WorldWideScience

Sample records for building hygrothermal simulation

  1. Hygrothermal Simulation: A Tool for Building Envelope Design Analysis

    Science.gov (United States)

    Samuel V. Glass; Anton TenWolde; Samuel L. Zelinka

    2013-01-01

    Is it possible to gauge the risk of moisture problems while designing the building envelope? This article provides a brief introduction to computer-based hygrothermal (heat and moisture) simulation, shows how simulation can be useful as a design tool, and points out a number of im-portant considerations regarding model inputs and limita-tions. Hygrothermal simulation...

  2. Hygrothermal Numerical Simulation Tools Applied to Building Physics

    CERN Document Server

    Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto

    2013-01-01

    This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...

  3. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  4. Simulation of whole building coupled hygrothermal-airflow transfer in different climates

    International Nuclear Information System (INIS)

    Qin Menghao; Walton, George; Belarbi, Rafik; Allard, Francis

    2011-01-01

    The coupled heat, air and moisture transfer between building envelopes and indoor air is complicated, and has a significant influence on the indoor environment and the energy performance of buildings. In the paper, a model for predicting coupled multi-zone hygrothermal-airflow transfer is presented. Both heat and moisture transfer in the building envelope and multi-zone indoor airflow are simultaneously considered; their interactions are modeled. The coupled system model is implemented into Matlab-Simulink, and is validated by using a series of testing tools and experiments. The new program is applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption in different climates (hot-humid, temperate and hot-dry climates). The results show that not accounting for hygrothermal effects in modeling will result in overestimation of energy costs for hot and humid climate situations and possible over sizing of plant leading to inefficient operation.

  5. Hygrothermal Behavior, Building Pathology and Durability

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    The main purpose of this book, Hygrothermal, Building Pathology and Durability, is to provide a collection of recent research works to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behaviour of buildings, durability and diagnostic techniques and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of building physics and hygrothermal behaviour, durability approach for historical and old buildings and building pathology vs. durability. The book is divided in several chapters that are a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers and other interested parties to network.

  6. Whole-Building Hygrothermal Modeling in IEA Annex 41

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2007-01-01

    . The IEA Annex 41 project runs from 2004–2007, coming to conclusion just before the Thermal Performance of the Exterior Envelopes of Whole Buildings X conference. The Annex 41 project and its Subtask 1 do not aim to produce one state-of-the-art hygrothermal simulation model for whole buildings, but rather...... the modeling, free scientific contributions have been invited from specific fields that need the most attention in order to better accomplish the integral building simulations. This paper will give an overview of the advances in whole-building hygrothermal simulation that have been accomplished and presented...

  7. Hygrothermal modelling of flooding events within historic buildings

    NARCIS (Netherlands)

    Huijbregts, Z.; Schellen, H.L.; Schijndel, van A.W.M.; Blades, N.

    2014-01-01

    Flooding events pose a high risk to valuable monumental buildings and their interiors. Due to higher river discharges and sea level rise, flooding events may occur more often in future. Hygrothermal building simulation models can be applied to investigate the impact of a flooding event on the

  8. Hygrothermal modelling of flooding events within historic buildings

    NARCIS (Netherlands)

    Huijbregts, Z.; Schijndel, van A.W.M.; Schellen, H.L.; Blades, N.; Mahdavi, A.; Mertens, B.

    2013-01-01

    Flooding events pose a high risk to valuable monumental buildings and their interiors. Due to higher river discharges and sea level rise, flooding events may occur more often in future. Hygrothermal building simulation models can be applied to investigate the impact of a flooding event on the

  9. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    cavity such as behind the exterior cladding of a building envelope, i.e. a flow which is parallel to the construction plane. (2) Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the constructionplane. The paper presents the models and how they have...

  10. Can crawl space temperature and moisture conditions be calculated with a whole-building hygrothermal simulation tool?

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies; Morelli, Martin; Sørensen, Lars Schiøtt

    2017-01-01

    of measurements was compared with simulations of temperature and moisture condition in the floor structure and crawl space. The measurements showed that the extra 50 mm insulation placed below the beams reduced moisture content in the beams below 20 weight% all year. A reasonable agreement between......The hygrothermal behaviour of an outdoor ventilated crawl space with two different designs of the floor structure was investigated. The first design had 250 mm insulation and visible wooden beams towards the crawl space. The second design had 300 mm insulation and no visible wooden beams. One year...... the measurements and simulations was found; however, the evaporation from the soil was a dominant parameter affecting the hygrothermal response in the crawl space and floor structure....

  11. State-of-the-Art for Hygrothermal Simulation Tools

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Philip R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Adams, Mark B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The hygrothermal (heat and moisture) performance of buildings can be assessed by utilizing simulation tools. There are currently a number of available hygrothermal calculation tools available which vary in their degree of sophistication and runtime requirements. This report investigates three of the most commonly used models (WUFI, HAMT, and EMPD) to assess their limitations and potential to generate physically realistic results to prioritize improvements for EnergyPlus (which uses HAMT and EMPD). The outcome of the study shows that, out of these three tools, WUFI has the greatest hygrothermal capabilities. Limitations of these tools were also assessed including: WUFI’s inability to properly account for air leakage and transfer at surface boundaries; HAMT’s inability to handle air leakage, precipitationrelated moisture problems, or condensation problems from high relative humidity; and multiple limitations for EMPD as a simplified method to estimate indoor temperature and humidity levels and generally not used to estimate the hygrothermal performance of the building envelope materials. In conclusion, out of the three investigated simulation tools, HAMT has the greatest modeling potential, is open source, and we have prioritized specific features that can enable EnergyPlus to model all relevant heat and moisture transfer mechanisms that impact the performance of building envelope components.

  12. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  13. Hygrothermal Material Properties for Soils in Building Science

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing

  14. Building Enclosure Hygrothermal Performance Study, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2002-08-08

    The moisture performance of three different classes of wall systems has been investigated in the context of the preliminary hygrothermal analysis of walls in Seattle. The results reported in this phase specifically address the moisture performance of walls designed with loads that have some unintentional water penetration. The results have been developed in a manner to present the relative performance of the walls in the same climate with similar water penetration effects. The analysis was performed with the best available input data. Several limitations should be recognized within the context of this study. Results showed that selection of wooden sheathing boards on interior vapor-tight assemblies does not significantly influence the performance of stucco-clad walls. A larger effect was observed when the interior vapor control is made vapor open. When continuous cavity ventilation is employed, the effect of the selection of the type of sheathing board on the hygrothermal performance of the wall was found to be negligible. When comparing oriented strand board sheathing performance against the performance of exterior grade gypsum, the differences are very significant in terms of the amount of moisture content present in the walls. Moisture content alone does not indicate their respective durability as durability is directly related to the combination of relative humidity and temperature, mechanical, chemical, and biological properties of the substrates. This study did not investigate the durability performance of either sheathing. In terms of interior vapor control, inhabitant behavior must be considered during the wall hygrothermal design stage. If interior relative humidity is maintained below 60%, then a latex primer and paint may perform better than the use of PVA or even a polyethylene sheet. When the interior environment is maintained at a higher relative humidity, then stricter vapor control is needed. Multilayered building paper was experimentally shown to

  15. Passive hygrothermal control of a museum storage building in Vejle

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Janssen, Hans

    2010-01-01

    and maintenance costs are currently motivating a paradigm change toward passive control. Passive control, via the thermal and hygric inertia of the building, is gaining a foothold in the museum conservation and building physical community. In this report we document the hygrothermal performance optimisation...... of a museum storage building, related to an existing storage centre in Vejle (Denmark). The current building design already incorporates passive control concepts: thermal inertia is provided by the thick walls, the ground floor and its underlying soil volume, while hygric inertia is provided by the thick...... with the thermal inertia of the ground and thus a higher temperature variation; For those reasons, more heavily insulated walls and roofs could be considered. Their effects on the interior climate and dehumidification load are however not that large. For the floor, no insulation should be added, and it could...

  16. Impact of whole-building hygrothermal modelling on the assessment of indoor climate in a library building

    Energy Technology Data Exchange (ETDEWEB)

    Steeman, M.; Janssens, A. [Ghent University, Department of Architecture and Urban Planning, Jozef Plateaustraat 22, B-9000 Gent (Belgium); De Paepe, M. [Ghent University, Department of Flow, Heat and Combustion Mechanics, Sint-Pietersnieuwstraat 41, B-9000 Gent (Belgium)

    2010-07-15

    This paper focuses on the importance of accurately modelling the hygrothermal interaction between the building and its hygroscopic content for the assessment of the indoor climate. Libraries contain a large amount of stored books which require a stable relative humidity to guarantee their preservation. On the other hand, visitors and staff must be comfortable with the indoor climate. The indoor climate of a new library building is evaluated by means of measurements and simulations. Complaints of the staff are confirmed by measured data during the winter and summer of 2007-2008. For the evaluation of the indoor climate, a building simulation model is used in which the porous books are either described by a HAM model or by a simplified isothermal model. Calculations demonstrate that the HAM model predicts a more stable indoor climate regarding both temperature and relative humidity variations in comparison to the estimations by the simplified model. This is attributed to the ability of the HAM model to account for the effect of temperature variations on moisture storage. Moreover, by applying the HAM model, a good agreement with the measured indoor climate is found. As expected, a larger exposed book surface ameliorates the indoor climate because a more stable indoor relative humidity is obtained. Finally, the building simulation model is used to improve the indoor climate with respect to the preservation of valuable books. Results demonstrate that more stringent interventions on the air handling unit are expected when a simplified approach is used to model the hygroscopic books. (author)

  17. Multiscale modelling for better hygrothermal prediction of porous building materials

    Directory of Open Access Journals (Sweden)

    Belarbi Rafik

    2018-01-01

    Full Text Available The aim of this work is to understand the influence of the microstructuralgeometric parameters of porous building materials on the mechanisms of coupled heat, air and moisture transfers, in order to predict behavior of the building to control and improve it in its durability. For this a multi-scale approach is implemented. It consists of mastering the dominant physical phenomena and their interactions on the microscopic scale. Followed by a dual-scale modelling, microscopic-macroscopic, of coupled heat, air and moisture transfers that takes into account the intrinsic properties and microstructural topology of the material using X-ray tomography combined with the correlation of 3D images were undertaken. In fact, the hygromorphicbehavior under hydric solicitations was considered. In this context, a model of coupled heat, air and moisture transfer in porous building materials was developed using the periodic homogenization technique. These informations were subsequently implemented in a dynamic computation simulation that model the hygrothermalbehaviourof material at the scale of the envelopes and indoor air quality of building. Results reveals that is essential to consider the local behaviors of materials, but also to be able to measure and quantify the evolution of its properties on a macroscopic scale from the youngest age of the material. In addition, comparisons between experimental and numerical temperature and relative humidity profilesin multilayers wall and in building envelopes were undertaken. Good agreements were observed.

  18. Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Robert Tichy; Chuck Murray

    2006-05-31

    This document serves as the Topical Report documenting work completed by Washington State University (WSU) under U.S. Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project was conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August 2002 through June 2006. WSU's primary experimental role is the design and implementation of a field testing protocol that monitored long term changes in the hygrothermal response of wall systems. During the project period WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, installed instrumentation in the test walls and recorded data from the test wall specimens. Each year reports were published documenting the hygrothermal response of the test wall systems. Public presentation of the results was, and will continue to be, made available to the building industry at large by industry partners and the University.

  19. Moisture buffering and its consequence in whole building hygrothermal modeling

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2008-01-01

    Moisture absorption and desorption of materials in contact with indoor air of buildings can be used as a passive, i.e., nonmechanical, way to moderate the variation of indoor humidity. This phenomenon, which is recognized as,moisture buffering', could potentially be used as an attractive feature...... for ventilation if indoor humidity is a parameter for controlling ventilation rate, 2. it is possible to improve the perceived acceptability of indoor air, as judged by the temperature and humidity of the air, by using moisture buffering to control the indoor humidity. The results of the whole building...

  20. Passive hygrothermal control of a museum storage building

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Janssen, Hans

    2011-01-01

    of C02 emission. The purpose for this paper is to show that it is possible to reach the goal of using renewable energy for museum storage buildings by rethinking the strategy for the dehumidification design and in this way contribute to a C02 neutral environment. The solution is to construct a very...

  1. Interior insulation – Experimental investigation of hygrothermal conditions and damage evaluation of solid masonry façades in a listed building

    DEFF Research Database (Denmark)

    Odgaard, Tommy; Bjarløv, Søren Peter; Rode, Carsten

    2018-01-01

    Exterior walls in historic multi-storey buildings compared to walls in modern buildings have low thermal resistance, resulting in high energy loss and cold surfaces/floors in cold climates. When restrictions regarding alteration of the exterior appearance exist, interior insulation might be the o......Exterior walls in historic multi-storey buildings compared to walls in modern buildings have low thermal resistance, resulting in high energy loss and cold surfaces/floors in cold climates. When restrictions regarding alteration of the exterior appearance exist, interior insulation might...... be the only possibility to increase occupant comfort. This paper describes an investigation of the hygrothermal influence when applying 100 mm of diffusion open interior insulation to a historic multi-storey solid masonry spandrel. The dormitory room with the insulated spandrel had a normal indoor climate...... showed no risk of damage from the changed hygrothermal conditions when applying interior insulation to a solid masonry spandrel....

  2. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Directory of Open Access Journals (Sweden)

    Biseniece Edite

    2018-03-01

    Full Text Available Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel in a cold climate (average 4000 heating degree days. We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  3. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Science.gov (United States)

    Biseniece, Edite; Freimanis, Ritvars; Purvins, Reinis; Gravelsins, Armands; Pumpurs, Aivars; Blumberga, Andra

    2018-03-01

    Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel) in a cold climate (average 4000 heating degree days). We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  4. Advanced Hygrothermal Performance of Building Component at Reconstruction of S. Radonezhskiy Temple in Volgograd

    Directory of Open Access Journals (Sweden)

    Korniyenko Sergey

    2016-01-01

    Full Text Available The paper presents new thermal design of external wall S. Radonezhskiy temple in Volgograd is developed according to author’s concept. The three-layer brick wall, including a thermal insulation layer from concrete with polystyrene aggregates, is considered. Calculation of interstitial condensation in building component is carried out according to simplified calculation method developed by the author and harmonized to ISO 13788. Analysis of calculation results shows that condensation occurs at one interface during some months but there is no accumulation over the year as all the condensate is predicted to evaporate again. Thus, there is no systematic moisture accumulation at the building component within a year. The risk of run-off from non-absorbent materials will be very low. Analysis of the evaporation rates at the interface shows that duration of drying wetted layer in external wall during initial stage does not exceed admissible values.

  5. Hygromorphic characterization of softwood under high resolution X-ray tomography for hygrothermal simulation

    Science.gov (United States)

    El Hachem, Chady; Abahri, Kamilia; Vicente, Jérôme; Bennacer, Rachid; Belarbi, Rafik

    2018-03-01

    Because of their complex hygromorphic shape, microstructural study of wooden materials behavior has recently been the point of interest of researchers. The purpose of this study, in a first part, consists in characterizing by high resolution X-ray tomography the microstructural properties of spruce wood. In a second part, the subresulting geometrical parameters will be incorporated when evaluating the wooden hygrothermal transfers behavior. To do so, volume reconstructions of 3 Dimensional images (3D), obtained with a voxel size of 0.5 μm were achieved. The post-treatment of the corresponding volumes has given access to averages and standard deviations of lumens' diameters and cell walls' thicknesses. These results were performed for both early wood and latewood. Further, a segmentation approach for individualizing wood lumens was developed, which presents an important challenge in understanding localized physical properties. In this context, 3D heat and mass transfers within the real reconstructed geometries took place in order to highlight the effect of wood directions on the equivalent conductivity and moisture diffusion coefficients. Results confirm that the softwood cellular structure has a critical impact on the reliability of the studied physical parameters.

  6. Hygrothermal risk on building heritage a methodology for a risk map

    CERN Document Server

    Delgado, João M P Q; Freitas, Vasco Peixoto

    2015-01-01

    This book presents a critical review of a criterion of risk, created to assess the flood risk to heritage buildings, and evaluates this criterion by applying it to the sample Portuguese heritage buildings. In a first approach, the total number of potential parameters is effectively reduced and the selected criteria are divided into two different groups: the monument’s location in relation to a waterway, and the behaviour of its construction material in contact with water. Above all, the book discusses the importance of architectural heritage and argues for the need to safeguard it from extreme climatic phenomena such as floods. As such, the book vividly reminds the scientific community that the intensification of the global warming and climate change will worsen throughout the 21st century, and that it is therefore necessary to adopt preventive measures to minimize, mitigate and control these adverse effects if we hope to avoid catastrophic consequences. At the same time, the book takes into account a broad...

  7. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  8. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  9. Hygrothermal Simulation of Wood Exposed To the Effect of External Climate

    Science.gov (United States)

    Dohnal, Jakub; Hradil, Petr; Pencik, Jan

    2017-10-01

    The article is focused on simulation of moisture transfer in wood of norway spruce (Picea abies L.). Experimental specimen was exposed to the northern climatic conditions in Lund University, Sweden. The moisture content of wood was measured 10 mm from the surface for nearly three years. The ABAQUS program was used for numerical modelling of moisture transfer simulation in 3D. The surface sorption of wood was simulated using user defined subroutine DFLUX developed by VTT Research Centre of Finland Ltd. for the needs of European Project Durable Timber Bridges. Climate data for the analysis was used from insitu measurement nearby realized by weather station. The temperature, relative humidity of the air and precipitation data was record each hour. Numerical analysis took into account influence of rain effect on different parts of specimen surface.

  10. Monitoring and simulations of hydrolysis in epoxy matrix composites during hygrothermal aging

    KAUST Repository

    El Yagoubi, Jalal; Lubineau, Gilles; Traidia, Abderrazak; Verdu, Jacques

    2015-01-01

    In this paper, we studied the water transport in thermoset matrices. We used Fourier Transform Infrared analysis (FTIR) during sorption/desorption experiments to investigate the interaction between sorbed water and the epoxy network. Our results demonstrated that the polymer matrix undergoes hydrolysis. We found that the chemical species involved in the reaction process was the residual anhydride groups. These results support the physical basis of the three-dimensional (3D) diffusion/reaction model. We finally showed that this model is able to reproduce multi-cycle sorption/desorption experiment, as well as water uptake in hybrid metal/epoxy samples. We simulated the 3D distributions of the diffusing water and the reacted water.

  11. Hygrothermal optimisation of museum storage spaces

    DEFF Research Database (Denmark)

    Janssen, Hans; Christensen, Jørgen Erik

    2013-01-01

    Despite the large economic and ecologic costs, museum storage spaces are often equipped with extensive air conditioning, to provide the desired stable interior climate. The new “passive conditioning” paradigm aims at resolving these costs: a high-hygrothermal-inertia building with a high-hygrothe......Despite the large economic and ecologic costs, museum storage spaces are often equipped with extensive air conditioning, to provide the desired stable interior climate. The new “passive conditioning” paradigm aims at resolving these costs: a high-hygrothermal-inertia building with a high...... and ecologic cost of conditioning, the paper finally assesses “concentrated dehumidification”: dehumidification during a part of the day only, while leaving the humidity free-running during the rest of the day. It is established that the hygric inertia of the interior air, building walls and stored objects...

  12. Effect of façade impregnation on feasibility of capillary active thermal internal insulation for a historic dormitory – A hygrothermal simulation study

    DEFF Research Database (Denmark)

    Finken, Gholam Reza; Bjarløv, Søren Peter; Peuhkuri, Ruut Hannele

    2016-01-01

    Internal insulation of external walls is known to create moisture performance challenges due to increased moisture levels and condensation risk on the cold side of the insulation. Capillary active/hydrophilic insulations have been introduced to solve these moisture problems, since they are able...... to transport liquid moisture to the inner surface and enable it to dry. Experience with this insulation type is rare in Denmark. In hygrothermal 1D computer simulations, several more or less capillary active insulation systems (AAC, calcium silicate, IQ-Therm) in various thicknesses (30–150 mm) have been....... A moisture safe construction was only achieved when exterior façade impregnation shielding against driving rain was added. The best system showed acceptable relative humidity values both behind the insulation and on the interior surface, a significant increase in minimum temperature on the interior surface...

  13. Hygrothermal performance of ventilated wooden cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nore, Kristine

    2009-10-15

    ; temperature, wooden moisture content, time of surface wetness, relative humidity in cavities and wind-driven rain (WDR). Four years have been analysed and recalculated by numerical simulation. The moderate climate of Trondheim provides thorough boundary conditions for hygrothermal analyses of building envelopes. The WDR was measured in the cardinal directions in a free field and on each facade of the test house. Eight WDR gauges were mounted on the west facing wall with the highest amount of WDR. The WDR measurements are provided in a database on the web that is available for the validation of WDR simulations. A statistical analysis investigated which climate parameters contributed most to the fluctuations of the moisture content in the wood. It was found that air temperature, global radiation and wind velocity were the three main parameters. WDR was the fourth most important parameter. WDR only defines moistening and not drying, which might be the reason for not being a determinate parameter for the fluctuations in the moisture content in the wood. The time of wetness was further investigated and compared to WDR. The surface wetness sensor measures describes periods with liquid water moistening more accurately and includes the period with free water on the surface after rain and by condensation. The importance of the wind velocity led to a separate CFD study of the air flow in the cavities when including the bulk wind flow around the test house. The cavity flow is not measured at the test house. The CFD study resulted in a function describing the air change rate of the ventilated cavities dependent on wind velocity, wind direction and cavity opening. The function was tested in WUFI 1D calculations. The calculations showed good correlation with measured data when including air change rate in calculations of cavity temperature and RH. It was intended to measure the moisture profile in the wood cladding with moisture pins, by measuring the electrical resistance in different

  14. Moisture performance of building materials: From material characterization to building simulation using the Moisture Buffer Value concept

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, Marc Olivier [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil); LEPTAB, University of La Rochelle, La Rochelle, 17042 Cedex 1 (France); Mendonca, Katia Cordeiro [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil)

    2009-02-15

    Predicting the indoor air relative humidity evolution is of great importance to evaluate people thermal comfort, perceived air quality and energy consumption. In building environments, porous materials of the envelope and furniture act on the indoor air humidity by reducing its variations. Solving the physical processes involved inside the porous materials requires the knowledge of the material hygrothermal properties that needs multiple and, for some of them, time-consuming experimental procedures. Recently, both the NORDTEST Project and Japanese Industrial Standard described a new Moisture Buffer Capacity index that accounts for surrounding air vapor concentration variation. The Moisture Buffer Value (MBV) indicates the amount of water vapor that is transported in or out of a material, during a certain period of time, when the vapor concentration of the surrounding air varies. The MBV evaluation requires only one experimental procedure and its value permits a direct comparison of the building materials moisture performance. However, two limitations can be distinguished: first, no relation between the MBV and the usual material hygrothermal properties has been clearly identified and second, no model has been proposed to actually use the MBV in building simulation. The present study aims to solve these two problems. First, the MBV fundamentals are introduced and discussed; followed by its relation with the usual material properties. Then, a lumped model for building simulation, whose parameters can be determined from the MBV experimental procedure, is described. To finish, examples of the use of this MBV-based lumped model for moisture prediction in buildings are presented. (author)

  15. Building performance simulation for sustainable buildings

    NARCIS (Netherlands)

    Hensen, J.L.M.

    2010-01-01

    This paper aims to provide a general view of the background and current state of building performance simulation, which has the potential to deliver, directly or indirectly, substantial benefits to building stakeholders and to the environment. However the building simulation community faces many

  16. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption

    DEFF Research Database (Denmark)

    Masaru, Abuku; Janssen, Hans; Roels, Staf

    2009-01-01

    This paper gives an onset to whole building hygrothermal modelling in which the interaction between interior and exterior climates via building enclosures is simulated under a moderately cold and humid climate. The focus is particularly on the impact of wind-driven rain (WDR) oil the hygrothermal...... response, mould growth at interior wall surfaces, indoor climate and energy consumption. First the WDR load oil the facades of a 4 m x 4 m x 10 m tower is determined. Then the hygrothermal behaviour of the brick walls is analysed oil a horizontal slice through the tower. The simulations demonstrate...

  17. Mould growth prediction by computational simulation on historic buildings

    OpenAIRE

    Krus, M.; Kilian, R.; Sedlbauer, K.

    2007-01-01

    Historical buildings are often renovated with a high expenditure of time and money without investigating and considering the causes of the damages. In many cases historic buildings can only be maintained by changing their usage. This change of use may influence the interior climate enormously. To assess the effect on the risk of mould growth on building parts or historic monuments a predictive model has been developed recently, describing the hygrothermal behaviour of the spore. It allows for...

  18. Permeable and Hygroscopic Building Envelopes: Hygrothermal Simulations of “Det Naturlige Hus”

    DEFF Research Database (Denmark)

    Bastien, Diane; Winther-Gaasvig, Martin

    2017-01-01

    materials such as clay plasters can significantly reduce indoor humidity fluctuations, which yields many other indirect health benefits. However, with many countries that commonly use vapour retarders, there is lack of knowledge and general design guidelines on how to design safe permeable and hygroscopic...

  19. Cold Climate Foundation Retrofit Energy Savings: The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, L. F.; Steigauf, B.

    2013-04-01

    A split simulation whole building energy/3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  20. Cold Climate Foundation Retrofit Energy Savings. The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Steigauf, Brianna [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2013-04-01

    A split simulation whole building energy / 3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  1. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  2. BUILDING MECHATRONICS SIMULATION SYSTEM

    OpenAIRE

    HUSI Géza; SZÁSZ Csaba; HASHIMOTO Hideki; NIITSUMA Mihoko

    2014-01-01

    In international references a net zero-energy building (NZEB) is defined as a residential or commercial building with greatly reduced energy needs through efficiency gains such that the balance of energy needs can be supplied with renewable technologies. According to this general term definition, the essence of the concept is that by using low-cost and locally available nonpolluting sources, they generate energy onsite, in a quantity equal or greater than the total amo...

  3. Experimental Study on Bond Behavior of FRP-Concrete Interface in Hygrothermal Environment

    Directory of Open Access Journals (Sweden)

    X. H. Zheng

    2016-01-01

    Full Text Available As the technique of fiber-reinforced polymer (FRP composite material strengthened reinforced concrete structures is widely used in the field of civil engineering, durability of the strengthened structures has attracted more attention in recent years. Hygrothermal environment has an adverse effect on the bond behavior of the interface between FRP and concrete. This paper focuses on the bond durability of carbon fiber laminate- (CFL- concrete interface in hygrothermal condition which simulates the climate characteristic in South China. Twenty 100 mm × 100 mm × 720 mm specimens were divided into 6 groups based on different temperature and humidity. After pretreatment in hygrothermal environment, the specimens were tested using double shear method. Strain gauges bonded along the CFL surface and linear variation displacement transducers (LVDTs were used to measure longitudinal strains and slip of the interface. Failure mode, ultimate capacity, load-deflection relationship, and relative slip were analyzed. The bond behavior of FRP-concrete interface under hygrothermal environment was studied. Results show that the ultimate bearing capacity of the interface reduced after exposure to hygrothermal environments. The decreasing ranges were up to 27.9% after exposure at high temperature and humidity (60°C, 95% RH. The maximum strains (εmax of the specimens pretreated decreased obviously which indicated decay of the bond behavior after exposure to the hygrothermal environment.

  4. LARGE BUILDING HVAC SIMULATION

    Science.gov (United States)

    The report discusses the monitoring and collection of data relating to indoor pressures and radon concentrations under several test conditions in a large school building in Bartow, Florida. The Florida Solar Energy Center (FSEC) used an integrated computational software, FSEC 3.0...

  5. Characterization of fracture toughness of epoxy resin after hygrothermal aging

    KAUST Repository

    Quispe, Gustavo Q.

    2013-07-01

    Characterization of fracture toughness of epoxy resin after hygrothermal ageing Gustavo Quino Quispe The aim of this work is to characterize the e ects of hygrothermal aging in the plain strain fracture toughness of the epoxy system composed by cycloaliphatic epoxy resin and diglycidyl ether of bisphenol-A (DGEBA). For this, after having been under hygrothermal aging in a climatic chamber, epoxy samples were studied using ASTM D5045 fracture toughness test, and micrography and roughness measurements of the fracture surface. It is reported a rapid decrease of GIc and KIc during the rst 2 days. Moreover, a numerical model [13] was used to simulate and see with more detail the water absorption in the aged samples. From that, it was observed the heterogeneous distribution of water. Accordingly, it was proposed that the results should be correlated with the water content at the vicinity of the crack tip. Consequently, it was possible to obtain, by quasi-static simulations, the ideal load-displacement curves of crack propagation in the heterogeneous samples. Finally, another contribution of this work is the study of the fracture surface, that gives a clue of the relationship among the fracture energy, the appearance of microcracks in the fracture surface, and the roughness (Ra).

  6. Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht, Cheryn [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-09-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  7. Material characterization models and test methods for historic building materials

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Peuhkuri, Ruut Hannele; Møller, Eva B.

    2017-01-01

    Predictions of long term hygrothermal performance can be assessed by dynamic hygrothermal simulations, in which material parameters are crucial input. Material parameters for especially historic materials are often unknown; therefore, there is a need to determine important parameters, and simple...

  8. Teaching Building Science with Simulations

    Science.gov (United States)

    Hatherly, Amanda

    2017-01-01

    Teaching building science to community college students can be challenging given both the macro (houses change subject to varying seasons) and the micro (heat transfer, moisture movement) level of the topics taught. Simulations and games can provide a way of learning material that can otherwise be difficult for students to understand. In this…

  9. Simulating non-isothermal water vapour transfer : an experimental validation on multi-layered building components

    NARCIS (Netherlands)

    Roels, S.; Depraetere, W.; Carmeliet, J.; Hens, H.

    1999-01-01

    The aim of this study is to validate different analytical relations used in hygrothermal simulations for the material properties. Therefore, a valida tion experiment on four types of flat roofs has been set up at the laboratory. All rele vant material properties of the individual material layers

  10. Building Performance Simulation for Sustainable Energy Use in Buildings

    NARCIS (Netherlands)

    Hensen, J.L.M.

    2010-01-01

    This paper aims to provide a general view of the background and current state of building performance simulation, which has the potential to deliver, directly or indirectly, substantial benefits to building stakeholders and to the environment. However the building simulation community faces many

  11. Building performance simulation for sustainable building design and operation

    NARCIS (Netherlands)

    Hensen, J.L.M.

    2011-01-01

    This paper aims to provide a general view of the background and current state of building performance simulation, which has the potential to deliver, directly or indirectly, substantial benefits to building stakeholders and to the environment. However the building simulation community faces many

  12. Impact of coupled heat and moisture transfer effects on buildings energy consuption

    Directory of Open Access Journals (Sweden)

    Ferroukhi Mohammed Yacine

    2017-01-01

    Full Text Available Coupled heat, air, and moisture transfers through building envelope have an important effect on prediction of building energy requirements. Several works were conducted in order to integrate hygrothermal transfers in dynamic buildings simulations codes. However, the incorporation of multidirectional hygrothermal transfer analysis in the envelope into building simulation tools is rarely considered. In this work, coupled heat, air, and moisture (HAM transfer model in multilayer walls was established. Thereafter, the HAM model is coupled dynamically to a building behavior code (BES.The coupling concerns a co-simulation between COMSOL Multiphysics and TRNSYS software. Afterward, the HAM-BES co-simulation accuracy was verified. Then, HAM-BES co-simulation platform was applied to a case study with various types of climates (temperate, hot and humid, cold and humid. Three simulations cases were carried out. The first simulation case consists of the TRNSYS model without HAM transfer model. The second simulation case, 1-D HAM model for the envelope was integrated in TRNSYS code. For the third one, 1-D HAM model for the wall and 2-D HAM model for thermal bridges were coupled to the thermal building model of TRNSYS. Analysis of the results confirms the significant impact of 2-D envelope hygrothermal transfers on the indoor thermal and moisture behavior of building as well as on the energy building assessment. These conclusions are shown for different studied climates.

  13. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  14. Quantification of Uncertainty in Thermal Building Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Haghighat, F.; Frier, Christian

    In order to quantify uncertainty in thermal building simulation stochastic modelling is applied on a building model. An application of stochastic differential equations is presented in Part 1 comprising a general heat balance for an arbitrary number of loads and zones in a building to determine...

  15. Simulation for (sustainable) building design: Czech experiences

    NARCIS (Netherlands)

    Bartak, M.; Drkal, F.; Hensen, J.L.M.; Lain, M.; Schwarzer, J.; Sourek, B.

    2001-01-01

    This paper attempts to outline the current state-of-the-art in the Czech Republic regarding the use of integrated building performance simulation as a design tool. Integrated performance simulation for reducing the environmental impact of buildings is illustrated by means of three recent HVAC

  16. Using Expert Systems To Build Cognitive Simulations.

    Science.gov (United States)

    Jonassen, David H.; Wang, Sherwood

    2003-01-01

    Cognitive simulations are runnable computer programs for modeling human cognitive activities. A case study is reported where expert systems were used as a formalism for modeling metacognitive processes in a seminar. Building cognitive simulations engages intensive introspection, ownership and meaning making in learners who build them. (Author/AEF)

  17. Energy simulation in building design

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1992-01-01

    Design decision support related to building energy consumption and / or indoor climate, should be based on an integral approach of environment, building, heating, ventilating and airconditioning (HVAC) system and occupants. The tools to achieve this are now available in the form of computer

  18. Comparative Validation of Building Simulation Software

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The scope of this subtask is to perform a comparative validation of the building simulation software for the buildings with the double skin façade. The outline of the results in the comparative validation identifies the areas where is no correspondence achieved, i.e. calculation of the air flow r...... is that the comparative validation can be regarded as the main argument to continue the validation of the building simulation software for the buildings with the double skin façade with the empirical validation test cases.......The scope of this subtask is to perform a comparative validation of the building simulation software for the buildings with the double skin façade. The outline of the results in the comparative validation identifies the areas where is no correspondence achieved, i.e. calculation of the air flow...

  19. Long-term monitoring of the Sedlec Ossuary - Analysis of hygrothermal conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Balík, Lukáš; Maděra, Jiří; Černý, Robert

    2016-07-01

    The Sedlec Ossuary is one of the twelve UNESCO World Heritage Sites in the Czech Republic. Although the ossuary is listed among the most visited Czech tourist attractions, its technical state is almost critical and a radical renovation is necessary. On this account, hygrothermal performance of the ossuary is experimentally researched in the presented paper in order to get information on moisture sources and to get necessary data for optimized design of renovation treatments and reconstruction solutions that will allow preserve the historical significance of this attractive heritage site. Within the performed experimental analysis, the interior and exterior climatic conditions are monitored over an almost three year period together with relative humidity and temperature profiles measured in the most damage parts of the ossuary chapel. On the basis of measured data, the long-term hygrothermal state of the ossuary building is accessed and the periods of possible surface condensation are identified.

  20. ANALYSIS OF HYGROTHERMAL CONDITIONS OF EXTERNAL PARTITIONS IN AN UNDERGROUND FRUIT STORE

    Directory of Open Access Journals (Sweden)

    Grzegorz Nawalany

    2016-09-01

    Full Text Available The paper presents the analysis of hygrothermal conditions of external partitions in an underground fruit store. The results of measurements of temperature and humidity of the indoor and outdoor air as well as the surface surrounding temperature and the temperature of the air surrounding the store constituted the boundary conditions for the hygrothermal calculations. The paper presents the calculation of the distribution of the temperature and humidity on the ground floor, the wall contacting the ground, the wall contacting the outside air, and the ceiling above the storage chamber. The heat and moisture calculations have shown high risk of condensation submerged in non-insulated external walls. The condition of the adaptation of a traditional cold store to a simple and atmosphere controlled cold one is to increase the thermal resistance of the partitions. Such a solution will let cut the energy demand in those types of agricultural buildings.

  1. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...... of the aggregated building energy use will not only ensure security of supply but also enhance the stabilization of national energy balances. In this study, the aggregation of building energy demand was investigated for a real case in Sønderborg, Denmark. Sixteen single-family houses -mainly built in the 1960s......- were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool...

  2. Integrated building (and) airflow simulation: an overview

    NARCIS (Netherlands)

    Hensen, J.L.M.

    2002-01-01

    This paper aims to give a broad overview of building airflow simulation, and advocates that the essential ingredients for quality assurance are: domain knowledge; selection of appropriate level of resolution; calibration and validation; and a correct performance assessment methodology. Directions

  3. Collapse simulation of building constructions

    Directory of Open Access Journals (Sweden)

    Nekrest'yanov Viktor Nikolaevich

    Full Text Available The physical reasons for building structures destruction are both the forces arising at stress-strain state of construction elements and external influences arising at emergency situations, as well as their moments, impulses and periodic impulses with the frequencies close to of fluctuations frequencies of construction elements. We shall call the mathematical calculation models for the parameters-reasons of destructions the basic models. The basic models of destruction of building structures elements allow not only providing necessary level of reliability and survivability of the elements and the construction as a whole already at the stage of their design, but also giving the chance, at their corresponding completion, to provide rational decisions on the general need of recovery works and their volume depending on destruction level. Especially important for rational design decisions development, which ensure the demanded constructional safety of building structures, is library creation of the basic mathematical models of standard processes of bearing elements destructions for standard construction designs for the purpose of the further forecast (assessment of the level and probabilities of standard destructions. Some basic mathematical models of destructions processes of the standard elements of building structures are presented in the present article. A model of accounting for construction defects and a model of obtaining requirements to probabilities of partial destructions of a construction are given. Both of these models are probabilistic.

  4. Empirical Validation of Building Simulation Software

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  5. micro-mechanical modeling and numerical simulation of creep in concrete taking into account the effects of micro-cracking and hygro-thermal

    International Nuclear Information System (INIS)

    Thai, M.Q.

    2012-01-01

    Concrete is a complex heterogeneous material whose deformations include a delayed part that is affected by a number of factors such as temperature, relative humidity and microstructure evolution. Taking into account differed deformations and in particular creep is essential in the computation of concrete structures such as those dedicated to radioactive waste storage. The present work aims: (1) at elaborating a simple and robust model of creep for concrete by using micro-mechanics and accounting for the effects of damage, temperature and relative humidity; (2) at numerically implementing the creep model developed in a finite element code so as to simulate the behavior of simple structural elements in concrete. To achieve this twofold objective, the present work is partitioned into three parts. In the first part the cement-based material at the microscopic scale is taken to consist of a linear viscoelastic matrix characterized by a generalized Maxwell model and of particulate phases representing elastic aggregates and pores. The Mori-Tanaka micro-mechanical scheme, the Laplace-Carson transform and its inversion are then used to obtain analytical or numerical estimates for the mechanical and hydro-mechanical parameters of the material. Next, the original micromechanical model of creep is coupled to the damage model of Mazars through the concept of pseudo-deformations introduced by Schapery. The parameters involved in the creep-damage model thus established are systematically identified using available experimental data. Finally, the effects of temperature and relative humidity are accounted for in the creep-damage model by using the equivalent time method; the efficiency of this approach is demonstrated and discussed in the case of simple creep tests. (author) [fr

  6. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  7. Experimental Study on the Hygrothermal Behavior of a Coated Sprayed Hemp Concrete Wall

    Directory of Open Access Journals (Sweden)

    Anthony Magueresse

    2013-01-01

    Full Text Available Hemp concrete is a sustainable lightweight concrete that became popular in the field of building construction because of its thermal and environmental properties. However; available experimental data on its hygrothermal behavior are rather scarce in the literature. This paper describes the design of a large-scale experiment developed to investigate the hygrothermal behavior of hemp concrete cast around a timber frame through a spraying process; and then coated with lime-based plaster. The equipment is composed of two climatic chambers surrounding the tested wall. The experiment consists of maintaining the indoor climate at constant values and applying incremental steps of temperature; relative humidity or vapor pressure in the outdoor chamber. Temperature and relative humidity of the room air and on various depths inside the wall are continuously registered during the experiments and evaporation phenomena are observed. The influence of the plaster on the hygrothermal behavior of hemp concrete is investigated. Moreover; a comparison of experimental temperatures with numerical results obtained from a purely conductive thermal model is proposed. Comparing the model with the measured data gave satisfactory agreement.

  8. Building America House Simulation Protocols (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Engebrecht, C.

    2010-10-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  9. BLAST: Building energy simulation in Hong Kong

    Science.gov (United States)

    Fong, Sai-Keung

    1999-11-01

    The characteristics of energy use in buildings under local weather conditions were studied and evaluated using the energy simulation program BLAST-3.0. The parameters used in the energy simulation for the study and evaluation include the architectural features, different internal building heat load settings and weather data. In this study, mathematical equations and the associated coefficients useful to the industry were established. A technology for estimating energy use in buildings under local weather conditions was developed by using the results of this study. A weather data file of Typical Meteorological Years (TMY) has been compiled for building energy studies by analyzing and evaluating the weather of Hong Kong from the year 1979 to 1988. The weather data file TMY and the example weather years 1980 and 1988 were used by BLAST-3.0 to evaluate and study the energy use in different buildings. BLAST-3.0 was compared with other building energy simulation and approximation methods: Bin method and Degree Days method. Energy use in rectangular compartments of different volumes varying from 4,000 m3 to 40,000 m3 with different aspect ratios were analyzed. The use of energy in buildings with concrete roofs was compared with those with glass roofs at indoor temperature 21°C, 23°C and 25°C. Correlation relationships among building energy, space volume, monthly mean temperature and solar radiation were derived and investigated. The effects of space volume, monthly mean temperature and solar radiation on building energy were evaluated. The coefficients of the mathematical relationships between space volume and energy use in a building were computed and found satisfactory. The calculated coefficients can be used for quick estimation of energy use in buildings under similar situations. To study energy use in buildings, the cooling load per floor area against room volume was investigated. The case of an air-conditioned single compartment with 5 m ceiling height was

  10. 2014 Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Engebrecht, C. Metzger [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2014-03-01

    As Building America has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  11. Building Airport Surface HITL Simulation Capability

    Science.gov (United States)

    Chinn, Fay Cherie

    2016-01-01

    FutureFlight Central is a high fidelity, real-time simulator designed to study surface operations and automation. As an air traffic control tower simulator, FFC allows stakeholders such as the FAA, controllers, pilots, airports, and airlines to develop and test advanced surface and terminal area concepts and automation including NextGen and beyond automation concepts and tools. These technologies will improve the safety, capacity and environmental issues facing the National Airspace system. FFC also has extensive video streaming capabilities, which combined with the 3-D database capability makes the facility ideal for any research needing an immersive virtual and or video environment. FutureFlight Central allows human in the loop testing which accommodates human interactions and errors giving a more complete picture than fast time simulations. This presentation describes FFCs capabilities and the components necessary to build an airport surface human in the loop simulation capability.

  12. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  13. Approaching Sentient Building Performance Simulation Systems

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer; Perkov, Thomas; Heller, Alfred

    2014-01-01

    Sentient BPS systems can combine one or more high precision BPS and provide near instantaneous performance feedback directly in the design tool, thus providing speed and precision of building performance in the early design stages. Sentient BPS systems are essentially combining: 1) design tools, 2......) parametric tools, 3) BPS tools, 4) dynamic databases 5) interpolation techniques and 6) prediction techniques as a fast and valid simulation system, in the early design stage....

