric load and water consumption impacts from an integrated thermal energy and rainwater storage system for residential buildings in Texas

    International Nuclear Information System (INIS)

    Upshaw, Charles R.; Rhodes, Joshua D.; Webber, Michael E.

    2017-01-01

    Highlights: • Hydronic integrated rainwater thermal storage (ITHERST) system concept presented. • ITHERST system modeled to assess peak electric load shifting and water savings. • Case study shows 75% peak load reduction and 9% increase in energy consumption. • Potable rainwater collection could provide ∼50–90% of water used for case study. - Abstract: The United States’ built environment is a significant direct and indirect consumer of energy and water. In Texas, and other parts of the Southern and Western US, air conditioning loads, particularly from residential buildings, contribute significantly to the peak electricity load on the grid, straining transmission. In parallel, water resources in these regions are strained by growing populations and shrinking supplies. One potential method to address both of these issues is to develop integrated thermal energy and auxiliary water (e.g. rainwater, greywater, etc.) storage and management systems that reduce peak load and freshwater consumption. This analysis focuses on a proposed integrated thermal energy and rainwater storage (ITHERST) system that is incorporated into a residential air-source chiller/heat pump with hydronic distribution. This paper describes a step-wise hourly thermodynamic model of the thermal storage system to assess on-peak performance, and a daily volume-balance model of auxiliary water collection and consumption to assess water savings potential. While the model is generalized, this analysis uses a case study of a single family home in Austin, Texas to illustrate its capabilities. The results indicate this ITHERST system could reduce on-peak air conditioning electric power demand by over 75%, with increased overall electric energy consumption of approximately 7–9%, when optimally sized. Additionally, the modeled rainwater collection reduced municipal water consumption by approximately 53–89%, depending on the system size.

  4. Energy policy for integrating the building environmental performance model of an air conditioned building in a subtropical climate

    International Nuclear Information System (INIS)

    Mui, K.W.

    2006-01-01

    For an air conditioned building, the major electricity consumption is by the heating, and air conditioning (HVAC) system. As energy saving strategies may be in conflict with the criteria of indoor air quality and thermal comfort, a concept of the building environmental performance model (BEPM) has been developed to optimize energy consumption in HVAC systems without any deterioration of the indoor air quality and thermal comfort. The BEPM is divided into two main modules: the adaptive comfort temperature (ACT) module and the new demand control ventilation (nDCV) module. This study aims to enhance and prompt the conventional operation of the air side systems by incorporating temperature reset with the adaptive comfort temperature control and the new demand control ventilation system in high rise buildings in Hong Kong. A new example weather year (1991) was established as a reference to compute the energy use of HVAC systems in buildings in order to obtain more representative data for predicting annual energy consumption. A survey of 165 Hong Kong office buildings was conducted and it provided valuable information on the existing HVAC design values in different grades of private commercial buildings in Hong Kong. It was found that the actual measured values of indoor temperature were lower than the design ones. Furthermore, with the new example weather year and the integration of the BEPM into Grade A private office buildings in Hong Kong, the total energy saving of the air conditioning systems was calculated (i.e. a saving of HK$122 million in electrical consumption per year) while the thermal comfort for the occupants was also maintained

  5. Municipal programs of photovoltaic energy development; Les programmes municipaux de developpement du photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This study presents some remarkable actions carried out in several European municipalities for the promotion and development of photovoltaic applications: installation of solar cells on public buildings, integration of the photovoltaic energy in the urban plan, application in the transportation sector, programs of public information, of promotion, of incitation, of financing, solar electricity trade, promotion of the 'green current'. After a presentation of the general situation of photovoltaic energy in Europe, and of its development in France, nine case-forms present the experience of nine selected European cities in this domain (Amersfoort (NL), Barcelona (ES), Braedstrup (DK), Karlsruhe (DE), Lausanne (CH), Mataro (ES), Muenchen (ES), Palermo (IT), Zurich (CH)). (J.S.)

  6. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  7. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  8. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  9. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  10. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  11. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  12. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  13. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  15. Thermal Change for Photovoltaic Panels and Energy Effects

    OpenAIRE

    İmal, Nazım; Hasar, Şahabettin; Çınar, Harun; Şener, Eralp

    2015-01-01

    Photovoltaic panels (solar cells), they receive photon energy from sunlight, convert them to electrical energy by the semiconductor structural features. Photovoltaic panels produce a voltage, depending on the change of functional sunlight exposure. Produced voltage and determining of provided electrical power, must be dealt with the physical parameters that uses the concepts of light and temperature. In this study, usage of monocrystalline and polycrystalline structured photovoltaic panels el...

  16. Studies of a photovoltaic-thermal solar during system for rural applications

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Y.; Yatim, B.; Bakar, N.A. [Kebangsaan Malaysia Univ., Bangi, Selangor (Malaysia). Center for Applied Physics Studies; Sopian, K. [Kebangsaan Malaysia Univ., Bangi, Selangor (Malaysia). Dept. of Mechanical and Material Engineering

    2007-07-01

    The use of solar drying is increasing in areas where the use of abundant, renewable and clean solar energy is advantageous. Particularly in developing countries and in rural areas, the traditional open-air drying methods are being substituted by the more effective and more economic solar drying technologies. Since the air collector is the most important component of a solar food drying system, improvement of the design of collectors would lead to better performance of the system. This paper presented a new design of a photovoltaic-thermal (PVT) solar drying system. In order to achieve an efficient design of an air collector suitable for a solar dryer, the results of an experimental study of PVT solar air collector was conducted and presented. The paper presented the methodology and discussed a series of experiments that were conducted under Malaysian climatic conditions. The paper discussed the design of a double pass photovoltaic-thermal solar air collector with compound parabolic concentrator (CPC) and fins. The collector design concept and the collector array were demonstrated. The performance of the collector was examined over a wide range of operating conditions. Results of the test were then presented and discussed. It was concluded that the performance of the solar collector was satisfactory. The quality attributes such as colour, flavour, and taste were significantly improved since it was protected from rain, dust, and insects, in contrast to sun drying. 10 refs., 8 figs.

  17. Field installation versus local integration of photovoltaic systems and their effect on energy evaluation metrics

    International Nuclear Information System (INIS)

    Halasah, Suleiman A.; Pearlmutter, David; Feuermann, Daniel

    2013-01-01

    In this study we employ Life-Cycle Assessment to evaluate the energy-related impacts of photovoltaic systems at different scales of integration, in an arid region with especially high solar irradiation. Based on the electrical output and embodied energy of a selection of fixed and tracking systems and including concentrator photovoltaic (CPV) and varying cell technology, we calculate a number of energy evaluation metrics, including the energy payback time (EPBT), energy return factor (ERF), and life-cycle CO 2 emissions offset per unit aperture and land area. Studying these metrics in the context of a regionally limited setting, it was found that utilizing existing infrastructure such as existing building roofs and shade structures does significantly reduce the embodied energy requirements (by 20–40%) and in turn the EPBT of flat-plate PV systems due to the avoidance of energy-intensive balance of systems (BOS) components like foundations. Still, high-efficiency CPV field installations were found to yield the shortest EPBT, the highest ERF and the largest life-cycle CO 2 offsets—under the condition that land availability is not a limitation. A greater life-cycle energy return and carbon offset per unit land area is yielded by locally-integrated non-concentrating systems, despite their lower efficiency per unit module area. - Highlights: ► We evaluate life-cycle energy impacts of PV systems at different scales. ► We calculate the energy payback time, return factor and CO 2 emissions offset. ► Utilizing existing structures significantly improves metrics of flat-plate PV. ► High-efficiency CPV installations yield best return and offset per aperture area. ► Locally-integrated flat-plate systems yield best return and offset per land area.

  18. Standard Test Methods for Wet Insulation Integrity Testing of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 These test methods provide procedures to determine the insulation resistance of a photovoltaic (PV) module, i.e. the electrical resistance between the module's internal electrical components and its exposed, electrically conductive, non-current carrying parts and surfaces. 1.2 The insulation integrity procedures are a combination of wet insulation resistance and wet dielectric voltage withstand test procedures. 1.3 These procedures are similar to and reference the insulation integrity test procedures described in Test Methods E 1462, with the difference being that the photovoltaic module under test is immersed in a wetting solution during the procedures. 1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods. 1.5 The values stated in SI units are to be regarded as the standard. 1.6 There is no similar or equivalent ISO standard. 1.7 This standard does not purport to address all of the safety conce...

  19. Smart Building: Decision Making Architecture for Thermal Energy Management.

    Science.gov (United States)

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  20. Smart Building: Decision Making Architecture for Thermal Energy Management

    Directory of Open Access Journals (Sweden)

    Oscar Hernández Uribe

    2015-10-01

    Full Text Available Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  1. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  2. Optimizing design concepts for a building with photovoltaic facility; Systeme d'optimisation pour la conception d'un batiment avec une installation photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Le Bail, Yann; Bedard, Claude [Departement du genie de la construction, ETS, Montreal (Canada); Zmeureanu, Radu [Departement du genie du batiment, civil et de l' environement, Universite de Concordia, Montreal (Canada)

    2010-07-01

    In Canada, the energy used in buildings represents 30% of total national consumption. The use of renewable sources of energy is clearly of interest in efforts to reduce dependency on fossil fuels, greenhouse gas emissions and the total level of energy consumption. This study presents a system for economic and environmental performance optimization of a photovoltaic apparatus installed on the roof of a commercial building. This optimization system was tested on a building in Montreal. The results demonstrate that the apparatus does not give sufficient returns either economically or environmentally in Quebec, due to the fact that the electricity supply there is low-priced and clean but it would provide such returns in Munich, where the repurchase price of photovoltaic and conventional electricity is high and conventional electricity is also a polluter. The optimization system proposed in this study allows the environmental and economic returns from a photovoltaic apparatus to be studied.

  3. The photovoltaic pathway

    International Nuclear Information System (INIS)

    Jourde, P.; Guerin de Montgareuil, A.; Mattera, F.; Jaussaud, C.; Boulanger, P.; Veriat, G.; Firon, M.

    2004-01-01

    , aside from the sole generation of electricity. Finally, a major research and development effort is making it possible to look to considerable advances, regarding energy storage. In this framework this chapter of the Clefs CEA N50/51 presents studies on: the three paths for solar energy, the high tech cells for cheaper modules, the building-integrated photovoltaic systems and the storage of photovoltaic electricity. (A.L.B.)

  4. Indoor Air Quality and Thermal Comfort in School Buildings

    Science.gov (United States)

    Juhásová Šenitková, Ingrid

    2017-12-01

    This paper presents results to thermal comfort and environment quality questions in 21 school building rooms. Results show that about 80% of the occupants expressed satisfaction with their thermal comfort in only 11% of the buildings surveyed. Air quality scores were somewhat higher, with 26% of buildings having 80% or occupant satisfaction. With respect to thermal comfort and air quality performance goals set out by standards, most buildings appear to be falling far short. Occupant surveys offer a means to systematically measure this performance, and also to provide diagnostic information for building designers and operators. The odours from building materials as well as human odours were studied by field measurement. The odour intensity and indoor air acceptability were assessed by a sensory panel. The concentrations of total volatile organic compounds and carbon dioxide were measured. The odours from occupancy and building materials were studied under different air change rate. The case study of indoor air acceptability concerning to indoor odours and its effect on perceived air quality are also presented in this paper.

  5. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    NARCIS (Netherlands)

    Peeters, L.F.R.; Dear, de R.; Hensen, J.L.M.; D'Haeseleer, W.

    2009-01-01

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady

  6. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: liming@ynnu.edu.c [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China); Li, G.L. [School of Physics and Electronic Information, Yunnan Normal University, Kunming 650092 (China); Ji, X.; Yin, F.; Xu, L. [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China)

    2011-06-15

    Research highlights: {yields} A 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. {yields} Another 10 m{sup 2} TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. {yields} The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m{sup 2} TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating

  7. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, M.; Li, G.L.; Ji, X.; Yin, F.; Xu, L.

    2011-01-01

    Research highlights: → A 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. → Another 10 m 2 TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. → The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m 2 TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating silicon cell array are 7.51% and 42

  8. Towards an organic photobattery - Photovoltaic properties of some thermal copolyamino acids

    Science.gov (United States)

    Przybylski, A. T.; Syren, R. M.; Fox, S. W.

    1983-01-01

    Thermal copolymers of amino acids have been examined as a novel material for photovoltaic devices. Due to the steric effects of amino acids during polymerization, these polymers are highly ordered, and pigments such as flavins and pterins are formed as part of the polymer. The controllably varied composition of the amino acids in the polymer makes it possible to get either electron-donor or electron-acceptor, or both kinds of groups in varying degrees. The constituent photosensitive element has been made either of photosensitive polymer film or spherule.

  9. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    and limits (Mike Meinhardt); (17) Washing with the sun - Direct consumption of locally generated PV current by means of directed load shift in private households (Georg Bopp); (18) Efficiency by synergy. Export initiative renewable energies (Berthold Breid); (19) Modular PV power supply in the Empire of the Midth (Michael Wollny); (20) Breakthrough to a new era of PV hybrid systems with the help of standardised components communication? (Michael Mueller); (21) New PV stand-alone supply for frequency variable loads (Wolfgang Hernschier); (22) Characterization of solar batteries in long-term investigations according IEC 61427 (Wolfgang Wiesner); (23) Professional PV plant configuration - the status quo of the PV prpgrams (Mike Zehner); (24) Simulating renewable power projects with greenius{sup Free} (Volker Quaschning); (25) Analysis of the effect of shade and equivalent circuit of PV modules with the simulation software ''Solar Pro'' (Yusuke Mataki); (26) From data sheet values to the system gain - on realistic modelling of small PV generators (Hans Georg Beyer); (27) Form follows function - follows form function? - Ineractions between building functions and photovoltaic (Wolfgang Willkomm); (28) Market chances and technology perspectives for the Swiss facade construction by means of building integrated PV systems (Reto Miloni); (29) Passiv solar office building BIOHAUS Paderborn - architectonic overview and a first energy balance (Willi Ernst, Ralf Zirkler); (30) Building integration and education in Austria (Gernot Becker); (31) Photovoltaic and light (Thomas Herzog); (32) 10 years of test experience with the certification of design of photovoltaic modules (Andreas Cox); (32) Large size solar cells and the IEC 61215 - New challenges for the module junction (Eckehard Hofmueller); (33) Limits of power output optimisation of PV arrays by pre-sorting of PV modules (Werner Herrmann); (34) Coloured and patterned CIS modules (Dieter Geyer); (35) Energy

  10. Assessment of the Portuguese building thermal code: Newly revised requirements for cooling energy needs used to prevent the overheating of buildings in the summer

    International Nuclear Information System (INIS)

    Oliveira Panao, Marta J.N.; Camelo, Susana M.L.; Goncalves, Helder J.P.

