WorldWideScience

Sample records for building hygrothermal simulation

  1. Hygrothermal Numerical Simulation Tools Applied to Building Physics

    CERN Document Server

    Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto

    2013-01-01

    This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...

  2. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  3. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    phenomena that occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: (1) Air flow in a ventilated...... cavity such as behind the exterior cladding of a building envelope, i.e. a flow which is parallel to the construction plane. (2) Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the constructionplane. The paper presents the models and how they have...

  4. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2009-01-01

    Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical...... phenomena which occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: 1. Air flow in ventilated...... cavity such as in the exterior cladding of building envelopes, i.e. a flow which is parallel to the construction plane. 2. Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the construction plane. The new models make it possible to predict the thermal...

  5. Hygrothermal Behavior, Building Pathology and Durability

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    The main purpose of this book, Hygrothermal, Building Pathology and Durability, is to provide a collection of recent research works to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behaviour of buildings, durability and diagnostic techniques and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of building physics and hygrothermal behaviour, durability approach for historical and old buildings and building pathology vs. durability. The book is divided in several chapters that are a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers and other interested parties to network.

  6. Hygrothermal behavior, building pathology and durability

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto de Freitas V.; Delgado, J.M.P.Q. (eds.) [Porto Univ. (Portugal). Building Physics Lab.

    2013-03-01

    Includes a set of new developments in the field of building physics and hygrothermal behavior. Presents a new durability approach for historical and old buildings. Reviews the current state of knowledge. The main purpose of this book, Hygrothermal, Building Pathology and Durability, is to provide a collection of recent research works to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behaviour of buildings, durability and diagnostic techniques and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of building physics and hygrothermal behaviour, durability approach for historical and old buildings and building pathology vs. durability. The book is divided in several chapters that are a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers and other interested parties to network.

  7. Moisture buffering and its consequence in whole building hygrothermal modeling

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2008-01-01

    air of the indoor climate and materials in the building envelope is taken into account in a model for whole building heat and moisture simulation. By means of an example, it will be investigated if: 1. it is possible to use the benefits of moisture buffering to save energy by reducing the requirement...... of building products to improve indoor air quality and to save energy. Of interest therefore is to establish a unit to appraise this quality of building products and to investigate the importance of moisture buffering when it is considered in whole building hygrothermal simulation. This paper will illustrate...... hygrothermal simulations show that it is possible to rather significantly reduce the amplitudes of indoor relative variation when the moisture buffering effect of building materials is taken into account, compared to a situation with moisture tight interior building surfaces. The modeling also shows some...

  8. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  9. Hygrothermal evaluation of a museum storage building based on actual measurements and simulations

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Kollias, Christos Georgios

    2015-01-01

    Museum storage buildings should be able to provide a considerable stable indoor environment in terms of temperature and relative humidity (RH). To obtain such stable conditions with the lowest possible energy consumption, passive air conditioning is one-way solution. In this paper, indoor...... to maintain RH within acceptable levels. Therefore, renewable energy such us excess wind energy during the night can be utilized. [All rights reserved Elsevier]....

  10. Whole-Building Hygrothermal Modeling in IEA Annex 41

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2007-01-01

    Annex 41 of the International Energy Agency’s (IEA) Energy Conservation in Buildings and Community Systems program (ECBCS) is a cooperative project on “Whole-Building Heat, Air, and Moisture Response” (MOIST-ENG). Subtask 1 of that project set out to advance development in modeling the ntegral heat......, air, and moisture transfer processes that take place in whole-buildings. Such modeling comprises all relevant elements of buildings: indoor air, the building envelope, inside constructions, furnishing, systems, and users. The building elements interact with each other and with the outside climate....... The IEA Annex 41 project runs from 2004–2007, coming to conclusion just before the Thermal Performance of the Exterior Envelopes of Whole Buildings X conference. The Annex 41 project and its Subtask 1 do not aim to produce one state-of-the-art hygrothermal simulation model for whole buildings, but rather...

  11. Transient hygrothermal behaviour of a hemp concrete building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Tran Le, A.D.; Maalouf, C.; Mai, T.H. [GRESPI/Thermomecanique, Universite de Reims, Moulin de la Housse BP. 1039, 51687 Reims (France); Wurtz, E. [INES-LOCIE, Savoie Technolac, Universite de Savoie, Le Bourget du Lac, 73375 Savoie (France); Collet, F. [Laboratoire de Genie civil et Genie Mecanique, equipe Materiaux-Thermo-Rheologie, Universite Europeenne de Bretagne, Rennes 1 (France)

    2010-10-15

    The sustainable world's economic growth and people's life improvement greatly depend on the use of alternative products in the architecture and construction, such as industrial wastes conventionally called green materials. For this purpose, hemp concrete is more and more recommended by the eco-builders because hemp is a renewable plant, recyclable and does not degrade within time. It corresponds perfectly to the requirements of high environmental quality buildings. The objective of this article is to study transient hygrothermal behaviour of hemp concrete at whole building level. The physical model is one-dimensional and was implemented into the object-oriented simulation environment SPARK, using the finite difference technique with an implicit scheme. The numerical result showed that the use of hemp concrete wall in buildings can ensure good indoor air quality and energy savings in winter. Besides, the combined effect of moisture buffering with the adequate ventilation strategies increases hemp concrete building performance. Our results also suggest that taking into account the hygrothermal transfer at whole building level with heat and moisture production sources has significant effects on predictions. (author)

  12. Building Enclosure Hygrothermal Performance Study, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2002-08-08

    The moisture performance of three different classes of wall systems has been investigated in the context of the preliminary hygrothermal analysis of walls in Seattle. The results reported in this phase specifically address the moisture performance of walls designed with loads that have some unintentional water penetration. The results have been developed in a manner to present the relative performance of the walls in the same climate with similar water penetration effects. The analysis was performed with the best available input data. Several limitations should be recognized within the context of this study. Results showed that selection of wooden sheathing boards on interior vapor-tight assemblies does not significantly influence the performance of stucco-clad walls. A larger effect was observed when the interior vapor control is made vapor open. When continuous cavity ventilation is employed, the effect of the selection of the type of sheathing board on the hygrothermal performance of the wall was found to be negligible. When comparing oriented strand board sheathing performance against the performance of exterior grade gypsum, the differences are very significant in terms of the amount of moisture content present in the walls. Moisture content alone does not indicate their respective durability as durability is directly related to the combination of relative humidity and temperature, mechanical, chemical, and biological properties of the substrates. This study did not investigate the durability performance of either sheathing. In terms of interior vapor control, inhabitant behavior must be considered during the wall hygrothermal design stage. If interior relative humidity is maintained below 60%, then a latex primer and paint may perform better than the use of PVA or even a polyethylene sheet. When the interior environment is maintained at a higher relative humidity, then stricter vapor control is needed. Multilayered building paper was experimentally shown to

  13. Danish and Brazilian Modeling of Whole-Building Hygrothermal Performance

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; Grau, Karl

    2006-01-01

    the humidity low and thus reduce the risk of moisture damage in the building enclosure. In either case the indoor humidity has a direct or indirect impact on the energy performance of the HVAC system of a building. To analyze this situation, one could benefit from some recent developments in integrated...... computational analysis of the hygrothermal performance of whole buildings. Such developments have led to new hygrothermal models for whole buildings. The paper gives examples of two such recent developments and will illustrate some calculation results that can be obtained. Finally the paper will mention some......The humidity of rooms and moisture conditions of materials in the enclosure of buildings depend much on each other because of the moisture exchange that takes place over the interior surfaces. These moisture influences also depend strongly on the thermal conditions of indoor spaces and enclosure...

  14. A Model for Air Flow in Ventilated Cavities Implemented in a Tool for Whole-Building Hygrothermal Analysis

    DEFF Research Database (Denmark)

    Grau, Karl; Rode, Carsten

    2006-01-01

    A model for calculating air flows in ventilated cavities has been implemented in the whole-building hygrothermal simulation tool BSim. The tool is able to predict indoor humidity conditions using a transient model for the moisture conditions in the building envelope.......A model for calculating air flows in ventilated cavities has been implemented in the whole-building hygrothermal simulation tool BSim. The tool is able to predict indoor humidity conditions using a transient model for the moisture conditions in the building envelope....

  15. Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Robert Tichy; Chuck Murray

    2006-05-31

    This document serves as the Topical Report documenting work completed by Washington State University (WSU) under U.S. Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project was conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August 2002 through June 2006. WSU's primary experimental role is the design and implementation of a field testing protocol that monitored long term changes in the hygrothermal response of wall systems. During the project period WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, installed instrumentation in the test walls and recorded data from the test wall specimens. Each year reports were published documenting the hygrothermal response of the test wall systems. Public presentation of the results was, and will continue to be, made available to the building industry at large by industry partners and the University.

  16. Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Robert Tichy; Chuck Murray

    2003-10-01

    This document serves as the Topical Report documenting the first year of work completed by Washington State University (WSU) under US Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project is being conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser Company, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August, 2002 through October, 2003. WSU's primary experimental role is the design and implementation of a field testing protocol that will monitor long term changes in the hygrothermal response of wall systems. In the first year WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, and installed instrumentation in the test walls. By the end of the contract period described in this document, WSU was recording data from the test wall specimens. The experiment described in this report will continue through December, 2005. Each year a number of reports will be published documenting the hygrothermal response of the test wall systems. Public presentation of the results will be made available to the building industry by industry partners and the University cooperators.

  17. Passive hygrothermal control of a museum storage building

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Janssen, Hans

    2011-01-01

    For optimal conservation of the stored objects, museum storage buildings require a very stable interior climate, with only minimal and slow variations in temperature and relative humidity. Often extensive HVAC is installed to provide such stable indoor conditions, which results in a great amout...... of C02 emission. The purpose for this paper is to show that it is possible to reach the goal of using renewable energy for museum storage buildings by rethinking the strategy for the dehumidification design and in this way contribute to a C02 neutral environment. The solution is to construct a very...... airtight building and use concentrated dehumidification....

  18. Passive hygrothermal control of a museum storage building in Vejle

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Janssen, Hans

    2010-01-01

    of a museum storage building, related to an existing storage centre in Vejle (Denmark). The current building design already incorporates passive control concepts: thermal inertia is provided by the thick walls, the ground floor and its underlying soil volume, while hygric inertia is provided by the thick...... walls of light-weight concrete. The design promise stated that a few years of dehumidification would bring down the moisture contained in the fresh constructions to a level corresponding with the desired interior climate. After this initial stage, the passive control would eliminate all further need...... purposes. Reduction of dehumidification load: In an effort to reduce the necessary dehumidification, a number of thermal measures are investigated first. This primarily focuses on the influences of additional insulation in walls, roof and floor. Overall, the effects of extra insulation on the average...

  19. Performances of DAHT connected to building airthightness and indoor hygrothermal climate

    OpenAIRE

    Masy, Gabrielle; Lebrun, Jean; Gendebien, Samuel; Hansen, Nicolas; Lengele, Marc; Prieels, Luc

    2011-01-01

    As building insulation level increases, the coupling of ventilation systems with building enveloppe airtightness becomes an important issue in order to improve buildings energy performances. A building ventilation model can be built on a set of resistances and generators in order to handle infiltration, natural ventilation as well as fan driven air flows. The model is able to assess the indoor air humidity level and the building energy balance. Double flow ventilation can be ha...

  20. Effect of façade impregnation on feasibility of capillary active thermal internal insulation for a historic dormitory – A hygrothermal simulation study

    DEFF Research Database (Denmark)

    Finken, Gholam Reza; Bjarløv, Søren Peter; Peuhkuri, Ruut Hannele

    2016-01-01

    Internal insulation of external walls is known to create moisture performance challenges due to increased moisture levels and condensation risk on the cold side of the insulation. Capillary active/hydrophilic insulations have been introduced to solve these moisture problems, since they are able...... to transport liquid moisture to the inner surface and enable it to dry. Experience with this insulation type is rare in Denmark. In hygrothermal 1D computer simulations, several more or less capillary active insulation systems (AAC, calcium silicate, IQ-Therm) in various thicknesses (30–150 mm) have been...... tested for their hygrothermal performance. The original construction was a 228 mm solid brick masonry wall in a Copenhagen historic dormitory. All simulated systems showed critical relative humidity values above 80% and high risk of mould growth behind the insulation and some also on the interior surface...

  1. Modelling local hygrothermal interaction between airflow and porous materials for building applications

    OpenAIRE

    Steeman, Hendrik-Jan

    2009-01-01

    Moisture related damage in buildings is a phenomenon which is familiar to most people. Most of the time it is spontaneously associated with damage due to liquid moisture transport such as plumbing leaks, rising moisture in walls, . . . Yet some materials and objects are so sensitive to moisture that they can already be damaged by water vapour transport through the air. This is especially true for culturally or historically valuable artefacts: even a small amount of damage (like small cracks, ...

  2. Hygrothermal risk on building heritage a methodology for a risk map

    CERN Document Server

    Delgado, João M P Q; Freitas, Vasco Peixoto

    2015-01-01

    This book presents a critical review of a criterion of risk, created to assess the flood risk to heritage buildings, and evaluates this criterion by applying it to the sample Portuguese heritage buildings. In a first approach, the total number of potential parameters is effectively reduced and the selected criteria are divided into two different groups: the monument’s location in relation to a waterway, and the behaviour of its construction material in contact with water. Above all, the book discusses the importance of architectural heritage and argues for the need to safeguard it from extreme climatic phenomena such as floods. As such, the book vividly reminds the scientific community that the intensification of the global warming and climate change will worsen throughout the 21st century, and that it is therefore necessary to adopt preventive measures to minimize, mitigate and control these adverse effects if we hope to avoid catastrophic consequences. At the same time, the book takes into account a broad...

  3. Hygrothermal optimisation of museum storage spaces

    DEFF Research Database (Denmark)

    Janssen, Hans; Christensen, Jørgen Erik

    2013-01-01

    Despite the large economic and ecologic costs, museum storage spaces are often equipped with extensive air conditioning, to provide the desired stable interior climate. The new “passive conditioning” paradigm aims at resolving these costs: a high-hygrothermal-inertia building with a high-hygrothe...

  4. Monitoring and simulations of hydrolysis in epoxy matrix composites during hygrothermal aging

    KAUST Repository

    El Yagoubi, Jalal

    2015-01-01

    In this paper, we studied the water transport in thermoset matrices. We used Fourier Transform Infrared analysis (FTIR) during sorption/desorption experiments to investigate the interaction between sorbed water and the epoxy network. Our results demonstrated that the polymer matrix undergoes hydrolysis. We found that the chemical species involved in the reaction process was the residual anhydride groups. These results support the physical basis of the three-dimensional (3D) diffusion/reaction model. We finally showed that this model is able to reproduce multi-cycle sorption/desorption experiment, as well as water uptake in hybrid metal/epoxy samples. We simulated the 3D distributions of the diffusing water and the reacted water.

  5. Hygrothermal rehabilitation of public buildings.A case study on “Luceafărul” theatre in Jassy

    Directory of Open Access Journals (Sweden)

    Adrian IACOB

    2014-07-01

    Full Text Available In the selection of thermo-energetic rehabilitation solutions, there are certain restrictions determined especially by the imperative of preserving the architectural characteristics, a large proportion of these buildings falling under the categories of historic or cultural monuments of high architectural value. Under the second category comes “Luceafărul” Theatre from Jassy, a representative edifice for the area in which it is located. The requirement of conserving the current appearance of the façade areas veneered with travertine has imposed the placing of thermal insulation on the interior surface. Taking into account that interior insulation implies a higher risk of interstitial condensation, a non-steady state coupled heat and mass transfer analysis was performed, by using the WUFI program. The results of this study are plotted as annual variations of relative humidity in the structure of envelope elements, pointing out the layers that are susceptible of excessive values. By numerical simulation of heat transfer with ANSYS program, the discussion is extended with the influence that the insulation of two adjacent envelope elements has on the surface condesation risk, for the case in which at the thermal bridge obtained there a discontinuity exists in the insulation layer.

  6. Hygrothermal Properties of Cross Laminated Timber and Moisture Response of Wood at High Relative Humidity

    Science.gov (United States)

    AlSayegh, George

    Cross Laminated Timber (CLT) is a new wood-based material composed of cross laminated wood boards that form a structural panel. This study focuses on identifying the appropriate methods to determine the hygrothermal properties of CLTs fabricated with Canadian and European Lumber. The laboratory tests carried out in this study will help establish heat, air and moisture response properties to be used for hygrothermal simulation to assess the durability of CLTs in building envelope construction. Measurement of water vapour permeability, liquid water absorption, sorption isotherms, thermal conductivity, and air permeability were performed on three Canadian CLT specimens composed of Hem-Fir, Eastern Spruce-Pine-Fir, and Western Spruce-Pine-Fir and one European specimen composed of Spruce. The hygrothermal properties of CLT, considered in this study, appear to be similar to commonly used wood specimens reported in the literature. However, liquid water absorption coefficients of CLT were found to be generally lower than common wood species, possibly due to the presence of glue between the wood layers which limits the moisture movement across the specimen. On the other hand, the air permeability across the CLT specimens varied due to the glue discontinuity within the specimen which led some CLTs to be permeable, however all the European specimens were found to be impermeable. This study also critically analyzed the significance of equilibrium moisture content (EMC) of wood at high relative humidity, measured by means of a pressure plate apparatus and humidity chambers, on the moisture management performance of a wood-frame stucco wall, using the hygrothermal simulation tool hygIRC-2D. The simulation results indicate that the prediction of the moisture response of a wood-frame stucco wall assembly depends significantly on the method adopted to derive the EMC of wood at high RH.

  7. Cold Climate Foundation Retrofit Energy Savings. The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Steigauf, Brianna [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2013-04-01

    A split simulation whole building energy / 3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  8. Cold Climate Foundation Retrofit Energy Savings: The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, L. F.; Steigauf, B.

    2013-04-01

    A split simulation whole building energy/3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  9. Characterization of fracture toughness of epoxy resin after hygrothermal aging

    KAUST Repository

    Quispe, Gustavo Q.

    2013-07-01

    Characterization of fracture toughness of epoxy resin after hygrothermal ageing Gustavo Quino Quispe The aim of this work is to characterize the e ects of hygrothermal aging in the plain strain fracture toughness of the epoxy system composed by cycloaliphatic epoxy resin and diglycidyl ether of bisphenol-A (DGEBA). For this, after having been under hygrothermal aging in a climatic chamber, epoxy samples were studied using ASTM D5045 fracture toughness test, and micrography and roughness measurements of the fracture surface. It is reported a rapid decrease of GIc and KIc during the rst 2 days. Moreover, a numerical model [13] was used to simulate and see with more detail the water absorption in the aged samples. From that, it was observed the heterogeneous distribution of water. Accordingly, it was proposed that the results should be correlated with the water content at the vicinity of the crack tip. Consequently, it was possible to obtain, by quasi-static simulations, the ideal load-displacement curves of crack propagation in the heterogeneous samples. Finally, another contribution of this work is the study of the fracture surface, that gives a clue of the relationship among the fracture energy, the appearance of microcracks in the fracture surface, and the roughness (Ra).

  10. Simulating Building Fires for Movies

    Science.gov (United States)

    Rodriguez, Ricardo C.; Johnson, Randall P.

    1987-01-01

    Fire scenes for cinematography staged at relatively low cost in method that combines several existing techniques. Nearly realistic scenes, suitable for firefighter training, produced with little specialized equipment. Sequences of scenes set up quickly and easily, without compromising safety because model not burned. Images of fire, steam, and smoke superimposed on image of building to simulate burning of building.

  11. Providing driving rain data for hygrothermal calculations

    DEFF Research Database (Denmark)

    Kragh, Mikkel Kristian

    1996-01-01

    Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations.......Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations....

  12. Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht, Cheryn [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-09-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  13. Laboratory testing of a building envelope segment based on cellular concrete

    Science.gov (United States)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2016-07-01

    Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.

  14. Hygrothermally stable laminated composites with optimal coupling

    Science.gov (United States)

    Haynes, Robert Andrew

    This work begins by establishing the necessary and sufficient conditions for hygrothermal stability of composite laminates. An investigation is performed into the range of coupling achievable from within all hygrothermally stable families. The minimum number of plies required to create an asymmetric hygrothermally stable stacking sequence is found to be five. Next, a rigorous and general approach for determining designs corresponding to optimal levels of coupling is established through the use of a constrained optimization procedure. Couplings investigated include extension-twist, bend-twist, extension-bend, shear-twist, and anticlastic. For extension-twist and bend-twist coupling, specimens from five- through ten-ply laminates are manufactured and tested to demonstrate hygrothermal stability and achievable levels of coupling. Nonlinear models and finite element analysis are developed, and predictions are verified through comparison with test results. Sensitivity analyses are performed to demonstrate the robustness of the hygrothermal stability and couplings to deviations in ply angle, typical of manufacturing tolerances. Comparisons are made with current state-of-the-art suboptimal layups, and significant increases in coupling over previously known levels are demonstrated.

  15. Hygrothermal Performance of West Coast Wood Deck Roofing System

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B [ORNL; Kehrer, Manfred [ORNL; Desjarlais, Andre Omer [ORNL

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  16. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick facades

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2016-01-01

    The use of internal insulation is investigated in a heritage building block with wooden beam construction and masonry brick walls as part of an energy renovation. Measurements were carried out and compared to results from a hygrothermal simulation model. The risk of mould growth in the wooden beams...

  17. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption

    DEFF Research Database (Denmark)

    Masaru, Abuku; Janssen, Hans; Roels, Staf

    2009-01-01

    This paper gives an onset to whole building hygrothermal modelling in which the interaction between interior and exterior climates via building enclosures is simulated under a moderately cold and humid climate. The focus is particularly on the impact of wind-driven rain (WDR) oil the hygrothermal...... response, mould growth at interior wall surfaces, indoor climate and energy consumption. First the WDR load oil the facades of a 4 m x 4 m x 10 m tower is determined. Then the hygrothermal behaviour of the brick walls is analysed oil a horizontal slice through the tower. The simulations demonstrate...... that WDR loads can have a significant impact on mould growth especially at the edges of the walls. Finally, for the case analysed, the WDR load Causes a significant increase of indoor relative humidity and energy consumption for heating. (C) 2008 Elsevier B.V. All rights reserved....

  18. Integrating CFD and building simulation

    DEFF Research Database (Denmark)

    Bartak, M.; Beausoleil-Morrison, I.; Clarke, J.A.;

    2002-01-01

    To provide practitioners with the means to tackle problems related to poor indoor environments, building simulation and computational 3uid dynamics can usefully be integrated within a single computational framework. This paper describes the outcomes from a research project sponsored by the European...... Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model, describes the method used to integrate the thermal and 3ow domains and reports the outcome from an empirical validation exercise. © 2002 Published by Elsevier Science Ltd....

  19. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  20. Long-term monitoring of the Sedlec Ossuary - Analysis of hygrothermal conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Balík, Lukáš; Maděra, Jiří; Černý, Robert

    2016-07-01

    The Sedlec Ossuary is one of the twelve UNESCO World Heritage Sites in the Czech Republic. Although the ossuary is listed among the most visited Czech tourist attractions, its technical state is almost critical and a radical renovation is necessary. On this account, hygrothermal performance of the ossuary is experimentally researched in the presented paper in order to get information on moisture sources and to get necessary data for optimized design of renovation treatments and reconstruction solutions that will allow preserve the historical significance of this attractive heritage site. Within the performed experimental analysis, the interior and exterior climatic conditions are monitored over an almost three year period together with relative humidity and temperature profiles measured in the most damage parts of the ossuary chapel. On the basis of measured data, the long-term hygrothermal state of the ossuary building is accessed and the periods of possible surface condensation are identified.

  1. Using Expert Systems To Build Cognitive Simulations.

    Science.gov (United States)

    Jonassen, David H.; Wang, Sherwood

    2003-01-01

    Cognitive simulations are runnable computer programs for modeling human cognitive activities. A case study is reported where expert systems were used as a formalism for modeling metacognitive processes in a seminar. Building cognitive simulations engages intensive introspection, ownership and meaning making in learners who build them. (Author/AEF)

  2. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  3. Dynamic simulation of a high efficiency building

    OpenAIRE

    Dot Bardolet, Núria

    2009-01-01

    The dynamic simulation of the heat transfer between buildings and their environment is situdied through the software TRNSYS. First, a very simple building is considered and the energy demand for heating evaluated through TRNSYS is compared with that obtained by apllying the Italian Standard UNI TS 11300-1:2008. This excersise has the purpose of verifying the correct use of the simulation program. Then, the annual energy demand for heating, cooling and humidity control, with reference to a wel...

  4. Empirical Validation of Building Simulation Software

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  5. Collapse simulation of building constructions

    Directory of Open Access Journals (Sweden)

    Nekrest'yanov Viktor Nikolaevich

    Full Text Available The physical reasons for building structures destruction are both the forces arising at stress-strain state of construction elements and external influences arising at emergency situations, as well as their moments, impulses and periodic impulses with the frequencies close to of fluctuations frequencies of construction elements. We shall call the mathematical calculation models for the parameters-reasons of destructions the basic models. The basic models of destruction of building structures elements allow not only providing necessary level of reliability and survivability of the elements and the construction as a whole already at the stage of their design, but also giving the chance, at their corresponding completion, to provide rational decisions on the general need of recovery works and their volume depending on destruction level. Especially important for rational design decisions development, which ensure the demanded constructional safety of building structures, is library creation of the basic mathematical models of standard processes of bearing elements destructions for standard construction designs for the purpose of the further forecast (assessment of the level and probabilities of standard destructions. Some basic mathematical models of destructions processes of the standard elements of building structures are presented in the present article. A model of accounting for construction defects and a model of obtaining requirements to probabilities of partial destructions of a construction are given. Both of these models are probabilistic.

  6. Comparative Validation of Building Simulation Software

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    _2 and DSF200_4, the third empirical test case is also specified as DSF400_3, but it's completion is under consideration. The comparative test cases can not be directly used for the validation of the software due to often disagreement of the results, however the result of the exercises...... is that the comparative validation can be regarded as the main argument to continue the validation of the building simulation software for the buildings with the double skin façade with the empirical validation test cases.......The scope of this subtask is to perform a comparative validation of the building simulation software for the buildings with the double skin façade. The outline of the results in the comparative validation identifies the areas where is no correspondence achieved, i.e. calculation of the air flow...

  7. Building America House Simulation Protocols (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Engebrecht, C.

    2010-10-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  8. Study on Compressive Properties of Z-pinned Laminates in RTD and Hygrothermal Environment

    Institute of Scientific and Technical Information of China (English)

    LI Chenghu; YAN Ying; WANG Ping; QI Desheng; WEN Yonghai

    2012-01-01

    Compressive tests of [0]12 and [90]12 unidirectional laminates and [45/0/-45/90] 2s quasi-isotropic laminates are accomplished in both room-temperature and dry (RTD) and hygrothermal environment.And simulation studies on the compressive strength of Z-pinned laminates of [0]12 and [45/0/-45/90] 2s are conducted by using finite element analysis (FEA).A microstructural unit cell for FEA is created to simulate a representative laminates unit with one pin.Within the unit cell,the first directions of the elements' material coordinate systems are changed to simulate the fibres' deflecting around the pin.The hygrothermal effect is simulated by the material properties' adjustments which are determined by the compressive tests of non-pined laminates.The.experimental results indicate that the percentage of reduction in the compressive modulus of Z-pinned laminates caused by Z-pin becomes smaller with the percentage of 0° fibres decreasing in the laminates; the compressive strength of quasi-isotropic laminates reduces and the percentage of the reduction in the compressive strength declines with Z-pin volume content increasing,and the moisture absorption ratio of the Z-pinned specimens is greater than that of the non-pinned specimens,because the cracks aronnd Z-pin increase the moisture absorption.In addition,the simulations show that the deflection of fibres around Z-pin is the main factor for the reduction in the compressive strength of Z-pinned unidirectional laminates,the dilution of fibre volume content caused by resin-rich pocket is the principal factor for the decline in the compressive strength of Z-pinned quasi-istropic laminates,and the compressive strength of Z-pinned specimens in hygrothermal environment reduces as the result of superimposition of some factors,including the changes in material properties caused by hygrothermal environment,the deflection of fibres and the resin-rich pocket caused by Z-pin.

  9. 2014 Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Engebrecht, C. Metzger [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2014-03-01

    As Building America has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  10. Detailed weather data generator for building simulations

    CERN Document Server

    Adelard, L; Garde, F; Gatina, J -C

    2012-01-01

    Thermal buildings simulation softwares need meteorological files in thermal comfort, energetic evaluation studies. Few tools can make significant meteorological data available such as generated typical year, representative days, or artificial meteorological database. This paper deals about the presentation of a new software, RUNEOLE, used to provide weather data in buildings applications with a method adapted to all kind of climates. RUNEOLE associates three modules of description, modelling and generation of weather data. The statistical description of an existing meteorological database makes typical representative days available and leads to the creation of model libraries. The generation module leads to the generation of non existing sequences. This software tends to be usable for the searchers and designers, by means of interactivity, facilitated use and easy communication. The conceptual basis of this tool will be exposed and we'll propose two examples of applications in building physics for tropical hu...

  11. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  12. Simulation Of Probabilistic Wind Loads On A Building

    Science.gov (United States)

    Chamis, Christos C.; Shah, Ashwin R.

    1994-01-01

    Method of simulating probabilistic windloads on building developed. Numerical results of simulation used to assess reliability of building and risk associated with tendencies of large gusts or high steady winds to cause building to sway, buckle, and/or overturn. Using method to analyze proposed design in iterative design cycle, building designed for specified reliability.

  13. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE)hourly from −5.6% to 7.5% and CV(RMSE)hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  14. Hygrothermal Performance Study of an Innovative Interior Thermal Insulation System

    OpenAIRE

    Pavlík, Zbyšek; Černý, Robert

    2010-01-01

    Hygrothermal Performance Study of an Innovative Interior Thermal Insulation System correspondance: Corresponding author. Tel.: +420 2 2435 4429; fax: +420 2 2435 4446. (Cerny, Robert) (Cerny, Robert) Czech Technical University in Prague--> , Faculty of Civil Engineering--> , Department of Materials Engineering and Chemistry--> , Thakurova 7--> , 166 29 Prague 6--> - CZECH REPUBLIC...

  15. Hygrothermal Properties and Performance of Sea Grass Insulation

    DEFF Research Database (Denmark)

    Eriksen, Marlene Stenberg Hagen; Laursen, Theresa Back; Rode, Carsten;

    2008-01-01

    In the attempt to obtain knowledge of the hygrothermal properties of sea grass as thermal insulation, experiments have been carried out in the laboratory to determine the thermal conductivity, sorption properties and the water vapour permeability of the material. In order to investigate...

  16. Building a parallel file system simulator

    International Nuclear Information System (INIS)

    Parallel file systems are gaining in popularity in high-end computing centers as well as commercial data centers. High-end computing systems are expected to scale exponentially and to pose new challenges to their storage scalability in terms of cost and power. To address these challenges scientists and file system designers will need a thorough understanding of the design space of parallel file systems. Yet there exist few systematic studies of parallel file system behavior at petabyte- and exabyte scale. An important reason is the significant cost of getting access to large-scale hardware to test parallel file systems. To contribute to this understanding we are building a parallel file system simulator that can simulate parallel file systems at very large scale. Our goal is to simulate petabyte-scale parallel file systems on a small cluster or even a single machine in reasonable time and fidelity. With this simulator, file system experts will be able to tune existing file systems for specific workloads, scientists and file system deployment engineers will be able to better communicate workload requirements, file system designers and researchers will be able to try out design alternatives and innovations at scale, and instructors will be able to study very large-scale parallel file system behavior in the class room. In this paper we describe our approach and provide preliminary results that are encouraging both in terms of fidelity and simulation scalability.

  17. 2014 Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E.; Engebrecht-Metzger, C.; Horowitz, S.; Hendron, R.

    2014-03-01

    As BA has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  18. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  19. BES with FEM: Building Energy Simulation using Finite Element Methods

    OpenAIRE

    Schijndel, van, AWM Jos

    2012-01-01

    An overall objective of energy efficiency in the built environment is to improve building and systems performances in terms of durability, comfort and economics. In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate f...

  20. BES with FEM: Building Energy Simulation using Finite Element Methods

    OpenAIRE

    van Schijndel, A. W. M.

    2016-01-01

    An overall objective of energy efficiency in the built environment is to improve building and systems performances in terms of durability, comfort and economics. In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate f...

  1. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  2. Building America Top Innovations 2012: House Simulation Protocols (the Building America Benchmark)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    This Building America Top Innovations profile describes the DOE-sponsored House Simulation Protocols, which have helped ensure consistent and accurate energy-efficiency assessments for tens of thousands of new and retrofit homes supported by the Building America program.

  3. Learning in a Landscape: Simulation-building as Reflexive Intervention

    CERN Document Server

    Beaulieu, Anne; Scharnhorst, Andrea

    2011-01-01

    This article makes a dual contribution to scholarship in science and technology studies (STS) on simulation-building. It both documents a specific simulation-building project, and demonstrates a concrete contribution to interdisciplinary work of STS insights. The article analyses the struggles that arise in the course of determining what counts as theory, as model and even as a simulation. Such debates are especially decisive when working across disciplinary boundaries, and their resolution is an important part of the work involved in building simulations. In particular, we show how ontological arguments about the value of simulations tend to determine the direction of simulation-building. This dynamic makes it difficult to maintain an interest in the heterogeneity of simulations and a view of simulations as unfolding scientific objects. As an outcome of our analysis of the process and reflections about interdisciplinary work around simulations, we propose a chart, as a tool to facilitate discussions about si...

  4. The energy release rate for hygrothermal coupling elastic materials

    Institute of Scientific and Technical Information of China (English)

    Fan Yang; Jun Wang; Dapeng Chen

    2006-01-01

    In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction,moisture diffusion and mechanical deformation,the conventional J-integral is no longer path independent.The value of J is unequal to the energy release rate in hygrothermal coupling cases.In the present paper,we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas.By introducing the constitutive relations and the essential equations of irreversible thermodynamics,a specific expression of the energy release rate was obtained,and the expression can be reformmulated as path independent integrals,which is equivalent to the energy release rate of the fracture body.The path independence of the integrals is then verified numerically.

  5. Investigation of the Hygrothermal Performance of Alternative Insulation Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Kristiansen, Finn Harken; Rasmussen, Niels T.

    1999-01-01

    . The materials investigated are: cellulose insulation, sheep's wool, flax, and perlite. These materials, except for the last one, are very hygroscopic. The following two separate investigations are described.1. Investigation of the thermal conductivity at different humidity conditions.The thermal conductivity......The paper gives an account of hygrothermal investigations carried out on some insulation products which are "alternative" to the ones that are traditionally used in Danish constructions. The alternative products are claimed to be friendly both to the environment and to the labour force...... is determined for the different materials with a guarded hot plate apparatus in which different vapour pressure conditions can be maintained over the specimens. The apparatus and some results are presented.2. Computational analysis of the hygrothermal performance of constructions with alternative insulation...

  6. Method for simulating predictive control of building systems operation in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2011-01-01

    A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...

  7. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... program and a building energy performance simulation program will improve both the energy consumption data and the prediction of thermal comfort and air quality in a selected area of the building....

  8. Co-simulation of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  9. Draught risk index tool for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Nielsen, Peter V.

    2014-01-01

    Flow elements combined with a building energy simulation tool can be used to indicate areas and periods when there is a risk of draught in a room. The study tests this concept by making a tool for post-processing of data from building energy simulations. The objective is to show indications...

  10. Learning in a landscape : Simulation-building as reflexive intervention

    NARCIS (Netherlands)

    Beaulieu, Anne; Ratto, Matt; Scharnhorst, Andrea

    2013-01-01

    This article makes a dual contribution to scholarship in science and technology studies (STS) on simulation-building. It both documents a specific simulation-building project, and demonstrates a concrete contribution to interdisciplinary work of STS insights. The article analyses the struggles that

  11. Automated Comparison of Building Energy Simulation Engines (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Horowitz, S.; Booten, B.; Kruis, N.; Christensen, C.

    2012-08-01

    This presentation describes the BEopt comparative test suite, which is a tool that facilitates the automated comparison of building energy simulation engines. It also demonstrates how the test suite is improving the accuracy of building energy simulation programs. Building energy simulation programs inform energy efficient design for new homes and energy efficient upgrades for existing homes. Stakeholders rely on accurate predictions from simulation programs. Previous research indicates that software tends to over-predict energy usage for poorly-insulated leaky homes. NREL is identifying, investigating, and resolving software inaccuracy issues. Comparative software testing is one method of many that NREL uses to identify potential software issues.

  12. Building and HVAC optimal control simulation. Application to an office building.

    OpenAIRE

    Kummert, Michaël; Andre, Philippe; Nicolas, Jacques

    1999-01-01

    This paper describes the methodology to apply discrete-time optimal control to a building and its HVAC installation. Simulation-based results concerning a passive solar commercial building are presented and discussed. The simulation environment includes the TRNSYS TYPE 56 as reference building model and HVAC detailed models to test the controller with realistic control signals. The optimal controller's sensitivity to meteorological forecasting quality and to other factors is analy...

  13. Introduction to Building Systems Performance: Houses that Work II. Revised February 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-01

    The Building Science Consortium (BSC) design recommendations are based on the hygrothermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  14. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    Nowadays, the minimization of energy consumption and the optimization of efficiency of the overall energy grid have been in the agenda of most national and international energy policies. At the same time, urbanization has put cities under the microscope towards achieving cost-effective energy...... savings due to their compact and highly dense form. Thus, accurate estimation of energy demand of cities is of high importance to policy-makers and energy planners. This calls for automated methods that can be easily expandable to higher levels of aggregation, ranging from clusters of buildings...... to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...

  15. Building Performance Simulation tools for planning of energy efficiency retrofits

    OpenAIRE

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retro...

  16. Measurement, Prediction And Simulation Methods of Moisture Content In Buildings

    OpenAIRE

    Esmaeilpour, Mehrnoush

    2011-01-01

    ABSTRACT: This thesis represented some information on prediction and controlling of moisture content in buildings. Extreme disclosure to moisture is not only a common cause of major damage to building materials, it also can lead to unhealthy indoor living environments. So predicate and control moisture content provides a durable and long-term performance building with energy efficiency. Different methods (mechanical, simulation and graphical) for predicating and controlling the moisture cont...

  17. Geometry model construction in infrared image theory simulation of buildings

    Institute of Scientific and Technical Information of China (English)

    谢鸣; 李玉秀; 徐辉; 谈和平

    2004-01-01

    Geometric model construction is the basis of infrared image theory simulation. Taking the construction of the geometric model of one building in Harbin as an example, this paper analyzes the theoretical groundings of simplification and principles of geometric model construction of buildings. It then discusses some particular treatment methods in calculating the radiation transfer coefficient in geometric model construction using the Monte Carlo Method.

  18. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  19. Communication Capacity Building through Pharmacy Practice Simulation

    OpenAIRE

    Fejzic, Jasmina; Barker, Michelle; Hills, Ruth; Priddle, Alannah

    2016-01-01

    Objective. To examine the effectiveness of simulated learning modules (SLMs) encompassing EXcellence in Cultural Experiential Learning and Leadership (EXCELL) core competencies in enhancing pharmacy students’ professional communication skills.

  20. Empirical Validation of Building Simulation Software : Modeling of Double Facades

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  1. Research on the simulation framework in Building Information Modeling

    OpenAIRE

    Liang, Nan; Xu, Hongqing; Yu, Qiong

    2012-01-01

    In recent ten years, Building Information Modeling (BIM) has been proposed and applied in the industry of architecture. For the high efficiency and visualization, BIM and correlative technologies are welcomed by architects, engineers, builders and owners, thus the technologies on modeling for design has been widely researched. However, little attention is given to simulation while simulation is an important part of design for building, maybe because it is seen as somewhat less related to the ...

  2. Parametric Instability of Square Laminated Plates in Hygrothermal Environment

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Rath

    2013-01-01

    Full Text Available The present paper investigates the parametric instability of square laminated plates subjected to periodic dynamic loadings in hygrothermal environment. The effects of various parameters like the increase in static load factor and the degree of orthotropy of simply supported composite plates at elevated temperatures and moisture concentrations on the principal instability regions are investigated using finite element method. The effects of transverse shear deformation and rotary inertia are used to study the antisymmetric angle-ply square plates. A simple laminated plate model is developed for the parametric instability of square laminated plates subjected to hygrothermal loading. A computer program based on FEM in MATLAB environment is developed to perform all necessary computations. The results show that instability of square laminated plates occurs for different parameters with an increase in temperature and moisture environment. The onset of instability occurs earlier, and the width of dynamic instability regions increases with a rise in temperature and moisture for different parameters. The effect of damping shows that there is a finite critical value of dynamic load factor for each instability region below which the square laminated plates cannot become unstable.