  14. Proactive building simulations for early design support

    DEFF Research Database (Denmark)

    Østergård, Torben

    important design parameters that require the most attention when seeking to improve building performance. Fast metamodels facilitate immediate feedback on design changes and reduce time-consumption related to performance assessment. Ultimately, the work described in this thesis and on buildingdesign...... that relies on thousands of simulations representing the multidimensional design space. Interactive visualizations enable decision-makers to explore, in real-time, the vast design space and identify favorable solutions which satisfy the needs of different stakeholders. Sensitivity analysis helps reveal...

  15. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick facades

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2016-01-01

    The use of internal insulation is investigated in a heritage building block with wooden beam construction and masonry brick walls as part of an energy renovation. Measurements were carried out and compared to results from a hygrothermal simulation model. The risk of mould growth in the wooden beams...... insulation on north-orientated walls, since the drying potential is reduced. Additionally, caution should be exercised also with west-orientated walls....

  16. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    Science.gov (United States)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  17. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus

    2014-01-01

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  18. When to stop drying fruit: Insights from hygrothermal modelling

    International Nuclear Information System (INIS)

    Defraeye, Thijs

    2017-01-01

    Highlights: • Partial dehydration reduces energy consumption and processing time and improves product quality. • This study gives a quantitative insight in when fruit drying should be stopped. • Decrease in dryer residence time of 2%, 24% and 70% are found for different stopping criteria. - Abstract: Stopping the drying process prior to complete dehydration reduces energy consumption and processing time but can also improve product quality. Using hygrothermal simulations, different stopping criteria are evaluated, which are based on the final water activity and residual moisture content in the fruit. Their impact on drying time and moisture redistribution kinetics inside fruit is quantified. One of the variants leads to a significant reduction in residence time in the dryer (24%), compared to full dehydration. For this variant, drying is stopped when the average moisture content in the sample reaches the value corresponding to an equilibrium water activity of 60% in the sample, as determined from the sorption isotherm. At the same time, this variant does not induce problems with fruit spoilage, as a sufficiently low water activity is reached after moisture redistribution during relaxation in the ambient environment. In addition, the relation of the drying time to the drying air temperature was quantified for all stopping criteria, as well as the impact of the humidity of the ambient environment in which the dried fruits are placed afterwards. This study gives a better quantitative insight in when fruit drying should be stopped, given specific drying conditions, without having to compromise food safety.

  19. Building a parallel file system simulator

    International Nuclear Information System (INIS)

    Molina-Estolano, E; Maltzahn, C; Brandt, S A; Bent, J

    2009-01-01

    Parallel file systems are gaining in popularity in high-end computing centers as well as commercial data centers. High-end computing systems are expected to scale exponentially and to pose new challenges to their storage scalability in terms of cost and power. To address these challenges scientists and file system designers will need a thorough understanding of the design space of parallel file systems. Yet there exist few systematic studies of parallel file system behavior at petabyte- and exabyte scale. An important reason is the significant cost of getting access to large-scale hardware to test parallel file systems. To contribute to this understanding we are building a parallel file system simulator that can simulate parallel file systems at very large scale. Our goal is to simulate petabyte-scale parallel file systems on a small cluster or even a single machine in reasonable time and fidelity. With this simulator, file system experts will be able to tune existing file systems for specific workloads, scientists and file system deployment engineers will be able to better communicate workload requirements, file system designers and researchers will be able to try out design alternatives and innovations at scale, and instructors will be able to study very large-scale parallel file system behavior in the class room. In this paper we describe our approach and provide preliminary results that are encouraging both in terms of fidelity and simulation scalability.

  20. 2014 Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht-Metzger, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    As BA has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  1. Hygrothermal Properties and Performance of Sea Grass Insulation

    DEFF Research Database (Denmark)

    Eriksen, Marlene Stenberg Hagen; Laursen, Theresa Back; Rode, Carsten

    2008-01-01

    In the attempt to obtain knowledge of the hygrothermal properties of sea grass as thermal insulation, experiments have been carried out in the laboratory to determine the thermal conductivity, sorption properties and the water vapour permeability of the material. In order to investigate the hygro......In the attempt to obtain knowledge of the hygrothermal properties of sea grass as thermal insulation, experiments have been carried out in the laboratory to determine the thermal conductivity, sorption properties and the water vapour permeability of the material. In order to investigate...

  2. Achieving informed decision-making for net zero energy buildings design using building performance simulation tools

    NARCIS (Netherlands)

    Attia, S.G.; Gratia, E.; De Herde, A.; Hensen, J.L.M.

    2013-01-01

    Building performance simulation (BPS) is the basis for informed decision-making of Net Zero Energy Buildings (NZEBs) design. This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the

  3. Accelerated hygrothermal stabilization of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Jeffrey Alan [Univ. of California, Davis, CA (United States)

    1994-05-01

    Experimentation validated a simple moisture conditioning scheme to prepare Gr/Ep composite parts for precision applications by measuring dimensional changes over 90 days. It was shown that an elevated temperature moisture conditioning scheme produced a dimensionally stable part from which precision structures could be built/machined without significant moisture induced dimensional changes after fabrication. Conversely, that unconditioned Gr/Ep composite panels exhibited unacceptably large dimensional changes (i.e., greater than 125 ppM). It was also shown that time required to produce stable parts was shorter, by more than an order of magnitude, employing the conditioning scheme than using no conditioning scheme (46 days versus 1000+ days). Two final use environments were chosen for the experiments: 50% RH/21C and 0% RH/21C. Fiberite 3034K was chosen for its widespread use in aerospace applications. Two typical lay-ups were chosen, one with low sensitivity to hygrothermal distortions and the other high sensitivity: [0, ± 45, 90]s, [0, ± 15, 0]s. By employing an elevated temperature, constant humidity conditioning scheme, test panels achieved an equilibrium moisture content in less time, by more than an order of magnitude, than panels exposed to the same humidity environment and ambient temperature. Dimensional changes, over 90 days, were up to 4 times lower in the conditioned panels compared to unconditioned panels. Analysis of weight change versus time of test coupons concluded that the out-of-autoclave moisture content of Fiberite 3034K varied between 0.06 and 0.1%.

  4. Investigation of the Hygrothermal Performance of Alternative Insulation Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Kristiansen, Finn Harken; Rasmussen, Niels T.

    1999-01-01

    The paper gives an account of hygrothermal investigations carried out on some insulation products which are "alternative" to the ones that are traditionally used in Danish constructions. The alternative products are claimed to be friendly both to the environment and to the labour force. The mater......The paper gives an account of hygrothermal investigations carried out on some insulation products which are "alternative" to the ones that are traditionally used in Danish constructions. The alternative products are claimed to be friendly both to the environment and to the labour force...... is determined for the different materials with a guarded hot plate apparatus in which different vapour pressure conditions can be maintained over the specimens. The apparatus and some results are presented.2. Computational analysis of the hygrothermal performance of constructions with alternative insulation...... products.The hygrothermal performance of constructions with alternative insulation products is analysed with a computational model for combined heat and moisture transfer. The analysis concerns both traditional wall and roof constructions with the alternative insulation products, and some alternative...

  5. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  6. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  7. Experimental Study of the Hygrothermal Effect on Wear Behavior of Composite Materials

    OpenAIRE

    Fadhel Abbas. Abdulla; Katea L. Hamid

    2017-01-01

    The hygrothermal effect on the wear behavior of composite material (fiberglass and polyester resin vf=40%) was investigated experimentally in this work. The study includes manufacturing of test device (pin on disc) according to ASTM G 99. In order to study the hygrothermal effect on wear behavior of composite materials the hygrothermal chamber was manufactured. The experimental results show that the wear of glass fiber/polyester increased with increasing the load, sliding speed and sliding di...

  8. Method for simulating predictive control of building systems operation in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2011-01-01

    A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...

  9. Co-simulation of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  10. Learning in a landscape : Simulation-building as reflexive intervention

    NARCIS (Netherlands)

    Beaulieu, Anne; Ratto, Matt; Scharnhorst, Andrea

    2013-01-01

    This article makes a dual contribution to scholarship in science and technology studies (STS) on simulation-building. It both documents a specific simulation-building project, and demonstrates a concrete contribution to interdisciplinary work of STS insights. The article analyses the struggles that

  11. Building performance simulation as a design tool for refurbishment of buildings

    NARCIS (Netherlands)

    Hensen, J.L.M.; Bartak, M.; Drkal, F.; Dunovska, T.; Lain, M.; Matuska, T.; Schwarzer, J.; Sourek, B.; Bednar, T.

    2004-01-01

    This paper attempts to outline the current state-of-the-art regarding the use of building performance simulation as a design tool for refurbishment of buildings. This is illus-trated by means of three recent studies for conversion of historical buildings (an early 20th century factory, and a water

  12. Hygrothermal analysis of surface layers of historical masonry

    Science.gov (United States)

    Kočí, Václav; Maděra, Jiří; Keppert, Martin; Černý, Robert

    2017-11-01

    The paper deals with the hygrothermal analysis of surface layers of historical masonry. Solid brick provided with a traditional and two modified lime-based plasters is studied. The heat and moisture transport in the envelope is induced by an exposure of the wall from the exterior side to dynamic climatic conditions of Olomouc, Czech Republic. The transport processes are described using diffusion type of mathematical model based on experimentally determined material properties. The computational results indicate that hygric transport and accumulation properties of exterior plasters affect the hygrothermal performance of the underlying solid brick in a very significant way, being able to regulate the amount of transported moisture. The modified lime plasters are not found generally superior to the traditional lime plasters in that respect. Therefore, their suitability for historical masonry should be assessed case by case, with a particular attention to the climatic conditions and to the properties of the load bearing structure.

  13. Distributed dynamic simulations of networked control and building performance applications.

    Science.gov (United States)

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  14. Comparison of calculation and simulation of evacuation in real buildings

    Science.gov (United States)

    Szénay, Martin; Lopušniak, Martin

    2018-03-01

    Each building must meet requirements for safe evacuation in order to prevent casualties. Therefore methods for evaluation of evacuation are used when designing buildings. In the paper, calculation methods were tested on three real buildings. The testing used methods of evacuation time calculation pursuant to Slovak standards and evacuation time calculation using the buildingExodus simulation software. If calculation methods have been suitably selected taking into account the nature of evacuation and at the same time if correct values of parameters were entered, we will be able to obtain almost identical times of evacuation in comparison with real results obtained from simulation. The difference can range from 1% to 27%.

  15. Experimental Study of the Hygrothermal Effect on Wear Behavior of Composite Materials

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas. Abdulla

    2017-07-01

    Full Text Available The hygrothermal effect on the wear behavior of composite material (fiberglass and polyester resin vf=40% was investigated experimentally in this work. The study includes manufacturing of test device (pin on disc according to ASTM G 99. In order to study the hygrothermal effect on wear behavior of composite materials the hygrothermal chamber was manufactured. The experimental results show that the wear of glass fiber/polyester increased with increasing the load, sliding speed and sliding distance. The load and sliding distance were more effective on the wear of the composite rather than sliding speed. Also, it has been revealed that, the hygrothermal is considerable effect that, the wear rate of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect. Applied load is the wear factor that has the highest physical influence on the wear of composites materials than other wear factors. Also, the wear of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect.

  16. Benchmarking of the advanced hygrothermal model-hygIRC with mid scale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Maref, W.; Lacasse, M.; Kumaran, K.; Swinton, M.C. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Research in Construction

    2002-07-01

    An experimental study has been conducted to benchmark an advanced hygrothermal model entitled hygIRC which can be used to estimate the drying response of oriented strand board (OSB) used in timber-frame construction. Three specimens of OSB boards were immersed in water for 5 days and then allowed to stabilise in a sealed tank. A comparison of results from the computer model simulations to those obtained from experimental tests and laboratory measurements showed good agreement in terms of the shape of the drying curve and time taken to reach equilibrium moisture content. In general, it was determined that the drying process is controlled by the vapour permeability of the membrane. The higher the vapour permeability, the faster the rate of drying in a given condition. 11 refs., 1 tab., 9 figs.

  17. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...

  18. Co-simulation of building energy simulation and computational fluid dynamics for whole-building heat, air and moisture engineering

    NARCIS (Netherlands)

    Mirsadeghi, M.

    2011-01-01

    Building performance simulation (BPS) is widely applied to analyse heat, air and moisture (HAM) related issues in the indoor environment such as energy consumption, thermal comfort, condensation and mould growth. The uncertainty associated with such simulations can be high, and incorrect simulation

  19. Building a National Simulation Program in Rwanda Through the Use ...

    African Journals Online (AJOL)

    KHI) and VVOB (the Flemish Interna- tional Corporation in Belgium). Through this partnership former KHI, currently College of Medicine and. Health Sciences of the University of Rwanda – ( UR-CMHS) was able to build an initial simulation ...

  20. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  1. Empirical Validation of Building Simulation Software : Modeling of Double Facades

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  2. First Swiss building and urban simulation conference. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zweifel, G.; Citherlet, S.; Afjei, T.; Pahud, D.; Robinson, D.; Schaelin, A.

    2010-07-01

    These contributions presented at a conference, held in 2009 in Horw, near Lucerne, Switzerland, deal with the simulation of building technical services. Three contribution blocks dealt with thermal and heating, ventilation and air-conditioning (HVAC) simulation, airflow and stochastic modelling and urban simulation. In the thermal and HVAC simulation session, the potential and limitations of building energy performance simulation is examined from an engineering perspective, a parametric study of an air heat exchanger for the cooling of buildings is presented and a comparison of measured and estimated electric energy use and the impact of assumed occupancy patterns is made. Contributions on standard solutions for energy efficient heating and cooling with heat pumps, the validation and certification of dynamic building simulation tools, standards and tools for the energy performance of buildings with a simple chiller model and the system-simulation of a central solar heating plant with seasonal duct storage in Geneva, Switzerland, are presented. In the airflow and stochastic modelling session, the optimisation of air flow in operating theatres is examined, and air-flow phenomena in flats are explained with illustrations of computational fluid dynamics (CFD). Also, the comparison of test reference years to stochastically generated time series and a comprehensive stochastic model of window usage are discussed. Contributions on the simulation of air-flow patterns and wind loads on facades and the choice of appropriate simulation techniques for the thermal analysis of double skin facades complete the session. In the final Urban Simulation session, a new CFD approach for urban flow and pollution dispersion simulation is presented, a comprehensive micro-simulation of resource flows for sustainable urban planning, multi-scale modelling of the urban climate and the optimisation of urban energy demands using an evolutionary algorithm are discussed.

  3. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  4. Draught risk index tool for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Nielsen, Peter V.

    2014-01-01

    Flow elements combined with a building energy simulation tool can be used to indicate areas and periods when there is a risk of draught in a room. The study tests this concept by making a tool for post-processing of data from building energy simulations. The objective is to show indications...... of draught risk during a whole year, giving building designers a tool for the design stage of a building. The tool uses simple one-at-a-time calculations of flow elements and assesses the uncertainty of the result by counting the number of overlapping flow elements. The calculation time is low, making...... it usable in the early design stage to optimise the building layout. The tool provides an overview of the general draught pattern over a period, e.g. a whole year, and of how often there is a draught risk....

  5. Introduction to Building Systems Performance: Houses that Work II. Revised February 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-01

    The Building Science Consortium (BSC) design recommendations are based on the hygrothermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  6. Multidisciplinary Energy Assessment of Tertiary Buildings: Automated Geomatic Inspection, Building Information Modeling Reconstruction and Building Performance Simulation

    Directory of Open Access Journals (Sweden)

    Faustino Patiño-Cambeiro

    2017-07-01

    Full Text Available There is an urgent need for energy efficiency in buildings within the European framework, considering its environmental implications, and Europe’s energy dependence. Furthermore, the need for enhancing and increasing productivity in the building industry turns new technologies and building energy performance simulation environments into extremely interesting solutions towards rigorous analysis and decision making in renovation within acceptable risk levels. The present work describes a multidisciplinary approach for the estimation of the energy performance of an educational building. The research involved data acquisition with advanced geomatic tools, the development of an optimized building information model, and energy assessment in Building Performance Simulation (BPS software. Interoperability issues were observed in the different steps of the process. The inspection and diagnostic phases were conducted in a timely, accurate manner thanks to automated data acquisition and subsequent analysis using Building Information Modeling based tools (BIM-based tools. Energy simulation was performed using Design Builder, and the results obtained were compared with those yielded by the official software tool established by Spanish regulations for energy certification. The discrepancies between the results of both programs have proven that the official software program is conservative in this sense. This may cause the depreciation of the assessed buildings.

  7. Build your own simulator; save money

    International Nuclear Information System (INIS)

    Petrosky, T.D.

    1992-01-01

    Faced with a situation that could cost the company millions of dollars, and even threaten the continued operation of one of its nuclear power stations, officials at Consumers Power Company's Big Rock Point plant in the US came to a unique conclusion: that they would construct their own reactor simulator - something that has never been done in the industry before. (author)

  8. Integration of a Multizone Airflow Model into a Thermal simulation Program

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Sørensen, Karl Grau; Heiselberg, Per

    2007-01-01

    An existing computer model for dynamic hygrothermal analysis of buildings has been extended with a multizone airflow model based on loop equations to account for the coupled thermal and airflow in natural and hybrid ventilated buildings.......An existing computer model for dynamic hygrothermal analysis of buildings has been extended with a multizone airflow model based on loop equations to account for the coupled thermal and airflow in natural and hybrid ventilated buildings....

  9. Early decision support for net zero energy buildings design using building performance simulation

    NARCIS (Netherlands)

    Attia, S.G.; Gratia, E.; De Herde, A.; Hensen, J.L.M.

    2013-01-01

    This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the effect of a simulation-based decision aid, ZEBO, on informed decision-making using sensitivity analysis. The objective is to

  10. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2010-08-22

    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  11. Contrasting the capabilities of building energy performance simulation programs

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, Drury B. [US Department of Energy, Washington, DC (United States); Hand, Jon W. [University of Strathclyde, Glasgow, Scotland (United Kingdom). Energy Systems Research Unit; Kummert, Michael [University of Wisconsin-Madison (United States). Solar Energy Laboratory; Griffith, Brent T. [National Renewable Energy Laboratory, Golden, CO (United States)

    2008-04-15

    For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability. (author)

  12. Guidelines for Reproducibly Building and Simulating Systems Biology Models.

    Science.gov (United States)

    Medley, J Kyle; Goldberg, Arthur P; Karr, Jonathan R

    2016-10-01

    Reproducibility is the cornerstone of the scientific method. However, currently, many systems biology models cannot easily be reproduced. This paper presents methods that address this problem. We analyzed the recent Mycoplasma genitalium whole-cell (WC) model to determine the requirements for reproducible modeling. We determined that reproducible modeling requires both repeatable model building and repeatable simulation. New standards and simulation software tools are needed to enhance and verify the reproducibility of modeling. New standards are needed to explicitly document every data source and assumption, and new deterministic parallel simulation tools are needed to quickly simulate large, complex models. We anticipate that these new standards and software will enable researchers to reproducibly build and simulate more complex models, including WC models.

  13. Sustainable construction building performance simulation and asset and maintenance management

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research works that highlight best practice solutions, case studies and practical advice on the implementation of sustainable construction techniques. It includes a set of new developments in the field of building performance simulation, building sustainability assessment, sustainable management, asset and maintenance management and service-life prediction. Accordingly, the book will appeal to a broad readership of professionals, scientists, students, practitioners, lecturers and other interested parties.

  14. A Software Architecture for Simulation Support in Building Automation

    Directory of Open Access Journals (Sweden)

    Sergio Leal

    2014-07-01

    Full Text Available Building automation integrates the active components in a building and, thus, has to connect components of different industries. The goal is to provide reliable and efficient operation. This paper describes how simulation can support building automation and how the deployment process of simulation assisted building control systems can be structured. We look at the process as a whole and map it to a set of formally described workflows that can partly be automated. A workbench environment supports the process execution by means of improved planning, collaboration and deployment. This framework allows integration of existing tools, as well as manual tasks, and is, therefore, many more intricate than regular software deployment tools. The complex environment of building commissioning requires expertise in different domains, especially lighting, heating, ventilation, air conditioning, measurement and control technology, as well as energy efficiency; therefore, we present a framework for building commissioning and describe a deployment process that is capable of supporting the various phases of this approach.

  15. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  16. MALAYSIAN WEATHER DATA (TRY) FOR ENERGY SIMULATIONS IN BUILDINGS

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2001-01-01

    Detailed energy simulations for buildings in Malaysia have become possible after the recent construction of a Malaysian TRY (Test Reference Year) based on 21 years of hourly weather data from Subang Meteorological Station. The climatic parameters contained in the TRY are dry bulb temperature, wet...

  17. Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations

    Science.gov (United States)

    Sung, Christopher Teh Boon

    2011-01-01

    Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…

  18. Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations

    Science.gov (United States)

    Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.

    2016-07-01

    This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.

  19. Building Interactive Simulations in Web Pages without Programming.

    Science.gov (United States)

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  20. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    NARCIS (Netherlands)

    Peeters, L.F.R.; Dear, de R.; Hensen, J.L.M.; D'Haeseleer, W.

    2009-01-01

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady

  1. HAM-Tools – a whole building simulation tool in Annex 41

    DEFF Research Database (Denmark)

    Kalagasidis, Angela Sasic; Rode, Carsten; Woloszyn, Monika

    2008-01-01

    HAM-Tools is a building simulation software. The main task of this tool is to simulate transfer processes related to building physics, i.e. heat, air and moisture transport in buildings and building components in operating conditions. The scope of the ECBCS Annex 41 “Whole Building Heat, Air...

  2. Experimental investigation of cyclic hygrothermal aging of hybrid composite

    KAUST Repository

    El Yagoubi, Jalal

    2013-04-05

    This work provides an experimental investigation of the cyclic hygrothermal aging of a hybrid composites. We aimed to propose a general framework in the view to further optimize polymer-based composites. It reports experimental data and relevant observations collected during an aging campaign (up to 2000 cycles) where anhydride-cured epoxy samples as well as composites samples are exposed to environmental conditions. The data gathered during the whole campaign reveals that (1) the polymer displays a non-classical sorption behavior (2) the volume change is correlated to the mass uptake (3) the elastic modulus is correlated to the glass transition temperature. Matrix and interface degradation of the hybrid composite is monitored by means of microstructural observations. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

  3. Hygrothermal influence on delamination behavior of graphite/epoxy laminates

    Science.gov (United States)

    Garg, A.; Ishai, O.

    1985-01-01

    The hygrothermal effect on the fracture behavior of graphite-epoxy laminates was investigated to develop a methodology for damage tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations to evaluate the effects of temperature and humidity on delamination fracture toughness under mode 1 and mode 2 loading. It is indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during mode 1 delamination, but has a slightly deleterious effect on mode 2 delamination, and mode 1 transverse cracking. The failed specimens are examined by SEM and topographical differences due to fracture modes are identified. It is concluded that the effect of moisture on fracture topography can not be distinguished.

  4. Experimental investigation of cyclic hygrothermal aging of hybrid composite

    KAUST Repository

    El Yagoubi, Jalal; Lubineau, Gilles; Saghir, Shahid; Selvakumaran, Lakshmi; Askari, Abe H.; Brown, Arlene M.

    2013-01-01

    This work provides an experimental investigation of the cyclic hygrothermal aging of a hybrid composites. We aimed to propose a general framework in the view to further optimize polymer-based composites. It reports experimental data and relevant observations collected during an aging campaign (up to 2000 cycles) where anhydride-cured epoxy samples as well as composites samples are exposed to environmental conditions. The data gathered during the whole campaign reveals that (1) the polymer displays a non-classical sorption behavior (2) the volume change is correlated to the mass uptake (3) the elastic modulus is correlated to the glass transition temperature. Matrix and interface degradation of the hybrid composite is monitored by means of microstructural observations. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

  5. Addendum to the Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

    2012-12-01

    As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  6. Addendum to the Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Engebrecht, C. Metzger [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-12-01

    As DOE's Building America program has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program’s goals. The House Simulation Protocols (HSP) provide guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  7. Using DOE Commercial Reference Buildings for Simulation Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.; Deru, M.; Studer, D.

    2010-08-01

    The U.S. Department of Energy developed 256 EnergyPlus models for use in studies that aim to characterize about 70% of the U.S. commercial building stock. Sixteen building types - including restaurants, health care, schools, offices, supermarkets, retail, lodging, and warehouses - are modeled across 16 cities to represent the diversity of U.S. climate zones. Weighting factors have been developed to combine the models in proportions similar to those of the McGraw-Hill Construction Projects Starts Database for 2003-2007. This paper reviews the development and contents of these models and their applications in simulation studies.

  8. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    potential of the energy saving in the society it is very important to address the decisive involvement of the end-users. The human behaviour is the factor that affects the most the energy use in low-energy buildings and should be included in energy simulations. The results can then be linked to programs...... the implementation of C02 neutral communities. A link between a dynamic energy simulation program for buildings and a simulation program for district heating networks is demonstrated. The results of the investigation give an example of how to analyze a community and make recommendations for applying the low...... in a cost-effective way in areas with linear heat densities down to 0.20 MWh/(m.year). Even in cases where the user behaviour is not optimal, the system is able to deliver heat to each customer. The low-energy district heating concept could be strategic for reaching ambitious energy and climate targets...

  9. Forced vibration tests and simulation analyses of a nuclear reactor building. Part 2: simulation analyses

    International Nuclear Information System (INIS)

    Kuno, M.; Nakagawa, S.; Momma, T.; Naito, Y.; Niwa, M.; Motohashi, S.

    1995-01-01

    Forced vibration tests of a BWR-type reactor building. Hamaoka Unit 4, were performed. Valuable data on the dynamic characteristics of the soil-structure interaction system were obtained through the tests. Simulation analyses of the fundamental dynamic characteristics of the soil-structure system were conducted, using a basic lumped mass soil-structure model (lattice model), and strong correlation with the measured data was obtained. Furthermore, detailed simulation models were employed to investigate the effects of simultaneously induced vertical response and response of the adjacent turbine building on the lateral response of the reactor building. (author). 4 refs., 11 figs

  10. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  11. A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls

    Directory of Open Access Journals (Sweden)

    Pierre-Antoine Chabriac

    2014-04-01

    Full Text Available Rammed earth is a sustainable material with low embodied energy. However, its development as a building material requires a better evaluation of its moisture-thermal buffering abilities and its mechanical behavior. Both of these properties are known to strongly depend on the amount of water contained in wall pores and its evolution. Thus the aim of this paper is to present a procedure to measure this key parameter in rammed earth or cob walls by using two types of probes operating on the Time Domain Reflectometry (TDR principle. A calibration procedure for the probes requiring solely four parameters is described. This calibration procedure is then used to monitor the hygrothermal behavior of a rammed earth wall (1.5 m × 1 m × 0.5 m, instrumented by six probes during its manufacture, and submitted to insulated, natural convection and forced convection conditions. These measurements underline the robustness of the calibration procedure over a large range of water content, even if the wall is submitted to quite important temperature variations. They also emphasize the importance of gravity on water content heterogeneity when the saturation is high, as well as the role of liquid-to-vapor phase change on the thermal behavior.

  12. A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls

    Science.gov (United States)

    Chabriac, Pierre-Antoine; Fabbri, Antonin; Morel, Jean-Claude; Laurent, Jean-Paul; Blanc-Gonnet, Joachim

    2014-01-01

    Rammed earth is a sustainable material with low embodied energy. However, its development as a building material requires a better evaluation of its moisture-thermal buffering abilities and its mechanical behavior. Both of these properties are known to strongly depend on the amount of water contained in wall pores and its evolution. Thus the aim of this paper is to present a procedure to measure this key parameter in rammed earth or cob walls by using two types of probes operating on the Time Domain Reflectometry (TDR) principle. A calibration procedure for the probes requiring solely four parameters is described. This calibration procedure is then used to monitor the hygrothermal behavior of a rammed earth wall (1.5 m × 1 m × 0.5 m), instrumented by six probes during its manufacture, and submitted to insulated, natural convection and forced convection conditions. These measurements underline the robustness of the calibration procedure over a large range of water content, even if the wall is submitted to quite important temperature variations. They also emphasize the importance of gravity on water content heterogeneity when the saturation is high, as well as the role of liquid-to-vapor phase change on the thermal behavior. PMID:28788603

  13. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the de......In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants....... In this study laboratory measurements in a ventilated test room with "pig simulators" are compared with CFD-simulations....

  14. Simulation of energy- efficient building prototype using different insulating materials

    Science.gov (United States)

    Ouhaibi, Salma; Belouaggadia, Naoual; Lbibb, Rachid; Ezzine, Mohammed

    2018-05-01

    The objective of this work is to analyze the energetic efficiency of an individual building including an area of 130 m2 multi-zone, located in the region of FEZ which is characterized by a very hot and dry climate in summer and a quite cold one in winter, by incorporating insulating materials. This study was performed using TRNSYS V16 simulation software during a typical year of the FEZ region. Our simulation consists in developing a comparative study of two types of polystyrene and silica-aerogel insulation materials, in order to determine the best thermal performance. The results show that the thermal insulation of the building envelope is among the most effective solutions that give a significant reduction in energy requirements. Similarly, the use of silica-aerogels gives a good thermal performance, and therefore a good energy gain.

  15. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Leen; D' haeseleer, William [Division of Applied Mechanics and Energy Conversion, University of Leuven (K.U.Leuven), Celestijnenlaan 300 A, B-3001 Leuven (Belgium); Dear, Richard de [Division of Environmental and Life Sciences, Macquarie University, Sydney (Australia); Hensen, Jan [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-05-15

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady state laboratory experiments. This, however, is not representing the real situation in buildings, especially not when focusing on residential buildings. Therefore, in present analysis, recent reviews and adaptations are considered to extract acceptable temperature ranges and comfort scales. They will be defined in an algorithm, easily implementable in any BES code. The focus is on comfortable temperature levels in the room, more than on the detailed temperature distribution within that room. (author)

  16. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  17. Uncertainty and sensitivity analysis in building performance simulation for decision support and design optimization

    NARCIS (Netherlands)

    Hopfe, C.J.

    2009-01-01

    Building performance simulation (BPS) uses computer-based models that cover performance aspects such as energy consumption and thermal comfort in buildings. The uptake of BPS in current building design projects is limited. Although there is a large number of building simulation tools available, the

  18. Building Comprehensive Strategies for Obstetric Safety: Simulation Drills and Communication.

    Science.gov (United States)

    Austin, Naola; Goldhaber-Fiebert, Sara; Daniels, Kay; Arafeh, Julie; Grenon, Veronique; Welle, Dana; Lipman, Steven

    2016-11-01

    As pioneers in the field of patient safety, anesthesiologists are uniquely suited to help develop and implement safety strategies to minimize preventable harm on the labor and delivery unit. Most existing obstetric safety strategies are not comprehensive, lack input from anesthesiologists, are designed with a relatively narrow focus, or lack implementation details to allow customization for different units. This article attempts to address these gaps and build more comprehensive strategies by discussing the available evidence and multidisciplinary authors' local experience with obstetric simulation drills and optimization of team communication.

  19. PyECLOUD and build-up simulations at CERN

    International Nuclear Information System (INIS)

    Iadarola, G; Rumolo, G

    2013-01-01

    PyECLOUD is a newly developed code for the simulation of the electron cloud (EC) build-up in particle accelerators. Almost entirely written in Python, it is mostly based on the physical models already used in the ECLOUD code but, thanks to the implementation of new optimized algorithms, it exhibits a significantly improved performance in accuracy, speed, reliability and flexibility. Such new features of PyECLOUD have been already broadly exploited to study EC observations in the Large Hadron Collider (LHC) and its injector chain as well as for the extrapolation to high luminosity upgrade scenarios. (author)

  20. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    static and dynamic moisture storage data and the more pronounced was the corresponding dynamic hysteresis. The paper thus provides clear experimental evidence on dynamic effects in the water content – water potential relation of building materials. By that, data published by previous authors as Topp et......Hygrothermal simulation has become a widely applied tool for the design and assessment of building structures under possible indoor and outdoor climatic conditions. One of the most important prerequisites of such simulations is reliable material data. Different approaches exist here to derive...... the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...

  1. Comparison of co-simulation approaches for building and HVAC/R system simulation

    NARCIS (Netherlands)

    Trcka, M.; Wetter, M.; Hensen, J.L.M.; Jiang, Yi

    2007-01-01

    Appraisal of modern performance-based energy codes, as well as heating, ventilation, airconditioning and refrigeration (HVAC/R) system design require use of an integrated building and system performance simulation program. However, the required scope of the modeling library of such integrated tools

  2. Design of hygrothermal detection and control intelligent system based on AVR-MCU in radon chamber

    International Nuclear Information System (INIS)

    Zheng Yongming; Fang Fang; Zhou Wei; Zheng Meiyang; Xu Jianyi

    2006-01-01

    The design of a new hygrothermal detection and control system based on AVR-MCU, which is used in minitype and medium-sized radon chamber, is introduced. The kernel of the interface among ATmega128 MCU, hygrothermal sensor, refrigeration and desiccation components is described. In addition, with the calculation of the control capability in theory, it comes to the conclusion that the design is feasible, and this control system not only can work in independence, but also can cooperate with PC by RS232 communication. (authors)

  3. Hygrothermal response of a dwelling house. Thermal comfort criteria

    Directory of Open Access Journals (Sweden)

    Adrian IACOB

    2015-12-01

    Full Text Available The use of local natural materials in order to reduce the environmental negative impact of buildings has become common practice in recent years; such buildings are to be found in all regions of the planet. The high level of thermal protection provided by the envelope elements made from natural materials such as straw bale insulation, hemp insulation or sheep wool, and their lack of thermal massiveness require a more complex analysis on their ability to keep interior comfort without accentuated variations. This paper proposes a comparative analysis between different solutions for a residential building located near a Romanian city, Cluj-Napoca. The elements of the building envelope are designed in three alternative solutions, using as substitute to classical solutions (concrete and polystyrene, masonry and polystyrene, straw bales and rammed earth for enclosing elements. For this purpose there are conducted numerical simulations of heat and mass transfer, using a mathematical model that allows the analysis of indoor comfort, by comparing both objective factors (air temperature, operative temperature and relative humidity and subjective factors, which are needed to define interior thermal comfort indices PPD and PMV. Finally, a set of conclusions are presented and future research directions are drawn.

  4. Seismic simulation analysis of nuclear reactor building by soil-building interaction model

    International Nuclear Information System (INIS)

    Muto, K.; Kobayashi, T.; Motohashi, S.; Kusano, N.; Mizuno, N.; Sugiyama, N.

    1981-01-01

    Seismic simulation analysis were performed for evaluating soil-structure interaction effects by an analytical approach using a 'Lattice Model' developed by the authors. The purpose of this paper is to check the adequacy of this procedure for analyzing soil-structure interaction by means of comparing computed results with recorded ones. The 'Lattice Model' approach employs a lumped mass interactive model, in which not only the structure but also the underlying and/or surrounding soil are modeled as descretized elements. The analytical model used for this study extends about 310 m in the horizontal direction and about 103 m in depth. The reactor building is modeled as three shearing-bending sticks (outer wall, inner wall and shield wall) and the underlying and surrounding soil are divided into four shearing sticks (column directly beneath the reactor building, adjacent, near and distant columns). A corresponding input base motion for the 'Lattice Model' was determined by a deconvolution analysis using a recorded motion at elevation -18.5 m in the free-field. The results of this simulation analysis were shown to be in reasonably good agreement with the recorded ones in the forms of the distribution of ground motions and structural responses, acceleration time histories and related response spectra. These results showed that the 'Lattice Model' approach was an appropriate one to estimate the soil-structure interaction effects. (orig./HP)

  5. Internet-based simulation of resource requirement of buildings; Internetbasierte Simulation des Ressourcenbedarfs von Bauwerken

    Energy Technology Data Exchange (ETDEWEB)

    Neuberg, F.; Rank, E. [Technische Univ. Muenchen, Lehrstuhl fuer Bauinformatik, Muenchen (Germany); Ekkerlein, C.; Faulstich, M. [Technische Univ. Muenchen, Lehrstuhl fuer Wasserguete- und Abfallwirtschaft, Garching (Germany)

    2002-12-01

    Due to the long life cycle of a building the expenses for usage and maintenance are very high compared to those for the construction, only. About 1/3 of the total energy demand in Germany is used for heating, air-conditioning and hot water supply in buildings. In addition the building wastes resulting for disposal represent a quantitatively enormous material flow. As the most significant decisions are made in early planning steps it is very important to enable planners to estimate the energy demand, resource requirement and ecological impact of different scenarios at this stage. Nowadays more and more architects and engineers use CAD software, like the Architectural Desktop from Autodesk, supporting the generation of three dimensional product models. One prominent model being now well established in the building industry is defined by the Industry Foundation Classes (IFC). This model is also the starting point of our resource oriented design system. To get a basis for a comparative assessment of different design variants it is first necessary to augment the product model with information on resource consumption of the used materials. Therefore a database server accessible via the Internet is developed within our research project providing a service for planners to extend their product model with information necessary for life cycle assessment (LCA) and building energy simulation (EnEV). The data exchange format for the property sets is ifcXML. In our presentation the general software concept together with first simulation tools will be discussed. (orig.)

  6. Simulation to support sustainable HVAC design for two historical buildings in Prague

    NARCIS (Netherlands)

    Bartak, M.; Drkal, F.; Hensen, J.L.M.; Lain, M.; Matuska, J.; Schwarzer, J.; Sourek, B.

    2001-01-01

    This paper attempts to outline the current state-of-the-art in the Czech Republic regarding the use of integrated building performance simulation as a design tool. Integrated modeling and simulation of buildings is illustrated by means of two recent studies for conversion of historical buildings (a

  7. Proceedings of eSim 2006 : IBPSA-Canada's 4. biennial building performance simulation conference

    International Nuclear Information System (INIS)

    Kesik, T.

    2006-01-01

    This conference was attended by professionals, academics and students interested in promoting the science of building performance simulation in order to optimize design, construction, operation and maintenance of new and existing buildings around the world. This biennial conference and exhibition covered all topics related to computerized simulation of a building's energy performance and energy efficiency. Computerized simulation is widely used to predict the environmental performance of buildings during all stages of a building's life cycle, from the design, commissioning, construction, occupancy and management stages. Newly developed simulation methods for optimal comfort in new and existing buildings were evaluated. The themes of the conference were: recent developments for modelling the physical processes relevant to buildings; algorithms for modelling conventional and innovative HVAC systems; methods for modelling whole-building performance; building simulation software development; the use of building simulation tools in code compliance; moving simulation into practice; validation of building simulation software; architectural design; and optimization approaches in building design. The conference also covered the modeling of energy supply systems with reference to renewable energy sources such as ground source heat pumps or hybrid systems incorporating solar energy. The conference featured 32 presentations, of which 28 have been catalogued separately for inclusion in this database. refs., tabs., figs

  8. Recent developments in building diagnosis techniques

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research on building diagnosis techniques related to construction pathology, hygrothermal behavior and durability, and diagnostic techniques. It highlights recent advances and new developments in the field of building physics, building anomalies in materials and components, new techniques for improved energy efficiency analysis, and diagnosis techniques such as infrared thermography. This book will be of interest to a wide readership of professionals, scientists, students, practitioners, and lecturers.

  9. Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview

    NARCIS (Netherlands)

    Blocken, B.J.E.; Stathopoulos, T.; Carmeliet, J.; Hensen, J.L.M.

    2011-01-01

    This paper provides an overview of the application of CFD in building performance simulation for the outdoor environment, focused on four topics: (1) pedestrian wind environment around buildings, (2) wind-driven rain on building facades, (3) convective heat transfer coefficients at exterior building

  10. Rapid prototyping in order to improve building performance simulation for detailed design support

    NARCIS (Netherlands)

    Hopfe, C.J.; Hensen, J.L.M.; Stankov, P.

    2006-01-01

    Building performance simulation (BPS) is a powerful tool to support building and system designers in emulating how orientation, building type, HVAC system etc. interacts the overall building performance. Currently BPS is used only for code compliance in the detailed design, neither to make informed

  11. Simulation Technology Laboratory Building 970 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters

  12. Hygrothermal Analysis and Failure Analysis of Composite Beams under Moving Loads

    Science.gov (United States)

    Hanif, Moiz

    Excellent combination of high structural stiffness and low weight are the qualities of composite material leading to the extensive work on such materials. In order to achieve the desired performance requirements, the designer has to take into consideration the structural requirements and the functional characteristics. Thus, in this study, the effect of hygrothermal conditions on fiber reinforced composite laminates with moving loads have been extensively studied and has been carried out that accompanies Classical Laminate Plate Theory (CLPT) as well as First Order Shear Deformation Theory (FSDT) on MATLAB. A glass/epoxy composite system has been chosen for study with which similar results may be expected for other laminated composites. The hygrothermal effect is incorporated by adjusting the stiffness coefficients of the laminate to its level of moisture concentration using empirical relations. The failure analysis is done using the maximum normal stress criterion and the factor of safety for the lamina calculated and compared with respect to the corresponding maximum stresses and strengths. Different fiber volume fraction with varying fiber orientation of the plies in the laminate were modeled and studied. The results presented show the effect of stresses and strains in dry conditions, whereas for hygrothermal analysis, they also indicate that not all the laminates behave in a similar fashion and so it is possible by selecting the proper laminate configuration, the effect of moisture can be reduced. Also deducing, that due to hygrothermal effects, changes in the stiffness coefficients of a laminate do not appear to affect the deflection results significantly.

  13. A multiscale and multiphysics numerical framework for modelling of hygrothermal ageing in laminated composites

    NARCIS (Netherlands)

    Barcelos Carneiro M Rocha, Iuri; van der Meer, F.P.; Nijssen, RPL; Sluijs, Bert

    2017-01-01

    In this work, a numerical framework for modelling of hygrothermal ageing in laminated composites is proposed. The model consists of a macroscopic diffusion analysis based on Fick's second law coupled with a multiscale FE2 stress analysis in order to take microscopic degradation

  14. Hygrothermal Effect on Mechanical and Fatigue Properties of laminated Lower Limb Socket and Bacteria Growth

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas Abdullah

    2016-12-01

    Full Text Available In this work, hygrothermal effect on the mechanical and fatigue properties of prosthetic socket lamination and its effect on the bacteria growth were studied. Two laminations composite materials were used in manufacturing prosthetic socket by using vacuum device. The reinforced materials of these laminations were perlon and carbon nanopowder (CNP while the matrix material was polyurethane resin. Tests performed in this work were the moisture absorption properties test to calculate percent moisture content according to ASTM 5229, tensile and fatigue tests with and without the hygrothermal effect to find the mechanical and fatigue properties, and the bacteria growth test under the hygrothermal effect to calculate the number of bacteria on the laminations. The results showed that the lamination (10 perlon+1 wt % CNP has mechanical properties than lamination (10 perlon with and without hygrothermal effect. The mechanical and fatigue properties for the two laminations were decreasing with increasing temperature and moisture.. Adding carbon nanopowder to the lamination (10 perlon increased ultimate stress, modulus of elastic, and endurance limit by (1.36, 2.35, and2.72 time respectively. Finally, the results showed that the Staphylococcus aureus growth increases with increasing temperature and moisture on the two laminations used in manufacturing prosthetic socket, and adding carbon nanopowder also increased the Staphylococcus aureus growth on the lamination.