    2011-01-01

    In this paper, cooling energy needs are calculated by the steady-state methodology of the Portuguese building thermal code. After the first period of building code implementation, re-evaluation according to EN ISO 13790 is recommended in order to compare results with the dynamic simulation results. From these analyses, a newly revised methodology arises including a few corrections in procedure. This iterative result is sufficiently accurate to calculate the building's cooling energy needs. Secondly, results show that the required conditions are insufficient to prevent overheating. The use of the gain utilization factor as an overheating risk index is suggested, according to an adaptive comfort protocol, and is integrated in the method used to calculate the maximum value for cooling energy needs. This proposed streamlined method depends on reference values: window-to-floor area ratio, window shading g-value, integrated solar radiation and gain utilization factor, which leads to threshold values significantly below the ones currently used. These revised requirements are more restrictive and, therefore, will act to improve a building's thermal performance during summer. As a rule of thumb applied for Portuguese climates, the reference gain utilization factor should assume a minimum value of 0.8 for a latitude angle range of 40-41 o N, 0.6 for 38-39 o N and 0.5 for 37 o N. -- Highlights: → A newly revised methodology for Portuguese building thermal code. → The use of the gain utilization factor as an overheating risk index is suggested. → The proposed streamlined method depends on reference values. → Threshold maximum values are significantly below the ones currently used.

  11. REopt Lite Web Tool Evaluates Photovoltaics and Battery Storage

    Energy Technology Data Exchange (ETDEWEB)

    2018-03-08

    Building on the success of the REopt renewable energy integration and optimization platform, NREL has developed a free, publicly available web version of REopt called REopt Lite. REopt Lite evaluates the economics of grid-connected photovoltaics (PV) and battery storage at a site. It allows building owners to identify the system sizes and battery dispatch strategy that minimize their life cycle cost of energy. This web tool also estimates the amount of time a PV and storage system can sustain the site's critical load during a grid outage.

  12. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    Science.gov (United States)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  13. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  14. Thermal comfort in residential buildings by the millions

    DEFF Research Database (Denmark)

    Østergård, Torben; Maagaard, Steffen; Jensen, Rasmus Lund

    2016-01-01

    In Danish building code and many design briefings, criteria regarding thermal comfort are defined for “critical” rooms in residential buildings. Identifying the critical room is both difficult and time-consuming for large, multistory buildings. To reduce costs and time, such requirement often...

  15. Conference on photovoltaic energy network parity

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Masson, Gaetan; Henzelmann, Orsten; Joly, Jean-Pierre; Guillemoles, Jean-Francois; Auffret, Jean-Marc; Berger, Arnaud; Binder, Jann; Martin, David; Beck, Bernhard; Mahuet, Audrey; Mueller, Thorsten; Contamin, Raphael

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the present day and future challenges of the development, support and market integration of photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on support models to renewable energy sources, research results on self-consumption and business models for the renewable energies sector. This document brings together the available presentations (slides) made during this event: 1 - Overview of France's PV support policies (Pierre-Marie Abadie); 2 - Grid parity: first step towards PV competitiveness (Gaetan Masson); 3 - How competitive is solar power? Requirements and impact on the European industry (Orsten Henzelmann); 4 - Key elements of the National Institute of Solar energy - INeS (Jean-Pierre Joly); 5 - Research priorities according to the Paris Institute of Photovoltaics (Jean-Francois Guillemoles); 6 - Bosch Solar energy (Jean-Marc Auffret); 7 - Financing and insuring photovoltaics - History and future prospects (Arnaud Berger); 8 - Decentralized Photovoltaics: Autonomy, Self-Consumption and Reduction of Grid Loading through electrical and Thermal Storage (Jann Binder); 9 - Off Grid systems, mini grid and grid parity, field feedback and perspectives. From the producer-consumer to the smart grid: experience feedback of PV management models (David Martin); 10 - Benefits for solar power plants in respect of grid stabilization (Bernhard Beck); 11 - Renewable energies integration to electricity market: impacts and challenges (Audrey Mahuet); 12 - Promotion of PV in Germany: Feed-in tariffs, self-consumption and direct selling - Review and forecast (Thorsten Mueller); 13 - How to support renewable electricity in France? (Raphael Contamin)

  16. Integrating photovoltaics into utility distribution systems

    International Nuclear Information System (INIS)

    Zaininger, H.W.; Barnes, P.R.

    1995-01-01

    Electric utility distribution system impacts associated with the integration of distributed photovoltaic (PV) energy sources vary from site to site and utility to utility. The objective of this paper is to examine several utility- and site-specific conditions which may affect economic viability of distributed PV applications to utility systems. Assessment methodology compatible with technical and economic assessment techniques employed by utility engineers and planners is employed to determine PV benefits for seven different utility systems. The seven case studies are performed using utility system characteristics and assumptions obtained from appropriate utility personnel. The resulting site-specific distributed PV benefits increase nonsite-specific generation system benefits available to central station PV plants as much as 46%, for one utility located in the Southwest

  17. Apparatus for mounting photovoltaic power generating systems on buildings

    Science.gov (United States)

    Russell, Miles C [Lincoln, MA

    2009-08-18

    Rectangular photovoltaic (PV) modules are mounted on a building roof by mounting stands that are distributed in rows and columns. Each stand comprises a base plate and first and second different height brackets attached to opposite ends of the base plate. Each first and second bracket comprises two module-support members. One end of each module is pivotally attached to and supported by a first module-support member of a first bracket and a second module-support member of another first bracket. At its other end each module rests on but is connected by flexible tethers to module-support members of two different second brackets. The tethers are sized to allow the modules to pivot up away from the module-support members on which they rest to a substantially horizontal position in response to wind uplift forces.

  18. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  19. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  20. Integration of photovoltaic solar panels in residential buildings and its contribution in a power feeder of a mixed urban region; Integracao de paineis solares fotovoltaicos em edificacoes residenciais e sua contribuicao em um alimentador de energia de zona urbana mista

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isis Portolan dos

    2009-02-15

    Energy generation is one of the main pollution sources in the world. Photovoltaic solar energy is a way to guarantee the electric energy generation using a clean and renewable source, the sun. With the photovoltaic modules integration in buildings, it is possible to generate energy in urban areas, using areas already constructed and also minimizing the energy loss with transmission and distribution. Direct connection of a photovoltaic system to the electric grid avoids the necessity of a storage system, and allows the generated energy to be used by any consumer connected to the grid. This thesis proposes the creation and propagation of predefined kits including photovoltaic modules and other equipment, in order to complete installation and connection of photovoltaic generator, resulting in solar roofs in urban houses. The kits could be installed on roofs of existent residences or in new ones, making the installation easier and minimizing the necessity and the costs of a specific project for each case. With the definition of standard components, like the modules, inverters, and others equipment, there would be an industrial production scale, minimizing costs. In addition, the kits also make the training of the installers easier. The simulation of this concept in a residential area in Florianopolis, demonstrates that there is enough area in the roofs to locate one kit in all residences, and that this generation is able to contribute to the energy demand of the area. So all energy generated by the kits will be immediately consumed inside the area, relieving the concessionaire load. His argue that kits can be an interesting way of bringing this energy generation technology to mainstream. (author)

  1. Municipal programs of photovoltaic energy development; Les programmes municipaux de developpement du photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This study presents some remarkable actions carried out in several European municipalities for the promotion and development of photovoltaic applications: installation of solar cells on public buildings, integration of the photovoltaic energy in the urban plan, application in the transportation sector, programs of public information, of promotion, of incitation, of financing, solar electricity trade, promotion of the 'green current'. After a presentation of the general situation of photovoltaic energy in Europe, and of its development in France, nine case-forms present the experience of nine selected European cities in this domain (Amersfoort (NL), Barcelona (ES), Braedstrup (DK), Karlsruhe (DE), Lausanne (CH), Mataro (ES), Muenchen (ES), Palermo (IT), Zurich (CH)). (J.S.)

  2. Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with ·-Grooved Absorber Plate

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Hafidz Ruslan; Kamaruzzaman Sopian; Jin, G.L.

    2009-01-01

    A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass ·-groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm -2 and 817 ± 8 Wm -2 . The speed of air passing through the collector was set between (69.6 ± 2.2) x 10 -4 kg/s to (695.8 ± 2.2) x 10 -4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without ·-groove absorber. The study found that the PV/T collector with ·-groove absorber plate has higher efficiency than the PV/T without ·-groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase. (author)

  3. Thermal Energy Storage for Building Load Management: Application to Electrically Heated Floor

    Directory of Open Access Journals (Sweden)

    Hélène Thieblemont

    2016-07-01

    Full Text Available In cold climates, electrical power demand for space conditioning becomes a critical issue for utility companies during certain periods of the day. Shifting a portion or all of it to off-peak periods can help reduce peak demand and reduce stress on the electrical grid. Sensible thermal energy storage (TES systems, and particularly electrically heated floors (EHF, can store thermal energy in buildings during the off-peak periods and release it during the peak periods while maintaining occupants’ thermal comfort. However, choosing the type of storage system and/or its configuration may be difficult. In this paper, the performance of an EHF for load management is studied. First, a methodology is developed to integrate EHF in TRNSYS program in order to investigate the impact of floor assembly on the EHF performance. Then, the thermal comfort (TC of the night-running EHF is studied. Finally, indicators are defined, allowing the comparison of different EHF. Results show that an EHF is able to shift 84% of building loads to the night while maintaining acceptable TC in cold climate. Moreover, this system is able to provide savings for the customer and supplier if there is a significant difference between off-peak and peak period electricity prices.

  4. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  5. A finite-volume model of a parabolic trough photovoltaic/thermal collector: Energetic and exergetic analyses

    International Nuclear Information System (INIS)

    Calise, Francesco; Palombo, Adolfo; Vanoli, Laura

    2012-01-01

    This paper presents a detailed finite-volume model of a concentrating photovoltaic/thermal (PVT) solar collector. The PVT solar collector consists in a parabolic trough concentrator and a linear triangular receiver. The bottom surfaces of the triangular receiver are equipped with triple-junction cells whereas the top surface is covered by an absorbing surface. The cooling fluid (water) flows inside a channel along the longitudinal direction of the PVT collector. The system was discretized along its axis and, for each slice of the discretized computational domain, mass and energy balances were considered. The model allows one to evaluate both thermodynamic and electrical parameters along the axis of the PVT collector. Then, for each slice of the computational domain, exergy balances were also considered in order to evaluate the corresponding exergy destruction rate and exergetic efficiency. Therefore, the model also calculates the magnitude of the irreversibilities inside the collector and it allows one to detect where these irreversibilities occur. A sensitivity analysis is also performed with the scope to evaluate the effect of the variation of the main design/environmental parameters on the energetic and exergetic performance of the PVT collector. -- Highlights: ► The paper investigates an innovative concentrating photovoltaic thermal solar collector. ► The collector is equipped with triple-junction photovoltaic layers. ► A local exergetic analysis is performed in order to detect sources of irreversibilities. ► Irreversibilities are mainly due to the heat transfer between sun and PVT collector.

  6. Design methodology and criteria for daylight and thermal comfort in nearly-zero energy office buildings in Nordic climate

    DEFF Research Database (Denmark)

    Karlsen, Line Røseth

    The objective of this PhD thesis was to arrange for an integrated building design with respect to thermal comfort, daylighting and energy use, applicable for office buildings in Nordic climate. In order to achieve this, it is suggested that modelling of mean radiant temperature (MRT) should...... into the simulation tool IDA ICE. Furthermore, the control of solar shading is given attention, since it is a crucial link between the thermal and daylighting performance. The thesis presents results of an occupant survey with 46 subjects, which was carried out to investigate occupants’ preferences towards...

  7. On an innovative integrated technique for energy refurbishment of historical buildings: Thermal-energy, economic and environmental analysis of a case study

    International Nuclear Information System (INIS)

    Pisello, Anna Laura; Petrozzi, Alessandro; Castaldo, Veronica Lucia; Cotana, Franco

    2016-01-01

    Highlights: • An innovative method for the energy retrofit of heritage buildings is proposed. • Dynamic thermal-energy assessment of passive and active solutions is carried out. • The cooling effect of novel tiles suitable for historic buildings is investigated. • Potentialities of a ground source heat pump system with storage tanks are showed. • Energy-environmental-economic assessment is made for the prototype intervention. - Abstract: In the last decades, increasing attention has been paid to the enhancement of energy performance and comfort conditions of historic buildings, where the necessity to preserve architectural heritage does not allow typical invasive retrofit interventions. The need for a replicable methodology for improving the sustainability of historic buildings based on the integration of energy efficiency solutions with renewable technologies is here addressed, by riding over the constraints imposed by architectural preservations, rather taking advantage of heritage architectural peculiarities. The case study is represented by Palazzo Gallenga Stuart, a historical university building located in central Italy. The optimization of the building energy efficiency has been pursued through two strategies specifically prototyped for application in historic buildings, i.e. innovative cool tiles with the same appearance of traditional historic tiles, and a geothermal heat pump system with water storage tanks positioned in the under-ground unoccupied areas of the building previously used as archives, also preventing the use of external units spoiling the building façade. Four retrofit scenarios were analyzed and compared from a both technical and economical point of view. The results showed that the application of the innovative cool tiles lead to a maximum cooling energy saving of 14.0% and 3.8% in the classrooms of the top floor and in the whole building, respectively. Furthermore, the installation of a more effective energy plant leads to an

  8. Emergence of highly transparent photovoltaics for distributed applications

    Science.gov (United States)

    Traverse, Christopher J.; Pandey, Richa; Barr, Miles C.; Lunt, Richard R.

    2017-11-01

    Solar energy offers a viable solution to our growing energy need. While adoption of conventional photovoltaics on rooftops and in solar farms has grown rapidly in the last decade, there is still plenty of opportunity for expansion. See-through solar technologies with partial light transmission developed over the past 30 years have initiated methods of integration not possible with conventional modules. The large-scale deployment necessary to offset global energy consumption could be further accelerated by developing fully invisible solar cells that selectively absorb ultraviolet and near-infrared light, allowing many of the surfaces of our built environment to be turned into solar harvesting arrays without impacting the function or aesthetics. Here, we review recent advances in photovoltaics with varying degrees of visible light transparency. We discuss the figures of merit necessary to characterize transparent photovoltaics, and outline the requirements to enable their widespread adoption in buildings, windows, electronic device displays, and automobiles.