  3. First Swiss building and urban simulation conference. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zweifel, G.; Citherlet, S.; Afjei, T.; Pahud, D.; Robinson, D.; Schaelin, A.

    2010-07-01

    These contributions presented at a conference, held in 2009 in Horw, near Lucerne, Switzerland, deal with the simulation of building technical services. Three contribution blocks dealt with thermal and heating, ventilation and air-conditioning (HVAC) simulation, airflow and stochastic modelling and urban simulation. In the thermal and HVAC simulation session, the potential and limitations of building energy performance simulation is examined from an engineering perspective, a parametric study of an air heat exchanger for the cooling of buildings is presented and a comparison of measured and estimated electric energy use and the impact of assumed occupancy patterns is made. Contributions on standard solutions for energy efficient heating and cooling with heat pumps, the validation and certification of dynamic building simulation tools, standards and tools for the energy performance of buildings with a simple chiller model and the system-simulation of a central solar heating plant with seasonal duct storage in Geneva, Switzerland, are presented. In the airflow and stochastic modelling session, the optimisation of air flow in operating theatres is examined, and air-flow phenomena in flats are explained with illustrations of computational fluid dynamics (CFD). Also, the comparison of test reference years to stochastically generated time series and a comprehensive stochastic model of window usage are discussed. Contributions on the simulation of air-flow patterns and wind loads on facades and the choice of appropriate simulation techniques for the thermal analysis of double skin facades complete the session. In the final Urban Simulation session, a new CFD approach for urban flow and pollution dispersion simulation is presented, a comprehensive micro-simulation of resource flows for sustainable urban planning, multi-scale modelling of the urban climate and the optimisation of urban energy demands using an evolutionary algorithm are discussed.

  4. Simulation of Room Climate of Public Buildings

    Directory of Open Access Journals (Sweden)

    Prorokova Maria

    2016-01-01

    Full Text Available The article presents the details of modeling of heat exchange and mass transfer in a room in the formation of a microclimate. The mathematical model is implemented in the program ANSYS Fluent and is used to predict the climate parameters after the implementation of energy saving measures in the building. Verification of the mathematical model by comparing the experimental data with the results of the measurement of microclimate parameters of the experiment.

  5. Simulation of probabilistic wind loads and building analysis

    Science.gov (United States)

    Shah, Ashwin R.; Chamis, Christos C.

    1991-01-01

    Probabilistic wind loads likely to occur on a structure during its design life are predicted. Described here is a suitable multifactor interactive equation (MFIE) model and its use in the Composite Load Spectra (CLS) computer program to simulate the wind pressure cumulative distribution functions on four sides of a building. The simulated probabilistic wind pressure load was applied to a building frame, and cumulative distribution functions of sway displacements and reliability against overturning were obtained using NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), a stochastic finite element computer code. The geometry of the building and the properties of building members were also considered as random in the NESSUS analysis. The uncertainties of wind pressure, building geometry, and member section property were qualified in terms of their respective sensitivities on the structural response.

  6. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  7. Validation of daylighting model in CODYRUN building simulation code

    OpenAIRE

    Boyer, Harry; Boyer, H.; Guichard, Stéphane; Guichard, S; Jean, Aurélien; Jean, A.; Libelle, Teddy; Libelle, T; Bigot, Dimitri; Miranville, F; Miranville, Frédéric; Bojić, M.

    2015-01-01

    International audience CODYRUN is a multi-zone software integrating thermal building simulation, airflow, and pollutant transfer. A first question thus arose as to the integration of indoor lighting conditions into the simulation, leading to a new model calculating natural and artificial lighting. The results of this new daylighting module were then compared with results of other simulation codes and experimental cases both in artificial and natural environments. Excellent agreements were ...

  8. Towards automatic building of continuous and discrete process simulator

    International Nuclear Information System (INIS)

    The problem to be solved is the simulation of essentially continuous processes but involving a limited number of events leading to discontinuities. The NEPTUNIX simulation package solves this problem in the folloving way: a description of the process model is made, using a non-procedural language, the model is then analysed and, if it is found correct, NEPTUNIX generates automatically the corresponding simulator. This simulator is efficient and transportable. Model description and other compiler outputs build up a complete documentation of the model, which documentation is also fundamental for easy and efficient operation of the simulator

  9. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2010-08-22

    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  10. Working mechanism and numerical simulation of assembly coastal building techniques

    Institute of Scientific and Technical Information of China (English)

    陈育民; 刘汉龙; 陈泽

    2008-01-01

    A new coastal technique, named as assembly coastal building, was introduced. The main concept of the technique was the assembling components which could be combined and locked together to form a large caisson. The assembly coastal building technique was used in a sea access road in Zhuanghai 4X1 well, Dagang Oilfield. The design plans and in-situ tests in the sea access road project were introduced in detail. According to the Zhuanghai project, the numerical simulation method of assembly coastal building technique was proposed. 2D numerical simulations were performed in FLAC to analyze the displacement and stability of the technique in the construction process and post-construction period. The settlement calculated is close to the in-situ results, which proves that the proposed numerical method is reasonable. Results show that the assembly coastal building technique has large safety factor under the gravity loading and wave loadings.

  11. Sustainable construction building performance simulation and asset and maintenance management

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research works that highlight best practice solutions, case studies and practical advice on the implementation of sustainable construction techniques. It includes a set of new developments in the field of building performance simulation, building sustainability assessment, sustainable management, asset and maintenance management and service-life prediction. Accordingly, the book will appeal to a broad readership of professionals, scientists, students, practitioners, lecturers and other interested parties.

  12. Experimental investigation of cyclic hygrothermal aging of hybrid composite

    KAUST Repository

    El Yagoubi, Jalal

    2013-04-05

    This work provides an experimental investigation of the cyclic hygrothermal aging of a hybrid composites. We aimed to propose a general framework in the view to further optimize polymer-based composites. It reports experimental data and relevant observations collected during an aging campaign (up to 2000 cycles) where anhydride-cured epoxy samples as well as composites samples are exposed to environmental conditions. The data gathered during the whole campaign reveals that (1) the polymer displays a non-classical sorption behavior (2) the volume change is correlated to the mass uptake (3) the elastic modulus is correlated to the glass transition temperature. Matrix and interface degradation of the hybrid composite is monitored by means of microstructural observations. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

  13. Communication Capacity Building through Pharmacy Practice Simulation.

    Science.gov (United States)

    Fejzic, Jasmina; Barker, Michelle; Hills, Ruth; Priddle, Alannah

    2016-03-25

    Objective. To examine the effectiveness of simulated learning modules (SLMs) encompassing EXcellence in Cultural Experiential Learning and Leadership (EXCELL) core competencies in enhancing pharmacy students' professional communication skills. Methods. Students completed three hours of preparatory lectures and eight hours of workshops comprising six SLMs themed around pharmacy practice and pharmacy placements. Each SLM comprised role-plays with actors, facilitation using EXCELL Social Interaction Maps (SIMs), and debriefing. Evaluations of SLMs included quantitative and qualitative survey responses collected before, during and after workshops, and after placements. Facilitators reflected on SLMs as a pedagogic modality. Results. Student feedback was positive about SLMs as an effective learning tool. The majority indicated areas of new learning and found SLMs enhanced their professional skills and confidence. Facilitator feedback was positive, and suggested SLM optimization strategies. Conclusion. Student and teaching team recommendations will inform future curriculum development including the optimization of SLMs in pharmacy education. PMID:27073281

  14. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    demand density for which the connection to low-energy district heating networks is cost-effective and energy efficient. By using a dynamic energy simulation program for buildings it is possible to analyze the influence of the human behaviour for the building and link the results to the simulation program...... for district heating networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand pattern in energy-efficient buildings. The consequence is that in order to get the full...... that there is a large potential for distributing energy in areas with energy efficient buildings. As a measure for the feasibility of district heating, the linear heat density can be used as a representative value, and the results show that it is possible to supply heat with low-energy district heating networks...

  15. Methods for implementing Building Information Modeling and Building Performance Simulation approaches

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø

    In the present thesis, a number of studies into the adoption of Building Information Modeling (BIM) and Building Performance Simulation (BPS) are presented. The thesis has two main goals. The first is to explore the benefits and challenges of adopting (a) BIM as a platform for Architecture......, Engineering, Construction, and Facility Management (AEC/ FM) communication, and (b) BPS as a platform for early-stage building performance prediction. The second is to develop (a) relevant AEC/FM communication support instruments, and (b) standardized BIM and BPS execution guidelines and information exchange...... to improve early-stage building performance prediction. However, because of complex BPS information exchange structures, the BPS process is not always practical, highlighting the need for these structures to be simplified and more, clearly articulated. In this thesis, buildingSMART standard approaches...

  16. Calibration process and energy simulation of a building

    OpenAIRE

    Gerphagnon, Solène

    2016-01-01

    In the current context of ongoing search for improvement of energy performance, the management of buildings’ energy performance has become a very important stake. Openergy aims to revolutionize the energy monitoring of buildings thanks to dynamic thermal simulation. The calibration of the simulation consists in adjusting different input parameters in order to have results close to reality. This convergence is generally guided by an expert of the field, but it aims to become automatic, in orde...

  17. A Software Architecture for Simulation Support in Building Automation

    Directory of Open Access Journals (Sweden)

    Sergio Leal

    2014-07-01

    Full Text Available Building automation integrates the active components in a building and, thus, has to connect components of different industries. The goal is to provide reliable and efficient operation. This paper describes how simulation can support building automation and how the deployment process of simulation assisted building control systems can be structured. We look at the process as a whole and map it to a set of formally described workflows that can partly be automated. A workbench environment supports the process execution by means of improved planning, collaboration and deployment. This framework allows integration of existing tools, as well as manual tasks, and is, therefore, many more intricate than regular software deployment tools. The complex environment of building commissioning requires expertise in different domains, especially lighting, heating, ventilation, air conditioning, measurement and control technology, as well as energy efficiency; therefore, we present a framework for building commissioning and describe a deployment process that is capable of supporting the various phases of this approach.

  18. Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations

    Science.gov (United States)

    Sung, Christopher Teh Boon

    2011-01-01

    Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…

  19. MALAYSIAN WEATHER DATA (TRY) FOR ENERGY SIMULATIONS IN BUILDINGS

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2001-01-01

    Detailed energy simulations for buildings in Malaysia have become possible after the recent construction of a Malaysian TRY (Test Reference Year) based on 21 years of hourly weather data from Subang Meteorological Station. The climatic parameters contained in the TRY are dry bulb temperature, wet...

  20. Structural Simulations and Conservation Analysis -Historic Building Information Model (HBIM

    Directory of Open Access Journals (Sweden)

    C. Dore

    2015-02-01

    Full Text Available In this paper the current findings to date of the Historic Building Information Model (HBIM of the Four Courts in Dublin are presented. The Historic Building Information Model (HBIM forms the basis for both structural and conservation analysis to measure the impact of war damage which still impacts on the building. The laser scan survey was carried out in the summer of 2014 of the internal and external structure. After registration and processing of the laser scan survey, the HBIM was created of the damaged section of the building and is presented as two separate workflows in this paper. The first is the model created from historic data, the second a procedural and segmented model developed from laser scan survey of the war damaged drum and dome. From both models structural damage and decay simulations will be developed for documentation and conservation analysis.

  1. Building Interactive Simulations in Web Pages without Programming.

    Science.gov (United States)

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network. PMID:17282319

  2. Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations

    Science.gov (United States)

    Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.

    2016-07-01

    This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.

  3. HAM-Tools – a whole building simulation tool in Annex 41

    DEFF Research Database (Denmark)

    Kalagasidis, Angela Sasic; Rode, Carsten; Woloszyn, Monika

    2008-01-01

    HAM-Tools is a building simulation software. The main task of this tool is to simulate transfer processes related to building physics, i.e. heat, air and moisture transport in buildings and building components in operating conditions. The scope of the ECBCS Annex 41 “Whole Building Heat, Air and ...

  4. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  5. Exploring design support possibilities of building performance simulation tools in building design process

    NARCIS (Netherlands)

    Harputlugil, G.U.; Bedir, M.

    2008-01-01

    Simulation is claimed to be an effective tool in building design to degrade the systems integration matter into comprehension of designers with either a tool or a process related approach. In this study, pre-design phase is considered with energy performance point of view. Aim of the study is explor

  6. Simulation and Big Data Challenges in Tuning Building Energy Models

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

    2013-01-01

    EnergyPlus is the flagship building energy simulation software used to model whole building energy consumption for residential and commercial establishments. A typical input to the program often has hundreds, sometimes thousands of parameters which are typically tweaked by a buildings expert to get it right . This process can sometimes take months. Autotune is an ongoing research effort employing machine learning techniques to automate the tuning of the input parameters for an EnergyPlus input description of a building. Even with automation, the computational challenge faced to run the tuning simulation ensemble is daunting and requires the use of supercomputers to make it tractable in time. In this proposal, we describe the scope of the problem, the technical challenges faced and overcome, the machine learning techniques developed and employed, and the software infrastructure developed/in development when taking the EnergyPlus engine, which was primarily designed to run on desktops, and scaling it to run on shared memory supercomputers (Nautilus) and distributed memory supercomputers (Frost and Titan). The parametric simulations produce data in the order of tens to a couple of hundred terabytes.We describe the approaches employed to streamline and reduce bottlenecks in the workflow for this data, which is subsequently being made available for the tuning effort as well as made available publicly for open-science.

  7. Using DOE Commercial Reference Buildings for Simulation Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.; Deru, M.; Studer, D.

    2010-08-01

    The U.S. Department of Energy developed 256 EnergyPlus models for use in studies that aim to characterize about 70% of the U.S. commercial building stock. Sixteen building types - including restaurants, health care, schools, offices, supermarkets, retail, lodging, and warehouses - are modeled across 16 cities to represent the diversity of U.S. climate zones. Weighting factors have been developed to combine the models in proportions similar to those of the McGraw-Hill Construction Projects Starts Database for 2003-2007. This paper reviews the development and contents of these models and their applications in simulation studies.

  8. Solar passive building in Delhi: numerical simulation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Sodha, M.S.; Garg, S.N.; Sawhney, R.L.; Chandra, R.; Bansal, N.K.; Sharma, A.K.; Gupta, V.K.

    A two floor hostel for married research scholars consisting of 12 apartments was designed and constructed for the composite climate of Delhi; the design incorporates many passive features. Using a modified admittance procedure and Fourier analysis of the periodic parameters, the building was numerically simulated to obtain its thermal performance on an hourly basis. Two apartments of the building (one on the ground floor and one of the first floor) have been experimentally monitored by a microprocessor aided data acquisition system. The observations validate the numerical model. (author).

  9. Addendum to the Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

    2012-12-01

    As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  10. Addendum to the Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Engebrecht, C. Metzger [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-12-01

    As DOE's Building America program has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program’s goals. The House Simulation Protocols (HSP) provide guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  11. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  12. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...... energy simulations. The method calculates view factors by numerical integration of projected area factor. Over time the projected area factor of a person has been simplified by geometrical shapes. These shapes were compared with more complex equations on precision and calculation time. The same was done...... for the resulting view factors, where the results were compared with view factors found by ray tracing. While geometrical simplifications of the human body gave the fastest calculations, the complex equations gave the most accurate results. Non-rectangular surfaces and obstacles were treated by comparing...

  13. Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir

    2007-08-01

    The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

  14. GENERIC BUILDING BLOCKS FOR SIMULATION MODELLING OF STOCHASTIC CONTINUOUS SYSTEMS♣

    Directory of Open Access Journals (Sweden)

    M. Albertyn

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The key objective is to present the generic building blocks of a methodology that can be used to model stochastic continuous systems efficiently. The original simulation model of a real-world system is used as the basis for the development of a generic modelling methodology. The generic building blocks of the methodology are used to construct two new simulation models using two different simulation software packages (Arena and Simul8. The evaluation method, the determination of adequate sample sizes and the verification and validation of the models are discussed. The models and software packages are compared and conclusions are presented.

    AFRIKAANSE OPSOMMING: Die hoofdoelwit is om die generiese boublokke van ‘n metodiek voor te hou wat gebruik kan word om stogastiese kontinue stelsels doeltreffend te modelleer. Die oorspronklike simulasiemodel van ‘n werklike-wêreld-stelsel word gebruik as die basis vir die ontwikkeling van ‘n generiese modelleringsmetodiek. Die generiese boublokke van die metodiek word gebruik om twee nuwe simulasiemodelle te konstrueer met twee verskillende simulasiesagtewarepakkette (Arena en Simul8. Die evaluasiemetode, die vasstelling van voldoende monstergroottes en die verifikasie en validering van die modelle word bespreek. Die modelle en sagtewarepakkette word vergelyk en gevolgtrekkings word voorgehou.

  15. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Leen; D' haeseleer, William [Division of Applied Mechanics and Energy Conversion, University of Leuven (K.U.Leuven), Celestijnenlaan 300 A, B-3001 Leuven (Belgium); Dear, Richard de [Division of Environmental and Life Sciences, Macquarie University, Sydney (Australia); Hensen, Jan [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-05-15

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady state laboratory experiments. This, however, is not representing the real situation in buildings, especially not when focusing on residential buildings. Therefore, in present analysis, recent reviews and adaptations are considered to extract acceptable temperature ranges and comfort scales. They will be defined in an algorithm, easily implementable in any BES code. The focus is on comfortable temperature levels in the room, more than on the detailed temperature distribution within that room. (author)

  16. Hygrothermal response of a dwelling house. Thermal comfort criteria

    Directory of Open Access Journals (Sweden)

    Adrian IACOB

    2015-12-01

    Full Text Available The use of local natural materials in order to reduce the environmental negative impact of buildings has become common practice in recent years; such buildings are to be found in all regions of the planet. The high level of thermal protection provided by the envelope elements made from natural materials such as straw bale insulation, hemp insulation or sheep wool, and their lack of thermal massiveness require a more complex analysis on their ability to keep interior comfort without accentuated variations. This paper proposes a comparative analysis between different solutions for a residential building located near a Romanian city, Cluj-Napoca. The elements of the building envelope are designed in three alternative solutions, using as substitute to classical solutions (concrete and polystyrene, masonry and polystyrene, straw bales and rammed earth for enclosing elements. For this purpose there are conducted numerical simulations of heat and mass transfer, using a mathematical model that allows the analysis of indoor comfort, by comparing both objective factors (air temperature, operative temperature and relative humidity and subjective factors, which are needed to define interior thermal comfort indices PPD and PMV. Finally, a set of conclusions are presented and future research directions are drawn.

  17. Building Software for Simulation Theory and Algorithms, with Applications in C++

    CERN Document Server

    Nutaro, James

    2010-01-01

    This book offers a concise introduction to the art of building simulation software. It clearly demonstrates the five skills necessary for building simulations of complicated systems: abstractions for simulation dynamic systems; basic simulation algorithms for continuous and discrete event simulations; combining continuous and discrete event simulations into a coherent whole; strategies for testing a simulation; and theoretical foundations of the modeling constructs and simulation algorithms. This is indispensable reading for software programmers, developers, and engineers, and students in rela

  18. Guidelines for Energy Simulation of Commercial Buildings: Final.

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Michael; Caner, Phoebe

    1992-03-01

    This report distills the experience gained from intensive computer building simulation work for the Energy Edge project. The purpose of this report is twofold: to use that experience to guide conservation program managers in their use of modeling, and to improve the accuracy of design-phase computer models. Though the main emphasis of the report is on new commercial construction, it also addresses modeling as it pertains to retrofit construction. To achieve these purposes, this report will: (1) discuss the value of modeling for energy conservation programs; (2) discuss strengths and weaknesses of computer models; (3) provide specific guidelines for model input; (4) discuss input topics that are unusually large drivers of energy use and model inaccuracy; (5) provide guidelines for developing baseline models; (6) discuss types of energy conservation measures (ECMs) and building operation that are not suitable to modeling and present possible alternatives to modeling for analysis; and (7) provide basic requirements for model documentation. This project was initiated to determine whether commercial buildings can be designed and constructed to use at least 30% less energy than if they were designed and built to meet the current regional model energy code, the Model Conservation Standards (MCS) developed by the Pacific Northwest Electric Power and Conservation Planning Council. Secondary objectives of the project are to determine the incremental energy savings of a wide variety of ECMs and to compare the predictive accuracy of design-phase models with models that are carefully tuned to monitored building data.

  19. Building Simulation Modelers are we big-data ready?

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

    2014-01-01

    Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical

  20. Hygrothermal Analysis and Failure Analysis of Composite Beams under Moving Loads

    Science.gov (United States)

    Hanif, Moiz

    Excellent combination of high structural stiffness and low weight are the qualities of composite material leading to the extensive work on such materials. In order to achieve the desired performance requirements, the designer has to take into consideration the structural requirements and the functional characteristics. Thus, in this study, the effect of hygrothermal conditions on fiber reinforced composite laminates with moving loads have been extensively studied and has been carried out that accompanies Classical Laminate Plate Theory (CLPT) as well as First Order Shear Deformation Theory (FSDT) on MATLAB. A glass/epoxy composite system has been chosen for study with which similar results may be expected for other laminated composites. The hygrothermal effect is incorporated by adjusting the stiffness coefficients of the laminate to its level of moisture concentration using empirical relations. The failure analysis is done using the maximum normal stress criterion and the factor of safety for the lamina calculated and compared with respect to the corresponding maximum stresses and strengths. Different fiber volume fraction with varying fiber orientation of the plies in the laminate were modeled and studied. The results presented show the effect of stresses and strains in dry conditions, whereas for hygrothermal analysis, they also indicate that not all the laminates behave in a similar fashion and so it is possible by selecting the proper laminate configuration, the effect of moisture can be reduced. Also deducing, that due to hygrothermal effects, changes in the stiffness coefficients of a laminate do not appear to affect the deflection results significantly.

  1. Detailed user behavior in building simulation; Gedetailleerd gebruikersgedrag in gebouwsimulatie

    Energy Technology Data Exchange (ETDEWEB)

    Parys, W.; Saelens, D.; Hens, H. [Afdeling Bouwfysica, K.U. Leuven, Leuven (Belgium)

    2011-02-15

    A global methodology to integrate realistic use of an office building in uncertainty analysis of the energy consumption through a modular and stochastic behavioral model is proposed. The latter incorporates both the stochastic nature of occupant behavior and the inherent variability amongst individuals by defining representative active and passive users. The behavioral model consists of submodels for occupancy, use of shading devices, window operation, control of artificial lighting and heat gains by appliances. The submodels are selected based on a literature review. This methodology is applied in a Monte Carlo analysis of the uncertainty because of the building use on the simulated energy demands of an office building. [Dutch] Er is een globale methode ontwikkeld om realistisch gebouwgebruik in een kantoorgebouw te integreren in een onzekerheidsanalyse voor het energiegebruik. Dit gebeurt via een modulair en stochastisch gedragsmodel. Het gedragsmodel bestaat uit submodellen voor bezetting, gebruik van zonwering, openen van het raam, sturing van het kunstlicht en warmteproductie door kantoorapparatuur. Alle submodellen zijn geselecteerd op basis van een literatuurstudie. Deze methode wordt toegepast in een Monte Carlo-analyse van de onzekerheid door gebouwgebruik op gesimuleerde energiebehoeften van een kantoorgebouw.

  2. Recent developments in building diagnosis techniques

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research on building diagnosis techniques related to construction pathology, hygrothermal behavior and durability, and diagnostic techniques. It highlights recent advances and new developments in the field of building physics, building anomalies in materials and components, new techniques for improved energy efficiency analysis, and diagnosis techniques such as infrared thermography. This book will be of interest to a wide readership of professionals, scientists, students, practitioners, and lecturers.

  3. Building intelligence in third-generation training and battle simulations

    Science.gov (United States)

    Jacobi, Dennis; Anderson, Don; von Borries, Vance; Elmaghraby, Adel; Kantardzic, Mehmed; Ragade, Rammohan

    2003-09-01

    Current war games and simulations are primarily attrition based, and are centered on the concept of force on force. They constitute what can be defined as "second generation" war games. So-called "first generation" war games were focused on strategy with the primary concept of mind on mind. We envision "third generation" war games and battle simulations as concentrating on effects with the primary concept being system on system. Thus the third generation systems will incorporate each successive generation and take into account strategy, attrition and effects. This paper will describe the principal advantages and features that need to be implemented to create a true "third generation" battle simulation and the architectural issues faced when designing and building such a system. Areas of primary concern are doctrine, command and control, allied and coalition warfare, and cascading effects. Effectively addressing the interactive effects of these issues is of critical importance. In order to provide an adaptable and modular system that will accept future modifications and additions with relative ease, we are researching the use of a distributed Multi-Agent System (MAS) that incorporates various artificial intelligence methods. The agent architecture can mirror the military command structure from both vertical and horizontal perspectives while providing the ability to make modifications to doctrine, command structures, inter-command communications, as well as model the results of various effects upon one another, and upon the components of the simulation. This is commonly referred to as "cascading effects," in which A affects B, B affects C and so on. Agents can be used to simulate units or parts of units that interact to form the whole. Even individuals can eventually be simulated to take into account the affect to key individuals such as commanders, heroes, and aces. Each agent will have a learning component built in to provide "individual intelligence" based on

  4. Indoor Environment and Energy Use in Historic Buildings - Comparing Survey Results with Measurements and Simulations

    DEFF Research Database (Denmark)

    Rohdin, P.; Dalewski, M.; Moshfegh, B.

    2012-01-01

    Increasing demand for energy efficiency places new requirements on energy use in historic buildings. Efficient energy use is essential if a historic building is to be used and preserved, especially buildings with conventional uses such as residential buildings and offices. This paper presents...... results which combine energy auditing with building energy simulation and an indoor environment survey among the occupants of the building. Both when comparing simulations with measurements as well as with survey results good agreement was found. The two efficiency measures that are predicted to increase...... energy and thermal performance the most for this group of buildings were reduced infiltration and increasing heat-exchanger efficiency....

  5. Introducing molecular life science students to model building using computer simulations

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.; Janssen, F.J.J.M.; Kettenis, D.; Sessink, O.; Hartog, R.; Bisseling, T.

    2006-01-01

    Computer simulations can facilitate the building of models of natural phenomena in research, for example in the molecular life sciences. In order to introduce molecular life science students to using computer simulations for model building, a digital case was developed in which students build a mode

  6. Energy simulation and optimization for a small commercial building through Modelica

    Science.gov (United States)

    Rivas, Bryan

    Small commercial buildings make up the majority of buildings in the United States. Energy consumed by these buildings is expected to drastically increase in the next few decades, with a large percentage of the energy consumed attributed to cooling systems. This work presents the simulation and optimization of a thermostat schedule to minimize energy consumption in a small commercial building test bed during the cooling season. The simulation occurs through the use of the multi-engineering domain Dymola environment based on the Modelica open source programming language and is optimized with the Java based optimization program GenOpt. The simulation uses both physically based modeling utilizing heat transfer principles for the building and regression analysis for energy consumption. GenOpt is dynamically coupled to Dymola through various interface files. There are very few studies that have coupled GenOpt to a building simulation program and even fewer studies have used Dymola for building simulation as extensively as the work presented here. The work presented proves Dymola as a viable alternative to other building simulation programs such as EnergyPlus and MatLab. The model developed is used to simulate the energy consumption of a test bed, a commissioned real world small commercial building, while maintaining indoor thermal comfort. Potential applications include smart or intelligent building systems, predictive simulation of small commercial buildings, and building diagnostics.

  7. Moisture condensation on building envelopes in differential ventilated spaces in the tropics: quantitative assessment of influencing factors

    Directory of Open Access Journals (Sweden)

    Ali Maisarah

    2016-01-01

    Full Text Available Ventilation systems play a significant role in maintaining the indoor thermal and hygric balance. Nevertheless, the systems had been implicated to result in many problems. In the tropical climate, especially for energy efficiency purposes, building spaces are operated with differential ventilation. Such spaces operate on 24-hrs basis, some on 8-hrs while others are either naturally ventilated or served with mechanical supply-exhaust fan systems with non-conditioned outdoor air. This practice had been found to result in condensation problems. This study involves a quantitative appraisal of the effect of operative conditions and hygrothermal quality of building envelopes on condensation risk. The in-situ experiment is combined with an analytical approach to assessing the hygrothermal quality of building envelopes in a tropical climate building under differential ventilation between adjacent spaces. The case-studied building is with a known history of condensation and associated damages including mould growth. The microclimate measurement and hygrothermal performance of the wall and floor against condensation and mould growth risks had been previously reported elsewhere. As a step further, the present study evaluates the effects of various envelope insulation types and configurations together with the HVAC cooling set-points on envelope hygrothermal performance. The results revealed that overcooling the air-conditioned side increases condensation risk on the non-air-conditioned side of the envelopes. The envelopes failed criteria for surface condensation at existing operative conditions irrespective of envelope hygrothermal quality improvements. However, the envelope performed well at improved cooling operative conditions even at existing envelope hygrothermal quality. It is, therefore, important to ascertain the envelope hygrothermal quality as well the cooling operative conditions while embarking on energy efficiency operations in mechanical

  8. Building Merger Trees from Cosmological N-body Simulations

    CERN Document Server

    Tweed, D; Blaizot, J; Colombi, S; Slyz, A

    2009-01-01

    Although a fair amount of work has been devoted to growing Monte-Carlo merger trees which resemble those built from an N-body simulation, comparatively little effort has been invested in quantifying the caveats one necessarily encounters when one extracts trees directly from such a simulation. To somewhat revert the tide, this paper seeks to provide its reader with a comprehensive study of the problems one faces when following this route. The first step to building merger histories of dark matter haloes and their subhaloes is to identify these structures in each of the time outputs (snapshots) produced by the simulation. Even though we discuss a particular implementation of such an algorithm (called AdaptaHOP) in this paper, we believe that our results do not depend on the exact details of the implementation but extend to most if not all (sub)structure finders. To illustrate this point, we compare AdaptaHOP s results to the standard Friend- Of-Friend algorithm (FOF), widely utilized in the astrophysical commu...

  9. An algorithm to build mock galaxy catalogues using MICE simulations

    CERN Document Server

    Carretero, J; Gaztanaga, E; Crocce, M; Fosalba, P

    2014-01-01

    We present a method to build mock galaxy catalogues starting from a halo catalogue that uses halo occupation distribution (HOD) recipes as well as the subhalo abundance matching (SHAM) technique. Combining both prescriptions we are able to push the absolute magnitude of the resulting catalogue to fainter luminosities than using just the SHAM technique and can interpret our results in terms of the HOD modelling. We optimize the method by populating with galaxies friends-of-friends dark matter haloes extracted from the Marenostrum Institut de Ci\\`{e}ncies de l'Espai (MICE) dark matter simulations and comparing them to observational constraints. Our resulting mock galaxy catalogues manage to reproduce the observed local galaxy luminosity function and the colour-magnitude distribution as observed by the Sloan Digital Sky Survey. They also reproduce the observed galaxy clustering properties as a function of luminosity and colour. In order to achieve that, the algorithm also includes scatter in the halo mass - gala...

  10. Simulation Technology Laboratory Building 970 hazards assessment document

    International Nuclear Information System (INIS)

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters

  11. Simulation Technology Laboratory Building 970 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  12. Simulating past droughts and associated building damages in France

    Directory of Open Access Journals (Sweden)

    T. Corti

    2009-09-01

    Full Text Available Droughts can induce important building damages due to shrinking and swelling of soils, leading to costs as large as for floods in some regions. Previous studies have focused on damage data analysis, geological or constructional aspects. Here, a study investigating the climatic aspects of soil subsidence damage is presented for the first time. We develop a simple model to examine if the meteorology has a considerable impact on the interannual variability of damages from soil subsidence in France. We find that the model is capable of reproducing yearly drought-induced building damages for the time period 1989–2002, thus suggesting a strong meteorological influence. Furthermore, our results reveal a doubling of damages in these years compared to 1961–1990, mainly as a consequence of increasing temperatures. This indicates a link to climate change. We also apply the model to the extreme summer of 2003, which caused a further increase in damage by a factor four, according to a preliminary damage estimate. The simulation result for that year shows strong damage underestimation, pointing to additional sources of vulnerability. Damage data suggest a higher sensitivity to soil subsidence of regions first affected by drought in the 2003 summer, possibly due to a lack of preparedness and adaptation. This is of strong concern in the context of climate change, as densely populated regions in Central Europe and North America are expected to become newly affected by drought in the future.

  13. Building interactive simulations in a Web page design program.

    Science.gov (United States)

    Kootsey, J Mailen; Siriphongs, Daniel; McAuley, Grant

    2004-01-01

    A new Web software architecture, NumberLinX (NLX), has been integrated into a commercial Web design program to produce a drag-and-drop environment for building interactive simulations. NLX is a library of reusable objects written in Java, including input, output, calculation, and control objects. The NLX objects were added to the palette of available objects in the Web design program to be selected and dropped on a page. Inserting an object in a Web page is accomplished by adding a template block of HTML code to the page file. HTML parameters in the block must be set to user-supplied values, so the HTML code is generated dynamically, based on user entries in a popup form. Implementing the object inspector for each object permits the user to edit object attributes in a form window. Except for model definition, the combination of the NLX architecture and the Web design program permits construction of interactive simulation pages without writing or inspecting code. PMID:17271495

  14. APPLICATION OF DYNAMIC SIMULATIONS IN THE ANALYSIS OF MEASURES FOR IMPROVING ENERGY EFFICIENCY OF BUILDINGS

    OpenAIRE

    DRAGICEVIC SNEZANA M.

    2016-01-01

    One of the most commonly used methods for improving energy performances of buildings is reducing heating energy consumption. This paper shows a comparative analysis of building energy demand for space heating based on case studies in which building modifications were made with insulating materials of building envelopes and with different window types. For the analysis, a public building with 6 floors, located in Belgrade, was selected. For a dynamical simulation and evaluation of the applied ...

  15. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  16. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-09-01

    In this article, combined effect of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is investigated by developing various refined beam theories which capture shear deformation influences needless of any shear correction factor. The material properties of FG nanobeam are temperature dependent and change gradually along the thickness through the power-law model. Size-dependent description of the nanobeam is performed applying nonlocal elasticity theory of Eringen. Nonlocal governing equations of embedded FG nanobeam in hygro-thermal environment obtained from Hamilton's principle are solved analytically. To verify the validity of the developed theories, the results of the present work are compared with those available in the literature. The effects of various hygro-thermal loadings, elastic foundation, gradient index, nonlocal parameter, and slenderness ratio on the vibrational behavior of FG nanobeams modeled via various beam theories are explored.

  17. BUCKLING AND POSTBUCKLING OF LAMINATED THIN CYLINDRICAL SHELLS UNDER HYGROTHERMAL ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    沈惠申

    2001-01-01

    The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected by the variation of temperature and moisture, and are based on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular perturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditiors. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.

  18. Long-term hygrothermal effects on damage tolerance of hybrid composite sandwich panels

    Science.gov (United States)

    Ishai, Ori; Hiel, Clement; Luft, Michael

    1995-01-01

    A sandwich construction, composed of hybrid carbon-glass fiber-reinforced plastic skins and a syntactic foam core, was selected as the design concept for a wind tunnel compressor blade application, where high damage tolerance and durability are of major importance. Beam specimens were prepared from open-edge and encapsulated sandwich panels which had previously been immersed in water at different temperatures for periods of up to about two years in the extreme case. Moisture absorption and strength characteristics, as related to time of exposure to hygrothermal conditions, were evaluated for the sandwich specimens and their constituents (skins and foam). After different exposure periods, low-velocity impact damage was inflicted on most sandwich specimens and damage characteristics were related to impact energy. Eventually, the residual compressive strengths of the damaged (and undamaged) beams were determined flexurally. Test results show that exposure to hygrothermal conditions leads to significant strength reductions for foam specimens and open-edge sandwich panels, compared with reference specimens stored at room temperature. In the case of skin specimens and for beams prepared from encapsulated sanwich panels that had previously been exposed to hygrothermal conditions, moisture absorption was found to improve strength as related to the reference case. The beneficial effect of moisture on skin performance was, however, limited to moisture contents below 1% (at 50 C and lower temperatures). Above this moisture level and at higher temperatures, strength degradation of the skin seems to prevail.

  19. Combining building thermal simulation methods and LCA methods

    DEFF Research Database (Denmark)

    Pedersen, Frank; Hansen, Klaus; Wittchen, Kim Bjarne;

    2008-01-01

    of buildings (as expressed in EU Directive 2002/91/EC), may in the future be supplemented by requirements to the environmental impact of buildings. This can be seen by the fact that EU recently has given EN mandate to prepare standards for environmental assessment of buildings (CEN/TC 350)....

  20. Computer simulation for better design and operation of large office building air-conditioning

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.; Zmrhal, V.

    2009-01-01

    The paper deals with the use of computer simulations both for the design support of a new buildings and HVAC system development and for the optimisation of the system control strategy in the building. This is presented on a real office building in Prague. For a new large bank head office in Prague,

  1. Modeling and Simulation of Multi-Room Buildings

    Directory of Open Access Journals (Sweden)

    D.W.U. Perera

    2016-04-01

    Full Text Available Buildings are one of the largest energy consumers in the world which accounts for nearly 40% of the total global energy consumption. In the countries where cold climate conditions predominate, space heating is the key contributor to the increased energy consumption. Today there is a growing trend to use Building Energy Management Systems (BEMS to control the energy consumption of buildings in an efficient manner. BEMS require a good heating model of the building to be integrated for better control purposes. This article refers to the development of different types of physics based buillding heating models, regarding single-zone, multi-floor and multi-room buildings. They address the propriety of each model in building heating control concerning the prediction accuracy and the prediction time. These models are verified for a residential building having three floors. According to the results, the multi-floor model is recognized to have the best qualifications obliged as a model for control.

  2. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments

    Science.gov (United States)

    Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang

    2014-01-01

    The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.

  3. Simulation-based support for integrated design of new low-energy office buildings

    DEFF Research Database (Denmark)

    Petersen, Steffen

    and building modelling because of the design situation. The method is implemented in an existing building simulation tool. A test case featuring an office located in Copenhagen, Denmark, shows that the suggested method reduces the energy required for heating and ventilation compared to more conventional......This thesis reports on four years of research with the aim to contribute to the implementation of low-energy office buildings with high quality of indoor environment and good total economy. Focus has been on the design decisions made in the early stages of the building design process. The objective...... is to contribute to a development where simulations of building energy performance and indoor environment is used for generating an input to the overall building design process prior to any actual form giving of the building. This input should be considered as one of several similar inputs from other building...

  4. Sensitivity analysis and application guides for integrated building energy and CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhiqiang John Zhai [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering; Qingyan Yan Chen [Purdue Univ., West Lafayette, IN (United States). School of Mechanical Engineering

    2006-09-15

    Building energy simulation (ES) and computational fluid dynamics (CFD) programs provide complementary information essential to evaluating building thermal performance. Integration of the two programs eliminates many model assumptions in separate applications and thus improves the quality of simulation results. This paper discusses the potential building and environmental characteristics that may affect the necessity and effectiveness of applying an ES-CFD coupling simulation. These characteristics and the solution accuracy requirement determine whether a coupled simulation is needed for a specific building and which coupling method can provide the best solution with the compromise of both accuracy and efficiency. The study conducts a sensitivity analysis of the coupling simulation to the potential influential factors, based on which general suggestions on appropriate usage of the coupling simulation are provided. (author)

  5. Sensitivity analysis and application guides for integrated building energy and CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Z.J. [Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, CO (United States); Chen, Q.Y. [School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States)

    2006-07-01

    Building energy simulation (ES) and computational fluid dynamics (CFD) programs provide complementary information essential to evaluating building thermal performance. Integration of the two programs eliminates many model assumptions in separate applications and thus improves the quality of simulation results. This paper discusses the potential building and environmental characteristics that may affect the necessity and effectiveness of applying an ES-CFD coupling simulation. These characteristics and the solution accuracy requirement determine whether a coupled simulation is needed for a specific building and which coupling method can provide the best solution with the compromise of both accuracy and efficiency. The study conducts a sensitivity analysis of the coupling simulation to the potential influential factors, based on which general suggestions on appropriate usage of the coupling simulation are provided. (author)

  6. Simulation Tests in Whole Building Heat and Moisture Transfer

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut Hannele; Woloszyn, Monika

    2006-01-01

    An important part of the International Energy Agency project, ECBCS, Annex 41 is about modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling deals with all most relevant elements of buildings: The indoor air, the building envelope...