  15. Release of ultrafine particles from three simulated building processes

    International Nuclear Information System (INIS)

    Kumar, Prashant; Mulheron, Mike; Som, Claudia

    2012-01-01

    Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5–560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near–steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri–modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei ( 4 cm −3 . These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and ‘dry’ and ‘wet’ recycling events were measured as ∼0.77, 19.1, 22.7 and 1.76 (×10 4 ) cm −3 , respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; ∼95, 79, 73 and 90% of total PNCs, and ∼71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling, respectively. The results of this study firmly elucidate the release of UFPs and raise a need for further detailed studies and designing health and safety related exposure guidelines for

  16. Building simulations supporting decision making in early design – A review

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2016-01-01

    The building design community is challenged by continuously increasing energy demands, which are often combined with ambitious goals for indoor environment, for environmental impact, and for building costs. To aid decision-making, building simulation is widely used in the late design stages...... framework that facilitates proactive, intelligent, and experience based building simulation which aid decision making in early design. To find software candidates accommodating this framework, we compare existing software with regard to intended usage, interoperability, complexity, objectives, and ability...

  17. Building interactive simulations in a Web page design program.

    Science.gov (United States)

    Kootsey, J Mailen; Siriphongs, Daniel; McAuley, Grant

    2004-01-01

    A new Web software architecture, NumberLinX (NLX), has been integrated into a commercial Web design program to produce a drag-and-drop environment for building interactive simulations. NLX is a library of reusable objects written in Java, including input, output, calculation, and control objects. The NLX objects were added to the palette of available objects in the Web design program to be selected and dropped on a page. Inserting an object in a Web page is accomplished by adding a template block of HTML code to the page file. HTML parameters in the block must be set to user-supplied values, so the HTML code is generated dynamically, based on user entries in a popup form. Implementing the object inspector for each object permits the user to edit object attributes in a form window. Except for model definition, the combination of the NLX architecture and the Web design program permits construction of interactive simulation pages without writing or inspecting code.

  18. Introduction to Building Systems Performance: Houses That Work II. Revised February 2005

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  19. Introduction to Building Systems Performance: Houses That Work II; Period of Performance: January 2003--December 2003

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  20. Moisture condensation on building envelopes in differential ventilated spaces in the tropics: quantitative assessment of influencing factors

    Directory of Open Access Journals (Sweden)

    Ali Maisarah

    2016-01-01

    Full Text Available Ventilation systems play a significant role in maintaining the indoor thermal and hygric balance. Nevertheless, the systems had been implicated to result in many problems. In the tropical climate, especially for energy efficiency purposes, building spaces are operated with differential ventilation. Such spaces operate on 24-hrs basis, some on 8-hrs while others are either naturally ventilated or served with mechanical supply-exhaust fan systems with non-conditioned outdoor air. This practice had been found to result in condensation problems. This study involves a quantitative appraisal of the effect of operative conditions and hygrothermal quality of building envelopes on condensation risk. The in-situ experiment is combined with an analytical approach to assessing the hygrothermal quality of building envelopes in a tropical climate building under differential ventilation between adjacent spaces. The case-studied building is with a known history of condensation and associated damages including mould growth. The microclimate measurement and hygrothermal performance of the wall and floor against condensation and mould growth risks had been previously reported elsewhere. As a step further, the present study evaluates the effects of various envelope insulation types and configurations together with the HVAC cooling set-points on envelope hygrothermal performance. The results revealed that overcooling the air-conditioned side increases condensation risk on the non-air-conditioned side of the envelopes. The envelopes failed criteria for surface condensation at existing operative conditions irrespective of envelope hygrothermal quality improvements. However, the envelope performed well at improved cooling operative conditions even at existing envelope hygrothermal quality. It is, therefore, important to ascertain the envelope hygrothermal quality as well the cooling operative conditions while embarking on energy efficiency operations in mechanical

  1. Impact of Moistened Bio-insulation on Whole Building Energy Use

    Directory of Open Access Journals (Sweden)

    Latif Eshrar

    2017-01-01

    Full Text Available One of the key properties of hemp insulation is its moisture adsorption capacity. Adsorption of moisture can increase both thermal conductivity and heat capacity of the insulation. The current study focuses on the effect of moisture induced thermal mass of installed hemp insulation on the whole building energy use. Hygrothermal and thermal simulations were performed using the CIBSE TRY weather data of Edinburgh and Birmingham with the aid of following simulation tools: WUFI and IES. Following simplified building types were considered: building-1 with dry hemp wall and loft insulations, building-2 with moistened hemp wall and loft insulation and building-3 with stone wool insulation. It was observed that the overall conditioning load of building-1 was 1.2 to 2.3% higher than building-2 and 3. However, during the summer season, the cooling load of building-2 was 3-7.5% lower than the other buildings. It implies that, moistened insulation can potentially mitigate the effect of increasing cooling degree days induced by global warming.

  2. Simulation of energy use in buildings with multiple micro generators

    International Nuclear Information System (INIS)

    Karmacharya, S.; Putrus, G.; Underwood, C.P.; Mahkamov, K.; McDonald, S.; Alexakis, A.

    2014-01-01

    This paper focuses on the detailed modelling of micro combined heat and power (mCHP) modules and their interaction with other renewable micro generators in domestic applications based on an integrated modular modelling approach. The simulation model has been developed using Matlab/Simulink and incorporates a Stirling engine mCHP module embedded in a lumped-parameter domestic energy model, together with contributions from micro wind and photovoltaic modules. The Stirling cycle component model is based on experimental identification of a domestic-scale system which includes start up and shut down characteristics. The integrated model is used to explore the interactions between the various energy supply technologies and results are presented showing the most favourable operating conditions that can be used to inform the design of advanced energy control strategies in building. The integrated model offers an improvement on previous models of this kind in that a fully-dynamic approach is adopted for the equipment and plant enabling fast changing load events such as switching on/off domestic loads and hot water, to be accurately captured at a minimum interval of 1 min. The model is applied to two typical 3- and 4-bedroom UK house types equipped with a mCHP module and two other renewable energy technologies for a whole year. Results of the two cases show that the electrical contribution of a Stirling engine type mCHP heavily depends on the thermal demand of the building and that up to 19% of the locally-generated electricity is exported whilst meeting a similar percentage of the overall annual electricity demand. Results also show that the increased number of switching of mCHP module has an impact on seasonal module efficiency and overall fuel utilisation. The results demonstrate the need for the analysis of equipment design and optimal sizing of thermal and electrical energy storage. -- Highlights: • Dynamic modelling of a building along with its space heating and hot

  3. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    International Nuclear Information System (INIS)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-01-01

    Highlights: •Developed methods and used data models to integrate city’s public building records. •Shading from neighborhood buildings strongly influences urban building performance. •A case study demonstrated the workflow, simulation and analysis of building retrofits. •CityBES retrofit analysis feature provides actionable information for decision making. •Discussed significance and challenges of urban building energy modeling. -- Abstract: Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details of using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city’s mild

  4. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...

  5. Distributed dynamic simulations of networked control and building performance applications

    NARCIS (Netherlands)

    Yahiaoui, Azzedine

    2018-01-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the

  6. Numerical Simulation of rivulet build up via lubrication equations

    Science.gov (United States)

    Suzzi, N.; Croce, G.

    2017-11-01

    A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.

  7. Design of a distributed simulation environment for building control applications based on systems engineering methodology

    NARCIS (Netherlands)

    Yahiaoui, Azzedine

    2018-01-01

    The analysis of innovative designs that distributes control to buildings over a network is currently a challenging task as exciting building performance simulation tools do not offer sufficient capabilities and the flexibility to fully respond to the full complexity of Automated Buildings (ABs). For

  8. Selection criteria for building performance simulation tools : contrasting architects' and engineers' needs

    NARCIS (Netherlands)

    Attia, S.G.; Hensen, J.L.M.; Beltran, L.; De Herde, A.

    2012-01-01

    This article summarises a study undertaken to reveal potential challenges and opportunities for using building performance simulation (BPS) tools. The article reviews current trends in building simulation and outlines major criteria for BPS tool selection and evaluation based on analysing users'

  9. Computer simulations for state-of-the-art engineering design of a commercial building in Prague

    NARCIS (Netherlands)

    Bartak, M.; Drkal, F.; Hensen, J.L.M.; Lain, M.; Schwarzer, J.

    2003-01-01

    The paper describes the computer simulation work, which was carried out to support the engineering design team of the Luxembourg Plaza building development in Prague. The simulations for this study were based on (1) energy balance models covering the whole building for heating and cooling load

  10. Predictive performance simulations for a sustainable lecture building complex

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2012-06-01

    Full Text Available the site and building are not ideally oriented regarding the prevailing wind directions that generally follow the coast. From the perspective of the design team, the commitment to use a building information management (BIM) system at inception needed a... far more integrated approach to design development. Engineers typically wait for the architects to design the whole building, and then only drill down to final calculated structural design configurations and sizes. With BIM, these activities should...

  11. Moisture supply in Danish single-family houses – the influence of building style

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.

    2017-01-01

    According to ISO 13788 internal moisture supply in dwellings can be described by humidity classes defined by outdoor temperature, occupancy and ventilation. Hygrothermal measurements in 500 Danish single-family houses were made to investigate if building style and geographical location are import......According to ISO 13788 internal moisture supply in dwellings can be described by humidity classes defined by outdoor temperature, occupancy and ventilation. Hygrothermal measurements in 500 Danish single-family houses were made to investigate if building style and geographical location...

  12. Chapel of cemetery church of all saints in Sedlec - Long-term analysis of hygrothermal conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Balík, Lukáš; Kudrnáčová, Lucie; Maděra, Jiří; Černý, Robert

    2017-07-01

    In this paper, long-term monitoring of hygrothermal conditions of the chapel of the cemetery church of All Saints in Sedlec, Czech Republic is presented as a practical tool for evaluation of functional problems of the researched structure. Within the performed experimental tests, interior and exterior climatic conditions were monitored over one year period. Herewith, surface temperature of the chapel wall was measured. Exterior climatic data were collected using weather station Vantage Pro2 placed in church tower. In interior, precise combined relative humidity/temperature sensors were installed. Based on the accessed hygrothermal state of the inspected chapel and identified periods of possible surface condensation, service conditions of the chapel will be optimized in order to prevent extensive damage of historically valuable finishing and furnishing materials, paintings, plasters, and architectural ornaments.

  13. Simulation Tests in Whole Building Heat and Moisture Transfer

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut Hannele; Woloszyn, Monika

    2006-01-01

    An important part of the International Energy Agency project, ECBCS, Annex 41 is about modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling deals with all most relevant elements of buildings: The indoor air, the building envelope...

  14. Numerical simulation of solar heating of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coffe, G.; Jannot, M.; Pellerin, J.F.

    1980-01-01

    This study is divided into two parts: First, the thermal modelling of a solar + electric heated building is presented; mathematical equations are established; numerical calculations are analyzed; and a calculation code in FORTRAN V is set down. Second, this calculation code was used to study the thermal performances of the solar + electric heated building in three European climates: Copenhagen (56/sup 0/ north latitude - Denmark), Trappes (48/sup 0/ north latitude - France), and Carpentras (44/sup 0/ north latitude - France).

  15. Integrated Building Energy Design of a Danish Office Building Based on Monte Carlo Simulation Method

    DEFF Research Database (Denmark)

    Sørensen, Mathias Juul; Myhre, Sindre Hammer; Hansen, Kasper Kingo

    2017-01-01

    The focus on reducing buildings energy consumption is gradually increasing, and the optimization of a building’s performance and maximizing its potential leads to great challenges between architects and engineers. In this study, we collaborate with a group of architects on a design project of a new...... office building located in Aarhus, Denmark. Building geometry, floor plans and employee schedules were obtained from the architects which is the basis for this study. This study aims to simplify the iterative design process that is based on the traditional trial and error method in the late design phases...

  16. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...... a missing link in the development. In this paper is demonstrated how a link between a dynamic Building Simulation Programme (BSP) and a simulation program for District Heating (DH) networks can give important information during the design phase. By using a BSP it is possible to analyze the influence...... of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand...

  17. An applied artificial intelligence approach towards assessing building performance simulation tools

    Energy Technology Data Exchange (ETDEWEB)

    Yezioro, Abraham [Faculty of Architecture and Town Planning, Technion IIT (Israel); Dong, Bing [Center for Building Performance and Diagnostics, School of Architecture, Carnegie Mellon University (United States); Leite, Fernanda [Department of Civil and Environmental Engineering, Carnegie Mellon University (United States)

    2008-07-01

    With the development of modern computer technology, a large amount of building energy simulation tools is available in the market. When choosing which simulation tool to use in a project, the user must consider the tool's accuracy and reliability, considering the building information they have at hand, which will serve as input for the tool. This paper presents an approach towards assessing building performance simulation results to actual measurements, using artificial neural networks (ANN) for predicting building energy performance. Training and testing of the ANN were carried out with energy consumption data acquired for 1 week in the case building called the Solar House. The predicted results show a good fitness with the mathematical model with a mean absolute error of 0.9%. Moreover, four building simulation tools were selected in this study in order to compare their results with the ANN predicted energy consumption: Energy{sub 1}0, Green Building Studio web tool, eQuest and EnergyPlus. The results showed that the more detailed simulation tools have the best simulation performance in terms of heating and cooling electricity consumption within 3% of mean absolute error. (author)

  18. An Empirical Validation of Building Simulation Software for Modelling of Double-Skin Facade (DSF)

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Felsmann, Clemens

    2009-01-01

    buildings, but their accuracy might be limited in cases with DSFs because of the complexity of the heat and mass transfer processes within the DSF. To address this problem, an empirical validation of building models with DSF, performed with various building simulation tools (ESP-r, IDA ICE 3.0, VA114......Double-skin facade (DSF) buildings are being built as an attractive, innovative and energy efficient solution. Nowadays, several design tools are used for assessment of thermal and energy performance of DSF buildings. Existing design tools are well-suited for performance assessment of conventional......, TRNSYS-TUD and BSim) was carried out in the framework of IEA SHC Task 34 /ECBCS Annex 43 "Testing and Validation of Building Energy Simulation Tools". The experimental data for the validation was gathered in a full-scale outdoor test facility. The empirical data sets comprise the key-functioning modes...

  19. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However......, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...

  20. Simulation-based modeling of building complexes construction management

    Science.gov (United States)

    Shepelev, Aleksandr; Severova, Galina; Potashova, Irina

    2018-03-01

    The study reported here examines the experience in the development and implementation of business simulation games based on network planning and management of high-rise construction. Appropriate network models of different types and levels of detail have been developed; a simulation model including 51 blocks (11 stages combined in 4 units) is proposed.

  1. Poverty Simulations: Building Relationships among Extension, Schools, and the Community

    Science.gov (United States)

    Franck, Karen L.; Barnes, Shelly; Harrison, Julie

    2016-01-01

    Poverty simulations can be effective experiential learning tools for educating community members about the impact of poverty on families. The project described here includes survey results from three simulations with community leaders and teachers. This project illustrated how such workshops can help Extension professionals extend their reach and…

  2. Building America House Simulation Protocols - Revised October 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This document was developed to track and manage progress toward multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent reference point. This report corrects editorial errors that were in the original publication.

  3. Model and tool requirements for co-simulation of building performance

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.

    2006-01-01

    The use of building performance simulation (BPS) can substantially help in improving building design towards higher occupant comfort and lower fuel consumption, while reducing emission of greenhouse gasses. Unfortunately, current BPS tools do not allow inter-tool communication and thus limit a

  4. Integration of control and building performance simulation software by run-time coupling

    NARCIS (Netherlands)

    Yahiaoui, A.; Hensen, J.L.M.; Soethout, L.L.

    2003-01-01

    This paper presents the background, approach and initial results of a project, which aims to achieve better integrated building and systems control modeling in building performance simulation by runtime coupling of distributed computer programs. This paper focuses on one of the essential steps

  5. Simulation of building energy and indoor environmental quality - some weather data issues

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1999-01-01

    After elaborating that a building is a rather complicated dynamic system where many of the governing energy and mass transfer relationships are highly non-linear, this paper focuses on weather data as needed for computer simulation of buildings. The paper does not aim for completeness but rather to

  6. Comparison of simplified and advanced building simulation tool with measured data

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Schiønning, Peder; Dethlefsen, Espen

    2013-01-01

    In the future building design must progress to a format where CO 2 neutral societies are optimized as a whole and innovative technologies integrated. The purpose of this paper is to demonstrate the problems using a simplified design tool to simulate a complicated building and how this may not give...

  7. Issues to Be Solved for Energy Simulation of An Existing Office Building

    Directory of Open Access Journals (Sweden)

    Ki Uhn Ahn

    2016-04-01

    Full Text Available With the increasing focus on low energy buildings and the need to develop sustainable built environments, Building Energy Performance Simulation (BEPS tools have been widely used. However, many issues remain when applying BEPS tools to existing buildings. This paper presents the issues that need to be solved for the application of BEPS tools to an existing office building. The selected building is an office building with 33 stories above ground, six underground levels, and a total floor area of 91,898 m2. The issues to be discussed in this paper are as follows: (1 grey data not ready for simulation; (2 subjective assumptions and judgments on energy modeling; (3 stochastic characteristics of building performance and occupants behavior; (4 verification of model fidelity-comparison of aggregated energy; (5 verification of model fidelity-calibration by trial and error; and (6 use of simulation model for real-time energy management. This study investigates the aforementioned issues and explains the factors that should be considered to address these issues when developing a dynamic simulation model for existing buildings.

  8. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation.

    Science.gov (United States)

    Palme, M; Inostroza, L; Villacreses, G; Lobato, A; Carrasco, C

    2017-10-01

    This data article presents files supporting calculation for urban heat island (UHI) inclusion in building performance simulation (BPS). Methodology is used in the research article "From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect" (Palme et al., 2017) [1]. In this research, a Geographical Information System (GIS) study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso). Then, a Principal Component Analysis (PCA) is done to obtain reference Urban Tissues Categories (UTC) to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG) software (version 4.1 beta). Finally, BPS is run out with the Transient System Simulation (TRNSYS) software (version 17). In this data paper, four sets of data are presented: 1) PCA data (excel) to explain how to group different urban samples in representative UTC; 2) UWG data (text) to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso); 3) weather data (text) with the resulting rural and urban weather; 4) BPS models (text) data containing the TRNSYS models (four building models).

  9. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation

    Directory of Open Access Journals (Sweden)

    M. Palme

    2017-10-01

    Full Text Available This data article presents files supporting calculation for urban heat island (UHI inclusion in building performance simulation (BPS. Methodology is used in the research article “From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect” (Palme et al., 2017 [1]. In this research, a Geographical Information System (GIS study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso. Then, a Principal Component Analysis (PCA is done to obtain reference Urban Tissues Categories (UTC to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG software (version 4.1 beta. Finally, BPS is run out with the Transient System Simulation (TRNSYS software (version 17. In this data paper, four sets of data are presented: 1 PCA data (excel to explain how to group different urban samples in representative UTC; 2 UWG data (text to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso; 3 weather data (text with the resulting rural and urban weather; 4 BPS models (text data containing the TRNSYS models (four building models.

  10. Modeling of HVAC operational faults in building performance simulation

    International Nuclear Information System (INIS)

    Zhang, Rongpeng; Hong, Tianzhen

    2017-01-01

    Highlights: •Discuss significance of capturing operational faults in existing buildings. •Develop a novel feature in EnergyPlus to model operational faults of HVAC systems. •Compare three approaches to faults modeling using EnergyPlus. •A case study demonstrates the use of the fault-modeling feature. •Future developments of new faults are discussed. -- Abstract: Operational faults are common in the heating, ventilating, and air conditioning (HVAC) systems of existing buildings, leading to a decrease in energy efficiency and occupant comfort. Various fault detection and diagnostic methods have been developed to identify and analyze HVAC operational faults at the component or subsystem level. However, current methods lack a holistic approach to predicting the overall impacts of faults at the building level—an approach that adequately addresses the coupling between various operational components, the synchronized effect between simultaneous faults, and the dynamic nature of fault severity. This study introduces the novel development of a fault-modeling feature in EnergyPlus which fills in the knowledge gap left by previous studies. This paper presents the design and implementation of the new feature in EnergyPlus and discusses in detail the fault-modeling challenges faced. The new fault-modeling feature enables EnergyPlus to quantify the impacts of faults on building energy use and occupant comfort, thus supporting the decision making of timely fault corrections. Including actual building operational faults in energy models also improves the accuracy of the baseline model, which is critical in the measurement and verification of retrofit or commissioning projects. As an example, EnergyPlus version 8.6 was used to investigate the impacts of a number of typical operational faults in an office building across several U.S. climate zones. The results demonstrate that the faults have significant impacts on building energy performance as well as on occupant

  11. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete. MARCH

  12. Modeling and simulation of the energy use in an occupied residential building in cold climate

    International Nuclear Information System (INIS)

    Olofsson, Thomas; Mahlia, T.M.I.

    2012-01-01

    Highlights: ► An overview of the energy-characteristics based on illustrations in graphical figures. ► Figures to support identification and validation energy refurbishment measures. ► Emphasizing energy efficiency measures in early stage of building design. -- Abstract: In order to reduce the energy use in the building sector there is a demand for tools that can identify significant building energy performance parameters. In the work introduced in this paper presents a methodology, based on a simulation module and graphical figures, for interactive investigations of the building energy performance. The building energy use simulation program is called TEKLA and is using EN832 with an improved procedure in calculating the heat loss through the floor and the solar heat gain. The graphical figures are simple and are illustrating the savings based on retrofit measures and climate conditions. The accuracy of the TEKLA simulation was investigated on a typical single-family building in Sweden for a period of time in a space heating demand of relatively cold and mild climate. The model was found applicable for relative investigations. Further, the methodology was applied on a typical single family reference building. The climate data from three locations in Sweden were collected and a set of relevant measures were studied. The investigated examples illustrate how decisions in the early stages of the building design process can have decisive importance on the final building energy performance.

  13. Study on simulation methods of atrium building cooling load in hot and humid regions

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yiqun; Li, Yuming; Huang, Zhizhong [Institute of Building Performance and Technology, Sino-German College of Applied Sciences, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Wu, Gang [Weldtech Technology (Shanghai) Co. Ltd. (China)

    2010-10-15

    In recent years, highly glazed atria are popular because of their architectural aesthetics and advantage of introducing daylight into inside. However, cooling load estimation of such atrium buildings is difficult due to complex thermal phenomena that occur in the atrium space. The study aims to find out a simplified method of estimating cooling loads through simulations for various types of atria in hot and humid regions. Atrium buildings are divided into different types. For every type of atrium buildings, both CFD and energy models are developed. A standard method versus the simplified one is proposed to simulate cooling load of atria in EnergyPlus based on different room air temperature patterns as a result from CFD simulation. It incorporates CFD results as input into non-dimensional height room air models in EnergyPlus, and the simulation results are defined as a baseline model in order to compare with the results from the simplified method for every category of atrium buildings. In order to further validate the simplified method an actual atrium office building is tested on site in a typical summer day and measured results are compared with simulation results using the simplified methods. Finally, appropriate methods of simulating different types of atrium buildings are proposed. (author)

  14. BUILD: A community development simulation game, appendix A

    Science.gov (United States)

    Orlando, J. A.; Pennington, A. J.

    1973-01-01

    The computer based urban decision-making game BUILD is described. BUILD is aimed at: (1) allowing maximum expression of value positions by participants through resolution of intense, task-oriented conflicts: (2) heuristically gathering information on both the technical and social functioning of the city through feedback from participants: (3) providing community participants with access to technical expertise in urban decision making, and to expose professionals to the value positions of the community: and (4) laying the groundwork for eventual development of an actual policy making tool. A brief description of the roles, sample input/output formats, an initial scenario, and information on accessing the game through a time-sharing system are included.

  15. Time Impact of Scheduling Simulation for High Rise Building

    OpenAIRE

    Asmadi Ismail; Mohamad Ibrahim Mohamad; Muhamad Azani Yahya

    2011-01-01

    Although the long-introduced Industrialised Building System (IBS) has promised to solve and improve the current construction method and scenario in our country, but the IBS method has not gained enough popularity. One of the reasons is due to lack of research works done to quantifying the benefit of IBS especially in construction time saving. In lieu with such scenario, this study conducted to quantify evidence of time saving in IBS application. The methodology adopted for this study is by mo...

  16. Simulation of phase change drywalls in a passive solar building

    Energy Technology Data Exchange (ETDEWEB)

    Darkwa, K.; O' Callaghan, P.W. [School of the Built Environment, The Applied Energy and Environmental Engineering Group, Nottingham Trent University, Burton Street, Nottingham NG1 4BU (United Kingdom)

    2006-06-15

    Integration of phase change materials (PCMs) into building fabrics is considered to be one of the potential and effective ways of minimizing energy consumption and CO{sub 2} emissions in the building sector. In order to assess the thermal effectiveness of this concept, composite PCM drywall samples (i.e. randomly-mixed and laminated PCM drywalls) have been evaluated in a model passive solar building. For a broader assessment, effects of three phase change zones (narrow, intermediate and wide) of the PCM sample were considered. The results showed that the laminated PCM sample with a narrow phase change zone was capable of increasing the minimum room temperature by about 17% more than the randomly-mixed type. Even though there was some display of non-isothermal phase change process, the laminated system proved to be thermally more effective in terms of evolution and utilization of latent heat. Further heat transfer enhancement process is however required towards the development of the laminated system. [Author].

  17. Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Tettey, Uniben Yao Ayikoe; Gustavsson, Leif

    2017-01-01

    In this study, we modelled the influence of different simulation assumptions on energy balances of two variants of a residential building, comprising the building in its existing state and with energy-efficient improvements. We explored how selected parameter combinations and variations affect the energy balances of the building configurations. The selected parameters encompass outdoor microclimate, building thermal envelope and household electrical equipment including technical installations. Our modelling takes into account hourly as well as seasonal profiles of different internal heat gains. The results suggest that the impact of parameter interactions on calculated space heating of buildings is somewhat small and relatively more noticeable for an energy-efficient building in contrast to a conventional building. We find that the influence of parameters combinations is more apparent as more individual parameters are varied. The simulations show that a building's calculated space heating demand is significantly influenced by how heat gains from electrical equipment are modelled. For the analyzed building versions, calculated final energy for space heating differs by 9–14 kWh/m"2 depending on the assumed energy efficiency level for electrical equipment. The influence of electrical equipment on calculated final space heating is proportionally more significant for an energy-efficient building compared to a conventional building. This study shows the influence of different simulation assumptions and parameter combinations when varied simultaneously. - Highlights: • Energy balances are modelled for conventional and efficient variants of a building. • Influence of assumptions and parameter combinations and variations are explored. • Parameter interactions influence is apparent as more single parameters are varied. • Calculated space heating demand is notably affected by how heat gains are modelled.

  18. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work...

  19. Ventilated buildings optimisation by using a coupled thermal-airflow simulation program

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2011-01-01

    This work shows the optimization of natural ventilation within buildings at the stage of design and behaviour of the occupants. An evaluation is done by coupled multizone air modelling and thermal building simulation by using a deterministic set of input factors comprising among others climate......, local environment, building characteristics, building systems, behaviour of occupants, heat loads. Selected deterministic input factors were varied to generate additional information applied in an optimization loop. With that, it is found that the optimal solution depends to a great deal...

  20. The simulation of naturally ventilated residential buildings in semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Ghiabaklou, Z.; Ballinger, J.A.; Prasad, D.K. [New South Wales Univ., Kensington, NSW (Australia). Solar Architecture Research Unit

    1995-12-31

    The most important consideration in hot arid and semi-arid zones is to reduce the internal day temperature and to maintain the interior spaces of buildings in a comfortable condition. An important contributor to errors in the thermal analysis of naturally ventilated buildings is inaccurate airflow predictions. These predictions are important for designers in regions where most buildings are naturally ventilated. Passive cooling by day and night natural ventilation in a single story residential building in Wagga Wagga, a semi-arid location in New South Wales has been compared and analyzed theoretically. A modified version of the computer simulation program CHEETAH, has been used to consider a building with continuous natural ventilation to simulate indoor air temperature. The aim of the study was to investigate the thermal behaviour of the building with continuous ventilation (24 hour/day) and the same building with only night time ventilation. Using night time ventilation in high mass buildings in such a climate, leads to a considerable decrease in room air temperature. Simulation results showed that increasing the effective area of windows is effective only when the wind blows. Using a steady averaged air change per hour can also cause a reduction in room air temperatures which results in different temperatures than the actual air changes per hour. (author). 3 figs., 4 refs.

  1. Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

    2014-12-24

    Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated “dumb” nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated ‘smart grid’. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced

  2. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and

  3. Integrated building and system simulation using run-time coupled distributed models

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.; Wijsman, A.J.T.M.

    2006-01-01

    In modeling and simulation of real building and heating, ventilating, and air-conditioning (HVAC) system configurations, it is frequently found that certain parts can be represented in one simulation software, while models for other parts of the configuration are only available in other software.

  4. Simulation: learning from mistakes while building communication and teamwork.

    Science.gov (United States)

    Kuehster, Christina R; Hall, Carla D

    2010-01-01

    Medical errors are one of the leading causes of death annually in the United States. Many of these errors are related to poor communication and/or lack of teamwork. Using simulation as a teaching modality provides a dual role in helping to reduce these errors. Thorough integration of clinical practice with teamwork and communication in a safe environment increases the likelihood of reducing the error rates in medicine. By allowing practitioners to make potential errors in a safe environment, such as simulation, these valuable lessons improve retention and will rarely be repeated.

  5. Building an adiabatic quantum computer simulation in the classroom

    Science.gov (United States)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  6. Biology Students Building Computer Simulations Using StarLogo TNG

    Science.gov (United States)

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  7. Coupled hygrothermal, electrochemical, and mechanical modelling for deterioration prediction in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Lepech, M.

    2017-01-01

    In this paper a coupled hygrothermal, electrochemical, and mechanical modelling approach for the deterioration prediction in cementitious materials is briefly outlined. Deterioration prediction is thereby based on coupled modelling of (i) chemical processes including among others transport of hea......, i.e. information, such as such as corrosion current density, damage state of concrete cover, etc., are constantly exchanged between the models....... and matter as well as phase assemblage on the nano and micro scale, (ii) corrosion of steel including electrochemical processes at the reinforcement surface, and (iii) material performance including corrosion- and load-induced damages on the meso and macro scale. The individual FEM models are fully coupled...

  8. GillesPy: A Python Package for Stochastic Model Building and Simulation

    OpenAIRE

    Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.

    2016-01-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we descr...

  9. Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions

    Directory of Open Access Journals (Sweden)

    Yunsong Han

    2017-12-01

    Full Text Available In the current context of increasing energy demand, timber-glass buildings will become a necessary trend in sustainable architecture in the future. Especially in severe cold zones of China, energy consumption and the visual comfort of residential buildings have attracted wide attention, and there are always trade-offs between multiple objectives. This paper aims to propose a simulation-based multiobjective optimization method to improve the daylighting, energy efficiency, and economic performance of timber-glass buildings in severe cold regions. Timber-glass building form variables have been selected as the decision variables, including building width, roof height, south and north window-to-wall ratio (WWR, window height, and orientation. A simulation-based multiobjective optimization model has been developed to optimize these performance objectives simultaneously. The results show that Daylighting Autonomy (DA presents negative correlations with Energy Use Intensity (EUI and total cost. Additionally, with an increase in DA, Useful Daylighting Illuminance (UDI demonstrates a tendency of primary increase and then decrease. Using this optimization model, four building performances have been improved from the initial generation to the final generation, which proves that simulation-based multiobjective optimization is a promising approach to improve the daylighting, energy efficiency, and economic performances of timber-glass buildings in severe cold regions.

  10. A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes

    Science.gov (United States)

    Li, Shuang; Yu, Xiaohui; Zhang, Yanjuan; Zhai, Changhai

    2018-01-01

    Casualty prediction in a building during earthquakes benefits to implement the economic loss estimation in the performance-based earthquake engineering methodology. Although after-earthquake observations reveal that the evacuation has effects on the quantity of occupant casualties during earthquakes, few current studies consider occupant movements in the building in casualty prediction procedures. To bridge this knowledge gap, a numerical simulation method using refined cellular automata model is presented, which can describe various occupant dynamic behaviors and building dimensions. The simulation on the occupant evacuation is verified by a recorded evacuation process from a school classroom in real-life 2013 Ya'an earthquake in China. The occupant casualties in the building under earthquakes are evaluated by coupling the building collapse process simulation by finite element method, the occupant evacuation simulation, and the casualty occurrence criteria with time and space synchronization. A case study of casualty prediction in a building during an earthquake is provided to demonstrate the effect of occupant movements on casualty prediction.

  11. Building a dynamic code to simulate new reactor concepts

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.

    2012-01-01

    Highlights: ► We develop a stochastic neutronic code based on an existing High Energy Physics code. ► The code simulates innovative reactor designs including Accelerator Driven Systems. ► Core materials evolution will be dynamically simulated, including fuel burnup. ► Continuous feedback between the main inter-related parameters will be established. ► A description of the current research development and achievements is also given. - Abstract: Innovative nuclear reactor designs have been proposed, such as the Accelerator Driven Systems (ADSs), the “candle” reactors, etc. These reactor designs introduce computational nuclear technology problems the solution of which necessitates a new, global and dynamic computational approach of the system. A continuous feedback procedure must be established between the main inter-related parameters of the system such as the chemical, physical and isotopic composition of the core, the neutron flux distribution and the temperature field. Furthermore, as far as ADSs are concerned, the ability of the computational tool to simulate the nuclear cascade created from the interaction of accelerated protons with the spallation target as well as the produced neutrons, is also required. The new Monte Carlo code ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is being developed based on the GEANT3 High Energy Physics code, aiming to progressively satisfy all the above requirements. A description of the capabilities and methodologies implemented in the present version of ANET is given here, together with some illustrative applications of the code.

  12. Simulated performance of the Thermo Active Building System (TABS) with respect to the provided thermal comfort and primary energy use

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Olesen, Bjarne W.; Toftum, Jørn

    2009-01-01

    The central module of an office building conditioned by a Thermo Active Building System (TABS) coupled with constant volume ventilation was evaluated by means of dynamic computer simulations. Additionally, the same building model was simulated with a conventional all air VAV ventilation system fo...

  13. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  14. Numerical simulation of heat transfer through the building facades of buildings located in the city of Bechar

    Directory of Open Access Journals (Sweden)

    A Missoum

    2016-12-01

    Full Text Available This study deals with the transient heat transfer in a multi-layered building wall through the facades of the buildings located in the city of Bechar (south-west Algeria. The physical model is presented to find the variation of the transient temperature in these structures and the heat flux through these elements, which depends on the air temperature of the inner surface and the instantaneous climatic conditions of the air outside. Comsol Multiphysics based on the finite element method is designed to perform numerical simulations. The measured hourly ambient air temperatures and the solar radiation flux on the horizontal surface for the city of Bechar Algeria are using during the hottest period (July 2015, and also using the properties Thermodynamics of each component of the structure. The validation of the analytical model with this simulation is verified in this document. The calculations carried out for different multilayer building walls which are commonly used in the south of Algeria to determine the thermal behavior of these structures and the influence of radiation heat flux on these elements.

  15. Simulation Study of Active Ceilings with Phase Change Material in Office Buildings for Different National Building Regulations

    DEFF Research Database (Denmark)

    Farhan, Hajan; Stefansen, Casper; Bourdakis, Eleftherios

    2018-01-01

    The aim of this study was to examine the performance of phase change material (PCM) in active ceilings for an office room under different Danish building regulations for both heating and cooling purposes. A model of a two-person office room was simulated with the only heating and cooling source...... being radiant ceiling panels containing PCM. The target was to reduce energy use for the simulation models and still meet the recommended criteria of Category II for the European Standard EN 15251:2007 namely, 23°C – 26°C (73.4°F – 78.8°F) during summer and between 20°C – 24°C (68.0°F – 73.4°F) during...... winter. The office model was simulated for a whole year and analyzed for three Danish building regulations BR10 (2010), BR15 (2015) and BR20 (2020). The results show that the indoor environment was within the desired Category II, according to EN 15251 for the whole occupancy period. The predicted...

  16. Methods for implementing Building Information Modeling and Building Performance Simulation approaches

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø

    methodologies. Thesis studies showed that BIM approaches have the potential to improve AEC/FM communication and collaboration. BIM is by its nature multidisciplinary, bringing AEC/FM project participants together and creating constant communication. However, BIM adoption can lead to technical challenges......, Engineering, Construction, and Facility Management (AEC/ FM) communication, and (b) BPS as a platform for early-stage building performance prediction. The second is to develop (a) relevant AEC/FM communication support instruments, and (b) standardized BIM and BPS execution guidelines and information exchange......, for example, getting BIM-compatible tools to communicate properly. Furthermore, BIM adoption requires organizational change, that is changes in AEC/FM work practices and interpersonal dynamics. Consequently, to ensure that the adoption of BIM is successful, it is recommended that common IT regulations...

  17. BUILDING INFORMATION MODELS FOR MONITORING AND SIMULATION DATA IN HERITAGE BUILDINGS

    Directory of Open Access Journals (Sweden)

    D. P. Pocobelli

    2018-05-01

    Full Text Available This paper analyses the use of BIM in heritage buildings, assessing the state-of-the-art and finding paths for further development. Specifically, this work is part of a broader project, which final aim is to support stakeholders through BIM. Given that humidity is one of the major causes of weathering, being able to detect, depict and forecast it, is a key task. A BIM model of a heritage building – enhanced with the integration of a weathering forecasting model – will be able to give detailed information on possible degradation patterns, and when they will happen. This information can be effectively used to plan both ordinary and extraordinary maintenance. The Jewel Tower in London, our case study, is digitised using combined laser scanning and photogrammetry, and a virtual model is produced. The point cloud derived from combined laser scanning & photogrammetry is traced out in with Autodesk Revit, where the main volumetry (gross walls and floors is created with parametric objects. Surface characterisation of the façade is given through renderings. Specifically, new rendering materials have been created for this purpose, based on rectified photos of the Tower. The model is then integrated with moisture data, organised in spreadsheets and linked to it via parametric objects representing the points where measurements had been previously taken. The spatial distribution of moisture is then depicted using Dynamo. This simple exercise demonstrates the potential Dynamo has for condition reporting, and future work will concentrate on the creation of a complex forecasting model to be linked through it.

  18. Simulation of Solar Energy Use in Livelihood of Buildings

    Science.gov (United States)

    Lvocich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2017-11-01

    Solar energy can be considered as the most technological and economical type of renewable energy. The purpose of the paper is to increase the efficiency of solar energy utilization on the basis of the mathematical simulation of the solar collector. A mathematical model of the radiant heat transfer vacuum solar collector is clarified. The model was based on the process of radiative heat transfer between glass and copper walls with the defined blackness degrees. A mathematical model of the ether phase transition point is developed. The dependence of the reservoir walls temperature change on the ambient temperature over time is obtained. The results of the paper can be useful for the development of prospective sources using solar energy.

  19. Selecting Eco-Friendly Thermal Systems for the “Vittoriale Degli Italiani” Historic Museum Building

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2015-09-01

    Full Text Available Thermal systems installed in museums should guarantee the maintenance of the optimal hygrothermal parameters ranges for the conservation of their collection materials. Considering the preservation of historic buildings, according to their historical and landscaping constraints, not all the thermal system typologies could be installed in these buildings’ typologies. Therefore, the main aim of this paper is to present some indications for the choice of the best thermal system solutions for a considered historic museum building, called Vittoriale degli Italiani, in the north of Italy, taking into account their installation feasibility and their related environmental impacts. The methodology includes a monitoring of the current hygrothermal parameters as well as the assessment of design heat and cooling loads related to the maintenance of the optimal hygrothermal parameters ranges for the conservation of collection materials. In addition, a Life Cycle Assessment (LCA of each selected system typology is considered for highlighting the most eco-friendly solution among the suitable ones. The obtained results highlights the feasible thermal system solutions able to maintain the hygrothermal parameters between the optimal ranges with a lower environmental impact in the Vittoriale degli Italiani historic museum building.

  20. Computational fluid dynamics simulation of wind-driven inter-unit dispersion around multi-storey buildings: Upstream building effect

    DEFF Research Database (Denmark)

    Ai, Zhengtao; Mak, C.M.; Dai, Y.W.

    2017-01-01

    of such changed airflow patterns on inter-unit dispersion characteristics around a multi-storey building due to wind effect. Computational fluid dynamics (CFD) method in the framework of Reynolds-averaged Navier-stokes modelling was employed to predict the coupled outdoor and indoor airflow field, and the tracer...... gas technique was used to simulate the dispersion of infectious agents between units. Based on the predicted concentration field, a mass conservation based parameter, namely re-entry ratio, was used to evaluate quantitatively the inter-unit dispersion possibilities and thus assess risks along...

  1. A simple interface to computational fluid dynamics programs for building environment simulations

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, III, C R; Chen, Q [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2000-07-01

    It is becoming a popular practice for architects and HVAC engineers to simulate airflow in and around buildings by computational fluid dynamics (CFD) methods in order to predict indoor and outdoor environment. However, many CFD programs are crippled by a historically poor and inefficient user interface system, particularly for users with little training in numerical simulation. This investigation endeavors to create a simplified CFD interface (SCI) that allows architects and buildings engineers to use CFD without excessive training. The SCI can be easily integrated into new CFD programs. (author)

  2. Simulation-based education for building clinical teams

    Directory of Open Access Journals (Sweden)

    Marshall Stuart

    2010-01-01

    Full Text Available Failure to work as an effective team is commonly cited as a cause of adverse events and errors in emergency medicine. Until recently, individual knowledge and skills in managing emergencies were taught, without reference to the additional skills required to work as part of a team. Team training courses are now becoming commonplace, however their strategies and modes of delivery are varied. Just as different delivery methods of traditional education can result in different levels of retention and transfer to the real world, the same is true in team training of the material in different ways in traditional forms of education may lead to different levels of retention and transfer to the real world, the same is true in team training. As team training becomes more widespread, the effectiveness of different modes of delivery including the role of simulation-based education needs to be clearly understood. This review examines the basis of team working in emergency medicine, and the components of an effective emergency medical team. Lessons from other domains with more experience in team training are discussed, as well as the variations from these settings that can be observed in medical contexts. Methods and strategies for team training are listed, and experiences in other health care settings as well as emergency medicine are assessed. Finally, best practice guidelines for the development of team training programs in emergency medicine are presented.