  9. The potential market for PV building products

    International Nuclear Information System (INIS)

    1998-01-01

    This study was carried out by ECOTEC Research and Consulting Limited (ECOTEC) in collaboration with the Newcastle Photovoltaic Application Centre (NPAC) and ECD Energy and Environment (ECD) under the Department of Trade and Industry's (DTI) New and Renewable Energy Programme (contract reference S/P2/00277/00/00). The aim was to assess the future market potential for building-integrated photovoltaic (BIPV) products in terms of current product availability, product development needs, the nature and size of the potential market, and the opportunities for government and the PV supply industry to work together to develop the market. The study itself comprised a review of existing BIPV products, an analysis of the development of the world market for BIPV, a market research survey of building professionals, and meetings of two 'focus groups' drawn from the PV 'supply side' and from buildings professionals. In principle, BIPV products can be used in virtually any type of building, but the main applications are considered to be housing and offices. (author)

  10. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  11. Thin film silicon photovoltaics: Architectural perspectives and technological issues

    Energy Technology Data Exchange (ETDEWEB)

    Mercaldo, Lucia Vittoria; Addonizio, Maria Luisa; Noce, Marco Della; Veneri, Paola Delli; Scognamiglio, Alessandra; Privato, Carlo [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy)

    2009-10-15

    Thin film photovoltaics is a particularly attractive technology for building integration. In this paper, we present our analysis on architectural issues and technological developments of thin film silicon photovoltaics. In particular, we focus on our activities related to transparent and conductive oxide (TCO) and thin film amorphous and microcrystalline silicon solar cells. The research on TCO films is mainly dedicated to large-area deposition of zinc oxide (ZnO) by low pressure-metallorganic chemical vapor deposition. ZnO material, with a low sheet resistance (<8 {omega}/sq) and with an excellent transmittance (>82%) in the whole wavelength range of photovoltaic interest, has been obtained. ''Micromorph'' tandem devices, consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell, are fabricated by using the very high frequency plasma enhanced chemical vapor deposition technique. An initial efficiency of 11.1% (>10% stabilized) has been obtained. (author)

  12. Energy analysis of an improved concept of integrated PV panels in an office building in central Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zogou, Olympia; Stapountzis, Herricos [University of Thessaly, Mechanical Engineering Department, Volos (Greece)

    2011-03-15

    During the last decade, steel constructions with glazed facades became popular for commercial buildings in Greece. Moreover, expensive metal, natural stone, marble, ceramic, granite as well as special glass is employed for aesthetic and energy efficiency reasons. This creates opportunities for the introduction of Photovoltaic (PV) modules in double facades. PV modules on south-facing building walls are better placed at a distance from the wall to allow heat rejection and avoid overheating and efficiency loss. Exploiting the rejected heat of the PV modules is also a challenge. In this paper, we examine an improved concept of incorporating PV modules to the south facades of an office building, exploiting both the electricity produced and the heat rejected by the module, to increase building energy efficiency. The PV modules are integrated to the building wall by means of a double facade, which employs intervening ducts for ventilation purposes. The ducts are heating outdoor air, which is employed to cover the ventilation needs of the building, as well as a part of the heating loads. Simulations for typical winter and summer weather and solar insolation conditions are carried out to investigate the building's energy performance improvements. (author)

  13. Energy analysis of an improved concept of integrated PV panels in an office building in central Greece

    International Nuclear Information System (INIS)

    Zogou, Olympia; Stapountzis, Herricos

    2011-01-01

    During the last decade, steel constructions with glazed facades became popular for commercial buildings in Greece. Moreover, expensive metal, natural stone, marble, ceramic, granite as well as special glass is employed for aesthetic and energy efficiency reasons. This creates opportunities for the introduction of Photovoltaic (PV) modules in double facades. PV modules on south-facing building walls are better placed at a distance from the wall to allow heat rejection and avoid overheating and efficiency loss. Exploiting the rejected heat of the PV modules is also a challenge. In this paper, we examine an improved concept of incorporating PV modules to the south facades of an office building, exploiting both the electricity produced and the heat rejected by the module, to increase building energy efficiency. The PV modules are integrated to the building wall by means of a double facade, which employs intervening ducts for ventilation purposes. The ducts are heating outdoor air, which is employed to cover the ventilation needs of the building, as well as a part of the heating loads. Simulations for typical winter and summer weather and solar insolation conditions are carried out to investigate the building's energy performance improvements.

  14. Optimal Sizing of Energy Storage for Community Microgrids Considering Building Thermal Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [ORNL; Li, Zhi [ORNL; Starke, Michael R. [ORNL; Ollis, Ben [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2017-07-01

    This paper proposes an optimization model for the optimal sizing of energy storage in community microgrids considering the building thermal dynamics and customer comfort preference. The proposed model minimizes the annualized cost of the community microgrid, including energy storage investment, purchased energy cost, demand charge, energy storage degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation. The decision variables are the power and energy capacity of invested energy storage. In particular, we assume the heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently by the microgrid central controller while maintaining the indoor temperature in the comfort range set by customers. For this purpose, the detailed thermal dynamic characteristics of buildings have been integrated into the optimization model. Numerical simulation shows significant cost reduction by the proposed model. The impacts of various costs on the optimal solution are investigated by sensitivity analysis.

  15. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-09-01

    Full Text Available Photovoltaic (PV panels convert a certain amount of incident solar radiation into electricity, while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan. One potential solution entails PV thermal management employing active and passive means. The traditional passive means are found to be largely ineffective, while active means are considered to be energy intensive. A passive thermal management system using phase change materials (PCMs can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless the stored thermal energy is recovered effectively. The current article investigates a way to utilize the thermal energy stored in the PCM behind the PV for domestic water heating applications. The system is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods. The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the recovery of ~41% of the thermal energy compared to the incident solar radiation.

  16. Results. Building integrated energy supply; Resultater. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations of which the best combinations were selected. The final result takes form of a single top-50 list with the best combinations of energy systems according to CO{sub 2} emission, energy consumption and economics. The present report contains the conclusions of and comments on the project's results. (ln)

  17. Solar thermal–photovoltaic powered potato cold storage – Conceptual design and performance analyses

    International Nuclear Information System (INIS)

    Basu, Dipankar N.; Ganguly, A.

    2016-01-01

    Highlights: • Loss of food crop is a huge problem in India due to the shortage of cold storage. • Conceptual design of a power system using solar energy for a potato cold storage. • Integration of flat plate collector and SPV module with suitable operating strategy. • System provides a net energy surplus of about 36 MW h over a calendar year. • Rudimentary economic analysis found payback period of less than four years. - Abstract: Wastage of food crops due to the dearth of proper cold storage facilities is a huge problem in underdeveloped and developing countries of the world. Conceptual design of a potato cold storage is presented here, along with performance appraisal over a calendar year. The microclimate inside the cold storage is regulated using a water–lithium bromide absorption system. Proposed system utilizes both solar thermal and photovoltaic generated electrical energy for its operation. A suitable operation strategy is devised and the performance of the integrated system is analyzed from energy and exergy point of view to identify the required numbers of thermal collectors and photovoltaic modules. The proposed system is found to provide a net surplus of about 36 MW h energy over a calendar year, after meeting the in-house requirements. A rudimentary economic analysis is also performed to check the financial viability of the proposed system. Both the thermal and photovoltaic components are found to have payback periods less than four years.

  18. CISBAT 2007 - Design and renovation of building envelopes (bioclimatic architecture)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This is the second part of the proceedings of the 2007 CISBAT conference on Renewables in a changing climate, held in Lausanne, Switzerland. On the subject of sustainable building envelopes the following oral contributions are summarised: 'Flexible photovoltaics integrated in transparent membrane and pneumatic foil constructions', 'Development of a numerical thermal model for double skin facades', 'Thermal performance analysis for an electrochromic vacuum glazing with low emittance coatings', 'Challenging the public building sector: optimization of energy performance by sustainable strategies', 'Simulation of the thermal performance of a climate adaptive skin', 'Possibilities for upgrading prefabricated concrete building envelopes', 'Experimental study of airflow and heat transfer in a double skin facade with blinds', 'Energy efficiency of a glazing system - Case study: a dynamic glazing and double skin facades - the use of venetian blinds and night ventilation for saving energy on mediterranean climate'. Poster-sessions on the subject include 'Adaptive building envelopes design ', 'GRC facade panels in Brazil', 'Solar absorptance of building opaque surfaces', 'Evaluating the thermal behavior of exterior walls (in residential buildings of hot-dry climate of Yazd)', 'Energy performance of buildings and local energy policy: the case of new residential buildings in Greve in Chianti (Firenze)', 'Space heating and domestic hot water energy demand in high-level-insulation multi-storey buildings in Tuscany (Italy)', 'Is 2000 W society possible, affordable, and socially acceptable for the Vaud existing school building?', 'Development of simplified method for measuring solar shading performance of windows', 'Studies of ecological architecture in China's Loess Plateau region', 'Contemporary mud

  19. PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates

    International Nuclear Information System (INIS)

    Guarino, Francesco; Athienitis, Andreas; Cellura, Maurizio; Bastien, Diane

    2017-01-01

    Highlights: • This paper analyzes the performance of a building-integrated thermal storage system. • A wall opposing a glazed surface serves as phase change materials thermal storage. • The study is based on both experimental and simulation studies. • Heat is stored and released up to 6–8 h after solar irradiation. • Yearly heating requirements are reduced by 17% in a cold climate. - Abstract: As energy availability and demand often do not match, thermal energy storage plays a crucial role to take advantage of solar radiation in buildings: in particular, latent heat storage via phase-change material is particularly attractive due to its ability to provide high energy storage density. This paper analyzes the performance of a building-integrated thermal storage system to increase the energy performances of solaria in a cold climate. A wall opposing a highly glazed façade (south oriented) is used as thermal storage with phase change materials embedded in the wall. The study is based on both experimental and simulation studies. The concept considered is particularly suited to retrofits in a solarium since the PCM can be added as layers facing the large window on the vertical wall directly opposite. Results indicate that this PCM thermal storage system is effective during the whole year in a cold climate. The thermal storage allows solar radiation to be stored and released up to 6–8 h after solar irradiation: this has effects on both the reduction of daily temperature swings (up to 10 °C) and heating requirements (more than 17% on a yearly base). Coupling of the thermal storage system with natural ventilation is important during mid-seasons and summer to improve the PCM charge-discharge cycles and to reduce overheating. Results also show that cooling is less important than heating, reaching up to 20% of the overall annual energy requirements for the city of Montreal, Canada. Moreover, the phase change temperature range of the material used (18–24

  20. Photovoltaic concentrator technology development project. Sixth project integration meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  1. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  2. Thermal Comfort in a Naturally-Ventilated Educational Building

    OpenAIRE

    David Mwale Ogoli

    2012-01-01

    A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2) in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used inthermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitu...

  3. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  4. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    DEFF Research Database (Denmark)

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota

    This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal flexibil...

  5. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    Science.gov (United States)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  6. A techno-economic assessment of grid connected photovoltaic system for hospital building in Malaysia

    Science.gov (United States)

    Mat Isa, Normazlina; Tan, Chee Wei; Yatim, AHM

    2017-07-01

    Conventionally, electricity in hospital building are supplied by the utility grid which uses mix fuel including coal and gas. Due to enhancement in renewable technology, many building shall moving forward to install their own PV panel along with the grid to employ the advantages of the renewable energy. This paper present an analysis of grid connected photovoltaic (GCPV) system for hospital building in Malaysia. A discussion is emphasized on the economic analysis based on Levelized Cost of Energy (LCOE) and total Net Present Post (TNPC) in regards with the annual interest rate. The analysis is performed using Hybrid Optimization Model for Electric Renewables (HOMER) software which give optimization and sensitivity analysis result. An optimization result followed by the sensitivity analysis also being discuss in this article thus the impact of the grid connected PV system has be evaluated. In addition, the benefit from Net Metering (NeM) mechanism also discussed.

  7. Grapes ( Vitis vinifera) drying by semitransparent photovoltaic module (SPVM) integrated solar dryer: an experimental study

    Science.gov (United States)

    Tiwari, Sumit; Tiwari, G. N.

    2018-06-01

    In present research paper, semi-transparent photovoltaic module (SPVM) integrated greenhouse solar drying system has been used for grapes ( Vitis vinifera) drying. Based on hourly experimental information namely solar intensity, moisture evaporated, ambient air temperature, grape surface temperatures, relative humidity and greenhouse air temperature etc. heat and mass transfer coefficient for the SPVM drying system have been evaluated. It has been seen that the convective heat transfer coefficients for grapes found between 3.1-0.84 W/m2 K. Also, there is a fair agreement between theoretical and practical mass transfer (moisture evaporated) during drying of grapes with a correlation coefficient (r) and root mean square percentage deviation (e) of 0.88 and 11.56 respectively. Further, nonlinear regression procedure has been used to fit various drying models namely Henderson and Pabis model, Newton's model, and Page's model. From the analysis, it was found that Page's model is best fitted for grapes drying in SPV greenhouse as well as open sun drying. Further, net electrical energy, thermal energy and equivalent thermal energy were found to be 3.61, 17.66 and 27.15 kWh during six days of drying respectively.

  8. Grapes (Vitis vinifera) drying by semitransparent photovoltaic module (SPVM) integrated solar dryer: an experimental study

    Science.gov (United States)

    Tiwari, Sumit; Tiwari, G. N.

    2017-12-01

    In present research paper, semi-transparent photovoltaic module (SPVM) integrated greenhouse solar drying system has been used for grapes (Vitis vinifera) drying. Based on hourly experimental information namely solar intensity, moisture evaporated, ambient air temperature, grape surface temperatures, relative humidity and greenhouse air temperature etc. heat and mass transfer coefficient for the SPVM drying system have been evaluated. It has been seen that the convective heat transfer coefficients for grapes found between 3.1-0.84 W/m2 K. Also, there is a fair agreement between theoretical and practical mass transfer (moisture evaporated) during drying of grapes with a correlation coefficient (r) and root mean square percentage deviation (e) of 0.88 and 11.56 respectively. Further, nonlinear regression procedure has been used to fit various drying models namely Henderson and Pabis model, Newton's model, and Page's model. From the analysis, it was found that Page's model is best fitted for grapes drying in SPV greenhouse as well as open sun drying. Further, net electrical energy, thermal energy and equivalent thermal energy were found to be 3.61, 17.66 and 27.15 kWh during six days of drying respectively.