  7. On the impact of building attenuation models in urban VANET simulations

    OpenAIRE

    Luis Urquiza-Aguiar; Carolina Tripp-Barba; José Estrada-Jiménez; Mónica Aguilar Igartua

    2015-01-01

    Buildings are important elements of cities for VANETs, since these obstacles may attenuate communications between vehicles. Consequently, the impact of buildings has to be considered as part of the attenuation model in VANET simulations of urban scenarios. However, the more elaborated the model, the more information needs to be processed during the simulation, which implies longer processing times. This complexity in simulations is not always worth it, because simplified channel models occasi...

  8. Simulation Technology of Environmental Impacts by Zero-energy Residential Buildings Based on Emergy Analysis Method

    Institute of Scientific and Technical Information of China (English)

    Hong Zhou; XiaoLong Xue; WangShu Yang

    2014-01-01

    This paper presents a simulation technology of environmental impact for the building. By emergy analysis method, emergy costs of building( or construction engineering) can be calculated in the life cycle. It includes the engineering cost, environmental cost and social cost of building. Through integrating GIS technology with multi-agent technology, life cycle substance and energy metabolism of building ( construction engineering) can be simulated and their environmental influence can be dynamically displayed. Based on the case study of entries works ‘Sunny Inside’ by Xiamen University in 2013 China International Solar Decathlon Competition, we discovered the changing pattern of surrounding environmental impact from waste streams of the zero-energy building and ordinary construction. The simulation results verified and showed the Odum principles of maximum power. This paper provides a new research perspective and integration approach for the environmental impact assessment in building and construction engineering. The result will help decision-making in design and construction engineering scheme.

  9. The Implementation of Industry Foundation Classes in Simulation Tools for the Building Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir; Crawley, Drury B.

    1997-06-01

    Industry Foundation Classes (IFC) provide an environment of interoperability among IFC-compliant software applications in the architecture, engineering, construction, and facilities management (AEC/FM) industry. They allow building simulation software to automatically acquire building geometry and other building data from project models created with IFC compliant CAD software. They also facilitate direct exchange of input and output data with other simulation software. This paper discusses how simulation software can be made compliant with version 1.5 of the IFC. It also describes the immediate plans for expansion of IFC and the process of definition and addition of new classes to the model.

  10. Ventilated buildings optimisation by using a coupled thermal-airflow simulation program

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2011-01-01

    This work shows the optimization of natural ventilation within buildings at the stage of design and behaviour of the occupants. An evaluation is done by coupled multizone air modelling and thermal building simulation by using a deterministic set of input factors comprising among others climate......, local environment, building characteristics, building systems, behaviour of occupants, heat loads. Selected deterministic input factors were varied to generate additional information applied in an optimization loop. With that, it is found that the optimal solution depends to a great deal...... on the possibility of combined optimization of the behaviour of occupants with a lesser extent of the design building....

  11. The Simulation and Mapping of Building Performance Indicators based on European Weather Stations

    CERN Document Server

    van Schijndel, A W M

    2012-01-01

    Due to the climate change debate, a lot of research and maps of external climate parameters are available. However, maps of indoor climate performance parameters are still lacking. This paper presents a methodology for obtaining maps of performances of similar buildings that are virtually spread over whole Europe. The produced maps are useful for analyzing regional climate influence on building performance indicators such as energy use and indoor climate. This is shown using the Bestest building as a reference benchmark. An important application of the mapping tool is the visualization of potential building measures over the EU. Also the performances of single building components can be simulated and mapped. It is concluded that the presented method is efficient as it takes less than 15 minutes to simulate and produce the maps on a 2.6GHz/4GB computer. Moreover, the approach is applicable for any type of building.

  12. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    OpenAIRE

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    1998-01-01

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the design of ventilation systems. However, it is not appropriate to include the detailed geometry of a large group of lying or standing animals affecting the air flow in the building.It is necessary to hav...

  13. Comparison of simplified and advanced building simulation tool with measured data

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Schiønning, Peder; Dethlefsen, Espen

    2013-01-01

    In the future building design must progress to a format where CO 2 neutral societies are optimized as a whole and innovative technologies integrated. The purpose of this paper is to demonstrate the problems using a simplified design tool to simulate a complicated building and how this may not give...

  14. Issues to Be Solved for Energy Simulation of An Existing Office Building

    Directory of Open Access Journals (Sweden)

    Ki Uhn Ahn

    2016-04-01

    Full Text Available With the increasing focus on low energy buildings and the need to develop sustainable built environments, Building Energy Performance Simulation (BEPS tools have been widely used. However, many issues remain when applying BEPS tools to existing buildings. This paper presents the issues that need to be solved for the application of BEPS tools to an existing office building. The selected building is an office building with 33 stories above ground, six underground levels, and a total floor area of 91,898 m2. The issues to be discussed in this paper are as follows: (1 grey data not ready for simulation; (2 subjective assumptions and judgments on energy modeling; (3 stochastic characteristics of building performance and occupants behavior; (4 verification of model fidelity-comparison of aggregated energy; (5 verification of model fidelity-calibration by trial and error; and (6 use of simulation model for real-time energy management. This study investigates the aforementioned issues and explains the factors that should be considered to address these issues when developing a dynamic simulation model for existing buildings.

  15. Modeling and simulation of the energy use in an occupied residential building in cold climate

    International Nuclear Information System (INIS)

    Highlights: ► An overview of the energy-characteristics based on illustrations in graphical figures. ► Figures to support identification and validation energy refurbishment measures. ► Emphasizing energy efficiency measures in early stage of building design. -- Abstract: In order to reduce the energy use in the building sector there is a demand for tools that can identify significant building energy performance parameters. In the work introduced in this paper presents a methodology, based on a simulation module and graphical figures, for interactive investigations of the building energy performance. The building energy use simulation program is called TEKLA and is using EN832 with an improved procedure in calculating the heat loss through the floor and the solar heat gain. The graphical figures are simple and are illustrating the savings based on retrofit measures and climate conditions. The accuracy of the TEKLA simulation was investigated on a typical single-family building in Sweden for a period of time in a space heating demand of relatively cold and mild climate. The model was found applicable for relative investigations. Further, the methodology was applied on a typical single family reference building. The climate data from three locations in Sweden were collected and a set of relevant measures were studied. The investigated examples illustrate how decisions in the early stages of the building design process can have decisive importance on the final building energy performance.

  16. Assessment of Retrofitting Measures for a Large Historic Research Facility Using a Building Energy Simulation Model

    OpenAIRE

    Young Tae Chae; Lee, Young M.; David Longinott

    2016-01-01

    A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG) emissions. An energy simulation model was developed to study the energy usage patterns not o...

  17. Building America House Simulation Protocols - Revised October 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This document was developed to track and manage progress toward multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent reference point. This report corrects editorial errors that were in the original publication.

  18. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the de...

  19. Systematization of the environmental conditioning project in buildings with a view to optimizing the architectural projects with ragard to environmental control and energy saving. Volume 3. Sistematizacion del proyecto de acondicionamiento ambiental en la edificacion con vistas a la optimizacion de los proyectos arquitectonicos en aspectos de control ambiental y ahorro energetico

    Energy Technology Data Exchange (ETDEWEB)

    Klainsek, J.C.

    1988-07-01

    Due to its significance, energy analysis should be taken into account in both developing and optimization of hygrothermic conditioning system and new building designs. It is also necessary to determine the actual costs of energy saving and conservation modifications for existing buildings. This analysis involves a large number of repetitive calculations, so a computer application has become a necessity and a computer program has been developed to simulate energy needs for a real life office and their functions in one climate region. This program predicts heating and cooling energy requirements. The purpose of the present study is to determine the affect of envelope parameters: orientation, external walls, glazing, shadings, glass-to-wall ratio, surface absorbance of external wells (color), roofs, upon energy saving and conservation for a typical office building in Madrid.

  20. Systematization of the environmental conditioning project in buildings with a view to optimizing the architectural projects with regard to environmental control and energy saving. Sistematizacion del proyecto de acondicionamiento ambiental en la edificacion con vistas a la optimizacion de los proyectos arquitectonicos en aspectos de control ambiental y ahorro energetico

    Energy Technology Data Exchange (ETDEWEB)

    Klainsek, J.C.

    1988-07-01

    Due to its significance, energy analysis should be taken into account in both developing and optimization of hygrothermic conditioning system and new building designs. It is also necessary to determine the actual costs of energy saving and conservation modifications for existing buildings. This analysis involves a large number of repetitive calculations, so a computer application has become a necessity and a computer program has been developed to simulate energy needs for a real life office and their functions in one climate region. This program predicts heating and cooling energy requirements. The purpose of the present study is to determine the effect of envelope parameters: orientation, external walls, glazing, shadings, glass-to-wall ratio, surface absorbance of external walls (color), roofs, upon energy saving and conservation for a typical office building in Madrid.

  1. Systematization of the environmental conditioning project in buildings with a view to optimizing the architectural projects with regard to environmental control and energy saving. Volume 1. Sistematizacion del proyecto de acondicionamiento ambiental en la edificacion con vistas a la optimizacion de los proyectos arquitectonicos en aspectos de control ambiental y ahorro energetico

    Energy Technology Data Exchange (ETDEWEB)

    Klainsek, J.C.

    1988-07-01

    Due to its significance, energy analysis should be taken into account in both developing and optimization of hygrothermic conditioning system and new building designs. It is also necessary to determine the actual costs of energy saving and conservation modifications for existing buildings. This analysis involves a large number of repetitive calculations, so a computer application has become a necessity and a computer program has been developed to simulate energy needs for a real life office and their functions in one climate region. This program predicts heating and cooling energy requirements. The purpose of the present study is to determine the affect of envelope parameters: orientation, external walls, glazing, shadings, glass-to-wall ratio, surface absorbance of external well (color), roofs, upon energy saving and conservation for a typical office building in Madrid.

  2. Poverty Simulations: Building Relationships among Extension, Schools, and the Community

    Science.gov (United States)

    Franck, Karen L.; Barnes, Shelly; Harrison, Julie

    2016-01-01

    Poverty simulations can be effective experiential learning tools for educating community members about the impact of poverty on families. The project described here includes survey results from three simulations with community leaders and teachers. This project illustrated how such workshops can help Extension professionals extend their reach and…

  3. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand....... The analysis also shows that the connection of low-energy buildings to DH networks is potentially a good solution in Denmark for reaching the climatic goals, but a high degree of connection must be reached, especially for detached houses, where most of the buildings in a typical community must be connected......The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...

  4. Effect of hygrothermal ageing on the tensile and fracture response of a fuel cell membrane

    International Nuclear Information System (INIS)

    Nafion is a polymer electrolyte membrane used as proton-conducting medium for a polymer electrolyte fuel cell. Since the membrane is a very critical component of the fuel cell, its operational durability becomes highly significant to the fuel cell performance. In general, a low temperature fuel cell operates under 80 °C and 90% RH (relative humidity) and since the Nafion is very sensitive to these operating conditions its mechanical properties vary drastically, leading to premature mechanical failure of the membrane over a period of time. In a first of its kind, this paper focuses on the fracture response of the membrane that is externally pretreated with respect to different hygrothermal conditions. The membrane is also tested for its tensile strength. The results obtained from this study suggest a very interesting phenomenon. The data show that though there is no meaningful trend in the results obtained through tensile tests, fracture tests show a remarkable difference in the fracture energy of the specimens that are subjected to different hygrothermal conditions. (papers)

  5. Building Blocks for the Rapid Development of Parallel Simulations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scientists need to be able to quickly develop and run parallel simulations without paying the high price of writing low-level message passing codes using compiled...

  6. Numerical simulation and exergetic analysis of building ventilation solar chimneys

    International Nuclear Information System (INIS)

    Highlights: • Exergetic analysis of a building ventilation solar chimney. • Numerical CFD model developed, validated and employed to study the flow. • Analysis of the solar chimney energy and exergy efficiencies. • Mechanical and thermal exergy distributions have been analysed. • Crucial points in the chimney identified to improve its performance. - Abstract: The solar chimneys used in buildings are passive solar devices which improve natural ventilation. A detailed exergetic analysis has been developed in this work, both for general balance and specific variables. To apply this analysis, a three-dimensional CFD model has been built and validated with bibliographic experimental data. The values of the variables have been examined both inside and at the exit of the solar chimney, resulting in a detailed description of the inner phenomena and parameters influencing the exergetic efficiency. The results of this study offer new tools: a numerical methodology and an exergetic analysis, to improve the design of building ventilation solar chimneys. It also affords a deeper understanding of the thermal and fluid-dynamic behaviour, and suggests some qualitative improvements. However, the numerical data obtained from the case studied, show that solar chimneys as natural ventilation systems offer quite a small efficiency and will remain within the sphere of architectural decisions

  7. SIMULATION OF TSUNAMI FORCE ON ROWS OF BUILDINGS IN ACEH REGION AFTER TSUNAMI DISASTER IN 2004

    Directory of Open Access Journals (Sweden)

    Radianta Triatmadja

    2014-10-01

    Full Text Available After the Indian Ocean Tsunami 2004 in Aceh, houses and other buildings were reconstructed by government and Non-Governmental Organizations (NGO. The new buildings near the coastline are open directly to similar tsunami attack. The layout of such new residential are normally arranged and aligned as rows of buildings. The front rows of the buildings suffer more tsunami force due to their location that are closer to the beach and the effect of the reflection from the adjacent buildings. This research aims to analyze the tsunami force on buildings of different types, and the effect of other buildings nearby. The research was conducted using a physical model at the Hydraulic and Hydrology Laboratory, Research Centre for Engineering Science, Universitas Gadjah Mada Indonesia. The physical model simulations were carried out in a flume of 24 m long, 1.45 m wide, and 1.5 m high, that was facilitated with tsunami generator based on dam break system. The models of the buildings were made of plywood and were placed in a row perpendicular to the flume. The distance between the buildings was varied to observe the effect of the gaps. The results show that the force on the building depends on the gap between the buildings. Although the effect of the gap was more significant on low buildings, the effect of force on high buildings was more sensitive to the change of the gap size. Simple equation for practical use is proposed to calculate the tsunami force on building with the effect of nearby buildings.

  8. Energy Efficiency in Residential Buildings in Mozambique - Measurements and Simulations

    OpenAIRE

    Auziane, Gabriel

    2015-01-01

    Mozambique, situated in south-east Africa, has sub-tropical and tropical climate and plenty of natural resources for energy production. The country is however poor, and only about 25% of the population has access to electricity from the grid. A very large part of the energy used in the country is used in the residential sector, and there is a general lack of knowledge, regulations and tools concerning energy efficiency in buildings. The aim of this work is to contribute to a framework o...

  9. Selecting Eco-Friendly Thermal Systems for the “Vittoriale Degli Italiani” Historic Museum Building

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2015-09-01

    Full Text Available Thermal systems installed in museums should guarantee the maintenance of the optimal hygrothermal parameters ranges for the conservation of their collection materials. Considering the preservation of historic buildings, according to their historical and landscaping constraints, not all the thermal system typologies could be installed in these buildings’ typologies. Therefore, the main aim of this paper is to present some indications for the choice of the best thermal system solutions for a considered historic museum building, called Vittoriale degli Italiani, in the north of Italy, taking into account their installation feasibility and their related environmental impacts. The methodology includes a monitoring of the current hygrothermal parameters as well as the assessment of design heat and cooling loads related to the maintenance of the optimal hygrothermal parameters ranges for the conservation of collection materials. In addition, a Life Cycle Assessment (LCA of each selected system typology is considered for highlighting the most eco-friendly solution among the suitable ones. The obtained results highlights the feasible thermal system solutions able to maintain the hygrothermal parameters between the optimal ranges with a lower environmental impact in the Vittoriale degli Italiani historic museum building.

  10. Biology Students Building Computer Simulations Using StarLogo TNG

    Science.gov (United States)

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  11. Simulated performance of the Thermo Active Building System (TABS) with respect to the provided thermal comfort and primary energy use

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Olesen, Bjarne W.; Toftum, Jørn

    2009-01-01

    The central module of an office building conditioned by a Thermo Active Building System (TABS) coupled with constant volume ventilation was evaluated by means of dynamic computer simulations. Additionally, the same building model was simulated with a conventional all air VAV ventilation system for...

  12. An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Wetter, Michael; Hensen, Jan L.M.

    2010-07-01

    Integrated performance simulation of buildings and heating, ventilation and air-conditioning (HVAC) systems can help reducing energy consumption and increasing level of occupant comfort. However, no singe building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to accommodate the ever-increasing complexity and rapid innovations in building and system technologies. One way to alleviate this problem is to use co-simulation. The co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This paper elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in a co-simulation prototype. The prototype is verified and validated against the results obtained from the traditional simulation approach. It is further used in a case study for the proof-of-concept, to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling frequency. The paper concludes by defining requirements and recommendations for generic cosimulation implementations.

  13. Measurement and simulation of transparent building components with sun-shading; Messung und Simulation von transparenten Bauteilen mit Sonnenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Simmler, H.; Manz, H.; Haas, A. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Favarolo, P.A. [Universita Technica delle Marche, Ancona (Italy)

    2004-12-15

    This paper takes a look at the construction and simulation of modern office buildings that often feature lightweight construction and a high proportion of glazing or even double building skins completely made of glass. In particular, those thermal comfort and cooling aspects are discussed that require that the solar attributes of facade elements are taken into account. Work done at the Swiss Federal materials institute EMPA as part of the International Energy Agency's IEA Task 27 'Performance, durability and sustainability of advanced windows and solar components for building envelopes' is discussed. The properties of glazing and shading systems are presented and discussed. Results obtained by calculation are compared with those obtained from measurements. Modules for the calculation of the properties of glazing elements and their simulation are discussed, as are transparent insulation systems.

  14. The analysis of thermal comfort requirements through the simulation of an occupied building.

    Science.gov (United States)

    Thellier, F; Cordier, A; Monchoux, F

    1994-05-01

    Building simulation usually focuses on the study of physical indoor parameters, but we must not forget the main aim of a house: to provide comfort to the occupants. This study was undertaken in order to build a complete tool to model thermal behaviour that will enable the prediction of thermal sensations of humans in a real environment. A human thermoregulation model was added to TRNSYS, a building simulation program. For our purposes, improvements had to be made to the original physiological model, by refining the calculation of all heat exchanges with the environment and adding a representation of clothes. This paper briefly describes the program, its modifications, and compares its results with experimental ones. An example of potential use is given, which points out the usefulness of such models in seeking the best solutions to reach optimal environmental conditions for global, and specially local comfort, of building occupants. PMID:8206050

  15. 3D COMPUTER SIMULATION FOR LIGNIFICATION OF ANCIENT CHINESE TIMBER BUILDINGS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pioneer research work was carried out by investigators engaged in surveying and mapping for describing ancient Chinese timber buildings by 3D frame graphs w ith a computer.Users can know the structural layers and the assembly process of the se buildings if the frame graphs are processed further with a computer model.Th is can be implemented by computer simulation technique.This technique display t he raw data on the screen of a computer and interactively manage them by combini ng technologies from computer graphics and image processing,multi-media technol ogy,artificial intelligence,highly parallel real-time computation technique an d human behavior science.This paper presents the implementing procedure of ligni fi cation simulation for large-sized wooden buildings as well as 3D dynamic assembl y of these buildings under the 3DS MAX environment.The results from computer sim ulation are also shown in the paper.

  16. Modeling Data Center Building Blocks for Energy-efficiency and Thermal Simulations

    OpenAIRE

    Vor Dem Berge, Micha; Da Costa, Georges; Jarus, Mateusz; Oleksiak, Ariel; Piatek, Wojciech; Volk, Eugen

    2013-01-01

    In this paper we present a concept and specification of Data Center Efficiency Building Blocks (DEBBs), which represent hardware components of a data center complemented by descriptions of their energy efficiency. Proposed building blocks contain hardware and thermodynamic models that can be applied to simulate a data center and to evaluate its energy efficiency. DEBBs are available in an open repository being built by the CoolEmAll project. In the paper we illustrate the concept by an exampl...

  17. An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects

    Directory of Open Access Journals (Sweden)

    Farzad Jalaei

    2014-01-01

    Full Text Available Quantifying the environmental impacts and simulating the energy consumption of building’s components at the conceptual design stage are very helpful for designers needing to make decisions related to the selection of the best design alternative that would lead to a more energy efficient building. Building Information Modeling (BIM offers designers the ability to assess different design alternatives at the conceptual stage of the project so that energy and life cycle assessment (LCA strategies and systems are attained. This paper proposes an automated model that links BIM, LCA, energy analysis, and lighting simulation tools with green building certification systems. The implementation is within developing plug-ins on BIM tool capable of measuring the environmental impacts (EI and embodied energy of building components. Using this method, designers will be provided with a new way to visualize and to identify the potential gain or loss of energy for the building as a whole and for each of its associated components. Furthermore, designers will be able to detect and evaluate the sustainability of the proposed buildings based on Leadership in Energy and Environmental Design (LEED rating system. An actual building project will be used to illustrate the workability of the proposed methodology.

  18. Simulation on spread of fire smoke in the elevator shaft for a high-rise building

    OpenAIRE

    Yunchun Xia

    2014-01-01

    Spread of fire smoke in the elevator shaft of a high-rise building is influenced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187°C in 5...

  19. Building of Nuclear Ship Engineering Simulation System development of the simulator for the integral type reactor

    International Nuclear Information System (INIS)

    JAERI had carried out the design study of a light-weight and compact integral type reactor of power 100 MWth with passive safety as a power source for the future nuclear ships, and completed an engineering design. To confirm the design and operation performance and to utilize the study of automation of the operations of reactor, we developed a real-time simulator for the integral type reactor. This simulator is a part of Nuclear Ship Engineering Simulation System (NESSY) and on the same hardware as 'Mutsu' simulator which was developed to simulate the first Japanese nuclear ship Mutsu'. Simulation accuracy of 'Mutsu' simulator was verified by comparing the simulation results With data got in the experimental voyage of 'Mutsu'. The simulator for the integral type reactor uses the same programs which were used in 'Mutsu' simulator for the separate type PWR, and the simulated results are approximately consistent with the calculated values using RELAP5/MOD2 (The later points are reported separately). Therefore simulation accuracy of the simulator for the integral type reactor is also expected to be reasonable, though it is necessary to verify by comparing with the real plant data or experimental data in future. We can get the perspectives to use as a real-time engineering simulator and to achieve the above-mentioned aims. This is a report on development of the simulator for the integral type reactor mainly focused on the contents of the analytical programs expressed the structural features of reactor. (author)

  20. Numerical simulation of seismic response of a base isolated building with low shear modulus rubber isolators

    International Nuclear Information System (INIS)

    This paper describes seismic-response simulations of a base-isolated building subjected to actual earthquakes using the 3-D computer program, SISEC, developed at Argonne National Laboratory. The isolation system consists of six medium shape factor, high damping, and low shear modulus rubber bearings. To ensure the accuracy of analytical simulation, recorded data of full-size reinforced concrete structures located in Sendai, Japan are used as the benchmarks for comparisons of numerical simulations with observations. Results obtained from both analytical simulations and earthquake observations indicate that the advantage of base isolation in mitigating the acceleration of superstructure is very pronounced. For the two representative earthquakes, one had the strongest ground motion and the other one had similar magnitudes as the rest of the earthquakes recorded at the test site, the simulated accelerations at the roof level of the isolated building are about 20% to 30% of the ordinary building accelerations. Also, results reveal that for both ordinary and base-isolated buildings the computed accelerations agree reasonably well with those recorded

  1. Agent-based simulation of building evacuation using a grid graph-based model

    Science.gov (United States)

    Tan, L.; Lin, H.; Hu, M.; Che, W.

    2014-02-01

    Shifting from macroscope models to microscope models, the agent-based approach has been widely used to model crowd evacuation as more attentions are paid on individualized behaviour. Since indoor evacuation behaviour is closely related to spatial features of the building, effective representation of indoor space is essential for the simulation of building evacuation. The traditional cell-based representation has limitations in reflecting spatial structure and is not suitable for topology analysis. Aiming at incorporating powerful topology analysis functions of GIS to facilitate agent-based simulation of building evacuation, we used a grid graph-based model in this study to represent the indoor space. Such model allows us to establish an evacuation network at a micro level. Potential escape routes from each node thus could be analysed through GIS functions of network analysis considering both the spatial structure and route capacity. This would better support agent-based modelling of evacuees' behaviour including route choice and local movements. As a case study, we conducted a simulation of emergency evacuation from the second floor of an official building using Agent Analyst as the simulation platform. The results demonstrate the feasibility of the proposed method, as well as the potential of GIS in visualizing and analysing simulation results.

  2. Agent-based simulation of building evacuation using a grid graph-based model

    International Nuclear Information System (INIS)

    Shifting from macroscope models to microscope models, the agent-based approach has been widely used to model crowd evacuation as more attentions are paid on individualized behaviour. Since indoor evacuation behaviour is closely related to spatial features of the building, effective representation of indoor space is essential for the simulation of building evacuation. The traditional cell-based representation has limitations in reflecting spatial structure and is not suitable for topology analysis. Aiming at incorporating powerful topology analysis functions of GIS to facilitate agent-based simulation of building evacuation, we used a grid graph-based model in this study to represent the indoor space. Such model allows us to establish an evacuation network at a micro level. Potential escape routes from each node thus could be analysed through GIS functions of network analysis considering both the spatial structure and route capacity. This would better support agent-based modelling of evacuees' behaviour including route choice and local movements. As a case study, we conducted a simulation of emergency evacuation from the second floor of an official building using Agent Analyst as the simulation platform. The results demonstrate the feasibility of the proposed method, as well as the potential of GIS in visualizing and analysing simulation results

  3. Simulation-based education for building clinical teams

    Directory of Open Access Journals (Sweden)

    Marshall Stuart

    2010-01-01

    Full Text Available Failure to work as an effective team is commonly cited as a cause of adverse events and errors in emergency medicine. Until recently, individual knowledge and skills in managing emergencies were taught, without reference to the additional skills required to work as part of a team. Team training courses are now becoming commonplace, however their strategies and modes of delivery are varied. Just as different delivery methods of traditional education can result in different levels of retention and transfer to the real world, the same is true in team training of the material in different ways in traditional forms of education may lead to different levels of retention and transfer to the real world, the same is true in team training. As team training becomes more widespread, the effectiveness of different modes of delivery including the role of simulation-based education needs to be clearly understood. This review examines the basis of team working in emergency medicine, and the components of an effective emergency medical team. Lessons from other domains with more experience in team training are discussed, as well as the variations from these settings that can be observed in medical contexts. Methods and strategies for team training are listed, and experiences in other health care settings as well as emergency medicine are assessed. Finally, best practice guidelines for the development of team training programs in emergency medicine are presented.

  4. Dynamic simulation of residential buildings with seasonal sorption storage of solar energy - parametric analysis

    OpenAIRE

    Hennaut, Samuel; Thomas, Sébastien; Davin, Elisabeth; Andre, Philippe

    2011-01-01

    This work focuses on the evaluation of the performances of a solar combisystem coupled to seasonal thermochemical storage using SrBr2/H20 as adsorbent/adsorbate couple. The objective is to determine the characteristics required for solar system and storage reactor to reach a 100 % solar fraction for a building with a low heating load. The complete system, including the storage reactor, is simulated, using the dynamic simulation software TRNSYS. The influence of some components and p...

  5. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2012-01-01

    Full Text Available Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling, and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional. In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling, and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating

  6. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  7. Comparison of CFD simulation of night purge ventilation to full-scale building measurements

    Science.gov (United States)

    Chigurupati, Asha; Gorle, Catherine; Iaccarino, Gianluca

    2014-11-01

    Efforts to improve the understanding of air motion in and around buildings can lead to more efficient natural ventilation systems, thereby significantly reducing a building's heating and cooling demands. CFD simulations enable solving the details of the flow and convective heat transfer in buildings and have the potential to predict the performance of natural ventilation with a high degree of accuracy. Understanding the actual predictive capability of CFD simulations is however complicated by the complexity of the geometry and physics involved, and the uncertainty and variability in the boundary conditions. In the present study we model the night flush process in the Y2E2 building on Stanford University's campus and compare the results to measurements in the full-scale, operational building. We model half of the building, which consists of three floors with office spaces and two atriums. We solve the RANS equations using ANSYS/Fluent and k-e RNG theory turbulence closure model for the duration of one night flush and will present a comparison of the CFD results to measurements of the temperature on each floor in both atriums. Future investigations will focus on the potential of reducing the discrepancy between observed and predicted values by varying uncertain model parameters and boundary conditions.

  8. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  9. Building of Nuclear Ship Engineering Simulation System development of the simulator for the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Teruo; Shimazaki, Junya; Yabuuchi, Noriaki; Fukuhara, Yosifumi; Kusunoki, Takeshi; Ochiai, Masaaki [Department of Nuclear Energy Systems, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Nakazawa, Toshio [Department of HTTR Project, Oarai Research Establishment, Japan Atomic Energy Research Institute, Oarai, Ibaraki (Japan)

    2000-03-01

    JAERI had carried out the design study of a light-weight and compact integral type reactor of power 100 MW{sub th} with passive safety as a power source for the future nuclear ships, and completed an engineering design. To confirm the design and operation performance and to utilize the study of automation of the operations of reactor, we developed a real-time simulator for the integral type reactor. This simulator is a part of Nuclear Ship Engineering Simulation System (NESSY) and on the same hardware as 'Mutsu' simulator which was developed to simulate the first Japanese nuclear ship Mutsu'. Simulation accuracy of 'Mutsu' simulator was verified by comparing the simulation results With data got in the experimental voyage of 'Mutsu'. The simulator for the integral type reactor uses the same programs which were used in 'Mutsu' simulator for the separate type PWR, and the simulated results are approximately consistent with the calculated values using RELAP5/MOD2 (The later points are reported separately). Therefore simulation accuracy of the simulator for the integral type reactor is also expected to be reasonable, though it is necessary to verify by comparing with the real plant data or experimental data in future. We can get the perspectives to use as a real-time engineering simulator and to achieve the above-mentioned aims. This is a report on development of the simulator for the integral type reactor mainly focused on the contents of the analytical programs expressed the structural features of reactor. (author)

  10. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M.K.

    1998-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  11. Simulation of thermal behavior of residential buildings using fuzzy active learning method

    Directory of Open Access Journals (Sweden)

    Masoud Taheri Shahraein

    2015-01-01

    Full Text Available In this paper, a fuzzy modeling technique called Modified Active Learning Method (MALM was introduced and utilized for fuzzy simulation of indoor and inner surface temperatures in residential buildings using meteorological data and its capability for fuzzy simulation was compared with other studies. The case studies for simulations were two residential apartments in the Fakouri and Rezashahr neighborhoods of Mashhad, Iran. The hourly inner surface and indoor temperature data were accumulated during measurements taken in 2010 and 2011 in different rooms of the apartments under heating and natural ventilation conditions. Hourly meteorological data (dry bulb temperature, wind speed and direction and solar radiation were measured by a meteorological station and utilized with zero to three hours lags as input variables for the simulation of inner surface and indoor temperatures. The results of simulations demonstrated the capability of MALM to be used for nonlinear fuzzy simulation of inner surface and indoor temperatures in residential apartments.

  12. Tools for Performance Simulation of Heat, Air and Moisture Conditions of Whole Buildings

    DEFF Research Database (Denmark)

    Woloszyn, Monika; Rode, Carsten

    2008-01-01

    Humidity of indoor air is an important factor influencing the air quality and energy consumption of buildings as well as durability of building components. Indoor humidity depends on several factors, such as moisture sources, air change, sorption in materials and possible condensation. Since all...... and moisture transfer processes that take place in “whole buildings” by considering all relevant parts of its constituents. It is believed that full understanding of these processes for the whole building is absolutely crucial for future energy optimization of buildings, as this cannot take place without...... these phenomena are strongly dependent on each other, numerical predictions of indoor humidity need to be integrated into combined heat and airflow simulation tools. The purpose of a recent international collaborative project, IEA ECBCS Annex 41, has been to advance development in modelling the integral heat, air...

  13. Toward Simulation-Based Egress Optimization in Smart Buildings Using Symbiotic Simulation

    NARCIS (Netherlands)

    H. Aydt; M.H. Lees; S.J. Turner; W. Cai

    2012-01-01

    Buildings have to satisfy certain safety standards by design, for example by featuring well-displayed emergency exits and well-located fire extinguishers. However, the large number of occupants may cause significant congestion in case of a necessary evacuation due to events such as fire. Technology

  14. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    Energy Technology Data Exchange (ETDEWEB)

    Horsey, Henry; Fleming, Katherine; Ball, Brian; Long, Nicholas

    2016-08-26

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is called metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.

  15. Assessment of Retrofitting Measures for a Large Historic Research Facility Using a Building Energy Simulation Model

    Directory of Open Access Journals (Sweden)

    Young Tae Chae

    2016-06-01

    Full Text Available A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG emissions. An energy simulation model was developed to study the energy usage patterns not only at a building level, but also of the internal thermal zones, and system operations. The model was validated using site measurements of energy usage and a detailed audit of the internal load conditions, system operation, and space programs to minimize the discrepancy between the documented status and actual operational conditions. Based on the results of the calibrated model and end-used energy consumption, the study proposed potential energy conservation measures (ECMs for the building envelope, HVAC system operational methods, and system replacement. It also evaluated each ECM from the perspective of both energy and utility cost saving potentials to help retrofitting plan decision making. The study shows that the energy consumption of the building was highly dominated by the thermal requirements of laboratory spaces. Among other ECMs the demand management option of overriding the setpoint temperature is the most cost effective measure.

  16. Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds

    Science.gov (United States)

    Cheng, Tian

    Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A

  17. Dampness in Buildings and Health

    DEFF Research Database (Denmark)

    Clausen, Geo; Rode, Carsten; Bornehag, Carl-Gustaf;

    1999-01-01

    on air distribution in indoor spaces. Particularly, using CFD models, it should be possible to study the local conditions in the vicinity of the human body.· Modelling and experimental investigation of humidity transfer and energy consumption in buildings. The research aims at establishing complete...... of the factors that influence the well being of occupants in the indoor climate. The perspective of this knowledge should be widened such that it will be possible to carry out an integral optimisation of a high indoor air quality in durable, low energy consuming buildings.While located at DTU, the centre...... modelling capabilities of the hygrothermal conditions in buildings with their spaces, building materials, furnishing, activity of occupants, and influence from exterior conditions....

  18. Statistical simulation of user behaviour in low-energy office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Pfafferott, J.; Herkel, S. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, D-79110 Freiburg (Germany)

    2007-05-15

    A large number of design guidelines and tools are available for the design of passive cooling systems. Using the underlying thermodynamic models, a certain input (e.g. air change rate, internal heat gains or sun control) results in a certain output (i.e. room temperature). However, in real buildings the room temperature at a given outdoor temperature is a distribution rather than a single value. Therefore, the building engineer should take uncertainties into account, since the actual use of the building, the building physical properties or the user behaviour are statistically distributed. One promising approach to include these uncertainties in the design procedure is the use of statistical models: the design parameter is defined by a mean value and its deviation. From a control theoretical point of view, the deterministic controlled system responds to random disturbance variables by a statistically distributed response function. Considering the institute building of Fraunhofer ISE as example, this study shows how statistical simulations can be applied to the design process of passive cooling in low-energy office buildings. (author)

  19. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  20. A GIS-Based 3D Simulation for Occupant Evacuation in a Building

    Institute of Scientific and Technical Information of China (English)

    TANG Fangqin; ZHANG Xin

    2008-01-01

    The evacuation efficiency of building plans is of obvious importance to the public safety.The cem- plexity of building plans,however,makes it difficult for the efficiency evaluation.This paper presents a com- putational model AutoEscape,which can simulate the evacuation process for any given occupant distribu. Uon in buildings.Designed as an extensible multi-level structure, the model constructs the geometry level and occupant level and establishes the interactions between levels.The GIS-based environmental analysis is realized to automatically generate the geometric representation and formulate the cognition of agents. The multi-agent based technology is employed to simulate the crowd behaviom with autonomously acting individuals.A visualization component,which provides 3D free observations for the simulation process,is developed on the platform of OGRE and integrated into the system interface in form of ActiveX control.Fi- nally,a case study has been conducted and the results have been compared with the results of an existing model to show the reliability and capacity of AutoEscape simulation.

  1. Simulations of the potential revenue from investment in improved indoor air quality in an office building

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Djukanovic, Rade

    2005-01-01

    The annual costs of energy and maintenance in running a heating, ventilation and air-conditioning (HVAC) system and life-cycle costs (LCC) of investments for improving air quality in an office building were compared with the resulting revenues from increased office productivity as a consequence...... of improved worker performance; benefits from reduced health costs and sickness absence were not included. The building was simulated in a cold, a moderate and a hot climate. It was ventilated by a constant air volume (CAV) system with heat recovery and by a variable air volume (VAV) system with an economizer....... The air quality was improved by increasing the outdoor air supply rate and by reducing the pollution loads. These upgrades involved increased energy and HVAC maintenance costs, first costs of a HVAC system and building construction costs. But the additional investments were highly cost...

  2. Indoor environment and energy consumption optimization using field measurements and building energy simulation

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Chasapis, Kleanthis; Gazovic, Libor;

    2015-01-01

    Modern buildings are usually equipped with advanced climate conditioning systems to ensure comfort of their occupants. However, analysis of their actual operation usually identifies large potential for improvements with respect to their efficiency. Present study investigated potential...... for improvements in an existing office building – a Town Hall of Viborg, Denmark. Thorough field measurements of indoor environment and occupant satisfaction survey were conducted to identify and describe indoor environmental quality problems. Collected data were also used to calibrate computer simulation model......, which was used for optimization of building’s performance. Proposed optimization scenarios bring 21-37% reduction on heating consumption and thermal comfort improvement by 7-12%. The approach (procedure) can help to optimize building operation and shorten the adjustment period....

  3. Damage assessment of mission essential buildings based on simulation studies of low yield explosives

    Science.gov (United States)

    Allen, Thomas G. L.

    2006-04-01

    There has been a lack of investigations related to low yield explosives instigated by terrorist on small but high occupancy buildings. Also, mitigating the threat of terrorist attacks against high occupancy buildings with network equipment essential to the mission of an organization is a challenging task. At the same time, it is difficult to predict how, why, and when terrorists may attack theses assets. Many factors must be considered in creating a safe building environment. Although it is possible that the dominant threat mode may change in the future, bombings have historically been a favorite tactic of terrorists. Ingredients for homemade bombs are easily obtained on the open market, as are the techniques for making bombs. Bombings are easy and quick to execute. This paper discusses the problems with and provides insights of experience gained in analyzing small scale explosions on older military base buildings. In this study, we examine the placement of various bombs on buildings using the shock wave simulation code CTH and examine the damage effects on the interior of the building, particularly the damage that is incurred on a computer center. These simulation experiments provide data on the effectiveness of a building's security and an understanding of the phenomenology of shocks as they propagate through rooms and corridors. It's purpose is to motivate researchers to take the seriousness of small yield explosives on moderately sized buildings. Visualizations from this analysis are used to understand the complex flow of the air blasts around corridors and hallways. Finally, we make suggestions for improving the mitigation of such terrorist attacks. The intent of this study is not to provide breakthrough technology, but to provide a tool and a means for analyzing the material hardness of a building and to eventually provide the incentive for more security. The information mentioned in this paper is public domain information and easily available via the

  4. Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments

    International Nuclear Information System (INIS)

    While the concept of reflective roofing is not new to China, most Chinese cool roof research has taken place within the past decade. Some national and local Chinese building energy efficiency standards credit or recommend, but do not require, cool roofs or walls. EnergyPlus simulations of standard-compliant Chinese office and residential building prototypes in seven Chinese cities (Harbin, Changchun, Beijing, Chongqing, Shanghai, Wuhan, and Guangzhou) showed that substituting an aged white roof (albedo 0.6) for an aged gray roof (albedo 0.2) yields positive annual load, energy, energy cost, CO2, NOx, and SO2 savings in all hot-summer cities (Chongqing, Shanghai, Wuhan, and Guangzhou). Measurements in an office building in Chongqing in August 2012 found that a white coating lowered roof surface temperature by about 20 °C, and reduced daily air conditioning energy use by about 9%. Measurements in a naturally ventilated factory in Guangdong Province in August 2011 showed that a white coating decreased roof surface temperature by about 17 °C, lowered room air temperature by 1–3 °C, and reduced daily roof heat flux by 66%. Simulation and experimental results suggest that cool roofs should be credited or prescribed in building energy efficiency standards for both hot summer/warm winter and hot summer/cold winter climates in China

  5. IFC BIM-Based Methodology for Semi-Automated Building Energy Performance Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir

    2008-07-01

    Building energy performance (BEP) simulation is still rarely used in building design, commissioning and operations. The process is too costly and too labor intensive, and it takes too long to deliver results. Its quantitative results are not reproducible due to arbitrary decisions and assumptions made in simulation model definition, and can be trusted only under special circumstances. A methodology to semi-automate BEP simulation preparation and execution makes this process much more effective. It incorporates principles of information science and aims to eliminate inappropriate human intervention that results in subjective and arbitrary decisions. This is achieved by automating every part of the BEP modeling and simulation process that can be automated, by relying on data from original sources, and by making any necessary data transformation rule-based and automated. This paper describes the new methodology and its relationship to IFC-based BIM and software interoperability. It identifies five steps that are critical to its implementation, and shows what part of the methodology can be applied today. The paper concludes with a discussion of application to simulation with EnergyPlus, and describes data transformation rules embedded in the new Geometry Simplification Tool (GST).