  3. Building Energy Assessment and Computer Simulation Applied to Social Housing in Spain

    Directory of Open Access Journals (Sweden)

    Juan Aranda

    2018-01-01

    Full Text Available The actual energy consumption and simulated energy performance of a building usually differ. This gap widens in social housing, owing to the characteristics of these buildings and the consumption patterns of economically vulnerable households affected by energy poverty. The aim of this work is to characterise the energy poverty of the households that are representative of those residing in social housing, specifically in blocks of apartments in Southern Europe. The main variables that affect energy consumption and costs are analysed, and the models developed for software energy-performance simulations (which are applied to predict energy consumption in social housing are validated against actual energy-consumption values. The results demonstrate that this type of household usually lives in surroundings at a temperature below the average thermal comfort level. We have taken into account that a standard thermal comfort level may lead to significant differences between computer-aided energy building simulation and actual consumption data (which are 40–140% lower than simulated consumption. This fact is of integral importance, as we use computer simulation to predict building energy performance in social housing.

  4. Building the evidence on simulation validity: comparison of anesthesiologists' communication patterns in real and simulated cases.

    Science.gov (United States)

    Weller, Jennifer; Henderson, Robert; Webster, Craig S; Shulruf, Boaz; Torrie, Jane; Davies, Elaine; Henderson, Kaylene; Frampton, Chris; Merry, Alan F

    2014-01-01

    Effective teamwork is important for patient safety, and verbal communication underpins many dimensions of teamwork. The validity of the simulated environment would be supported if it elicited similar verbal communications to the real setting. The authors hypothesized that anesthesiologists would exhibit similar verbal communication patterns in routine operating room (OR) cases and routine simulated cases. The authors further hypothesized that anesthesiologists would exhibit different communication patterns in routine cases (real or simulated) and simulated cases involving a crisis. Key communications relevant to teamwork were coded from video recordings of anesthesiologists in the OR, routine simulation and crisis simulation and percentages were compared. The authors recorded comparable videos of 20 anesthesiologists in the two simulations, and 17 of these anesthesiologists in the OR, generating 400 coded events in the OR, 683 in the routine simulation, and 1,419 in the crisis simulation. The authors found no significant differences in communication patterns in the OR and the routine simulations. The authors did find significant differences in communication patterns between the crisis simulation and both the OR and the routine simulations. Participants rated team communication as realistic and considered their communications occurred with a similar frequency in the simulations as in comparable cases in the OR. The similarity of teamwork-related communications elicited from anesthesiologists in simulated cases and the real setting lends support for the ecological validity of the simulation environment and its value in teamwork training. Different communication patterns and frequencies under the challenge of a crisis support the use of simulation to assess crisis management skills.

  5. Low-energy office buildings using existing technology. Simulations with low internal heat gains

    Energy Technology Data Exchange (ETDEWEB)

    Flodberg, Kajsa; Blomsterberg, Aake; Dubois, Marie-Claude [Lund Univ. (Sweden). Div. of Energy and Building Design

    2012-11-01

    Although low-energy and nearly zero-energy residential houses have been built in Sweden in the past decade, there are very few examples of low-energy office buildings. This paper investigates the design features affecting energy use in office buildings and suggests the optimal low-energy design from a Swedish perspective. Dynamic simulations have been carried out with IDA ICE 4 on a typical narrow office building with perimeter cell rooms. The results from the parametric study reveal that the most important design features for energy saving are demand-controlled ventilation as well as limited glazing on the facade. Further energy-saving features are efficient lighting and office equipment which strongly reduce user-related electricity and cooling energy. Together, the simulation results suggest that about 48% energy can be saved compared to a new office building built according to the Swedish building code. Thus, it is possible, using a combination of simple and well-known building technologies and configurations, to have very low energy use in new office buildings. If renewable energy sources, such as solar energy and wind power, are added, there is a potential for the annual energy production to exceed the annual energy consumption and a net zero-energy building can be reached. One aspect of the results concerns user-related electricity, which becomes a major energy post in very low-energy offices and which is rarely regulated in building codes today. This results not only in high electricity use, but also in large internal heat gains and unnecessary high cooling loads given the high latitude and cold climate. (orig.)

  6. Building of Nuclear Ship Engineering Simulation System development of the simulator for the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Teruo; Shimazaki, Junya; Yabuuchi, Noriaki; Fukuhara, Yosifumi; Kusunoki, Takeshi; Ochiai, Masaaki [Department of Nuclear Energy Systems, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Nakazawa, Toshio [Department of HTTR Project, Oarai Research Establishment, Japan Atomic Energy Research Institute, Oarai, Ibaraki (Japan)

    2000-03-01

    JAERI had carried out the design study of a light-weight and compact integral type reactor of power 100 MW{sub th} with passive safety as a power source for the future nuclear ships, and completed an engineering design. To confirm the design and operation performance and to utilize the study of automation of the operations of reactor, we developed a real-time simulator for the integral type reactor. This simulator is a part of Nuclear Ship Engineering Simulation System (NESSY) and on the same hardware as 'Mutsu' simulator which was developed to simulate the first Japanese nuclear ship Mutsu'. Simulation accuracy of 'Mutsu' simulator was verified by comparing the simulation results With data got in the experimental voyage of 'Mutsu'. The simulator for the integral type reactor uses the same programs which were used in 'Mutsu' simulator for the separate type PWR, and the simulated results are approximately consistent with the calculated values using RELAP5/MOD2 (The later points are reported separately). Therefore simulation accuracy of the simulator for the integral type reactor is also expected to be reasonable, though it is necessary to verify by comparing with the real plant data or experimental data in future. We can get the perspectives to use as a real-time engineering simulator and to achieve the above-mentioned aims. This is a report on development of the simulator for the integral type reactor mainly focused on the contents of the analytical programs expressed the structural features of reactor. (author)

  7. Towards evaluation and prediction of building sustainability using life cycle behaviour simulation

    Directory of Open Access Journals (Sweden)

    Marzouk Mohamed

    2017-01-01

    Full Text Available Nowadays researchers and practitioners are oriented towards questioning how effective are the different building life cycle activities contribution to preserving the environment and fulfilling the need for equilibrium. Terminologies such as Building sustainability and Green Buildings have long been adopted yet the evaluation of such has been driven through the use of rating systems. LEED of the United States, BREEAM of the United Kingdom, and Pearl of the United Arab Emirates are namely good examples of these rating systems. This paper introduces a new approach for evaluation of building life cycle sustainability through simulation of activities interaction and studying its behaviour. The effort focuses on comprehending impact and effect of suitability related activities over the whole building life cycle or period of time. The methodology includes gathering a pool of parameters through benchmarking of five selected rating systems, analytical factorization for the gathered parameters is used to elect the most influencing parameters. Followed by simulation modelling using System dynamics to capture the interaction of the considered parameters. The resulting behaviour obtained from simulation is studied and used in designing a tool for prediction of sustainability.

  8. Means of escape provisions and evacuation simulation of public building in Malaysia and Singapore

    Science.gov (United States)

    Samad, Muna Hanim Abdul; Taib, Nooriati; Ying, Choo Siew

    2017-10-01

    The Uniform Building By-law 1984 of Malaysia is the legal document governing fire safety requirements in buildings. Its prescriptive nature has made the requirements out dated from the viewpoint of current performance based approach in most developed countries. The means of escape provisions is a critical requirement to safeguard occupants' safety in fire especially in public buildings. As stipulated in the UBBL 1984, the means of escape provisions includes sufficient escape routes, travel distance, protection of escape routes, etc. designated as means to allow occupants to escape within a safe period of time. This research aims at investigating the effectiveness of those provisions in public buildings during evacuation process involving massive crowd during emergencies. This research includes a scenario-based study on evacuation processes using two software i.e. PyroSim, a crowd modelling software to conduct smoke study and Pathfinder to stimulate evacuation model of building in Malaysia and Singapore as comparative study. The results show that the buildings used as case study were designed according to Malaysian UBBL 1984 and Singapore Firecode, 2013 respectively provide relative safe means of escape. The simulations of fire and smoke and coupled with simulation of evacuation have demonstrated that although there are adequate exits designated according to fire requirements, the impact of the geometry of atriums on the behavior of fire and smoke have significant effect on escape time especially for unfamiliar user of the premises.

  9. A study of the passive cooling potential in simulated building in Latvian climate conditions

    Science.gov (United States)

    Prozuments, A.; Vanags, I.; Borodinecs, A.; Millers, R.; Tumanova, K.

    2017-10-01

    In this paper authors point out that overheating in buildings during summer season is a major problem in moderate and cold climates, not only in warm climate zones. Mostly caused by solar heat gains, especially in buildings with large glazed areas overheating is a common problem in recently constructed low-energy buildings. At the same time, comfort demands are increasing. While heating loads can be decreased by improving the insulation of the building envelope, cooling loads are also affecting total energy demand. Passive cooling solutions allow reduction of heat gains, and thus reducing the cooling loads. There is a significant night cooling potential with low temperatures at night during summer in moderate and cold climates. Night cooling is based on cooling of buildings thermal mass during the night and heat accumulation during the day. This approach allows to provide thermal comfort, reducing cooling loads during the day. Authors investigate thermal comfort requirements and causes for discomfort. Passive cooling methods are described. The simulation modeling is carried out to analyze impact of constructions and building orientation on energy consumption for cooling using the IDA-ICE software. Main criteria for simulation analysis are energy consumption for cooling and thermal comfort.

  10. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  11. Earthquake disaster simulation of civil infrastructures from tall buildings to urban areas

    CERN Document Server

    Lu, Xinzheng

    2017-01-01

    Based on more than 12 years of systematic investigation on earthquake disaster simulation of civil infrastructures, this book covers the major research outcomes including a number of novel computational models, high performance computing methods and realistic visualization techniques for tall buildings and urban areas, with particular emphasize on collapse prevention and mitigation in extreme earthquakes, earthquake loss evaluation and seismic resilience. Typical engineering applications to several tallest buildings in the world (e.g., the 632 m tall Shanghai Tower and the 528 m tall Z15 Tower) and selected large cities in China (the Beijing Central Business District, Xi'an City, Taiyuan City and Tangshan City) are also introduced to demonstrate the advantages of the proposed computational models and techniques. The high-fidelity computational model developed in this book has proven to be the only feasible option to date for earthquake-induced collapse simulation of supertall buildings that are higher than 50...

  12. Comparing internal and external run-time coupling of CFD and building energy simulation software

    NARCIS (Netherlands)

    Djunaedy, E.; Hensen, J.L.M.; Loomans, M.G.L.C.

    2004-01-01

    This paper describes a comparison between internal and external run-time coupling of CFD and building energy simulation software. Internal coupling can be seen as the "traditional" way of developing software, i.e. the capabilities of existing software are expanded by merging codes. With external

  13. Climate classification for the simulation of thermally activated building systems (TABS)

    DEFF Research Database (Denmark)

    Behrendt, Benjamin; Christensen, Jørgen Erik

    2013-01-01

    alternative (sustainable) energy sources that would otherwise be insufficient. The design of TABS is however challenging and most often requires a complete simulation of the building. The standard ISO 11855-4 (2011) suggests a simplified sizing method for TABS. The results however omit condensation risk...... entirely. The proposed climate classification should fill this gap by providing the missing data in a simple manner....

  14. BUSICO 3D: building simulation and control in unity 3D

    DEFF Research Database (Denmark)

    Fürst, Jonathan; Fierro, Gabe; Bonnet, Philippe

    2014-01-01

    In this demonstration, we present a novel system of building control and simulation focused on the integration of the physical and virtual worlds. Actuations and schedules can be manifested either in a physical space or in a virtualization of that space, allowing for more natural interactions...

  15. GillesPy: A Python Package for Stochastic Model Building and Simulation.

    Science.gov (United States)

    Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R

    2016-09-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.

  16. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  17. A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Maile, Tobias; Bazjanac, Vladimir; O' Donnell, James; Garr, Matthew

    2011-11-01

    Building energy performance is often inadequate when compared to design goals. To link design goals to actual operation one can compare measured with simulated energy performance data. Our previously developed comparison approach is the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured and simulated performance data. In context of this method, we developed a software tool that provides graphing and data processing capabilities of the two performance data sets. The software tool called SEE IT (Stanford Energy Efficiency Information Tool) eliminates the need for manual generation of data plots and data reformatting. SEE IT makes the generation of time series, scatter and carpet plots independent of the source of data (measured or simulated) and provides a valuable tool for comparing measurements with simulation results. SEE IT also allows assigning data points on a predefined building object hierarchy and supports different versions of simulated performance data. This paper briefly introduces the EPCM, describes the SEE IT tool and illustrates its use in the context of a building case study.

  18. AIRFLOW PATTERNS AND STACK PRESSURE SIMULATION IN A HIGH RISE RESIDENTIAL BUILDING LOCATED IN SEOUL

    Directory of Open Access Journals (Sweden)

    Khoukhi Maatouk

    2007-07-01

    Full Text Available Buoyancy forces due to air density difference between outdoor air and indoor air cause stack effect in high-rise buildings in cold climates. This stack effect occurs mainly at the core of the building such as the stairway and elevator shafts and causes many problems such as the energy loss caused by air flow, the blocked elevator door and discomfort due to inflowing of strong outdoor air. The main purpose of this work is to model the airflow pattern in a highrise building during the winter period by mean of COMIS. The presented building which is situated in Korea contains 30 floors above the ground level and 5 basement floors. Using COMIS, the simulation has been carried out for the entire building. However, the simulation failed due to the huge number of zones and interactions between them. Therefore, a model of building which contains 14 floors with 5 floors in the basement has been considered; and a simplified model based on the considered one has been constructed and compared with the 14 floors model. The simplified model consists on reducing the number of floors by combining a certain number of stories into one so that to enable the simulation to be carried on with a minimum number of zones and links. The result of the simulation shows that this approach could be used with accuracy still being satisfied. Therefore, the simplified procedure has been extended and applied to the high rise building model with 30 stories above the ground level and 5 stories in the basement. The effect of the exterior wall air-tightness of the building with 30 stories on the stack pressure and airflow by infiltration and/or by exfiltration has been investigated. The result shows that the total air by infiltration and/or exfiltration within the elevator shafts increases with the decrease of the level of the air-tightness of the exterior wall of the building. It has been also shown that a huge amount of air infiltrates through the shuttle and emergency elevator

  19. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M.K.

    1998-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  20. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M K

    1999-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  1. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Eun; Yoon, Sung Ho [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2012-10-15

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly.

  2. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Hwang, Young Eun; Yoon, Sung Ho

    2012-01-01

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly

  3. Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygro-thermal environments

    Science.gov (United States)

    Reza Barati, Mohammad

    2017-10-01

    Based on the generalized nonlocal strain gradient theory (NSGT), dynamic modeling and analysis of nanoporous inhomogeneous nanoplates is presented. Therefore, it is possible to capture both stiffness-softening and stiffness-hardening effects for a more accurate dynamic analysis of nanoplates. The nanoplate is in hygro-thermal environments and is subjected to an in-plane harmonic load. Porosities are incorporated to the model based on a modified rule of mixture. Modeling of the porous nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than in the first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, moisture rise, temperature rise, nonlocal parameter, strain gradient parameter, material gradation, elastic foundation and uniform dynamic load have a remarkable influence on the dynamic behavior of nanoscale plates.

  4. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    Energy Technology Data Exchange (ETDEWEB)

    Horsey, Henry; Fleming, Katherine; Ball, Brian; Long, Nicholas

    2016-08-26

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is called metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.

  5. Assessment of Retrofitting Measures for a Large Historic Research Facility Using a Building Energy Simulation Model

    Directory of Open Access Journals (Sweden)

    Young Tae Chae

    2016-06-01

    Full Text Available A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG emissions. An energy simulation model was developed to study the energy usage patterns not only at a building level, but also of the internal thermal zones, and system operations. The model was validated using site measurements of energy usage and a detailed audit of the internal load conditions, system operation, and space programs to minimize the discrepancy between the documented status and actual operational conditions. Based on the results of the calibrated model and end-used energy consumption, the study proposed potential energy conservation measures (ECMs for the building envelope, HVAC system operational methods, and system replacement. It also evaluated each ECM from the perspective of both energy and utility cost saving potentials to help retrofitting plan decision making. The study shows that the energy consumption of the building was highly dominated by the thermal requirements of laboratory spaces. Among other ECMs the demand management option of overriding the setpoint temperature is the most cost effective measure.

  6. Computational fluid dynamics simulation of indoor climate in low energy buildings: Computational set up

    Directory of Open Access Journals (Sweden)

    Risberg Daniel

    2017-01-01

    Full Text Available In this paper CFD was used for simulation of the indoor climate in a part of a low energy building. The focus of the work was on investigating the computational set up, such as grid size and boundary conditions in order to solve the indoor climate problems in an accurate way. Future work is to model a complete building, with reasonable calculation time and accuracy. A limited number of grid elements and knowledge of boundary settings are therefore essential. An accurate grid edge size of around 0.1 m was enough to predict the climate according to a grid independency study. Different turbulence models were compared with only small differences in the indoor air velocities and temperatures. The models show that radiation between building surfaces has a large impact on the temperature field inside the building, with the largest differences at the floor level. Simplifying the simulations by modelling the radiator as a surface in the outer wall of the room is appropriate for the calculations. The overall indoor climate is finally compared between three different cases for the outdoor air temperature. The results show a good indoor climate for a low energy building all around the year.

  7. Predicting the microbial exposure risks in urban floods using GIS, building simulation, and microbial models.

    Science.gov (United States)

    Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man

    2013-01-01

    London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds

    Science.gov (United States)

    Cheng, Tian

    Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A

  9. Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization

    International Nuclear Information System (INIS)

    Stojiljković, Mirko M.; Ignjatović, Marko G.; Vučković, Goran D.

    2015-01-01

    Buildings use a significant amount of primary energy and largely contribute to greenhouse gases emission. Cost optimality and cost effectiveness, including cost-optimal operation, are important for the adoption of energy efficient and environmentally friendly technologies. The long-term assessment of buildings-related greenhouse gases emission might take into account cost-optimal operation of their energy systems. This is often not the case in the literature. Long-term operation optimization problems are often of large scale and computationally intensive and time consuming. This paper formulates a bottom-up methodology relying on an efficient, but precise operation optimization approach, applicable to long-term problems and use with buildings simulations. We suggest moving-horizon short-term optimization to determine near-optimal operation modes and show that this approach, applied to flexible energy systems without seasonal storage, have satisfactory efficiency and accuracy compared with solving problem for an entire year. We also confirm it as a valuable pre-solve technique. Approach applicability and the importance of energy systems optimization are illustrated with a case study considering buildings envelope improvements and cogeneration and heat storage implementation in an urban residential settlement. EnergyPlus is used for buildings simulations while mixed integer linear programming optimization problems are constructed and solved using the custom-built software and the branch-and-cut solver Gurobi Optimizer. - Highlights: • Bottom-up approach for greenhouse gases emission assessment is presented. • Short-term moving-horizon optimization is used to define operation regimes. • Operation optimization and buildings simulations are connected with modeling tool. • Illustrated optimization method performed efficiently and gave accurate results.

  10. Preparation and hygrothermal properties of composite phase change humidity control materials

    International Nuclear Information System (INIS)

    Chen, Zhi; Qin, Menghao

    2016-01-01

    Highlights: • A new kind of phase change humidity control material (PCHCM) was prepared. • The PCHCM can moderate both the indoor temperature and humidity. • The silicon dioxide shell can improve the thermal properties of the composite. • The PCM microcapsules can improve the moisture buffer ability of the composite. • The CPCM/vesuvianite composite has a better hygrothermal performance than pure hygroscopic material. - Abstract: A novel phase change humidity control material (PCHCM) was prepared by using PCM microcapsules and different hygroscopic porous materials. The PCHCM composite can regulate the indoor hygrothermal environment by absorbing or releasing both heat and moisture. The PCM microcapsules were synthesized with methyl triethoxysilane by the sol–gel method. The vesuvianite, sepiolite and zeolite were used as hygroscopic materials. The scanning electron microscopy (SEM) was used to measure the morphology profiles of the microcapsules and PCHCM. The differential scanning calorimetry (DSC) and the thermal gravimetric analysis (TGA) were used to determine the thermal properties and thermal stability. Both the moisture transfer coefficient and moisture buffer value (MBV) of different PCHCMs were measured by the improved cup method. The DSC results showed that the SiO 2 shell can reduce the super-cooling degree of PCM. The super-cooling degrees of microcapsules and PCHCM are lower than that of the pure PCM. The onset temperature of thermal degradation of the microcapsules and PCHCMs is higher than that of pure PCM. Both the moisture transfer coefficient and MBV of PCHCMs are higher than that of the pure hygroscopic materials. The results indicated the PCHCMs have better thermal properties and moisture buffer ability.

  11. Numerical analysis of passive strategies for energy retrofit of existing buildings in Mediterranean climate: thermal mass and natural ventilation combination

    Directory of Open Access Journals (Sweden)

    Calcerano Filippo

    2017-01-01

    Full Text Available The study investigates the potential of coupling natural ventilation and thermal storage systems to improve hygrothermal comfort and reduce energy consumption during summer season in an existing building in the Mediterranean. It aims at bridging the knowledge gap between designers, researchers and building scientists, fostering a multidisciplinary approach and promoting numerical simulation of the energy performance of buildings within architectural professional practice. The study analyses the interaction between six natural ventilation systems (single sided ventilation through facade openings; cross ventilation through facade openings, inlet wind tower, thermal chimney, evaporative cool tower, earth pipes and with two thermal storage typology (heavy and medium-light within four strategic Italian location (Rome, Naples, Messina and Catania. For each interaction we perform a numerical dynamic simulation of indoor comfort, indoor air quality and energy consumption during the summer period, on a reference building model corresponding to the most common Italian typology. Results show that the use of the chosen systems ensures significant reductions of discomfort hours and energy consumption in all configurations. The study also highlights the high efficiency of non invasive systems (single-sided and cross ventilation with automatic control present discomfort hours reduction and energy consumption reduction above 68% for all combinations and the significant influence of the daily thermal range value on the performance of systems without air pre-treatment.

  12. Large-eddy simulation of plume dispersion within regular arrays of cubic buildings

    Science.gov (United States)

    Nakayama, H.; Jurcakova, K.; Nagai, H.

    2011-04-01

    There is a potential problem that hazardous and flammable materials are accidentally or intentionally released within populated urban areas. For the assessment of human health hazard from toxic substances, the existence of high concentration peaks in a plume should be considered. For the safety analysis of flammable gas, certain critical threshold levels should be evaluated. Therefore, in such a situation, not only average levels but also instantaneous magnitudes of concentration should be accurately predicted. In this study, we perform Large-Eddy Simulation (LES) of plume dispersion within regular arrays of cubic buildings with large obstacle densities and investigate the influence of the building arrangement on the characteristics of mean and fluctuating concentrations.

  13. Eawag Forum Chriesbach - Simulation and measurement of energy performance and comfort in a sustainable office building

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, B.; Dorer, V.; Frank, Th. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Building Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Guettinger, H. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf (Switzerland); van Velsen, S.; Thiemann, A. [3-Plan Haustechnik AG, Winterthur (Switzerland)

    2010-10-15

    The Eawag's new headquarters ''Forum Chriesbach'' is an exemplary illustration of a 'sustainable' construction design for office buildings. With a unique combination of architectural and technical elements the building reaches a very low 88 kWh/m{sup 2} overall primary energy consumption, which is significantly lower than the Swiss Passive House standard, Minergie-P. A monitoring and evaluation project shows that the building is heated mainly by using the sun and internal heat gains from lighting, electrical appliances and occupants, resulting in an extremely low space heating demand. Cooling is provided by natural night time ventilation and the earth-coupled air intake, which pre-cools supply air and provides free cooling for computer servers. However, values for embodied energy and electricity consumption remain significant, even with partial on-site electricity production using photovoltaics. TRNSYS computer simulations show the contributions of individual building services to the overall energy balance and indicate that the building is resilient towards changes in parameters such as climate or occupancy density. Measurements confirm comfortable room temperatures below 26 C, even during an extremely hot summer period, and 20-23 C in the winter season. An economic analysis reveals additional costs of only 5% compared to a conventionally constructed building and a payback-time of 13 years. (author)

  14. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  15. A GIS-Based 3D Simulation for Occupant Evacuation in a Building

    Institute of Scientific and Technical Information of China (English)

    TANG Fangqin; ZHANG Xin

    2008-01-01

    The evacuation efficiency of building plans is of obvious importance to the public safety.The cem- plexity of building plans,however,makes it difficult for the efficiency evaluation.This paper presents a com- putational model AutoEscape,which can simulate the evacuation process for any given occupant distribu. Uon in buildings.Designed as an extensible multi-level structure, the model constructs the geometry level and occupant level and establishes the interactions between levels.The GIS-based environmental analysis is realized to automatically generate the geometric representation and formulate the cognition of agents. The multi-agent based technology is employed to simulate the crowd behaviom with autonomously acting individuals.A visualization component,which provides 3D free observations for the simulation process,is developed on the platform of OGRE and integrated into the system interface in form of ActiveX control.Fi- nally,a case study has been conducted and the results have been compared with the results of an existing model to show the reliability and capacity of AutoEscape simulation.

  16. Performance curves of room air conditioners for building energy simulation tools

    International Nuclear Information System (INIS)

    Meissner, José W.; Abadie, Marc O.; Moura, Luís M.; Mendonça, Kátia C.; Mendes, Nathan

    2014-01-01

    Highlights: • Experimental characteristic curves for two room air conditioners are presented. • These results can be implemented in building simulation codes. • The energy consumption under different conditions can numerically determine. • The labeled higher energy efficiency product not always provides the best result. - Abstract: In order to improve the modeling of air conditioners in building simulation tools, the characteristic curves for total cooling capacity, sensible cooling capacity and energy efficiency ratio of two room units were determined. They were obtained by means of standard capacity tests on climatic chambers in a set of environmental conditions described by external dry- and internal wet bulb temperatures. Afterward, the performance of these two units and that of four other units, with and without taking into to account the thermodynamic variations of the surrounding environments on it, were compared using a whole building simulation program for simulating a conditioned space. The comparative analysis showed that the air conditioner with the higher energy efficiency rating not always provides the lowest power consumption in real conditions of use

  17. Large-Eddy Simulation on Plume Dispersion within Regular Arrays of Cubic Buildings

    Science.gov (United States)

    Nakayama, H.; Jurcakova, K.; Nagai, H.

    2010-09-01

    There is a potential problem that hazardous and flammable materials are accidentally or intentionally released into the atmosphere, either within or close to populated urban areas. For the assessment of human health hazard from toxic substances, the existence of high concentration peaks in a plume should be considered. For the safety analysis of flammable gas, certain critical threshold levels should be evaluated. Therefore, in such a situation, not only average levels but also instantaneous magnitudes of concentration should be accurately predicted. However, plume dispersion is an extremely complicated process strongly influenced by the existence of buildings. In complex turbulent flows, such as impinging, separated and circulation flows around buildings, plume behaviors can be no longer accurately predicted using empirical Gaussian-type plume model. Therefore, we perform Large-Eddy Simulations (LES) on turbulent flows and plume dispersions within and over regular arrays of cubic buildings with various roughness densities and investigate the influence of the building arrangement pattern on the characteristics of mean and fluctuation concentrations. The basic equations for the LES model are composed of the spatially filtered continuity equation, Navier-Stokes equation and transport equation of concentration. The standard Smagorinsky model (Smagorinsky, 1963) that has enough potential for environment flows is used and its constant is set to 0.12 for estimating the eddy viscosity. The turbulent Schmidt number is 0.5. In our LES model, two computational regions are set up. One is a driver region for generation of inflow turbulence and the other is a main region for LES of plume dispersion within a regular array of cubic buildings. First, inflow turbulence is generated by using Kataoka's method (2002) in the driver region and then, its data are imposed at the inlet of the main computational region at each time step. In this study, the cubic building arrays with λf=0

  18. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  19. Variation of mechanical properties due to hygrothermal ageing and permanent changes upon redrying in clay/epoxy nanocomposites

    Science.gov (United States)

    Hamim, Salah Uddin Ahmed

    2011-12-01

    Epoxy polymers are an important class of material for use in various applications. Due to their hydrophilic nature, epoxy resins tend to absorb moisture. Absorption of moisture degrades the functional, structural and mechanical properties. For polymers, moisture absorption can lead to both reversible and irreversible changes. In this study, the combined effect of moisture and elevated temperature on the mechanical properties of Epon 862 and its nanocomposites were investigated. The extent of permanent damage on fracture toughness and flexural properties of epoxy, due to the aggressive degradation provided by hygrothermal ageing, was determined by drying the epoxy and their clay/epoxy nanocomposites after moisture absorption. From the investigation it was found out that, clay can help in reducing the negative effect of hygrothermal ageing. Significant permanent damage was observed for fracture toughness and modulus, while the extent of permanent damage was less significant for flexural strength. Failure mechanism of this nanocomposites were studied by using Scanning Electron Microscopy (SEM).

  20. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China.

    Science.gov (United States)

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-04-03

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation.

  1. Method and simulation program informed decisions in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2010-01-01

    variations. The program then presents the output in a way that enables designers to make informed decisions. The method and the program reduce the need for design iterations, reducing time consumption and construction costs, to obtain the intended energy performance and indoor environment....... for making informed decisions in the early stages of building design to fulfil performance requirements with regard to energy consumption and indoor environment. The method is operationalised in a program that utilises a simple simulation program to make performance predictions of user-defined parameter......The early stages of building design include a number of decisions which have a strong influence on the performance of the building throughout the rest of the process. It is therefore important that designers are aware of the consequences of these design decisions. This paper presents a method...

  2. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  3. Simulation on spread of fire smoke in the elevator shaft for a high-rise building

    Directory of Open Access Journals (Sweden)

    Yunchun Xia

    2014-01-01

    Full Text Available Spread of fire smoke in the elevator shaft of a high-rise building is influenced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187°C in 5 min, and the concentration of CO can also reach a high level. The elevator shaft has a very low visibility in less than about 100 s.

  4. THE COMPARISON BETWEEN COMPUTER SIMULATION AND PHYSICAL MODEL IN CALCULATING ILLUMINANCE LEVEL OF ATRIUM BUILDING

    Directory of Open Access Journals (Sweden)

    Sushardjanti Felasari

    2003-01-01

    Full Text Available This research examines the accuracy of computer programmes to simulate the illuminance level in atrium buildings compare to the measurement of those in physical models. The case was taken in atrium building with 4 types of roof i.e. pitched roof, barrel vault roof, monitor pitched roof (both monitor pitched roof and monitor barrel vault roof, and north light roof (both with north orientation and south orientation. The results show that both methods have agreement and disagreement. They show the same pattern of daylight distribution. In the other side, in terms of daylight factors, computer simulation tends to underestimate calculation compared to physical model measurement, while for average and minimum illumination, it tends to overestimate the calculation.

  5. Using the building energy simulation test (BESTEST) to evaluate CHENATH, the Nationwide House Energy Rating Scheme Simulation Engine

    Energy Technology Data Exchange (ETDEWEB)

    Delsante, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Highett, VIC (Australia). Div. of Building Construction and Engineering

    1995-12-31

    The Nationwide House Energy Rating Scheme (NatHERS) uses a simulation program as its reference tool to evaluate the energy demand of buildings. The Commonwealth Scientific Industrial Research Organisation (CSIRO) developed software called CHENATH, is a significantly enhanced version of the CHEETAH simulation program. As part of the NatHERS development process, it was considered important to subject CHENATH to further testing. Two separate evaluation projects were undertaken. This paper describes one of these projects. CHENATH was compared with a reference set of eight internationally recognized simulation programs using the BESTEST methodology. Annual heating and cooling energy requirements were compared for a specified set of variations on a simple double-glazed building. Annual incident and transmitted solar radiation was also compared, for which CHENATH agreed very well with the reference set. It also agreed well for heating energy, but tended to over-predict cooling energy. This is largely because it controls an environmental temperature rather than the required air temperature. For the same reason CHENATH over-predicted heating and cooling demands. No major discrepancies were found that would suggest bugs in the program. (author). 4 tabs., 10 figs., 4 refs.

  6. Description of occupant behaviour in building energy simulation: state-of-art and concepts for improvements

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Vinther; Corgnati, Stefano Paolo

    2011-01-01

    of basic assumptions that affect the results. Therefore, the calculated energy performance may differ significantly from the real energy consumption. One of the key reasons is the current inability to properly model occupant behaviour and to quantify the associated uncertainties in building performance...... predictions. By consequence, a better description of parameters related to occupant behaviour is highly required. In this paper, the state of art in occupant behaviour modelling within energy simulation tools is analysed and some concepts related to possible improvements of simulation tools are proposed...

  7. Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments

    International Nuclear Information System (INIS)

    Gao, Yafeng; Xu, Jiangmin; Yang, Shichao; Tang, Xiaomin; Zhou, Quan; Ge, Jing; Xu, Tengfang; Levinson, Ronnen

    2014-01-01

    While the concept of reflective roofing is not new to China, most Chinese cool roof research has taken place within the past decade. Some national and local Chinese building energy efficiency standards credit or recommend, but do not require, cool roofs or walls. EnergyPlus simulations of standard-compliant Chinese office and residential building prototypes in seven Chinese cities (Harbin, Changchun, Beijing, Chongqing, Shanghai, Wuhan, and Guangzhou) showed that substituting an aged white roof (albedo 0.6) for an aged gray roof (albedo 0.2) yields positive annual load, energy, energy cost, CO 2 , NO x , and SO 2 savings in all hot-summer cities (Chongqing, Shanghai, Wuhan, and Guangzhou). Measurements in an office building in Chongqing in August 2012 found that a white coating lowered roof surface temperature by about 20 °C, and reduced daily air conditioning energy use by about 9%. Measurements in a naturally ventilated factory in Guangdong Province in August 2011 showed that a white coating decreased roof surface temperature by about 17 °C, lowered room air temperature by 1–3 °C, and reduced daily roof heat flux by 66%. Simulation and experimental results suggest that cool roofs should be credited or prescribed in building energy efficiency standards for both hot summer/warm winter and hot summer/cold winter climates in China

  8. Damage assessment of mission essential buildings based on simulation studies of low yield explosives

    Science.gov (United States)

    Allen, Thomas G. L.

    2006-04-01

    There has been a lack of investigations related to low yield explosives instigated by terrorist on small but high occupancy buildings. Also, mitigating the threat of terrorist attacks against high occupancy buildings with network equipment essential to the mission of an organization is a challenging task. At the same time, it is difficult to predict how, why, and when terrorists may attack theses assets. Many factors must be considered in creating a safe building environment. Although it is possible that the dominant threat mode may change in the future, bombings have historically been a favorite tactic of terrorists. Ingredients for homemade bombs are easily obtained on the open market, as are the techniques for making bombs. Bombings are easy and quick to execute. This paper discusses the problems with and provides insights of experience gained in analyzing small scale explosions on older military base buildings. In this study, we examine the placement of various bombs on buildings using the shock wave simulation code CTH and examine the damage effects on the interior of the building, particularly the damage that is incurred on a computer center. These simulation experiments provide data on the effectiveness of a building's security and an understanding of the phenomenology of shocks as they propagate through rooms and corridors. It's purpose is to motivate researchers to take the seriousness of small yield explosives on moderately sized buildings. Visualizations from this analysis are used to understand the complex flow of the air blasts around corridors and hallways. Finally, we make suggestions for improving the mitigation of such terrorist attacks. The intent of this study is not to provide breakthrough technology, but to provide a tool and a means for analyzing the material hardness of a building and to eventually provide the incentive for more security. The information mentioned in this paper is public domain information and easily available via the

  9. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    Science.gov (United States)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  10. Experimental simulation of a light aircraft crash on to a nuclear power plant auxiliary building roof

    International Nuclear Information System (INIS)

    Barnes, D.; Barr, P.; Garton, G.; Howe, W.D.; Neilson, A.J.

    1984-08-01

    The experiments described were conducted at a reduced scale with geometric dimensions of prototype structures of one-fifth full size. The target was based on the auxiliary buildings for the proposed Sizewell PWR. Descriptions of the simulated aircraft model and the test panels are given, together with the instrumentation. Details are given of the test programme and the results are summarized and discussed. Comparison is made of the model aircraft tests with an equivalent hard missile impact. (U.K.)

  11. Simulated building energy demand biases resulting from the use of representative weather stations

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; Xie, Yulong; Kraucunas, Ian

    2018-01-01

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. We quantify the potential reduction in bias from using an increasing number of weather stations over the western U.S. The approach is based on deriving temperature and load time series using incrementally more weather stations, ranging from 8 to roughly 150, to capture weather across different seasons. Using 8 stations, one from each climate zone, across the western U.S. results in an average absolute summertime temperature bias of 7.2°F with respect to a spatially-resolved gridded dataset. The mean absolute bias drops to 2.8°F using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.8%, a significant error for capacity expansion planners who may use these types of simulations. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20-40% overestimation of peak building loads during both summer and winter. Using weather stations close to population centers reduces both mean and peak load biases. This approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.

  12. Comparison of SISEC code simulations with earthquake data of ordinary and base-isolated buildings

    International Nuclear Information System (INIS)

    Wang, C.Y.; Gvildys, J.

    1991-01-01

    At Argonne National Laboratory (ANL), a 3-D computer program SISEC (Seismic Isolation System Evaluation Code) is being developed for simulating the system response of isolated and ordinary structures (Wang et al. 1991). This paper describes comparison of SISEC code simulations with building response data of actual earthquakes. To ensure the accuracy of analytical simulations, recorded data of full-size reinforced concrete structures located in Sendai, Japan are used in this benchmark comparison. The test structures consist of two three-story buildings, one base-isolated and the other one ordinary founded. They were constructed side by side to investigate the effect of base isolation on the acceleration response. Among 20 earthquakes observed since April 1989, complete records of three representative earthquakes, no.2, no.6, and no.17, are used for the code validation presented in this paper. Correlations of observed and calculated accelerations at all instrument locations are made. Also, relative response characteristics of ordinary and isolated building structures are investigated. (J.P.N.)

  13. On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period

    Directory of Open Access Journals (Sweden)

    Francesco Asdrubali

    2012-06-01

    Full Text Available Among solar passive systems integrated in buildings, sunspaces or solar greenhouses represent a very interesting solution. A sunspace is a closed, southbound volume, constituted by transparent surfaces, adjacent to a building, which reduces winter energy demand thanks to the use of solar gains. The effect of a typical solar greenhouse on the energy balance of a building was evaluated during the heating period with two stationary procedures (Method 5000 and EN ISO 13790 and with a dynamic tool (TRNSYS. After the analysis of the greenhouse alone, the behavior of an entire house was simulated; a flat equipped with a sunspace, recently built thanks to public contributions provided by the Umbria Region in Italy to widespread bio-climatic architecture, was used as case-study. Simulations were carried out for the examined flat, both with a steady-state tool and with a dynamic one; the contribution of the sunspace was estimated thanks to the various methods previously mentioned. Finally, the simulated data were satisfactorily compared with the real energy consumptions (natural gas for heating of the flat; the sunspace allows a reduction of winter energy demand of the flat of about 20%.

  14. Summary of detailed energy audit and building simulation on archetype sustainable house, Woodbridge ON

    Energy Technology Data Exchange (ETDEWEB)

    Fung, A. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Dembo, A.; Zhou, J. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Architectural Science

    2009-07-01

    This paper described energy and audit and building simulations conducted on an archetype sustainable house located in Woodbridge, Ontario. The house formed part of a project to construct low energy, sustainable house designs for mass production. The 2 houses formed a duplex. House A was designed using current best design practices, while house B was equipped with advanced and innovative technologies not commonly used in residential constructions. Natural Resources Canada's (NRCan) HOT2000 residential building simulation program was used to evaluate the performance of both houses in the duplex. The simulation program demonstrated that house B performed more efficiently than house A. However, neither houses met their designed values. Significantly larger space heating and cooling loads were identified. The program showed that additional weather-stripping around doors, and caulking around windows will help to reduce the amount of draft in the houses. Assessments are also needed to measure heat losses from the common wall in the basement. It was concluded that the energy performance of the house can be optimized by using the appropriate sealing techniques throughout the building envelope. 2 refs., 1 tab.

  15. Building-Resolved CFD Simulations for Greenhouse Gas Transport and Dispersion over Washington DC / Baltimore

    Science.gov (United States)

    Prasad, K.; Lopez-Coto, I.; Ghosh, S.; Mueller, K.; Whetstone, J. R.

    2015-12-01

    The North-East Corridor project aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over urban domains such as Washington DC / Baltimore with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and communities comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing difficult to simulate with a mesoscale atmospheric model. Such capabilities may be important in determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 10-20 m in a domain of 12 x 12 km. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in the North-East Corridor and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions and transport.

  16. Validation studies of the DOE-2 Building Energy Simulation Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.; Winkelmann, F.

    1998-06-01

    This report documents many of the validation studies (Table 1) of the DOE-2 building energy analysis simulation program that have taken place since 1981. Results for several versions of the program are presented with the most recent study conducted in 1996 on version DOE-2.1E and the most distant study conducted in 1981 on version DOE-1.3. This work is part of an effort related to continued development of DOE-2, particularly in its use as a simulation engine for new specialized versions of the program such as the recently released RESFEN 3.1. RESFEN 3.1 is a program specifically dealing with analyzing the energy performance of windows in residential buildings. The intent in providing the results of these validation studies is to give potential users of the program a high degree of confidence in the calculated results. Validation studies in which calculated simulation data is compared to measured data have been conducted throughout the development of the DOE-2 program. Discrepancies discovered during the course of such work has resulted in improvements in the simulation algorithms. Table 2 provides a listing of additions and modifications that have been made to various versions of the program since version DOE-2.1A. One of the most significant recent changes in the program occurred with version DOE-2.1E. An improved algorithm for calculating the outside surface film coefficient was implemented. In addition, integration of the WINDOW 4 program was accomplished resulting in improved ability in analyzing window energy performance. Validation and verification of a program as sophisticated as DOE-2 must necessarily be limited because of the approximations inherent in the program. For example, the most accurate model of the heat transfer processes in a building would include a three-dimensional analysis. To justify such detailed algorithmic procedures would correspondingly require detailed information describing the building and/or HVAC system and energy plant parameters

  17. Development of a Computational Simulation Model for Conflict Management in Team Building

    Directory of Open Access Journals (Sweden)

    W. M. Wang

    2011-05-01

    Full Text Available Conflict management is one of the most important issues in leveraging organizational competitiveness. However, traditional social scientists built theories or models in this area which were mostly expressed in words and diagrams are insufficient. Social science research based on computational modeling and simulation is beginning to augment traditional theory building. Simulation provides a method for people to try their actions out in a way that is cost effective, faster, appropriate, flexible, and ethical. In this paper, a computational simulation model for conflict management in team building is presented. The model is designed and used to explore the individual performances related to the combination of individuals who have a range of conflict handling styles, under various types of resources and policies. The model is developed based on agent-based modeling method. Each of the agents has one of the five conflict handling styles: accommodation, compromise, competition, contingency, and learning. There are three types of scenarios: normal, convex, and concave. There are two types of policies: no policy, and a reward and punishment policy. Results from running the model are also presented. The simulation has led us to derive two implications concerning conflict management. First, a concave type of resource promotes competition, while convex type of resource promotes compromise and collaboration. Second, the performance ranking of different styles can be influenced by introducing different policies. On the other hand, it is possible for us to promote certain style by introducing different policies.