  9. Influence of PCMs in thermal insulation on thermal behaviour of building envelopes

    Science.gov (United States)

    Dydek, K.; Furmański, P.; Łapka, P.

    2016-09-01

    A model of heat transfer through a wall consisting of a layer of concrete and PCM enhanced thermal insulation is considered. The model accounts for heat conduction in both layers, thermal radiation and heat absorption/release due to phase change in the insulation as well as time variation in the ambient temperature and insolation. Local thermal equilibrium between encapsulated PCM and light-weight thermal insulation was assumed. Radiation emission, absorption and scattering were also accounted for in the model. Comparison of different cases of heat flow through the building envelope was carried out. These cases included presence or absence of PCM and thermal radiation in the insulation, effect of emissivity of the PCM microcapsules as well as an effect of solar radiation or its lack on the ambient side of the envelope. Two ways of the PCM distribution in thermal insulation were also considered. The results of simulations were presented for conditions corresponding to the mean summer and winter seasons in Warsaw. It was found that thermal radiation plays an important role in heat transfer through thermal insulation layer of the wall while the presence of the PCM in it significantly contributes to damping of temperature fluctuations and a decrease in heat fluxes flowing into or lost by the interior of the building. The similar effect was observed for a decrease in emissivity of the microcapsules containing PCM.

  10. Magnetically integrated high step-up resonant DC-DC converter for distributed photovoltaic systems

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2017-01-01

    In this paper magnetically integrated resonant single-switch quasi-Z-source DC-DC converter is evaluated as a candidate topology for the low-cost photovoltaic microconverter. The derivation of the topology and its basic operation principle are explained. Generalized design guidelines...

  11. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    OpenAIRE

    Ahed Hameed Jaaz; Husam Abdulrasool Hasan; Kamaruzzaman Sopian; Abdul Amir H. Kadhum; Tayser Sumer Gaaz; Ahmed A. Al-Amiery

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar ce...

  12. A metric for characterizing the effectiveness of thermal mass in building materials

    International Nuclear Information System (INIS)

    Talyor, Robert A.; Miner, Mark

    2014-01-01

    Highlights: • Proposes a metric for interior thermal mass materials (floors, walls, counters). • Simple, yet effective, metric composed of easily calculated ‘local’ and ‘global’ variables. • Like Energy Star, the proposed metric gives a single number to aid consumer choice. • The metric is calculated and compared for selected, readily available data. • Drywall, concrete flooring, and wood paneling are quite effective thermal mass. - Abstract: Building energy use represents approximately 25% of the average total global energy consumption (for both residential and commercial buildings). Heating, ventilation, and air conditioning (HVAC) – in most climates – embodies the single largest draw inside our buildings. In many countries around the world a concerted effort is being made towards retrofitting existing buildings to improve energy efficiency. Better windows, insulation, and ducting can make drastic differences in the energy consumption of a building HVAC system. Even with these improvements, HVAC systems are still required to compensate for daily and seasonal temperature swings of the surrounding environment. Thermal mass inside the thermal envelope can help to alleviate these swings. While it is possible to add specialty thermal mass products to buildings for this purpose, commercial uptake of these products is low. Common building interior building materials (e.g. flooring, walls, countertops) are often overlooked as thermal mass products, but herein we propose and analyze non-dimensional metrics for the ‘benefit’ of selected commonly available products. It was found that location-specific variables (climate, electricity price, material price, insolation) can have more than an order of magnitude influence in the calculated metrics for the same building material. Overall, this paper provides guidance on the most significant contributors to indoor thermal mass, and presents a builder- and consumer-friendly metric to inform decisions about

  13. High-resolution stochastic integrated thermal–electrical domestic demand model

    International Nuclear Information System (INIS)

    McKenna, Eoghan; Thomson, Murray

    2016-01-01

    Highlights: • A major new version of CREST’s demand model is presented. • Simulates electrical and thermal domestic demands at high-resolution. • Integrated structure captures appropriate time-coincidence of variables. • Suitable for low-voltage network and urban energy analyses. • Open-source development in Excel VBA freely available for download. - Abstract: This paper describes the extension of CREST’s existing electrical domestic demand model into an integrated thermal–electrical demand model. The principle novelty of the model is its integrated structure such that the timing of thermal and electrical output variables are appropriately correlated. The model has been developed primarily for low-voltage network analysis and the model’s ability to account for demand diversity is of critical importance for this application. The model, however, can also serve as a basis for modelling domestic energy demands within the broader field of urban energy systems analysis. The new model includes the previously published components associated with electrical demand and generation (appliances, lighting, and photovoltaics) and integrates these with an updated occupancy model, a solar thermal collector model, and new thermal models including a low-order building thermal model, domestic hot water consumption, thermostat and timer controls and gas boilers. The paper reviews the state-of-the-art in high-resolution domestic demand modelling, describes the model, and compares its output with three independent validation datasets. The integrated model remains an open-source development in Excel VBA and is freely available to download for users to configure and extend, or to incorporate into other models.

  14. Dynamic thermal analysis of a concentrated photovoltaic system

    Science.gov (United States)

    Avrett, John T., II; Cain, Stephen C.; Pochet, Michael

    2012-02-01

    Concentrated photovoltaic (PV) technology represents a growing market in the field of terrestrial solar energy production. As the demand for renewable energy technologies increases, further importance is placed upon the modeling, design, and simulation of these systems. Given the U.S. Air Force cultural shift towards energy awareness and conservation, several concentrated PV systems have been installed on Air Force installations across the country. However, there has been a dearth of research within the Air Force devoted to understanding these systems in order to possibly improve the existing technologies. This research presents a new model for a simple concentrated PV system. This model accurately determines the steady state operating temperature as a function of the concentration factor for the optical part of the concentrated PV system, in order to calculate the optimum concentration that maximizes power output and efficiency. The dynamic thermal model derived is validated experimentally using a commercial polysilicon solar cell, and is shown to accurately predict the steady state temperature and ideal concentration factor.

  15. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    OpenAIRE

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota; Rode, Carsten

    2017-01-01

    This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal flexibility is assessed through a parameter variation on a building model. Different building designs are subjected to heat cut-offs, and flexibility is evaluated with respect to comfort preservation and heat...

  16. A very sharp drop in the photovoltaic market

    International Nuclear Information System (INIS)

    Boulanger, V.

    2013-01-01

    For the second year in a row the photovoltaic market is in sharp decline in France, it dropped by 37% between 2011 and 2012 and the situation for 2013 is expected to be even worse. The last emergency measures taken by the government have been useless. The syndicate of renewable energies (SER) and the 'Europe Ecologie les Verts' party urge the government to take efficient emergency measures like for instance the implementation of local purchase tariffs instead of the present bidding process or to keep the obligation of the integration to the building only for new constructions. The only good piece of news is that photovoltaic power is getting more and more competitive. France has to reconsider its energy policy and its regulatory framework in order to benefit from it. (A.C.)

  17. INTERGRATION OF LiDAR DATA WITH AERIAL IMAGERY FOR ESTIMATING ROOFTOP SOLAR PHOTOVOLTAIC POTENTIALS IN CITY OF CAPE TOWN

    Directory of Open Access Journals (Sweden)

    A. K. Adeleke

    2016-06-01

    Full Text Available Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1 automatic extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its’ outline and areal coverage; and (2 estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient information about the viability of a particular building roof for solar photovoltaic installation.

  18. Task V of the IEA Photovoltaic Power Systems Program: Accomplishments and Activities

    International Nuclear Information System (INIS)

    Bower, Ward

    1999-01-01

    The International Energy Agency (IEA) is an energy forum for 24 industrialized countries and was established in 1974 as an autonomous body within the Organization for Economic Cooperation and Development (OECD). The IEA Photovoltaic Power Systems (PVPS) program implementing agreement was signed in 1993, and renewed for another five years in 1998. Twenty-two countries are collaborating under the auspices of the IEA in the PVPS to address common technical and informational barriers that often limit the rate at which photovoltaic technologies advance into the markets. Task V of the IEA PVPS is entitled ''Grid Interconnection of Building-Integrated and Other Dispersed Photovoltaic Power Systems.'' The task sponsored a workshop in September 1997 on grid-interconnection of photovoltaic systems and is planning a second workshop to address impacts of more penetration of dispersed systems into the utility grid. This paper will summarize the accomplishments of Task V over the last five years and will detail the planned work for the next three years

  19. Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage

    International Nuclear Information System (INIS)

    Jou, Hurng-Liahng; Chang, Yi-Hao; Wu, Jinn-Chang; Wu, Kuen-Der

    2015-01-01

    Highlights: • The operation strategy for grid-connected PV generation system integrated with battery energy storage is proposed. • The PV system is composed of an inverter and two DC-DC converter. • The negative impact of grid-connected PV generation systems on the grid can be alleviated by integrating a battery. • The operation of the developed system can be divided into nine modes. - Abstract: The operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage is proposed in this paper. The photovoltaic generation system is composed of a full-bridge inverter, a DC–DC boost converter, an isolated bidirectional DC–DC converter, a solar cell array and a battery set. Since the battery set acts as an energy buffer to adjust the power generation of the solar cell array, the negative impact on power quality caused by the intermittent and unstable output power from a solar cell array is alleviated, so the penetration rate of the grid-connected photovoltaic generation system is increased. A lab-scale prototype is developed to verify the performance of the system. The experimental results show that it achieves the expected performance

  20. Characterization of a low concentrator photovoltaics module

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.A. [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Dyk, E.E. van, E-mail: ernest.vandyk@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Vorster, F.J.; Okullo, W.; Munji, M.K. [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Booysen, P. [Setsolar, P. O. Box 15934, Panorama 7506 (South Africa)

    2012-05-15

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  1. Characterization of a low concentrator photovoltaics module

    International Nuclear Information System (INIS)

    Butler, B.A.; Dyk, E.E. van; Vorster, F.J.; Okullo, W.; Munji, M.K.; Booysen, P.

    2012-01-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  2. Characterization of a low concentrator photovoltaics module

    Science.gov (United States)

    Butler, B. A.; van Dyk, E. E.; Vorster, F. J.; Okullo, W.; Munji, M. K.; Booysen, P.

    2012-05-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  3. A thermoeconomic model of a photovoltaic heat pump

    International Nuclear Information System (INIS)

    Mastrullo, R.; Renno, C.

    2010-01-01

    In this paper the model of a heat pump whose evaporator operates as a photovoltaic collector, is studied. The energy balance equations have been used for some heat pump components, and for each layer of the photovoltaic evaporator: covering glaze, photovoltaic modules, thermal absorber plate, refrigerant tube and insulator. The model has been solved by means of a program using proper simplifications. The system input is represented by the solar radiation intensity and the environment temperature, that influence the output electric power of the photovoltaic modules and the evaporation power. The model results have been obtained referring to the photovoltaic evaporator and the plant operating as heat pump, in terms of the photovoltaic evaporator layers temperatures, the refrigerant fluid properties values in the cycle fundamental points, the thermal and mechanical powers, the efficiencies that characterize the plant performances from the energy, exergy and economic point of view. This study allows to realize a thermoeconomic comparison between a photovoltaic heat pump and a traditional heat pump under the same working conditions.

  4. Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings

    Science.gov (United States)

    Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G.

    2016-05-01

    The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.

  5. Integrated fuel cell energy system for modern buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moard, D.M.; Cuzens, J.E.

    1998-07-01

    Energy deregulation, building design efficiency standards and competitive pressures all encourage the incorporation of distributed fuel cell cogeneration packages into modern buildings. The building marketplace segments to which these systems apply include office buildings, retail stores, hospitals, hotels, food service and multifamily residences. These applications represent approximately 60% of the commercial building sector's energy use plus a portion of the residential sector's energy use. While there are several potential manufacturers of fuel cells on the verge of marketing equipment, most are currently using commercial hydrogen gas to fuel them. There are few suppliers of equipment, which convert conventional fuels into hydrogen. Hydrogen Burner Technology, Inc. (HBT) is one of the few companies with a proven under-oxidized-burner (UOB) technology, patented and already proven in commercial use for industrial applications. HBT is developing a subsystem based on the UOB technology that can produce a hydrogen rich product gas using natural gas, propane or liquid fuels as the feed stock, which may be directly useable by proton exchange membrane (PEM) fuel cells for conversion into electricity. The combined thermal output can also be used for space heating/cooling, water heating or steam generation applications. HBT is currently analyzing the commercial building market, integrated system designs and marketplace motivations which will allow the best overall subsystem to be designed, tested and introduced commercially in the shortest time possible. HBT is also actively involved in combined subsystem designs for use in automotive and small residential services.

  6. Integrating stormwater and greywater treatment for thermal regulation and the enhancement of biological diversity using mass balance of water as a design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Mankiewicz, P.S.; Simon, D.B. [Gaia Inst., Bronx, NY (United States)

    2007-07-01

    This paper presented green roof projects scheduled for construction in New York City in 2007 which will test the hypothesis that green roof water budgets can favorably impact energy consumption in buildings and in their immediate surroundings. It presented specific methods and applications to move water and partition heat through vegetation to reach complementary goals in both ecology and economics of increasing plant coverage, decreasing urban summer temperature, and eliminating the expense of treating stormwater and greywater through evaporative cooling. A commercial facility will be retrofitted with a green roof and photovoltaic (PV) array as well as a below grade stormwater capture and recycle system. The overall energy efficiency, as well as PV performance, will be enhanced by coupling a green roof with water treatment with photovoltaic energy capture. Condensers for this building will be situated beneath a green roof and next to a vegetated landscape, resulting in cool air that is expected to increase air conditioning efficiencies. The objective is zero stormwater discharge into the combined sewer. The density of plant coverage, the quantity of available water, and the output of crops were studied in detail. The interdependent criteria of thermal partitioning, water loss, leaf area index, and green roof energetics have begun to receive attention because green roof evaluation has begun to focus on the ability of plants to discharge quantities of water into the atmosphere, and because this water movement pathway has large physical chemical impacts on the thermal environment. This paper revealed that green roofs contribute to thermal regulation and energy savings, with a kilowatt usage difference of 20 per cent or greater for black versus green roofs. 26 refs., 2 figs.