  6. Experimental simulation of a light aircraft crash on to a nuclear power plant auxiliary building roof

    International Nuclear Information System (INIS)

    The experiments described were conducted at a reduced scale with geometric dimensions of prototype structures of one-fifth full size. The target was based on the auxiliary buildings for the proposed Sizewell PWR. Descriptions of the simulated aircraft model and the test panels are given, together with the instrumentation. Details are given of the test programme and the results are summarized and discussed. Comparison is made of the model aircraft tests with an equivalent hard missile impact. (U.K.)

  7. Simulation based energy consumption calculation of an office building using solar-assisted air conditioning

    OpenAIRE

    Thomas, Sébastien; Andre, Philippe

    2008-01-01

    To minimize environmental impact and CO2 production associated with air-conditioning system operation, it is reasonable to evaluate the prospects of a clean energy source. The targets of the study are to evaluate cooling energy consumption to maintain thermal comfort in an office building and to point out solar energy to satisfy these cooling needs. Simulations were carried out with three different cooling systems in the same operating conditions to determine as accurately as possible the pot...

  8. Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

    2011-11-01

    The test suite represents a set of cases applying the new Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology developed by NREL. (Judkoff et al. 2010a). The NREL team developed the test cases in consultation with the home retrofit industry (BESTEST-EX Working Group 2009), and adjusted the test specifications in accordance with information supplied by a participant with access to large utility bill datasets (Blasnik 2009).

  9. Window opening behaviour: simulations of occupant behaviour in residential buildings using models based on a field survey

    DEFF Research Database (Denmark)

    Valentina, Fabi; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Window opening behaviour has been shown to have a significant impact on airflow rates and hence energy consumption. Nevertheless, the inhabitant behaviour related to window opening in residential buildings is currently poorly investigated through both field surveys and building energy simulations....... The present contribution extends the knowledge about the windows control in dwellings and underlines the importance of appropriate occupant behaviour models for a better prediction of energy consumptions in buildings.......Window opening behaviour has been shown to have a significant impact on airflow rates and hence energy consumption. Nevertheless, the inhabitant behaviour related to window opening in residential buildings is currently poorly investigated through both field surveys and building energy simulations....... In particular, reliable information regarding user behaviour in residential buildings is crucial for suitable prediction of building performance (energy consumption, indoor environmental quality, etc.). To face this issue, measurements of indoor climate and outdoor environmental parameters and window “opening...

  10. On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period

    Directory of Open Access Journals (Sweden)

    Francesco Asdrubali

    2012-06-01

    Full Text Available Among solar passive systems integrated in buildings, sunspaces or solar greenhouses represent a very interesting solution. A sunspace is a closed, southbound volume, constituted by transparent surfaces, adjacent to a building, which reduces winter energy demand thanks to the use of solar gains. The effect of a typical solar greenhouse on the energy balance of a building was evaluated during the heating period with two stationary procedures (Method 5000 and EN ISO 13790 and with a dynamic tool (TRNSYS. After the analysis of the greenhouse alone, the behavior of an entire house was simulated; a flat equipped with a sunspace, recently built thanks to public contributions provided by the Umbria Region in Italy to widespread bio-climatic architecture, was used as case-study. Simulations were carried out for the examined flat, both with a steady-state tool and with a dynamic one; the contribution of the sunspace was estimated thanks to the various methods previously mentioned. Finally, the simulated data were satisfactorily compared with the real energy consumptions (natural gas for heating of the flat; the sunspace allows a reduction of winter energy demand of the flat of about 20%.

  11. Building-Resolved CFD Simulations for Greenhouse Gas Transport and Dispersion over Washington DC / Baltimore

    Science.gov (United States)

    Prasad, K.; Lopez-Coto, I.; Ghosh, S.; Mueller, K.; Whetstone, J. R.

    2015-12-01

    The North-East Corridor project aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over urban domains such as Washington DC / Baltimore with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and communities comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing difficult to simulate with a mesoscale atmospheric model. Such capabilities may be important in determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 10-20 m in a domain of 12 x 12 km. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in the North-East Corridor and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions and transport.

  12. Development of a Computational Simulation Model for Conflict Management in Team Building

    Directory of Open Access Journals (Sweden)

    W. M. Wang

    2011-05-01

    Full Text Available Conflict management is one of the most important issues in leveraging organizational competitiveness. However, traditional social scientists built theories or models in this area which were mostly expressed in words and diagrams are insufficient. Social science research based on computational modeling and simulation is beginning to augment traditional theory building. Simulation provides a method for people to try their actions out in a way that is cost effective, faster, appropriate, flexible, and ethical. In this paper, a computational simulation model for conflict management in team building is presented. The model is designed and used to explore the individual performances related to the combination of individuals who have a range of conflict handling styles, under various types of resources and policies. The model is developed based on agent-based modeling method. Each of the agents has one of the five conflict handling styles: accommodation, compromise, competition, contingency, and learning. There are three types of scenarios: normal, convex, and concave. There are two types of policies: no policy, and a reward and punishment policy. Results from running the model are also presented. The simulation has led us to derive two implications concerning conflict management. First, a concave type of resource promotes competition, while convex type of resource promotes compromise and collaboration. Second, the performance ranking of different styles can be influenced by introducing different policies. On the other hand, it is possible for us to promote certain style by introducing different policies.

  13. Simulations

    CERN Document Server

    Ngada, N M

    2015-01-01

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  14. Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2014-08-01

    Full Text Available Many studies in Italy showed that buildings are responsible for about 40% of total energy consumption, due to worsening performance of building envelope; in fact, a great number of Italian buildings were built before the 1970s and 80s. In particular, the energy consumptions for cooling are considerably increased with respect to the ones for heating. In order to reduce the cooling energy demand, ensuring indoor thermal comfort, a careful study on building envelope performance is necessary. Different dynamic software could be used in order to evaluate and to improve the building envelope during the cooling period, but much time and an accurate validation of the model are required. However, when a wide experimental data is available, the Artificial Neural Network (ANN can be an alternative, simple and fast tool to use. In the present study, the indoor thermal conditions in many dwellings built in Umbria Region were investigated in order to evaluate the envelope performance. They were recently built and have very low energy consumptions. Based on the experimental data, a feed forward network was trained, in order to evaluate the different envelopes performance. As input parameters the outdoor climatic conditions and the thermal characteristics of building envelopes were set, while, as a target parameter, the indoor air temperature was provided. A good training of network was obtained with a high regression value (0.9625 and a very small error (0.007 °C on air temperature. The network was also used to simulate the envelope behavior with new innovative glazing systems, in order to evaluate and to improve the energy performance.

  15. Three-dimensional simulation of hydrogen detonations in the Olkiluoto BWR reactor building

    International Nuclear Information System (INIS)

    This report describes the numerical simulations of hydrogen detonations in Olkiluoto reactor building room B.60.80 using the DET3D code. The code is developed at Forschungszentrum Karlsruhe (FZK) and uses the finite difference method based on three-dimensional Euler equations for a multicomponent reacting gas. DET3D is mainly developed for modelling of gaseous detonations initiated by a direct ignition. DDT phenomena are not treated. The initial conditions of the detonation simulation were based on previous hydrogen spreading analyses carried out with the FLUENT code. DET3D calculations continued the previous, rough estimates of shock pressure loads performed with a simple DETO code. The DETO analyses were based on the strong ignition theory with oblique and normal reflection relations on the adiabatic shock waves. Shock waves were induced by point-like energy release without modelling of the propagating combustion front. In the DETO modelling, only the first shock reflection was treated. The approach of the DET3D code enables the more detailed assessment of detonation pressure loads in a real 3-D geometry. The objective of the work was to assess the pressure loads on room structures under detonation conditions. The initial conditions of detonation simulation were based on the previous hydrogen spreading analyses performed with the FLUENT code. Two sizes of leakage from the containment to the reactor building were considered: 2 mm2, which corresponds to the nominal leakage of containment, and a large leak of 20 mm2. The DET3D simulation indicated that the highest pressure spikes occurred in the room corners due to reflections and superposition of the shock waves. The highest pressure maximum in all simulation cases was about 10.6 MPa. This value was obtained in the upper corner of the room beside the containment wall. The highest pressure impulses to structures during the 150 ms simulation were about 30 - 35 kPa-s. (au)

  16. Simulation of Natural Gas Saving Through Foam Light Weight Concrete Utilization in Residential Buildings

    Directory of Open Access Journals (Sweden)

    H. Kamalan

    2011-10-01

    Full Text Available Heat loss through walls in houses is remarkable and it shares about 25% of total loss. Utilizing Foam Lightweight Concrete (FLC block in walls may lead to reduction in both gas consumption and greenhouse gas emissions. This is due to heat insulation property of the block and consequently less energy consumption. The main objective of this research was to investigate how FLC block can save natural gas usage within building envelop. A typical residential building was simulated for pressed brick, terra-cotta block, 3D panel, and FLC block by utilizing Behsazan software. Afterwards, building gas consumption and relevant carbon dioxide emissions were compared for abovementioned wall materials, while the building area was constant and its height was variable. Results showed that annual gas reduction attributed to utilizing FLC block walls with different heights varies from 25.7% to 30.6% and from 18.5% to 23.3% in comparison with pressed brick and terra-cotta block walls, respectively. This reduction for 3D panel walls was about 4.6%. Moreover, CO2 emission reduction depending on the number of floors for FLC block walls with pressed brick, terra-cotta block, and 3D panel walls were equal to 20.8 to 24, 15 to 18.3, and 3.4 to 3.8 kg CO2/m2, respectively.

  17. Evaluation and simulation of event building techniques for a detector at the LHC

    CERN Document Server

    Spiwoks, R

    1995-01-01

    The main objectives of future experiments at the Large Hadron Collider are the search for the Higgs boson (or bosons), the verification of the Standard Model and the search beyond the Standard Model in a new energy range up to a few TeV. These experiments will have to cope with unprecedented high data rates and will need event building systems which can offer a bandwidth of 1 to 100GB/s and which can assemble events from 100 to 1000 readout memories at rates of 1 to 100kHz. This work investigates the feasibility of parallel event building sys- tems using commercially available high speed interconnects and switches. Studies are performed by building a small-scale prototype and by modelling this proto- type and realistic architectures with discrete-event simulations. The prototype is based on the HiPPI standard and uses commercially available VME-HiPPI interfaces and a HiPPI switch together with modular and scalable software. The setup operates successfully as a parallel event building system of limited size in...

  18. Weather data analysis based on typical weather sequence analysis. Application: energy building simulation

    CERN Document Server

    David, Mathieu; Garde, Francois; Boyer, Harry

    2014-01-01

    In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...

  19. Simulation of thermal indoor climate in buildings by using human Projected Area Factors

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik

    2009-01-01

    measure for thermal environ-ment. The operative temperature is a function of the air temperature, the mean radiant temperature and the relative air velocity. However, in many programs for calculation of energy consumption and thermal indoor climate the model for calculating the mean radiant temperature......Nowadays many new and old buildings in Denmark have large glass surfaces. This is a consequence of the technical development of windows with low U-values that has made it possible to build houses with windows from floor to ceiling in northern climates. On the other hand if one is sitting close...... to these large windows on a cold winter day it is recognized that this can cause thermal discomfort. The calculation of this discomfort needs to be taken properly into account in the simulation of the thermal indoor climate and energy consumption of the rooms. The operative temperature can be used as a simple...

  20. End-to-end interoperability and workflows from building architecture design to one or more simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Tian-Jy; Kim, Younghun

    2015-02-10

    An end-to-end interoperability and workflows from building architecture design to one or more simulations, in one aspect, may comprise establishing a BIM enablement platform architecture. A data model defines data entities and entity relationships for enabling the interoperability and workflows. A data definition language may be implemented that defines and creates a table schema of a database associated with the data model. Data management services and/or application programming interfaces may be implemented for interacting with the data model. Web services may also be provided for interacting with the data model via the Web. A user interface may be implemented that communicates with users and uses the BIM enablement platform architecture, the data model, the data definition language, data management services and application programming interfaces to provide functions to the users to perform work related to building information management.

  1. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  2. Simulation of temperature in office with building integrated heating and cooling system

    DEFF Research Database (Denmark)

    Weitzmann, Peter

    2002-01-01

    by raising the temperature of the concrete to slightly above the desired room temperature. Another way of solving the problem of cooling is by using building integrated cooling in floors. This technique utilizes the thermal mass of concrete in the floors, by integrating PEX pipes in the floor. By maintaining...... the temperature of the concrete to a level slightly below the desired room temperature, the concrete will work as an absorber for the excess heat in the office. This can significantly reduce the need for air conditioning, which will give both improved indoor climate and lower energy costs in the building...... and thermal comfort parameters. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer to the room air and between the room surfaces. The simulation model can be used...

  3. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    Science.gov (United States)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations

  4. Hourly test reference weather data in the changing climate of Finland for building energy simulations

    Directory of Open Access Journals (Sweden)

    Kirsti Jylhä

    2015-09-01

    Full Text Available Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled “Energy demand for the heating and cooling of residential houses in Finland in a changing climate” [1].

  5. Large Eddy Simulation of the Wind Field and Pollution Dispersion in Building Array

    Science.gov (United States)

    Shi, R. F.; Cui, G. X.; Xu, C. X.; Zhang, Z. S.; Wang, Z. S.

    The air quality is one of the significant issues in sustainable development of modern city. In the paperthe Large Eddy Simulation (LES) is used to predict the wind field and pollution dispersion in residence district. The flow in residence district is characterized by the complicated geometry, vortex patterns, unsteadiness etc.; hence the LES is the suitable method for the flow. The finite volume method with fourth order accuracy is utilized for numerical simulation and immerse boundary method (IBM) is applied to the solid boundary condition. The numerical scheme has been validated for a number of complex flows (Xu et al. 2006). A number of testing cases have been performed and the results are compared with experimental data in good agreement. One of the testing cases is an array of cubic buildings with height H, length B and width W of 0.12m. The flow Reynolds number based on the free stream velocity and the height of the building is equal to 4 x 106. A point concentration source is located at 4W in front of the building array. The dynamic Smagorinsky model is used for the subgrid stress. The predicted results are compared with the wind tunnel measurements by Davidson et al. (1996). Figure 1 and 2 shows the typical wind speed distributions and the mean concentration at H/2 and L ay /2, They are in good agreement with experimental data. The results indicate that the proposed numerical scheme of LES is capable of predicting wind field and pollution dispersion in residence district. Moreover numerical simulation can provide more information about the flow pattern and concentration distribution for better understanding the phenomena.

  6. Experimental study and advanced CFD simulation of fire safety performance of building external wall insulation system

    Directory of Open Access Journals (Sweden)

    Yan Zhenghua

    2013-11-01

    Full Text Available Large scale fire tests of building external wall insulation system were conducted. In the experiment, thermal-couples were mounted to measure the insulation system surface temperature and the gas temperature inside rooms at the second and third floors. Photos were also taken during the fire tests. The measurement provides information of the ignition and fire spread of the external insulation system which consists of surface protection layer, glass fibre net, bonding thin layer, anchor and the load bearing wall. Comprehensive simulations of the fire tests were carried out using an advanced CFD fire simulation software Simtec (Simulation of Thermal Engineering Complex [1, 2], which is now released by Simtec Soft Sweden, with the turbulent flow, turbulent combustion, thermal radiation, soot formation, convective heat transfer, the fully coupled three dimensional heat transfer inside solid materials, the ‘burn-out' of the surface protection layer and the pyrolysis of the insulation layer, etc, all computed. The simulation is compared with experimental measurement for validation. The simulation well captured the burning and fire spread of the external insulation wall.

  7. Seismic simulation analysis of a nuclear reactor building using observed earthquake records

    International Nuclear Information System (INIS)

    In this paper, to verify the effectiveness of dynamic response analysis technique, simulation analyses using observed records of five different earthquakes are performed for the reactor building of Unit 6 of the Fukushima Daiichi Nuclear Power Plant. A sway-rocking model (SR model) with embedment effect is adopted for the analyses. The model properties of the structure and soil springs are estimated by using the results of the forced vibration test. The soil properties are estimated by referring to the observed records of free field and the soil test data. The flow of the process for establishing the model properties is shown

  8. Selecting Eco-Friendly Thermal Systems for the “Vittoriale Degli Italiani” Historic Museum Building

    OpenAIRE

    Davide Astiaso Garcia; Umberto Di Matteo; Fabrizio Cumo

    2015-01-01

    Thermal systems installed in museums should guarantee the maintenance of the optimal hygrothermal parameters ranges for the conservation of their collection materials. Considering the preservation of historic buildings, according to their historical and landscaping constraints, not all the thermal system typologies could be installed in these buildings’ typologies. Therefore, the main aim of this paper is to present some indications for the choice of the best thermal system solutions for a co...

  9. Wind flow and wind loads on the surface of a tower- shaped building: Numerical simulations and wind tunnel experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non- hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.

  10. Computer simulated building energy consumption for verification of energy conservation measures in network facilities

    Science.gov (United States)

    Plankey, B.

    1981-01-01

    A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.

  11. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    CERN Document Server

    Abbasi, Akbar

    2015-01-01

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  12. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. The first...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work......The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...

  13. Construction Process Simulation and Safety Analysis Based on Building Information Model and 4D Technology

    Institute of Scientific and Technical Information of China (English)

    HU Zhenzhong; ZHANG Jianping; DENG Ziyin

    2008-01-01

    Time-dependent structure analysis theory has been proved to be more accurate and reliable com-pared to commonly used methods during construction. However, so far applications are limited to partial pe-riod and part of the structure because of immeasurable artificial intervention. Based on the building informa-tion model (BIM) and four-dimensional (4D) technology, this paper proposes an improves structure analysis method, which can generate structural geometry, resistance model, and loading conditions automatically by a close interlink of the schedule information, architectural model, and material properties. The method was applied to a safety analysis during a continuous and dynamic simulation of the entire construction process.The results show that the organic combination of the BIM, 4D technology, construction simulation, and safety analysis of time-dependent structures is feasible and practical. This research also lays a foundation for further researches on building lifecycle management by combining architectural design, structure analy-sis, and construction management.

  14. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  15. Analytical investigation of the hygrothermal effects and parametric study of the Edge Crack Torsion (ECT) mode 3 test lay-ups

    Science.gov (United States)

    Li, Jian; Obrien, T. Kevin

    1995-01-01

    A shear deformation theory including residual thermal and moisture effects is developed for the analysis of either symmetric or unsymmetric laminates with mid-plane edge delamination under torsion loading. The theory is based on an assumed displacement field which includes shear deformation. The governing equations and boundary conditions are obtained from the principle of virtual work. The analysis of the (90/(+/- 45)(n)/(-/+ 45)(n)/90)(s) ECT mode 3 test lay-up indicates that there are no hygrothermal effects on the mode 3 strain energy release rate because the laminate, and both sublaminates above and below the delamination, are symmetric lay-ups. A further parametric study reveals that some other lay-ups can have negligible hygrothermal effects even when the sublaminates above and below the delamination are not symmetric about their own mid-planes. However, these lay-ups may suffer from distortion after the curing process. Another Interesting set of lay-ups investigated is a class of antisymmetric laminates with (+/-(theta/(theta -90)(2)/theta))(n) lay-ups. It is observed that when n takes on even numbers (2 and 4), both hygrothermal and mode 1 effects can be neglected. From this point of view, these lay-ups provide a way to determine the mode 3 toughness between two dissimilar layers. However, when n takes on odd numbers (1 and 3), both hygrothermal and mode 1 effects may be strong in these lay-ups. In particular, when theta equals 45 deg, the lay-ups are free from both hygrothermal and mode 1 effects irrespective of n.

  16. Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications

    Directory of Open Access Journals (Sweden)

    Julia Marín-Sáez

    2016-07-01

    Full Text Available A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel and Avignon (France—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented. The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon to 20% (Sde Boker. Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.

  17. Methodology to Assess No Touch Audit Software Using Simulated Building Utility Data

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States); Langner, M. Rois [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    This report describes a methodology developed for assessing the performance of no touch building audit tools and presents results for an available tool. Building audits are conducted in many commercial buildings to reduce building energy costs and improve building operation. Because the audits typically require significant input obtained by building engineers, they are usually only affordable for larger commercial building owners. In an effort to help small building and business owners gain the benefits of an audit at a lower cost, no touch building audit tools have been developed to remotely analyze a building's energy consumption.

  18. Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory

    Science.gov (United States)

    Zhu, Guanyu

    Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different

  19. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    Science.gov (United States)

    Barjasteh, Ehsan

    in the oxygen-transport properties (diffusivity and solubility of oxygen). The effect of thermal aging on mechanical properties of the aged composites was investigated. A relationship was derived relating TOL to tensile strength of the hybrid composite. The tensile strength remained essentially unchanged by thermal oxidation after 52 weeks of exposure. On the contrary, the oxidation resulted in a decrease in short-beam-shear (SBS) strength (a matrix-dominated property) due to degradation of matrix and fiber/matrix interface strength. However, the filled composites showed a lower reduction in SBS strength than that of the unfilled one for an identical duration of exposure. In addition, the effect of thermal aging on glass transition temperature (T g) was determined for isothermal exposures at 180ºC and 200ºC. The simultaneous effects of post-curing and thermal degradation resulted in the change in Tg during exposure. Another study on the composite rod was performed to investigate the sorption kinetics and the effects of moisture on mechanical and physical properties. Sorption curves were obtained for both hybrid and non-hybrid composite rods to determine characteristic parameters, including the diffusion coefficient (D) and the maximum moisture uptake (Minfinity ). The moisture uptake for the hybrid composites generally exhibited Fickian behavior (no hybridization effects), behaving much like non-hybrid composites. A two-dimensional diffusion model was employed to calculate moisture diffusivities in the longitudinal direction. Interfaces and thermally-induced residual stresses affected the moisture diffusion. In addition, the effect of hygrothermal aging on glass transition temperature (Tg), short beam shear strength (SBS), and tensile strength was determined for hygrothermal exposure at 60°C and 85% relative humidity (RH). Property retention and reversibility of property degradation was also measured. Microscopic inspection revealed no evidence of damage

  20. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  1. Application of experimental design techniques to structural simulation meta-model building using neural network

    Institute of Scientific and Technical Information of China (English)

    费庆国; 张令弥

    2004-01-01

    Neural networks are being used to construct meta-models in numerical simulation of structures. In addition to network structures and training algorithms, training samples also greatly affect the accuracy of neural network models. In this paper, some existing main sampling techniques are evaluated, including techniques based on experimental design theory,random selection, and rotating sampling. First, advantages and disadvantages of each technique are reviewed. Then, seven techniques are used to generate samples for training radial neural networks models for two benchmarks: an antenna model and an aircraft model. Results show that the uniform design, in which the number of samples and mean square error network models are considered, is the best sampling technique for neural network based meta-model building.

  2. Accurate Assessment of RSET for Building Fire Based on Engineering Calculation and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Zhenzhen

    2016-01-01

    Full Text Available In order to obtain the Required Safety Egress Time (RSET accurately, traditional engineering calculation method of evacuation time has been optimized in this paper. Several principles and fact situations were used to optimize the method, such as detecting principle of the fire detecting system, reaction characteristics of staff being in urgent situation, evacuating queuing theory, building structure and the plugging at the porthole. Taking a three-storey KTV as an example, two methods are used to illustrate the reliability and scientific reasonability of the calculation result. The result is deduced by comparing the error (less than 2% at an allowable range between two results. One result is calculated by a modified method of engineering calculation method, and the other one is given based on a Steering model of Pathfinder evacuation simulation software. The optimized RSET has a good feasibility and Accuracy.

  3. Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM

    OpenAIRE

    Kuznik, F.; VIRGONE, J.; Johannes, K.

    2010-01-01

    International audience In building construction, the use of phase change materials (PCMs) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. However, in order to assess and optimize phase change materials included in building wall, numerical simulation is mandatory. For that purpose, a new TRNSYS Ty...

  4. Simulation of energy use, human thermal comfort and office work performance in buildings with moderately drifting operative temperatures

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.;

    2011-01-01

    ) supplemented with CAV ventilation. Simulations comprised moderate, hot–dry and hot–humid climate. Heavy and light wall construction and two orientations of the building (east–west and north–south) were considered. Besides the energy use, also capability of examined systems to keep a certain level of thermal......Annual primary energy use in a central module of an office building consisting of two offices separated with a corridor was estimated by means of dynamic computer simulations. The simulations were conducted for conventional all-air VAV ventilation system and thermo active building system (TABS...... comfort was examined. The results showed that with the moderate climate, the TABS decreased the primary energy use by about 16% as compared with the VAV. With hot–humid climate, the portion of the primary energy saved by TABS was ca. 50% even with the supply air dehumidification taken into account...

  5. Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components

    Science.gov (United States)

    Ferroukhi, M. Y.; Abahri, K.; Belarbi, R.; Limam, K.; Nouviaire, A.

    2016-10-01

    The present paper lies to study the coupled heat, air and moisture transfer in multi-layer building materials. Concerning the modeling part, the interest is to predict the hygrothermal behavior, by developing a macroscopic model that incorporates simultaneously the diffusive, convective and conductive effects on the building elements. Heat transfer is considered in the strongly coupled situation where the mass and heat flux are temperature, vapor pressure and total pressure dependents. The model input parameters are evaluated experimentally through the development of various experimental prototypes in the laboratory. Thereafter, an experimental setup has been established in order to evaluate the hygrothermal process of several multilayer walls configurations. The experimental procedure consists to follow the temperature and relative humidity evolutions within the samples thickness, submitted to controlled and fixed boundary conditions. This procedure points out diverging conclusion between different testing materials combinations (e.g. red-brick and polystyrene). In fact, the hygrothermal behavior of the tested configurations is completely dependent on both materials selection and their thermophysical properties. Finally, comparison between numerical and experimental results showed good agreement with acceptable errors margins with an average of 3 %.

  6. Application of Lidar Data and 3D-City Models in Visual Impact Simulations of Tall Buildings

    Science.gov (United States)

    Czynska, K.

    2015-04-01

    The paper examines possibilities and limitations of application of Lidar data and digital 3D-city models to provide specialist urban analyses of tall buildings. The location and height of tall buildings is a subject of discussions, conflicts and controversies in many cities. The most important aspect is the visual influence of tall buildings to the city landscape, significant panoramas and other strategic city views. It is an actual issue in contemporary town planning worldwide. Over 50% of high-rise buildings on Earth were built in last 15 years. Tall buildings may be a threat especially for historically developed cities - typical for Europe. Contemporary Earth observation, more and more available Lidar scanning and 3D city models are a new tool for more accurate urban analysis of the tall buildings impact. The article presents appropriate simulation techniques, general assumption of geometric and computational algorithms - available methodologies and individual methods develop by author. The goal is to develop the geometric computation methods for GIS representation of the visual impact of a selected tall building to the structure of large city. In reference to this, the article introduce a Visual Impact Size method (VIS). Presented analyses were developed by application of airborne Lidar / DSM model and more processed models (like CityGML), containing the geometry and it's semantics. Included simulations were carried out on an example of the agglomeration of Berlin.

  7. Centre for Building Simulation. Basis for establishing a centre; Center for Bygningssimulering - Idegrundlag for etablering af center

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Joergen Erik; Karlshoej, J.; Bacher, P.; Johnsen, K.; Olesen, B.W.; Rode, C.; Heller, A.

    2012-12-15

    The purpose of the project was to create the basis for the establishment of a Centre for Building Simulation focusing on the use of advanced building energy simulations to obtain electricity and heat savings. The project of trying to make a Centre for Building Simulation in Denmark was based on interviews with future users and partners with an interest in further development of Denmark's leading position in this field. Friday 29th October, 2010, a ''Workshop on the establishment of the Centre for Building Simulation'' was organized at DTU. Approximately 90 national and international participants were present. The workshop structure and results are described in enclosure 1. The primary purpose of the workshop was to establish consensus on the needs of architects and consultants in Denmark in relation to building simulation, and create the concept for a Danish Centre for Building Simulation. As a result of the workshop the idea grew that the centre will combine research and development activities of the Danish building simulation and develops future intelligent simulation tools with a focus on the use of advanced building energy simulations to achieve sustainable construction. These programs need to interact closely with Building Information Modelling, BIM, where the construction process is connected to a digital building model. In addition, various financing options were considered for the operation of the centre with an initial time horizon of 5-10 years. Based on results from the workshop, interviews with future users and partners, a large application was written to the Danish National Research Council, 7th application round - Centre of Excellence, 29 November 2011 (enclosure 3) entitled ''Centre for Intelligent Building Information Modelling iBIM''. The work on the application resulted in a great deal of knowledge gathered and adapted during the whole process of preparing the application. Unfortunately, the application

  8. Summary of the Effects of Two Years of Hygro-Thermal Cycling on a Carbon/Epoxy Composite Material

    Science.gov (United States)

    Kohlman, Lee W.; Binienda, Wieslaw K.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael; Bail, Justin L.

    2011-01-01

    Composite materials are beginning to be used for structures in the fan section of commercial gas turbine engines. This paper explores the type of damage that could occur within one type of composite material after exposure to hygrothermal cycles (temperature/humidity cycles) that are representative of the environment in the fan section of an engine. The effect of this damage on composite material properties is measured. Chemical changes in the matrix material were limited to the exposed surface. Microcrack formation was identified in the composite material. This damage did not cause a significant reduction in tensile strength or impact penetration resistance of the composite material. Additional data is needed to assess the effect of damage on compressive strength.

  9. Simulating control strategies of electrochromic windows : Impacts on indoor climate and energy use in an office building.

    OpenAIRE

    Mäkitalo, Jonatan

    2013-01-01

    The building sector is a one of modern society’s biggest users of energy. In turn, a building’s windows have a significant impact on its energy usage. Electrochromic windows have a thin film on one of the panes, designed to variably change the tint of the window. Thereby the solar heat gain, needed internal lighting and building energy utilization are varied. This thesis uses the simulation software IDA ICE 4.5 to simulate control scenarios for electrochromic windows. The goal is to examine h...

  10. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  11. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    and Ben Polly, Joseph Robertson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Polly, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Collis, Jon [Colorado School of Mines, Golden, CO (United States)

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  12. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    Science.gov (United States)

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  13. Benchmarking Electron-Cloud Build-Up and Heat-Load Simulations against Large-Hadron-Collider Observations

    OpenAIRE

    Dominguez, O; Iriso, U; Maury, H.; Rumolo, G.; Zimmermann, F

    2011-01-01

    After reviewing the basic features of electron clouds in particle accelerators, the pertinent vacuum-chamber surface properties, and the electron-cloud simulation tools in use at CERN, we report recent observations of electron-cloud phenomena at the Large Hadron Collider (LHC) and ongoing attempts to benchmark the measured LHC vacuum pressure increases and heat loads against electron-cloud build-up simulations aimed at determining the actual surface parameters and at monitoring the so-called ...

  14. Moisture absorption and hygrothermal aging in a bismaleimide resin and its carbon fiber composites

    Science.gov (United States)

    Bao, Li-Rong

    Moisture absorption and hygrothermal aging in a commercial bismaleimide (BMI) resin (Cytec 5250-4 RTM) and its carbon fiber composites were systematically studied in this work. The neat resin displays a distinct two-stage absorption behavior, with an initial fast diffusion followed by a gradual increase in weight gain over an extended timescale. The true equilibrium uptake was not reached after two years. The second-stage diffusion is associated with moisture enhanced structural relaxation in the resin. Since water is a good plasticizer, it significantly decreases the glass transition temperature and enhances segmental mobility. Hence, the resin network can slowly relax in response to the swelling stresses created by absorbed moisture, resulting in additional uptake. As the resin is deep in the glassy state, the relaxation process is much slower than diffusion. Therefore, the first stage and second stage are diffusion and relaxation controlled, respectively. A simple mathematical model has been developed to describe this absorption behavior. Though a phenomenological model, this two-stage model can be quantitatively correlated with relaxation theories in the glassy stage. The general application of this model has also been demonstrated. Cyclic absorption experiments indicate that the structural relaxation is irreversible upon desorption. The material response under cyclic absorption conditions is solely determined by the absorption cycles, not the desorption cycles. This phenomenon is consistent with the plasticizing effect of water. Two types of reinforcements are used in the composites, namely, uni-weave and woven fabrics. The diffusivity and water uptake level of the composites are compared with those of the flash in an attempt to deduce the interface effect. In the case of the uni-weave composite, which is essentially a uni-directional fiber composite, the composite diffusivity and uptake level can be predicted from those of the neat resin and the fiber volume

  15. A modified Kelvin impact model for pounding simulation of base-isolated building with adjacent structures

    Institute of Scientific and Technical Information of China (English)

    Ye Kun; Li Li; Zhu Hongping

    2009-01-01

    Base isolation can effectively reduce the seismic forces on a superstructure, particularly in low- to medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level between the base-isolated building (BIB) and its surrounding retaining walls. To effectively investigate the behavior of the BIB pounding with adjacent structures, after assessing some commonly used impact models, a modified Kelvin impact model is proposed in this paper. Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case. At the same time, inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures. The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models. However, the difference between the numerical results from the various impact analytical models is not significant. Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drills and floor accelerations during pounding. It is shown that pounding can substantially increase floor accelerations, especially at the ground floor where impacts occur. Higher modes of vibration are excited during poundings, increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure. Furthermore, higher ductility demands can be imposed on lower floors of the superstructure. Moreover, impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure. Finally, the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding

  16. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xipeng, E-mail: xptan1985@gmail.com [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Kok, Yihong; Tan, Yu Jun [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Vastola, Guglielmo, E-mail: vastolag@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Pei, Qing Xiang; Zhang, Gang; Zhang, Yong-Wei [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore)

    2015-10-15

    Build thickness dependent microstructure of electron beam melted (EBM{sup ®}) Ti–6Al–4V has been investigated from both experiment and simulation using four block samples with thicknesses of 1, 5, 10 and 20 mm. We observe a mixed microstructure of alternate α/β with some α′ martensite inside the 1 mm-thick sample. By contrast, only the alternate α/β microstructure with both colony and basket-weave morphologies occurs inside the 5 mm-, 10 mm- and 20 mm-thick samples. It is found that β spacing is constantly increased with the build thickness, leading to an obvious decrease in microhardness. Finite element method (FEM) simulations show that cooling rates and thermal profiles during EBM process are favorable for the formation of martensite. Moreover, full-scale FEM simulations reveal that the average temperature inside the samples is higher as the build thickness increases. It suggests that martensitic decomposition is faster in thicker samples, which is in good agreement with the experimental observations. - Highlights: • Build geometry dependent microstructure and microhardness for EBM-built Ti–6Al–4V. • Phase evolution involved in EBM process. • FEM simulation of EBM process. • α′ martensite formation and its identification.

  17. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...

  18. Accident at chemically hazardous enterprises: numerical simulation of the process of neutralizing the toxic gas over the building roof

    Directory of Open Access Journals (Sweden)

    N.N. Belyaev

    2012-04-01

    Full Text Available The 2D numerical model was used to simulate the toxic gas neutralization when this gas flows from the opening in the cellar of the building. The helicopter is used to supply the neutralizer. The model is based on the K-gradient transport model and equation of potential flow. The results of numerical experiment are presented.

  19. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V

    International Nuclear Information System (INIS)

    Build thickness dependent microstructure of electron beam melted (EBM®) Ti–6Al–4V has been investigated from both experiment and simulation using four block samples with thicknesses of 1, 5, 10 and 20 mm. We observe a mixed microstructure of alternate α/β with some α′ martensite inside the 1 mm-thick sample. By contrast, only the alternate α/β microstructure with both colony and basket-weave morphologies occurs inside the 5 mm-, 10 mm- and 20 mm-thick samples. It is found that β spacing is constantly increased with the build thickness, leading to an obvious decrease in microhardness. Finite element method (FEM) simulations show that cooling rates and thermal profiles during EBM process are favorable for the formation of martensite. Moreover, full-scale FEM simulations reveal that the average temperature inside the samples is higher as the build thickness increases. It suggests that martensitic decomposition is faster in thicker samples, which is in good agreement with the experimental observations. - Highlights: • Build geometry dependent microstructure and microhardness for EBM-built Ti–6Al–4V. • Phase evolution involved in EBM process. • FEM simulation of EBM process. • α′ martensite formation and its identification

  20. Bringing simulation to implementation: Presentation of a global approach in the design of passive solar buildings under humid tropical climates

    CERN Document Server

    Garde, François; Celaire, Robert

    2012-01-01

    In early 1995, a DSM pilot initiative has been launched in the French islands of Guadeloupe and Reunion through a partnership between several public and private partners (the French Public Utility EDF, the University of Reunion Island, low cost housing companies, architects, energy consultants, etc...) to set up standards to improve thermal design of new residential buildings in tropical climates. This partnership led to defining optimized bio-climatic urban planning and architectural designs featuring the use of passive cooling architectural principles (solar shading, natural ventilation) and components, as well as energy efficient systems and technologies. The design and sizing of each architectural component on internal thermal comfort in building has been assessed with a validated thermal and airflow building simulation software (CODYRUN). These technical specifications have been edited in a reference document which has been used to build over 300 new pilot dwellings through the years 1996-1998 in Reunion...

  1. PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, K.

    1988-09-01

    This report presents a unified method of hourly simulation of a building and analysis of performance data. The method is called Primary and Secondary Terms Analysis and Renormalization (PSTAR). In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense, hence, the name PSTAR. PSTAR allows extraction of building characteristics from short-term tests on a small number of data channels. These can be used for long-term performance prediction (''ratings''), diagnostics, and control of heating, ventilating, and air conditioning systems (HVAC), comparison of design versus actual performance, etc. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI.

  2. Influence of Hygrothermal Aging on Poisson’s Ratio of Thin Injection-Molded Short Glass Fiber-Reinforced PA6

    Directory of Open Access Journals (Sweden)

    Thomas Illing

    2016-05-01

    Full Text Available The hygrothermal aging of short glass fiber-reinforced polyamide 6 materials (PA6 GF represents a major problem, especially in thin-walled components, such as in the automotive sector. In this study, therefore, the thickness and the glass fiber content of PA6 GF materials were varied and the materials were exposed to hygrothermal aging. The temperature and relative humidity were selected in the range from −40 °C up to 85 °C, and from 10% up to 85% relative humidity (RH. In the dry-as-molded state, the determined Poisson’s ratio of the PA6 GF materials was correlated with the fiber orientation based on computer tomography (MicroCT data and shows a linear dependence with respect to the fiber orientation along and transverse to the flow direction of the injection molding process. With hygrothermal aging, the value of Poisson’s ratio increases in the flow direction in the same way as it decreases perpendicular to the flow direction due to water absorption.