  18. Guidelines for developing efficient thermal conduction and storage models within building energy simulations

    International Nuclear Information System (INIS)

    Hillary, Jason; Walsh, Ed; Shah, Amip; Zhou, Rongliang; Walsh, Pat

    2017-01-01

    Improving building energy efficiency is of paramount importance due to the large proportion of energy consumed by thermal operations. Consequently, simulating a building's environment has gained popularity for assessing thermal comfort and design. The extended timeframes and large physical scales involved necessitate compact modelling approaches. The accuracy of such simulations is of chief concern, yet there is little guidance offered on achieving accurate solutions whilst mitigating prohibitive computational costs. Therefore, the present study addresses this deficit by providing clear guidance on discretisation levels required for achieving accurate but computationally inexpensive models. This is achieved by comparing numerical models of varying discretisation levels to benchmark analytical solutions with prediction accuracy assessed and reported in terms of governing dimensionless parameters, Biot and Fourier numbers, to ensure generality of findings. Furthermore, spatial and temporal discretisation errors are separated and assessed independently. Contour plots are presented to intuitively determine the optimal discretisation levels and time-steps required to achieve accurate thermal response predictions. Simulations derived from these contour plots were tested against various building conditions with excellent agreement observed throughout. Additionally, various scenarios are highlighted where the classical single lumped capacitance model can be applied for Biot numbers much greater than 0.1 without reducing accuracy. - Highlights: • Addressing the problems of inadequate discretisation within building energy models. • Accuracy of numerical models assessed against analytical solutions. • Fourier and Biot numbers used to provide generality of results for any material. • Contour plots offer intuitive way to interpret results for manual discretisation. • Results show proposed technique promising for automation of discretisation process.

  19. Evaluation and simulation of event building techniques for a detector at the LHC

    CERN Document Server

    Spiwoks, R

    1995-01-01

    The main objectives of future experiments at the Large Hadron Collider are the search for the Higgs boson (or bosons), the verification of the Standard Model and the search beyond the Standard Model in a new energy range up to a few TeV. These experiments will have to cope with unprecedented high data rates and will need event building systems which can offer a bandwidth of 1 to 100GB/s and which can assemble events from 100 to 1000 readout memories at rates of 1 to 100kHz. This work investigates the feasibility of parallel event building sys- tems using commercially available high speed interconnects and switches. Studies are performed by building a small-scale prototype and by modelling this proto- type and realistic architectures with discrete-event simulations. The prototype is based on the HiPPI standard and uses commercially available VME-HiPPI interfaces and a HiPPI switch together with modular and scalable software. The setup operates successfully as a parallel event building system of limited size in...

  20. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  1. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    Science.gov (United States)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations

  2. Study on the simulation of heat pump heating and cooling systems to hospital building

    International Nuclear Information System (INIS)

    Choi, Young Don; Han, Seong Ho; Cho, Sung Hwan; Kim, Du Sung; Um, Chul Jun

    2008-01-01

    In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller and heater

  3. Simulations of the potential revenue from investment in improved indoor air quality in an office building

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Djukanovic, Rade

    2005-01-01

    of improved worker performance; benefits from reduced health costs and sickness absence were not included. The building was simulated in a cold, a moderate and a hot climate. It was ventilated by a constant air volume (CAV) system with heat recovery and by a variable air volume (VAV) system with an economizer....... The air quality was improved by increasing the outdoor air supply rate and by reducing the pollution loads. These upgrades involved increased energy and HVAC maintenance costs, first costs of a HVAC system and building construction costs. But the additional investments were highly cost......-effective. The annual benefit due to improved air quality was up to 115 times higher than the increase in annual energy and maintenance costs. LCC analysis showed that productivity benefits resulting from a better indoor air quality were up to 60 times higher than the increased costs; the simple and discounted pay...

  4. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  5. End-to-end interoperability and workflows from building architecture design to one or more simulations

    Science.gov (United States)

    Chao, Tian-Jy; Kim, Younghun

    2015-02-10

    An end-to-end interoperability and workflows from building architecture design to one or more simulations, in one aspect, may comprise establishing a BIM enablement platform architecture. A data model defines data entities and entity relationships for enabling the interoperability and workflows. A data definition language may be implemented that defines and creates a table schema of a database associated with the data model. Data management services and/or application programming interfaces may be implemented for interacting with the data model. Web services may also be provided for interacting with the data model via the Web. A user interface may be implemented that communicates with users and uses the BIM enablement platform architecture, the data model, the data definition language, data management services and application programming interfaces to provide functions to the users to perform work related to building information management.

  6. Developing a new library of materials and structural elements for the simulative evaluation of buildings' energy performance

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, Agis M.; Oxizidis, Simos; Papathanasiou, Luciano [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, P.O. Box 483, Thessaloniki 54124 (Greece)

    2008-05-15

    Contemporary building energy simulation programs are not only used by researchers but also are common tools in the hands of engineers and architects. Most of them are using databases of materials and structural elements, with characteristics originating from the country or the broader region where the specific program was developed. Thus, often the particularities met in other countries are not considered. Such a database of materials and constructions systematically used in the Greek building sector was developed for use with the simulation program EnergyPlus, which has become quite popular over the last years. In order to determine the applicability of the database, the energy behaviour of a typical multistory, multifamily building was simulated, having the exact materials and structural elements and patterns used in Greece. Furthermore, different thicknesses of insulation were simulated, corresponding to local climatic conditions and, even more important, to different dates of the building's construction. The results are presented and discussed in this paper. (author)

  7. A simplified tool for building layout design based on thermal comfort simulations

    Directory of Open Access Journals (Sweden)

    Prashant Anand

    2017-06-01

    Full Text Available Thermal comfort aspects of indoor spaces are crucial during the design stages of building layout planning. This study presents a simplified tool based on thermal comfort using predicted mean vote (PMV index. Thermal comfort simulations were performed for 14 different possible room layouts based on window configurations. ECOTECT 12 was used to determine the PMV of these rooms for one full year, leading to 17,808 simulations. Simulations were performed for three different climatic zones in India and were validated using in-situ measurements from one of these climatic zones. For moderate climates, rooms with window openings on the south façade exhibited the best thermal comfort conditions for nights, with comfort conditions prevailing for approximately 79.25% of the time annually. For operation during the day, windows on the north façade are favored, with thermal comfort conditions prevailing for approximately 77.74% of the time annually. Similar results for day and night time operation for other two climatic zones are presented. Such an output is essential in deciding the layout of buildings on the basis of functionality of the different rooms (living room, bedroom, kitchen corresponding to different operation times of the day.

  8. Building energy simulation using multi-years and typical meteorological years in different climates

    International Nuclear Information System (INIS)

    Yang Liu; Lam, Joseph C.; Liu Jiaping; Tsang, C.L.

    2008-01-01

    Detailed hourly energy simulation was conducted for office buildings in the five major climate zones - severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter - in China using multi-year (1971-2000) weather databases as well as typical meteorological years (TMY). The primary aim was to compare the energy simulation results from the TMY with those from individual years and their long term means. A total of 154 simulation runs were performed. Building heating and cooling loads, their components and energy use for heating, ventilation and air-conditioning were analysed. Predicted monthly load and energy consumption profiles from the TMY tended to follow the long term mean quite closely. Mean bias errors ranged from -4.3% in Guangzhou to 0% in Beijing and root-mean-square errors from 3% in Harbin to 5.4% in Guangzhou. These percentages were not always the smallest compared with the 30 individual years, however, they are at the lower end of the percentage error ranges. This paper presents the work and its findings

  9. Hourly test reference weather data in the changing climate of Finland for building energy simulations

    Directory of Open Access Journals (Sweden)

    Kirsti Jylhä

    2015-09-01

    Full Text Available Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled “Energy demand for the heating and cooling of residential houses in Finland in a changing climate” [1].

  10. Large Eddy Simulation of Unstably Stratified Turbulent Flow over Urban-Like Building Arrays

    Directory of Open Access Journals (Sweden)

    Bobin Wang

    2013-01-01

    Full Text Available Thermal instability induced by solar radiation is the most common condition of urban atmosphere in daytime. Compared to researches under neutral conditions, only a few numerical works studied the unstable urban boundary layer and the effect of buoyancy force is unclear. In this paper, unstably stratified turbulent boundary layer flow over three-dimensional urban-like building arrays with ground heating is simulated. Large eddy simulation is applied to capture main turbulence structures and the effect of buoyancy force on turbulence can be investigated. Lagrangian dynamic subgrid scale model is used for complex flow together with a wall function, taking into account the large pressure gradient near buildings. The numerical model and method are verified with the results measured in wind tunnel experiment. The simulated results satisfy well with the experiment in mean velocity and temperature, as well as turbulent intensities. Mean flow structure inside canopy layer varies with thermal instability, while no large secondary vortex is observed. Turbulent intensities are enhanced, as buoyancy force contributes to the production of turbulent kinetic energy.

  11. Dynamic simulation of space heating systems with radiators controlled by TRVs in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoping; Fu, Lin; Di, Hongfa [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (China)

    2008-07-01

    The objective of this paper is to develop a model for simulating the thermal and hydraulic behavior of space heating systems with radiators controlled by thermostat valves (TRVs) in multi-family buildings. This is done by treating the building and the heating system as a complete entity. Sub-models for rooms, radiators, TRVs, and the hydraulic network are derived. Then the suggested sub-models are combined to form an integrated model by considering interactions between them. The proposed model takes into account the heat transfer between neighboring rooms, the transport delay in the radiator, the self-adjusting function of the TRV, and the consumer's regulation behavior, as well as the hydraulic interactions between consumers. To test the model, two space heating systems in Beijing and Tianjin were investigated, and the model was validated under three operation modes. There was good agreement between the measured and simulated values for room temperature, return water temperature, and flow rate. A modeling analysis case was given based on an existing building and heating system. It was found that when the set value of the TRVs were kept on 2-3, about 12.4% reduction of heat consumption could be gained, compared with the situation in which the TRVs were kept fully open. The water flow rate was an important index that truly reflected the heat load change. It was also noted that if the flow rate or supply water temperature changed much during the transport delay time in the radiator, ignoring the transport delay would introduce an obvious deviation of the simulation results. Additionally, when an apartment stopped using the heating system during a heating season, the heat consumption of its neighboring apartments would be increased about 6-14%. (author)

  12. Optimizing the Physical, Mechanical and Hygrothermal Performance of Compressed Earth Bricks

    Directory of Open Access Journals (Sweden)

    Esther Obonyo

    2011-03-01

    Full Text Available The paper is based on findings from research that assesses the potential for enhancing the performance of compressed earth bricks. A set of experiments was carried out to assess the potential for enhancing the bricks’ physical, mechanical and hygrothermal performance through the design of an optimal stabilization strategy. Three different types of bricks were fabricated: soil-cement, soil-cement-lime, and soil-cement-fiber. The different types of bricks did not exhibit significant differences in performances when assessed on the basis of porosity, density, water absorption, and compressive strength. However, upon exposure to elevated moisture and temperature conditions, the soil-cement-fiber bricks had the highest residual strength (87%. The soil-cement and soil-cement-lime bricks had residual strength values of 48.19 and 46.20% respectively. These results suggest that, like any other cement-based material, compressed earth brick properties are affected by hydration-triggered chemical and structural changes occurring in the matrix that would be difficult to isolate using tests that focus on “bulk” changes. The discussion in this paper presents findings from a research effort directed at quantifying the specific changes through an analysis of the microstructure.

  13. Experimental Study on Hygrothermal Deformation of External Thermal Insulation Cladding Systems with Glazed Hollow Bead

    Directory of Open Access Journals (Sweden)

    Houren Xiong

    2016-01-01

    Full Text Available This research analyzes the thermal and strain behavior of external thermal insulation cladding systems (ETICS with Glazed Hollow Beads (GHB thermal insulation mortar under hygrothermal cycles weather test in order to measure its durability under extreme weather (i.e., sunlight and rain. Thermometers and strain gauges are placed into different wall layers to gather thermal and strain data and another instrument measures the crack dimensions after every 4 cycles. The results showed that the finishing coat shrank at early stage (elastic deformation and then the finishing coat tends to expand and become damaged at later stage (plastic deformation. The deformation of insulation layer is similar to that of the finishing coat but its variation amplitude is smaller. Deformation of substrate expanded with heat and contracted with cold due to the small temperature variation. The length and width of cracks on the finishing coat grew as the experiment progressed but with a decreasing growth rate and the cracks stopped growing around 70 cycles.

  14. Evaluation of hygrothermal effects on the shear properties of Carall composites

    International Nuclear Information System (INIS)

    Botelho, E.C.; Pardini, L.C.; Rezende, M.C.

    2007-01-01

    Fiber metal laminates are the frontline materials for aeronautical and space structures. These composites consists of layers of 2024-T3-aluminum alloy and composite prepreg layers. When the composite layer is a carbon fiber prepreg, the fiber metal laminate, named Carall, offers significant improvements over current available materials for aircraft structures. While weight reduction and improved damage tolerance characteristics were the prime drivers to develop this new family of materials, it turns out that they have additional benefits, which become more and more important for today's designers, such as cost reduction and improved safety. The degradation of composites is due to environmental effects mainly on the chemical and/or physical properties of the polymer matrix leading to loss of adhesion of fiber/resin interface. Also, the reduction of fiber strength and stiffness are expected due to environmental degradation. Changes in interface/interphase properties leads to more pronounced changes in shear properties than any other mechanical properties. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites and Carall have been investigated by using interlaminar shear (ILSS) and Iosipescu tests. It was observed that hygrothermal conditioning reduces the Iosipescu shear strength of CF/E and Carall composites due to the moisture absorption in these materials

  15. Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites.

    Science.gov (United States)

    Hamim, Salah U; Singh, Raman P

    2014-01-01

    Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface.

  16. Assigning Robust Default Values in Building Performance Simulation Software for Improved Decision-Making in the Initial Stages of Building Design

    Directory of Open Access Journals (Sweden)

    Kyosuke Hiyama

    2015-01-01

    Full Text Available Applying data mining techniques on a database of BIM models could provide valuable insights in key design patterns implicitly present in these BIM models. The architectural designer would then be able to use previous data from existing building projects as default values in building performance simulation software for the early phases of building design. The author has proposed the method to minimize the magnitude of the variation in these default values in subsequent design stages. This approach maintains the accuracy of the simulation results in the initial stages of building design. In this study, a more convincing argument is presented to demonstrate the significance of the new method. The variation in the ideal default values for different building design conditions is assessed first. Next, the influence of each condition on these variations is investigated. The space depth is found to have a large impact on the ideal default value of the window to wall ratio. In addition, the presence or absence of lighting control and natural ventilation has a significant influence on the ideal default value. These effects can be used to identify the types of building conditions that should be considered to determine the ideal default values.

  17. Assigning Robust Default Values in Building Performance Simulation Software for Improved Decision-Making in the Initial Stages of Building Design.

    Science.gov (United States)

    Hiyama, Kyosuke

    2015-01-01

    Applying data mining techniques on a database of BIM models could provide valuable insights in key design patterns implicitly present in these BIM models. The architectural designer would then be able to use previous data from existing building projects as default values in building performance simulation software for the early phases of building design. The author has proposed the method to minimize the magnitude of the variation in these default values in subsequent design stages. This approach maintains the accuracy of the simulation results in the initial stages of building design. In this study, a more convincing argument is presented to demonstrate the significance of the new method. The variation in the ideal default values for different building design conditions is assessed first. Next, the influence of each condition on these variations is investigated. The space depth is found to have a large impact on the ideal default value of the window to wall ratio. In addition, the presence or absence of lighting control and natural ventilation has a significant influence on the ideal default value. These effects can be used to identify the types of building conditions that should be considered to determine the ideal default values.

  18. Numerical simulation of phase change material composite wallboard in a multi-layered building envelope

    International Nuclear Information System (INIS)

    Zwanzig, Stephen D.; Lian, Yongsheng; Brehob, Ellen G.

    2013-01-01

    Highlights: ► A numerical method to study the heat transfer through a PCM composite wallboard is presented. ► PCM wallboard can reduce energy consumption and shift peak electricity load. ► There is an optimal location for the PCM wallboard in the building envelop. ► The PCM wallboard performance depends on weather conditions. - Abstract: Phase change materials (PCMs) have the capability to store/release massive latent heat when undergoing phase change. When impregnated or encapsulated into wallboard or concrete systems, PCMs can greatly enhance their thermal energy storage capacity and effective thermal mass. When used in the building envelope PCM wallboard has the potential to improve building operation by reducing the energy requirement for maintaining thermal comfort, downsizing the AC/heating equipment, and shifting the peak load from the electrical grid. In this work we numerically studied the potential of PCM on energy saving for residential homes. For that purpose we solved the one-dimensional, transient heat equation through the multi-layered building envelope using the Crank–Nicolson discretization scheme. A source term is incorporated to account for the thermal-physical properties of the composite PCM wallboard. Using this code we examined a PCM composite wallboard incorporated into the walls and roof of a typical residential building across various climate zones. The PCM performance was studied under all seasonal conditions using the latest typical meteorological year (TMY3) data for exterior boundary conditions. Our simulations show that PCM performance highly depends on the weather conditions, emphasizing the necessity to choose different PCMs at different climate zones. Comparisons were also made between different PCM wallboard locations. Our work shows that there exists an optimal location for PCM placement within building envelope dependent upon the resistance values between the PCM layer and the exterior boundary conditions. We further

  19. Influence of Hygrothermal Aging on Poisson’s Ratio of Thin Injection-Molded Short Glass Fiber-Reinforced PA6

    OpenAIRE

    Thomas Illing; Heinrich Gotzig; Marcus Schoßig; Christian Bierögel; Wolfgang Grellmann

    2016-01-01

    The hygrothermal aging of short glass fiber-reinforced polyamide 6 materials (PA6 GF) represents a major problem, especially in thin-walled components, such as in the automotive sector. In this study, therefore, the thickness and the glass fiber content of PA6 GF materials were varied and the materials were exposed to hygrothermal aging. The temperature and relative humidity were selected in the range from −40 °C up to 85 °C, and from 10% up to 85% relative humidity (RH). In the dry-as-molded...

  20. Hardware-in-the-Loop Modeling and Simulation Methods for Daylight Systems in Buildings

    Science.gov (United States)

    Mead, Alex Robert

    This dissertation introduces hardware-in-the-loop modeling and simulation techniques to the daylighting community, with specific application to complex fenestration systems. No such application of this class of techniques, optimally combining mathematical-modeling and physical-modeling experimentation, is known to the author previously in the literature. Daylighting systems in buildings have a large impact on both the energy usage of a building as well as the occupant experience within a space. As such, a renewed interest has been placed on designing and constructing buildings with an emphasis on daylighting in recent times as part of the "green movement.''. Within daylighting systems, a specific subclass of building envelope is receiving much attention: complex fenestration systems (CFSs). CFSs are unique as compared to regular fenestration systems (e.g. glazing) in the regard that they allow for non-specular transmission of daylight into a space. This non-specular nature can be leveraged by designers to "optimize'' the times of the day and the days of the year that daylight enters a space. Examples of CFSs include: Venetian blinds, woven fabric shades, and prismatic window coatings. In order to leverage the non-specular transmission properties of CFSs, however, engineering analysis techniques capable of faithfully representing the physics of these systems are needed. Traditionally, the analysis techniques available to the daylighting community fall broadly into three classes: simplified techniques, mathematical-modeling and simulation, and physical-modeling and experimentation. Simplified techniques use "rules-of-thumb'' heuristics to provide insights for simple daylighting systems. Mathematical-modeling and simulation use complex numerical models to provide more detailed insights into system performance. Finally, physical-models can be instrumented and excited using artificial and natural light sources to provide performance insight into a daylighting system

  1. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    Science.gov (United States)

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  2. Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Palombo, Adolfo

    2014-01-01

    Highlights: • A new dynamic simulation code for building energy performance analysis is presented. • The thermal behavior of each building element is modeled by a thermal RC network. • The physical models implemented in the code are illustrated. • The code was validated by the BESTEST standard procedure. • We investigate residential buildings, offices and stores in different climates. - Abstract: A novel dynamic simulation model for the building envelope energy performance analysis is presented in this paper. This tool helps the investigation of many new building technologies to increase the system energy efficiency and it can be carried out for scientific research purposes. In addition to the yearly heating and cooling load and energy demand, the obtained output is the dynamic temperature profile of indoor air and surfaces and the dynamic profile of the thermal fluxes through the building elements. The presented simulation model is also validated through the BESTEST standard procedure. Several new case studies are developed for assessing, through the presented code, the energy performance of three different building envelopes with several different weather conditions. In particular, dwelling and commercial buildings are analysed. Light and heavyweight envelopes as well as different glazed surfaces areas have been used for every case study. With the achieved results interesting design and operating guidelines can be obtained. Such data have been also compared vs. those calculated by TRNSYS and EnergyPlus. The detected deviation of the obtained results vs. those of such standard tools are almost always lower than 10%

  3. Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications

    Directory of Open Access Journals (Sweden)

    Julia Marín-Sáez

    2016-07-01

    Full Text Available A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel and Avignon (France—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented. The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon to 20% (Sde Boker. Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.

  4. Construction Process Simulation and Safety Analysis Based on Building Information Model and 4D Technology

    Institute of Scientific and Technical Information of China (English)

    HU Zhenzhong; ZHANG Jianping; DENG Ziyin

    2008-01-01

    Time-dependent structure analysis theory has been proved to be more accurate and reliable com-pared to commonly used methods during construction. However, so far applications are limited to partial pe-riod and part of the structure because of immeasurable artificial intervention. Based on the building informa-tion model (BIM) and four-dimensional (4D) technology, this paper proposes an improves structure analysis method, which can generate structural geometry, resistance model, and loading conditions automatically by a close interlink of the schedule information, architectural model, and material properties. The method was applied to a safety analysis during a continuous and dynamic simulation of the entire construction process.The results show that the organic combination of the BIM, 4D technology, construction simulation, and safety analysis of time-dependent structures is feasible and practical. This research also lays a foundation for further researches on building lifecycle management by combining architectural design, structure analy-sis, and construction management.

  5. BIM-Based 4D Simulation to Improve Module Manufacturing Productivity for Sustainable Building Projects

    Directory of Open Access Journals (Sweden)

    Joosung Lee

    2017-03-01

    Full Text Available Modular construction methods, where products are manufactured beforehand in a factory and then transported to the site for installation, are becoming increasingly popular for construction projects in many countries as this method facilitates the use of the advanced technologies that support sustainability in building projects. This approach requires dual factory–site process management to be carefully coordinated and the factory module manufacturing process must therefore be managed in a detailed and quantitative manner. However, currently, the limited algorithms available to support this process are based on mathematical methodologies that do not consider the complex mix of equipment, factories, personnel, and materials involved. This paper presents three new building information modeling-based 4D simulation frameworks to manage the three elements—process, quantity, and quality—that determine the productivity of factory module manufacturing. These frameworks leverage the advantages of 4D simulation and provide more precise information than existing conventional documents. By utilizing a 4D model that facilitates the visualization of a wide range of data variables, manufacturers can plan the module manufacturing process in detail and fully understand the material, equipment, and workflow needed to accomplish the manufacturing tasks. Managers can also access information about material quantities for each process and use this information for earned value management, warehousing/storage, fabrication, and assembly planning. By having a 4D view that connects 2D drawing models, manufacturing errors and rework can be minimized and problems such as construction delays, quality lapses, and cost overruns vastly reduced.

  6. Numerical Simulation of the Effects of Water Surface in Building Environment

    Science.gov (United States)

    Li, Guangyao; Pan, Yuqing; Yang, Li

    2018-03-01

    Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.

  7. Contribution to the simulation of the behavior of containment buildings in nuclear power plants

    International Nuclear Information System (INIS)

    Jason, Ludovic

    2016-01-01

    In this document, containment buildings of nuclear power plants in reinforced and prestressed concrete are studied. The mechanical behavior is first investigated. It includes studies at different scales, from the industrial scale at which it is difficult to obtain detailed information about the crack openings, to the structural scale at which it becomes possible to develop more refined approaches (steel-concrete bond, modeling of the different heterogeneities, constitutive models for concrete,...). When it is possible, the developments are based on the combination between modeling, simulation and experiments. A new steel-concrete bond model is especially developed. Its interest, compared to the classical 'perfect bond' hypothesis is particularly discussed. An adaptive condensation technique is finally proposed to bridge the gap between the scale of the containment and the scale of Structural Representative Volumes. As the tightness of the containment buildings is related to the fluid flow through concrete, two approaches are proposed and compared. The first one is based on a chained hydro mechanical simulation and tends to show that the mechanical damage is only influent when it crosses the whole concrete section. In this case, a localized approach is preferred from which a reference crack opening is defined. (author) [fr

  8. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  9. Window opening behaviour: simulations of occupant behaviour in residential buildings using models based on a field survey

    DEFF Research Database (Denmark)

    Valentina, Fabi; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Window opening behaviour has been shown to have a significant impact on airflow rates and hence energy consumption. Nevertheless, the inhabitant behaviour related to window opening in residential buildings is currently poorly investigated through both field surveys and building energy simulations....... In particular, reliable information regarding user behaviour in residential buildings is crucial for suitable prediction of building performance (energy consumption, indoor environmental quality, etc.). To face this issue, measurements of indoor climate and outdoor environmental parameters and window “opening...... and closing” actions were performed in 15 dwellings from January to August 2008 in Denmark. Probabilistic models of inhabitants’ window “opening and closing” behaviour were developed and implemented in the energy simulation software IDA ICE to improve window opening and closing strategies in simulations...

  10. Simulation Study of Performance of Active Ceilings with Phase Change Material in Office Buildings under Extreme Climate Conditions

    DEFF Research Database (Denmark)

    Stefansen, Casper; Farhan, Hajan; Bourdakis, Eleftherios

    2018-01-01

    simulations were run with a building simulation software for eight climates. The chosen climates were Dubai –UAE, Istanbul – Turkey, Lima – Peru, Moscow – Russia, Nuuk – Greenland, Salvador – Brazil, Tokyo – Japan and Tromsø – Norway. Two models of a two-person office were made for each climate; one model...

  11. Methodology to Assess No Touch Audit Software Using Simulated Building Utility Data

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States); Langner, M. Rois [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    This report describes a methodology developed for assessing the performance of no touch building audit tools and presents results for an available tool. Building audits are conducted in many commercial buildings to reduce building energy costs and improve building operation. Because the audits typically require significant input obtained by building engineers, they are usually only affordable for larger commercial building owners. In an effort to help small building and business owners gain the benefits of an audit at a lower cost, no touch building audit tools have been developed to remotely analyze a building's energy consumption.

  12. Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory

    Science.gov (United States)

    Zhu, Guanyu

    Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different

  13. Simulation of the effects of window opening and heating set-point behaviour on indoor climate and building energy performance

    DEFF Research Database (Denmark)

    Andersen, Rune Vinther; Toftum, Jørn; Olesen, Bjarne W.

    2009-01-01

    Simultaneous measurement of occupant behaviour, indoor and outdoor environment was carried out in 15 dwellings in Denmark during the period from January to August 2008. Based on the measurements occupant behavioural patterns were defined and implemented in the building simulation program IDA ICE...... in indoor environmental variables between the two simulations. The heat consumption was more than three times as high in the case as in the reference simulation. This underlines the importance of considering the behaviour of the occupants in the design process of buildings....

  14. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings

    International Nuclear Information System (INIS)

    Saber, Esmail M.; Lee, Siew Eang; Manthapuri, Sumanth; Yi, Wang; Deb, Chirag

    2014-01-01

    Air pollution and climate change increased the importance of renewable energy resources like solar energy in the last decades. Rack-mounted PhotoVoltaics (PV) and Building Integrated PhotoVoltaics (BIPV) are the most common photovoltaic systems which convert incident solar radiation on façade or surrounding area to electricity. In this paper the performance of different solar cell types is evaluated for the tropical weather of Singapore. As a case study, on-site measured data of PV systems implemented in a zero energy building in Singapore, is analyzed. Different types of PV systems (silicon wafer and thin film) have been installed on rooftop, façade, car park shelter, railing and etc. The impact of different solar cell generations, arrays environmental conditions (no shading, dappled shading, full shading), orientation (South, North, East or West facing) and inclination (between PV module and horizontal direction) is investigated on performance of modules. In the second stage of research, the whole PV systems in the case study are simulated in EnergyPlus energy simulation software with several PV performance models including Simple, Equivalent one-diode and Sandia. The predicted results by different models are compared with measured data and the validated model is used to provide simulation-based energy yield predictions for wide ranges of scenarios. It has been concluded that orientation of low-slope rooftop PV has negligible impact on annual energy yield but in case of PV external sunshade, east façade and panel slope of 30–40° are the most suitable location and inclination. - Highlights: • Characteristics of PV systems in tropics are analyzed in depth. • The ambiguity toward amorphous panel energy yield in tropics is discussed. • Equivalent-one diode and Sandia models can fairly predict the energy yield. • A general guideline is provided to estimate the energy yield of PV systems in tropics

  15. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  16. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons.

    Science.gov (United States)

    Yang, Fang; Zhong, Ke; Chen, Yonghang; Kang, Yanming

    2017-10-01

    Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

  17. Comparison of the corrosion of fasteners embedded in wood measured in outdoor exposure with the predictions from a combined hygrothermal-corrosion model

    Science.gov (United States)

    Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman; Dominique Derome

    2016-01-01

    This paper examines the accuracy of a recently developed hygrothermal-corrosion model which predictsthe corrosion of fasteners embedded in wood by comparing the results of the model to a one year fieldtest. Steel and galvanized steel fasteners were embedded into untreated and preservative treated woodand exposed outdoors while weather data were collected. Qualitatively...

  18. The CFD Simulation on Thermal Comfort in a library Building in the Tropics

    International Nuclear Information System (INIS)

    Yau, Y. H.; Ghazali, N. N. N.; Badarudin, A.; Goh, F. C.

    2010-01-01

    This paper presents a three-dimensional analysis for thermal comfort in a library. The room model includes library layout, equipment and peripheral positions as well as the positions of inlet and outlet air for IAQ controls. Cold clean air is supplied to the room through ceiling-mounted air grilles and exhausted through air grilles situated on the same ceiling. A commercial CFD package was used in this study to achieve solutions of the distribution of airflow velocity and temperature. Using high quality meshes is vital to the overall accuracy of the results. Simulation results show a good agreement with experimental data from the literature. This study has thoroughly analysed the indoor thermal conditions and airflow characteristics of the building. In addition, verification of the CFD program with experimental data showed that the program can provide reasonable and reliable predictions on thermal comfort performance with the help of precise boundary conditions.

  19. Simulation-based support for integrated design of new low-energy office buildings

    DEFF Research Database (Denmark)

    Petersen, Steffen

    . The method uses the energy frame concept to express the constraints of the optimisation problem, which is then solved by minimising the costs of conserving energy in all the individual energy-saving measures. A case example illustrates how the method enables designers to establish a qualified estimate...... a method for making informed decisions in the early stages of building design to fulfil performance requirements with regard to energy consumption and indoor environment. The method is operationalised in a program that utilises a simple simulation program to make performance predictions of user......-defined parameter variations. The program then presents the output in a way that enables designers to make informed decisions. The method and the program reduce the need for design iterations, reducing time consumption and construction costs, to obtain the intended energy performance and indoor environment. Paper...

  20. Modelling and simulation of “Free Cooling” process applied to building construction

    Science.gov (United States)

    Ousegui, A.; Asbik, M.

    2018-05-01

    Thermal energy storage systems (TES), using phase change material (PCM) in building walls, consists a hot topic within the research community currently. In the present work, a numerical model is developed to simulate free cooling of air-PCM heat exchanger in both charging and discharging steps. The studied case is taken from experimental work. The domain consists in two parallel plates made of Paraffin as PCM, separate by a gap where air circulates. The flow and temperature can be adjusted. The goal is to calculate the temperature of the air at the outlet, in order to analyse the performance of the device. A good agreement was founded between experimental and numerical results. The analysis of the influence of the flow rate on the efficiency of the process confirms a previous works, that the heating flow rate should be higher than cooling one.

  1. Simultaneous heat and moisture transfer in soils combined with building simulation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G. H. dos; Mendes, N. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory (LST), Curitiba (Brazil)

    2006-07-01

    In order to precisely predict ground heat transfer, room air temperature and humidity, a combined model has been developed and conceived to calculate both the coupled heat and moisture transfer in soil and floor and the psychrometrics condition of indoor air. The present methodology for the soil is based on the theory of Philip and De Vries, using variable thermophysical properties for different materials. The governing equations were discretized using the finite-volume method and a three-dimensional model for describing the physical phenomena of heat and mass transfer in unsaturated moist porous soils and floor. Additionally, a lumped transient approach for a building room and a finite-volume multi-layer model for the building envelope have been developed to integrate with the soil model. Results are presented in terms of temperature, humidity and heat flux at the interface between room air and the floor, showing the importance of the approach presented and the model robustness for long-term simulations with a high time step. (author)

  2. Analytical investigation of the hygrothermal effects and parametric study of the Edge Crack Torsion (ECT) mode 3 test lay-ups

    Science.gov (United States)

    Li, Jian; Obrien, T. Kevin

    1995-01-01

    A shear deformation theory including residual thermal and moisture effects is developed for the analysis of either symmetric or unsymmetric laminates with mid-plane edge delamination under torsion loading. The theory is based on an assumed displacement field which includes shear deformation. The governing equations and boundary conditions are obtained from the principle of virtual work. The analysis of the (90/(+/- 45)(n)/(-/+ 45)(n)/90)(s) ECT mode 3 test lay-up indicates that there are no hygrothermal effects on the mode 3 strain energy release rate because the laminate, and both sublaminates above and below the delamination, are symmetric lay-ups. A further parametric study reveals that some other lay-ups can have negligible hygrothermal effects even when the sublaminates above and below the delamination are not symmetric about their own mid-planes. However, these lay-ups may suffer from distortion after the curing process. Another Interesting set of lay-ups investigated is a class of antisymmetric laminates with (+/-(theta/(theta -90)(2)/theta))(n) lay-ups. It is observed that when n takes on even numbers (2 and 4), both hygrothermal and mode 1 effects can be neglected. From this point of view, these lay-ups provide a way to determine the mode 3 toughness between two dissimilar layers. However, when n takes on odd numbers (1 and 3), both hygrothermal and mode 1 effects may be strong in these lay-ups. In particular, when theta equals 45 deg, the lay-ups are free from both hygrothermal and mode 1 effects irrespective of n.

  3. Centre for Building Simulation. Basis for establishing a centre; Center for Bygningssimulering - Idegrundlag for etablering af center

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Joergen Erik; Karlshoej, J.; Bacher, P.; Johnsen, K.; Olesen, B.W.; Rode, C.; Heller, A.

    2012-12-15

    The purpose of the project was to create the basis for the establishment of a Centre for Building Simulation focusing on the use of advanced building energy simulations to obtain electricity and heat savings. The project of trying to make a Centre for Building Simulation in Denmark was based on interviews with future users and partners with an interest in further development of Denmark's leading position in this field. Friday 29th October, 2010, a ''Workshop on the establishment of the Centre for Building Simulation'' was organized at DTU. Approximately 90 national and international participants were present. The workshop structure and results are described in enclosure 1. The primary purpose of the workshop was to establish consensus on the needs of architects and consultants in Denmark in relation to building simulation, and create the concept for a Danish Centre for Building Simulation. As a result of the workshop the idea grew that the centre will combine research and development activities of the Danish building simulation and develops future intelligent simulation tools with a focus on the use of advanced building energy simulations to achieve sustainable construction. These programs need to interact closely with Building Information Modelling, BIM, where the construction process is connected to a digital building model. In addition, various financing options were considered for the operation of the centre with an initial time horizon of 5-10 years. Based on results from the workshop, interviews with future users and partners, a large application was written to the Danish National Research Council, 7th application round - Centre of Excellence, 29 November 2011 (enclosure 3) entitled ''Centre for Intelligent Building Information Modelling iBIM''. The work on the application resulted in a great deal of knowledge gathered and adapted during the whole process of preparing the application. Unfortunately, the application

  4. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    Science.gov (United States)

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  5. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    and Ben Polly, Joseph Robertson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Polly, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Collis, Jon [Colorado School of Mines, Golden, CO (United States)

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  6. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  7. Simulation of energy use, human thermal comfort and office work performance in buildings with moderately drifting operative temperatures

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2011-01-01

    Annual primary energy use in a central module of an office building consisting of two offices separated with a corridor was estimated by means of dynamic computer simulations. The simulations were conducted for conventional all-air VAV ventilation system and thermo active building system (TABS) s....... The TABS working in a moderate climate kept the predicted percentage of dissatisfied (PPD) 10%; 1.4% in comparison to 17.5% h/yr. The highest estimated loss of occupants’ productivity related to their thermal sensation hasn’t exceeded 1% in whole year average....

  8. Jake Garn Mission Simulator and Training Facility, Building 5, Historical Documentation

    Science.gov (United States)

    Slovinac, Trish; Deming, Joan

    2010-01-01

    In response to President George W. Bush's announcement in January 2004 that the Space Shuttle Program (SSP) would end in 2010, the National Aeronautics and Space Administration (NASA) completed a nation-wide historical survey and evaluation of NASA-owned facilities and properties (real property assets) at all its Centers and component facilities. The buildings and structures which supported the SSP were inventoried and assessed as per the criteria of eligibility for listing in the National Register of Historic Places (NRHP) in the context of this program. This study was performed in compliance with Section 110 of the National Historic Preservation Act (NHPA) of 1966 (Public Law 89-665), as amended; the National Environmental Policy Act (NEPA) of 1969 (Public Law 91-190); Executive Order (EO) 11593: Protection and Enhancement of the Cultural Environment; EO 13287, Preserve America, and other relevant legislation. As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities at was conducted by NASA's Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC's contractor, Archaeological Consultants, Inc. As a result of this survey, the Jake Gam Mission Simulator and Training Facility (Building 5) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 5 was still used to support the SSP as an

  9. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  10. Building a Simulator with Life-like Realism for Teaching Abdominal Operations.

    Science.gov (United States)

    McGreevy, James M; O'Shea, Jennie M

    2018-01-29

    The objective of this communication is to provide an evolutionary description of an attempt to replicate the success of the Rampahl Cardiac Simulator using perfused abdominal organ blocks the way that the Rampahl Simulator uses ex vivo porcine hearts. This descriptive paper makes no attempt to prove the effectiveness of the described educational tool, but rather, outlines the successes and failures in development. The proven value of a perfused organ teaching tool, as the Rampahl Simulator, suggests that others can build upon the work described in this paper so that, in the future, perfused abdominal organs will be available to students of general surgery as a routine part of their pre-operative preparation. The Animal Resource Facility of the University of Utah, under the oversight of the University Institutional Animal Use and Care Committee (IACUC), provided the animals, operating suites and technical support. During each development phase, General Surgery Residents and Medical Students from all levels participated. In addition, operating room staff with an interest in either medical school or perfusion were invited to participate. The efforts described in this paper eventually resulted in a reliable teaching tool for abdominal procedures in that viability of the porcine abdominal organs for up to three hours after euthanasia was regularly achieved. General Surgery Teaching Programs of a size similar to the University of Utah may have access to the resources necessary to replicate this teaching tool in a cost-effective manner. However smaller teaching programs, such as those without a research facility, may not be able to adapt the procedures described in this paper. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  11. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    Science.gov (United States)

    Barjasteh, Ehsan

    in the oxygen-transport properties (diffusivity and solubility of oxygen). The effect of thermal aging on mechanical properties of the aged composites was investigated. A relationship was derived relating TOL to tensile strength of the hybrid composite. The tensile strength remained essentially unchanged by thermal oxidation after 52 weeks of exposure. On the contrary, the oxidation resulted in a decrease in short-beam-shear (SBS) strength (a matrix-dominated property) due to degradation of matrix and fiber/matrix interface strength. However, the filled composites showed a lower reduction in SBS strength than that of the unfilled one for an identical duration of exposure. In addition, the effect of thermal aging on glass transition temperature (T g) was determined for isothermal exposures at 180ºC and 200ºC. The simultaneous effects of post-curing and thermal degradation resulted in the change in Tg during exposure. Another study on the composite rod was performed to investigate the sorption kinetics and the effects of moisture on mechanical and physical properties. Sorption curves were obtained for both hybrid and non-hybrid composite rods to determine characteristic parameters, including the diffusion coefficient (D) and the maximum moisture uptake (Minfinity ). The moisture uptake for the hybrid composites generally exhibited Fickian behavior (no hybridization effects), behaving much like non-hybrid composites. A two-dimensional diffusion model was employed to calculate moisture diffusivities in the longitudinal direction. Interfaces and thermally-induced residual stresses affected the moisture diffusion. In addition, the effect of hygrothermal aging on glass transition temperature (Tg), short beam shear strength (SBS), and tensile strength was determined for hygrothermal exposure at 60°C and 85% relative humidity (RH). Property retention and reversibility of property degradation was also measured. Microscopic inspection revealed no evidence of damage

  12. ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation

    International Nuclear Information System (INIS)

    García Kerdan, Iván; Raslan, Rokia; Ruyssevelt, Paul; Morillón Gálvez, David

    2017-01-01

    Highlights: • Development of a building retrofit-oriented exergoeconomic-based optimisation tool. • A new exergoeconomic cost-benefit indicator is developed for design comparison. • Thermodynamic and thermal comfort variables used as constraints and/or objectives. • Irreversibilities and exergetic cost for end-use processes are substantially reduced. • Robust methodology that should be pursued in everyday building retrofit practice. - Abstract: Energy simulation tools have a major role in the assessment of building energy retrofit (BER) measures. Exergoeconomic analysis and optimisation is a common practice in sectors such as the power generation and chemical processes, aiding engineers to obtain more energy-efficient and cost-effective energy systems designs. ExRET-Opt, a retrofit-oriented modular-based dynamic simulation framework has been developed by embedding a comprehensive exergy/exergoeconomic calculation method into a typical open-source building energy simulation tool (EnergyPlus). The aim of this paper is to show the decomposition of ExRET-Opt by presenting modules, submodules and subroutines used for the framework’s development as well as verify the outputs with existing research data. In addition, the possibility to perform multi-objective optimisation analysis based on genetic-algorithms combined with multi-criteria decision making methods was included within the simulation framework. This addition could potentiate BER design teams to perform quick exergy/exergoeconomic optimisation, in order to find opportunities for thermodynamic improvements along the building’s active and passive energy systems. The enhanced simulation framework is tested using a primary school building as a case study. Results demonstrate that the proposed simulation framework provide users with thermodynamic efficient and cost-effective designs, even under tight thermodynamic and economic constraints, suggesting its use in everyday BER practice.

  13. Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wei [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Sevilla, Thomas Alonso [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Zuo, Wangda [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.