  7. The Possibility of Phase Change Materials (PCM Usage to Increase Efficiency of the Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Klugmann-Radziemska Ewa

    2014-01-01

    Full Text Available Solar energy is widely available, free and inexhaustible. Furthermore this source of energy is the most friendly to the environment. For direct conversion of solar energy into useful forms like of electricity and thermal energy, respectively photovoltaic cells and solar collectors are being used. Forecast indicate that the first one solution will soon have a significant part in meeting the global energy demand. Therefore it is highly important to increase their efficiency in the terms of providing better energy conversion conditions. It can be obtain by designing new devices or by modifications of existing ones. This article presents general issues of photovoltaic installations exposed to work in high temperatures and basic concepts about phase change materials (PCMs. The paper presents the possibility of PCM usage to receive heat from the photovoltaic module. Specially designed test stand, consisting of PV module covered with a layer of PCM has been build and tested. Current-voltage characteristics of the cell without PCM material and with a layer of PCM have been presented. Authors also describe the results of the electrical and thermal characteristic of a coupled PV-PCM system.

  8. Integration of design applications with building models

    DEFF Research Database (Denmark)

    Eastman, C. M.; Jeng, T. S.; Chowdbury, R.

    1997-01-01

    This paper reviews various issues in the integration of applications with a building model... (Truncated.)......This paper reviews various issues in the integration of applications with a building model... (Truncated.)...

  9. Photovoltaic Power Applications in France. National Survey Report 2011

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2012-01-01

    According to the French observation and statistics office (SOeS, 2012-02), the grid-connected installed photovoltaic (PV) power in France during 2011 was 1 634 MW compared with 817 MW in 2010. The installed grid-connected PV power doubled but the total number of systems decreased by 26 %. The 100 % annual power increase comes mainly from medium power systems (36 kW to 250 kW) contributing to 36 % and large power systems (> 250 kW) representing 46 % of annual installed power. Ground-mounted centralised systems connected to the electricity grid during 2011 are estimated at 402 MW and distributed systems (mainly building applications) reached 1 232 MW. Grid-connected cumulative PV power capacity at the end of 2011 was 2 802 MW (242 295 systems), compared with the 1 168 MW (163 004 systems) at the end of 2010. Building integrated residential systems of less than 3 kW represented 89 % of the total number of installations and 20 % of total cumulative power while systems of power greater than 36 kW represented 3 % of the number of installations and 69 % of total cumulative power capacity. By a decree dated 4 March 2011, a new support system was proposed with a target of 500 MW per year of new projects over the next few years. The government's policy confirmed its priority to focus on building-integrated photovoltaic applications. The new support system introduces two separate mechanisms, based on the power of the installations. Under the first mechanism, for installations on buildings of less than 100 kW, feed-in tariffs are adjusted each quarter based on the total volume of projects submitted during the previous quarter. The second support mechanism involves a bidding system for large roof installations and photovoltaic ground-mounted power plants greater than 100 kW. Market incentives and budget There are three kinds of market incentive: enhanced feed-in tariffs, income tax credits and direct financial subsidies from local authorities. The cost of promotion through

  10. Photovoltaics: tests of thin-film technologies. 6 thin-film technologies in 3 different BIPV modes compared in a real outdoor performance test; PV-ThinFilmTest. 6 thin-film technologies in 3 different BIPV modes compared in a real outdoor performance test

    Energy Technology Data Exchange (ETDEWEB)

    Frei, R.; Meier, Ch.

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a comparison made between six types of thin-film, building-integrated photovoltaic (BIPV) technologies used in three different modes of building-integration. More than 450 thin-film modules including amorphous silicon and CIS technologies were monitored. Each type of module was installed in three different modes: inclined (20{sup o}), flat with free back air flow, and flat with thermal back insulation. The performance of these commercially available thin-film BIPV systems was monitored using an extensive monitoring program. Additionally, three mono-crystalline PV arrays allowed direct comparison of the technologies. The results of the monitoring work are presented and further work to be done is discussed, including the monitoring of possible long-term degradation.

  11. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    Energy Technology Data Exchange (ETDEWEB)

    Birru, Dagnachew [Philips Electronics North America Corporation, Andover, MA (United States); Wen, Yao-Jung [Philips Electronics North America Corporation, Andover, MA (United States); Rubinstein, Francis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Clear, Robert D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the

  12. Application of Photovoltaic Power Generation System in Green Building%光伏发电系统在绿色建筑中的应用

    Institute of Scientific and Technical Information of China (English)

    陆惠

    2014-01-01

    The photovoltaic power generation system converts solar energy into electrical energy that can be directly applied, which has also obtained the widespread application in the mo- dern green building. This paper wil analyze the photovoltaic power generation system, and on this basis, the author talks ab- out his views and understanding the photovoltaic power gen- eration system applied in green building, for reference.%光伏发电系统将太阳能转换成为可直接应用的电能,同时在现代绿色建筑中也得到了广泛的应用。本文将对光伏发电系统进行分析,并在此基础上就光伏发电系统在绿色建筑中的应用体现,谈一下自己的观点和认识,以供参考。

  13. Thermal characteristics of a medium-level concentration photovoltaic unit with evaporation cooling

    Science.gov (United States)

    Kokotov, Yuri V.; Reyz, Michael A.; Fisher, Yossi

    2009-08-01

    The results of thermal analysis and experiments are presented for a 1-kW brand new medium-level (8X) concentration photovoltaic (CPV) unit that is cooled by evaporation and built as an elongated floating solar unit. The unit keeps the silicon PV elements at low and stable temperature around the clock, significantly outperforms competitors' systems in terms of the power output and the life span of identical PV elements. It is demonstrated theoretically and experimentally that the PV element temperature level exceeds the temperature level of water in the water basin (used as a heat sink) by just a few degrees.

  14. Photovoltaic Barometer - EurObserv'ER - April 2010

    International Nuclear Information System (INIS)

    2010-04-01

    The global photovoltaic market expanded again in 2009. Germany set a new system installation record while the capacity build-up of the major solar photovoltaic markets contained the fallout generated by the Iberian market derailment. The European Union has the highest photovoltaic plant capacity, with almost 5.5 GWp installed in 2009

  15. Photovoltaic greenhouses: evaluation of shading effect and its influence on agricultural performances

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2014-12-01

    Full Text Available During the last years, European government remuneration polices promoted the realisation of photovoltaic systems integrated with the structures instead of on ground photovoltaic (PV plants. In this context, in rural areas, greenhouses covered with PV modules have been developed. In order to interdict the building of greenhouses with an amount of opaque panels on covering not coherent with the plant production, local laws assigned a threshold value, usually between 25% and 50%, of the projection on the soil of the roof. These ranges seem not to be based on scientific evaluation about the agricultural performances required to the building but only on empirical assessments. Purpose of this paper is to contribute to better understand the effect of different configurations of PV panels on the covering of a monospan duo-pitched roof greenhouse in terms of shading effect and energy efficiency during different periods of the year. At this aim, daylighting and insolation analysis were performed by means of the software Autodesk® Ecotect® Analysis (Autodesk, Inc., San Rafael, CA, USA on greenhouse model with different covering ratio of polycrystalline photovoltaic panels on the roof.

  16. Recent facts about photovoltaics in Germany

    International Nuclear Information System (INIS)

    Wirth, Harry

    2015-01-01

    Germany is leaving the age of fossil fuel behind. In building a sustainable energy future, photovoltaics is going to have an important role. The following summary consists of the most recent facts, figures and findings and shall assist in forming an overall assessment of the photovoltaic expansion in Germany.

  17. Numerical investigation on thermal and fluid dynamic behaviors of solar chimney building systems

    International Nuclear Information System (INIS)

    Manca, O.; Nardini, S.; Romano, P.; Mihailov, E.

    2013-01-01

    Full text: Buildings as big energy-consuming systems require large amount of energy to operate. Globally, buildings are responsible for approximately 40% of total world annual energy consumption. Sustainable buildings with renewable energy systems are trying to operate independently without consumption of conventional resources. Renewable energy is a significant approach to reduce resource consumption in sustainable building. A solar chimney is essentially divided into two parts, one - the solar air heater (collector) and second - the chimney. Two configurations of solar chimney are usually used: vertical solar chimney with vertical absorber geometry, and roof solar chimney. For vertical solar chimney, vertical glass is used to gain solar heat. Designing a solar chimney includes height, width and depth of cavity, type of glazing, type of absorber, and inclusion of insulation or thermal mass. Besides these system parameters, other factors such as the location, climate, and orientation can also affect its performance. In this paper a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The analysis is carried out on a three-dimensional model in air flow and the governing equations are given in terms of k-s turbulence model. Two geometrical configurations are investigated: 1) a channel with vertical parallel walls and 2) a channel with principal walls one vertical and the other inclined. The problem is solved by means of the commercial code Ansys-Fluent and the results are performed for a uniform wall heat flux on the vertical wall is equal to 300 and 600 W/m2. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles in order to evaluate the differences between the two base configurations and thermal and fluid dynamic behaviors. Further, the ground effect on thermal performances is examined. key words: mathematical modeling, solar chimney

  18. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    Science.gov (United States)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  19. Triphenylamine-Thienothiophene Organic Charge-Transport Molecular Materials: Effect of Substitution Pattern on their Thermal, Photoelectrochemical, and Photovoltaic Properties.

    Science.gov (United States)

    Le, Thi Huong; Dao, Quang-Duy; Nghiêm, Mai-Phuong; Péralta, Sébastien; Guillot, Regis; Pham, Quoc Nghi; Fujii, Akihiko; Ozaki, Masanori; Goubard, Fabrice; Bui, Thanh-Tuân

    2018-04-25

    Two readily accessible thienothiophene-triphenylamine charge-transport materials have been synthesized by simply varying the substitution pattern of the triphenylamine groups on a central thienothiophene π-linker. The impact of the substitution pattern on the thermal, photoelectrochemical, and photovoltaic properties of these materials was evaluated and, based on theoretical and experimental studies, we found that the isomer in which the triphenylamine groups were located at the 2,5-positions of the thienothiophene core (TT-2,5-TPA) had better π-conjugation than the 3,6-isomer (TT-3,6-TPA). Whilst the thermal, morphological, and hydrophobic properties of the two materials were similar, their optoelectrochemical and photovoltaic properties were noticeably impacted. When applied as hole-transport materials in hybrid perovskite solar cells, the 2,5-isomer exhibited a power-conversion efficiency of 13.6 %, much higher than that of its 3,6-counterpart (0.7 %) under the same standard conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  1. Solar thermal power and photovoltaic energy are both developing

    International Nuclear Information System (INIS)

    Le Jannic, N.; Houot, G.

    2010-01-01

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  2. Control Issues in Single-Stage Photovoltaic Systems

    DEFF Research Database (Denmark)

    A. Mastromauro, Rosa; Liserre, Marco; Dell’Aquila, Antonio

    2012-01-01

    Photovoltaic Systems (PVS) can be easily integrated in residential buildings hence they will be the main responsible of making low-voltage grid power flow bidirectional. Control issues on both the PV side and on the grid side have received much attention from manufacturers, competing for efficiency...... and low distortion and academia proposing new ideas soon become state-of-the-art. This paper aims at reviewing part of these topics (MPPT, current and voltage control) leaving to a future paper to complete the scenario. Implementation issues on Digital Signal Processor (DSP), the mandatory choice...

  3. Effect of diffusion of light on thin-film photovoltaic laminates

    Directory of Open Access Journals (Sweden)

    Lipi Mohanty

    Full Text Available A large fraction of the daylight incident on building-integrated photovoltaic (BIPV laminates is diffuse irradiance. In this study, fabrics of various weaves were used to simulate combinations of direct and diffuse irradiance on façade-mounted PV. The scattering of light achieved with the fabrics at varying angles of incidence was measured with a goniophotometer. The transmittance distribution was used to quantify the percentage of diffusion created by the fabrics. A photovoltaic (PV laminate was shaded with the fabrics to simulate diffuse irradiance and the short circuit current of the module was measured. The experimental results indicate fabrics of different porosity can be used to simulate various combinations of direct and diffuse irradiance. However, these fabrics can affect the module output. Preliminary results show that the proximity of the fabric to the thin-film PV laminate during the test skews the measured electrical parameters. Keywords: Scattering, BRDF, Solar energy, Diffused irradiance, Photovoltaics, Goniophotometry

  4. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very

  5. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    Science.gov (United States)

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  6. An energy self-sufficient public building using integrated renewable sources and hydrogen storage

    International Nuclear Information System (INIS)

    Marino, C.; Nucara, A.; Pietrafesa, M.; Pudano, A.

    2013-01-01

    The control of the use of fossil fuels, major cause of greenhouse gas emissions and climate changes, in present days represents one of Governments' main challenges; particularly, a significant energy consumption is observed in buildings and might be significantly reduced through sustainable design, increased energy efficiency and use of renewable sources. At the moment, the widespread use of renewable energy in buildings is limited by its intrinsic discontinuity: consequently integration of plants with energy storage systems could represent an efficient solution to the problem. Within this frame, hydrogen has shown to be particularly fit in order to be used as an energetic carrier. In this aim, in the paper an energetic, economic and environmental analysis of two different configurations of a self-sufficient system for energy production from renewable sources in buildings is presented. In particular, in the first configuration energy production is carried out by means of photovoltaic systems, whereas in the second one a combination of photovoltaic panels and wind generators is used. In both configurations, hydrogen is used as an energy carrier, in order to store energy, and fuel cells guarantee its energetic reconversion. The analysis carried out shows that, although dimensioned as a stand-alone configuration, the system can today be realized only taking advantage from the incentivizing fares applied to grid-connected systems, that are likely to be suspended in the next future. In such case, it represents an interesting investment, with capital returns in about 15 years. As concerns economic sustainability, in fact, the analysis shows that the cost of the energy unit stored in hydrogen volumes, due to the not very high efficiency of the process, presently results greater than that of directly used one. Moreover, also the starting fund of the system proves to be very high, showing an additional cost with respect to systems lacking of energy storage equal to about 50

  7. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  8. A District Approach to Building Renovation for the Integral Energy Redevelopment of Existing Residential Areas

    Directory of Open Access Journals (Sweden)

    Mira Conci

    2017-05-01

    Full Text Available Building energy renovation quotas are not currently being met due to unfavorable conditions such as complex building regulations, limited investment incentives, historical preservation priorities, and technical limitations. The traditional strategy has been to incrementally lower the energy consumption of the building stock, instead of raising the efficiency of the energy supply through a broader use of renewable sources. This strategy requires an integral redefinition of the approach to energy building renovations. The joint project SWIVT elaborates on a district redevelopment strategy that combines a reduction in the energy demand of existing buildings and their physical interconnection within a local micro-grid and heating network. The district is equipped with energy generation and distribution technologies as well as hybrid thermal and electrical energy storage systems, steered by an optimizing energy management controller. This strategy is explored through three scenarios designed for an existing residential area in Darmstadt, Germany, and benchmarked against measured data. Presented findings show that a total primary energy balance at least 30% lower than that of a standard building renovation can be achieved by a cluster of buildings with different thermal qualities and connected energy generation, conversion, and storage systems, with only minimal physical intervention to existing buildings.