  3. Optimization of the Building Energy Performance through Dynamic Modeling, Systems Simulation, Field Monitoring and Evaluation of Renewable Energy Applications

    Directory of Open Access Journals (Sweden)

    Reshmi Banerjee

    2015-02-01

    Full Text Available The annual energy consumption in the residential and commercial sectors, in India is rising consistently at about 8% and the overall energy consumption in buildings has seen an increase from a low of 14% in the 1970s to nearly 33% in 2004/05. The electricity sector in India had an installed capacity of 254.049 GW as of end of September 2014. The research paper will deal with the modeling and optimization of the building energy performance by means of the application of the dynamic building simulation, the optimization of the energy systems and the verification of the energy consumptions and comfort conditions. An integrated tool is at an early stage of development to optimize the building energy performance to be expressed in terms of total energy use. The goal of the research paper is to optimize the building energy performance through the potential of the passive building technologies and the increase of efficiency of the building system.

  4. C-simulation Based Building Controls Implementation with Networked Sensors and Actuators

    NARCIS (Netherlands)

    Wen, Y.J.; DiBartolomeo, D.; Rubinstein, F.

    2012-01-01

    Commercial building sector is one of the largest energy consumers inthe U.S., and lighting, heating, ventilating and air conditioning contribute to more than half of the energy consumption and carbon emissions in buildings. Controls are the most effective way of increasing energy efficiency in build

  5. DIYModeling: a place for students and faculty to build their own game-quality simulations to enhance learning.

    Science.gov (United States)

    Sones, Bryndol; Wattenberg, Frank

    2009-03-01

    DIYModeling (Do it Yourself Modeling) aims to improve both the quality of learning in the STEM disciplines and the extent to which the very best STEM learning reaches all students by leveraging the power of game- quality modeling and simulation. It builds on earlier work by many people using platforms like Java, Flash and game quality simulations like the Federation of American Scientists' Immune Attack. DIYModeling adds a new element that enables students and faculty to build their own game-quality simulations by specifying the underlying scientific and mathematical models without getting into the details of programming. The DIYModeling team is a consortium of math and basic science faculty from six universities teamed up with the software development company Tietronix Software (an 8a certified company), which does contract work for NASA to build complex software systems including game-quality immersive simulations. The goal of the program is to enable curriculum developers and students to develop game- quality, three-dimensional immersive simulations with educational benefit. Current applications under development include a first-person shooter game environment for use in data collection and statistical analysis, orbital mechanics in executing the Hohlman transfer, and solar power generation. Some pilot tests are planned for use in the spring semester.

  6. Daylight Design of Office Buildings: Optimisation of External Solar Shadings by Using Combined Simulation Methods

    Directory of Open Access Journals (Sweden)

    Javier González

    2015-05-01

    Full Text Available Integrating daylight and energy performance with optimization into the design process has always been a challenge for designers. Most of the building environmental performance simulation tools require a considerable amount of time and iterations for achieving accurate results. Moreover the combination of daylight and energy performances has always been an issue, as different software packages are needed to perform detailed calculations. A simplified method to overcome both issues using recent advances in software integration is explored here. As a case study; the optimization of external shadings in a typical office space in Australia is presented. Results are compared against common solutions adopted as industry standard practices. Visual comfort and energy efficiency are analysed in an integrated approach. The DIVA (Design, Iterate, Validate and Adapt plug-in for Rhinoceros/Grasshopper software is used as the main tool, given its ability to effectively calculate daylight metrics (using the Radiance/Daysim engine and energy consumption (using the EnergyPlus engine. The optimization process is carried out parametrically controlling the shadings’ geometries. Genetic Algorithms (GA embedded in the evolutionary solver Galapagos are adopted in order to achieve close to optimum results by controlling iteration parameters. The optimized result, in comparison with conventional design techniques, reveals significant enhancement of comfort levels and energy efficiency. Benefits and drawbacks of the proposed strategy are then discussed.

  7. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    Science.gov (United States)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  8. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    Science.gov (United States)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  9. Calibrated energy simulations of potential energy savings in actual retail buildings

    Science.gov (United States)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant

  10. Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, Frederic; Virgone, Joseph; Johannes, Kevyn [Universite de Lyon, CNRS, INSA de Lyon, CETHIL, UMR 5008, F-69621 Villeurbanne, France Universite Lyon 1, F-69622 (France)

    2010-07-15

    In building construction, the use of phase change materials (PCMs) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. However, in order to assess and optimize phase change materials included in building wall, numerical simulation is mandatory. For that purpose, a new TRNSYS Type, named Type 260, is developed to model the thermal behavior of an external wall with PCM. This model is presented in this paper and validated using experimental data from the literature. (author)

  11. Analysis of the effect of passive strategies on a nearly zero Danish residential building by means of dynamic simulations

    DEFF Research Database (Denmark)

    Avantaggiato, Marta; Simone, Angela; de Carli, Michele;

    2014-01-01

    is raising the issue of overheating even in the middle seasons creating not negligible thermal discomfort. Through building simulation program, the effect of passive cooling strategies, such as solar shading and natural night-time ventilation, on a residential building under Copenhagen climate conditions...... on the indoor environment. When an alternative mechanical ventilation system was considered to exploit the nighttime cooling potential,results show a more constant indoor air temperature performance, just below 26˚C. Even though this temperature trend satisfied the design conditions and users’ safety,it isn...

  12. The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings

    Science.gov (United States)

    Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.

    1979-01-01

    The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.

  13. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  14. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    characterisation of building materials on which the attempt is based to standardize the drying experiment as well as to derive a single number material coefficient. The drying itself is briefly reviewed and existing approaches are discussed. On this basis, possible definitions are evaluated. Finally, a drying...... coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However...

  15. Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar

    OpenAIRE

    Hery Tiana Rakotondramiarana; Tojo Fanomezana Ranaivoarisoa; Dominique Morau

    2015-01-01

    Green roofs improve building energy performance and constitute an alternative to sustainable buildings. A green roof model is dynamically coupled with a building thermal model to assess its energy performance that takes into account the indoor air temperature dynamic changes. Under the climate conditions in Antananarivo, we compared green and conventional roofs. The present study shows that green roofs protect the roof structure under extreme temperature and large temperature fluctuations. Fo...

  16. Building design integrated energy simulation tools: Háskolatorg as case study

    OpenAIRE

    Tsirenge, Jeannot Andriamanampisoa, 1968-

    2012-01-01

    Today’s architects design highly glazed buildings with aesthetics, space transparency and daylight accessibility in mind. Glazing components however are crucial to the design and performance of a building but their energy efficiency has become more and more questioned, as there is risk of a high cooling and heating demand, during summer and winter respectively. They affect building´s indoor comfort and energy budget in many ways. Energy use and environmental degradation have been linked be...

  17. On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period

    OpenAIRE

    Francesco Asdrubali; Franco Cotana; Antonio Messineo

    2012-01-01

    Among solar passive systems integrated in buildings, sunspaces or solar greenhouses represent a very interesting solution. A sunspace is a closed, southbound volume, constituted by transparent surfaces, adjacent to a building, which reduces winter energy demand thanks to the use of solar gains. The effect of a typical solar greenhouse on the energy balance of a building was evaluated during the heating period with two stationary procedures (Method 5000 and EN ISO 13790) and with a dynamic too...

  18. Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Build-Up Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Economically viable and reliable building systems and tool sets are being sought, examined, and tested for extraterrestrial habitat and infrastructure buildup....

  19. WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

    2009-03-20

    The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thus providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the

  20. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  1. A virtual laboratory for the simulation of sustainable energy systems in a low energy building: A case study

    Science.gov (United States)

    Breen, M.; O'Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.

    2016-03-01

    The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.

  2. Modelling, experimentation and simulation of a reversible HP/ORC unit to get a Positive Energy Building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Quoilin, Sylvain;

    2015-01-01

    This paper presents an innovative building comprising a heat pump connected to a solar roof and a geothermal heat exchanger. This unit is able to invert its cycle and operate as an Organic Rankine Cycle (ORC). The solar roof is producing large amount of heat throughout the year. This allows...... and fluid R134a shows promising performance with a net electrical energy produced over one year reaching 4030 kWh. Following that, a prototype has been built and has proven the feasibility of the technology. Finally, a simulation code including the building, the ground heat exchanger, the thermal energy...... storage, the solar roof and the reversible HP/ORC unit is developed and allows to perform a sensivity analysis. Annual results show that this technology leads to a Positive Energy Building....

  3. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  4. An Empirical Validation of Building Simulation Software for Modelling of Double-Skin Facade (DSF)

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Felsmann, Clemens;

    2009-01-01

    Double-skin facade (DSF) buildings are being built as an attractive, innovative and energy efficient solution. Nowadays, several design tools are used for assessment of thermal and energy performance of DSF buildings. Existing design tools are well-suited for performance assessment of conventional...

  5. Building patient safety in intensive care nursing : Patient safety culture, team performance and simulation-based training

    OpenAIRE

    Ballangrud, Randi

    2013-01-01

    Aim: The overall aim of the thesis was to investigate patient safety culture, team performance and the use of simulation-based team training for building patient safety in intensive care nursing. Methods: Quantitative and qualitative methods were used. In Study I, 220 RNs from ten ICUs responded to a patient safety culture questionnaire analysed with statistics. Studies II-IV were based on an evaluation of a simulation-based team training programme. Studies II-III included 53 RNs from seven I...

  6. Simulation of Electron-Cloud Build-Up for the Cold Arcs of the LHC and Comparison with Measured Data

    CERN Document Server

    Maury Cuna, H; Rumolo, G; Tavian, L; Zimmermann, F

    2011-01-01

    The electron cloud generated by synchrotron radiation or residual gas ionization is a concern for LHC operation and performance. We report the results of simulations studies which examine the electron cloud build-up, at injection energy, 3.5 TeV for various operation parameters. In particular, we determine the value of the secondary emission yield corresponding to the multipacting threshold, and investigate the electron density, and heat as a function of bunch intensity for dipoles and field-free regions. We also include a comparison between simulations results and measured heat-load data from the LHC scrubbing runs in 2011.

  7. Numerical simulation of {sup 222}RN exhalation from phosphogypsum building blocks and accumulation inside a closed chamber

    Energy Technology Data Exchange (ETDEWEB)

    Rabi Junior, Jose A. [Sao Paulo Univ., Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos]. E-mail: jrabi@fzea.usp.br; Silva, Nivaldo C. da [Pontificia Univ. Catolica de Minas Gerais, Pocos de Caldas, MG (Brazil)]|[Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Laboratorio]. E-mail: ncsilva@pucpcaldas.br; ncsilva@cnen.gov.br

    2005-07-01

    Zero-order models for {sup 222}Rn exhalation from phosphogypsum-bearing building materials and its transient indoor accumulation assume uniform distribution inside the enclosure. Conversely, this paper numerically simulates a transient two-dimensional {sup 222}Rn accumulation in a test chamber that contains a phosphogypsum board at one wall. Results show that above hypothesis might be oversimplified when spatial dependence is considered. (author)

  8. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  9. Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar

    Directory of Open Access Journals (Sweden)

    Hery Tiana Rakotondramiarana

    2015-05-01

    Full Text Available Green roofs improve building energy performance and constitute an alternative to sustainable buildings. A green roof model is dynamically coupled with a building thermal model to assess its energy performance that takes into account the indoor air temperature dynamic changes. Under the climate conditions in Antananarivo, we compared green and conventional roofs. The present study shows that green roofs protect the roof structure under extreme temperature and large temperature fluctuations. For the case of Antananarivo, the amplitude of the temperature fluctuations at the top face of the support is reduced by 28 °C when using green roof. The impact of the green roof on indoor air temperature and energy demand is investigated. The vegetation decreases the maximum indoor air temperature and improves the building thermal comfort during summer days. It has no effect on the minimum indoor air temperature, but additional soil thickness can increase it. In addition, a global sensitivity analysis, which is carried out on the proposed model without considering any specific weather data, allows us to identify the most influential parameters on the energy demand. It has been found that green roofs have almost insignificant thermal impact in insulated buildings; however, their potential prevails over the building envelope and weather characteristics in the case of non-insulated building.

  10. Climate classification for the simulation of thermally activated building systems (TABS)

    DEFF Research Database (Denmark)

    Behrendt, Benjamin; Christensen, Jørgen Erik

    2013-01-01

    Thermally activated building systems (TABS) provide high temperature cooling and low temperature heating which has a better efficiency compared to traditional heating and cooling solutions. Additionally the moderate required temperature levels for heating and cooling create the opportunity to use...

  11. Critical Simulation Based Evaluation of Thermally Activated Building Systems (TABS) Design Models

    OpenAIRE

    Basu, Chandrayee

    2012-01-01

    Thermally Activated Building Systems (TABS) is a recognized low-energy HVAC system. Sizing of these systems is complex due to their slow thermal response. Limited cooling capacity of these systems and inadequacy of conventional sizing method, that assumes high factor of safety, is preventing early adoption of these systems. TABS, however, is proven to be energy-efficient and capable of preserving comfort in several commercial buildings of Europe. There is, however no comprehensive case study ...

  12. Transparent facades in low energy office buildings Numerical simulations and experimental studies

    OpenAIRE

    Grynning, Steinar

    2015-01-01

    Windows are a key component in the building envelope. They are often, thought of as energy drains and something associated with excessive energy demands in a building. However, in order to assess the energy performance of a window, several factors must be addressed. The most important issues to consider are energy losses due to heat transmission through windows, energy gains from solar radiation as well as transmitted visible light and the influence on artificial lighting deman...

  13. Technology Solutions Case Study: Hygrothermal Performance of a Double-Stud Cellulose Wall

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    Moisture problems within the building shell can be caused by a number of factors including excess interior moisture that is transported into the wall through air leakage and vapor drive, bulk water intrusion from leaks and wind-driven rain, capillary action from concrete to wood connections, and through wetted building materials such as siding wetted from rain splash back. With the increasing thickness of walls, moisture issues could increase. Several builders have successfully used “double-wall” systems to more practically achieve higher R-values in thicker framed walls. A double wall typically consists of a load-bearing external frame wall constructed with 2 × 4 framing at 16 in. on center using conventional methods. After the building is enclosed, an additional frame wall is constructed several inches inside the load-bearing wall. Several researchers have used moisture modeling software to conduct extensive analysis of these assemblies; however, little field research has been conducted to validate the results. In this project, the Building America research team Consortium for Advanced Residential Buildings monitored a double-stud assembly in climate zone 5A to determine the accu¬racy of moisture modeling and make recommendations to ensure durable and efficient assemblies.

  14. Redesigning Terraced Social Housing in the UK for Flexibility Using Building Energy Simulation with Consideration of Passive Design

    Directory of Open Access Journals (Sweden)

    Hasim Altan

    2015-05-01

    Full Text Available A chosen case study house forms the basis of this paper, which is a pilot energy-efficient social housing project, completed by one of the largest housing developers in the UK. The main aim of this study is to inform the redesign of flexible energy-efficient housing units. The housing, designed for social tenants, was built by the Accent Group in 2005, using modern construction methods and sustainable materials, based on extensive research from the adaptable and “Grow Home” principles of Avi Friedman as well as open building implementation. The first pilot scheme was designed in collaboration with the Building Energy Analysis Unit at the University of Sheffield, together with the Goddard Wybor Practise, and was a successful housing development with respect to being environmentally friendly and a low-energy design scheme for the UK climate. This paper presents redesigning of flexible terraced housing units, and their performance evaluation, using a building simulation method as well as the passive-house planning package. The aim was to plan a row of terraced houses that can not only utilize a flexible design concept in floor planning layout, but also to reduce energy consumption with a passive design with particular attention paid to material selection. In addition, building simulation work has been carried out with the use of DesignBuilder software for both thermal and energy performance evaluation. The study examines the annual energy performance and comfort conditions in the designed house to be situated in the Northeast of England, UK. A terraced house unit design is considered a flexible home that can adjust to the needs of different tenants for the purpose of achieving a sustainable building under different aspects, such as low energy, low carbon, use of renewables, and low impact materials, with flexibility by design.

  15. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  16. Automated post-simulation visualization of modular building production assembly line

    NARCIS (Netherlands)

    Han, Sang Hyeok; Al-Hussein, Mohamed; Al-Jibouri, Saad; Yu, Haitao

    2012-01-01

    Simulation is often used to model production processes with the aim of understanding and improving them. In many cases, however, information produced by simulation is not detailed enough and can be misinterpreted. The use of visualization in combination with simulation can provide project participan

  17. An indoor augmented reality mobile application for simulation of building evacuation

    Science.gov (United States)

    Sharma, Sharad; Jerripothula, Shanmukha

    2015-03-01

    Augmented Reality enables people to remain connected with the physical environment they are in, and invites them to look at the world from new and alternative perspectives. There has been an increasing interest in emergency evacuation applications for mobile devices. Nearly all the smart phones these days are Wi-Fi and GPS enabled. In this paper, we propose a novel emergency evacuation system that will help people to safely evacuate a building in case of an emergency situation. It will further enhance knowledge and understanding of where the exits are in the building and safety evacuation procedures. We have applied mobile augmented reality (mobile AR) to create an application with Unity 3D gaming engine. We show how the mobile AR application is able to display a 3D model of the building and animation of people evacuation using markers and web camera. The system gives a visual representation of a building in 3D space, allowing people to see where exits are in the building through the use of a smart phone or tablets. Pilot studies were conducted with the system showing its partial success and demonstrated the effectiveness of the application in emergency evacuation. Our computer vision methods give good results when the markers are closer to the camera, but accuracy decreases when the markers are far away from the camera.

  18. Hygrothermal Aging Analysis of Rubber Materials After Long-term Storage%长期储存后橡胶材料湿热老化分析

    Institute of Scientific and Technical Information of China (English)

    沈尔明; 李晓欣; 王志宏; 滕佰秋; 刘嘉

    2013-01-01

    After storage period of 1.5 years,then 0,5,10,20 days and 60 days hygrothermal test were carried out for nitrile rubber,fluororubber and fluorosilicone rubber,the appearance,mass gain,Shore A hardness,tensile strength,elongation at break and set after break were investigated in the dry and wet conditions.The results show that different samples had distinct moisture absorbing performance.After storage and hygrothermal environment,the nitrile rubber less affected; the fluororubber absorbed a amount of moisture,but did not produce significant effects of aging on the hardness and the mechanical properties; the fluorosilicone rubber significant aged after the storage,and hygrothermal environment speeded up the aging process.The nitrile rubber and fluororubber suitable for storage in the hygrothermal environment.%对选择典型的丁腈橡胶、氟橡胶和氟硅橡胶材料先开展1.5年储存期老化实验,再进行0,5,10,20天和60天的湿热老化实验研究.分别对选取的三种典型橡胶材料在实验前后的外观、增重率、邵氏A硬度、拉伸强度、拉断伸长率和拉断永久变形等性能的对比分析.得出结论:三种典型橡胶材料中,湿热环境对储存后的丁腈橡胶影响较小;氟橡胶的吸湿量较大,但没有对材料的硬度和拉伸性能产生明显的老化影响,氟硅橡胶在储存期后就已经出现明显老化迹象,湿热环境会加快氟硅橡胶的老化过程.

  19. Topographica: building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components

    Directory of Open Access Journals (Sweden)

    James A Bednar

    2009-03-01

    Full Text Available Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major technical challenge. In this paper, we show that the Python-based Topographica simulator makes it straightforward to build systems that cross levels of analysis, as well as providing a common framework for evaluating and comparing models implemented in other simulators. These results rely on the general-purpose abstractions around which Topographica is designed, along with the Python interfaces becoming available for many simulators. In particular, we present a detailed, general-purpose example of how to wrap an external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines of Python code, making it possible to use any of the extensive input presentation, analysis, and plotting tools of Topographica. Additional examples show how to interface easily with models in other types of simulators. Researchers simulating topographic maps externally should consider using Topographica's analysis tools (such as preference map, receptive field, or tuning curve measurement to compare results consistently, and for connecting models at different levels. This seamless interoperability will help neuroscientists and computational scientists to work together to understand how neurons in topographic maps organize and operate.

  20. 苎麻纤维增强酚醛树脂基复合材料的湿热性能研究%Hygrothermal Properties of Ramie Fiber/Phenolic Resin Composite under Different Hygrothermal Conditions

    Institute of Scientific and Technical Information of China (English)

    陈旭; 尹鹏; 咸贵军; 刘燕峰; 刘青曼; 益小苏

    2013-01-01

    Ramie fiber fabric reinforced phenolic resin composite laminates were prepared, and the moisture absorption, diffusion properties and mechanical properties were studied under different hygrothermal conditions. Results show that instantaneous moisture absorption rate of the laminate increases with the increase of relative humidity at 20℃ ,40℃ and 60℃ , and that the temperature has unobvious effect on the hygrothermal properties of the laminate under 50% relative humidity. When the moisture absorption fraction is less than 0. 5, the moisture diffusion coefficient of the laminate are 2. 16 × 10-6cm2/s, 2. 94 ×10-6cm2/s and 6. 61 × 10 -1 cm2/s respectively under the temperatures of 20℃ ,40℃ and 60℃ , and the relative humidity of 50% . The mechanical properties of the laminates decrease with the increase of the moisture absorption rate. The SEM photographs indicate that the moisture absorption damages the interface adhesion between fiber and resin of the composite, resulting in weak stress transferring between the fiber and the resin matrix.%通过模压工艺制备了苎麻纤维织物增强酚醛树脂基复合材料层合板,研究了模压层合板在不同湿热环境下的水吸收与扩散及力学性能.研究表明:在20℃,40℃和60℃三种温度下,相对湿度的上升使层合板瞬时吸湿速率增大很明显,而在50%相对湿度下,温度对层合板的饱和吸水率的影响不大.当吸湿份数在0.5以下时,层合板在50%的相对湿度和20℃,40℃和60℃三种温度下,水扩散系数分别为2.16 x 10-6 cm2/s,2.94×10-6cm2/s和6.61×10-6 cm2/s.层合板的力学性能随吸水率的增加而下降.通过扫描电子显微镜(SEM)观察,层合板力学性能下降的主要原因是水分破坏了纤维和树脂的界面,同时进入纤维的空隙中,影响了复合材料中的应力传递,使复合材料力学性能下降.

  1. Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Build-Up

    Science.gov (United States)

    Khoshnevis, B.; Carlson, A.; Leach N.; Thangavelu, M.

    2016-01-01

    Economically viable and reliable building systems and tool sets are being sought, examined and tested for extraterrestrial infrastructure buildup. This project focused on a unique architecture weaving the robotic building construction technology with designs for assisting rapid buildup of initial operational capability Lunar and Martian bases. The project aimed to study new methodologies to construct certain crucial infrastructure elements in order to evaluate the merits, limitations and feasibility of adapting and using such technologies for extraterrestrial application. Current extraterrestrial settlement buildup philosophy holds that in order to minimize the materials needed to be flown in, at great transportation costs, strategies that maximize the use of locally available resources must be adopted. Tools and equipment flown as cargo from Earth are proposed to build required infrastructure to support future missions and settlements on the Moon and Mars.

  2. Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

    2011-08-01

    This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

  3. A technical framework to describe occupant behavior for building energy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William; Hong, Tianzhen

    2013-12-20

    Green buildings that fail to meet expected design performance criteria indicate that technology alone does not guarantee high performance. Human influences are quite often simplified and ignored in the design, construction, and operation of buildings. Energy-conscious human behavior has been demonstrated to be a significant positive factor for improving the indoor environment while reducing the energy use of buildings. In our study we developed a new technical framework to describe energy-related human behavior in buildings. The energy-related behavior includes accounting for individuals and groups of occupants and their interactions with building energy services systems, appliances and facilities. The technical framework consists of four key components: i. the drivers behind energy-related occupant behavior, which are biological, societal, environmental, physical, and economical in nature ii. the needs of the occupants are based on satisfying criteria that are either physical (e.g. thermal, visual and acoustic comfort) or non-physical (e.g. entertainment, privacy, and social reward) iii. the actions that building occupants perform when their needs are not fulfilled iv. the systems with which an occupant can interact to satisfy their needs The technical framework aims to provide a standardized description of a complete set of human energy-related behaviors in the form of an XML schema. For each type of behavior (e.g., occupants opening/closing windows, switching on/off lights etc.) we identify a set of common behaviors based on a literature review, survey data, and our own field study and analysis. Stochastic models are adopted or developed for each type of behavior to enable the evaluation of the impact of human behavior on energy use in buildings, during either the design or operation phase. We will also demonstrate the use of the technical framework in assessing the impact of occupancy behavior on energy saving technologies. The technical framework presented is

  4. Simulation of the GHG Abatement Potentials in the U.S. Building Sector by 2050

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; DeForest, Nicholas; Marnay, Chris; Bonnet, Florence; Lai, Judy; Phan, Trucy

    2010-10-01

    Given the substantial contribution of the U.S. building sector to national carbon emissions, it is clear that to address properly the issue of climate change, one must first consider innovative approaches to understanding and encouraging the introduction of new, low-carbon technologies to both the commercial and residential building markets. This is the motivation behind the development of the Stochastic Lite Building Module (SLBM), a long range, open source model to forecast the impact of policy decisions and consumer behavior on the market penetration of both existing and emerging building technologies and the resulting carbon savings. The SLBM, developed at Lawrence Berkeley National Laboratory (LBNL), is part of the Stochastic Energy Deployment System (SEDS) project, a multi-laboratory effort undertaken in conjunction with the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL) and private companies. The primary purpose of SEDS is to track the performance of different U.S. Department of Energy (USDOE) Research and Development (R&D) activities on technology adoption, overall energy efficiency, and CO{sub 2} reductions throughout the whole of the U.S. economy. The tool is fundamentally an engineering-economic model with a number of characteristics to distinguish it from existing energy forecasting models. SEDS has been written explicitly to incorporate uncertainty in its inputs leading to uncertainty bounds on the subsequent forecasts. It considers also passive building systems and their interactions with other building service enduses, including the cost savings for heating, cooling, and lighting due to different building shell/window options. Such savings can be compared with investments costs in order to model real-world consumer behavior and forecast adoption rates. The core objective of this paper is to report on the new window and shell features of SLBM and to show the implications of

  5. Dynamic simulations to develop a natural ventilation concept for an office building

    OpenAIRE

    Thewes, Andreas; Maas, Stefan; SCHOLZEN, Frank; Waldmann, Danièle; Zuerbes, Arno

    2010-01-01

    The Sustainability Group of the University of Luxembourg defined for their new buildings a maximum thermal end-energy of 14 kWh/(m3a) and an electricity consumption for HVAC and lighting below 6 kWh/(m3a). Therefore it was necessary to avoid active cooling loads and mechanical ventilation in the offices and small lecture rooms. The well insulated and air-tight façade, including special outside shading elements which were designed as a grid over the complete building envelope, was ...

  6. Building high-accuracy thermal simulation for evaluation of thermal comfort in real houses

    OpenAIRE

    Nguyen, Hoaison; Makino, Yoshiki; Lim, Azman Osman; TAN, Yasuo; Shinoda, Yoichi

    2013-01-01

    Thermal comfort is an essential aspect for the control and verification of many smart home services. In this research, we design and implement simulation which models thermal environment of a smart house testbed. Our simulation can be used to evaluate thermal comfort in various conditions of home environment. In order to increase the accuracy of the simulation, we measure thermal-related parameters of the house such as temperature, humidity, solar radiation by the use of sensors and perform p...

  7. Skill-Building Simulations in Cardiology: The HeartLab and EkgLab Experience

    OpenAIRE

    Bergeron, Bryan P.; Greenes, Robert A

    1987-01-01

    HeartLab and EkgLab are two simulation-based programs designed to teach medical students the essentials of the auscultatory cardiac exam and of electrocardiogram interpretation, respectively. The issues considered throughout the development of these projects, namely implementation language selection, program architecture, simulation design, patient models, and the approach to validation, are applicable to the design of any simulation-based system.

  8. Evaluation of Moisture Buffer Effects by Performing Whole-Building Simulations

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; K., Grau

    2004-01-01

    The humidity of rooms and the moisture conditions of materials in the enclosure of buildings depend much on each other because of the moisture exchange that takes place over the interior surfaces. These moisture influences also depend strongly on the thermal conditions of indoor spaces and enclos...

  9. Building simulation models of developing plant organs using VirtualLeaf

    NARCIS (Netherlands)

    Merks, R.M.H.; Guravage, M.A.; Smet, I. de

    2012-01-01

    Cell-based computational modeling and simulation are becoming invaluable tools in analyzing plant development. In a cell-based simulation model, the inputs are behaviors and dynamics of individual cells and the rules describing responses to signals from adjacent cells. The outputs are the growing ti

  10. Energy and CO2 emissions performance assessment of residential micro-cogeneration systems with dynamic whole-building simulation programs

    International Nuclear Information System (INIS)

    Micro-cogeneration, also termed micro combined heat and power (MCHP) or residential cogeneration, is an emerging technology with the potential to provide energy efficiency and environmental benefits by reducing primary energy consumption and associated greenhouse gas emissions. The distributed generation nature of the technology also has the potential to reduce losses due to electrical transmission and distribution inefficiencies and to alleviate utility peak demand problems. Detailed MCHP models for whole-building simulation tools, developed in Annex 42 of the International Energy Agency (IEA) Energy Conservation in Buildings and Community Systems Programme, have been used to conduct a performance assessment study for a number of micro-cogeneration systems and residential buildings. Annual non-renewable primary energy (NRPE) demand and CO2-equivalent (CO2-eq) emissions were determined by simulation for different cogeneration technologies, namely natural gas-fuelled solid oxide (SOFC) and polymer electrolyte membrane fuel cells, Stirling and internal combustion engines. These were compared to the reference system with a gas boiler and electricity supply from the grid. A ground-coupled heat pump system was also analysed for comparison. The cogeneration units were integrated in single and multi-family houses of different energy standard levels. Two different electricity generation mixes were considered: European mix and combined cycle power plant (CCPP). For the MCHP devices, detailed dynamic component models as well as simplified performance map models were used, developed and calibrated with either results from laboratory experiments or with manufacturer data. The simulations were performed using the whole-building simulation programme TRNSYS, using domestic hot water and electric demand profiles specified in IEA Annex 42. Combinations of three demand levels were analyzed. In NRPE demand, for the European electricity mix, most MCHP systems offered reductions (up to

  11. Wind flow and wind loads on the surface of a tower-shaped building:Numerical simulations and wind tunnel experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non-hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.

  12. Benchmarking Electron-Cloud Build-Up and Heat-Load Simulations against Large-Hadron-Collider Observations

    CERN Document Server

    Dominguez, O; Maury, H; Rumolo, G; Zimmermann, F

    2011-01-01

    After reviewing the basic features of electron clouds in particle accelerators, the pertinent vacuum-chamber surface properties, and the electron-cloud simulation tools in use at CERN, we report recent observations of electron-cloud phenomena at the Large Hadron Collider (LHC) and ongoing attempts to benchmark the measured LHC vacuum pressure increases and heat loads against electron-cloud build-up simulations aimed at determining the actual surface parameters and at monitoring the so-called scrubbing process. Finally, some other electron-cloud studies related to the LHC are mentioned, and future study plans are described. Presented at MulCoPim2011, Valencia, Spain, 21-23 September 2011.

  13. Simulation Based Assessment of Heat Pumping Potential in Non-Residential Buildings – Part 1: Modeling

    OpenAIRE

    Bertagnolio, Stéphane; Stabat, Pascal; Soccal, Benjamin; Gendebien, Samuel; Andre, Philippe

    2010-01-01

    1 Introduction A solution to reduce the energy consumption in office and health care buildings consist in better exploiting the potential of the heat pump technology. This can be done by recovering heat at the condenser when the chiller is used to produce cold (simultaneous heating and cooling demands) or by using the chiller in heat pump mode (non-simultaneous heating and cooling demands). Both strategies appear particularly feasible when cooling and heating needs and the heat pump techno...

  14. Simulations of electron cloud build-up and saturation in the APS

    OpenAIRE

    Harkay, K.C.; Rosenberg, R. A.; Furman, M.A.; Pivi, M.

    2002-01-01

    In studies with positron beams in the Advanced Photon Source, a dramatic amplification was observed in the electron cloud for certain bunch current and bunch spacings. In modeling presented previously, we found qualitative agreement with the observed beam-induced multipacting condition, provided reasonable values were chosen for the secondary electron yield parameters, including the energy distribution. In this paper, we model and discuss the build-up and saturation process observed ove...

  15. Simulation of Solar Powered Absorption Cooling System for Buildings in Pakistan

    OpenAIRE

    Asim, Muhammad

    2016-01-01

    This research investigates the potential of a solar powered cooling system for single family houses in Pakistan. The system comprises water heating evacuated tube solar collectors, a hot water storage tank, and an absorption chiller.A literature review was carried out covering:• Energy situation, climate, and renewable energy potential in Pakistan;• Energy and thermal comfort in buildings, particularly for hot climates;• Solar collectors and solar cooling systems, particularly for hot climate...

  16. Building Blocks for Cognitive Robots: Embodied Simulation and Schemata in a Cognitive Architecture

    OpenAIRE

    Hemion, Nikolas

    2013-01-01

    Building robots with the ability to perform general intelligent action is a primary goal of artificial intelligence research. The traditional approach is to study and model fragments of cognition separately, with the hope that it will somehow be possible to integrate the specialist solutions into a functioning whole. However, while individual specialist systems demonstrate proficiency in their respective niche, current integrated systems remain clumsy in their performance. Recent findings in ...

  17. Status of Electron-Cloud Build-Up Simulations for the Main Injector

    OpenAIRE

    Furman, M.A.

    2011-01-01

    We provide a brief status report on measurements and simulations of the electron cloud in the Fermilab Main Injector. Areas of agreement and disagreement are spelled out, along with their possible significance.

  18. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper

  19. Phosphogypsum as an alternative building material: preliminary modeling and simulation of radon-222 exhalation from blocks and indoor accumulation

    International Nuclear Information System (INIS)

    Phosphogypsum is a by-product from the phosphate fertilizer industry and its large-scale utilization as an alternative construction material copes with radiological issues related to radon-222. Zero-order models for radon-222 exhalation from phosphogypsum building blocks and its time-varying accumulation in closed domains (e.g. indoor accumulation) presume homogeneous distribution of radon-222 throughout the enclosure. Having in mind radiological protection design, exhalation characterization of a block sample is a valuable parameter for the corresponding building performance simulation and it can be accomplished by placing a test block inside a test chamber together with a suitable nuclear detector (their relative positioning depends on the chamber geometry). As breakdown of the uniform concentration hypothesis is likely to occur, this preliminary work numerically investigates such model oversimplification. Along with emanation and decay processes, the present mathematical model assumes time-dependent two-dimensional diffusion-dominant mass transfer in a domain containing a sample of porous material, namely the phosphogypsum block of finite thickness. Conversely, as the test chamber is quite small and air-tight closed, convective mass transfer is neglected. Numerically simulated results have confirmed that a non-uniform radon-222 distribution takes place, which can obviously influence the position of the nuclear detector (or its primary element), thus affecting its readings. (author)

  20. Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; L.M. Hensena, Jan; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings and heating, ventilation and airconditioning (HVAC) systems can help reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers suffcient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation to integrate different BPS tools. Co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This article analyzes how co-simulation influences consistency, stability and accuracy of the numerical approximation to the solution. Consistency and zero-stability are studied for a general class of the problem, while a detailed consistency and absolute stability analysis is given for a simple two-body problem. Since the accuracy of the numerical approximation to the solution is reduced in co-simulation, the article concludes by discussing ways for how to improve accuracy.

  1. The building and simulation of color analytical model based on prism dispersion

    Science.gov (United States)

    Yu, Xun; Li, Xiaoming; Wang, Yawei

    2015-02-01

    The color based on prism dispersion was analyzed and the mathematical model was established in this paper. Firstly, based on Dan Bruton's research, the mapping relationship between visible wavelength and data in color map matrix was created, the geometric data of color after dispersion of the prism was processed with least squares curve fitting, then the mapping relationship between wavelength and the refractive index was built. Secondly, on the basis of the work before, the mapping relationship between wavelength and projection geometry was built. Finally, through the building of color management system, the characterization of spectral lines and colors in LAB color space would be got.

  2. Dynamic thermal simulation of ground heat exchangers for renewable heating of buildings

    OpenAIRE

    Gan, Guohui

    2016-01-01

    The temperature of deep soil is relatively stable throughout a year and the thermal energy stored in soil can be used to provide renewable heat or coolth for a building. A ground heat exchanger is required to transfer heat between the fluid in the heat exchanger and surrounding soil. The control volume method is used to solve the equations for coupled heat and moisture transfer in soil and the dynamic interactions between the heat exchanger, soil and atmosphere. The method is used for numeric...

  3. Simulations of electron cloud build-up and saturation in the APS

    International Nuclear Information System (INIS)

    In studies with positron beams in the Advanced Photon Source, a dramatic amplification was observed in the electron cloud for certain bunch current and bunch spacings. In modeling presented previously, we found qualitative agreement with the observed beam-induced multipacting condition, provided reasonable values were chosen for the secondary electron yield parameters, including the energy distribution. In this paper, we model and discuss the build-up and saturation process observed over long bunch trains at the resonance condition. Understanding this saturation mechanism in more detail may have implications for predicting electron cloud amplification, multipacting, and instabilities in future rings

  4. Application of data mining techniques in the analysis of indoor hygrothermal conditions

    CERN Document Server

    Ramos, Nuno M M; Almeida, Ricardo M S F; Simões, Maria L; Manuel, Sofia

    2016-01-01

    The main benefit of the book is that it explores available methodologies for both conducting in-situ measurements and adequately exploring the results, based on a case study that illustrates the benefits and difficulties of concurrent methodologies. The case study corresponds to a set of 25 social housing dwellings where an extensive in situ measurement campaign was conducted. The dwellings are located in the same quarter of a city. Measurements included indoor temperature and relative humidity, with continuous log in different rooms of each dwelling, blower-door tests and complete outdoor conditions provided by a nearby weather station. The book includes a variety of scientific and engineering disciplines, such as building physics, probability and statistics and civil engineering. It presents a synthesis of the current state of knowledge for benefit of professional engineers and scientists.

  5. Simple Simulated Propagation Modeling and Experimentation within and around Buildings at 2700 MHz

    Directory of Open Access Journals (Sweden)

    Tanay Bhatt

    2016-01-01

    Full Text Available There is a growing interest in understanding wave behavior in urban and suburban environment for 5th generation broadband applications. With the advent of using broadband technologies in buildings, office space and vehicle have become a necessity on a large scale. Models, predictions, and calculations for in-building, within a vehicle or near a reflective object with microscale details, are becoming highly classified in a competitive telecom environment. This paper provides an improved understanding of signal strength behavior within suburban residences with predictions prequalified using a vehicular scanner. Supporting predictions are provided by a ray tracing algorithm developed for dissertation. Results indicate signal strength variation of more than 50 dB from “strong signal” locations such as room centers and far corners to “weak signal” locations where shadowing and tunneling effects are evident. Based on this unique classification a scheme is proposed which indicates that specular scattering provides the major signal energy at more than 70% of the locations within the residences. Finally, an observed rake stabilizing effect is attributed to the proximity of strong scatterers.

  6. Status of Electron-Cloud Build-Up Simulations for the Main Injector

    International Nuclear Information System (INIS)

    We provide a brief status report on measurements and simulations of the electron cloud in the Fermilab Main Injector (MI). Areas of agreement and disagreement are spelled out, along with their possible significance. An upgrade to the MI is being considered that would increase the bunch intensity Nb, from the present ∼ 1 x 1011 to 3 x 1011, corresponding to a total pulse intensity Ntot = 16.4 x 1013, in order to generate intense beams for the neutrino program. Such an increase in beam intensity would place the MI in a parameter regime where other storage rings have seen a significant EC effect. Motivated by this concern, efforts have been undertaken over the recent past to measure and simulate the magnitude of the effect and to assess its operational implications on the proposed upgrade. We report here a summary of simulation results obtained with the code POSINST, and certain benchmarks against measurements. Unless stated otherwise, the simulation parameters used are shown in Tab. 1. Some of these represent a slightly simplified version of the MI operation.