    2017-06-08

    Historically, multizone models are widely used in building airflow and energy performance simulations due to their fast computing speed. However, multizone models assume that the air in a room is well mixed, consequently limiting their application. In specific rooms where this assumption fails, the use of computational fluid dynamics (CFD) models may be an alternative option. Previous research has mainly focused on coupling CFD models and multizone models to study airflow in large spaces. While significant, most of these analyses did not consider the coupled simulation of the building airflow with the building's Heating, Ventilation, and Air-Conditioning (HVAC) systems. This paper tries to fill the gap by integrating the models for HVAC systems with coupled multizone and CFD simulations for airflows, using the Modelica simul ation platform. To improve the computational efficiency, we incorporated a simplified CFD model named fast fluid dynamics (FFD). We first introduce the data synchronization strategy and implementation in Modelica. Then, we verify the implementation using two case studies involving an isothermal and a non-isothermal flow by comparing model simulations to experiment data. Afterward, we study another three cases that are deemed more realistic. This is done by attaching a variable air volume (VAV) terminal box and a VAV system to previous flows to assess the capability of the models in studying the dynamic control of HVAC systems. Finally, we discuss further research needs on the coupled simulation using the models.

  14. Building Energy Consumption Pattern Analysis of Detached Housing for the Policy Decision Simulator

    Science.gov (United States)

    Lim, Jiyoun; Lee, Seung-Eon

    2018-03-01

    The Korean government announced its plan to raise the previous reduction goal of greenhouse gas emission from buildings by 26.9% until 2020 on July 2015. Therefore, policies regarding efficiency in the building energy are implemented fast, but the level of building owners and market understanding is low in general, and the government service system which supports decision making for implementing low-energy buildings has not been provided yet. The purpose of this study is to present the design direction for establishing user customized building energy database to perform a role to provide autonomous ecosystem of low-energy buildings. In order to reduce energy consumption in buildings, it is necessary to carry out the energy performance analysis based on the characteristics of target building. By analysing about 20-thousand cases of the amount of housing energy consumption in Korea, this study suggested the real energy consumption pattern by building types. Also, the energy performance of a building could be determined by energy consumption, but previous building energy consumption analysis programs required expert knowledge and experience in program usage, so it was difficult for normal building users to use such programs. Therefore, a measure to provide proper default using the level of data which general users with no expert knowledge regarding building energy could enter easily was suggested in this study.

  15. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xipeng, E-mail: xptan1985@gmail.com [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Kok, Yihong; Tan, Yu Jun [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Vastola, Guglielmo, E-mail: vastolag@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Pei, Qing Xiang; Zhang, Gang; Zhang, Yong-Wei [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore)

    2015-10-15

    Build thickness dependent microstructure of electron beam melted (EBM{sup ®}) Ti–6Al–4V has been investigated from both experiment and simulation using four block samples with thicknesses of 1, 5, 10 and 20 mm. We observe a mixed microstructure of alternate α/β with some α′ martensite inside the 1 mm-thick sample. By contrast, only the alternate α/β microstructure with both colony and basket-weave morphologies occurs inside the 5 mm-, 10 mm- and 20 mm-thick samples. It is found that β spacing is constantly increased with the build thickness, leading to an obvious decrease in microhardness. Finite element method (FEM) simulations show that cooling rates and thermal profiles during EBM process are favorable for the formation of martensite. Moreover, full-scale FEM simulations reveal that the average temperature inside the samples is higher as the build thickness increases. It suggests that martensitic decomposition is faster in thicker samples, which is in good agreement with the experimental observations. - Highlights: • Build geometry dependent microstructure and microhardness for EBM-built Ti–6Al–4V. • Phase evolution involved in EBM process. • FEM simulation of EBM process. • α′ martensite formation and its identification.

  16. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...

  17. Simulation of emergency response operations for a static chemical spill within a building using an opportunistic resource utilization network

    NARCIS (Netherlands)

    Lilien, L.T.; Elbes, M.W.; Ben Othmane, L.; Salih, R.M.

    2013-01-01

    We investigate supporting emergency response operations with opportunistic resource utilization networks ("oppnets"), based on a network paradigm for inviting and integrating diverse devices and systems available in the environment. We simulate chemical spill on a single floor of a building and

  18. Energy Modelling and Automated Calibrations of Ancient Building Simulations: A Case Study of a School in the Northwest of Spain

    Directory of Open Access Journals (Sweden)

    Ana Ogando

    2017-06-01

    Full Text Available In the present paper, the energy performance of buildings forming a school centre in the northwest of Spain was analyzed using a transient simulation of the energy model of the school, which was developed with TRNSYS, a software of proven reliability in the field of thermal simulations. A deterministic calibration approach was applied to the initial building model to adjust the predictions to the actual performance of the school, data acquired during the temperature measurement campaign. The buildings under study were in deteriorated conditions due to poor maintenance over the years, presenting a big challenge for modelling and simulating it in a reliable way. The results showed that the proposed methodology is successful for obtaining calibrated thermal models of these types of damaged buildings, as the metrics employed to verify the final error showed a reduced normalized mean bias error (NMBE of 2.73%. It was verified that a decrease of approximately 60% in NMBE and 17% in the coefficient of variation of the root mean square error (CV(RMSE was achieved due to the calibration process. Subsequent steps were performed with the aid of new software, which was developed under a European project that enabled the automated calibration of the simulations.

  19. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V

    International Nuclear Information System (INIS)

    Tan, Xipeng; Kok, Yihong; Tan, Yu Jun; Vastola, Guglielmo; Pei, Qing Xiang; Zhang, Gang; Zhang, Yong-Wei; Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai

    2015-01-01

    Build thickness dependent microstructure of electron beam melted (EBM ® ) Ti–6Al–4V has been investigated from both experiment and simulation using four block samples with thicknesses of 1, 5, 10 and 20 mm. We observe a mixed microstructure of alternate α/β with some α′ martensite inside the 1 mm-thick sample. By contrast, only the alternate α/β microstructure with both colony and basket-weave morphologies occurs inside the 5 mm-, 10 mm- and 20 mm-thick samples. It is found that β spacing is constantly increased with the build thickness, leading to an obvious decrease in microhardness. Finite element method (FEM) simulations show that cooling rates and thermal profiles during EBM process are favorable for the formation of martensite. Moreover, full-scale FEM simulations reveal that the average temperature inside the samples is higher as the build thickness increases. It suggests that martensitic decomposition is faster in thicker samples, which is in good agreement with the experimental observations. - Highlights: • Build geometry dependent microstructure and microhardness for EBM-built Ti–6Al–4V. • Phase evolution involved in EBM process. • FEM simulation of EBM process. • α′ martensite formation and its identification

  20. HBT+: an improved code for finding subhaloes and building merger trees in cosmological simulations

    Science.gov (United States)

    Han, Jiaxin; Cole, Shaun; Frenk, Carlos S.; Benitez-Llambay, Alejandro; Helly, John

    2018-02-01

    Dark matter subhalos are the remnants of (incomplete) halo mergers. Identifying them and establishing their evolutionary links in the form of merger trees is one of the most important applications of cosmological simulations. The HBT (Hierachical Bound-Tracing) code identifies haloes as they form and tracks their evolution as they merge, simultaneously detecting subhaloes and building their merger trees. Here we present a new implementation of this approach, HBT+ , that is much faster, more user friendly, and more physically complete than the original code. Applying HBT+ to cosmological simulations, we show that both the subhalo mass function and the peak-mass function are well fitted by similar double-Schechter functions. The ratio between the two is highest at the high-mass end, reflecting the resilience of massive subhaloes that experience substantial dynamical friction but limited tidal stripping. The radial distribution of the most-massive subhaloes is more concentrated than the universal radial distribution of lower mass subhaloes. Subhalo finders that work in configuration space tend to underestimate the masses of massive subhaloes, an effect that is stronger in the host centre. This may explain, at least in part, the excess of massive subhaloes in galaxy cluster centres inferred from recent lensing observations. We demonstrate that the peak-mass function is a powerful diagnostic of merger tree defects, and the merger trees constructed using HBT+ do not suffer from the missing or switched links that tend to afflict merger trees constructed from more conventional halo finders. We make the HBT+ code publicly available.

  1. Laparoscopic simulation for all: two affordable, upgradable, and easy-to-build laparoscopic trainers.

    Science.gov (United States)

    Smith, Matthew D; Norris, Joseph M; Kishikova, Lyudmila; Smith, David P

    2013-01-01

    Laparoscopic surgery has established itself as the approach of choice for a multitude of operations in general, urological, and gynecological surgery. A number of factors make performing laparoscopic surgery technically demanding, and as such it is crucial that surgical trainees hone their skills safely on trainers before operating on patients. These can be highly expensive. Here, we describe a novel and upgradable approach to constructing an affordable laparoscopic trainer. A pattern was produced to build an upgradable laparoscopic trainer for less than $100. The basic model was constructed from an opaque plastic crate with plywood base, 2 trocars, and 2 pairs of disposable laparoscopic instruments. A laptop, a light emitting diode (LED), and a fixed webcam were utilized to visualize the box interior. An enhanced version was also created, as an optional upgrade to the basic model, featuring a neoprene-trocar interface and a simulated mobile laparoscope. The described setup allowed trainees to gain familiarity with laparoscopic techniques, beginning with simple manipulation and then progressing through to more relevant procedures. Novices began by moving easy-to-grasp objects between containers and then attempting more challenging manipulations such as stacking sugar cubes, excising simulated lesions, threading circular mints onto cotton, and ligating fastened drinking straws. These techniques have introduced the necessity of careful instrument placement and have increased trainees' dexterity with laparoscopy. Here, we have outlined an upgradable and affordable alternative laparoscopic trainer that has given many trainees crucial experience with laparoscopic techniques, allowing them to safely improve their manual skill and confidence. Copyright © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  2. Run-time coupling advanced control software with building simulation environment

    NARCIS (Netherlands)

    Yahiaoui, A.; Hensen, J.L.M.; Soethout, L.L.; Hensen, J.L.M.; Lain, M.

    2004-01-01

    The use of advanced control technologies and intelligence in buildings and infrastructure could make the current high performance system much more efficient and reliable. The integration of advanced control strategies into the building will certainly produce significant results for better building

  3. Simulation-based support for product development of innovative building envelope components

    NARCIS (Netherlands)

    Loonen, R.C.G.M.; Singaravel, S.; Trcka, M.; Costola, D.; Hensen, J.L.M.

    2014-01-01

    A need for innovation in building envelope technologies forms a key element of technology roadmaps focusing on improvements in building energy efficiency. Many new products are being proposed and developed, but often, a lack of insights into building integration issues is an obstacle in typical

  4. Daylight Design of Office Buildings: Optimisation of External Solar Shadings by Using Combined Simulation Methods

    Directory of Open Access Journals (Sweden)

    Javier González

    2015-05-01

    Full Text Available Integrating daylight and energy performance with optimization into the design process has always been a challenge for designers. Most of the building environmental performance simulation tools require a considerable amount of time and iterations for achieving accurate results. Moreover the combination of daylight and energy performances has always been an issue, as different software packages are needed to perform detailed calculations. A simplified method to overcome both issues using recent advances in software integration is explored here. As a case study; the optimization of external shadings in a typical office space in Australia is presented. Results are compared against common solutions adopted as industry standard practices. Visual comfort and energy efficiency are analysed in an integrated approach. The DIVA (Design, Iterate, Validate and Adapt plug-in for Rhinoceros/Grasshopper software is used as the main tool, given its ability to effectively calculate daylight metrics (using the Radiance/Daysim engine and energy consumption (using the EnergyPlus engine. The optimization process is carried out parametrically controlling the shadings’ geometries. Genetic Algorithms (GA embedded in the evolutionary solver Galapagos are adopted in order to achieve close to optimum results by controlling iteration parameters. The optimized result, in comparison with conventional design techniques, reveals significant enhancement of comfort levels and energy efficiency. Benefits and drawbacks of the proposed strategy are then discussed.

  5. Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Directory of Open Access Journals (Sweden)

    Jin-Hee Song

    2017-01-01

    Full Text Available To increase the heat capacity in lightweight construction materials, a phase change material (PCM can be introduced to building elements. A thermally activated building system (TABS with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results.

  6. Pilot study on indoor climate investigation and computer simulation in historical museum building: Amerongen Castle, the Netherlands

    Directory of Open Access Journals (Sweden)

    Raha Sulaiman

    2010-12-01

    Full Text Available The indoor climate is one of the most important factors contributing to climate-induced damage to the building materials and cultural collections of a monumental building. The Dutch monumental building - Amerongen Castle, and the collections housed in it show severe deterioration caused by inappropriate historical indoor environment. Assessments of the indoor climate, especially on the room temperature and relative humidity, are necessary to analyze the causes and impacts of climate change. As the building was flooded in year 1993 and 1996, extra attention is paid to investigate the effects of flooding to it. This pilot study was aimed to identify the buildup linkages between the known past, historical data on indoor environment and indoor climate performance in the building through simulation based-prediction. This paper focuses on the methodology of indoor climate investigation from the past to the current situation. A hypothesis was developed on backcasting-based prediction simulation which can be used to identify the accepted historical indoor climate where during those times there probably was no damage to the building and the collection. A simulation method based on heat, air and moisture transport is used with the HAMBase program. The computer model representing the Grand Salon of Amerongen Castle was calibrated by comparing real measurements to simulation results. It shows that the differences were only to the minimum of -1.8C and maximum of 3.2C. The data for the historical outdoor weather files was obtained by interpolating outdoor ancient climatology constructed by MATLAB. Based on archival research, indoor thermal history was gathered as input for the profiles used in simulation. Further, the calibrated computer model can be used to simulate past indoor climate and investigate the process of the deterioration of the room and the collections mainly due to the fluctuation of indoor temperature and relative humidity. At the end

  7. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    Science.gov (United States)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  8. Summary of the Effects of Two Years of Hygro-Thermal Cycling on a Carbon/Epoxy Composite Material

    Science.gov (United States)

    Kohlman, Lee W.; Binienda, Wieslaw K.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael; Bail, Justin L.

    2011-01-01

    Composite materials are beginning to be used for structures in the fan section of commercial gas turbine engines. This paper explores the type of damage that could occur within one type of composite material after exposure to hygrothermal cycles (temperature/humidity cycles) that are representative of the environment in the fan section of an engine. The effect of this damage on composite material properties is measured. Chemical changes in the matrix material were limited to the exposed surface. Microcrack formation was identified in the composite material. This damage did not cause a significant reduction in tensile strength or impact penetration resistance of the composite material. Additional data is needed to assess the effect of damage on compressive strength.

  9. Promoting the Sustainable Building Market: an Evolution Analysis and System Dynamics Simulation on Behaviors of Real Estate Developers and Government

    Directory of Open Access Journals (Sweden)

    Xiuli Xie

    2014-05-01

    Full Text Available Purpose: The Chinese government takes measures to promote the development of green building (GB. But until 2013, there are only few green buildings in China. The real estate developers are skeptical in entering GB market, which requires theories to explain developers and government’s behaviors.Design/methodology/approach: In this study, we attempt Evolutionary game theory and System dynamics (SD into the analysis. A system dynamics model is built for studying evolutionary games between the government and developers in greening building decision making.Findings and Originality/value: The results of mixed-strategy stability analysis and SD simulation show that evolutionary equilibrium does not exist with a static government incentive. Therefore, a dynamical incentive is suggested in the SD model for promoting the green building market. The symmetric game and asymmetric game between two developers show, if the primary proportion who choose GB strategy is lower, all the group in game may finally evolve to GB strategy. In this case and in this time, the government should take measures to encourage developers to enter into the GB market. If the proportion who choose GB strategy is high enough, the government should gradually cancel or reduce those incentive measure.Research limitations/implications: an Evolution Analysis and System Dynamics Simulation on Behaviors of Real Estate Developers and Government could give some advice for the government to promote the green building market.

  10. Best-estimate LOCA simulation in a PWR-W containment building with a detailed 3D GOTHIC model

    International Nuclear Information System (INIS)

    Jimenez, G.; Fernandez-Cosials, K.; Bocanegra, R.; Lopez-Alonso, E.

    2015-01-01

    The design-basis accidents in a PWR-W containment building are usually simulated with a lumped parameter model, normally used for license analysis. Nevertheless, some phenomenology is difficult to be simulated with a lumped model: the condensation rate in each structure, stagnant water areas, temperature in different compartments, sumps and recirculation pumps disabled because of lack of water, etc. Therefore, for the detailed study of the thermal-hydraulic (TH) behaviour in every room of the containment building could be more appropriate to do it with a detailed 3D representation of the containment building geometry. The main objective of this project has been to build a 3D PWR-W containment model with the GOTHIC code to analyze the detailed behavior during a design basis accident. In the process of the 3D GOTHIC model development some previous steps were necessary: a detailed CAD model of the containment, followed by a simplified model adapted to the GOTHIC geometric capabilities. Once the geometry has been adapted to the GOTHIC requirements, the 3D model is created with this information. A design-basis accident has been simulated with the 3D model (LBLOCA), and the local TH behaviour is analysed. The results show that in comparison with a lumped parameter model, high temperatures are reached locally. Nevertheless the average pressure behaviour is found to be similar to that given by a lumped parameter model. The present paper demonstrates that is possible to build a 3D PWR-W model with the GOTHIC code with enough resolution to analyse the TH behaviour in each one of the containment rooms but at the same time with reasonable computing time. Once the GOTHIC model has been created a new road is opened enabling the simulation of other accidents such as MSLB, a SBLOCA or even a long-term SBO sequence. This document is made up of an abstract and the slides of the presentation. (authors)

  11. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  12. Development of the control algorithm of processes of intensive hygrothermal impact on capillary and porous materials in the conditions of the vacuum

    Directory of Open Access Journals (Sweden)

    Larina Ludmila

    2017-01-01

    Full Text Available Objective of this research is creation of an algorithm of a control system of the modes of the intensive hygrothermal influence (IGI in the conditions of a vacuum when performing the corresponding operations: moistening; the subsequent, if necessary, cyclic drying from within preparation of top of footwear; damp thermal treatment on universal installation with adjustable parameters of a working environment. For assessment of quality of the intensified hygrothermal impact on preparations of top of footwear the integrated criteria of efficiency of processes were used. Ensuring automatic control of parameters of processes of IGV on preparations of top of footwear in universal vacuum installation will allow to control quality of preparations upon transition from performance of one operation to another according to standard manufacturing techniques of footwear.

  13. Tools for Performance Simulation of Heat, Air and Moisture Conditions of Whole Buildings

    DEFF Research Database (Denmark)

    Woloszyn, Monika; Rode, Carsten

    2008-01-01

    Humidity of indoor air is an important factor influencing the air quality and energy consumption of buildings as well as durability of building components. Indoor humidity depends on several factors, such as moisture sources, air change, sorption in materials and possible condensation. Since all...... and moisture transfer processes that take place in “whole buildings” by considering all relevant parts of its constituents. It is believed that full understanding of these processes for the whole building is absolutely crucial for future energy optimization of buildings, as this cannot take place without...

  14. MODELLING AND SIMULATION MATTERS UPON THE STATIC ANALYSIS OF A BUILDING

    Directory of Open Access Journals (Sweden)

    DUTA Alina

    2017-05-01

    Full Text Available The present paper puts forward a method applied to determine the static analysis and the stress of a two-level building, via an analysis with finite elements for building construction domain. Prior to this, we shall deal with a strategic issue, i.e. the achievement of a model with finite elements to validate the best approximation for the building structure. The method endorsed comes to replace the mathematical model, which is more complicated. However, a central issue that has to be dealt with before determining the displacements and the stress analysis is the achievement of the model with finite elements, as the best approximation of the building structure.

  15. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  16. Implementing Occupant Behaviour in the Simulation of Building Energy Performance and Energy Flexibility: Development of Co-Simulation Framework and Case Study

    DEFF Research Database (Denmark)

    Li, Rongling; Wei, Feng; Zhao, Yang

    2017-01-01

    Occupant behaviour has a substantial impact on the prediction of building energy performance. To capture this impact, co-simulation is considered an effective approach. It is still a new method in need of more development. In this study, a co-simulation framework is established to couple Energy......Plus with Java via Functional Mock-up Interface (FMI) using the EnergyPlusToFMU software package. This method is applied to a case study of a single occupant office with control of lighting, plug load and thermostat. Two control scenarios are studied. These are occupancy and occupant behaviour based control (OC...

  17. Modelling, experimentation and simulation of a reversible HP/ORC unit to get a Positive Energy Building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Quoilin, Sylvain

    2015-01-01

    This paper presents an innovative building comprising a heat pump connected to a solar roof and a geothermal heat exchanger. This unit is able to invert its cycle and operate as an Organic Rankine Cycle (ORC). The solar roof is producing large amount of heat throughout the year. This allows...... and fluid R134a shows promising performance with a net electrical energy produced over one year reaching 4030 kWh. Following that, a prototype has been built and has proven the feasibility of the technology. Finally, a simulation code including the building, the ground heat exchanger, the thermal energy...... storage, the solar roof and the reversible HP/ORC unit is developed and allows to perform a sensivity analysis. Annual results show that this technology leads to a Positive Energy Building....

  18. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  19. Analysis of light-frame, low-rise buildings under simulated wind loads

    Czech Academy of Sciences Publication Activity Database

    Fischer, Cyril; Kasal, B.

    2009-01-01

    Roč. 12, č. 2 (2009), s. 89-101 ISSN 1226-6116 R&D Projects: GA ČR(CZ) GP103/03/P080 Institutional research plan: CEZ:AV0Z20710524 Keywords : wood buildings * 3-dimensional model * reliability * roofs Subject RIV: JM - Building Engineering Impact factor: 0.541, year: 2009

  20. Simulation of thermal indoor climate in buildings by using human Projected Area Factors

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik

    2009-01-01

    Nowadays many new and old buildings in Denmark have large glass surfaces. This is a consequence of the technical development of windows with low U-values that has made it possible to build houses with windows from floor to ceiling in northern climates. On the other hand if one is sitting close to...... for dynamic building thermal analysis. The method is demonstrated in a newer apartment with windows from floor to ceiling and shows how impotent it is to include the radiant effect from the glass sur-faces and how it influences the indoor thermal climate significantly.......Nowadays many new and old buildings in Denmark have large glass surfaces. This is a consequence of the technical development of windows with low U-values that has made it possible to build houses with windows from floor to ceiling in northern climates. On the other hand if one is sitting close...

  1. Simulation of Electron-Cloud Build-Up for the Cold Arcs of the LHC and Comparison with Measured Data

    CERN Document Server

    Maury Cuna, H; Rumolo, G; Tavian, L; Zimmermann, F

    2011-01-01

    The electron cloud generated by synchrotron radiation or residual gas ionization is a concern for LHC operation and performance. We report the results of simulations studies which examine the electron cloud build-up, at injection energy, 3.5 TeV for various operation parameters. In particular, we determine the value of the secondary emission yield corresponding to the multipacting threshold, and investigate the electron density, and heat as a function of bunch intensity for dipoles and field-free regions. We also include a comparison between simulations results and measured heat-load data from the LHC scrubbing runs in 2011.

  2. Building patient safety in intensive care nursing : Patient safety culture, team performance and simulation-based training

    OpenAIRE

    Ballangrud, Randi

    2013-01-01

    Aim: The overall aim of the thesis was to investigate patient safety culture, team performance and the use of simulation-based team training for building patient safety in intensive care nursing. Methods: Quantitative and qualitative methods were used. In Study I, 220 RNs from ten ICUs responded to a patient safety culture questionnaire analysed with statistics. Studies II-IV were based on an evaluation of a simulation-based team training programme. Studies II-III included 53 RNs from seven I...

  3. Development and Demonstration of a Method to Evaluate Bio-Sampling Strategies Using Building Simulation and Sample Planning Software.

    Science.gov (United States)

    Dols, W Stuart; Persily, Andrew K; Morrow, Jayne B; Matzke, Brett D; Sego, Landon H; Nuffer, Lisa L; Pulsipher, Brent A

    2010-01-01

    In an effort to validate and demonstrate response and recovery sampling approaches and technologies, the U.S. Department of Homeland Security (DHS), along with several other agencies, have simulated a biothreat agent release within a facility at Idaho National Laboratory (INL) on two separate occasions in the fall of 2007 and the fall of 2008. Because these events constitute only two realizations of many possible scenarios, increased understanding of sampling strategies can be obtained by virtually examining a wide variety of release and dispersion scenarios using computer simulations. This research effort demonstrates the use of two software tools, CONTAM, developed by the National Institute of Standards and Technology (NIST), and Visual Sample Plan (VSP), developed by Pacific Northwest National Laboratory (PNNL). The CONTAM modeling software was used to virtually contaminate a model of the INL test building under various release and dissemination scenarios as well as a range of building design and operation parameters. The results of these CONTAM simulations were then used to investigate the relevance and performance of various sampling strategies using VSP. One of the fundamental outcomes of this project was the demonstration of how CONTAM and VSP can be used together to effectively develop sampling plans to support the various stages of response to an airborne chemical, biological, radiological, or nuclear event. Following such an event (or prior to an event), incident details and the conceptual site model could be used to create an ensemble of CONTAM simulations which model contaminant dispersion within a building. These predictions could then be used to identify priority area zones within the building and then sampling designs and strategies could be developed based on those zones.

  4. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  5. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    Science.gov (United States)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  6. Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar

    Directory of Open Access Journals (Sweden)

    Hery Tiana Rakotondramiarana

    2015-05-01

    Full Text Available Green roofs improve building energy performance and constitute an alternative to sustainable buildings. A green roof model is dynamically coupled with a building thermal model to assess its energy performance that takes into account the indoor air temperature dynamic changes. Under the climate conditions in Antananarivo, we compared green and conventional roofs. The present study shows that green roofs protect the roof structure under extreme temperature and large temperature fluctuations. For the case of Antananarivo, the amplitude of the temperature fluctuations at the top face of the support is reduced by 28 °C when using green roof. The impact of the green roof on indoor air temperature and energy demand is investigated. The vegetation decreases the maximum indoor air temperature and improves the building thermal comfort during summer days. It has no effect on the minimum indoor air temperature, but additional soil thickness can increase it. In addition, a global sensitivity analysis, which is carried out on the proposed model without considering any specific weather data, allows us to identify the most influential parameters on the energy demand. It has been found that green roofs have almost insignificant thermal impact in insulated buildings; however, their potential prevails over the building envelope and weather characteristics in the case of non-insulated building.

  7. Simulation of hydrogen deflagration and detonation in a BWR reactor building

    International Nuclear Information System (INIS)

    Manninen, M.; Silde, A.; Lindholm, I.; Huhtanen, R.; Sjoevall, H.

    2002-01-01

    A systematic study was carried out to investigate the hydrogen behaviour in a BWR reactor building during a severe accident. BWR core contains a large amount of Zircaloy and the containment is relatively small. Because containment leakage cannot be totally excluded, hydrogen can build up in the reactor building, where the atmosphere is normal air. The objective of the work was to investigate, whether hydrogen can form flammable and detonable mixtures in the reactor building, evaluate the possibility of onset of detonation and assess the pressure loads under detonation conditions. The safety concern is, whether the hydrogen in the reactor building can detonate and whether the external detonation can jeopardize the containment integrity. The analysis indicated that the possibility of flame acceleration and deflagration-to-detonation transition (DDT) in the reactor building could not be ruled out in case of a 20 mm 2 leakage from the containment. The detonation analyses indicated that maximum pressure spike of about 7 MPa was observed in the reactor building room selected for the analysis

  8. CODYBA - v 6: new version of software for building dynamical behaviour simulation

    Energy Technology Data Exchange (ETDEWEB)

    Duta, Anca Gh.; Roux, Jean-Jacques P.; Noel, Jean X. [Institute National de Sciences Appliquees de Lyon, Villeurbanne Cedex, (France). Centre de Thermique de Lyon (CETHIL). Equipe Thermique du Batiment]. E-mail: duta@insa-cethil-etb.insa-lyon.fr; roux@insa-cethil-etb.insa-lyon.fr; codyba@insa-cethil-etb.insa-lyon.fr

    2000-07-01

    In CODYBA software new version, a building model is based on its decomposition in elementary objects (air volumes, walls, windows, control systems, etc). The global building model is obtained by the connection of these different 'objects/models', associated to excitations like the exterior climate and/or the internal loads. These excitations are also manipulated as 'objects/models'. To summarize, the CODYBA's graphical user interface introduces concepts that are identical to those manipulated in everyday practice by building professionals (walls, windows, materials, regulators, etc) and reproduced on screen by a classic 'iconographical' representation in the 'Windows' environment. (author)

  9. Evaluation of Moisture Buffer Effects by Performing Whole-Building Simulations

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; K., Grau

    2004-01-01

    The humidity of rooms and the moisture conditions of materials in the enclosure of buildings depend much on each other because of the moisture exchange that takes place over the interior surfaces. These moisture influences also depend strongly on the thermal conditions of indoor spaces...... and enclosure elements of buildings. In turn, the moisture and humidity conditions have significant impact on how buildings are operated. In hot, humid climates, it may be desirable to keep the ventilation rates low in order to avoid too high indoor humidity, while in cold climates, ventilation can be used...

  10. Optimization of sustainable buildings envelopes for extensive sheep farming through the use of dynamic energy simulation

    Directory of Open Access Journals (Sweden)

    Maria Elena Menconi

    2013-09-01

    Full Text Available Extensive sheep farming can be seen as a marginal market, compared to other livestock and agricultural activities, taking into account only the economic absolute values. But for many rural marginal areas within the European Community member states, in particular for those located in the Mediterranean area on hills or mountains with high landscape value, extensive sheep farming is not only the longest practiced animal farming activity, but also the most interesting considering its adaptability to the territorial morphology and the restrictions that have been established over the years in terms of sustainable rural development practices. At the moment, most of the structures used in this type of farming are built using low cost and sometimes recycled, but often unsuitable, materials. Few specific studies have been carried out on this particular issue assuming, presumably, that the very low profit margins of these activities made impossible any restructuring. Taken this into account, the new Rural Development Plans that will be issued in 2014 will surely contain some measure dedicated to innovations in farming structures and technology towards facilitating the application of the principles of energy optimization. This is the framework in which the present research has developed. The software that has been applied to perform the energy optimization analysis is the dynamic energy simulation engine Energy Plus. A case study farm has been identified in the small village of Ceseggi (PG, situated in Central Italy. For the case study optimum thermo hygrometric conditions have been identified to ensure the welfare of animals and operators and it has been hypothesized the insertion of an ideal HVAC system to achieve them. Afterwards were evaluated the different energy requirements of the building while varying the insulation material used on the vertical surfaces. The greater goal is to verify which could be the best insulation material for vertical

  11. History matching of transient pressure build-up in a simulation model using adjoint method

    Energy Technology Data Exchange (ETDEWEB)

    Ajala, I.; Haekal, Rachmat; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Almuallim, H. [Firmsoft Technologies, Inc., Calgary, AB (Canada); Schulze-Riegert, R. [SPT Group GmbH, Hamburg (Germany)

    2013-08-01

    The aim of this work is the efficient and computer-assisted history-matching of pressure build-up and pressure derivatives by small modification to reservoir rock properties on a grid by grid level. (orig.)

  12. Simulation of temperature in office with building integrated heating and cooling system

    DEFF Research Database (Denmark)

    Weitzmann, Peter

    2002-01-01

    In this paper a numerical investigation of the thermal indoor environment has been performed for an office with building integrated hydronic heating and cooling system. Today office buildings are designed in such a way, and have such high internal heat loads and solar gains, that some kind...... of cooling is normally necessary for most of the year. Even in as cool climates as in the Nordic countries. The way the cooling is often achieved is through air conditioning. This can in many cases lead to sick building syndrome (SBS) symptoms, and furthermore it results in high energy consumption periods...... the temperature of the concrete to a level slightly below the desired room temperature, the concrete will work as an absorber for the excess heat in the office. This can significantly reduce the need for air conditioning, which will give both improved indoor climate and lower energy costs in the building...

  13. Occupant behavior in building energy simulation: towards a fit-for-purpose modeling strategy

    NARCIS (Netherlands)

    Gaetani, I.; Hoes, P.; Hensen, J.L.M.

    2016-01-01

    Occupant behavior is nowadays acknowledged as a main source of discrepancy between predicted and actual building performance; therefore, researchers attempt to model occupants' presence and adaptive actions more realistically. Literature shows a proliferation of increasingly complex, data-based

  14. International survey on current occupant modelling approaches in building performance simulation

    NARCIS (Netherlands)

    O'Brien, W.; Gaetani, I.; Gilani, S.; Carlucci, S.; Hoes, P.; Hensen, J.L.M.

    2017-01-01

    It is not evident that practitioners have kept pace with latest research developments in building occupant behaviour modelling; nor are the attitudes of practitioners regarding occupant behaviour modelling well understood. In order to guide research and development efforts, researchers,

  15. Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations-BDW-1

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set is associated with the results found in the journal article: Perry et al, 2016. Characterization of pollutant dispersion near elongated buildings based...

  16. Indoor environment and energy consumption optimization using field measurements and building energy simulation

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Chasapis, Kleanthis; Gazovic, Libor

    2015-01-01

    Modern buildings are usually equipped with advanced climate conditioning systems to ensure comfort of their occupants. However, analysis of their actual operation usually identifies large potential for improvements with respect to their efficiency. Present study investigated potential for improve......, which was used for optimization of building’s performance. Proposed optimization scenarios bring 21-37% reduction on heating consumption and thermal comfort improvement by 7-12%. The approach (procedure) can help to optimize building operation and shorten the adjustment period....

  17. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Rismanchi, B.; Saidur, R.; Masjuki, H.H.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  18. Large scale experiments simulating hydrogen distribution in a spent fuel pool building during a hypothetical fuel uncovery accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Mignot, Guillaume; Paranjape, Sidharth; Paladino, Domenico; Jaeckel, Bernd; Rydl, Adolf [Paul Scherrer Institute, Villigen (Switzerland)

    2016-08-15

    Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012–2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.

  19. An indoor augmented reality mobile application for simulation of building evacuation

    Science.gov (United States)

    Sharma, Sharad; Jerripothula, Shanmukha

    2015-03-01

    Augmented Reality enables people to remain connected with the physical environment they are in, and invites them to look at the world from new and alternative perspectives. There has been an increasing interest in emergency evacuation applications for mobile devices. Nearly all the smart phones these days are Wi-Fi and GPS enabled. In this paper, we propose a novel emergency evacuation system that will help people to safely evacuate a building in case of an emergency situation. It will further enhance knowledge and understanding of where the exits are in the building and safety evacuation procedures. We have applied mobile augmented reality (mobile AR) to create an application with Unity 3D gaming engine. We show how the mobile AR application is able to display a 3D model of the building and animation of people evacuation using markers and web camera. The system gives a visual representation of a building in 3D space, allowing people to see where exits are in the building through the use of a smart phone or tablets. Pilot studies were conducted with the system showing its partial success and demonstrated the effectiveness of the application in emergency evacuation. Our computer vision methods give good results when the markers are closer to the camera, but accuracy decreases when the markers are far away from the camera.

  20. Simulation of Time-Varying Spatially Uniform Pressure and Near-Surface Wind Flows on Building Components and Cladding

    Directory of Open Access Journals (Sweden)

    Seraphy Y. Shen

    2017-05-01

    Full Text Available This paper describes a new full-scale (FS testing apparatus for conducting performance evaluations of FS building envelope systems. The simulator can generate spatially uniform, time-varying pressure conditions associated with Saffir–Simpson Hurricane Wind Scale Category 5 winds while compensating for large air leakage through the specimen and also operate a high-speed wind tunnel, both with dynamic control. This paper presents system details, operating characteristics, and an early case study on the performance of large sectional door systems under wind pressure loading. Failure mechanisms are discussed, and finite element modeling is validated for two specimens. It demonstrates successful dynamic load control for large component and cladding systems, as well as simulation of flows near the building surface. These capabilities serve to complement other FS wind tunnel facilities by offering tools to generate ultimate load conditions on portions of the building. Further, the paper successfully demonstrates the utility of combining physical testing and computational analysis as a matter of routine, which underscores the potential of evolving FS testing to encompass cyber–physical approaches.

  1. Solar control: A general method for modelling of solar gains through complex facades in building simulation programs

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Tilmann E.; Herkel, Sebastian [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Frontini, Francesco [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Politecnico di Milano, Dipartimento BEST, Via Bonardi 9, 20133 Milano (Italy); Strachan, Paul; Kokogiannakis, Georgios [ESRU, Dept. of Mechanical Eng., University of Strathclyde, Glasgow G1 1XJ (United Kingdom)

    2011-01-15

    This paper describes a new general method for building simulation programs which is intended to be used for the modelling of complex facades. The term 'complex facades' is used to designate facades with venetian blinds, prismatic layers, light re-directing surfaces, etc. In all these cases, the facade properties have a complex angular dependence. In addition to this, such facades very often have non-airtight layers and/or imperfect components (e.g. non-ideal sharp edges, non-flat surfaces,..). Therefore building planners often had to neglect some of the innovative features and to use 'work-arounds' in order to approximate the properties of complex facades in building simulation programs. A well-defined methodology for these cases was missing. This paper presents such a general methodology. The main advantage of the new method is that it only uses measureable quantities of the transparent or translucent part of the facade as a whole. This is the main difference in comparison with state of the art modelling based on the characteristics of the individual subcomponents, which is often impossible due to non-existing heat- and/or light-transfer models within the complex facade. It is shown that the new method can significantly increase the accuracy of heating/cooling loads and room temperatures. (author)

  2. Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Build-Up

    Science.gov (United States)

    Khoshnevis, B.; Carlson, A.; Leach N.; Thangavelu, M.

    2016-01-01

    Economically viable and reliable building systems and tool sets are being sought, examined and tested for extraterrestrial infrastructure buildup. This project focused on a unique architecture weaving the robotic building construction technology with designs for assisting rapid buildup of initial operational capability Lunar and Martian bases. The project aimed to study new methodologies to construct certain crucial infrastructure elements in order to evaluate the merits, limitations and feasibility of adapting and using such technologies for extraterrestrial application. Current extraterrestrial settlement buildup philosophy holds that in order to minimize the materials needed to be flown in, at great transportation costs, strategies that maximize the use of locally available resources must be adopted. Tools and equipment flown as cargo from Earth are proposed to build required infrastructure to support future missions and settlements on the Moon and Mars.

  3. Simulation of the GHG Abatement Potentials in the U.S. Building Sector by 2050

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; DeForest, Nicholas; Marnay, Chris; Bonnet, Florence; Lai, Judy; Phan, Trucy

    2010-10-01

    Given the substantial contribution of the U.S. building sector to national carbon emissions, it is clear that to address properly the issue of climate change, one must first consider innovative approaches to understanding and encouraging the introduction of new, low-carbon technologies to both the commercial and residential building markets. This is the motivation behind the development of the Stochastic Lite Building Module (SLBM), a long range, open source model to forecast the impact of policy decisions and consumer behavior on the market penetration of both existing and emerging building technologies and the resulting carbon savings. The SLBM, developed at Lawrence Berkeley National Laboratory (LBNL), is part of the Stochastic Energy Deployment System (SEDS) project, a multi-laboratory effort undertaken in conjunction with the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL) and private companies. The primary purpose of SEDS is to track the performance of different U.S. Department of Energy (USDOE) Research and Development (R&D) activities on technology adoption, overall energy efficiency, and CO{sub 2} reductions throughout the whole of the U.S. economy. The tool is fundamentally an engineering-economic model with a number of characteristics to distinguish it from existing energy forecasting models. SEDS has been written explicitly to incorporate uncertainty in its inputs leading to uncertainty bounds on the subsequent forecasts. It considers also passive building systems and their interactions with other building service enduses, including the cost savings for heating, cooling, and lighting due to different building shell/window options. Such savings can be compared with investments costs in order to model real-world consumer behavior and forecast adoption rates. The core objective of this paper is to report on the new window and shell features of SLBM and to show the implications of

  4. PV-PCM integration in glazed building. Co-simulation and genetic optimization study

    DEFF Research Database (Denmark)

    Elarga, Hagar; Dal Monte, Andrea; Andersen, Rune Korsholm

    2017-01-01

    . An exploratory step has also been considered prior to the optimization algorithm: it evaluates the energy profiles before and after the application of PCM to PV module integrated in glazed building. The optimization analysis investigate parameters such as ventilation flow rates and time schedule to obtain......The study describes a multi-objective optimization algorithm for an innovative integration of forced ventilated PV-PCM modules in glazed façade buildings: the aim is to identify and optimize the parameters that most affect thermal and energy performances. 1-D model, finite difference method FDM...

  5. A technical framework to describe occupant behavior for building energy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William; Hong, Tianzhen

    2013-12-20

    Green buildings that fail to meet expected design performance criteria indicate that technology alone does not guarantee high performance. Human influences are quite often simplified and ignored in the design, construction, and operation of buildings. Energy-conscious human behavior has been demonstrated to be a significant positive factor for improving the indoor environment while reducing the energy use of buildings. In our study we developed a new technical framework to describe energy-related human behavior in buildings. The energy-related behavior includes accounting for individuals and groups of occupants and their interactions with building energy services systems, appliances and facilities. The technical framework consists of four key components: i. the drivers behind energy-related occupant behavior, which are biological, societal, environmental, physical, and economical in nature ii. the needs of the occupants are based on satisfying criteria that are either physical (e.g. thermal, visual and acoustic comfort) or non-physical (e.g. entertainment, privacy, and social reward) iii. the actions that building occupants perform when their needs are not fulfilled iv. the systems with which an occupant can interact to satisfy their needs The technical framework aims to provide a standardized description of a complete set of human energy-related behaviors in the form of an XML schema. For each type of behavior (e.g., occupants opening/closing windows, switching on/off lights etc.) we identify a set of common behaviors based on a literature review, survey data, and our own field study and analysis. Stochastic models are adopted or developed for each type of behavior to enable the evaluation of the impact of human behavior on energy use in buildings, during either the design or operation phase. We will also demonstrate the use of the technical framework in assessing the impact of occupancy behavior on energy saving technologies. The technical framework presented is

  6. Towards a guideline for selecting the appropriate abstraction level for building systems simulation

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.

    2006-01-01

    Each modeler meets a challenging task of abstracting the relevant physical behavior of the system to be modeled. What physical phenomena are important for the particular simulation task and what models to use are the questions that need to be answered every time when performing a simulation task.

  7. Building a Market Simulation to Teach Business Process Analysis: Effects of Realism on Engaged Learning

    Science.gov (United States)

    Peng, Jacob; Abdullah, Ira

    2018-01-01

    The emphases of student involvement and meaningful engagement in the learner-centered education model have created a new paradigm in an effort to generate a more engaging learning environment. This study examines the success of using different simulation platforms in creating a market simulation to teach business processes in the accounting…

  8. Integration of distributed system simulation tools for a holistic approach to integrated building and system design

    NARCIS (Netherlands)

    Radosevic, M.; Hensen, J.L.M.; Wijsman, A.J.T.M.; Hensen, J.L.M.; Lain, M.