  9. National Survey Report of PV Power Applications in France 2012. Photovoltaic Power Applications in France - National Survey Report 2012

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2013-05-01

    The PV power of all grid-connected photovoltaic systems installed in 2012 stood at 1 079 MW. This represented a 38 % fall compared with 2011. New grid-connected distributed systems, the majority of which were building-integrated, represented a total power of 756 MW, while grid-connected centralised ground-based power plants accounted for 323 MW. New PV installations in mainland France accounted for 35 % of total new electricity production capacity commissioned in 2012. The off-grid stand-alone photovoltaic system sector remains marginal with around 0,2 MW installed. The cumulative power capacity of all photovoltaic systems in operation at the end of 2012 stood at 4 003 MW (281 724 systems) representing an increase of 37% compared with 2011. Residential systems less than or equal to 3 kW accounted for 86% of all installations and 16 % of total power capacity, while systems exceeding 250 kW accounted for 0,3% of all installations and 44% of total capacity. In 2012, photovoltaic electricity production accounted for 0,7% of France's total electricity production. In France, the estimated average price of European-manufactured photovoltaic modules stood at 0,72 EUR/W in 2012. The fall in prices observed over the last two years has led to substantial growth in the medium-power and high-power systems sector. The turnkey price stood at around 3,7 EUR/W in 2012 for building-integrated residential systems (IAB) using European modules. The price of simplified building-integrated systems (ISB) on commercial and industrial buildings stood at 2,0 EUR/W, and at 1,6 EUR/W for high-power grid-connected ground-mounted systems (all prices mentioned are exclusive of VAT). The French photovoltaic component industry faced stiff international competition in 2012. The industrial value chain has, on the whole, remained relatively unscathed, but small installation companies have been the worst affected. Upstream of the PV sector, photovoltaic-grade silicon manufacturing is currently at

  10. Solar Photovoltaic Electricity Applications in France. National Survey Report 2008

    International Nuclear Information System (INIS)

    Durand, Yvonnick; Jacquin, Philippe

    2009-01-01

    According to a report by the French Renewable Energy Syndicate (SER), France had an installed photovoltaic fleet of 180 MW in late 2008, a substantial increase from 2007 (75 MW). This growth is largely due to the government's market-supporting policy that implemented a tax and tariff policy which encourages individuals to invest in so-called 'building integrated' systems; the goal of this policy is to bring together innovation in the building industry and the development of renewable energy among the French energy mix. The key event for the future of renewable energy and the photovoltaic sector in France was the 'Grenelle of the Environment'. This government initiative, launched in late 2007, became the subject of public debate and afterwards led to a bill which set the conditions under which France wishes to grow solar power's share of its energy mix. Working committees that bring together representatives from government authorities and industrial and public renewable energy stakeholders have proposed benchmarks. A few proposals with particular significance for photovoltaic power have been adopted by the government: - objectives for PV cumulative installed capacity in France of 1 100 MW in 2012 and 5 400 MW in 2020; - confirmation until 2012 of the current feed-in tariffs and the creation of an additional one targeting installations on large buildings such as commercial and industrial sheds. This tariff shall be set approximately at 0,45 EUR per kWh; - a call for tenders for the construction by 2011 of at least one solar photovoltaic power plant in each French region, for a total installed capacity of 300 MW. The nationally initiated actions for growing the market are heavily relayed by public assistance to regional councils, general councils, communities of communes and communes themselves, in accordance with their own particular specifications. The incentive to purchase electricity produced by built-in installations has caused a

  11. Value of solar thermal and photovoltaic power plants to Arizona Public Service Company

    International Nuclear Information System (INIS)

    Smith, P.A.

    1994-01-01

    Arizona Public Service Company has performed a study using historical solar radiation and system load data to (1) estimate the effects of six types of solar generation on system reliability, (2) estimate the central station value of each to its system, (3) and to assess the potential of each of those technologies to provide bulk power to its system in the 2000 time frame. Technologies included three solar thermal (central receiver, dish Stirling, and parabolic trough) and three flat plate photovoltaic plants (fixed position, one axis, and two axis tracking)

  12. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. International cooperation projects (Collection of information on IEA photovoltaic power generation program); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Items of information were collected on development of technologies to put photovoltaic power generation systems into practical use, the international cooperation projects, and the IEA photovoltaic power generation program. This paper summarizes the achievements in fiscal 1999. In the activities of IEA/REWP/PVPS in the current fiscal year, the 13th and 14th Executive Committee meetings, and the 3rd Executive Conference were held. The Task 1 has performed such activities as ISR, NSR, Newsletters, and opening the Internet homepage. The Task 2 activities included structuring about 260 databases for the operation characteristics of photovoltaic power generation systems, and completing the internal material handbooks on measurement and monitoring. A new work plan was prepared for the Task 3 regarding an independent photovoltaic power generation plant for use in an island. For the building integrated photovoltaic power generation system in the Task 7, survey activities were executed by utilizing expertise conferences on building designs, system technologies, and non-technical impediments. In the feasibility survey and research on large-scale photovoltaic power generation utilizing unused land such as desert for the Task 8, the programs were established. (NEDO)

  13. Photovoltaic electricity applications: history and perspectives

    International Nuclear Information System (INIS)

    Juquois, F.

    2010-01-01

    The photoelectric effect has been characterized in 1839 by Henry Becquerel. More than one hundred years later, in 1958, the first photovoltaic cell is developed for the space exploration. After the first oil shock in 1973, the occidental governments have started considering photovoltaic as one of the potential alternative to fossil in the future. 36 years later, photovoltaic is blossoming on the roof tops of dwellings and commercial buildings, as well as on the poor agricultural value lands. (author)

  14. Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates

    International Nuclear Information System (INIS)

    Favoino, Fabio; Fiorito, Francesco; Cannavale, Alessandro; Ranzi, Gianluca; Overend, Mauro

    2016-01-01

    Highlights: • The features and properties of photovoltachromic switchable glazing are presented. • The different possible control strategies for the switchable glazing are presented. • Thermal and daylight performance are co-simulated for rule-based and optimal control. • A novel building performance simulation framework is developed for this aim. • Switchable glazing performance is compared for different controls and climates. - Abstract: The development of adaptive building envelope technologies, and particularly of switchable glazing, can make significant contributions to decarbonisation targets. It is therefore essential to quantify their effect on building energy use and indoor environmental quality when integrated into buildings. The evaluation of their performance presents new challenges when compared to conventional “static” building envelope systems, as they require design and control aspects to be evaluated together, which are also mutually interrelated across thermal and visual physical domains. This paper addresses these challenges by presenting a novel simulation framework for the performance evaluation of responsive building envelope technologies and, particularly, of switchable glazing. This is achieved by integrating a building energy simulation tool and a lighting simulation one, in a control optimisation framework to simulate advanced control of adaptive building envelopes. The performance of a photovoltachromic glazing is evaluated according to building energy use, Useful Daylight Illuminance, glare risk and load profile matching indicators for a sun oriented office building in different temperate climates. The original architecture of photovoltachromic cell provides an automatic control of its transparency as a function of incoming solar irradiance. However, to fully explore the building integration potential of photovoltachromic technology, different control strategies are evaluated, from passive and simple rule based controls, to

  15. Integration of fuel cells into residential buildings

    International Nuclear Information System (INIS)

    Bell, J.M.; Entchev, E.; Gusdorf, J.; Szadkowski, F.; Swinton, M.; Kalbfleisch, W.; Marchand, R.

    2004-01-01

    Integration of small combined heat and power systems (CHP) into residential buildings is challenging as the loads are small, the load diversity is limited and there are a number of unresolved issues concerning sizing, control, peak loads, emergency operation, grid connection and export, etc. Natural Resources Canada has undertaken an initiative to investigate and develop techniques for the integration of small CHP systems into residential buildings using a highly instrumented house modified to allow quick installation and thorough monitoring of CHP integration techniques as well determining the performance of the CHP systems themselves when operating in a house. The first CHP system installed was a Stirling engine residential CHP system. It was used to examine the completeness of the CHP modifications to the house, to evaluate various building integration techniques and to measure the performance of the CHP system itself. The testing demonstrated the modified house to be an excellent facility for the development of CHP building integration techniques and the testing of residential CHP systems. The Stirling engine CHP system was found to operate well and produce meaningful input to the house. A second system (residential fuel cell) is presently being installed and building integration techniques and the performance of the fuel cell will be tested over the coming year. (author)

  16. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  17. Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells

    International Nuclear Information System (INIS)

    Xu, Ning; Ji, Jie; Sun, Wei; Han, Lisheng; Chen, Haifei; Jin, Zhuling

    2015-01-01

    Graphical abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, respectively. Experimental results show that direct irradiation affects the electrical performance of the system dominantly. Fitting results of electrical performance offer simple and reliable methods to analyze the system performance. - Highlights: • A point-focus Fresnel lens photovoltaic/thermal system is proposed and studied. • The system presents an instantaneous electrical efficiency of 28%. • The system has a highest instantaneous thermal efficiency of 54%. • Direct irradiation has the dominant effect on the electrical performance. • Fitting results offer simple and reliable methods to analyze system performances. - Abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, which means the overall efficiency of the system can be more than 80%. A mathematical model for calculating cell temperature is proposed to solve difficult measurement of cell temperature in a system. Moreover, characteristics of electrical performance under various direct

  18. Technologies for building integrated energy supply; Teknologier for bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Katic, I.

    2011-07-15

    The current report is part of the deliverables from the project ''Building Integrated Energy Supply'' supported by the Danish Energy Authority R and D program. It describes a range of technologies for individual supply of heat and/or electricity to dwellings with respect to their stage of development and possible application in the near future. Energy supply of buildings is becoming more and more complex, partly as a result of increasing demands for comfort, efficiency and reduced emissions, partly as a result of rising oil prices and improved competitiveness of alternative energy sources. The days where ordinary boilers were the dominant source of individual supply of dwellings are becoming past these years. The challenge of the new range of technologies lies to a high extent in the fluctuating nature of their energy conversion and their interaction with the supply grids for heat and electricity. There is thus an increasing demand to understand the nature of the different supply technologies, besides a regular update of their economical key figures. The technologies briefly described in this study are: Solar heating, passive solar energy, biofuel boilers, heat pumps, micro CHP, solar photovoltaic and energy storage systems. The selected technologies are all assessed to play an important role in future's mix of supply technologies in Denmark, especially heat pumps and solar. (Author)

  19. PCM/wood composite to store thermal energy in passive building envelopes

    Science.gov (United States)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  20. Improving of the photovoltaic / thermal system performance using water cooling technique

    International Nuclear Information System (INIS)

    Hussien, Hashim A; Numan, Ali H; Abdulmunem, Abdulmunem R

    2015-01-01

    This work is devoted to improving the electrical efficiency by reducing the rate of thermal energy of a photovoltaic/thermal system (PV/T).This is achieved by design cooling technique which consists of a heat exchanger and water circulating pipes placed at PV module rear surface to solve the problem of the high heat stored inside the PV cells during the operation. An experimental rig is designed to investigate and evaluate PV module performance with the proposed cooling technique. This cooling technique is the first work in Iraq to dissipate the heat from PV module. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of output power is achieved. It was found that without active cooling, the temperature of the PV module was high and solar cells could only achieve a conversion efficiency of about 8%. However, when the PV module was operated under active water cooling condition, the temperature was dropped from 76.8°C without cooling to 70.1°C with active cooling. This temperature dropping led to increase in the electrical efficiency of solar panel to 9.8% at optimum mass flow rate (0.2L/s) and thermal efficiency to (12.3%). (paper)

  1. Thermal Comfort in a Naturally-Ventilated Educational Building

    Directory of Open Access Journals (Sweden)

    David Mwale Ogoli

    2012-11-01

    Full Text Available A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2 in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used inthermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitute a “comfortable” thermal environment include physical factors (ambient air temperature, mean radiant temperature, air movement and humidity, personal factors(activity and clothing, classifications (gender, age, education, etc. and psychological expectations (knowledge, experience, psychological effect of visual warmth by, say, a fireplace. Comparisons are made using data gathered from Nairobi, Kenya.Keywords: Comfort, temperature, humidity and ventilation

  2. Photovoltaic: state of the arts in France and in the world

    International Nuclear Information System (INIS)

    Jurczak, Ch.; Leclerq, M.

    2005-01-01

    The author analyzes the photovoltaic world solar market. He discusses the photovoltaic solar electricity production cost and more particularly the photovoltaic solar industry in France and the thermal solar. (A.L.B.)

  3. Experimental validation of a heat transfer model for concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Sendhil Kumar, Natarajan; Matty, Katz; Rita, Ebner; Simon, Weingaertner; Ortrun, Aßländer; Alex, Cole; Roland, Wertz; Tim, Giesen; Tapas Kumar, Mallick

    2012-01-01

    In this paper, a three dimensional heat transfer model is presented for a novel concentrating photovoltaic design for Active Solar Panel Initiative System (ASPIS). The concentration ratio of two systems (early and integrated prototype) are 5× and 10× respectively, designed for roof-top integrated Photovoltaic systems. ANSYS 12.1, CFX package was effectively used to predict the temperatures of the components of the both ASPIS systems at various boundary conditions. The predicted component temperatures of an early prototype were compared with experimental results of ASPIS, which were carried out in Solecta – Israel and at the Austrian Institute of Technology (AIT) – Austria. It was observed that the solar cell and lens temperature prediction shows good agreement with Solecta measurements. The minimum and maximum deviation of 3.8% and 17.9% were observed between numerical and Solecta measurements and the maximum deviations of 16.9% were observed between modeling and AIT measurements. Thus, the developed validated thermal model enables to predict the component temperatures for concentrating photovoltaic systems. - Highlights: ► Experimentally validated heat transfer model for concentrating Photovoltaic system developed. ► Predictions of solar cell temperatures for parallactic tracking CPV system for roof integration. ► The ASPIS module contains 2 mm wide 216 solar cells manufactured based on SATURN technology. ► A solar cell temperature of 44 °C was predicted for solar radiation intensity was 1000 W/m 2 and ambient temperature was 20 °C. ► Average deviation was 6% and enabled to predict temperature of any CPV system.

  4. Possibilities and Limitations of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Behrendt, Benjamin

    The strong political market drive towards energy savings in the building sector calls for efficient solutions. Using so called low temperature heating and high temperature cooling systems such as for instance thermally activated building systems (TABS) has a significant impact on the required...... will be mostly needed to operate the building within acceptable boundaries. It will also allow the user to see if dehumidification will be needed for undisturbed operation of TABS. With the combination of both tools it is possible to provide a holistic evaluation of a building proposal at a very early design...