  7. Build up An Operational Flood Simulation from Existing 1D Channel Flow Works

    Science.gov (United States)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Lien, Ho-Cheng; Shen, Jhih-Cyuan; Chung, Ming-Ko

    2016-04-01

    Several 2D flood simulations will be developed for urban area in recent years in Taiwan. Original ideas focus on the static flood maps produced by the 2D flood simulation with respect to design events, which could be useful no matter for planning or disaster awareness. However, an extra bonus is expected to see if we can reuse the 2D flood simulation framework for operational use or not. Such a project goal inspire us to setup a standard operation procedure before any progress from existing 1D channel flow works. 3 key issues are taken into account in the SOP: 1. High Resolution Terrain: A 1m resolution digital terrain model (DTM) is considered as a reference. The Channels and structures should be setup in 1D channel flow works if we can identify under such high resolution. One should examine the existing 1D channel flow works consistent with the DTM or not. 2. Meteo Stations Referenced: Real time precipitation would be send to referenced location in RR models during an operational forecast. Existing 1D channels flow works are usually specifically for design events which are not necessarily equipped with such references. 3. Time Consuming: A full scale 2D flood simulation needs a lot of computation resources. A solution should be derived within practical time limits. Under the above consideration, some impacts and procedures will be analyzed and developed to setup the SOP for further model modification.

  8. Building performance simulation in the early design stage: An introduction to integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2015-01-01

    , a visual programming language and a BPS to provide better support for the designer during the early stages of design as opposed to alternatives such as the current implementation of IFC or gbXML or the unaccompanied use of simulation packages. (C) 2015 Elsevier B.V. All rights reserved....

  9. Combining a building simulation with energy systems analysis to assess the benefits of natural ventilation

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2013-01-01

    a thermal air flow simulation program - Into the energy systems analysis model. Descriptions of the energy systems in two geographical locations, i.e. Mexico and Denmark, are set up as inputs. Then, the assessment is done by calculating the energy impacts as well as environmental benefits in the energy...

  10. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yixing [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Zhang, Jianshun [Syracuse Univ., NY (United States); Pelken, Michael [Syracuse Univ., NY (United States); Gu, Lixing [Univ. of Central Florida, Orlando, FL (United States); Rice, Danial [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Meng, Zhaozhou [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Semahegn, Shewangizaw [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Feng, Wei [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Ling, Francesca [Syracuse Univ., NY (United States); Shi, Jun [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Henderson, Hugh [CDH Energy, Cazenovia, NY (United States)

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus

  11. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    Science.gov (United States)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate

  12. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Lai, Judy; Stadler, Michael; Siddiqui, Afzal

    2009-05-07

    The Distributed Energy Resources Customer Adoption Model is used to estimate the value an Oakland nursing home, a Riverside high school, and a Sunnyvale data center would need to put on higher electricity service reliability for them to adopt a Consortium for Electric Reliability Technology Solutions Microgrid (CM) based on economics alone. A fraction of each building's load is deemed critical based on its mission, and the added cost of CM capability to meet it added to on-site generation options. The three sites are analyzed with various resources available as microgrid components. Results show that the value placed on higher reliability often does not have to be significant for CM to appear attractive, about 25 $/kWcdota and up, but the carbon footprint consequences are mixed because storage is often used to shift cheaper off-peak electricity to use during afternoon hours in competition with the solar sources.

  13. Business statistics for competitive advantage with Excel 2016 basics, model building, simulation and cases

    CERN Document Server

    Fraser, Cynthia

    2016-01-01

    The revised Fourth Edition of this popular textbook is redesigned with Excel 2016 to encourage business students to develop competitive advantages for use in their future careers as decision makers. Students learn to build models using logic and experience, produce statistics using Excel 2016 with shortcuts, and translate results into implications for decision makers. The textbook features new examples and assignments on global markets, including cases featuring Chipotle and Costco. Exceptional managers know that they can create competitive advantages by basing decisions on performance response under alternative scenarios, and managers need to understand how to use statistics to create such advantages. Statistics, from basic to sophisticated models, are illustrated with examples using real data such as students will encounter in their roles as managers. A number of examples focus on business in emerging global markets with particular emphasis on emerging markets in Latin America, China, and India. Results are...

  14. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. PMID:21216525

  15. A Comparison between CODYRUN and TRNSYS, simulation models for thermal buildings behaviour

    OpenAIRE

    Lucas, Franck; Mara, Thierry A.; Garde, Francois; Garde, François; Boyer, Harry

    1998-01-01

    International audience Simulation codes of thermal behaviour could significantly improve housing construction design. Among the existing software, CODYRUN and TRNSYS are calculations codes of different conceptions. CODYRUN is exclusively dedicated to housing thermal behaviour, whereas TRNSYS is more generally used on any thermal system. The purpose of this article is to compare these two instruments in two different conditions . We will first modelize a mono-zone test cell, and analyse the...

  16. Building a three-dimensional model of the upper gastrointestinal tract for computer simulations of swallowing.

    Science.gov (United States)

    Gastelum, Alfonso; Mata, Lucely; Brito-de-la-Fuente, Edmundo; Delmas, Patrice; Vicente, William; Salinas-Vázquez, Martín; Ascanio, Gabriel; Marquez, Jorge

    2016-03-01

    We aimed to provide realistic three-dimensional (3D) models to be used in numerical simulations of peristaltic flow in patients exhibiting difficulty in swallowing, also known as dysphagia. To this end, a 3D model of the upper gastrointestinal tract was built from the color cryosection images of the Visible Human Project dataset. Regional color heterogeneities were corrected by centering local histograms of the image difference between slices. A voxel-based model was generated by stacking contours from the color images. A triangle mesh was built, smoothed and simplified. Visualization tools were developed for browsing the model at different stages and for virtual endoscopy navigation. As result, a computer model of the esophagus and the stomach was obtained, mainly for modeling swallowing disorders. A central-axis curve was also obtained for virtual navigation and to replicate conditions relevant to swallowing disorders modeling. We show renderings of the model and discuss its use for simulating swallowing as a function of bolus rheological properties. The information obtained from simulation studies with our model could be useful for physicians in selecting the correct nutritional emulsions for patients with dysphagia.

  17. Simulation Based Assessment of Heat Pumping Potential in Non-Residential Buildings – Part 3: Application to a typical office building in Belgium

    OpenAIRE

    Fabry, Bertrand; Andre, Philippe; Bertagnolio, Stéphane; Lebrun, Jean; Stabat, Pascal

    2010-01-01

    The purpose of this paper is to describe the application of the tools presented in a companion paper [1] to a typical office building located in the Walloon Region of Belgium. This building is a mid-size (7000 m² on seven floors) office building constructed in the eighties and equipped with a classical HVAC solution: boiler and air-cooled chiller; all-air VAV system. An energy audit was conducted in this building and featured a number of management problems. Among the Energy Co...

  18. A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2011-07-01

    Full Text Available The need for improved lifetime of air-breathing proton exchange membrane (PEM fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a planar ambient air-breathing, proton exchange membrane fuel cell has been developed and used to study the effects of ambient conditions on the temperature distribution, displacement, deformation, and stresses inside the cell. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. A unique feature of the present model is to incorporate the effect of mechanical, hygro and thermal stresses into actual three-dimensional fuel cell model. The results show

  19. Current State of Numerical Simulations and Testing for the Blast and Impact Protection of the Build Civil Engineering Infrastructure

    Institute of Scientific and Technical Information of China (English)

    GEBBEKEN Norbert

    2006-01-01

    The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere,even with the IT-infrastructure.Therefore,the passive safety of structures is demanded.Security associations have analysed that most assaults came along with explosion and impact scenarios,which amount in 80% of assaults.Consequently,these are the extraordinary loads the structures have to be planned and designed for.To carry out such an engineering job,the engineer has to be educated in multiple disciplines as physics,material science,continuum mechanics,numerical mechanics,testing,structural engineering and related specific fields as wave propagation etc.In this paper we will concentrate on the subjects of numerical simulation and testing.

  20. Simulation and experimental study of thermal performance of a building roof with a phase change material (PCM)

    Indian Academy of Sciences (India)

    A Mannivannan; M T Jaffarsathiq Ali

    2015-12-01

    Latent heat storage in a phase change material (PCM) is very attractive because of its high-energy storage density and its isothermal behaviour during the phase change process. Low thermal conductivity of the walls and roof reduces the heat gain at a steady state condition. Chloride hexahydrate (CaCl26H2O) as a phase change material (PCM) for a room was proposed in this paper to control the indoor air temperature for a better thermal comfort for human beings. Building concrete roof with vertical cylindrical hole of 0.5 $\\times$ 0.5 m and array of 3 $\\times$ 3 filled with phase change material (PCM) was considered for analysis. A detailed thermal analysis was carried by both simulation and experimental study. Results showed that this type of PCM room can decrease the indoor air temperature fluctuation by a maximum of 4°C.

  1. Building Model for the University of Mosul Computer Network Using OPNET Simulator

    Directory of Open Access Journals (Sweden)

    Modhar Modhar A. Hammoudi

    2013-04-01

    Full Text Available This paper aims at establishing a model in OPNET (Optimized Network Engineering Tool simulator for the University of Mosul computer network. The proposed network model was made up of two routers (Cisco 2600, core switch (Cisco6509, two servers, ip 32 cloud and 37 VLANs. These VLANs were connected to the core switch using fiber optic cables (1000BaseX. Three applications were added to test the network model. These applications were FTP (File Transfer Protocol, HTTP (Hyper Text Transfer Protocol and VoIP (Voice over Internet Protocol. The results showed that the proposed model had a positive efficiency on designing and managing the targeted network and can be used to view the data flow in it. Also, the simulation results showed that the maximum number of VoIP service users could be raised upto 5000 users when working under IP Telephony. This means that the ability to utilize VoIP service in this network can be maintained and is better when subjected to IP telephony scheme.

  2. On the estimation of wind comfort in a building environment by micro-scale simulation

    Directory of Open Access Journals (Sweden)

    Günter Gross

    2014-06-01

    Full Text Available A three-dimensional micro-scale model is used to study some aspects of wind comfort in a built-up area. The equations for calculating the mean wind have been extended by a Markov approach for short-term wind fluctuations. The model components have been successfully verified against wind tunnel measurements and observations of a field experiment. The simulated time series are used to estimate wind comfort measures. It turns out that the frequency of exceedance of prescribed thresholds depends strongly on the specification of the gust duration time. It was also possible to calculate the spatial distribution of a gust factor g$g$ depending on local wind characteristics. The simulated range is much broader than a value of g=3–3.5$g=3\\text{--}3.5$ commonly used for wind comfort assessments. Again, the order of magnitude and the bandwidth of g$g$ depends strongly on the definition of a gust.

  3. Simulation of a dead reckoning embedded system security patrol robot for deployment inside structures and buildings

    Science.gov (United States)

    Tickle, Andrew J.; Meng, Yan; Smith, Jeremy S.

    2010-10-01

    Dead Reckoning (DR) is the process of estimating a robot's current position based upon a previously determined position, and advancing that position based upon known speed and direction over time. It is therefore a simple way for an autonomous mobile robot to navigation within a known environment such as a building where measurements have been taken and a predetermined route planned based upon which doors (or areas) the robot would have enough force to enter. Discussed here is the design of a DR navigation system in Altera's DSP Builder graphical design process. The wheel circumference to the step size of stepper motor used to drive the robot are related and so this ratio can be easily changed to easily accommodate changes to the physical design of a robot with minimal changes to the software. The robot calculates its position in relation to the DR map by means of the number of revolutions of the wheels via odometry, in this situation there is no assumed wheel slippage that would induce an accumulative error in the system overtime. The navigation works by using a series of counters, each corresponding to a measurement taken from the environment, and are controlled by a master counter to trigger the correct counter at the appropriate time given the position of robot in the DR map. Each counter has extra safeguards built into them on their enables and outputs to ensure they only count at the correct time and to avoid clashes within the system. The accuracy of the navigation is discussed after the virtual route is plotted in MATLAB as a visual record in addition to how feedback loops, identification of known objects (such as fire safety doors that it would navigate through), and visual object avoidance could later be added to augment the system. The advantages of such a system are that it has the potential to upload different DR maps so that the end robot for can be used in new environments easily.

  4. Dynamic model building and simulation for mechanical main body of lunar lander

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-chun; DENG Zong-quan; HU Ming; GAO Hai-bo

    2005-01-01

    Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.

  5. The Open Source Stochastic Building Simulation Tool SLBM and Its Capabilities to Capture Uncertainty of Policymaking in the U.S. Building Sector

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Azevedo, Ines Lima; Komiyama, Ryoichi; Lai, Judy

    2009-05-14

    The increasing concern about climate change as well as the expected direct environmental economic impacts of global warming will put considerable constraints on the US building sector, which consumes roughly 48percent of the total primary energy, making it the biggest single source of CO2 emissions. It is obvious that the battle against climate change can only be won by considering innovative building approaches and consumer behaviors and bringing new, effective low carbon technologies to the building / consumer market. However, the limited time given to mitigate climate change is unforgiving to misled research and / or policy. This is the reason why Lawrence Berkeley National Lab is working on an open source long range Stochastic Lite Building Module (SLBM) to estimate the impact of different policies and consumer behavior on the market penetration of low carbon building technologies. SLBM is designed to be a fast running, user-friendly model that analysts can readily run and modify in its entirety through a visual interface. The tool is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies. It also incorporates consumer preferences and passive building systems as well as interactions between technologies (such as internal heat gains). Furthermore, everything is based on service demand, e.g. a certain temperature or luminous intensity, instead of energy intensities. The core objectives of this paper are to demonstrate the practical approach used, to start a discussion process between relevant stakeholders and to build collaborations.

  6. An urban scale inverse modelling for retrieving unknown elevated emissions with building-resolving simulations

    Science.gov (United States)

    Kumar, Pramod; Singh, Sarvesh Kumar; Feiz, Amir-Ali; Ngae, Pierre

    2016-09-01

    This study illustrates an atmospheric source reconstruction methodology for identification of an unknown continuous point release in the geometrically complex urban environments. The methodology is based on the renormalization inversion theory coupled with a building resolving Computational Fluid Dynamics (CFD) modelling approach which estimates the release height along with the projected location on the ground surface and the intensity of an unknown continuous point source in an urban area. An estimation of the release height in a three-dimensional urban environment is relatively more difficult from both technical and computational point of view. Thus, a salient feature of the methodology is to address the problem of vertical structure (i.e. height of a source) in atmospheric source reconstruction in three-dimensional space of an urban region. The inversion methodology presents a way to utilize a CFD model fluidyn-PANACHE in source reconstruction in the urban regions. The described methodology is evaluated with 20 trials of the Mock Urban Field Setting Test (MUST) field experiment in various atmospheric stability conditions varying from neutral to stable and very stable conditions. The retrieved source parameters in all the 20 trials are estimated close to their true source. The source height is retrieved within a factor of two and four in 55% and 75% of the MUST trials, respectively. The averaged location error for all 20 trials is obtained 14.54 m with a minimum of 3.58 m and maximum of 34.55 m. The averaged estimated release rate for all trials is overpredicted within a factor of 1.48 of the true source intensity and in 85% of the trials, it is retrieved within in factor of two. In source reconstruction with non-zero measurements, it was observed that the use of all concentration measurements instead of only non-zero essentially makes only the small differences in quality of the source reconstruction and gives a little additional information for better

  7. Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Ashfaque Ahmed; Rasul, M.G.; Khan, M.M.K. [College of Engineering and the Built Environment, Faculty of Sciences, Engineering and Health, Central Queensland University, Rockhampton, Qld 4702 (Australia)

    2008-06-15

    Simulation of buildings' thermal-performances is necessary to predict comfort of the occupants in buildings and to identify alternate cooling control-systems for achieving better indoor thermal environments. An analysis and prediction of thermal-comfort using DesignBuilder, based on the state-of-the-art building performance simulation software EnergyPlus, is carried out in an air-conditioned multi-storeyed building in the city of Rockhampton in Central Queensland, Australia. Rockhampton is located in a hot humid-region; therefore, indoor thermal-comfort is strongly affected by the outdoor climate. This study evaluates the actual thermal conditions of the Information Technology Division (ITD) building at Central Queensland University during winter and summer seasons and identifies the thermal comfort level of the occupants using low-energy cooling technologies namely, chilled ceiling (CC), economiser usages and pre-cooling. The Fanger comfort-model, Pierce two-node model and KSU two-node model were used to predict thermal performance of the building. A sophisticated building-analysis tool was integrated with the thermal comfort models for determining appropriate cooling-technologies for the occupants to be thermally comfortable while achieving sufficient energy savings. This study compares the predicted mean-vote (PMV) index on a seven-point thermal-sensation scale, calculated using the effective temperature and relative humidity for those cooling techniques. Simulated results show that systems using a chilled ceiling offer the best thermal comfort for the occupants during summer and winter in subtropical climates. The validity of the simulation results was checked with measured values of temperature and humidity for typical days in both summer and winter. The predicted results show a reasonable agreement with the measured data. (author)

  8. On the Use of Integrated Daylighting and Energy Simulations to Drive the Design of a Large Net-Zero Energy Office Building: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmetti, R.; Pless, S.; Torcellini, P.

    2010-08-01

    This paper illustrates the challenges of integrating rigorous daylight and electric lighting simulation data with whole-building energy models, and defends the need for such integration to achieve aggressive energy savings. Through a case study example, we examine the ways daylighting -- and daylighting simulation -- drove the design of a large net-zero energy project. We give a detailed review of the daylighting and electric lighting design process for the National Renewable Energy Laboratory's Research Support Facility (RSF), a 220,000 ft2 net-zero energy project the author worked on as a daylighting consultant. A review of the issues involved in simulating and validating the daylighting performance of the RSF will be detailed, including daylighting simulation, electric lighting control response, and integration of Radiance simulation data into the building energy model. Daylighting was a key strategy in reaching the contractual energy use goals for the RSF project; the building's program, layout, orientation and interior/furniture design were all influenced by the daylighting design, and simulation was critical in ensuring these many design components worked together in an integrated fashion, and would perform as required to meet a very aggressive energy performance goal, as expressed in a target energy use intensity.

  9. EVIDENCE OF ENHANCED VERTICAL DISPERSION IN THE WAKES OF TALL BUILDINGS IN WIND TUNNEL SIMULATIONS OF LOWER MANHATTAN

    Science.gov (United States)

    Observations of flow and dispersion in urban areas with tall buildings have revealed a phenomenon whereby contaminants can be transported vertically up the lee sides of tall buildings due to the vertical flow in the wake of the building. This phenomenon, which contributes to w...

  10. A cellular automaton based model simulating HVAC fluid and heat transport in a building. Modeling approach and comparison with experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, A. [Department of Applied Mathematics, Polytechnic University of Valencia, ETSGE School, Camino de Vera s/n, 46022 Valencia (Spain); Urchueguia, J.F. [Department of Applied Physics, Polytechnic University of Valencia, ETSII School, Camino de Vera s/n, 46022 Valencia (Spain); Martos, J. [Superior Technical School of Engineering, Department of Electronic Engineering, University of Valencia, Vicente Andres Estelles s/n, Burjassot 46100, Valencia (Spain)

    2010-09-15

    A discrete model characterizing heat and fluid flow in connection with thermal fluxes in a building is described and tested against experiment in this contribution. The model, based on a cellular automaton approach, relies on a set of a few quite simple rules and parameters in order to simulate the dynamic evolution of temperatures and energy flows in any water or brine based thermal energy distribution network in a building or system. Using an easy-to-record input, such as the instantaneous electrical power demand of the heating or cooling system, our model predicts time varying temperatures in characteristic spots and the related enthalpy flows whose simulation usually requires heavy computational tools and detailed knowledge of the network elements. As a particular example, we have applied our model to simulate an existing fan coil based hydronic heating system driven by a geothermal heat pump. When compared to the experimental temperature and thermal energy records, the outcome of the model coincides. (author)

  11. Economic analysis of energy-saving renovation measures for urban existing residential buildings in China based on thermal simulation and site investigation

    International Nuclear Information System (INIS)

    Energy-saving renovations of existing residential buildings have proven to be very helpful in alleviating the pressure of energy shortages and CO2 emission, but an economic analysis of the measures by using a life cycle cost (LCC) method is very important and necessary to determine whether to implement them or not. Based on thermal simulation and site investigation, the paper uses one urban existing residential building in Hangzhou city of China as the subject building, and analyzes the economic benefits from the energy-saving renovation measures through the LCC method. The findings clearly show that the investigation of the factual electricity consumption of the subject building is very important to predict accurately the energy-saving effects and financial benefits of the measures for the building, because of the great discrepancy between in fact and in thermal simulation of the heating and cool loads, and the too cheap electricity price may hamper the development of energy-saving implementations in residential sector in China

  12. Effects of Cyclic Hygrothermal on Properties of Nomex Honeycomb/Epoxy Sandwich%湿热循环对Nomex蜂窝/环氧树脂夹层复合材料性能的影响

    Institute of Scientific and Technical Information of China (English)

    肇研; 董昊; 胡建平; 李翔; 刘建华

    2012-01-01

    通过对Nomex/环氧树脂夹层复合材料1(1号材料)和Nomex/环氧树脂夹层复合材料2(2号材料)进行7天和14天湿热循环,测定了其吸湿、脱湿曲线,实验结果表明,1号材料的饱和吸湿率和水分保持率均低于2号材料,1号材料具有更好的耐湿热性,分别对循环前后的材料进行力学性能和介电性能测试.结果表明,湿热循环对材料的剪切性能造成较大影响,其中对2号材料的影响尤为显著,1号材料的力学性能保持能力大于2号材料;同时,还讨论了湿热循环前后两种材料的介电常数和损耗角正切的变化情况.%The absorbing and the desorption curves of Nomex/epoxy honeycomb-sandwich 1(sample 1) and Nomex/epoxy honeycomb-sandwich 2 (sample 2) were obtained after 7 days hygrothermal circulation and 14 days hygrothermal circulation. The results show that the saturated moisture absorption rate and water retention of sample 1 are higher than that of sample 2 and the moist heat resistance property of sample 1 is superior to that of sample 2. The mechanical properties and dielectric properties of dry specimens and specimens after hygrothermal circulation were tested. It is indicated from the results that the shear performances of the specimens are highly affected by the hygrothermal circulation, especially for sample 2. The sample 1 has more stable mechanical properties after hygrothermal circulation than sample 2. The dielectric properties of the two specimens are also discussed.

  13. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yixing [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Zhang, Jianshun [Syracuse Univ., NY (United States); Pelken, Michael [Syracuse Univ., NY (United States); Gu, Lixing [Univ. of Central Florida, Orlando, FL (United States); Rice, Danial [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Meng, Zhaozhou [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Semahegn, Shewangizaw [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Feng, Wei [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Ling, Francesca [Syracuse Univ., NY (United States); Shi, Jun [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Henderson, Hugh [CDH Energy, Cazenovia, NY (United States)

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus

  14. Numerical-simulation research on building-facade geometry and its effect on fire propagation in wooden facades

    OpenAIRE

    Lacasta Palacio, Ana María; Giraldo, Pilar; Avellaneda Diaz-Grande, Jaime; Burgos Leiva, Camila

    2014-01-01

    Fire protection is a very important requirement in the facade of a building. When there is a fire in a building, the facade can be one of the quickest spreading pathways, regardless of the material of which it is constructed. Therefore, in terms of safety, the study of mechanisms controlling the spread of fire through the facade is an issue that needs to be addressed, especially when it involves combustible material claddings such as wood. In several European countries the building regulation...

  15. A CFD study of hygro-thermal stresses distribution in tubular-shaped ambient air-breathing PEM micro fuel cell during regular cell operation

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2010-03-01

    Full Text Available The need for improved lifetime of air-breathing proton exchange membrane (PEM fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature, humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a novel, tubular, ambient air-breathing, proton exchange membrane micro fuel cell has been developed and used to investigate the displacement, deformation, and stresses inside the whole cell, which developed during the cell operation due to the changes of temperature and relative humidity. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. In addition to the new and complex geometry, a unique feature of the present model is to incorporate the effect of

  16. Numerical simulation study of the effect of buildings and complex terrain on the low-level winds at an airport in typhoon situation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei [Shenzhen Meteorological Bureau, Shenzhen (China). Shenzhen National Climate Observatory; Chinese Academy of Sciences, Beijing (China). State Key of Lab. of Atmospheric Boundary Physics and Atmospheric Chemistry; Chan, P.W. [Hong Kong Observatory, Kowloon, Hong Kong (China)

    2012-04-15

    Apart from terrain-induced airflow disturbances and thunderstorms, buildings and artificial structures at airports may bring about sudden wind changes to aircraft in certain weather conditions. In the typhoon situation in the morning of 22 August 2008 under a generally crosswind situation, two aircraft landing at the Hong Kong International Airport reported encountering significant wind changes, which were considered to affect the operation of the aircraft. At the same time, a wind speed difference in the order of 10-15 knots was observed between the anemometers at the north and the south parallel runways of the airport. The cause of the wind changes experienced by the aircraft is studied in this paper by using numerical simulation, namely, using mesoscale meteorological models to provide the background wind fields, and nesting them with a computational fluid dynamics (CFD) model to study the effect of buildings and terrain on the airflow along the glide path of the landing aircraft. It is found that the complete set of simulation (i.e. including both buildings and terrain) successfully captures the wind speed difference between the north and the south runways, and gives the drop of the crosswind along the glide path exceeding the 7-knot criterion as adopted for building-induced wind changes affecting the normal operation of the aircraft. The results of the present study suggest that, for the timely warning of wind changes to be encountered by the landing aircraft, it may be necessary to consider examining the low-level wind effects of the buildings on the airfield by performing numerical simulations by mesoscale meteorological models as nested with a CFD model. (orig.)

  17. Energy retrofit of an office building by substitution of the generation system: performance evaluation via dynamic simulation versus current technical standards

    International Nuclear Information System (INIS)

    Constructions built in Italy before 1945 (about 30% of the total built stock) feature low energy efficiency. Retrofit actions in this field can lead to valuable energetic and economic savings. In this work, we ran a dynamic simulation of a historical building of the University of Pisa during the heating season. We firstly evaluated the energy requirements of the building and the performance of the existing natural gas boiler, validated with past billings of natural gas. We also verified the energetic savings obtainable by the substitution of the boiler with an air-to-water electrically-driven modulating heat pump, simulated through a cycle-based model, evaluating the main economic metrics. The cycle-based model of the heat pump, validated with manufacturers' data available only at specified temperature and load conditions, can provide more accurate results than the simplified models adopted by current technical standards, thus increasing the effectiveness of energy audits

  18. Development of a simplified method for intelligent glazed façade design under different control strategies and verified by building simulation tool BSim

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    The research aims to develop a simplified calculation method for intelligent glazed facade under different control conditions (night shutter, solar shading and natural ventilation) to simulate the energy performance and indoor environment of an office room installed with the intelligent facade...... and the illuminance level on a chosen point) and the energy performance of the room. The parameters calculated by the simplified method were compared with the Danish building simulation tool BSim in an hourly calculation with the weather data of the Danish reference year. By using the simplified method......, it is possible to calculate the whole year performance of a room or building with intelligent glazed façade, which makes it a less time consuming tool to investigate the performance of the intelligent façade under different control strategies in the design stage with acceptable accuracy. Results showed good...

  19. A study of the effects of nanoparticle modification on the thermal, mechanical and hygrothermal performance of carbon/vinyl ester composites

    Science.gov (United States)

    Powell, Felicia M.

    Enhancement of mechanical, thermal and hygrothermal properties of carbon fiber/vinyl ester (CFVE) composites through nanoparticle reinforcement has been investigated. CFVE composites are becoming more and more attractive for marine applications due to two reasons: high specific strength and modulus of carbon fiber and low vulnerability of vinyl ester resin to sea water. However, the problem with this composite system is that the fiber matrix (F/M) interface is inherently weak. This leads to poor mechanical properties and fast ingress of water at the interface further deteriorating the properties. This investigation attempts to address these deficiencies by inclusion of nanoparticles in CFVE composites. Three routes of nanoparticle reinforcement have been considered: nanoparticle coating of the carbon fiber, dispersion of nanoparticles in the vinyl ester matrix, and nanoparticle modification of both the fiber and the matrix. Flexural, short beam shear and tensile testing was conducted after exposure to dry and wet environments. Differential scanning calorimetry and dynamic mechanical analysis were conducted as well. Mechanical and thermal tests show that single inclusion of nanoparticles on the fiber or in the matrix increases carbon/vinyl ester composite properties by 11--35%. However, when both fiber and matrix were modified with nanoparticles, there was a loss of properties.

  20. 基于Pathfinder的高层建筑应急疏散仿真研究%Pathfinder based simulation of crowd evacuation in high-rise building

    Institute of Scientific and Technical Information of China (English)

    方潇宇; 杨祯山

    2016-01-01

    The issue of emergency evacuation in high-rise buildings is a major concern of public safety. E-vacuation simulation is an important way to research evacuation behaviors. As per Marchant's theory on evacua-tion and escape and combined the practical case, Pathfinder software is employed to simulate the behavior of pe-destrians′evacuations, to conduct the holistic study of the personnel evacuation in high-rise office buildings. Starting up with the process and steps of modeling, the evacuation mode selection, preferences and the time order analyzing, the simulation of evacuations from rooms, floors and the whole building are conducted respectively, and based on which recommendations to the design of evacuation in high-rise buildings are suggested.%高层建筑应急疏散问题是公共安全的重要组成部分,疏散仿真是研究应急疏散问题的重要手段。根据Marchant的避难理论,结合实际案例,应用Pathfinder软件模拟人群的应急疏散行为,对高层办公建筑的应急疏散进行整体研究。从仿真模型的疏散模式选择、参数设置及疏散的时序分析入手,对案例大楼的房间疏散、楼层疏散以及整栋楼的疏散进行了仿真研究,结果显示建筑内所有人员能在安全时间内成功疏散,最后基于仿真结果对高层建筑的应急疏散设计提出建议。

  1. Use of model reduction techniques for a simulation code in building thermal behaviour modelling; Integration de la reduction de modele a un code de simulation hygro-thermo-aeraulique de batiments

    Energy Technology Data Exchange (ETDEWEB)

    Berthomieu, Th.; Boyer, H. [Universite de la Reunion (France). Laboratoire de Genie Industriel

    2004-02-01

    It is possible at present to perform complex thermal studies, integrating various thermal sources and for various buildings, using energetic software. It is always interesting to simplify the calculation process with numerical reduction techniques. In this paper a reduction technique using the decomposition of a complex system in elementary components linked each other by simple relations is presented. This reduction is performed in simulation code Codyrum, which can be used for research purpose of for design help. The results of simulation are compared with experimental results. (authors)

  2. Precalculations and comparison with experiments simulating seismic events for the system building-soil of a real prototype reactor building (HDR)

    International Nuclear Information System (INIS)

    Within the framework of the German HDR-Research Program, calculations of the response of a reactor building to shaker excitation, impulsive loading (by thrust) and explosive loading (by underground explosions) were performed. These calculations were done for higher level loading than those during a previous program. The response calculations were performed without any knowledge about the results of accompanying experimental investigations which are presented in another paper. The computations are mainly based upon Finite-Element models of the structure. For modelling, elements like trusses, beams, plates, shells and continuum elements were used. In order to account for the various layers of the ground, modelling was partly done by continuum elements with different material behaviour and partly by springs which were dimensioned according to the formulae of the halfspace theory. Though the idealizations of the four models described in this paper are to a certain extent quite different the quality of approximating the experimental results is about the same. The evaluated eigenfrequencies and eigenmodes agree with the measured ones in a very satisfactory manner. In the case of shaker excitations the acceleration amplitudes as a function of frequency can be calculated in a way that deviations from experimental results are generally tolerable. Evaluations of time histories in the case of underground explosions yield the main features of the measured curves. (orig./HP)

  3. Numerical Simulation of the Application of Solar Radiant Systems, Internal Airflow and Occupants’ Presence in the Improvement of Comfort in Winter Conditions

    Directory of Open Access Journals (Sweden)

    Eusébio Z. E. Conceição

    2016-09-01

    Full Text Available In this work, the use of numerical simulation in the application of solar radiant systems, internal airflow and occupants’ presence in the improvement of comfort in winter conditions is made. The thermal comfort, the local thermal discomfort and the air quality in an occupied chamber space are evaluated. In the experimental measurements, a wood chamber, a desk, two seats, two seated hygro-thermal manikins, a warm radiant floor, a solar radiation simulator and a water solar collector are used. The air velocity and the air temperature fluctuation are experimentally evaluated around 15 human body sections. The chamber surface temperature is experimentally measured. In the numerical simulation, a coupling human thermal comfort (HTC integral model, a computational fluids dynamics (CFD differential model and a building thermal response (BTR integral model are applied. The human thermal comfort level is evaluated by the HTC numerical model. The airflow inside the virtual chamber, using the k-epsilon and RNG turbulence models, is evaluated by the CFD numerical model. The chamber surface and the collector temperatures are evaluated by the BTR numerical model. In the human thermal comfort level, in non-uniform environments, the predicted mean vote (PMV and the predicted percentage of dissatisfied (PPD people are numerically evaluated; in the local thermal discomfort level the draught risk (DR is experimentally and numerically analyzed; and in the air quality, the carbon dioxide CO2 concentration is numerically calculated. In the validation tests, the experimental and numerical values of the chamber surface temperature, the air temperature, the air velocity, the air turbulence intensity and the DR are presented.

  4. 自然通风建筑能耗全年模拟研究%Simulation Study on Annual Energy Consumption of Naturally Ventilated Buildings

    Institute of Scientific and Technical Information of China (English)

    黄河; 李晓锋; 张明瑞; 李丞

    2012-01-01

    自然通风是降低建筑能耗的重要手段.现有的软件工具难以准确计算自然通风条件下的全年建筑能耗,限制了自然通风在建筑节能设计中的应用.本文从自然通风计算及耦合计箅两方面进行改进,提出了一套可靠、准确的自然通风与热环境耦合计算的模拟方法和对应的评价指标.而后,以建筑能耗模拟软件DeST为平台,开发出了自然通风风量及建筑能耗的全年逐时模拟软件DeST-Vent+.利用DeST-Vent+软件对北京地区3种自然通风类型下办公建筑的全年空调冷负荷进行了模拟计算,分析了不同通风形式的节能潜力.%Natural ventilation is an important measure to reduce the building energy consumption. However, it is difficult for existing softwares to calculate the building energy consumption accurately under the natural ventilation condition, and therefore, the application of natural ventilation in building energy-saving design is restricted. In this paper,a reliable and accurate method for natural ventilation simulation was put forward. Based on the presented method, the simulation program of DeST-Vent + was developed, hence the all-year hourly simulation of natural ventilation airflow and building energy consumption could be realized. Furthermore, the simulation of annual air-conditioning cooling loads of office buildings with different natural ventilation modes in Beijing was carried out with DeST-Vent + ,and their corresponding energy-saving potential was analyzed.

  5. CFD simulation of pollutant dispersion around isolated buildings: on the role of convective and turbulent mass fluxes in the prediction accuracy.

    Science.gov (United States)

    Gousseau, P; Blocken, B; van Heijst, G J F

    2011-10-30

    Computational Fluid Dynamics (CFD) is increasingly used to predict wind flow and pollutant dispersion around buildings. The two most frequently used approaches are solving the Reynolds-averaged Navier-Stokes (RANS) equations and Large-Eddy Simulation (LES). In the present study, we compare the convective and turbulent mass fluxes predicted by these two approaches for two configurations of isolated buildings with distinctive features. We use this analysis to clarify the role of these two components of mass transport on the prediction accuracy of RANS and LES in terms of mean concentration. It is shown that the proper simulation of the convective fluxes is essential to predict an accurate concentration field. In addition, appropriate parameterization of the turbulent fluxes is needed with RANS models, while only the subgrid-scale effects are modeled with LES. Therefore, when the source is located outside of recirculation regions (case 1), both RANS and LES can provide accurate results. When the influence of the building is higher (case 2), RANS models predict erroneous convective fluxes and are largely outperformed by LES in terms of prediction accuracy of mean concentration. These conclusions suggest that the choice of the appropriate turbulence model depends on the configuration of the dispersion problem under study. It is also shown that for both cases LES predicts a counter-gradient mechanism of the streamwise turbulent mass transport, which is not reproduced by the gradient-diffusion hypothesis that is generally used with RANS models. PMID:21880420

  6. Topographica: building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components

    OpenAIRE

    Bednar, James A.

    2009-01-01

    Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major...

  7. Topographica: Building and Analyzing Map-Level Simulations from Python, C/C++, MATLAB, NEST, or NEURON Components

    OpenAIRE

    Bednar, James A.

    2009-01-01

    Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major ...

  8. Hydrothermal formation of Co complex oxide and 58Co radioactivity build-up on zircaloy in simulated BWR primary coolant system

    International Nuclear Information System (INIS)

    To explicate deposition and release of Co on fuel cladding in BWR, the hydrothermal formation of spinel type oxide from hydroxide and oxide and Co-58 radioactivity build-up on zircaly has been investigated experimentary in a simulated BWR primary coolant system. (1) The order of reactivity in formation of Co complex oxide from Co(OH)2 was CrO3 > Fe(OH)2 ≥ Cr(OH)3. (2) Compared with Co complex oxide, Ni complex oxide was hard to form. (3) Co-58 radioactivity build-up was practically unaffected by zircaloys with the prior treatment condition. (4) Cr ion was selectively deposited among Fe, Cr, Ni and Co ion on zircaloy test pieces. (author)

  9. Analysis of a natural exhaust fan in a building of houses through thermal simulations and CFD; Analisis de un sistema de ventilacion natural en un edificio de viviendas a traves de simulaciones termicas y CFD

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, B.; Cejudo, J.; Carrillo, A.

    2008-07-01

    Computational fluid dynamics (CFD) application to building energy simulation (STE) allows better modelling of indoor air performance and therefore it can be used to optimize the design of natural ventilation systems. In this paper, a natural ventilation system based on thermal chimney applied to a residential building is analyzed. Energy Plus simulations are applied to an apartment and results are coupled to CFD simulations to determine ventilation rates and study convection in the space. CFD simulations are also applied to evaluate indoor air distribution and study how ventilation rate is affected by the pressure drop at ventilation grilles. (Author)

  10. 建筑能耗模拟在能源审计中的应用%Application of building energy simulation to energy audit

    Institute of Scientific and Technical Information of China (English)

    宋应乾; 曾艺; 龙惟定

    2011-01-01

    以某大厦为例,阐述了建筑能耗模拟时的模型校验方法,并利用经过校验的模型进行了能耗预测和节能量计算.指出在进行能源审计时,必须用实际的建筑资料和历史能耗数据对所建模型进行校验,只有经过实测能耗数据校验的模型才能对建筑能耗进行准确预测;通过能耗模拟进行能耗预测和节能量计算,可以节省大量的时间,且更加准确、直观,具有很好的应用前景.%Taking a group of buildings as an example, describes the model verification method in building energy simulation, and makes energy consumption prediction and energy saving calculation based on the verified model. Points out that actual building energy consumption data and historical data should be used to verify the model during energy audit, only the model that is verified by the measured energy consumption data can be used to accurately predict building energy consumption; demonstrates that using energy simulation to make energy consumption prediction and energy saving calculation can save a lot of time, be more accurate and intuitive, and it will have a good prospect.

  11. APPLICATIONS OF CFD SIMULATIONS OF POLLUTANT TRANSPORT AND DISPERSION WITHIN AMBIENT URBAN BUILDING ENVIRONMENTS: INCLUDING HOMELAND SECURITY

    Science.gov (United States)

    There is presently much focus on Homeland Security and the need to understand how potential sources of toxic material are transported and dispersed in the urban environment. Material transport and dispersion within these urban centers is highly influenced by the buildings. Compu...

  12. Simulation-based Ship Block Building Dynamic Spatial Scheduling%基于仿真的船舶分段建造动态空间调度

    Institute of Scientific and Technical Information of China (English)

    王津剑; 杜吉旺; 范秀敏; 何其昌

    2015-01-01

    为缩小船舶分段空间调度计划与实际作业安排之间的差别,提出了一种基于仿真的船舶分段建造动态空间调度方法。针对分段建造的不同阶段,在分析影响因素的影响形式基础上提出了动态调整策略,包括定位延时策略、进度控制策略和吊运等待策略,调整分段建造过程以适应影响因素的作用。构建了船舶分段建造仿真模型,实现了分段建造在影响因素作用下动态空间调度的仿真。以实际数据为输入进行仿真分析,结果表明,该方法制定的调度计划与实际作业情况接近,且能够为分段生产计划优化调整提供指导。%To reduce the difference among ship block spatial scheduling results and actual working assignments,a simulation-based dynamic spatial scheduling method was proposed.According to differ-ent stages of ship-block building and analyzing the influence forms of affecting factors,three dynamic adjustment strategies were put forward,including positioning delay strategy,progress control strategy and swing waiting strategy.With these strategies,the ship-block building processes could be adjusted so as to adapt to affecting factors.A ship block building simulation model was developed to realize the dynamic spatial scheduling simulation under the influence of affecting factors.The simulation results indicate that the proposed method can reduce the difference between the scheduling plan and actual working ones,and can provide guidance to optimize ship-block building production plan.