    2004-01-01

    Advanced architectural developments require an integrated approach to design where simulation tools available today deal. only with a small subset of the overall problem. The aim of this study is to enable run time exchange of necessary data at suitable frequency between different simulation

  9. Assisting the development of innovative responsive façade elements using building performance simulation

    NARCIS (Netherlands)

    de Klijn-Chevalerias, M.L.; Loonen, R.C.G.M.; Zarzycka, A.; de Witte, D.; Sarakinioti, M.V.; Hensen, JLM; Turrin, Michela; Peters, Brady; O'Brien, William; Stouffs, Rudi; Dogan, Timur

    2017-01-01

    Thermal mass is usually positively associated with energy efficiency and thermal comfort in buildings. However, the slow response of heavyweight constructions is not beneficial at all times, as these dynamic effects may actually also increase heating and cooling energy demand during intermittent

  10. The Mind as Black Box: A Simulation of Theory Building in Psychology.

    Science.gov (United States)

    Hildebrandt, Carolyn; Oliver, Jennifer

    2000-01-01

    Discusses an activity that uses the metaphor "the mind is a black box," in which students work in groups to discover what is inside a sealed, black, plastic box. States that the activity enables students to understand the need for theories in psychology and to comprehend how psychologists build, test, and refine those theories. (CMK)

  11. Effect of hygrothermal conditioning on the mechanical and thermal properties of epoxy grouts for offshore pipeline rehabilitation

    Directory of Open Access Journals (Sweden)

    Allan Manalo

    2016-07-01

    Full Text Available Offshore oil and gas pipelines are susceptible to corrosion and need rehabilitation to keep them operating in-service conditions. Fibre composite filled with epoxy-based grout is emerging as an effective repair and rehabilitation system for offshore pipelines performing underwater. In such applications, the infill grout is often subjected to moisture and elevated temperature along with compressive, tensile and localised stresses at the defect. Current standards and practices for composite repairs suggest detailed investigation of the fibre reinforced sleeve, while the characterisation of the infill material is yet to be conducted for performance evaluation. The present work investigates the mechanical and thermal properties of three epoxy grouts as candidates for infill in a grouted sleeve repair for underwater pipeline. An understanding on the effect of hygrothermal ageing on the grout properties for defining the period of 1000 hours as “long-term” according to ISO/TS 24817, in comparison to their unconditioned state, is also presented. The compressive and tensile strength of the unconditioned grouts ranges from 100–120 MPa, and 19–32 MPa, respectively, which indicates that these grouts are suitable for structural rehabilitation of the pipelines. Moreover, the glass transition temperatures, Tg and Tt of the unconditioned grouts are found to be within the ranges of 50–60 °C, and 80–90 °C, respectively, which are reduced by about 20°C after conditioning.

  12. Quantifying the potential of automated dynamic solar shading in office buildings through integrated simulations of energy and daylight

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa; Svendsen, Svend; Bjerregaard Jensen, Lotte

    2011-01-01

    The façade design is and should be considered a central issue in the design of energy-efficient buildings. That is why dynamic façade components are increasingly used to adapt to both internal and external impacts, and to cope with a reduction in energy consumption and an increase in occupant...... them with various window heights and orientations. Their performance was evaluated on the basis of the building’s total energy demand, its energy demand for heating, cooling and lighting, and also its daylight factors. Simulation results comparing the three façade alternatives show potential...

  13. Building Blocks for the Rapid Development of Parallel Simulations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Scientists need to be able to quickly develop and run parallel simulations without paying the high price of writing low-level message passing codes using compiled...

  14. North American water availability under stress and duress: building understanding from simulations, observations and data products

    Science.gov (United States)

    Maxwell, R. M.; Condon, L. E.; Atchley, A. L.; Hector, B.

    2017-12-01

    Quantifying the available freshwater for human use and ecological function depends on fluxes and stores that are hard to observe. Evapotranspiration (ET) is the largest terrestrial flux of water behind precipitation but is observed with low spatial density. Likewise, groundwater is the largest freshwater store, yet is equally uncertain. The ability to upscale observations of these variables is an additional complication; point measurements are made at scales orders of magnitude smaller than remote sensing data products. Integrated hydrologic models that simulate continental extents at fine spatial resolution are now becoming an additional tool to constrain fluxes and address interconnections. For example, recent work has shown connections between water table depth and transpiration partitioning, and demonstrated the ability to reconcile point observations and large-scale inferences. Here we explore the dynamics of large hydrologic systems experiencing change and stress across continental North America using integrated model simulations, observations and data products. Simulations of aquifer depletion due to pervasive groundwater pumping diagnose both stream depletion and changes in ET. Simulations of systematic increases in temperature are used to understand the relationship between snowpack dynamics, surface and groundwater flow, ET and a changing climate. Remotely sensed products including the GRACE estimates of total storage change are downscaled using model simulations to better understand human impacts to the hydrologic cycle. These example applications motivate a path forward to better use simulations to understand water availability.

  15. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper

  16. Lightweight object oriented structure analysis: tools for building tools to analyze molecular dynamics simulations.

    Science.gov (United States)

    Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan

    2014-12-15

    LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. © 2014 Wiley Periodicals, Inc.

  17. Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting

    Science.gov (United States)

    Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong

    There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.

  18. A Real-Time Energy Consumption Simulation and Comparison of Buildings in Different Construction Years in the Olympic Central Area in Beijing

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2017-12-01

    Full Text Available Energy consumed the in urban sector accounts for a large proportion of total world delivered energy consumption. Residential building energy consumption is an important part of urban energy consumption. However, there are few studies focused on this issue and that have simulated the energy consumption of residential buildings using questionnaire data. In this research, an eQUEST study was conducted for different residential buildings in the Olympic Central Area in Beijing. Real-time meteorological observation data and an actual energy consumption schedule generated by questionnaire data were used to improve the eQUEST model in the absence of actual energy consumption data. The simulated total energy consumption of residential buildings in the case area in 2015 is 21,262.28 tce, and the average annual energy consumption per unit area is 20.09 kgce/(m2·a. Space heating accounted for 45% of the total energy consumption as the highest proportion, and the second highest was household appliances, which accounted for 20%. The results showed that old residential buildings, multi-storey buildings and large-sized apartment buildings consume more energy. The internal units, building height, per capita construction area, the number of occupants and length of power use had significant impact on residential energy consumption. The result of this study will provide practical reference for energy saving reconstruction of residential buildings in Beijing.

  19. A unified approach to building accelerator simulation software for the SSC

    International Nuclear Information System (INIS)

    Paxson, V.; Aragon, C.; Peggs, S.; Saltmarsh, C.; Schachinger, L.

    1989-03-01

    To adequately simulate the physics and control of a complex accelerator requires a substantial number of programs which must present a uniform interface to both the user and the internal representation of the accelerator. If these programs are to be truly modular, so that their use can be orchestrated as needed, the specification of both their graphical and data interfaces must be carefully designed. We describe the state of such SSC simulation software, with emphasis on addressing these uniform interface needs by using a standardized data set format and object-oriented approaches to graphics and modeling. 12 refs

  20. McStas 1.1: A tool for building neutron Monte Carlo simulations

    DEFF Research Database (Denmark)

    Lefmann, K.; Nielsen, K.; Tennant, D.A.

    2000-01-01

    McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron...

  1. Latent interface-trap building in power VDMOSFETs: new experimental evidence and numerical simulation

    International Nuclear Information System (INIS)

    Ristic, G.F.; Jaksic, A.B.; Pejovic, M.M.

    1999-01-01

    The paper presents new experimental evidence of the latent interface-trap buildup during annealing of gamma-ray irradiated power VDMOSFETs. We try to reveal the nature of this still ill-understood phenomenon by isothermal annealing, switching temperature annealing and switching bias annealing experiments. The results of numerical simulation of interface-trap kinetics during annealing are also shown. (authors)

  2. Building performance simulation in the early design stage: An introduction to integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2015-01-01

    , a visual programming language and a BPS to provide better support for the designer during the early stages of design as opposed to alternatives such as the current implementation of IFC or gbXML or the unaccompanied use of simulation packages. (C) 2015 Elsevier B.V. All rights reserved....

  3. Design and simulation of a fuzzy controller for naturally ventilated buildings

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, L. [De Montfort Univ., IESD, Leicester (United Kingdom); Eftekhari, M. [Loughborough Univ., Civil and Building Engineering Dept., Loughborough (United Kingdom)

    2004-03-01

    In this paper the design and validation process of a supervisory control for a single-sided naturally ventilated test room is described. The controller is based on fuzzy logic reasoning and sets of linguistic rules in the form of IF-THEN rules are used. The inputs to the controller are the outside wind speed, outside and inside temperatures. The output is the position of the opening. The basis of any fuzzy rule system is the inference engine responsible for the input's fuzzification, fuzzy processing of the rule base and defuzzification of the output. The choice of the inference engine, starting with the selection of input and output variables and their membership functions. Three rule bases of different complexity were developed and are presented and analysed here. Validation through simulation offers possibility of testing the controller under extreme conditions regardless of physical limitations of an experimental test cell. Simulations were performed for different typical levels of input parameters and also for extreme fictitious conditions. Simulations were carefully designed to allow simultaneous comparison of different controllers' performances. Simulation results have shown that all three controllers are capable of responding to the changes in outside conditions by adjusting the opening positions. They satisfy security requirements due to strong wind and successfully, in a stable manner respond to sudden changes in wind velocity and outdoor temperature. A controller with more membership functions and therefore a larger number of IF-THEN rules was more responsive to the changes in outside conditions. (Author)

  4. Combining a building simulation with energy systems analysis to assess the benefits of natural ventilation

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2013-01-01

    a thermal air flow simulation program - Into the energy systems analysis model. Descriptions of the energy systems in two geographical locations, i.e. Mexico and Denmark, are set up as inputs. Then, the assessment is done by calculating the energy impacts as well as environmental benefits in the energy...

  5. Towards a structured approach to building qualitative reasoning models and simulations

    NARCIS (Netherlands)

    Bredeweg, B.; Salles, P.; Bouwer, A.; Liem, J.; Nuttle, T.; Cioca, E.; Nakova, E.; Noble, R.; Caldas, A.L.R.; Uzunov, Y.; Varadinova, E.; Zitek, A.

    2008-01-01

    Successful transfer and uptake of qualitative reasoning technology for modelling and simulation in a variety of domains has been hampered by the lack of a structured methodology to support formalisation of ideas. We present a framework that structures and supports the capture of conceptual knowledge

  6. How to simulate pedestrian behaviors in seismic evacuation for vulnerability reduction of existing buildings

    Science.gov (United States)

    Quagliarini, Enrico; Bernardini, Gabriele; D'Orazio, Marco

    2017-07-01

    Understanding and representing how individuals behave in earthquake emergencies would be essentially to assess the impact of vulnerability reduction strategies on existing buildings in seismic areas. In fact, interactions between individuals and the scenario (modified by the earthquake occurrence) are really important in order to understand the possible additional risks for people, especially during the evacuation phase. The current approach is based on "qualitative" aspects, in order to define best practice guidelines for Civil Protection and populations. On the contrary, a "quantitative" description of human response and evacuation motion in similar conditions is urgently needed. Hence, this work defines the rules for pedestrians' earthquake evacuation in urban scenarios, by taking advantages of previous results of real-world evacuation analyses. In particular, motion laws for pedestrians is defined by modifying the Social Force model equation. The proposed model could be used for evaluating individuals' evacuation process and so for defining operative strategies for interferences reduction in critical urban fabric parts (e.g.: interventions on particular buildings, evacuation strategies definition, city parts projects).

  7. Simulating the dispersion of NOx and CO2 in the city of Zurich at building resolving scale

    Science.gov (United States)

    Brunner, Dominik; Berchet, Antoine; Emmenegger, Lukas; Henne, Stephan; Müller, Michael

    2017-04-01

    Cities are emission hotspots for both greenhouse gases and air pollutants. They contribute about 70% of global greenhouse gas emissions and are home to a growing number of people potentially suffering from poor air quality in the urban environment. High-resolution atmospheric transport modelling of greenhouse gases and air pollutants at the city scale has, therefore, several important applications such as air pollutant exposure assessment, air quality forecasting, or urban planning and management. When combined with observations, it also has the potential to quantify emissions and monitor their long-term trends, which is the main motivation for the deployment of urban greenhouse gas monitoring networks. We have developed a comprehensive atmospheric modeling model system for the city of Zurich, Switzerland ( 600,000 inhabitants including suburbs), which is composed of the mesoscale model GRAMM simulating the flow in a larger domain around Zurich at 100 m resolution, and the nested high-resolution model GRAL simulating the flow and air pollutant dispersion in the city at building resolving (5-10 m) scale. Based on an extremely detailed emission inventory provided by the municipality of Zurich, we have simulated two years of hourly NOx and CO2 concentration fields across the entire city. Here, we present a detailed evaluation of the simulations against a comprehensive network of continuous monitoring sites and passive samplers for NOx and analyze the sensitivity of the results to the temporal variability of the emissions. Furthermore, we present first simulations of CO2 and investigate the challenges associated with CO2 sources not covered by the inventory such as human respiration and exchange fluxes with urban vegetation.

  8. Business statistics for competitive advantage with Excel 2016 basics, model building, simulation and cases

    CERN Document Server

    Fraser, Cynthia

    2016-01-01

    The revised Fourth Edition of this popular textbook is redesigned with Excel 2016 to encourage business students to develop competitive advantages for use in their future careers as decision makers. Students learn to build models using logic and experience, produce statistics using Excel 2016 with shortcuts, and translate results into implications for decision makers. The textbook features new examples and assignments on global markets, including cases featuring Chipotle and Costco. Exceptional managers know that they can create competitive advantages by basing decisions on performance response under alternative scenarios, and managers need to understand how to use statistics to create such advantages. Statistics, from basic to sophisticated models, are illustrated with examples using real data such as students will encounter in their roles as managers. A number of examples focus on business in emerging global markets with particular emphasis on emerging markets in Latin America, China, and India. Results are...

  9. Dynamic building simulation model in the early design phase; Dynamisch simulatiemodel in het vroege ontwerpstadium

    Energy Technology Data Exchange (ETDEWEB)

    Standaert, P.; Somogyi, Z. [Physibel, Maldegem (Belgium)

    2002-09-01

    It is demonstrated that a relatively complex, validated calculation model can be used successfully in the early design stage by both building design engineers and the layman. First, an outline is given of the CAPSOL calculation model, which is intended for professional design engineers. This is followed by a discussion of the CAPSOL Visual Interface, a program in which the degree of difficulty involved in using the CAPSOL model is significantly reduced. [Dutch] Dit artikel toont aan dat een relatief ingewikkeld en gevalideerd rekenmodel met succes in het vroege ontwerpstadium kan worden gebruikt door zowel bouwfysici als leken. Daartoe wordt eerst het rekenmodel CAPSOL uitgelegd. Dit model is bedoeld voor gebruik door bouwfysici. Daarna wordt de 'CAPSOL Visual Interface' toegelicht. In deze interface is de moeilijkheidsgraad om het rekenmodel CAPSOL te gebruiken in belangrijke mate gereduceerd.

  10. Evaluation of computational and physical parameters influencing CFD simulations of pollutant dispersion in building arrays

    DEFF Research Database (Denmark)

    Dai, Yuwei; Mak, Cheuk Ming; Ai, Zhengtao

    2018-01-01

    underperformed in some areas. The results of the LES and DES simulations varied with changes in Δt∗ and sampling length until Δt∗ was less than 0.24 and the sampling length was higher than 2400 Δt∗ or LES and 1200 Δt∗ for DES. A larger aspect ratio did not necessarily result in a higher concentration field than...

  11. How should we build a generic open-source water management simulator?

    Science.gov (United States)

    Khadem, M.; Meier, P.; Rheinheimer, D. E.; Padula, S.; Matrosov, E.; Selby, P. D.; Knox, S.; Harou, J. J.

    2014-12-01

    Increasing water needs for agriculture, industry and cities mean effective and flexible water resource system management tools will remain in high demand. Currently many regions or countries use simulators that have been adapted over time to their unique system properties and water management rules and realities. Most regions operate with a preferred short-list of water management and planning decision support systems. Is there scope for a simulator, shared within the water management community, that could be adapted to different contexts, integrate community contributions, and connect to generic data and model management software? What role could open-source play in such a project? How could a genericuser-interface and data/model management software sustainably be attached to this model or suite of models? Finally, how could such a system effectively leverage existing model formulations, modeling technologies and software? These questions are addressed by the initial work presented here. We introduce a generic water resource simulation formulation that enables and integrates both rule-based and optimization driven technologies. We suggest how it could be linked to other sub-models allowing for detailed agent-based simulation of water management behaviours. An early formulation is applied as an example to the Thames water resource system in the UK. The model uses centralised optimisation to calculate allocations but allows for rule-based operations as well in an effort to represent observed behaviours and rules with fidelity. The model is linked through import/export commands to a generic network model platform named Hydra. Benefits and limitations of the approach are discussed and planned work and potential use cases are outlined.

  12. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation

    Directory of Open Access Journals (Sweden)

    Dirk De Vos

    2017-05-01

    Full Text Available Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time.Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems.Availability: Virtual Plant Tissue is available as open source (EUPL license on Bitbucket (https://bitbucket.org/vptissue/vptissue. The project has a website https://vptissue.bitbucket.io.

  13. Building a Simulated Environment for the Study of Multilateral Approaches to Nuclear Materials Verification

    International Nuclear Information System (INIS)

    Moul, R.; Persbo, A.; Keir, D.

    2015-01-01

    Verification research can be resource-intensive, particularly when it relies on practical or field exercises. These exercises can also involve substantial logistical preparations and are difficult to run in an iterative manner to produce data sets that can be later utilized in verification research. This paper presents the conceptual framework, methodology and preliminary findings from part of a multi-year research project, led by VERTIC. The multi-component simulated environment that we have generated, using existing computer models for nuclear reactors and other components of fuel cycles, can be used to investigate options for future multilateral nuclear verification, at a variety of locations and time points in a nuclear complex. We have constructed detailed fuel cycle simulations for two fictional, and very different, states. In addition to these mass-flow models, a 3-dimensional, avatarbased simulation of a nuclear facility is under development. We have also developed accompanying scenarios-that provide legal and procedural assumptions that will control the process of our fictional verification solutions. These tools have all been produced using open source information and software. While these tools are valuable for research purposes, they can also play an important role in support of training and education in the field of nuclear materials verification, in a variety of settings and circumstances. (author)

  14. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    Science.gov (United States)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate

  15. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Visualized simulation of buildings, a graphic model editor with SimuVis; Visualisierte Gebaeudesimulation, ein grafischer Modelleditor mit SimuVis

    Energy Technology Data Exchange (ETDEWEB)

    Waldhoff, C.; Raedler, J. [dezentral gbr, Berlin (Germany); Gerber, A.; Metin, E. [FH Biberach, Fachbereich Architektur und Gebaeudeklimatik (Germany)

    2003-07-01

    A software package for the visualisation of results from thermal building simulation is presented. The software is based on SimuVis and allows the results to be shown inside the three-dimensional building view. The model parameters are defined and configured by clicking on sensitive building elements in the scene view and changing the settings in the dialogs. This easy-to-use graphical user interface enables even beginners to perform thermal building simulations. The simulation model is based on the simulation environment SMILE and its multizone building model. A first application of this software is the education of architects and engineers. It is used in the educational network 'Multimediales Lernnetz Bauphysik' for the simulation of cooling loads. This application was developed by dezentral in cooperation with the University for Applied Sciences Biberach. Other modules of the network like material and weather databases are integrated and used in the application. The design is based on a client/server architecture with load balancing and a high level of modularisation. Open internet standards like XML and XMLRPC are used for communication and data storage, which allow the extension and coupling of the application with other software. Some planned extensions are the integration of solar thermal heating and other HVAC components. (orig.)

  17. Building 2000

    International Nuclear Information System (INIS)

    Den Ouden, C.; Steemers, T.C.

    1992-01-01

    This is the first volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this first rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In a second volume, a similar series of studies is presented for the building categories: office buildings, public buildings and hotels and holiday complexes. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (15 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues

  18. Building 2000

    Energy Technology Data Exchange (ETDEWEB)

    Den Ouden, C [EGM Engineering BV, Dordrecht (Netherlands); Steemers, T C [Commission of the European Communities, Brussels (Belgium)

    1992-01-01

    This is the first volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this first rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In a second volume, a similar series of studies is presented for the building categories: office buildings, public buildings and hotels and holiday complexes. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (15 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues.

  19. Building a virtual simulation platform for quasistatic breast ultrasound elastography using open source software: A preliminary investigation.

    Science.gov (United States)

    Wang, Yu; Helminen, Emily; Jiang, Jingfeng

    2015-09-01

    Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for the first time

  20. Study of microburst-induced wind flow and its effects on cube-shaped buildings using numerical and experimental simulations of an impinging jet

    Science.gov (United States)

    Sengupta, Anindya

    Microbursts are a major cause of concern for structures both on ground as well as those in air, namely aircrafts. The velocity profile of a microburst is completely different compared to natural boundary-layer wind profiles. The current research is directed to simulation of microburst phenomenon using an impinging jet model. This research reports the first 3D numerical simulation of microbursts and its effects on buildings. Broadly the major accomplishments of the current research can be focused in three major directions. In the first case, extensive research on velocity profiles of the wall jet that is formed after jet impingement has been conducted experimentally. The main motivation was to develop empirical equations for boundary layer growth based on experimental data, using hot-wire, PIV and pressure rake. Numerical simulations were carried out with different turbulence models so as to find the best turbulence model to simulate this kind of flow. In the second case, both mean and peak loads on building models under static microburst wind loadings were studied, using both experimental as well as numerical techniques. Parametric study by varying the height of jet impingement, jet exit velocities and size of building models was conducted. It was found that the large eddy simulation (LES) produced results in excellent agreement with the experimental data. The flow field around the building model was obtained using PIV and comparisons were made with the LES results. Thirdly, and the most important part of this research work was to simulate a translating microburst and study the loads on buildings using a moving impinging jet. Numerical simulation was validated with the experimental data for one jet translation speed. LES results again matched the experimental data for translating microburst loads on building, with reference to the drag and lift coefficients. The peak loads predicted by LES were within experimental limits. Effects of increased jet translation speeds

  1. On the estimation of wind comfort in a building environment by micro-scale simulation

    Directory of Open Access Journals (Sweden)

    Günter Gross

    2014-06-01

    Full Text Available A three-dimensional micro-scale model is used to study some aspects of wind comfort in a built-up area. The equations for calculating the mean wind have been extended by a Markov approach for short-term wind fluctuations. The model components have been successfully verified against wind tunnel measurements and observations of a field experiment. The simulated time series are used to estimate wind comfort measures. It turns out that the frequency of exceedance of prescribed thresholds depends strongly on the specification of the gust duration time. It was also possible to calculate the spatial distribution of a gust factor g$g$ depending on local wind characteristics. The simulated range is much broader than a value of g=3–3.5$g=3\\text{--}3.5$ commonly used for wind comfort assessments. Again, the order of magnitude and the bandwidth of g$g$ depends strongly on the definition of a gust.

  2. Building Model for the University of Mosul Computer Network Using OPNET Simulator

    Directory of Open Access Journals (Sweden)

    Modhar Modhar A. Hammoudi

    2013-04-01

    Full Text Available This paper aims at establishing a model in OPNET (Optimized Network Engineering Tool simulator for the University of Mosul computer network. The proposed network model was made up of two routers (Cisco 2600, core switch (Cisco6509, two servers, ip 32 cloud and 37 VLANs. These VLANs were connected to the core switch using fiber optic cables (1000BaseX. Three applications were added to test the network model. These applications were FTP (File Transfer Protocol, HTTP (Hyper Text Transfer Protocol and VoIP (Voice over Internet Protocol. The results showed that the proposed model had a positive efficiency on designing and managing the targeted network and can be used to view the data flow in it. Also, the simulation results showed that the maximum number of VoIP service users could be raised upto 5000 users when working under IP Telephony. This means that the ability to utilize VoIP service in this network can be maintained and is better when subjected to IP telephony scheme.

  3. Simulations of the Electron Cloud Build Up and Instabilities for Various ILC Damping Ring Configurations

    International Nuclear Information System (INIS)

    Pivi, Mauro; Raubenheimer, Tor O.; Wang, Lanfa; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej

    2007-01-01

    In the beam pipe of the positron damping ring of the International Linear Collider (ILC), an electron cloud may be first produced by photoelectrons and ionization of residual gases and then increased by the secondary emission process. This paper reports the assessment of electron cloud effects in a number of configuration options for the ILC baseline configuration. Careful estimates were made of the secondary electron yield (sometimes in the literature also referred as secondary emission yield SEY or (delta), with a peak value (delta) max ) threshold for electron cloud build-up, and the related single- and coupled-bunch instabilities, as a function of beam current and surface properties for a variety of optics designs. When the configuration for the ILC damping rings was chosen at the end of 2005, the results from these studies were important considerations. On the basis of the joint theoretical and experimental work, the baseline configuration currently specifies a pair of 6 km damping rings for the positron beam, to mitigate the effects of the electron cloud that could present difficulties in a single 6 km ring. However, since mitigation techniques are now estimated to be sufficiently mature, a reduced single 6-km circumference is presently under consideration so as to reduce costs

  4. Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system

    International Nuclear Information System (INIS)

    Capeluto, I. Guedi; Ochoa, Carlos E.

    2014-01-01

    Vast amounts of the European residential stock were built with limited consideration for energy efficiency, yet its refurbishment can help reach national energy reduction goals, decreasing environmental impact. Short-term retrofits with reduced interference to inhabitants can be achieved by upgrading facades with elements that enhance energy efficiency and user comfort. The European Union-funded Meefs Retrofitting (Multifunctional Energy Efficient Façade System) project aims to develop an adaptable mass-produced facade system for energy improvement in existing residential buildings throughout the continent. This article presents a simplified methodology to identify preferred strategies and combinations for the early design stages of such system. This was derived from studying weather characteristics of European regions and outlining climatic energy-saving strategies based on human thermal comfort. Strategies were matched with conceptual technologies like glazing, shading and insulation. The typical building stock was characterized from statistics of previous European projects. Six improvements and combinations were modelled using a simulation model, identifying and ranking preferred configurations. The methodology is summarized in a synoptic scheme identifying the energy rankings of each improvement and combination for the studied climates and façade orientations. - Highlights: • First results of EU project for new energy efficient façade retrofit system. • System consists of prefabricated elements with multiple options for flexibility. • Modular strategies were determined that adapt to different climates. • Technologies matching the strategies were identified. • Presents a method for use and application in different climates across Europe

  5. Simulation and high performance computing-Building a predictive capability for fusion

    International Nuclear Information System (INIS)

    Strand, P.I.; Coelho, R.; Coster, D.; Eriksson, L.-G.; Imbeaux, F.; Guillerminet, Bernard

    2010-01-01

    The Integrated Tokamak Modelling Task Force (ITM-TF) is developing an infrastructure where the validation needs, as being formulated in terms of multi-device data access and detailed physics comparisons aiming for inclusion of synthetic diagnostics in the simulation chain, are key components. As the activity and the modelling tools are aimed for general use, although focused on ITER plasmas, a device independent approach to data transport and a standardized approach to data management (data structures, naming, and access) is being developed in order to allow cross-validation between different fusion devices using a single toolset. Extensive work has already gone into, and is continuing to go into, the development of standardized descriptions of the data (Consistent Physical Objects). The longer term aim is a complete simulation platform which is expected to last and be extended in different ways for the coming 30 years. The technical underpinning is therefore of vital importance. In particular the platform needs to be extensible and open-ended to be able to take full advantage of not only today's most advanced technologies but also be able to marshal future developments. As a full level comprehensive prediction of ITER physics rapidly becomes expensive in terms of computing resources, the simulation framework needs to be able to use both grid and HPC computing facilities. Hence data access and code coupling technologies are required to be available for a heterogeneous, possibly distributed, environment. The developments in this area are pursued in a separate project-EUFORIA (EU Fusion for ITER Applications) which is providing about 15 professional person year (ppy) per annum from 14 different institutes. The range and size of the activity is not only technically challenging but is providing some unique management challenges in that a large and geographically distributed team (a truly pan-European set of researchers) need to be coordinated on a fairly detailed

  6. Simulation study of electron cloud build up in the SPS MKD kickers

    CERN Document Server

    Rumolo, G

    2009-01-01

    During the 2008 run, an unusual behavior characterizing pressure and temperature increase in some of the dump kickers of the SPS was noticed. In particular, it was observed that 1) the MKDV2 kicker would exhibit maximum heating with 75 ns spaced LHC beams and 2) the pressure rise was specially critical in MKDV1 in presence of 50 ns spaced LHC beams [1]. While the anomalous heating of MKDV2 with 75 ns beams could be tentatively explained by the denser beam current spectrum that would more likely hit one of the kicker impedance peaks, the fast pressure rise in MKDV1 with 50 ns spaced beams was ascribed to a surface effect, namely beam induced multipacting leading to electron cloud formation. This report summarizes a simulation study that was done in order to check whether the electron cloud behavior in the dump kickers could explain the experimental observations.

  7. Experimental and numerical simulation of the behaviour of building components under alternating thermal stresses

    International Nuclear Information System (INIS)

    Stegmeyer, R.

    1985-01-01

    This publication is intended to clear up to what extent the results from laboratory experiments on components thermally stressed on several axes can be transferred. The turbine shaft was used for this purpose and was geometrically simulated on a reduced scale by means of a test body (model). The deviations of shape due to the design, such as shaft shoulders, grooves etc. were simulated by notches and the position of the expected crack was defined in this way. A 1% Cr steel was selected as the material, for which many results of experiments on laboratory samples were available. The turbine shaft steel 28 CrMoNiV 4 9 was used. With a specially designed experimental rig, it was possible to expose the model to a changing temperature stress, as it occurs during starting and shutdown of turbines. Different notch radii made it possible to vary the strains at the bottom of the notches due to temperature gradients. After developing special travel transducers, the strain behaviour of the sample could be determined relative to the temperature. The crack characteristics obtained were compared with the characteristics of single axis experiments at constant temperature. Fractographic examination of fatigue cracks made it possible to determine the growth of cracks per load change from the existing vibration strip (da/dN). The stress intensity factor was derived from a modified theoretical expression and the characteristic designed from it was compared with crack growth measurements on CT samples. Accompanying numerical and empirical processes (according to Neuber) were examined by direct comparison of the measured strains with the calculated or estimated strains. Finally, regulations such as the ASME code and TRD 301 were applied to the model experiments and evaluated. (orig.) [de

  8. The Open Source Stochastic Building Simulation Tool SLBM and Its Capabilities to Capture Uncertainty of Policymaking in the U.S. Building Sector

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Azevedo, Ines Lima; Komiyama, Ryoichi; Lai, Judy

    2009-05-14

    The increasing concern about climate change as well as the expected direct environmental economic impacts of global warming will put considerable constraints on the US building sector, which consumes roughly 48percent of the total primary energy, making it the biggest single source of CO2 emissions. It is obvious that the battle against climate change can only be won by considering innovative building approaches and consumer behaviors and bringing new, effective low carbon technologies to the building / consumer market. However, the limited time given to mitigate climate change is unforgiving to misled research and / or policy. This is the reason why Lawrence Berkeley National Lab is working on an open source long range Stochastic Lite Building Module (SLBM) to estimate the impact of different policies and consumer behavior on the market penetration of low carbon building technologies. SLBM is designed to be a fast running, user-friendly model that analysts can readily run and modify in its entirety through a visual interface. The tool is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies. It also incorporates consumer preferences and passive building systems as well as interactions between technologies (such as internal heat gains). Furthermore, everything is based on service demand, e.g. a certain temperature or luminous intensity, instead of energy intensities. The core objectives of this paper are to demonstrate the practical approach used, to start a discussion process between relevant stakeholders and to build collaborations.

  9. A review of the mathematical models used for simulation of calcareous stone deterioration in historical buildings

    Science.gov (United States)

    Saba, M.; Quiñones-Bolaños, E. E.; Barbosa López, Aida Liliana

    2018-05-01

    Historic buildings and monuments are often composed of carbonate-based stone materials, susceptible to deterioration by the action of acidic substances on its main component, calcite (CaCO3). Today the levels of air pollution that attack heterogeneous structures with a mixture of different materials, usually of complex and articulated geometries, are the main responsible of the damage of calcareous stones. However the mechanisms of degradation of the stone and the factors that affect them cannot be simply specified, due to the sum coupled processes involving physical, chemical and biological changes, associated with capillarity and porosity, on the other hand the management of large number of samples and the cost of characterization analysis, modeling can contemplate a tool for the care and protection of real estate over time. Reason why this work shows a bibliographical review of the mathematical models that aim to describe how the deterioration of the surfaces of these structures varies over time, with particular attention to surface recession of stone, as a function of sets of variables that have been considered determinants in the different cases studied. It has been shown that in the last 30 years the models has had a revealing evolution due to the fact that the phenomenon has been gradually understood, putting in the background variables such as SO2 because of its reduction worldwide, and introducing variables such as HNO3 which has had, on the contrary, increasing values. In addition, it has been shown that linear polynomials, even if they lend themselves well to represent the phenomenon, in the last 10 years have been replaced by equations or systems of differential equations with one or more variables taken into account. Finally, it was revealed the lack of an inclusive model, capable of including all possible deterioration processes, and that time by time can be adapted to different case studies, in different parts of the world and with different

  10. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    Science.gov (United States)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of

  11. Application of data mining techniques in the analysis of indoor hygrothermal conditions

    CERN Document Server

    Ramos, Nuno M M; Almeida, Ricardo M S F; Simões, Maria L; Manuel, Sofia

    2016-01-01

    The main benefit of the book is that it explores available methodologies for both conducting in-situ measurements and adequately exploring the results, based on a case study that illustrates the benefits and difficulties of concurrent methodologies. The case study corresponds to a set of 25 social housing dwellings where an extensive in situ measurement campaign was conducted. The dwellings are located in the same quarter of a city. Measurements included indoor temperature and relative humidity, with continuous log in different rooms of each dwelling, blower-door tests and complete outdoor conditions provided by a nearby weather station. The book includes a variety of scientific and engineering disciplines, such as building physics, probability and statistics and civil engineering. It presents a synthesis of the current state of knowledge for benefit of professional engineers and scientists.

  12. Building Entry Loss and Delay Spread Measurements on a Simulated HAP-to-Indoor Link at S-Band

    Directory of Open Access Journals (Sweden)

    Delgado-Penín JA

    2008-01-01

    Full Text Available Results from a measurement campaign emulating the high altitude platform (HAP-to-indoor communication channel at S-band are presented in this paper. A link was established between a transmitter carried by a helicopter, representing the HAP, and a receiver placed at several locations in different building types including an airport, an office building, a shopping mall, a residential house, and a skyscraper. A wideband, directive channel sounder was used to measure building entry loss and time delay spread. Results of the building entry loss are presented as a function of building type, elevation, and building entry angle. Results of delay spread for each building are also provided.

  13. Building Entry Loss and Delay Spread Measurements on a Simulated HAP-to-Indoor Link at S-Band

    Directory of Open Access Journals (Sweden)

    P. Valtr

    2008-07-01

    Full Text Available Results from a measurement campaign emulating the high altitude platform (HAP-to-indoor communication channel at S-band are presented in this paper. A link was established between a transmitter carried by a helicopter, representing the HAP, and a receiver placed at several locations in different building types including an airport, an office building, a shopping mall, a residential house, and a skyscraper. A wideband, directive channel sounder was used to measure building entry loss and time delay spread. Results of the building entry loss are presented as a function of building type, elevation, and building entry angle. Results of delay spread for each building are also provided.

  14. Building 2000

    International Nuclear Information System (INIS)

    Den Ouden, C.; Steemers, T.C.

    1992-01-01

    This is the second volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this second rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In the first volume, a similar series of studies is presented for the building categories: schools, laboratories and universities, and sports and educational centres. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (11 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues

  15. Building 2000

    Energy Technology Data Exchange (ETDEWEB)

    Den Ouden, C [EGM Engineering BV, Dordrecht (Netherlands); Steemers, T C [Commission of the European Communities, Brussels (Belgium)

    1992-01-01

    This is the second volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this second rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In the first volume, a similar series of studies is presented for the building categories: schools, laboratories and universities, and sports and educational centres. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (11 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues.

  16. Review of research on the hygrothermal environmental durability of structural adhesively bonded joints

    Directory of Open Access Journals (Sweden)

    Xiao HAN

    2017-06-01

    Full Text Available In recent years, structural adhesive bonding technology has been widely used in many industrial fields, with many advantages over traditional mechanical connection methods, such as riveting, welding and bolt connection. Due to the adhesive characteristics of polymer materials, the environmental durability of adhesive joint becomes the key problems in engineering structure connection feasibility and long-term service reliability. On the basis of the review of the research of the hot-humid environmental durability of structural adhesive joints, the effects of temperature, moisture and coupled condition on the structural mechanical behaviour are discussed, introducing the published research progress and results both at home and abroad. The prospects are provided: the future research work can be combined with a variety of observation scales of environmental aging test and numerical simulation method, delve into sub hygroscopic, creep, thermal expansion and hygroscopic expansion aging behavior, such as the environment of model prediction method simulation in more than a variety of mechanical performance degradation behavior of coupling conditions, and provide more reliable theoretical modeling and experimental data for engineering design and application of cementing structure.

  17. An automated process for building reliable and optimal in vitro/in vivo correlation models based on Monte Carlo simulations.

    Science.gov (United States)

    Sutton, Steven C; Hu, Mingxiu

    2006-05-05

    Many mathematical models have been proposed for establishing an in vitro/in vivo correlation (IVIVC). The traditional IVIVC model building process consists of 5 steps: deconvolution, model fitting, convolution, prediction error evaluation, and cross-validation. This is a time-consuming process and typically a few models at most are tested for any given data set. The objectives of this work were to (1) propose a statistical tool to screen models for further development of an IVIVC, (2) evaluate the performance of each model under different circumstances, and (3) investigate the effectiveness of common statistical model selection criteria for choosing IVIVC models. A computer program was developed to explore which model(s) would be most likely to work well with a random variation from the original formulation. The process used Monte Carlo simulation techniques to build IVIVC models. Data-based model selection criteria (Akaike Information Criteria [AIC], R2) and the probability of passing the Food and Drug Administration "prediction error" requirement was calculated. To illustrate this approach, several real data sets representing a broad range of release profiles are used to illustrate the process and to demonstrate the advantages of this automated process over the traditional approach. The Hixson-Crowell and Weibull models were often preferred over the linear. When evaluating whether a Level A IVIVC model was possible, the model selection criteria AIC generally selected the best model. We believe that the approach we proposed may be a rapid tool to determine which IVIVC model (if any) is the most applicable.

  18. A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings

    International Nuclear Information System (INIS)

    Garshasbi, Samira; Kurnitski, Jarek; Mohammadi, Yousef

    2016-01-01

    Graphical abstract: The energy consumption and renewable generation in a cluster of NZEBs are modeled by a novel hybrid Genetic Algorithm and Monte Carlo simulation approach and used for the prediction of instantaneous and cumulative net energy balances and hourly amount of energy taken from and supplied to the central energy grid. - Highlights: • Hourly energy consumption and generation by a cluster of NZEBs was simulated. • Genetic Algorithm and Monte Carlo simulation approach were employed. • Dampening effect of energy used by a cluster of buildings was demonstrated. • Hourly amount of energy taken from and supplied to the grid was simulated. • Results showed that NZEB cluster was 63.5% grid dependant on annual bases. - Abstract: Employing a hybrid Genetic Algorithm (GA) and Monte Carlo (MC) simulation approach, energy consumption and renewable energy generation in a cluster of Net Zero Energy Buildings (NZEBs) was thoroughly investigated with hourly simulation. Moreover, the cumulative energy consumption and generation of the whole cluster and each individual building within the simulation space were accurately monitored and reported. The results indicate that the developed simulation algorithm is able to predict the total instantaneous and cumulative amount of energy taken from and supplied to the central energy grid over any time period. During the course of simulation, about 60–100% of total daily generated renewable energy was consumed by NZEBs and up to 40% of that was fed back into the central energy grid as surplus energy. The minimum grid dependency of the cluster was observed in June and July where 11.2% and 9.9% of the required electricity was supplied from the central energy grid, respectively. On the other hand, the NZEB cluster was strongly grid dependant in January and December by importing 70.7% and 76.1% of its required energy demand via the central energy grid, in the order given. Simulation results revealed that the cluster was 63

  19. Influence of Indoor Hygrothermal Conditions on Human Quality of Life in Social Housing.

    Science.gov (United States)

    Soares, Sara; Fraga, Silvia; Delgado, Joao M P Q; Ramos, Nuno M M

    2015-11-17

    to define building rehabilitation policies, improving residents' quality of life and adding great contribution to public health promotion.

  20. Predicted carbonation of existing concrete building based on the Indonesian tropical micro-climate

    Science.gov (United States)

    Hilmy, M.; Prabowo, H.

    2018-03-01

    This paper is aimed to predict the carbonation progress based on the previous mathematical model. It shortly explains the nature of carbonation including the processes and effects. Environmental humidity and temperature of the existing concrete building are measured and compared to data from local Meteorological, Climatological, and Geophysical Agency. The data gained are expressed in the form of annual hygrothermal values which will use as the input parameter in carbonation model. The physical properties of the observed building such as its location, dimensions, and structural material used are quantified. These data then utilized as an important input parameter for carbonation coefficients. The relationships between relative humidity and the rate of carbonation established. The results can provide a basis for repair and maintenance of existing concrete buildings and the sake of service life analysis of them.

  1. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yixing [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Zhang, Jianshun [Syracuse Univ., NY (United States); Pelken, Michael [Syracuse Univ., NY (United States); Gu, Lixing [Univ. of Central Florida, Orlando, FL (United States); Rice, Danial [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Meng, Zhaozhou [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Semahegn, Shewangizaw [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Feng, Wei [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Ling, Francesca [Syracuse Univ., NY (United States); Shi, Jun [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Henderson, Hugh [CDH Energy, Cazenovia, NY (United States)

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus

  2. Experimental characterization, modeling and simulation of a wood pellet micro-combined heat and power unit used as a heat source for a residential building

    Energy Technology Data Exchange (ETDEWEB)

    Thiers, Stephane; Aoun, Bernard; Peuportier, Bruno [MINES ParisTech, CEP - Centre Energetique et Procedes, 60 Boulevard St Michel, 75272 Paris Cedex 06 (France)

    2010-06-15

    Cogeneration provides heat and power in a more efficient way than separate production. Micro-cogeneration (micro-CHP) is an emerging solution for the improvement of energy and environmental assessments of residential buildings. A wood pellet Stirling engine micro-CHP unit has been studied in order to characterize its annual performance when integrated to a building. First, through a test bench experiment, both transient and steady state behaviors of the micro-CHP unit have been characterized and modeled. Then a more complete model representing a hot water and heating system including the micro-CHP unit and a stratified storage tank has been carried out. This model has been coupled to a building model. A sensitivity analysis by simulation shows that the dimensioning of different elements of the system strongly influences its global energy performance. (author)

  3. Simulation of the earthquake-induced collapse of a school building in Turkey in 2011 Van Earthquake

    NARCIS (Netherlands)

    Bal, Ihsan Engin; Smyrou, Eleni

    2016-01-01

    Collapses of school or dormitory buildings experienced in recent earthquakes raise the issue of safety as a major challenge for decision makers. A school building is ‘just another structure’ technically speaking, however, the consequences of a collapse in an earthquake could lead to social reactions

  4. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    Science.gov (United States)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  5. Computer programs for developing source terms for a UF{sub 6} dispersion model to simulate postulated UF{sub 6} releases from buildings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.R.