  5. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This 2007 edition summary report for the Swiss Federal Office of Energy (SFOE), reports on the work done within the framework of the Swiss Photovoltaics Program in 2006. The document contains 46 abstracts on work done in the photovoltaics area. The subjects reported on in the thin-film photovoltaics sector include advanced processing and characterisation of thin film silicon solar cells, high-rate deposition of micro-crystalline silicon, a new large-area VHF reactor for high-rate deposition of micro-crystalline silicon, the stability of zinc oxide in encapsulated thin film silicon solar cells, spectral photocurrent measurement, roll-to-roll technology for the production of thin film silicon modules, advanced thin film technologies, ultra thin silicon wafer cutting, bifacial thin industrial multi-crystalline silicon solar cells, flexible CIGS solar cells and mini-modules, large-area CIS-based thin-film solar modules and advanced thin-film technologies. In the area of dye-sensitised modules, the following projects are reported on: Dye-sensitised nano-crystalline solar cells, voltage enhancement of dye solar cells and molecular orientation as well as low band-gap and new hybrid device concepts for the improvement of flexible organic solar cells. Other projects reported on include a new PV wave making more efficient use of the solar spectrum, photovoltaic textiles, organic photovoltaic devices, photo-electrochemical and photovoltaic conversion and storage of solar energy, PV modules with antireflex glass, improved integration of PV into existing buildings, the seventh program at the LEEE-TISO, the 'PV enlargement' and 'Performance' programs, efficiency and annual electricity production of PV modules, photovoltaics system technology 2005-2006, an update on photovoltaics in view of the 'ecoinvent' v.2.0 tool and environmental information services for solar energy industries. The contributions to four Swiss IEA PVPS tasks and the Swiss

  6. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This 2007 edition summary report for the Swiss Federal Office of Energy (SFOE), reports on the work done within the framework of the Swiss Photovoltaics Program in 2006. The document contains 46 abstracts on work done in the photovoltaics area. The subjects reported on in the thin-film photovoltaics sector include advanced processing and characterisation of thin film silicon solar cells, high-rate deposition of micro-crystalline silicon, a new large-area VHF reactor for high-rate deposition of micro-crystalline silicon, the stability of zinc oxide in encapsulated thin film silicon solar cells, spectral photocurrent measurement, roll-to-roll technology for the production of thin film silicon modules, advanced thin film technologies, ultra thin silicon wafer cutting, bifacial thin industrial multi-crystalline silicon solar cells, flexible CIGS solar cells and mini-modules, large-area CIS-based thin-film solar modules and advanced thin-film technologies. In the area of dye-sensitised modules, the following projects are reported on: Dye-sensitised nano-crystalline solar cells, voltage enhancement of dye solar cells and molecular orientation as well as low band-gap and new hybrid device concepts for the improvement of flexible organic solar cells. Other projects reported on include a new PV wave making more efficient use of the solar spectrum, photovoltaic textiles, organic photovoltaic devices, photo-electrochemical and photovoltaic conversion and storage of solar energy, PV modules with antireflex glass, improved integration of PV into existing buildings, the seventh program at the LEEE-TISO, the 'PV enlargement' and 'Performance' programs, efficiency and annual electricity production of PV modules, photovoltaics system technology 2005-2006, an update on photovoltaics in view of the 'ecoinvent' v.2.0 tool and environmental information services for solar energy industries. The contributions to four Swiss IEA PVPS tasks and the Swiss interdepartmental platform for

  7. Simulation of temperature in office with building integrated heating and cooling system

    DEFF Research Database (Denmark)

    Weitzmann, Peter

    2002-01-01

    In this paper a numerical investigation of the thermal indoor environment has been performed for an office with building integrated hydronic heating and cooling system. Today office buildings are designed in such a way, and have such high internal heat loads and solar gains, that some kind...... of cooling is normally necessary for most of the year. Even in as cool climates as in the Nordic countries. The way the cooling is often achieved is through air conditioning. This can in many cases lead to sick building syndrome (SBS) symptoms, and furthermore it results in high energy consumption periods...... the temperature of the concrete to a level slightly below the desired room temperature, the concrete will work as an absorber for the excess heat in the office. This can significantly reduce the need for air conditioning, which will give both improved indoor climate and lower energy costs in the building...

  8. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    OpenAIRE

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, P. A. (Paul A.)

    2017-01-01

    Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, ...

  9. Data on the interaction between thermal comfort and building control research.

    Science.gov (United States)

    Park, June Young; Nagy, Zoltan

    2018-04-01

    This dataset contains bibliography information regarding thermal comfort and building control research. In addition, the instruction of a data-driven literature survey method guides readers to reproduce their own literature survey on related bibliography datasets. Based on specific search terms, all relevant bibliographic datasets are downloaded. We explain the keyword co-occurrences of historical developments and recent trends, and the citation network which represents the interaction between thermal comfort and building control research. Results and discussions are described in the research article entitled "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review" (Park and Nagy, 2018).

  10. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Yang, Liu; Yan, Haiyan; Lam, Joseph C.

    2014-01-01

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO 2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  11. 17th European photovoltaic solar energy conference and exhibition, Munich 22.-26.10.2001

    International Nuclear Information System (INIS)

    Nowak, S.

    2002-01-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the photovoltaics (PV) conference and exhibition held in Munich in October 2001 from the Swiss point of view. The contributions made by representatives of Swiss institutions and companies are presented including papers on the progress being made in third generation crystalline and multi-crystalline silicon technology, amorphous and micro-crystalline silicon solar cells, thin film solar cells based on compound semiconductors and thermo-photovoltaics. Further papers deal with PV modules on the market, building-integrated solar power systems and new developments in PV systems technology. The exhibition that accompanied the conference, including the 12 Swiss exhibitors who were present, is reviewed as are international market developments. Contributions concerning the application of photovoltaics in developing countries are also reviewed

  12. Optimizing plug-in electric vehicle charging in interaction with a small office building

    Energy Technology Data Exchange (ETDEWEB)

    Momber, Ilan; Gomez, Tomas [Instituto de Investigacion Tecnologica (IIT), Madrid (Spain); Dallinger, David; Beer, Sebastian; Wietschel, Martin [Fraunhofer Institute for Systems and Innovation Research, Karlsruhe (Germany). Competence Center Energy Policy and Energy Systems; Marnay, Chris; Stadler, Michael [Lawrence Berkeley Lab., CA (United States)

    2011-07-01

    This paper considers the integration of plug-in electric vehicles (PEVs) in micro-grids. Extending a theoretical framework for mobile storage connection, the economic analysis here turns to the interactions of commuters and their driving behavior with office buildings. An illustrative example for a real office building is reported. The chosen system includes solar thermal, photovoltaic, combined heat and power generation as well as an array of plug-in electric vehicles with a combined aggregated capacity of 864 kWh. With the benefit-sharing mechanism proposed here and idealized circumstances, estimated cost savings of 5% are possible. Different pricing schemes were applied which include flat rates, demand charges, as well as hourly variable final customer tariffs and their effects on the operation of intermittent storage were revealed and examined in detail. Because the plug-in electric vehicle connection coincides with peak heat and electricity loads as well as solar radiation, it is possible to shift energy demand as desired in order to realize cost savings. (orig.)

  13. Integrated sustainable urban infrastructures in building projects

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Quitzau, Maj-Britt; Elle, Morten

    2007-01-01

    Current strategies in urban planning and development merely promote standardized building solutions, while failing to prioritize innovative approaches of integration between building projects and sustainable urban infrastructures. As a result of this, urban infrastructures – the urban veins...... – are outdated from a sustainability perspective. This paper looks into more holistic ways of approaching building projects and discuss whether this provide a basis for an increased integration of urban infrastructures within building projects. In our study, we especially emphasise how conventional ways...... of approaching building projects are influenced by lock-in of existing infrastructural systems and compare this with two examples of more holistic ways of approaching building projects, developed by two architecture firms. The paper points out that such holistic perspective in building projects provide...

  14. Cardboard Based Packaging Materials as Renewable Thermal Insulation of Buildings: Thermal and Life Cycle Performance

    OpenAIRE

    Čekon, Miroslav; Struhala, Karel; Slávik, Richard

    2017-01-01

    Cardboard based packaging components represent a material with a significant potential of renewable exploitation in buildings. This study presents the results of thermal and environmental analysis of existing packaging materials compared with standard conventional thermal insulations. Experimental measurements were performed to identify the thermal performance of studied cardboard packaging materials. Real-size samples were experimentally tested in laboratory measurements. The thermal resi...

  15. Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Sera, Dezso; Rosendahl, Lasse Aistrup

    2016-01-01

    of the hybrid system under different weather conditions. The model takes into account solar irradiation, wind speed and ambient temperature as well as convective and radiated heat losses from the front and rear surfaces of the panel. The model is developed for three sample cities in Europe with different......In general, modeling of photovoltaic-thermoelectric (PV/TEG) hybrid panels have been mostly simplified and disconnected from the actual ambient conditions and thermal losses from the panel. In this study, a thermally coupled model of PV/TEG panel is established to precisely predict performance...... weather conditions. The results show that radiated heat loss from the front surface and the convective heat loss due to the wind speed are the most critical parameters on performance of the hybrid panel performance. The results also indicate that, with existing thermoelectric materials, the power...

  16. Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context

    International Nuclear Information System (INIS)

    Nadal, Ana; Llorach-Massana, Pere; Cuerva, Eva; López-Capel, Elisa; Montero, Juan Ignacio; Josa, Alejandro

    2017-01-01

    Highlights: • iRTG incorporates urban agriculture into and improves energy efficiency in buildings. • iRTG concept recycles low-grade, waste thermal energy for growing vegetables. • iRTG is an adaptable concept to promotes food security through urban agriculture. • Indoor building climate affects iRTG more than outdoor climatic conditions. • iRTG achieved annual CO_2 and cost savings of 113.8 kg CO_2 (eq)/m"2/yr and 19.63 €/m"2/yr. - Abstract: A sustainable and secure food supply within a low-carbon and resilient infrastructure is encapsulated in several of The United Nations’ 17 sustainable development goals. The integration of urban agriculture in buildings can offer improved efficiencies; in recognition of this, the first south European example of a fully integrated rooftop greenhouse (iRTG) was designed and incorporated into the ICTA-ICP building by the Autonomous University of Barcelona. This design seeks to interchange heat, CO_2 and rainwater between the building and its rooftop greenhouse. Average air temperatures for 2015 in the iRTG were 16.5 °C (winter) and 25.79 °C (summer), making the iRTG an ideal growing environment. Using detailed thermophysical fabric properties, 2015 site-specific weather data, exact control strategies and dynamic soil temperatures, the iRTG was modelled in EnergyPlus to assess the performance of an equivalent ‘freestanding’ greenhouse. The validated result shows that the thermal interchange between the iRTG and the ICTA-ICP building has considerable moderating effects on the iRTG’s indoor climate; since average hourly temperatures in an equivalent freestanding greenhouse would have been 4.1 °C colder in winter and 4.4 °C warmer in summer under the 2015 climatic conditions. The simulation results demonstrate that the iRTG case study recycled 43.78 MWh of thermal energy (or 341.93 kWh/m"2/yr) from the main building in 2015. Assuming 100% energy conversion efficiency, compared to freestanding greenhouses

  17. Photovoltaics for professionals solar electric systems marketing, design and installation

    CERN Document Server

    Falk, Antony; Remmers, Karl-Heinz

    2007-01-01

    For the building industry, the installation of photovoltaic systems has become a new field of activity. Interest in solar energy is growing and future business prospects are excellent. Photovoltaics for Professionals describes the practicalities of marketing, designing and installing photovoltaic systems, both grid-tied and stand-alone. It has been written for electricians, technicians, builders, architects and building engineers who want to get involved in this expanding industry. It answers all the beginner's questions as well as serving as a textbook and work of reference

  18. Nano-based PCMs for building energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL

    2016-01-01

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which the PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.

  19. Effect of Thermal Environment on the Mechanical Behaviors of Building Marble

    Directory of Open Access Journals (Sweden)

    Haijian Su

    2018-01-01

    Full Text Available High temperature and thermal environment can influence the mechanical properties of building materials worked in the civil engineering, for example, concrete, building rock, and steel. This paper examines standard cylindrical building marble specimens (Φ50 × 100 mm that were treated with high temperatures in two different thermal environments: vacuum (VE and airiness (AE. Uniaxial compression tests were also carried out on those specimens after heat treatment to study the effect that the thermal environment has on mechanical behaviors. With an increase in temperature, the mechanical behavior of marble in this study indicates a critical temperature of 600°C. Both the peak stress and elasticity modulus were larger for the VE than they were for the AE. The thermal environment has an obvious influence on the mechanical properties, especially at temperatures of 450∼750°C. The failure mode of marble specimens under uniaxial compression is mainly affected by the thermal environment at 600°C.

  20. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  1. The new tariffs for photovoltaic power

    International Nuclear Information System (INIS)

    Houot, G.

    2010-01-01

    The new tariffs for the purchase of photovoltaic electricity were published by French authorities in January 2010. This new framework is more constraining and the tariffs are lower. For installations integrated to the building: 0.580 euros/kWh (instead of 0.602 euros/kWh) for buildings dedicated to accommodation and buildings over 2 years of age dedicated to teaching and health; 0.500 euros/kWh (instead of 0.602 euros/kWh) for other old buildings with 4 walls and a roof; 0.420 euros/kWh (instead of 0.602 euros/kWh) for installations over 3 kWc on new buildings with a roof (but not necessarily with 4 walls) dedicated to any use except accommodation. For other installations: -)in the country: 0.314 euros/kWh (instead of 0.328 euros/kWh) for installations below 250 kWc and from 0.310 to 0.377 euros/kWh (instead of 0.328 euros/kWh) for installations over 250 kWc; -) in Corsica and DOM-COM: 0.400 euros/kWh (instead of 0.438 euros/kWh). (A.C.)