  13. JPL Energy Consumption Program (ECP) documentation: A computer model simulating heating, cooling and energy loads in buildings. [low cost solar array efficiency

    Science.gov (United States)

    Lansing, F. L.; Chai, V. W.; Lascu, D.; Urbenajo, R.; Wong, P.

    1978-01-01

    The engineering manual provides a complete companion documentation about the structure of the main program and subroutines, the preparation of input data, the interpretation of output results, access and use of the program, and the detailed description of all the analytic, logical expressions and flow charts used in computations and program structure. A numerical example is provided and solved completely to show the sequence of computations followed. The program is carefully structured to reduce both user's time and costs without sacrificing accuracy. The user would expect a cost of CPU time of approximately $5.00 per building zone excluding printing costs. The accuracy, on the other hand, measured by deviation of simulated consumption from watt-hour meter readings, was found by many simulation tests not to exceed + or - 10 percent margin.

  14. Numerical simulation and performance assessment of an absorption solar air-conditioning system coupled with an office building

    OpenAIRE

    Thomas, Sébastien; Andre, Philippe

    2010-01-01

    To minimize environmental impact and CO2 production associated with air-conditioning, it is reasonable to evaluate the prospects of a clean energy source. Solar energy, via thermal collectors can provide a part of the heating needs. Moreover, it can drive absorption chiller in order to satisfy the cooling needs of buildings. The objective of the work is to evaluate accurately the energy consumption of an air conditioning system including a solar driven absorption chiller. The c...

  15. Modeling a Naturally Ventilated Double Skin Façade with a Building Thermal Simulation Program

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Kalyanova, Olena; Heiselberg, Per

    2008-01-01

    The use of Double Skin Façade (DSF) has increased during the last decade. There are many reasons for this including e.g. aesthetics, sound insulation, improved indoor environment and energy savings. However, the influence on the indoor environment and energy consumption are very difficult......, and the simulation results are compared to the measurement results like energy consumption for cooling, air temperature, temperature gradient and mass flow rate in the DSF cavity, etc. Details about the measurements are reported in \\Kalyanova et al. 2008\\. The thermal simulation program does not at the moment...... include a special model to simulate the DSF. However, the results show that it was possible to predict the energy flow, temperature distribution and airflow in the DSF. The good agreement between the measured and simulated results was unfortunately very sensitive to the model. This implies that without...

  16. Modeling a Naturally Ventilated Double Skin Façade with a Building Thermal Simulation Program

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Kalyanova, Olena; Heiselberg, Per

    2008-01-01

    The use of Double Skin Façade (DSF) has increased during the last decade. There are many reasons for this including e.g. aesthetics, sound insulation, improved indoor environment and energy savings. However, the influence on the indoor environment and energy consumption are very difficult...... to predict. This is manly due to the very transient and complex air flow in the naturally ventilated double skin façade cavity. In this paper the modelling of the DSF using a thermal simulation program, BSim, is discussed. The simulations are based on the measured weather boundary conditions......, and the simulation results are compared to the measurement results like energy consumption for cooling, air temperature, temperature gradient and mass flow rate in the DSF cavity, etc. Details about the measurements are reported in \\Kalyanova et al. 2008\\. The thermal simulation program does not at the moment...

  17. The Interdisciplinary Research of Virtual Recovery and Simulation of Heritage Buildings. Take Lingzhao Xuan in the Palace Museum as an Example

    Directory of Open Access Journals (Sweden)

    Liyu Fang

    2014-12-01

    Full Text Available Due to natural disasters, economic development, tourism development and other factors, many precious heritage buildings have been in endangered situation. How to protect, research and develop these heritage resources effectively has become very urgent and important. Three-dimensional (3D digital technology plays a more and more important role in protecting and using cultural heritage. The article will take the synthetic study on the mode of virtual construction, recovery, simulation and exhibition of Lingzhao Xuan (a heritage building which stopped construction for some reason in the Palace Museum as an example to explore and summary an effective interdisciplinary cooperation mode. Besides, we broaden and deepen the concept of “virtual recovery”, and add the concept “virtual simulation” by means of virtual design and the new achievements which are created by such mode for the first time. This research is aimed to provide reference for the standard application of 3D digital technology and perfect the protection work of heritage buildings.

  18. Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level

    Directory of Open Access Journals (Sweden)

    Yongwei Shan

    2014-07-01

    Full Text Available Steel construction activities are often undertaken in an environment with limited climate control. Both hot and cold temperatures can physically and psychologically affect construction workers, thus decreasing their productivity. Temperature and humidity are two factors that constantly exert forces on workers and influence their performance and efficiency. Previous studies have established a relationship between labor productivity and temperature and humidity. This research is built on the existing body of knowledge and develops a framework of integrating building information modeling (BIM with a lower level critical path method (CPM schedule to simulate the overall impact of temperature and humidity on a healthcare facility’s structural steel installation project in terms of total man hours required to build the project. This research effort utilized historical weather data of four cities across the U.S., with each city having workable seasons year-round and conducted a baseline assessment to test if various project starting dates and locations could significantly impact the project’s schedule performance. It was found that both varied project start dates and locations can significantly contribute to the difference in the man hours required to build the model project and that the project start date and location can have an interaction effect. This study contributes to the overall body of knowledge by providing a framework that can help practitioners better understand the overall impact of a productivity influencing factor at a project level, in order to facilitate better decision making.

  19. A simple method to estimate the urban heat island intensity in data sets used for the simulation of the thermal behaviour of buildings

    Directory of Open Access Journals (Sweden)

    Uwe Wienert

    2013-04-01

    Full Text Available Test Reference Years (TRY are data sets tailored for use in the context of simulations with respect to the thermal behaviour of buildings. They are based on measurements and observations from weather stations of the German Meteorological Service (Deutscher Wetterdienst, DWD and represent the climate conditions of a larger area with an order of magnitude of 100 km x 100 km. The data sets cannot, however, be readily applied to urban areas. The air temperature as one of the most important meteorological elements for the building-related simulations frequently is subject to an increase with respect to the conditions outside the city area due to what is called the urban heat island effect. Numerous field measurements have led to the development of empirical relations to assess the urban temperature modification. These relations were implemented in a straightforward method. It applies a set of easily accessible parameters in a combination of different empirical formulae to derive an estimate of the urban air temperature modification. An intercomparison of calculated versus measured air temperature data showed that this method might yield a realistic representation of the urban heat island intensity.

  20. CFD Simulation of a Concrete Cubicle to Analyze the Thermal Effect of Phase Change Materials in Buildings

    Directory of Open Access Journals (Sweden)

    José L. Míguez

    2012-06-01

    Full Text Available In this work, a CFD-based model is proposed to analyse the effect of phase change materials (PCMs on the thermal behaviour of the walls of a cubicle exposed to the environment and on the resistance of the walls to climate changes. The effect of several days of exposure to the environment was simulated using the proposed method. The results of the simulation are compared with experimental data to contrast the models. The effects of exposure on the same days were simulated for several walls of a cubicle made of a mixture of concrete and PCM. The results show that the PCM stabilizes temperatures within the cubicle and decreases energy consumption of refrigeration systems.

  1. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures

    Science.gov (United States)

    Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  2. Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Booten, C.; Tabares-Velasco, P. C.

    2012-08-01

    This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

  3. Hygrothermal adaptability traditional housing in Tampico, Mexico / Adaptabilidad higrotérmica de la vivienda tradicional en Tampico, México

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Fuentes Pérez

    2014-09-01

    Full Text Available The annual increase in the concentration of CO2 in the air is on average 1.5 parts per million, is 0.5% per year, due to the anthropogony generating global climate change, estimates half a century predict a temperature rise of about 2.0°C. The human population is facing an environmental intramural and extramural change in housing. This research aims to determine the degree of hygrothermal adaptability into traditional housing during the year of 2013 in Tampico, Mexico. Depending on the level of scientific knowledge and observation the investigator arrives, makes that labour is diachronic first instance, made as a case study because it analyses the research problem in its genesis and historical conformation with an overview. The thermal behaviour is the thread, therefore, is the methodology to implement multimodal type and by triangulation, since different methods applied provide quantitative and qualitative research approach to the experimental oscillating applied to identify patterns of temperature and relative humidity only, not previously performed in this type of housing. El incremento anual de la concentración de CO2 en el aire es por término medio de 1.5 partes por millón, es decir un 0.5% por año, producto de la antropogenia que genera un cambio climático global, las estimaciones a medio siglo pronostican un aumento de temperatura de unos 2.0°C. La población humana está confrontando un cambio ambiental intramuros y extramuros en la vivienda.La presente investigación tiene como objetivo determinar el grado de adaptabilidad higrotérmica, al interior de la vivienda tradicional durante el año de 2013 en Tampico, México.Según el nivel de conocimiento científico y observación al que llega el investigador, formula que el trabajo es en primera instancia diacrónico, conformado como estudio de caso, porque analiza el problema de investigación en su génesis y conformación histórica con una visión de conjunto. El comportamiento

  4. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J;

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  5. 复合材料孔板在湿热环境下的力学性能研究%Effects of hygrothermal environment on static properties of laminated composites with a circular open hole

    Institute of Scientific and Technical Information of China (English)

    展全伟; 范学领; 孙秦

    2011-01-01

    研究了湿热环境对中心开孔复合材料层压板力学性能的影响.通过试验测定了室温和湿热环境下铺层为[45/45/90/0]s的玻璃纤维(MXB7701/7781)复合材料层压孔板的极限压缩破坏载荷及破坏应力,并对试验结果进行了数理统计处理分析;探讨了湿热环境对复合材料孔板强度及压缩设计许用值的影响.结果表明,湿热会降低由基底性能主导的压缩强度、刚度等复合材料性能,吸湿后70℃环境下试验件压缩强度保持率约为85%,破坏应力基准值保持率约为83%,环境因子约为1.2.因此,该复合材料孔板在湿热环境下具有较高的压缩力学性能保持率,仍具备良好的力学性能.%The basic static mechanical properties of 8-ply glassfiber composite laminates with a circular open hole are tested in hygrothermal conditions. The ultimate compression failure loads and failure stresses are obtained using the standard test method for open-hole compressive strength of composite laminates. The influences of hygrothermal environmental are analyzed based on statistic methodology. The results show that the retention rate of compressive strength and basis value of failure stresses are about 85% and 83% respectively. The environmental factor is about 1. 2. Therefore, the studied fiberglass composite material MXB7701/7781 can keep good mechanical properties in hygrothermal environment.

  6. Contribution to the building of an execution engine for UML models for the simulation of competitor and timed applications

    International Nuclear Information System (INIS)

    Model Driven Engineering (MDE) places models at the heart of the software engineering process. MDE helps managing the complexity of software systems and improving the quality of the development process. The Model Driven Architecture (MDA) initiative from the Object Management Group (OMG) defines a framework for building design flows in the context of MDE. MDA relies heavily on formalisms which are normalized by the OMG, such as UML for modeling, QVT for model transformations and so on. This work deals with the execution semantics of the UML language applied to embedded real-time applications. In this context, the OMG has a norm which defines an execution model for a subset of UML called fUML (foundational UML subset). This execution model gives a precise semantics to UML models, which can be used for analyzing models, generating code, or verifying transformations. The goal of this PhD thesis is to define and build an execution engine for UML models of embedded real-time systems, which takes into account the explicit hypothesis made by the designer about the execution semantics at a high level of abstraction, in order to be able to execute models as early as possible in the design flow of a system. To achieve this goal, we have extended the fUML execution model along three important axes with regard to embedded real-time systems: - Concurrence: fUML does not provide any mechanism for handling concurrent activities in its execution engine. We address this issue by introducing an explicit scheduler which allows us to control the execution of concurrent tasks. - Time: fUML does not provide any mean to handle time. By adding a clock to the model of execution, we can take into account the elapsed time as well as temporal constraints on the execution of activities. - Profiles: fUML does not take profiles into account, which makes it difficult to personalize the execution engine with new semantic variants. The execution engine we propose allows the use of UML models with

  7. Quantifying the potential of automated dynamic solar shading in office buildings through integrated simulations of energy and daylight

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa; Svendsen, Svend; Bjerregaard Jensen, Lotte

    2011-01-01

    them with various window heights and orientations. Their performance was evaluated on the basis of the building’s total energy demand, its energy demand for heating, cooling and lighting, and also its daylight factors. Simulation results comparing the three façade alternatives show potential...... for significant energy reduction, but greater differences and conflicting tendencies were revealed when the energy needed for heating, cooling and artificial lighting were considered separately. Moreover, the use of dynamic solar shading dramatically improved the amount of daylight available compared to fixed...

  8. Hierarchical pattern of microfibrils in a 3D fluorapatite-gelatine nanocomposite: simulation of a bio-related structure building process.

    Science.gov (United States)

    Paparcone, Raffaella; Kniep, Rüdiger; Brickmann, Jürgen

    2009-04-01

    The shape development of a biomimetic fluorapatite-gelatine nanocomposite on the mum scale is characterised by a fractal mechanism with the origin being intrinsically coded in a (central) elongated hexagonal-prismatic seed. The 3D superstructure of the seed is distinctively overlaid by a pattern consisting of gelatine microfibrils. The orientation of the microfibrils is assumed to be controlled by an intrinsic electrical field generated by the nanocomposite during development and growth of the seed. In order to confirm this assumption and to get more detailed information on orientational relations of the complex nanocomposite we simulated the pattern formation process up to the microm scale. The results from experimental studies and simulation results on an atomistic level support a model scenario wherein the elementary building blocks for the aggregation are represented by elongated hexagonal-prismatic objects (A-units), with the embedded collagen triple-helices in their centers. The interactions of the A-units are consequently modelled by three contributions: the crystal energy part (originating from the pair-wise interactions of the "apatite shells" of the prismatic units), the electrostatic interaction (originating from the unit charges located at the ends of the collagen triple helices), and the interaction energy of the A-units mediated by the solvent. The next level of complexity is related to the fact that micro fibrils were found in the fluorapatite-gelatine nanocomposites. They consist of bundles of triple helical protein molecules, which are embedded within the 3D-hexagonal prismatic arrangement of the A-units. In our approach we consider the microfibrils as chains of flexible dipoles with effective dipole moments. The crystal growth processes is modelled as an energetically controlled stepwise association of elementary building blocks of different kind on a 3D-grid. The remarkable and excellent qualitative agreement between the simulated fibril patterns

  9. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  10. Simulation of Game Equilibrium Cost Control of Green Building%绿色保温建筑的博弈平衡造价控制仿真

    Institute of Scientific and Technical Information of China (English)

    胡晓娟

    2016-01-01

    传统方法中对建筑的造价控制模型采用静态层次融合方法进行数学建模,随着建筑规模的扩大和用料成本的市场变动,导致对建筑工程造价的预估性能不好.提出一种基于博弈平衡控制的绿色保温建筑造价预测算法,实现对工程造价的成本控制.分析了绿色保温建筑的材料结构模型,对绿色保温建筑的混凝土墙面进行柔性造价与热应力梯度边界数值模拟,得到成本造价与绿色保温建筑生产效率约束关系函数.采用博弈平衡控制算法实现造价准确预测和评估.仿真结果表明,采用该模型能有效实现对建筑工程造价的预测和控制,精度较高,性能较好.%In the traditional method, the cost control model of the building uses the static level fusion method to carry on the mathematical modeling, with the construction scale and the cost of the market, the forecast performance is not good. This paper presents a new method of cost prediction of green building, which is based on the equilibrium of the game, and realizes the cost control of the project cost. The material structure model of green building is analyzed, and the thermal stress gradient boundary value of the concrete wall is simulated, and the relationship function of the cost and the production efficiency is obtained. Using the game balance control algorithm to realize the cost prediction and evaluation. The simulation results show that the model can effectively achieve the prediction and control of the construction cost, and the precision is high, and the performance is good.

  11. Ecloud Build-Up Simulations for the FNAL MI for a Mixed Fill Pattern: Dependence on Peak SEY and Pulse Intensity During the Ramp

    International Nuclear Information System (INIS)

    We present simulation results of the build-up of the electron-cloud density ne in three regions of the FNAL Main Injector (MI) for a beam fill pattern made up of 5 double booster batches followed by a 6th single batch. We vary the pulse intensity in the range Nt = (2-5) x 1013, and the beam kinetic energy in the range Ek = 8-120 GeV. We assume a secondary electron emission model qualitatively corresponding to TiN, except that we let the peak value of the secondary electron yield (SEY) (delta)max vary as a free parameter in a fairly broad range. Our main conclusions are: (1) At fixed Nt there is a clear threshold behavior of ne as a function of (delta)max in the range ∼ 1.1-1.3. (2) At fixed (delta)max, there is a threshold behavior of ne as a function of Nt provided (delta)max is sufficiently high; the threshold value of Nt is a function of the characteristics of the region being simulated. (3) The dependence on Ek is weak except possibly at transition energy. Most of these results were informally presented to the relevant MI personnel in April 2010.

  12. Ecloud Build-Up Simulations for the FNAL MI for a Mixed Fill Pattern: Dependence on Peak SEY and Pulse Intensity During the Ramp

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M. A.

    2010-12-11

    We present simulation results of the build-up of the electron-cloud density n{sub e} in three regions of the FNAL Main Injector (MI) for a beam fill pattern made up of 5 double booster batches followed by a 6th single batch. We vary the pulse intensity in the range N{sub t} = (2-5) x 10{sup 13}, and the beam kinetic energy in the range E{sub k} = 8-120 GeV. We assume a secondary electron emission model qualitatively corresponding to TiN, except that we let the peak value of the secondary electron yield (SEY) {delta}{sub max} vary as a free parameter in a fairly broad range. Our main conclusions are: (1) At fixed N{sub t} there is a clear threshold behavior of n{sub e} as a function of {delta}{sub max} in the range {approx} 1.1-1.3. (2) At fixed {delta}{sub max}, there is a threshold behavior of n{sub e} as a function of N{sub t} provided {delta}{sub max} is sufficiently high; the threshold value of N{sub t} is a function of the characteristics of the region being simulated. (3) The dependence on E{sub k} is weak except possibly at transition energy. Most of these results were informally presented to the relevant MI personnel in April 2010.

  13. Simulation and experiment on response of building to microwave pulses%建筑物对微波脉冲响应仿真与实验

    Institute of Scientific and Technical Information of China (English)

    张存波; 王弘刚; 杜广星; 李国林

    2011-01-01

    The paper conducts the 3D simulation of microwave pulses propagating, reflecting and transmitting in a building, to analyze the distribution of the maximum value of electric field in time domain. For narrow-band modulated square pulses with different incident angles, the size of field enhancement region is in direct proportion to the size of region irradiated by microwaves directly through the windows and doors, and the size of windows exerts great influence upon the the size of field enhancement region. The field amplitude in the area behind windowsills reduces significantly in the propagation direction of microwave pulse. The pulse width has little influence upon the size of field enhancement region and the maximum value of electric field. For narrow-band modulated square pulses with zero rise time and fall time, the effect of field superimposition is stronger. The density of power in the building is measured under the irradiation of microwave pulses, validating the simulation results.%建立了微波脉冲在建筑物内传播、反射及透射过程的3维仿真模型,提取了空间电场时域最大值进行统计分析.分析表明;不同入射角窄带调制方波脉冲激励下,场增强区域大小与微波通过窗户和门能直接照射到的区域大小呈正比,窗户的大小对建筑物内空间场强增强区域的大小有显著影响;同时在微波脉冲的传播方向上,窗沿后的区域场强幅值明显减小;脉冲宽度对建筑物内空间场强增强区域的大小及空间场强最大值影响很小;无上升下降沿的窄带调制方波脉冲激励下,空间电场叠加增强效应更强.测量了微波脉冲辐照下,建筑物内空间功率密度分布,验证了仿真结果.

  14. Empirical validation of building simulation programs - Swiss contribution to IEA Task 34, Annex 43; Empirische Validierung von Gebaeudesimulationsprogrammen. Schweizer Beitrag zu IEA Task 34 / Annex 43. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Loutzenhiser, P.; Manz, H. (eds.)

    2006-11-15

    This comprehensive, illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on work carried out on the validation of building simulation programs. the purpose of this project was to create a data set for use when evaluating the accuracy of models for glazing units and windows with and without shading devices. A series of eight experiments that subsequently increased in complexity were performed in an outdoor test cell located on the Swiss Federal Laboratories for Material Testing and Research (EMPA) campus in Duebendorf, Switzerland. Particular emphasis was placed on accurately determining the test cell characteristics. The report presents information on experimental set-ups, their validation and the methodology used. Further chapters describe particular experiments made, including transient characterisation, evaluation of irradiation models on tiled facades, as well as those made on glazing units with various types of shading and blinds. The thermal properties of windows are looked at. The results of experiments made with four different models, HELIOS, EnergyPlus, DOE-2.1E and IDA-ICE, are discussed.

  15. Sustainability in Energy and Buildings

    OpenAIRE

    Kinnane, Oliver; Basu, Biswajit

    2014-01-01

    PUBLISHED Cardiff This paper presents a new methodology for characterising the energy performance of buildings suitable for city-scale, top-down energy modelling. Building properties that have the greatest impact on simulated energy performance were identified via a review of sensitivity analysis studies. The methodology greatly simplifies the description of a building to decrease labour and simulation processing overheads. The methodology will be used in the EU FP7 INDICATE project whi...

  16. Análise do efeito higrotérmico no comportamento em fadiga de compósitos de PPS/fibras de carbono On the analysis of hygrothermal effect on fatigue behavior of PPS/carbon fiber composite

    Directory of Open Access Journals (Sweden)

    Maria C. M. de Faria

    2012-01-01

    exposed to harsh environments such as high temperature and humidity, and should be carefully evaluated before being put into service. The aim of the present work is to evaluate the hygrothermal effect on the fatigue resistance of thermoplastic PPS/carbon fiber composite. These laminates were obtained from TenCate Company, which provides composite laminates to Airbus and Embraer. PPS/carbon fibers composites exhibited increased tensile strength under hygrothermal conditioning due to plasticization of the polymer matrix, with the fracture toughness being also increased. In contrast, the hygrothermal conditioning did not alter significantly the behavior of fatigue life of laminates from PPS/carbon fiber composite.

  17. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings

    Directory of Open Access Journals (Sweden)

    Carlos Moron

    2016-05-01

    Full Text Available There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate.

  18. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings.

    Science.gov (United States)

    Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto

    2016-01-01

    There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate. PMID:27187410

  19. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  20. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  1. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  2. 湿热载荷下含损伤夹层板分层扩展判定分析%Delamination Growth of Composite Sandwich under Hygrothermal and Mechanical Loads

    Institute of Scientific and Technical Information of China (English)

    张志民; 李向阳

    2001-01-01

    The local buckling may occur in composite sandwich with delamination induced by impact damage. This often causes delamination growth and structure failure. The delamiantion growth is studied by using the variational method of moving boundary, and the formulas of energy release rate G along the delamination front are obtained. By employing Rayleigh-Ritz method, the hygrothermal effect on buckling character of composite sandwich plates containing delamination between two faceplate laminae is studied.%含面板内分层损伤的复合材料夹层板在承受压缩载荷时,很容易发生局部屈曲,导致分层扩展和结构失效,恶劣的湿热环境更是使之加剧.利用可动边界变分问题对分层扩展进行了分析,导出了分层边界的逐点能量释放率表达式,采用Rayleigh-Ritz法研究了任意的湿热环境对含损伤的复合材料夹层板分层扩展性能的影响.

  3. 利用Proteus软件构建单片机虚拟仿真实验室%Making Use of Software “Proteus” to Build MCU Virtual Simulation Laboratories

    Institute of Scientific and Technical Information of China (English)

    徐小栋; 胡春; 董守昆; 范端云; 郭再云

    2012-01-01

    From the analysis of the pros and cons of traditional microcontroller lab, this essay elaborates the reason why it is necessary to build a virtual simulation laboratory, and then put forward a framework and a plan to build MCU virtual simulation labs by using software "Proteus". Based on the characteristics of the experimental platform of "Proteus", the essay also discusses the contents and the experimental methods of discussed the contents and the experimental methods of MCU Virtual Simulation. By combining software simulation and experimental equipment, the teachers can improve the quality and efficiency of teaching so that they can provide students with creative learning environment.%从分析传统单片机实验室的利弊人手,阐述了为何需要构建虚拟仿真实验室,并提出了利用Proteus软件构建单片机虚拟仿真实验室的框架和构建方案.根据Proteus实验平台的特点,论述了单片机虚拟仿真实验的内容构成及实验方法,通过将软件仿真和实物实验装置相结合的方式,达到提高教学的质量和效率,为学生提供具有创造性学习环境的目的.

  4. Numerical simulation of propagation rules of blast shock wave in the building cluster%爆炸冲击波在建筑群中传播规律的数值模拟

    Institute of Scientific and Technical Information of China (English)

    孟祥煜; 杨慧; 李会恩; 陈平; 田旭

    2011-01-01

    The bomb attacking is one of the most important means in the terror attacking. To study the influence of spatial layout of building complex on the propagation rules of shock wave and the effect of explosive blast wave on the surrounding,the explosion of TNT ideal explosive source was numerically simulated by use of LS-DYNA program on the basis of multi-material fluid-solid interaction algorithm. And further simulation was conducted on the response of a building sub-district after some ocourring. To bring up that the density of buildings has a noticeable effect on the blast field.%炸弹袭击是恐怖主义袭击的重要手段之一,为了研究建筑群的布局特性对爆炸冲击波传播的干扰作用及爆炸冲击波对周围环境的影响,基于任意拉格朗日多物质流固耦合算法,利用 LS-DYNA 程序对 TNT 理想爆炸源的爆炸进行了数值模拟.并以一个小区建筑群为例,对其遭受爆炸后的响应作了模拟研究,提出建筑物密度对爆炸场有显著的影响效果.

  5. An Assessment of Actual and Potential Building Climate Zone Change and Variability From the Last 30 Years Through 2100 Using NASA's MERRA and CMIP5 Simulations

    Science.gov (United States)

    Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping

    2015-01-01

    Background: In the US, residential and commercial building infrastructure combined consumes about 40% of total energy usage and emits about 39% of total CO2 emission (DOE/EIA "Annual Energy Outlook 2013"). Building codes, as used by local and state enforcement entities are typically tied to the dominant climate within an enforcement jurisdiction classified according to various climate zones. These climate zones are based upon a 30-year average of local surface observations and are developed by DOE and ASHRAE. Establishing the current variability and potential changes to future building climate zones is very important for increasing the energy efficiency of buildings and reducing energy costs and emissions in the future. Objectives: This paper demonstrates the usefulness of using NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) atmospheric data assimilation to derive the DOE/ASHRAE building climate zone maps and then using MERRA to define the last 30 years of variability in climate zones for the Continental US. An atmospheric assimilation is a global atmospheric model optimized to satellite, atmospheric and surface in situ measurements. Using MERRA as a baseline, we then evaluate the latest Climate Model Inter-comparison Project (CMIP) climate model Version 5 runs to assess potential variability in future climate zones under various assumptions. Methods: We derive DOE/ASHRAE building climate zones using surface and temperature data products from MERRA. We assess these zones using the uncertainties derived by comparison to surface measurements. Using statistical tests, we evaluate variability of the climate zones in time and assess areas in the continental US for statistically significant trends by region. CMIP 5 produced a data base of over two dozen detailed climate model runs under various greenhouse gas forcing assumptions. We evaluate the variation in building climate zones for 3 different decades using an ensemble and quartile

  6. Green buildings pay

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Edwards, Brian

    2012-01-01

    The new edition of ‘Green Buildings Pay’ authored by Brian Edwards and Emanuele Naboni explores the business and professional benefits which derive from architectural design driven by sustainability. With a new sub-title ‘Green Buildings Pay: design, productivity and ecology’ the book argues...... or environmental thinking and this finds expression in new approaches to the design of building facades, roofs, atria. Another is that new software simulation tools have changed energy assumptions and hence building forms. In a fast evolving arena, the book shows how architects are reshaping their practices....... Branding via LEED and BREEAM has taken green ideas to China and other emerging economies. The globalization of sustainability and of architectural practice is an important strand of the new edition....

  7. Laboratory Building.

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  8. 某绿色建筑能耗实测数据校验eQUSET建筑能耗模拟软件模型的研究%Measured Data Verification of Energy Consumption in a Green Building for Building Energy Simulation Software eQUEST Model

    Institute of Scientific and Technical Information of China (English)

    郭晏京; 吴祥生; 陈金华; 张小欧

    2014-01-01

    以重庆市某高校三星绿色建筑为例,对其全年实际运行能耗进行分项统计,利用eQUEST建筑能耗模拟软件建立该建筑的能耗模拟模型。逐项比较实测数据与模拟数据,分析产生误差的原因,并使校验过后的模型模拟数据误差达到相关标准要求。通过对所建模型的校验模拟,证明了经过实测数据校验的模型能够对建筑能耗进行更准确的预测。总结了一些校验模型的方法,为后续能耗模拟提供了参考。%According to the subentry statistic of a green building in Chongqing, the building energy consumption simulation model is established by eQUEST software, comparing the measured data and simu-lated data, analyzing the cause of the error, and the checked model simulation data error achieves the re-quirements of relevant standards. Through the verification of the model, data checking model can make more accurate prediction on the energy consumption of buildings. Some methods for checking model are summarized as reference for subsequent energy simulation.

  9. Design challenges for a climate adaptive multi-functional lightweight prefab panel for energy-efficient retrofitting of residential building based on one-room model simulations

    NARCIS (Netherlands)

    Dijkmans, T.J.A.; Donkervoort, D.R.; Phaff, J.C.; Valcke, S.L.A.

    2014-01-01

    Current solutions for highly energy-efficient retrofitting rely on thick static insulation, airtight construction and extensive ventilation systems to become independent from variable outdoor conditions. A building skin that adapts to the outdoor conditions to regulate the indoor conditions could pr

  10. One for All and All for One: Using Multiple Identification Theory Simulations to Build Cooperative Attitudes and Behaviors in a Middle Eastern Conflict Scenario

    Science.gov (United States)

    Williams, Robert Howard; Williams, Alexander Jonathan

    2010-01-01

    The authors previously developed multiple identification theory (MIT) as a system of simulation game design intended to promote attitude change. The present study further tests MIT's effectiveness. The authors created a game (CULTURE & CREED) via MIT as a complex simulation of Middle Eastern conflict resolution, designed to change attitudes and…

  11. A METHOD OF BUILDING SIMULATION TESTING ENVIRONMENT FOR WEB SERVICE ADAPTER TEST%Web Service适配器测试的仿真测试环境搭建方法

    Institute of Scientific and Technical Information of China (English)

    赵会群; 张暴; 申宁

    2013-01-01

    This paper introduces the method of Web Service test based on TTCN-3 and illustrates the necessity of simulation test of Web Service adapter. In order to guarantee the availability of Web Service adapter and the seamless connection of Web Service development process and test process, we present the key test points of Web Service adapter simulation test, simulation test environment features and the method to build the simulation testing environment. By giving an example of Web Service adapter simulation test, we prove the feasibility and effectiveness of the method.%介绍基于TTCN-3的Web Service测试方法,阐述对Web Service适配器进行仿真测试的必要性.为了保证Web Service适配器的可用性以及Web Service开发流程和测试流程的无缝衔接,提出Web Service适配器仿真测试的关键测试点、仿真测试环境的特性以及仿真测试环境的搭建方法.给出一个Web Service适配器仿真测试的实例,证明该方法的可行性和有效性.

  12. 复杂地形与建筑物共存情况下的风场模拟研究%STUDY ON NUMERICAL SIMULATION OF WIND FIELD AROUND BUILDINGS OVER COMPLEX TERRAIN

    Institute of Scientific and Technical Information of China (English)

    李磊; 陈柏纬; 杨琳; 张立杰

    2013-01-01

    下垫面的复杂性一直是数值模拟所面对的主要难题之一,尤其当复杂地形和建筑物同时存在时,问题变得极其困难,几乎已有的任何单一模式都难以很好模拟出复杂地形上建筑物周边的风场精细结构.为解决这一问题,提出利用中尺度模式RAMS与CFD模式FLUENT耦合的方法,利用RAMS的模拟结果驱动FLUENT进行复杂地形上建筑物周边风环境的精细模拟.、数值模拟试验以“鹦鹉”台风登陆期间的香港国际机场为研究对象,模拟了强风条件下机场周边的风场精细结构.将模拟结果与南北两侧跑道边的6个自动站观测数据进行对比,发现风速与风向都较为一致,并较好地描述了由于建筑物所导致的机场南侧着陆航道上的横向风切变,解释了台风期间南侧跑道两架飞机着陆困难的原因.%The complexity of the underlying surface has always been one of the main challenges faced in the numerical simulation of wind fields,especially when complex terrain and buildings coexist in a simulation domain.Actually,in a case with both buildings and complex terrain,almost no existing single model can provide fine-scale wind fields in details.In order to simulate the wind environment around buildings over complex terrain,this paper presents a method of coupling a mesoscale model,RAMS,with a computational fluid dynamics (CFD) model,FLUENT,based on previous studies.In the coupling modeling system,RAMS simulation results are extracted and used to drive the FLUENT simulation runs.Taking Hong Kong Intemational Airport as an example,the wind fields around the buildings during typhoon Nuri are simulated and analyzed.The simulated results are compared with the observed data from 6 automatic weather stations (AWSs) beside 2 runways of the airport.The comparison shows that the simulated wind direction and wind speed agree well with those from AWSs.The simulated results also describe crosswind change along the southern

  13. Building Inclusion

    NARCIS (Netherlands)

    Jeanet Kullberg; Isik Kulu-Glasgow

    2009-01-01

    The social inclusion of immigrants and ethnic minorities is a central issue in many European countries. Governments face challenges in ensuring housing for immigrants, delivering public services, promoting neighbourhood coexistence and addressing residential segregation. The Building Inclusion proje

  14. Building Languages

    Science.gov (United States)

    ... family's native language) is taught as the child's second language through reading, writing, speech, and use of residual ... that parents can use to help their child learn language. There are many types of building blocks, and ...

  15. 大空间公共建筑能耗模拟与节能优化设计%Energy consumption simulation and optimization design for energy conservation of large space public buildings

    Institute of Scientific and Technical Information of China (English)

    田国华; 顾贤光; 季翔; 李小多

    2014-01-01

    The biggest advantage of large space public buildings with special function is high energy con_sumption.High_speed railway stations are typical large space public buildings.This paper carries out in_vestigations on energy consumption status of some high-speed railway station,conducts numerical sim_ulation of its wind environment,lighting and heat gain situations with the software of ECOTECT.Based on that,it analyzes defects existing in architectural design and according to simulating results,it puts forward optimization design measures for energy conservation including controlling shape coefficient of the building strictly,using tubular skylight technology properly and using a combination of hybrid venti_lation technology and passive energy conservation technology.%具有特殊功能的大空间公共建筑的最大缺点是高能耗。高铁站房是具有代表性的大空间公共建筑。对某高铁站房的能耗现状进行了调查,利用 ECOTECT 软件对其风环境、采光、建筑得热等进行数值模拟,分析建筑设计方面存在的缺陷,并根据模拟结果提出了严格控制建筑体型系数、合理运用光导照明技术、综合使用混合通风技术和被动式节能技术等建筑节能优化设计措施。

  16. Hybrid Simulation of Building and Air-conditioning System for Controller Development%用于控制器开发的建筑空调混合仿真系统

    Institute of Scientific and Technical Information of China (English)

    张文彬; 晋欣桥; 杜志敏; 范波

    2011-01-01

    It is not convenient to program and debug the control logic on TRNSYS platform.Combined with MATLAB toolbox and LABVIEW virtual instrument development environment,the time can be shorten to develop the control strategy.Based on TRNSYS-based building and air conditioning systems simulation module,LABVIEW and MATLAB-based control system simulation module,the hybrid simulation system is setup and validated.The results show that the hybrid simulation system not only has the same accuracy as the simulation only using TRNSYS,but also it can be more convenient than the simulation only using TRNSYS.%对于暖通的仿真软件TRNSYS而言,其平台的控制模块具有开发难度大、调试不方便的特点,如果结合MATLAB工具箱和LABVIEW虚拟仪器开发环境建立控制仿真系统,则可以大大加快控制策略的开发和调试。本文在建立了基于TRNSYS的建筑和空调系统仿真模块和基于LABVIEW和MATLAB的控制系统仿真模块的基础上,建立了混合仿真系统,并对其进行了测试。测试结果表明,混合仿真系统的仿真精度与全数字仿真基本相同,但其应用于控制开发的便利性大大提高了。

  17. Contribution of Portuguese Vernacular Building Strategies to Indoor Thermal Comfort and Occupants’ Perception

    Directory of Open Access Journals (Sweden)

    Jorge Fernandes

    2015-11-01

    Full Text Available Solar passive strategies that have been developed in vernacular architecture from different regions are a response to specific climate effects. These strategies are usually simple, low-tech and have low potential environmental impact. For this reason, several studies highlight them as having potential to reduce the demands of non-renewable energy for buildings operation. In this paper, the climatic contrast between northern and southern parts of mainland Portugal is presented, namely the regions of Beira Alta and Alentejo. Additionally, it discusses the contribution of different climate-responsive strategies developed in vernacular architecture from both regions to assure thermal comfort conditions. In Beira Alta, the use of glazed balconies as a strategy to capture solar gains is usual, while in Alentejo the focus is on passive cooling strategies. To understand the effectiveness of these strategies, thermal performances and comfort conditions of two case studies were evaluated based on the adaptive comfort model. Field tests included measurement of hygrothermal parameters and surveys on occupants’ thermal sensation. From the results, it has been found that the case studies have shown a good thermal performance by passive means alone and that the occupants feel comfortable, except during winter where there is the need to use simple heating systems.

  18. Effect of water-ice phase change on thermal performance of building materials

    Science.gov (United States)

    Kočí, Václav; Černý, Robert

    2016-07-01

    The effect of water ice-phase change on thermal performance of integrated building material is investigated in this paper. As a characteristic construction, simple external wall made of aerated autoclaved concrete was assumed which was exposed to dynamic climatic condition of Šerák, Czech Republic. The computational modelling of hygrothermal performance was carried out using computer codes HEMOT and SIFEL that work on the basis of finite element method. The effect of phase change was taken into account by fixed-domain method, when experimentally determined effective specific heat capacity was used as a material parameter. It comprises also the effect of heat consumption and heat release that accompany the water-ice phase change. Comparing to the results with specific heat capacity, the effect of phase change on thermal performance could be quantified. The results showed that temperature fields can differ more than 6 °C. Additionally, the amount energy transported through the wall may be higher up to 4 %. This confirmed, that the effect water-ice phase change should be included in all the relevant energy calculations.

  19. Hygrothermal conditions in cold, north facing attic spaces under the eaves with vapour-open roofing underlay in a cool, temperate climate

    DEFF Research Database (Denmark)

    Bjarløv, Søren Peter; Johnston, C.J.; Hansen, M.H.

    2016-01-01

    Measurements of relative humidity and temperature in eight cold attic spaces under the eaves with varying infiltration and passive ventilation strategies were carried out in a full-scale experimental setup in Denmark. The research project tests whether best practice recommendations given to ensure...... to allow an influx of 3.3 l/s of conditioned indoor air 20 °C and 60% RH at a pressure difference of 50 Pa) and ventilation (singled-sided, passive ventilation) contained more moisture and had significantly higher levels of mould growth than the non-ventilated attics. Under the same physical conditions...... practice recommendations concerning ventilation of the cold attic space under the eaves and fulfilling the requirements in BR10 regarding air tightness of the building envelope did not ensure the absence of mould growth in the attics. Through winter the attics with infiltration through leaks (dimensioned...