    1985-03-01

    Calculational methods and computer programs for the analysis of source terms for postulated releases of UF{sub 6} are presented. Required thermophysical properties of UF{sub 6}, HF, and H{sub 2}O are described in detail. UF{sub 6} reacts with moisture in the ambient environment to form HF and H{sub 2}O. The coexistence of HF and H{sub 2}O significantly alters their pure component properties, and HF vapor polymerizes. Transient compartment models for simulating UF{sub 6} releases inside gaseous diffusion plant feed and withdrawl buildings and cascade buildings are also described. The basic compartment model mass and energy balances are supported by simple heat transfer, ventilation system, and deposition models. A model that can simulate either a closed compartment or a steady-state ventilation system is also discussed. The transient compartment models provide input to an atmospheric dispersion model as output.

  6. Energy retrofit of an office building by substitution of the generation system: performance evaluation via dynamic simulation versus current technical standards

    International Nuclear Information System (INIS)

    Testi, D; Schito, E; Grassi, W; Menchetti, E

    2014-01-01

    Constructions built in Italy before 1945 (about 30% of the total built stock) feature low energy efficiency. Retrofit actions in this field can lead to valuable energetic and economic savings. In this work, we ran a dynamic simulation of a historical building of the University of Pisa during the heating season. We firstly evaluated the energy requirements of the building and the performance of the existing natural gas boiler, validated with past billings of natural gas. We also verified the energetic savings obtainable by the substitution of the boiler with an air-to-water electrically-driven modulating heat pump, simulated through a cycle-based model, evaluating the main economic metrics. The cycle-based model of the heat pump, validated with manufacturers' data available only at specified temperature and load conditions, can provide more accurate results than the simplified models adopted by current technical standards, thus increasing the effectiveness of energy audits

  7. A Simulation Method to Find the Optimal Design of Photovoltaic Home System in Malaysia, Case Study: A Building Integrated Photovoltaic in Putra Jaya

    OpenAIRE

    Riza Muhida; Maisarah Ali; Puteri Shireen Jahn Kassim; Muhammad Abu Eusuf; Agus G.E. Sutjipto; Afzeri

    2009-01-01

    Over recent years, the number of building integrated photovoltaic (BIPV) installations for home systems have been increasing in Malaysia. The paper concerns an analysis - as part of current Research and Development (R&D) efforts - to integrate photovoltaics as an architectural feature of a detached house in the new satellite township of Putrajaya, Malaysia. The analysis was undertaken using calculation and simulation tools to optimize performance of BIPV home system. In this study, a the simu...

  8. Influence of radiation on predictive accuracy in numerical simulations of the thermal environment in industrial buildings with buoyancy-driven natural ventilation

    International Nuclear Information System (INIS)

    Meng, Xiaojing; Wang, Yi; Liu, Tiening; Xing, Xiao; Cao, Yingxue; Zhao, Jiangping

    2016-01-01

    Highlights: • The effects of radiation on predictive accuracy in numerical simulations were studied. • A scaled experimental model with a high-temperature heat source was set up. • Simulation results were discussed considering with and without radiation model. • The buoyancy force and the ventilation rate were investigated. - Abstract: This paper investigates the effects of radiation on predictive accuracy in the numerical simulations of industrial buildings. A scaled experimental model with a high-temperature heat source is set up and the buoyancy-driven natural ventilation performance is presented. Besides predicting ventilation performance in an industrial building, the scaled model in this paper is also used to generate data to validate the numerical simulations. The simulation results show good agreement with the experiment data. The effects of radiation on predictive accuracy in the numerical simulations are studied for both pure convection model and combined convection and radiation model. Detailed results are discussed regarding the temperature and velocity distribution, the buoyancy force and the ventilation rate. The temperature and velocity distributions through the middle plane are presented for the pure convection model and the combined convection and radiation model. It is observed that the overall temperature and velocity magnitude predicted by the simulations for pure convection were significantly greater than those for the combined convection and radiation model. In addition, the Grashof number and the ventilation rate are investigated. The results show that the Grashof number and the ventilation rate are greater for the pure convection model than for the combined convection and radiation model.

  9. Building a Community of Practice for Researchers: The International Network for Simulation-Based Pediatric Innovation, Research and Education.

    Science.gov (United States)

    Cheng, Adam; Auerbach, Marc; Calhoun, Aaron; Mackinnon, Ralph; Chang, Todd P; Nadkarni, Vinay; Hunt, Elizabeth A; Duval-Arnould, Jordan; Peiris, Nicola; Kessler, David

    2018-06-01

    The scope and breadth of simulation-based research is growing rapidly; however, few mechanisms exist for conducting multicenter, collaborative research. Failure to foster collaborative research efforts is a critical gap that lies in the path of advancing healthcare simulation. The 2017 Research Summit hosted by the Society for Simulation in Healthcare highlighted how simulation-based research networks can produce studies that positively impact the delivery of healthcare. In 2011, the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE) was formed to facilitate multicenter, collaborative simulation-based research with the aim of developing a community of practice for simulation researchers. Since its formation, the network has successfully completed and published numerous collaborative research projects. In this article, we describe INSPIRE's history, structure, and internal processes with the goal of highlighting the community of practice model for other groups seeking to form a simulation-based research network.

  10. Analysis of Various Inflow Turbulence Generation Methods in Large Eddy Simulation Approach for Prediction of Pollutant Dispersion around Model Buildings

    Directory of Open Access Journals (Sweden)

    F. Bazdidi Tehrani

    2017-02-01

    of windward wall of the second building. Among the various inflow turbulence generation methods, the vortex method is the most precise method and no-inlet perturbation method is the least precise method.

  11. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  12. Hazard-to-Risk: High-Performance Computing Simulations of Large Earthquake Ground Motions and Building Damage in the Near-Fault Region

    Science.gov (United States)

    Miah, M.; Rodgers, A. J.; McCallen, D.; Petersson, N. A.; Pitarka, A.

    2017-12-01

    We are running high-performance computing (HPC) simulations of ground motions for large (magnitude, M=6.5-7.0) earthquakes in the near-fault region (steel moment frame buildings throughout the near-fault domain. For ground motions, we are using SW4, a fourth order summation-by-parts finite difference time-domain code running on 10,000-100,000's of cores. Earthquake ruptures are generated using the Graves and Pitarka (2017) method. We validated ground motion intensity measurements against Ground Motion Prediction Equations. We considered two events (M=6.5 and 7.0) for vertical strike-slip ruptures with three-dimensional (3D) basin structures, including stochastic heterogeneity. We have also considered M7.0 scenarios for a Hayward Fault rupture scenario which effects the San Francisco Bay Area and northern California using both 1D and 3D earth structure. Dynamic, inelastic response of canonical buildings is computed with the NEVADA, a nonlinear, finite-deformation finite element code. Canonical buildings include 3-, 9-, 20- and 40-story steel moment frame buildings. Damage potential is tracked by the peak inter-story drift (PID) ratio, which measures the maximum displacement between adjacent floors of the building and is strongly correlated with damage. PID ratios greater 1.0 generally indicate non-linear response and permanent deformation of the structure. We also track roof displacement to identify permanent deformation. PID (damage) for a given earthquake scenario (M, slip distribution, hypocenter) is spatially mapped throughout the SW4 domain with 1-2 km resolution. Results show that in the near fault region building damage is correlated with peak ground velocity (PGV), while farther away (> 20 km) it is better correlated with peak ground acceleration (PGA). We also show how simulated ground motions have peaks in the response spectra that shift to longer periods for larger magnitude events and for locations of forward directivity, as has been reported by

  13. The simulated measurements of area and personal neutron-gamma dose equivalent in the building of HWRR

    International Nuclear Information System (INIS)

    Chen Changmao; Wen Youqin; Su Jingling; Liu Shuying; Liu Nairong

    1988-01-01

    The measuring methods and results for area and personal n-γ dose equivalent in the building of HWRR of Institute of Atomic Energy were reported. The reactor operated 4440 hours during 1985, the average themal power was 11 MW. The average area n-γ dose equivalents of the basement, experimental hall, corridors and laboratories in the building were 12.2, 11.6, 0.45 and 0.23 cSv/a, respectively. The fraction of the neutron dose equivalent in any working area was less than 21%. The average personal n-γ dose equivalent to radiation workers in the building was about 0.49 cSv/a, the γ dose equivalent was a major component. The measuring methods were compared

  14. Development of a simplified method for intelligent glazed façade design under different control strategies and verified by building simulation tool BSim

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    The research aims to develop a simplified calculation method for intelligent glazed facade under different control conditions (night shutter, solar shading and natural ventilation) to simulate the energy performance and indoor environment of an office room installed with the intelligent facade......, it is possible to calculate the whole year performance of a room or building with intelligent glazed façade, which makes it a less time consuming tool to investigate the performance of the intelligent façade under different control strategies in the design stage with acceptable accuracy. Results showed good....... The method took the angle dependence of the solar characteristic into account, including the simplified hourly building model developed according to EN 13790 to evaluate the influence of the controlled façade on both the indoor environment (indoor air temperature, solar transmittance through the façade...

  15. Modeling a Naturally Ventilated Double Skin Façade with a Building Thermal Simulation Program

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Kalyanova, Olena; Heiselberg, Per

    2008-01-01

    to predict. This is manly due to the very transient and complex air flow in the naturally ventilated double skin façade cavity. In this paper the modelling of the DSF using a thermal simulation program, BSim, is discussed. The simulations are based on the measured weather boundary conditions...

  16. Analysis of a natural exhaust fan in a building of houses through thermal simulations and CFD; Analisis de un sistema de ventilacion natural en un edificio de viviendas a traves de simulaciones termicas y CFD

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, B.; Cejudo, J.; Carrillo, A.

    2008-07-01

    Computational fluid dynamics (CFD) application to building energy simulation (STE) allows better modelling of indoor air performance and therefore it can be used to optimize the design of natural ventilation systems. In this paper, a natural ventilation system based on thermal chimney applied to a residential building is analyzed. Energy Plus simulations are applied to an apartment and results are coupled to CFD simulations to determine ventilation rates and study convection in the space. CFD simulations are also applied to evaluate indoor air distribution and study how ventilation rate is affected by the pressure drop at ventilation grilles. (Author)

  17. Assessing the accuracy of a simplified building energy simulation model using BESTEST : the case study of Brazilian regulation

    NARCIS (Netherlands)

    Melo, A.P.; Cóstola, D.; Lamberts, R.; Hensen, J.L.M.

    2012-01-01

    This paper reports the use of an internationally recognized validation and diagnostics procedure to test the fidelity of a simplified calculation method. The case study is the simplified model for calculation of energy performance of building envelopes, introduced by the Brazilian regulation for

  18. Numerical Simulation of the Application of Solar Radiant Systems, Internal Airflow and Occupants’ Presence in the Improvement of Comfort in Winter Conditions

    Directory of Open Access Journals (Sweden)

    Eusébio Z. E. Conceição

    2016-09-01

    Full Text Available In this work, the use of numerical simulation in the application of solar radiant systems, internal airflow and occupants’ presence in the improvement of comfort in winter conditions is made. The thermal comfort, the local thermal discomfort and the air quality in an occupied chamber space are evaluated. In the experimental measurements, a wood chamber, a desk, two seats, two seated hygro-thermal manikins, a warm radiant floor, a solar radiation simulator and a water solar collector are used. The air velocity and the air temperature fluctuation are experimentally evaluated around 15 human body sections. The chamber surface temperature is experimentally measured. In the numerical simulation, a coupling human thermal comfort (HTC integral model, a computational fluids dynamics (CFD differential model and a building thermal response (BTR integral model are applied. The human thermal comfort level is evaluated by the HTC numerical model. The airflow inside the virtual chamber, using the k-epsilon and RNG turbulence models, is evaluated by the CFD numerical model. The chamber surface and the collector temperatures are evaluated by the BTR numerical model. In the human thermal comfort level, in non-uniform environments, the predicted mean vote (PMV and the predicted percentage of dissatisfied (PPD people are numerically evaluated; in the local thermal discomfort level the draught risk (DR is experimentally and numerically analyzed; and in the air quality, the carbon dioxide CO2 concentration is numerically calculated. In the validation tests, the experimental and numerical values of the chamber surface temperature, the air temperature, the air velocity, the air turbulence intensity and the DR are presented.

  19. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  20. An easy-to-build, low-budget point-of-care ultrasound simulator: from Linux to a web-based solution.

    Science.gov (United States)

    Damjanovic, Domagoj; Goebel, Ulrich; Fischer, Benedikt; Huth, Martin; Breger, Hartmut; Buerkle, Hartmut; Schmutz, Axel

    2017-12-01

    Hands-on training in point-of-care ultrasound (POC-US) should ideally comprise bedside teaching, as well as simulated clinical scenarios. High-fidelity phantoms and portable ultrasound simulation systems are commercially available, however, at considerable costs. This limits their suitability for medical schools. A Linux-based software for Emergency Department Ultrasound Simulation (edus2TM) was developed by Kulyk and Olszynski in 2011. Its feasibility for POC-US education has been well-documented, and shows good acceptance. An important limitation to an even more widespread use of edus2, however, may be due to the need for a virtual machine for WINDOWS ® systems. Our aim was to adapt the original software toward an HTML-based solution, thus making it affordable and applicable in any simulation setting. We created an HTML browser-based ultrasound simulation application, which reads the input of different sensors, triggering an ultrasound video to be displayed on a respective device. RFID tags, NFC tags, and QR Codes™ have been integrated into training phantoms or were attached to standardized patients. The RFID antenna was hidden in a mock ultrasound probe. The application is independent from the respective device. Our application was used successfully with different trigger/scanner combinations and mounted readily into simulated training scenarios. The application runs independently from operating systems or electronic devices. This low-cost, browser-based ultrasound simulator is easy-to-build, very adaptive, and independent from operating systems. It has the potential to facilitate POC-US training throughout the world, especially in resource-limited areas.

  1. Towards a continuum of computational building simulation tools to support the design and evaluation of complex built environments

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2007-05-01

    Full Text Available the effectiveness of various church exit and road configurations? The hypothesis was that cognitive, steering and artificial intelligence theory are adequately developed to make realistic simulation and modelling predictions with regards human behaviour... church Moreleta Park 1.3.1.1 Sub-problem 1 Can a combination of empirical human and traffic flow information be captured realistically by means of an electronic simulation system? The hypothesis was that cognitive, steering and artificial...

  2. Analysis of the effect of passive strategies on a nearly zero Danish residential building by means of dynamic simulations

    DEFF Research Database (Denmark)

    Avantaggiato, Marta; Simone, Angela; de Carli, Michele

    2014-01-01

    Increase of outdoors temperature, due to climate changes, results in warmer summers even in cold climate regions. Moreover the use of wider glazing surfaces leads to high amount of incoming solar radiation. As a consequence, the moving toward low energy buildings with the improved air tightness i......’t that one required by the users (22-24°C by previous studies). This desired thermal indoor environment can be however obtained by exploiting windows opening during nigh....

  3. The Interdisciplinary Research of Virtual Recovery and Simulation of Heritage Buildings. Take Lingzhao Xuan in the Palace Museum as an Example

    Directory of Open Access Journals (Sweden)

    Liyu Fang

    2014-12-01

    Full Text Available Due to natural disasters, economic development, tourism development and other factors, many precious heritage buildings have been in endangered situation. How to protect, research and develop these heritage resources effectively has become very urgent and important. Three-dimensional (3D digital technology plays a more and more important role in protecting and using cultural heritage. The article will take the synthetic study on the mode of virtual construction, recovery, simulation and exhibition of Lingzhao Xuan (a heritage building which stopped construction for some reason in the Palace Museum as an example to explore and summary an effective interdisciplinary cooperation mode. Besides, we broaden and deepen the concept of “virtual recovery”, and add the concept “virtual simulation” by means of virtual design and the new achievements which are created by such mode for the first time. This research is aimed to provide reference for the standard application of 3D digital technology and perfect the protection work of heritage buildings.

  4. Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level

    Directory of Open Access Journals (Sweden)

    Yongwei Shan

    2014-07-01

    Full Text Available Steel construction activities are often undertaken in an environment with limited climate control. Both hot and cold temperatures can physically and psychologically affect construction workers, thus decreasing their productivity. Temperature and humidity are two factors that constantly exert forces on workers and influence their performance and efficiency. Previous studies have established a relationship between labor productivity and temperature and humidity. This research is built on the existing body of knowledge and develops a framework of integrating building information modeling (BIM with a lower level critical path method (CPM schedule to simulate the overall impact of temperature and humidity on a healthcare facility’s structural steel installation project in terms of total man hours required to build the project. This research effort utilized historical weather data of four cities across the U.S., with each city having workable seasons year-round and conducted a baseline assessment to test if various project starting dates and locations could significantly impact the project’s schedule performance. It was found that both varied project start dates and locations can significantly contribute to the difference in the man hours required to build the model project and that the project start date and location can have an interaction effect. This study contributes to the overall body of knowledge by providing a framework that can help practitioners better understand the overall impact of a productivity influencing factor at a project level, in order to facilitate better decision making.

  5. Intensive care nurses' perceptions of simulation-based team training for building patient safety in intensive care: a descriptive qualitative study.

    Science.gov (United States)

    Ballangrud, Randi; Hall-Lord, Marie Louise; Persenius, Mona; Hedelin, Birgitta

    2014-08-01

    To describe intensive care nurses' perceptions of simulation-based team training for building patient safety in intensive care. Failures in team processes are found to be contributory factors to incidents in an intensive care environment. Simulation-based training is recommended as a method to make health-care personnel aware of the importance of team working and to improve their competencies. The study uses a qualitative descriptive design. Individual qualitative interviews were conducted with 18 intensive care nurses from May to December 2009, all of which had attended a simulation-based team training programme. The interviews were analysed by qualitative content analysis. One main category emerged to illuminate the intensive care nurse perception: "training increases awareness of clinical practice and acknowledges the importance of structured work in teams". Three generic categories were found: "realistic training contributes to safe care", "reflection and openness motivates learning" and "finding a common understanding of team performance". Simulation-based team training makes intensive care nurses more prepared to care for severely ill patients. Team training creates a common understanding of how to work in teams with regard to patient safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. CFD Simulation of a Concrete Cubicle to Analyze the Thermal Effect of Phase Change Materials in Buildings

    Directory of Open Access Journals (Sweden)

    José L. Míguez

    2012-06-01

    Full Text Available In this work, a CFD-based model is proposed to analyse the effect of phase change materials (PCMs on the thermal behaviour of the walls of a cubicle exposed to the environment and on the resistance of the walls to climate changes. The effect of several days of exposure to the environment was simulated using the proposed method. The results of the simulation are compared with experimental data to contrast the models. The effects of exposure on the same days were simulated for several walls of a cubicle made of a mixture of concrete and PCM. The results show that the PCM stabilizes temperatures within the cubicle and decreases energy consumption of refrigeration systems.

  7. Building a Better Workforce: A Case Study in Management Simulations and Experiential Learning in the Construction Industry

    Science.gov (United States)

    Douglas-Lenders, Rachel Claire; Holland, Peter Jeffrey; Allen, Belinda

    2017-01-01

    Purpose: The purpose of this paper is to examine the impact of experiential simulation-based learning of employee self-efficacy. Design/Methodology/Approach: The research approach is an exploratory case study of a group of trainees from the same organisation. Using a quasi-experiment, one group, pre-test-post-test design (Tharenou et al., 2007), a…

  8. A RISK BASED METHODOLOGY TO ASSESS THE ENERGY EFFICIENCY IMPROVEMENTS IN TRADITIONALLY CONSTRUCTED BUILDINGS

    Directory of Open Access Journals (Sweden)

    D. Herrera

    2013-07-01

    Full Text Available In order to achieve the CO2 reduction targets set by the Scottish government, it will be necessary to improve the energy efficiency of existing buildings. Within the total Scottish building stock, historic and traditionally constructed buildings are an important proportion, in the order of 19 % (Curtis, 2010, and represent cultural, emotional and identity values that should be protected. However, retrofit interventions could be a complex operation because of the several aspects that are involved in the hygrothermal performance of traditional buildings. Moreover, all these factors interact with each other and therefore need to be analysed as a whole. Upgrading the envelope of traditional buildings may produce severe changes to the moisture migration leading to superficial or interstitial condensation and thus fabric decay and mould growth. Retrofit projects carried out in the past have failed because of the misunderstanding, or the lack of expert prediction, of the potential consequences associated to the envelope's alteration. The evaluation of potential risks, prior to any alteration on building's physics in order to improve its energy efficiency, is critical to avoid future damage on the wall's performance or occupants' health and well being. The aim of this PhD research project is to point out the most critical aspects related to the energy efficiency improvement of traditional buildings and to develop a risk based methodology that helps owners and practitioners during the decision making process.

  9. Development and Demonstration of a Method to Evaluate Bio-Sampling Strategies Using Building Simulation and Sample Planning Software

    OpenAIRE

    Dols, W. Stuart; Persily, Andrew K.; Morrow, Jayne B.; Matzke, Brett D.; Sego, Landon H.; Nuffer, Lisa L.; Pulsipher, Brent A.

    2010-01-01

    In an effort to validate and demonstrate response and recovery sampling approaches and technologies, the U.S. Department of Homeland Security (DHS), along with several other agencies, have simulated a biothreat agent release within a facility at Idaho National Laboratory (INL) on two separate occasions in the fall of 2007 and the fall of 2008. Because these events constitute only two realizations of many possible scenarios, increased understanding of sampling strategies can be obtained by vir...

  10. Building a ROS-Based Testbed for Realistic Multi-Robot Simulation: Taking the Exploration as an Example

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-09-01

    Full Text Available While the robotics community agrees that the benchmarking is of high importance to objectively compare different solutions, there are only few and limited tools to support it. To address this issue in the context of multi-robot systems, we have defined a benchmarking process based on experimental designs, which aimed at improving the reproducibility of experiments by making explicit all elements of a benchmark such as parameters, measurements and metrics. We have also developed a ROS (Robot Operating System-based testbed with the goal of making it easy for users to validate, benchmark, and compare different algorithms including coordination strategies. Our testbed uses the MORSE (Modular OpenRobots Simulation Engine simulator for realistic simulation and a computer cluster for decentralized computation. In this paper, we present our testbed in details with the architecture and infrastructure, the issues encountered in implementing the infrastructure, and the automation of the deployment. We also report a series of experiments on multi-robot exploration, in order to demonstrate the capabilities of our testbed.

  11. Contribution to the building of an execution engine for UML models for the simulation of competitor and timed applications

    International Nuclear Information System (INIS)

    Benyahia, A.

    2012-01-01

    Model Driven Engineering (MDE) places models at the heart of the software engineering process. MDE helps managing the complexity of software systems and improving the quality of the development process. The Model Driven Architecture (MDA) initiative from the Object Management Group (OMG) defines a framework for building design flows in the context of MDE. MDA relies heavily on formalisms which are normalized by the OMG, such as UML for modeling, QVT for model transformations and so on. This work deals with the execution semantics of the UML language applied to embedded real-time applications. In this context, the OMG has a norm which defines an execution model for a subset of UML called fUML (foundational UML subset). This execution model gives a precise semantics to UML models, which can be used for analyzing models, generating code, or verifying transformations. The goal of this PhD thesis is to define and build an execution engine for UML models of embedded real-time systems, which takes into account the explicit hypothesis made by the designer about the execution semantics at a high level of abstraction, in order to be able to execute models as early as possible in the design flow of a system. To achieve this goal, we have extended the fUML execution model along three important axes with regard to embedded real-time systems: - Concurrence: fUML does not provide any mechanism for handling concurrent activities in its execution engine. We address this issue by introducing an explicit scheduler which allows us to control the execution of concurrent tasks. - Time: fUML does not provide any mean to handle time. By adding a clock to the model of execution, we can take into account the elapsed time as well as temporal constraints on the execution of activities. - Profiles: fUML does not take profiles into account, which makes it difficult to personalize the execution engine with new semantic variants. The execution engine we propose allows the use of UML models with

  12. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    Science.gov (United States)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  13. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  14. Ecloud Build-Up Simulations for the FNAL MI for a Mixed Fill Pattern: Dependence on Peak SEY and Pulse Intensity During the Ramp

    International Nuclear Information System (INIS)

    Furman, M.A.

    2010-01-01

    We present simulation results of the build-up of the electron-cloud density n e in three regions of the FNAL Main Injector (MI) for a beam fill pattern made up of 5 double booster batches followed by a 6th single batch. We vary the pulse intensity in the range N t = (2-5) x 10 13 , and the beam kinetic energy in the range E k = 8-120 GeV. We assume a secondary electron emission model qualitatively corresponding to TiN, except that we let the peak value of the secondary electron yield (SEY) (delta) max vary as a free parameter in a fairly broad range. Our main conclusions are: (1) At fixed N t there is a clear threshold behavior of n e as a function of (delta) max in the range ∼ 1.1-1.3. (2) At fixed (delta) max , there is a threshold behavior of n e as a function of N t provided (delta) max is sufficiently high; the threshold value of N t is a function of the characteristics of the region being simulated. (3) The dependence on E k is weak except possibly at transition energy. Most of these results were informally presented to the relevant MI personnel in April 2010.

  15. Ecloud Build-Up Simulations for the FNAL MI for a Mixed Fill Pattern: Dependence on Peak SEY and Pulse Intensity During the Ramp

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M. A.

    2010-12-11

    We present simulation results of the build-up of the electron-cloud density n{sub e} in three regions of the FNAL Main Injector (MI) for a beam fill pattern made up of 5 double booster batches followed by a 6th single batch. We vary the pulse intensity in the range N{sub t} = (2-5) x 10{sup 13}, and the beam kinetic energy in the range E{sub k} = 8-120 GeV. We assume a secondary electron emission model qualitatively corresponding to TiN, except that we let the peak value of the secondary electron yield (SEY) {delta}{sub max} vary as a free parameter in a fairly broad range. Our main conclusions are: (1) At fixed N{sub t} there is a clear threshold behavior of n{sub e} as a function of {delta}{sub max} in the range {approx} 1.1-1.3. (2) At fixed {delta}{sub max}, there is a threshold behavior of n{sub e} as a function of N{sub t} provided {delta}{sub max} is sufficiently high; the threshold value of N{sub t} is a function of the characteristics of the region being simulated. (3) The dependence on E{sub k} is weak except possibly at transition energy. Most of these results were informally presented to the relevant MI personnel in April 2010.

  16. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  17. Simulation of the build-up phase of a high voltage low pressure gas discharge using Monte-Carlo-methods

    International Nuclear Information System (INIS)

    Niessen, W.

    1990-02-01

    In this report the simulation of a Pseudospark predischarge between anode and cathode using Monte-Carlo-Methods is described. In the early phase of the discharge electric and magnetic self-fields can be neglected. The model is based on a discharge between two infinitely extended capacitor plates. Eleven different collision reactions and two electrode surface effects are taken into account. A Fortran program was developed that computes the built-up of the discharge in time and space. A specially of the code is, that not only electrons and ions are taken into account, but also fast neutral atoms and molecules. Three pairs of diode-length and voltage were investigated at different pressures: 350 kV/5.0 cm, 30 kV/10.0 cm and 6.9 kV/0.7 cm. The working gas was hydrogen. The computations included: The Paschen-curve, the time evolution of the current densities of the electrons at the anode and the ions at the cathode, the space- and time-dependent particle densities, the time-dependent energy distributions of the different particle species, the relative number of the different collision reactions. (orig./HSI) [de

  18. Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response.

    Science.gov (United States)

    Binder, Harald; Sauerbrei, Willi; Royston, Patrick

    2013-06-15

    In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2)  = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Hygrothermal adaptability traditional housing in Tampico, Mexico / Adaptabilidad higrotérmica de la vivienda tradicional en Tampico, México

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Fuentes Pérez

    2014-09-01

    Full Text Available The annual increase in the concentration of CO2 in the air is on average 1.5 parts per million, is 0.5% per year, due to the anthropogony generating global climate change, estimates half a century predict a temperature rise of about 2.0°C. The human population is facing an environmental intramural and extramural change in housing. This research aims to determine the degree of hygrothermal adaptability into traditional housing during the year of 2013 in Tampico, Mexico. Depending on the level of scientific knowledge and observation the investigator arrives, makes that labour is diachronic first instance, made as a case study because it analyses the research problem in its genesis and historical conformation with an overview. The thermal behaviour is the thread, therefore, is the methodology to implement multimodal type and by triangulation, since different methods applied provide quantitative and qualitative research approach to the experimental oscillating applied to identify patterns of temperature and relative humidity only, not previously performed in this type of housing. El incremento anual de la concentración de CO2 en el aire es por término medio de 1.5 partes por millón, es decir un 0.5% por año, producto de la antropogenia que genera un cambio climático global, las estimaciones a medio siglo pronostican un aumento de temperatura de unos 2.0°C. La población humana está confrontando un cambio ambiental intramuros y extramuros en la vivienda.La presente investigación tiene como objetivo determinar el grado de adaptabilidad higrotérmica, al interior de la vivienda tradicional durante el año de 2013 en Tampico, México.Según el nivel de conocimiento científico y observación al que llega el investigador, formula que el trabajo es en primera instancia diacrónico, conformado como estudio de caso, porque analiza el problema de investigación en su génesis y conformación histórica con una visión de conjunto. El comportamiento

  20. Building Languages

    Science.gov (United States)

    ... Glossary Contact Information Information For… Media Policy Makers Building Languages Recommend on Facebook Tweet Share Compartir Communicating ... any speech and only very loud sounds. Close × “Building Blocks” “Building Blocks” refers to the different skills ...

  1. Bio-aggregates based building materials state-of-the-art report of the RILEM Technical Committee 236-BBM

    CERN Document Server

    Collet, Florence

    2017-01-01

    The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. .

  2. Energy efficiency of new school buildings and office buildings in Luxembourg based on consumption data and simulations; Energieeffizienz neuer Schul- und Buerogebaeude in Luxemburg basierend auf Verbrauchsdaten und Simulationen

    Energy Technology Data Exchange (ETDEWEB)

    Thewes, Andreas

    2011-07-01

    In Luxemburg, energy consumption in the building and housing sector has been significantly increasing over the last years. From 1990 to 2005, the fraction of the tertiary sector (including private and public households), compared to the entire national energy consumption, increased from only 20% to 31% [ENEL, 2008]. An assessment of the energy saving potential of buildings requires a comprehensive data basis with real consumption figures that are not yet available. Assessments on energy saving measures conducted so far are only based on rough estimates. One focus of this study was to create a priori a detailed energy consumption database for new ''School and Administrative Buildings'' for Luxembourg. These are both groups pursuant to the EU Directive [EU, 2010] and cover a major part of the building and housing sector in Luxembourg besides residential buildings. Based on the samples collected, it was able to expand the figures to the entire country using mathematical methods and the medium heat and electricity consumption of these two types of buildings. After collecting some details about each object, it was able to analyze the influence of different parameters, such as building age, size, type, glass fraction etc., on energy consumption using multivariate statistical methods. A posteriori, the results from the database were verified using parameter studies to existing objects and one object still under construction. Based on this, important key parameters relevant for both energy savings and thermal comfort could be found. This knowledge are necessary to understand energy flows within buildings better and, based on this, to be able meeting the nearly zero energy buildings requirements as set out by the EU Directive in the years to come. In particular, this study focused on the negative effects of growing window areas on the energy consumptions and discussed them thoroughly. Also, we tested and/or provided calculational evidence of further

  3. Empirical validation of building simulation programs - Swiss contribution to IEA Task 34, Annex 43; Empirische Validierung von Gebaeudesimulationsprogrammen. Schweizer Beitrag zu IEA Task 34 / Annex 43. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Loutzenhiser, P.; Manz, H. (eds.)

    2006-11-15

    This comprehensive, illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on work carried out on the validation of building simulation programs. the purpose of this project was to create a data set for use when evaluating the accuracy of models for glazing units and windows with and without shading devices. A series of eight experiments that subsequently increased in complexity were performed in an outdoor test cell located on the Swiss Federal Laboratories for Material Testing and Research (EMPA) campus in Duebendorf, Switzerland. Particular emphasis was placed on accurately determining the test cell characteristics. The report presents information on experimental set-ups, their validation and the methodology used. Further chapters describe particular experiments made, including transient characterisation, evaluation of irradiation models on tiled facades, as well as those made on glazing units with various types of shading and blinds. The thermal properties of windows are looked at. The results of experiments made with four different models, HELIOS, EnergyPlus, DOE-2.1E and IDA-ICE, are discussed.

  4. Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings

    Science.gov (United States)

    Lokko, Mae-ling Jovenes

    As global quantities of waste by-products from food production as well as the range of their applications increase, researchers are realizing critical opportunities to transform the burden of underutilized wastes into ecological profits. Within the tropical hot-humid region, where half the world's current and projected future population growth is concentrated, there is a dire demand for building materials to meet ambitious development schemes and rising housing deficits. However, the building sector has largely overlooked the potential of local agricultural wastes to serve as alternatives to energy-intensive, imported building technologies. Industrial ecologists have recently investigated the use of agrowaste biocomposites to replace conventional wood products that use harmful urea-formaldehyde, phenolic and isocyanate resins. Furthermore, developments in the performance of building material systems with respect to cost, energy, air quality management and construction innovation have evolved metrics about what constitutes material 'upcycling' within building life cycle. While these developments have largely been focused on technical and cost performance, much less attention has been paid to addressing deeply-seated social and cultural barriers to adoption that have sedimented over decades of importation. This dissertation evaluates the development coconut agricultural building material systems in four phases: (i) non-toxic, low-energy production of medium-high density boards (500-1200 kg/m3) from coconut fibers and emerging biobinders; (ii) characterization and evaluation of coconut agricultural building materials hygrothermal performance (iii) scaled-up design development of coconut modular building material systems and (iv) development of a value translation framework for the bottom-up distribution of value to stakeholders within the upcycling framework. This integrated design methodological approach is significant to develop ecological thinking around agrowaste

  5. Residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend; Furbo, S.

    2012-11-15

    Low-energy buildings can make a major contribution to general sustainable development by providing a solution to problems related to the use of fossil fuels. The EPBD (EU Directive on Energy Performance of Buildings) requirements that by 2020 new building shall be constructed to use nearly zero energy, and no fossil fuels, can be accomplished by combining low-energy buildings with renewable energy via low-temperature district heating in cities and suburbs, and via heat pumps for low-density settlements. Based on experience with passive houses, low-energy buildings meeting the energy performance requirements of 2020 are expected to cost only a few percent more than conventional buildings. The very large and rapid changes needed in the energy performance of buildings is a challenge for the building sector, but one that can be overcome by better methods of developing products and designing, constructing and operating buildings. Simulation-based analysis and optimisation, and considerations of durability, will be important here. Building may thus be transformed from an experience-based sector to one based on knowledge and research, with high-quality sustainable products and good business opportunities. (Author)

  6. Integrating CFD and building simulation

    DEFF Research Database (Denmark)

    Bartak, M.; Beausoleil-Morrison, I.; Clarke, J.A.

    2002-01-01

    Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model, describes the method used to integrate the thermal and 3ow domains and reports the outcome from an empirical validation exercise. © 2002 Published by Elsevier Science Ltd....

  7. Research on virtualization-based cloud simulation running environment dynamic building technology%基于虚拟化技术的云仿真运行环境动态构建技术

    Institute of Scientific and Technical Information of China (English)

    张雅彬; 李伯虎; 柴旭东; 杨晨

    2012-01-01

    为使得云仿真平台能够支持仿真用户快速、高效、灵活地获得个性化仿真服务,基于虚拟化技术研究了云仿真运行环境动态构建技术,设计了基于虚拟化技术的云仿真运行环境动态构建模型,研究了面向多用户的、以仿真模型需求为依据的云仿真运行环境动态构建的三层映射算法.最后通过一个应用示例说明了基于虚拟化技术的云仿真运行环境动态构建技术的可行性和有效性.%In order to enable a cloud simulation platform (CSP) to support users obtaining individual simulation services quickly, effectively and neatly, the cloud simulation running environment dynamic building technology is researched based on virtualization technology. A virtualization-based cloud simulation running environment dynamic building model is designed and the multi-user oriented three-layer algorithm built dynamically by the cloud simulation running environment is researched according to the demand of simulation resources. Finally, an example is given to show the feasibility and effectiveness.

  8. The utilization of the storage of thermal energy in buildings. Underground heat storages - thermic simulation and profitability; Termisen energian varastoinnin hyvaeksikaeyttoemahdollisuudet rakennusten laemmityksessae ja jaeaehdytyksessae. Maanalaiset varastot - laempoetekninen simulointi ja taloudellinen kannattavuus

    Energy Technology Data Exchange (ETDEWEB)

    Suokas, M.; Heinonen, J.; Karola, A.; Laine, T.; Siren, K.

    1998-12-31

    Interest in different sources of free energy has significantly increased due to the possibility to decrease the consumption of fossil fuels and nuclear power. This can be reached, for example, with waste heat recovery and by utilising natural heat and cool energy sources. The main problem is that the supply and use of energy do not encounter and this causes a need for thermal energy storage. The earlier heat storage systems have utilised compressor heat pumps because the temperature levels of heat storages are not high enough for the ordinary heating and cooling systems. The disadvantage is the complexity of these systems which leads to increasing building costs. Therefore, this study deals with systems of low temperature levels used mainly for cooling purposes. The aim was to find out their usability, savings and profitability. The function and energy consumption of systems were simulated with models of buildings, soil heat storage and climate. The soil model simulates heat dynamic behaviour of the masses of soil. With the climate model it was possible to simulate transient heat losses of the storage and building. It was also possible to simulate various climatic conditions by changing input data of the climate model. In the simulated systems the emphasis is on the production of cooling energy by utilising the low temperature of the ground. The systems consist of heat storage and building. The cooling energy will be charged in winter to the storage when the heat energy charged in summer will be transferred to the supply air of ventilating unit. After the energy simulations the investment and usage costs of this kind of systems were compared with costs of ordinary compressor cooling systems. The buildings studied were an imaginary LVIS 2000 office building and the Messukeskus in Helsinki which is a large hall built for exhibitions. The types of soil were wet clay and granite. The LVIS 2000 office building needs a rock heat storage with capacity of 8 000-30 000 m

  9. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  10. Building calculations

    DEFF Research Database (Denmark)

    Jensen, Bjarne Christian; Hansen, Svend Ole

    Textbook on design of large panel building including rules on robustness and a method for producing the Statical documentattion......Textbook on design of large panel building including rules on robustness and a method for producing the Statical documentattion...

  11. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  12. Building envelope

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-01-01

    Full Text Available for use in the building. This is done through photovoltaic and solar water heating panels and wind turbines. Ideally these are integrated in the design of the building envelope to improve the aesthetic quality of the building and minimise material... are naturally ventilated. Renewable energy The building envelope includes renewable energy generation such as photovoltaics, wind turbines and solar water heaters and 10% of the building’s energy requirements are generated from these sources. Views All...

  13. Auxiliary buildings

    International Nuclear Information System (INIS)

    Lakner, I.; Lestyan, E.

    1979-01-01

    The nuclear power station represents a complicated and a particular industrial project. Consequently, the design of the auxiliary buildings serving the power station (offices, kitchen, refreshment room, workshops, depots, water treatment plant building, boiler houses, etc.) requires more attention than usual. This chapter gives a short survey of the auxiliary buildings already completed and discusses the problems of their design, location and structure. (author)

  14. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings.

    Science.gov (United States)

    Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto

    2016-05-14

    There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate.

  15. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings

    Science.gov (United States)

    Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto

    2016-01-01

    There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate. PMID:27187410

  16. Análise do efeito higrotérmico no comportamento em fadiga de compósitos de PPS/fibras de carbono On the analysis of hygrothermal effect on fatigue behavior of PPS/carbon fiber composite

    Directory of Open Access Journals (Sweden)

    Maria C. M. de Faria

    2012-01-01

    exposed to harsh environments such as high temperature and humidity, and should be carefully evaluated before being put into service. The aim of the present work is to evaluate the hygrothermal effect on the fatigue resistance of thermoplastic PPS/carbon fiber composite. These laminates were obtained from TenCate Company, which provides composite laminates to Airbus and Embraer. PPS/carbon fibers composites exhibited increased tensile strength under hygrothermal conditioning due to plasticization of the polymer matrix, with the fracture toughness being also increased. In contrast, the hygrothermal conditioning did not alter significantly the behavior of fatigue life of laminates from PPS/carbon fiber composite.

  17. 基于模拟的中小学教学楼绿色设计方法研究——以寒冷地区为例%Green Design Method of Primary and Secondary School Teaching Buildings Based on Simulation:Taking Teaching Buildings in Cold Region for Example

    Institute of Scientific and Technical Information of China (English)

    贾佳; 刘丛红; 杨鸿玮

    2017-01-01

    中小学教学楼由于使用人群和功能的特点,其节能设计方法具有明显的特殊性,舒适度具有更高的要求.针对寒冷地区中小学教学楼,笔者运用性能模拟技术,提出了从建筑的整体控制、平面组织到空间优化的被动式绿色设计流程,将适宜的被动式策略应用于场地分析、建筑布局、体型控制、围护结构选择、功能配置以及空间的风光环境优化等设计环节,形成适合寒冷地区中小学教学楼的绿色设计方法,并将该方法应用到天津某小学教学楼设计实践中.%As an important type of public buildings,teaching buildings in primary and secondary schools occupy a large amount of construction volume.The users are mainly teenagers,and the functional requirements of the buildings are clear and specific with high standards in health,comfort,safety and other aspects.At the same time,the buildings in primary and secondary schools are good carriers of green culture education.Generally,the investment to the buildings is limited which means that reducing the construction cost must be considered.Because of the long vacation in winter and summer,the buildings do not operate in the coldest and hottest period of the year,which provide a potential to energy-saving.Therefore,relatively low-cost passive design strategies are very suitable to the teaching buildings in primary and secondary schools.Overall,the energy consumption characteristics of the buildings are obvious.This paper takes the teaching buildings in primary and secondary schools in cold region as the research objects.With the help of digital simulation technologies,appropriate passive green strategies are selected.As the result of the research,design processes and important technology strategies in each process are presented.Green design of the teaching buildings in primary and secondary school can be followed the passive design process from the building's overall control,plane organization to space

  18. Early Building Design

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2017-01-01

    Highlights •Development of a design methodology that can handle the vast design space in early building design. •A global design space is modelled from extensive Monte Carlo simulations. •Sensitivity analysis methods applied to guide decision-makers. •Interactive visualizations help the multi-act...

  19. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  20. Building a capacity building manual

    CSIR Research Space (South Africa)

    Clinton, DD

    2010-02-01

    Full Text Available Organizations 2010 Building a capacity building manual Daniel D. Clinton, Jr., P.E., F.NSPE Chair, WFEO Capacity Building Committee Dr Andrew Cleland, FIPENZ, Chief Executive, IPENZ, NZ Eng David Botha, FSAICE, Executive Director, SAICE, SA Dawit... 2010 Tertiary level University curricula Coaches and mentors Facilities EXCeeD Remuneration of Academics Experiential training Outreach to Students Students chapters Young members forum World Federation of Engineering Organizations 2010 Post...