  2. A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15

    International Nuclear Information System (INIS)

    Celik, Ali Naci; Muneer, Tariq; Clarke, Peter

    2009-01-01

    This article analyses the energy statistics of 15 European Union countries (EU-15), giving special emphasis to the installed solar photovoltaic and thermal collector capacity. The installed capacities per capita are analysed in relation to the solar radiation income of respective countries with the view to explore the relationship between the solar income and its utilisation as of the year 2006. In terms of the installed solar thermal collector capacity, Austria leads the statistics amongst the countries studied with 223W th collector capacity per capita, followed by Greece with 207W th . Except for Greece, it is observed that the countries with high solar radiation income are lacking to realise their solar potential. Regarding the installed photovoltaic power per capita, Luxembourg leads the pack by a wide margin with 47W p capacity, followed by Germany with 30W p . Fiscal instruments to invigorate the deployment of solar energy have also been identified in this work. (author)

  3. Photovoltaic electricity industry and markets Status and trends in France 1992-2002 - Technical report. Survey report of photovoltaic power applications in France 2002

    International Nuclear Information System (INIS)

    Claverie, Andre; Juquois, Fabrice

    2003-01-01

    The report provides a picture of the photovoltaic industry and its applications in France covering the years 1992 to end 2002. The main stream of photovoltaic (PV) activity in France is that of off-grid power systems. Nevertheless, the ADEME and other public authority partners decided in 1999 to contribute to the funding of grid-connected distributed photovoltaic power systems. During the year 2002, 3,4 MW of photovoltaic power systems were installed in France and its overseas departments. The annual off-grid PV power system market remains stable at around 2,4 MW per year and that of grid-connected distributed power systems reached almost 1 MW in 2002. The total cumulative installed PV power in France is 17 MW of which 15 MW are off-grid systems and 2 MW are grid-connected distributed PV power systems. This installed capacity represents the annual production of 15 GWh of electricity. The PV cell/module industry remains very active. The annual production of photovoltaic multi-crystalline silicon cells increased by 25 % during the year 2002 to reach 17 MW while the production of amorphous silicon thin film modules increased slightly to go over half a megawatt. Two French companies started introducing on the market photovoltaic modules specifically designed for building integration. Price of photovoltaic power systems is decreasing towards 20 euros per watt for off-grid systems under public funding and turnkey prices for grid-connected distributed PV power systems vary from 6 to 8 euros per watt according to the level of building integration. Business turnover of main companies covering the whole field of cell/module manufacturing and PV power system developers/installers, increased 18 % in 2002 to reach 130 million euros. Due to a Governmental decision taken in 1998, the ADEME increased its annual public budget for the promotion of PV in France to reach around 10 MEUR per year. This new measure allowed a) to reactivate the ADEME's research and technological

  4. Assessment of Emerging Renewable Energy-based Cogeneration Systemsfor nZEB Residential Buildings

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads P.

    2016-01-01

    Net Zero Energy Buildings (nZEB) imply reduced consumption by means of good insulation, passive strategies and highly efficient energy supply systems. Among others, micro cogeneration systems are considered as one of the system solutions with the highest potential to enable nZEB.These systems...... entail production of electricity and usable thermal energy (heat and/or cooling) to cover the energy demands of residential buildings, high energy efficiency levels and proximity of the energy source to the building. The concept of cogeneration is not new but the interest in smallscale cogeneration...... technologies based on renewable energy sources has increased tremendously in the last decade. A significant amount of experimental and modelling research has recently been presented on emerging technologies. In this paper, four main technologies are assessed: Fuel Cells (FC), Photovoltaic thermal (PV/T), solar...

  5. Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ruey-Lung; Shu, Shiu-Ya [Department of Architecture, National United University, 1, Lien-Da, Kung-Ching Li, Miaoli, 36003 (China)

    2011-04-15

    This paper presents an investigation of the effect of building envelope regulation on thermal comfort and on the energy-saving potential for PMV-based comfort control in glass facade buildings. Occurrences and severity of overheating, based on the PMV-PPD model contained in ISO 7730, were used for the thermal comfort assessment. Parametric study simulations for an actual building with a large glass facade were carried out to predict the changes in thermal comfort levels in a space due to different glazing types, depths of overhang and glazing areas, which are the key parameters of the building envelope regulation index, named ENVLOAD, in Taiwan. The result demonstrates that the ENVLOAD has significant effect on thermal comfort. Additionally, comparative simulations between PMV-based comfort control and conventional thermostatic control were performed to investigate the changes in the energy-saving potential of a thermal comfort-controlled space due to changes of its ENVLOAD. The results demonstrate that the energy-saving potential in a PMV-based controlled space increases with low ENVLOAD conditions. (author)

  6. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  7. Calculation steps. Building integrated energy supply; Beregningsgang. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations. The present report describes the applied simulation models, and explains the results and computer codes. The parameter variations are described for each house as well as the common calculation steps for each house. The results are presented in case sheets, as performance graphs, and top-50 lists for the best cases regarding CO{sub 2} emission, energy consumption and economics. (ln)

  8. Integration of eaves and shading devices for improving the thermal comfort in a multi-zone building

    Directory of Open Access Journals (Sweden)

    Haddam Muhammad Abdalkhalaq Chuayb

    2015-01-01

    Full Text Available This paper introduces a new approach to the description and modelling of multi-zone buildings in Saharan climate. Therefore, nodal method was used to apprehend thermo-aeraulic behavior of air subjected to varied solicitations. A coupling was made between equations proposed by P. Rumianowski and some equations of a building thermal energy model found in the TRNSYS user manual. Runge-Kutta fourth order numerical method was used to solve the obtained system of differential equations. Theses results show that proper design of passive houses in an arid region is based on the control of direct solar gains, temperatures and specific humidities. According to the compactness index, the insersion of solar shading and eaves can provide improved thermo-aeraulic comfort.

  9. Costs and Operating Dynamics of Integrating Distributed Energy Resources in Commercial and Industrial Buildings with Electric Vehicle Charging

    Science.gov (United States)

    Flores, Robert Joseph

    Growing concerns over greenhouse gas and pollutant emissions have increased the pressure to shift energy conversion paradigms from current forms to more sustainable methods, such as through the use of distributed energy resources (DER) at industrial and commercial buildings. This dissertation is concerned with the optimal design and dispatch of a DER system installed at an industrial or commercial building. An optimization model that accurately captures typical utility costs and the physical constraints of a combined cooling, heating, and power (CCHP) system is designed to size and operate a DER system at a building. The optimization model is then used with cooperative game theory to evaluate the financial performance of a CCHP investment. The CCHP model is then modified to include energy storage, solar powered generators, alternative fuel sources, carbon emission limits, and building interactions with public and fleet PEVs. Then, a separate plugin electric vehicle (PEV) refueling model is developed to determine the cost to operate a public Level 3 fast charging station. The CCHP design and dispatch results show the size of the building load and consistency of the thermal loads are critical to positive financial performance. While using the CCHP system to produce cooling can provide savings, heat production drives positive financial performance. When designing the DER system to reduce carbon emissions, the use of renewable fuels can allow for a gas turbine system with heat recovery to reduce carbon emissions for a large university by 67%. Further reductions require large photovoltaic installations coupled with energy storage or the ability to export electricity back to the grid if costs are to remain relatively low. When considering Level 3 fast charging equipment, demand charges at low PEV travel levels are sufficiently high to discourage adoption. Integration of the equipment can reduce demand charge costs only if the building maximum demand does not coincide

  10. The value of electricity generated from photovoltaic power systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The overall aim of the study was to determine the true value of electricity generated from PV power systems integrated into buildings in the UK, to identify to whom that value accrues, and to assess the market potential that this represents and how it might best be realised. In this way, the study aims to help the UK government to better understand where greatest potential exists for PV building integration, what the potential benefits are, and how future dissemination activities and support programmes can best exploit these opportunities. (author)

  11. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  12. Economical photovoltaic power generation with heat recovery

    Science.gov (United States)

    Ascher, G.

    1977-01-01

    Three designs for conversion of solar radiation to electricity and thermal energy are analyzed. The objective of these converters is to increase the electric and thermal output for each photovoltaic array so as to lower the cell cost relative to the amount of energy delivered. An analysis of the economical aspects of conversion by photovoltaic cells with heat recovery is carried out in terms of hypothetical examples. Thus, it is shown that the original cost of say $40,000 per generated kilowat can be reduced to $572.00 per kilowatt by increasing the original electric output of 1 kW to 10 kW in electricity and 60 kW in thermal energy. The newly derived specific cost is only 1.4 percent of the original one. It is expected that a cost reduction of roughly 2% of the present specific cost per kilowatt will greatly stimulate public acceptance of photovoltaic terrestrial conversion to electricity.

  13. Possibilities of using thermal mass in buildings to save energy, cut power consumption peaks and increase the thermal comfort

    OpenAIRE

    Karlsson, Jonathan

    2012-01-01

    The aim of this project was to generate knowledge to enable us to take advantage of heat storage in heavy building structures with regard to as energy savings, better thermal indoor climate, and reduced peak powers. This could include buildings that can function without energy input during cold periods, buildings that give a robust indoor climate without installed cooling, and buildings with good thermal comfort also in case of higher outdoor temperatures resulting from global warming. To rea...

  14. Investigation of thermal integration between biogas production and upgrading

    International Nuclear Information System (INIS)

    Zhang, Xiaojing; Yan, Jinying; Li, Hailong; Chekani, Shabnam; Liu, Loncheng

    2015-01-01

    Highlights: • Identify thermal characteristics of amine-based biogas upgrading for waste heat recovery. • Identify thermal characteristics of AD biogas production as sink for heat recovery. • Evaluation of thermal integration between biogas production and upgrading to improve overall energy efficiency. • Cost analysis applied for the economic feasibility of the thermal integration. • Using the principles of target design and system integration for connected thermal processes. - Abstract: Thermal integration of anaerobic digestion (AD) biogas production with amine-based chemical absorption biogas upgrading has been studied to improve the overall efficiency of the intergraded system. The thermal characteristics have been investigated for industrial AD raw biogas production and amine-based chemical absorption biogas upgrading. The investigation provides a basic understanding for the possibilities of energy saving through thermal integration. The thermal integration is carried out through well-defined cases based on the thermal characteristics of the biogas production and the biogas upgrading. The following factors are taken into account in the case study: thermal conditions of sub-systems, material and energy balances, cost issues and main benefits. The potential of heat recovery has been evaluated to utilise the waste heat from amine-based upgrading process for the use in the AD biogas production. The results show that the thermal integration has positive effects on improving the overall energy efficiency of the integrated biogas plant. Cost analysis shows that the thermal integration is economically feasible

  15. The Effect of Mechanical Load on the Thermal Conductivity of Building Materials

    Directory of Open Access Journals (Sweden)

    J. Toman

    2000-01-01

    Full Text Available The effect of mechanical load on the thermal conductivity of building materials in the design of envelope parts of building structures is studied. A typical building material is chosen in the practical investigation of this effect, namely the cement mortar. It is concluded that in the range of hygroscopic moisture content, lower levels of mechanical load, typically up to 90 % of compressive strength (CS, are not dangerous from the point of view of worsening the designed thermal properties, but in the overhygroscopic region, the load as low as 57 % of CS may be dangerous. The higher levels of loading are found to be always significant because they lead to marked increase of thermal conductivity which is always a negative information for a building designer.

  16. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use (International cooperation project - collection of information on IEA photovoltaic power generation program); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development, verification, analysis and information exchange have been performed based on the 'Treaty to Execute the Research and Cooperation Program on Photovoltaic Power Generation System'. The IEA/REWP/PVPS activities in fiscal 1999 include the participation to the two executive committee meetings (Valencia and Sydney), and the subcommittee activities. The subcommittee activities are as follows: Task I: information exchange on and proliferation of the photovoltaic power generation systems, Task II: operation performance and design of the photovoltaic power generation systems, Task III: design and operation of the independent type and the island use power plants, Task VII: Building integrated photovoltaic power generation systems, Task VI, Sub-task 5: investigations and researches on possibility for photovoltaic power generation systems utilizing unutilized lands including deserts, and Task IX: technical cooperation to expand photovoltaic power generation system markets. (NEDO)

  17. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use (International cooperation project - collection of information on IEA photovoltaic power generation program); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development, verification, analysis and information exchange have been performed based on the 'Treaty to Execute the Research and Cooperation Program on Photovoltaic Power Generation System'. The IEA/REWP/PVPS activities in fiscal 1999 include the participation to the two executive committee meetings (Valencia and Sydney), and the subcommittee activities. The subcommittee activities are as follows: Task I: information exchange on and proliferation of the photovoltaic power generation systems, Task II: operation performance and design of the photovoltaic power generation systems, Task III: design and operation of the independent type and the island use power plants, Task VII: Building integrated photovoltaic power generation systems, Task VI, Sub-task 5: investigations and researches on possibility for photovoltaic power generation systems utilizing unutilized lands including deserts, and Task IX: technical cooperation to expand photovoltaic power generation system markets. (NEDO)

  18. Performance Optimization of Unglazed Nanofluid Photovoltaic/Thermal System: Energy and Exergy Analyses

    Directory of Open Access Journals (Sweden)

    M. Imtiaz Hussain

    2018-01-01

    Full Text Available The focus of this paper is to predict the transient response of a nanoengineered photovoltaic thermal (PV/T system in view of energy and exergy analyses. Instead of a circular-shaped receiver, a trapezoidal-shaped receiver is employed to increase heat transfer surface area with photovoltaic (PV cells for improvement of heat extraction and thus achievement of a higher PV/T system efficiency. The dynamic mathematical model is developed using MATLAB® software by considering real-time heat transfer coefficients. The proposed model is validated with experimental data from a previous study. Negligible discrepancies were found between measured and predicted data. The validated model was further investigated in detail using different nanofluids by dispersing copper oxide (CuO and aluminum oxide (Al2O3 in pure water. The overall performance of the nanoengineered PV/T system was compared to that of a PV/T system using water only, and optimal operating conditions were determined for maximum useful energy and exergy rates. The results indicated that the CuO/water nanofluid has a notable impact on the energy and exergy efficiencies of the PV/T system compared to that of Al2O3/water nanofluid and water only cases.

  19. Characterization of Novel Thin-Films and Structures for Integrated Circuit and Photovoltaic Applications

    Science.gov (United States)

    Zhao, Zhao

    Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing. For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer

  20. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    Science.gov (United States)

    2013-09-10

    288 Enviromental 1 - Main Membrane 90000 9043 SqFt 472 Ft 94 98 None Real Estate Perimeter: 460Ft Rating: Excellent Rating: Excellent...Cost Index: $2.00 Section: Section Area: 288- Building 288 Enviromental 1 9043 Roof Replacement Cost: Insulation Replacement Cost: $8.00 per...Bldg NoJSec: 2881 Bldg Name: Bui ding 288 Enviromental Bldg Use: Ofice Inspection Date: Oct/2011 Membrane: SINGLE-PlY: PVC Area (SF): 9043