  20. An Algorithm to Translate Building Topology in Building Information Modeling into Object-Oriented Physical Modeling-Based Building Energy Modeling

    OpenAIRE

    WoonSeong Jeong; JeongWook Son

    2016-01-01

    This paper presents an algorithm to translate building topology in an object-oriented architectural building model (Building Information Modeling, BIM) into an object-oriented physical-based energy performance simulation by using an object-oriented programming approach. Our algorithm demonstrates efficient mapping of building components in a BIM model into space boundary conditions in an object-oriented physical modeling (OOPM)-based building energy model, and the translation of building topo...

  1. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    Science.gov (United States)

    Yousef, Adel K. M.; Taha, Ziad. A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  2. Large Eddy Simulation of Turbulence Modeling for wind Flow past Wall Mounted Cubical Building Using Smagorinsky Scheme and validation using Artificial Neural Network for Time Series Data

    Directory of Open Access Journals (Sweden)

    Bibhab Kumar Lodh

    2015-02-01

    Full Text Available This paper will present the large eddy simulation of turbulence modeling for wind flow over a wall mounted 3D cubical model. The LES Smagorinsky scheme is employed for the numerical simulation. The domain for this study is of the size of 60 cm x 30 cm x 30 cm. The 3D cube model is taken of the size of 6 cm x 6 cm x 4 cm. The Reynolds number for the flow in respect of the height of the cube i.e, 4 cm is 5.3x104 . The hexahedral grids are used for the meshing of the flow domain. The results are discussed in terms of various parameters such as velocity profile around the cube and the computational domain, the pressure distribution over the cube, near wall velocity profile and the shear stress distribution and also the result of drag coefficient is verified by neural network time series analysis using MATLAB. In this present study we have used the OpenFoam platform for the computational and numerical analysis. The numerical scheme employed is the combination of the steady state incompressible Newtonian flow model using SIMPLE algorithm followed by the transient model of incompressible Newtonian flow using PISO algorithm. We have observed that there is a constant positive drag coefficient in case of steady state simulation where as there is a negative lift coefficient in the initial run and a very low lift coefficient at the end of the steady state simulation.

  3. A methodological study of environmental simulation in architecture and engineering. Integrating daylight and thermal performance across the urban and building scales

    DEFF Research Database (Denmark)

    Sattrup, Peter Andreas; Strømann-Andersen, Jakob Bjørn

    2011-01-01

    This study presents a methodological and conceptual framework that allows for the integration and creation of knowledge across professional borders in the field of environmental simulation. The framework has been developed on the basis of interviews with leading international practitioners, key t...

  4. Competence Building

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    The main question that guides this paper is how governments are focusing (and must focus) on competence building (education and training) when designing and implementing innovation policies. With this approach, the paper aims at filling the gap between the existing literature on competences...... on the one hand, and the real world of innovation policy-making on the other, typically not speaking to each other. With this purpose in mind, this paper discusses the role of competences and competence-building in the innovation process from a perspective of innovation systems; it examines how governments...... and public agencies in different countries and different times have actually approached the issue of building, maintaining and using competences in their innovation systems; it examines what are the critical and most important issues at stake from the point of view of innovation policy, looking particularly...

  5. Building Procurement

    DEFF Research Database (Denmark)

    Andersson, Niclas

    2007-01-01

    ‘The procurement of construction work is complex, and a successful outcome frequently elusive’. With this opening phrase of the book, the authors take on the challenging job of explaining the complexity of building procurement. Even though building procurement systems are, and will remain, complex...... despite this excellent book, the knowledge, expertise, well-articulated argument and collection of recent research efforts that are provided by the three authors will help to make project success less elusive. The book constitutes a thorough and comprehensive investigation of building procurement, which...... evolves from a simple establishment of a contractual relationship to a central and strategic part of construction. The authors relate to cultural, ethical and social and behavioural sciences as the fundamental basis for analysis and understanding of the complexity and dynamics of the procurement system...

  6. 基于 CFD 模拟的绿色建筑自然通风优化设计研究%CFD-Simulation-Based Natural Ventilation Design Optimization for Green Buildings

    Institute of Scientific and Technical Information of China (English)

    郭卫宏; 刘骁; 袁旭

    2015-01-01

    自然通风是重要的绿色建筑被动式设计策略,对于节能减排、提高建筑环境舒适度和改善室内空气品质等方面具有至关重要的作用。计算流体动力学(简称 CFD)是近代流体力学、数值数学和计算机科学结合的产物,将其运用在绿色建筑设计领域,能够为更精确地预测设计方案的建筑风环境提供依据,建筑师结合建筑技术科学的相关知识与模拟的结果进行分析,进而多方案比选和优化建筑设计方案。从总体布局、建筑形体、围护界面3个层面通过 CFD 风环境模拟来进行建筑自然通风优化的方法与实例研究,为建筑风环境的优化设计提供思路。%Natural ventilation is an important passive strategy of green building design, It plays a crucial role in conserving energy, reducing emission, enhancing comfort level of built environment, and improving indoor air quality. Computational Fluid Dynamics (CFD for short), as the combination of modern fluid dynamics, numerical mathematics and computer science, could offer the architect an important basis to optimize the architectural design when applied to the green building design. In combination with relevant knowledge in science of building technology and the simulation results, it can analyze the strength and weakness of various design options and optimize them. The paper shows the methodology and case study of optimizing the building’s natural ventilation through CFD wind environment simulation from three aspects, i. e. master layout, building form and envelope interface, thus offer some ideas for optimizing the building’s wind environment.

  7. Railway Simulation with the CASSANDRA Simulation System

    OpenAIRE

    Szűcs, Gábor

    2001-01-01

    In this paper a railway simulator will be presented and illustrated with a railway network model, which is used for education, i.e. the training of railway system operators. The new railway simulation system is developed using a general simulation software, CASSANDRA that is usable not only for the railway network building but for planning, analysis and optimum finding as well.

  8. Building Bridges

    DEFF Research Database (Denmark)

    The report Building Bridges adresses the questions why, how and for whom academic audience research has public value, from the different points of view of the four working groups in the COST Action IS0906 Transforming Audiences, Transforming Societies – “New Media Genres, Media Literacy and Trust...... in the Media”, “Audience Interactivity and Participation”, “The Role of Media and ICT Use for Evolving Social Relationships” and “Audience Transformations and Social Integration”. Building Bridges is the result of an ongoing dialogue between the Action and non-academic stakeholders in the field of audience...

  9. Simulation of Gaseous Mercury Adsorption of Different Building Materials%不同建筑材料对气态汞的吸附模拟研究

    Institute of Scientific and Technical Information of China (English)

    高小峰; 谷依露; 谢田; 刘阳; 黄晟; 赵由才

    2014-01-01

    The mechanical properties ,phase change energy storage ,environmental protection ,and recycling of building materials are extensively studied ,but few studies focus on the mercury adsorption of different building materials .Five types of cement brick pow der including foam concrete ,red brick ,aggregate and gravel as well as several standard concrete blocks were exposed to gaseous mercury in constant temperature to determine most vulnerable building material to mercury contamination and the contamination depth of concrete blocks .Results showed that small particle contributed to large mercury adsorption , however different performance was found amongvarious materials . Red brick was the likely to have strong adsorption capacity followed by foam concrete and gravel . For concrete block ,the pollution mainly concentratedat the 0~1.5cm of the surface .As a result ,for some seriously mercury polluted factories and workshops ,mercury pollution can be removed by peeling the skin of the buildings before demolition , renovation process .%建筑材料的力学性质、相变蓄能、生态环保、再生利用等受到广泛关注,但很少有关于不同建筑材料对汞的吸附研究。通过对水泥砖、泡沫混凝土、红砖、骨料、砂石等5种建筑材料细粉和水泥混凝土立方体标准试块置于恒温室内进行气态汞吸附模拟,探索出最易受汞污染的建筑材料和水泥混凝土块的受污染深度。通过XRD和XRF对5种建筑材料分析得出其成分以SiO2为主,其次是CaCO3。5种建筑材料进行汞吸附实验结果表明,整体上粒径越小吸附量越大,但不同材料之间存在差异性,红砖是最容易受污染的建筑材料,其次泡沫混凝土和砂石对汞也具有较大吸附性,水泥砖和骨料对汞吸附能力较弱。水泥混凝土块吸附模拟表明污染主要存在于表层0~1.5 cm范围内,汞污染严重的工厂和车间等在拆迁、改建过程中,需要对其表层剥离,去除汞污染。

  10. Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an Airport Terminal building displacement conditioning system

    OpenAIRE

    Gowreesunker, BL; Tassou, SA; Kolokotroni, M

    2013-01-01

    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier. This paper reports on the energy performance evaluation of a displacement ventilation (DV) system in an airport departure hall, with a conventional DV diffuser and a diffuser retrofitted with a phase change material storage heat exchanger (PCM-HX). A TRNSYS-CFD quasi-dynamic coupled simulation method was employed for the analysis, whereby TRNSYS® sim...

  11. Simulated Impact of Roof Solar Absorptance, Attic, and DuctInsulation, and Climate on Cooling and Heating Energy Use inSingle-Family Resi dential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Konopacki, S.

    1998-10-26

    This report summarizes a comparative analysis of the impact of roof surface solar absorptance, attic, and duct insulation on simulated residential annual cooling and heating energy use in sixteen sunbelt climates. These locations cover a wide range of climates where cool roofs are expected to save energy and money, and are areas with high growth rates in new residential construction. The residences are single-story, single-family of new construction with either a gas furnace or an electric heat pump, and with ducts in the attic OT conditioned zone. The objective is to demonstrate that a residence with a cool roof could utilize a lower level of attic insulation than one with a dark roof with a zero net change in the annual energy bill. Annual energy use is simulated with DOE-2. lE, which was adapted with a validated residential duct-attic function, for dark and cool roofs and eleven attic insulation R-values ranging from 1 through 60. Analysis of the simulated energy savings from the light-colored roofs show that the savings can be transformed into an equivalent reduction in the level of attic insulation. Reductions in R-value are observed in varying degrees for residences with both gas and electric heat, all duct configurations, and all climates. In some cooling dominated climates there are cases where a cool roof could be implemented without attic insulation.

  12. Study on the indoor hygro-thermal environment in art galleries%美术馆类建筑室内热湿环境的研究

    Institute of Scientific and Technical Information of China (English)

    侯书新; 郝学军; 李锐

    2012-01-01

    The paper analyzes the relationship between the art works of the art gallery and the indoor thermal and humidity environment, and points out the air-conditioner design standards of the art gallery should refer to the design of the comfortable craft air-conditioner according to the special relationship between the air-conditioner design of large buildings of art gallery and the indoor thermal and humidity environment, so as to consider the comfortableness of human beings and meet the demands of the art works, so as to have the capacity to control the indoor temperature and humidity of the air-conditioner system.%分析了美术馆美术作品与室内热湿环境的关系,针对美术馆类大空间建筑空调设计与室内热湿环境的特殊性,提出美术馆空调设计标准应参照舒适工艺性空调进行设计,既要考虑人体的舒适性,又要满足美术作品的要求,使空调系统具备室内温湿度同时控制的能力。

  13. Building Bridges

    DEFF Research Database (Denmark)

    The report Building Bridges adresses the questions why, how and for whom academic audience research has public value, from the different points of view of the four working groups in the COST Action IS0906 Transforming Audiences, Transforming Societies – “New Media Genres, Media Literacy and Trust...

  14. Sustainable Buildings

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Elle, Morten

    The scientific community agrees that: all countries must drastically and rapidly reduce their CO2 emissions and that energy efficient houses play a decisive role in this. The general attitude at the workshop on Sustainable Buildings was that we face large and serious climate change problems...

  15. The Numerical Simulation of Recoil Caused by Blasting Demolition of High Buildings%高耸建筑物爆破拆除引起后座的数值模拟

    Institute of Scientific and Technical Information of China (English)

    钟冬望; 黄志强

    2003-01-01

    On the basis of recoil in the process of blasting demolition of high buildings, this thesis applies dynamics theory to predict whether the phenomena of recoil will occur or not by simulation and calculation of the recoil and the pressure suffered from the rudimental supporter in the process of demolition. The criterion of recoil relies on whether recoil can be overcome by the intensity of reservation or friction. To take the obliquity as increment, and to calculate the recoil and the pressure suffered from the rudimental supporter in correspondence with the every obliquity in the demolition by VC program, the relation curve can be obtained between recoil and obliquity. By means of examples testified with programs, the obtained results are consistent with those of practice.

  16. 基于大涡模拟的三维高层建筑结构气弹响应数值模拟%LES based numerical simulation of aeroelastic response of a 3D tall building

    Institute of Scientific and Technical Information of China (English)

    郑德乾; 顾明; 张爱社

    2013-01-01

    以宽高比为1:6的方形截面高层建筑为研究对象,采用弱耦合分区交错算法,流体域采用大涡模拟方法,进行了紊流边界层风场内三维高层建筑结构多自由度模型的气弹数值模拟,计算中考虑了来流紊流,以及结构的顺、横风向响应.将结构静止时大涡模拟结果与刚性模型测压风洞试验进行比较,验证了该方法在准确预测结构风荷载方面的可行性.通过与气弹模型风洞试验结果的比较表明,本文数值分析方法可用于求解风与结构的相互作用,且具有较高的精度.进行了高折减风速下的气弹数值模拟,研究了结构顶部顺、横风向位移响应随折减风速的变化规律.结果表明:结构风振气弹响应主要为来流紊流引起的顺风向抖振和旋涡脱落引起的横风向涡激振动;折减风速较小时,结构顺、横风向位移振幅相当,且位移响应均相对较小;随着折减风速的增加,结构位移响应增大,横风向涡激振动逐渐占据主导地位,并经历了从“拍”到“涡激共振”的转化.%The aeroelastic response of a square section tall building with 1:6 width to height aspect ratio in atmospheric boundary layer was numerically simulated,using loosely coupled method.In the present study,large eddy simulation technique was adopted with consideration of inflow turbulence.The wind-induced along and across vibration responses were both considered.The present method was verified to be able to accurately predict wind loads on buildings at rest,by comparing large eddy simulation results with rigid model wind tunnel experiment.The simulated wind-induced along and across vibration responses were compared with corresponding aeroelastic model wind tunnel experiments.The comparison results show that the present method is applicable to a certain extent in solving windstructure-interaction problems.Aeroelastic responses of the building model under high reduced wind velocities were also

  17. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M

    2015-07-01

    Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death".

  18. 直接驱动液压系统建压过程仿真研究%Simulation of pressure building-up in direct-drive hydraulic system

    Institute of Scientific and Technical Information of China (English)

    逄振旭; 倪其民; 李从心

    2001-01-01

    By analyzing the working process of hydraulic power system i n a direct-drive hydraulic press, the pressure building-up is simulated at diffe rent load. The results show that the time of pressure building-up is a main fact or affecting the forging number of press. This is a problem to take into account when designing a high-speed hydraulic press.%本文在分析直接驱动液压机的液压动力源系统工作过程的基础上,对液压机在不同负载作用下的压力建立过程进行了计算机动态仿真。仿真结果表明,对直接驱动的大流量、高压液压机而言,压力建立过程是直接影响压机锻造次数的关键因素之一,是高速液压机液压系统设计应考虑的问题之一。

  19. Calculation of the thermal solar contribution in facilities of ACS in buildings. Comparison between the method of strong simulation and F-Chart considering lost in the circuits; Calculo de la contribucion solar termica en instalaciones de ACS en edificios. Comparacion entre el metodo de simulacion dinamica y F-Chart considerando perdidas en los circuitos

    Energy Technology Data Exchange (ETDEWEB)

    Guillo, J. F.; Lucas, M.; Lucas, R.; Vicente, P. G.

    2008-07-01

    It has analyzed the impact of distribution losses in the size of solar installations by comparing two methods commonly used in calculating the contribution of solar residential building: f-chart and dynamic simulation. 3 schemes have been analysed in a building 22 houses and 70 occupants located in the IV and climate in the province of Alicante. For comparison between the two methodologies have been used for calculating the same values input from climate data as consumption of ACS. (Author)

  20. 基于Lagrangian模型与Eulerian模型耦合的建筑物周边气体扩散模拟%Simulation of pollutant diffusion based on Lagrangian/Eulerian hybrid model around buildings

    Institute of Scientific and Technical Information of China (English)

    黄弘; 胡啸峰; 申世飞; 原智宏; 冈林一木; 大场良二

    2011-01-01

    A hybrid atmospheric dispersion method coupled with Lagrangian particle model and Eulerian model is proposed,which can be used for numerical simulation in areas around urban buildings.This method merges the advantages of Lagrangian model and Eulerian model together,and gives a high accuracy of prediction.The developed hybrid model is applied to the numerical simulation of gas diffusion around an isolated building.The mean wind velocity,TKE(Turbulent Kinetic Energy) and mean concentration have been discussed and compared with the wind tunnel data.The simulation results show that the hybrid model can give a high accuracy both in the regions close to the source and distant from the source.Finally,we use the COST-732 model to evaluate the prediction results of Eulerian,Lagrangian and the proposed hybrid model,and it is shown that the hybrid model can give the best simulation results.%该文旨在建立一个适用于城市建筑物周边的基于Lagrangian模型与Eulerian模型耦合的气体扩散数值模型,同时具有Lagrangian模型与Eulerian模型各自的优点,提高预测精度。该文利用耦合模型对单个建筑物周边的气体扩散过程进行数值模拟,并将平均风速、湍流动能和平均浓度几个参量的结果与风洞实验数据进行对比分析。结果表明,耦合模型对于建筑物周边靠近扩散源和远离扩散源的区域均能给出较高精度的预测结果。最后,利用COST-732模型评价方法对Lagrangian模型、Eulerian模型和耦合扩散模型实施了评价,其中耦合模型的评价结果最好。

  1. A Particle Element Method (PEM) for Numerical Simulation of Building Structure Collapse%一种用于建筑结构倒塌数值模拟的质点元方法

    Institute of Scientific and Technical Information of China (English)

    万福磊; 李云贵

    2011-01-01

    针对建筑结构倒塌过程的梁壳单元几何、材料、接触三重非线性且连续介质向非连续介质转化的动力计算问题,提出了能够考虑多重非线性用于连续介质与非连续介质共同作用且动态转化计算的质点元方法.该方法以质点运动学为基础,建模过程与有限元一致,通过定义广义连接模型、构造连接模型转化法则和建立接触碰撞算法,将显式有限元与离散元统一于相同的计算框架之下,具备有限元连续介质阶段的计算精度和离散元非连续介质阶段的计算能力,能够用于建筑结构倒塌等强非线件的动力计算.%Considering the coupled nonlinearity of geometrical, material and contact, a particle element method (PEM) was proposed to simulate the nonlinear dynamics process of building structure collapse from continuum to noncontinuum. Based on the theory of particle dynamics, this method unifies the explicit finite element method and the discrete element method to the same computation framework by defining the generalized link modal, constructing the conversion law of the link modal and creating the contact collision algorithm. The particle element method, which has the computation accuracy of finite element method during the continuum phase and the computation capability of discrete element method during the noncontinuum phase, could be used for strong nonlinear dynamics simulation of building structure collapse.

  2. Data management for biofied building

    Science.gov (United States)

    Matsuura, Kohta; Mita, Akira

    2015-03-01

    Recently, Smart houses have been studied by many researchers to satisfy individual demands of residents. However, they are not feasible yet as they are very costly and require many sensors to be embedded into houses. Therefore, we suggest "Biofied Building". In Biofied Building, sensor agent robots conduct sensing, actuation, and control in their house. The robots monitor many parameters of human lives such as walking postures and emotion continuously. In this paper, a prototype network system and a data model for practical application for Biofied Building is pro-posed. In the system, functions of robots and servers are divided according to service flows in Biofield Buildings. The data model is designed to accumulate both the building data and the residents' data. Data sent from the robots and data analyzed in the servers are automatically registered into the database. Lastly, feasibility of this system is verified through lighting control simulation performed in an office space.

  3. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  4. Occupant behaviour and robustness of building design

    DEFF Research Database (Denmark)

    Buso, Tiziana; Fabi, Valentina; Andersen, Rune Korsholm;

    2015-01-01

    with alternating occupant behaviour patterns. The aim of this work was to investigate how alternating occupant behaviour patterns impact the performance of different envelope design solutions in terms of building robustness. Probabilistic models of occupants' window opening and use of shading were implemented......Occupant behaviour can cause major discrepancies between the designed and the real total energy use in buildings. A possible solution to reduce the differences between predictions and actual performances is designing robust buildings, i.e. buildings whose performances show little variations...... in a dynamic building energy simulation tool (IDA ICE). The analysis was carried out by simulating 15 building envelope designs in different thermal zones of an Office Reference Building in 3 climates: Stockholm, Frankfurt and Athens.In general, robustness towards changes in occupants' behaviour increased...

  5. Building Letters

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Cabinet是种十分吸引人却很简单的衬线字体,是由一名匿名字体设计师专门为Building Letters最新的资金筹集活动所设计的。这个Building Letters包中包含一个CDROM,有32种字体,以及一本专门设计的杂志和两张由Eboy和Emigre所设计的海报。字体光盘样例是由世界顶级的字体设计师们设计的.

  6. Model Building

    OpenAIRE

    Frampton, Paul H.

    1997-01-01

    In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly...

  7. Building economics

    DEFF Research Database (Denmark)

    Pedersen, D.O.(red.)

    Publikationen er på engelsk. Den omfatter alle indlæg på det fjerde internationale symposium om byggeøkonomi, der blev arrangeret af SBI for det internationale byggeforskningsråd CIB. De fem bind omhandler: Methods of Economic Evaluation, Design Optimization, Ressource Utilization, The Building...... Market og Economics and Technological Forecasting in Construction. Et indledende bind bringer statusrapporter for de fem forskningsområder, og det sidste bind sammenfatter debatten på symposiet....

  8. Simulation on the smoke transport process to remote room during a residential building fire based on FDS%基于FDS的居民楼火灾烟气远距离传播过程研究

    Institute of Scientific and Technical Information of China (English)

    徐晓楠; 吴迪; 施照成

    2012-01-01

    利用大涡模拟软件FDS对某居民楼火灾发生发展和烟气传播过程进行数值模拟,探讨烟气质量浓度在侧间-走廊建筑的分布情况.在不同房间的目标位置设置探测点,分析烟气质量浓度、CO体积分数分布.结果表明,距离火源位置最远的房间烟气质量浓度、CO体积分数最高且在短时间内达到致死浓度;烟气更容易在最远的房间聚集,在特定的时间段内,始终比其他房间的危险性要高.对于此类居民楼建筑火灾中的人员安全而言,最远端房间的危险性最高,火灾时要着重注意此区域的疏散.此外,在走廊顶棚上间隔适当的距离设置了挡烟垂壁,并且模拟了该工况下烟气质量浓度分布.结果表明,加入挡烟垂壁后走廊的烟气蔓延相对均匀,各个房间烟气质量浓度更为接近,最大烟气质量浓度也有明显降低,从而延缓了整个建筑达到危险状态的时间.%The present paper is aimed to introduce the basic information of residential building fire, to develop LES filed simulation software FDS in setting up a numerical simulation model of the residential building and to simulate the process of smoke movement as well as fire development. The result reveals that the speed of smoke move to other rooms was very fast as the smoke filled all of the space after 430 s. In order to analyze the soot density, some simulated detectors have been installed at some selected locations in each room. The results of our simulation demonstrate that the soot densities in center point of room S and N1 which were farthest from the fire room firstly reach the peak. In addition, during the fast growing of soot density, room S1 and Nl have always significantly higher soot density compared to other rooms throughout the full development stage of fire. The soot density change trends of other locations were same as the center location . Meanwhile, in order to analyze the carbon monoxide concentration, several

  9. In ventilated environment building outside the window wall of fire trace numerical simulation research%通风环境中建筑物外窗壁面火灾痕迹的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    赵颖明

    2014-01-01

    火灾现场的承受客体受到火场作用后,外观及内部结构发生变化,形成一些特殊痕迹,表现为颜色和烧损破坏程度的区别。这些特殊变化痕迹与火灾温度、燃烧持续时间、起火部位存在着对应变化的规律和联系。数值模拟与实验相比具有成本低、可行性高、灵活性高等特点,同时能够比较方便的确定不同燃料、释热率、通风条件、火灾位置等因素对火灾进程的影响。运用数值模拟技术,确定影响建筑物壁面痕迹形成的热物性参数,通过模拟通风条件下建筑火灾外窗建筑物壁面痕迹形态,测算痕迹形成条件和规律,为火灾事故调查提供定量判据。%The fire scene by scene bearing object function , appearance and internal structure changes , the formation of some special marks , performance for color and burning damage degree difference. These changes with traces of fire temperature, combustion duration , fire rules and contact position exists corresponding changes . Numerical simulation has the advantages of low cost, high feasibility, high flexibility compared with the experiment, and can conveniently determine the different fuel, heat release rate, ventilation, fire location and other factors on the process of fire for effect. In this paper, using numerical simulation technique, determine the thermal parameters affect the building wall traces, by building fire simulated conditions of ventilation window wall traces morphology, formation conditions and rules which provide a quantitative criterion for traces, fire accident investigation.

  10. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  11. 汽车悬架系统建模与仿真研究%The Model Building And Simulation Of The Automobile Suspension System Reserch

    Institute of Scientific and Technical Information of China (English)

    赵海宾; 赵巍

    2016-01-01

    The automobile suspension is a multi-body system and the motion relationship among the parts is very complicated, so it brings many difficulties to compute the various characteristics with traditional methods. The Automobile suspension kinetics and dynamic simulation has been a very critical task in automobile design and development and it provides a rapid and effective method to design automobile suspension.%汽车悬架系统是一个比较复杂的多体系统,其构件之间的运动关系十分复杂,这就给使得传统的计算方法分析悬架的各种特性带来许多的困难。因此,悬架的运动学和动力学仿真分析在汽车悬架特性的研究中起着重要作用,并为悬架系统的设计和开发提供了一种先进高效快捷的方法。

  12. 350m塔楼顶部皇冠钢结构施工过程模拟分析%SIMULATION ANALYSIS OF THE CONSTRUCTION PROCESS OF STEEL CROWN STRUCTURE AT THE TOP OF 350 METER-HIGH BUILDING

    Institute of Scientific and Technical Information of China (English)

    段海; 汪晓阳; 张希博; 柳超; 彭湃

    2015-01-01

    通过对沈阳市府恒隆广场350 m 高塔楼顶部的皇冠钢结构施工过程进行模拟分析,简要介绍了复杂钢结构施工过程模拟分析的方法、步骤、施工阶段划分的原则、条件假定、临时支撑的反力分析、加固结构的承载力分析以及后装缺口的变形控制等,通过施工阶段模拟分析的方法,来确定施工方案、优化施工顺序,确保施工方案的可行性、科学性,同时避免盲目施工所带来的结构安全和质量隐患。%ABSTRACT:Through the simulation analysis of the construction process of steel crown structure at the top of 350-meter-high building of Hang Lung Plaza in Shenyang,this paper briefly introduced the simulation analysis of the construction process of complex steel structure in terms of the approaches, the steps,the principles of the construction stage division,the assumption of conditions,the reaction force analysis of temporary supports,the bearing capacity analysis of the reinforced structure,as well as the analysis of the deformation control of the afterloading gaps and so on.The construction scheme was identified and the construction sequence was optimized through simulation analysis of construction process,thus the feasibility and scientificity of the construction scheme was confirmed which could avoid the quality problems caused by blind construction.

  13. Precast RC Industrial Building design supported by Building Information Model (BIM)

    OpenAIRE

    Mirkac, Tadej

    2010-01-01

    A Precast RC industrial building with typical skeletal structure is modelled, analyzed and documented. The focus of diploma was preparation of building information model which serves as a support in design. We paid special attention to structural analysis, earthquake design, detailing and project documentation. The industrial building is planned as an extension of a bigger facility, so we decided to use building information model for 3D visualization simulation of phases in construction detai...

  14. Deactivation of Building 7602

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has sponsored research and development programs in Building 7602 at Oak Ridge National Laboratory (ORNL) since 1984. This work focused on development of advanced technology for processing nuclear fuels. Building 7602 was used for engineering-scale tests using depleted and natural uranium to simulate the nuclear fuel. In April 1994 the DOE Office of Nuclear Energy (NE) sent supplemental FY 1994 guidance to ORNL stating that in FY 1995 and beyond, Building 7602 is considered surplus to NE programs and missions and shall be shut down (deactivated) and maintained in a radiologically and industrially safe condition with minimal surveillance and maintenance (S ampersand M). DOE-NE subsequently provided FY 1995 funding to support the deactivation activities. Deactivation of Building 7602 was initiated on October 1, 1994. The principal activity during the first quarter of FY 1995 was removal of process materials (chemicals and uranium) from the systems. The process systems were operated to achieve chemical solution concentrations needed for reuse or disposal of the solutions prior to removal of the materials from the systems. During this phase of deactivation the process materials processed and removed were: (1) Uranyl nitrate solution 30,178 L containing 4490 kg of uranium; (2) Nitric acid (neutralized) 9850 L containing less than 0.013 kg of uranium; (3) Organic solution 3346 L containing 265 kg of uranium; (4) Uranium oxide powder 95 kg; and (5) Miscellaneous chemicals. At the end of December 1994, the process systems and control systems were shut down and deactivated. Disposition of the process materials removed from the process systems in Building 7602 proved to be the most difficult part of the deactivation. An operational stand down and funding reductions at Y-12 prevented planned conversion of the uranyl nitrate solution to depleted uranium oxide powder. This led to disposal of the uranyl nitrate solution as waste

  15. 水价政策模拟模型构建及其应用研究%A model building for water price policy simulation and its application

    Institute of Scientific and Technical Information of China (English)

    秦长海; 甘泓; 贾玲; 汪林

    2014-01-01

    Aiming at the situation of non-market pricing system of water resources, a general equilibrium model for water price policy simulation (WaGE) has been built up to analyze the influence on national economy variation and household income, etc. and to establish a reasonable water price. Based on general equilibrium theory, WaGE is able to analyze and simulate water price policy, involving water element in the element supply system and separating water related enterprises from industries. Taking Beijing as the re-search area to implement practical application, the results show that there is little influence on economic growth, industrial structure, and residents living level by appropriate water price rising and water related subsidy, while the positive effect on the water supply enterprise is significant. Under the circumstance of low water price and imbalance of water supply enterprises income and expenditure, improving water price could effectively enhance the income of water supply enterprises and reduce the water usage, which would take a positive role on reducing the depletion of water resources and water environmental degradation due to excessive development of water resources.%针对水资源非完全市场化、主要以政府主导的定价情况,构建价格政策模拟模型,分析水价比价、差价及整体变动对国民经济和居民收入等指标的影响,为合理制定水价提供依据。基于一般均衡模型方法,利用GMAS软件,建立将水要素纳入到要素供给中、将水行业单独考虑的水价政策模拟模型,开展水价格政策模拟分析。以北京市为研究区开展实践应用,结果表明,在适当的调价范围内,水价提高和政府涉水补贴等政策对物价水平、经济增长、产业结构及居民生活水平影响不明显,但是对水生产供应企业影响意义重大。在水价偏低、水生产供应企业收支不平衡的情况下,水价提高可有效提高水生产

  16. 重庆地区建筑太阳能PV/T系统性能模拟研究%Simulation Study on Solar PV/T System Performance of Building in Chongqing

    Institute of Scientific and Technical Information of China (English)

    宋石海; 庄春龙; 张洪宇

    2013-01-01

    The two application forms of solar PV/T in roof sand walls in Chongqing are studied through simulation with TRNSYS for a year and photo-electric and photo-thermal features are analyzed. The results show that the power production and photo-thermal transfer amount of R-PV/T system are higher than those of W-PV/T, but W-PV/T laying is out of the limit of building, so it can be applied by building walls and it's feasible. It offers some ref-erences for the application of PV/T in parts of low solar radiation in Chongqing.%  利用TRNSYS软件对太阳能光电/热综合利用系统(PV/T)在重庆地区的屋顶及墙面两种应用形式进行了全年模拟研究,对其光电、光热特性进行了分析。得出R-PV/T系统的发电总量与系统的光热转换总量高于W-PV/T系统,而W-PV/T系统的敷设可以不受屋面场地的限制,使建筑墙体表面获得利用,因此仍然具有较大可行性。论文的研究为PV/T在重庆等太阳辐射强度较弱地区的应用提供了参考。

  17. An Investigation of Envelope Situation and Simulation of Heating/Cooling Energy Consumption for Rural Residential Buildings in Shanghai%上海农村住宅围护结构现状调查与供暖空调能耗模拟

    Institute of Scientific and Technical Information of China (English)

    孙雨林; 林忠平; 王晓梅

    2011-01-01

    In this paper, based on the building envelope investigation results of 108 rural residential houses in Shanghai, the comparison work with the national standard of Hot Summer and Cold Winter Region Residential Building Design Standard was carried out. The envelope thermal performance of current rural residential buildings was obtained. Based on the investigation results and with the building energy simulation software of DesignBuilder, a basic model for Shanghai rural residential buildings was established.Furthermore, the heating and cooling energy consumption was simulated, and the energy consumption level was achieved. In addition, the importance of energy conservation of rural residential buildings was presented.%本文基于对108户上海农村住宅围护结构的实际调查结果,通过与(JGJ 134-2001)进行比较,分析得到了上海农村住宅围护结构的热工现状.而后以调查分析结果为基础,采用逐时能耗分析软件DesignBuilder建立了上海农村住宅的基本模型,通过对基本模型进行全年能耗模拟,获得了上海农村住宅的供暖空调能耗水平,并简要分析了农村住宅节能的重要性.

  18. The Re-invention of the Tower House for the Construction of Green Buildings NZEB, Integrated With the Vertical Axis Small Wind System

    Science.gov (United States)

    Marino, Francesco Paolo R.

    Nowadays the cultural and economic context aims to create a sustainable "carbon zero" society through energy-efficient green buildings NZEB, but it has so far overlooked a construction type widely spread throughout Europe, especially in the Middle Ages, and that in Italy still characterizes the most beautiful landscapes of Tuscany and other cities: the tower-house. The aim of the research was to verify the possibility of reinventing the type of the familiar tower-house, which is intrinsically directed to conquer the height and therefore higher wind conditions, assuming the installation on the top of a small wind system to use wind energy, to make the building energetically self-sufficient. This building is designed from a wooden structure of a deciduous tree widespread in the Italian region of Basilicata, the Turkish Oak, which, subject to processes of hygrothermal conditioning, can be transformed into the base material to compose laminated timber beams and pillars, able to guarantee a load of exercise, to bending stress, equal to 40.9 N/mm2, as followed by tests in the Laboratory of Engineering of the University of Basilicata, Potenza. With normal wind conditions in the city of Potenza (average of 6.5 m/s), a 5 kW wind turbine mounted at 25 m tall on a 13 m high building is able to provide all the energy the building needs, with its attractive tapered oval top that minimizes turbulence. Entirely made with structures, finishes and natural insulation, the building is a sign in the landscape, history and future together.

  19. Analysis of Indoor Thermal Performance of Solar Buildings and Simulation Software Development%太阳能建筑室内热工性能分析与模拟软件开发

    Institute of Scientific and Technical Information of China (English)

    敖永安; 车丹; 彭亮; 张茜; 李玉雯

    2013-01-01

    According to the solar building characteristics,we established simulation analysis software suitable for solar building indoor thermal performance; analysed the impact of solar energy applied in the building on indoor temperature and load; and provided reference data for the design of the solar building heating and cooling systems. Based on VB visual programming language, using the method of " ADO data control + SQL statement" and through the ODBC connected with database interface, established the national climate database; databases of different wall types, window types, and radiation floor materials in different regions, etc. The program refers to the outer - wall temperature heat transfer calculation method to calculate the indoor cold (heat) load, and the parametric thought that uses APDL( ANSYS parametric design language) to realize the visualization parametric modeling of floor for heat transfer calculation. Then we got the results: for example, on 1 st January in Shenyang, with only solar energy floor heating in practical building conditions, the standard indoor design temperature, 18℃ ,can not be reached;and the amount of auxiliary heat for the water supply temperature controlled at 40℃ is greater than the amount for that uncontrolled when we use solar energy for heating only. This software could calculate thermal parameters of rooms in different locations.different time and different rooms, so it could be used broadly. It also has opened databases and outputs in graphs and tables, so it is easily understood.%目的 针对太阳能建筑自身的特点,编制适用于太阳能建筑的室内热工性能模拟分析软件,分析太阳能在建筑中应用时对室内温度和负荷的影响,为太阳能建筑冷热源系统的设计提供参考.方法 基于Visual Basic可视化程序设计语言,运用“ADO数据控制项+SQL语句”并通过ODBC同数据库接口相连接的方法建立全国气候数据库、适用于不同区域的墙型窗型和

  20. DOE Commercial Building Benchmark Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Torcelini, P.; Deru, M.; Griffith, B.; Benne, K.; Halverson, M.; Winiarski, D.; Crawley, D. B.

    2008-07-01

    To provide a consistent baseline of comparison and save time conducting such simulations, the U.S. Department of Energy (DOE) has developed a set of standard benchmark building models. This paper will provide an executive summary overview of these benchmark buildings, and how they can save building analysts valuable time. Fully documented and implemented to use with the EnergyPlus energy simulation program, the benchmark models are publicly available and new versions will be created to maintain compatibility with new releases of EnergyPlus. The benchmark buildings will form the basis for research on specific building technologies, energy code development, appliance standards, and measurement of progress toward DOE energy goals. Having a common starting point allows us to better share and compare research results and move forward to make more energy efficient buildings.

  1. Study on green residential building market simulation method based on system dynamics%绿色住宅市场的系统动力学仿真研究

    Institute of Scientific and Technical Information of China (English)

    杨晓冬; 武永祥

    2013-01-01

    面对越来越严重的资源与环境危机,政府也更加关注绿色住宅的建设,这也是房地产企业未来的开发趋势.首先界定绿色住宅和绿色住宅市场的内涵与特征,在对绿色住宅市场系统分析的基础上,建立需求子系统、开发决策子系统、政府行为子系统,分析其因果反馈关系,绘制系统的存量流量图.接下来采用Vensim PLE软件对南京市绿色住宅市场进行动态仿真模拟与预测,结果显示,绿色住宅市场有更广阔的发展前景,会逐渐获得消费者的认可,并占据一定的市场份额,最终该市场将趋于稳定.结合模拟结果,最后提出绿色住宅市场发展的对策建议.该仿真结果预测绿色住宅市场的不同阶段的发展趋势,为政府政策的制定和房地产企业开发决策提供参考.%Under increasingly serious resource and environmental crisis,green residential building is more and more concerned by the government and will dominates the development of real estate companies.Firstly,the definitions of green housing and green housing market are given,and the demand subsystem,decision-making subsystem and government behaviors subsystem are established based on systematic analysis.Then causal feedback relationships are analyzed and flow chart of the system is drawn.Next,Vensim PLE software is used to simulate,forecast and analyze the green residential building market in Nanjing.The analysis results shows that the future market will keep developing,get acceptance from consumers,own some market share and finally keep stable.At last,some measurements and suggestions on the market development are put forward.This simulation results are helpful to forecast different development stages of green housing market and provide a reference to the decisions of governments and real estate companies.

  2. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José;

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  3. RP{sub P}erformance, a design tool to simulate the thermal performance of high-latitude roof pond buildings (Skytherm North roof ponds); Programa de computo para la simulacion termica de sistemas de techo con estanque para latitudes altas (Skytherm North Roofponds)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A. G.

    2004-07-01

    This article introduces RP{sub P}erformance, a design tool to simulate the thermal performance of high-latitude roof pond buildings (also known as Skytherm North roof ponds). RP{sub P}erformance is an interactive Microsoft Excel spreadsheet that allows users to modify all the parameters that influence the thermal performance of a Skytherm North roof pond building giving as outputs the heating and cooling costs, as well as a series of indoor temperature charts for a roof pond, a highly-insulated reference building, and a conventionally insulated reference building. This article also presents the calibration study of RP{sub P}erformance using experimental results obtained over a nine-month period in an 11.9 m2 test-room located in Muncie, Indiana. (Author)

  4. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carbary, Lawrence D. [Dow Corning Corporation; Perkins, Laura L. [Dow Corning Corporation; Serino, Roland [Dryvit Systems, Inc; Preston, Bill [Dryvit Systems, Inc; Kosny, Jan [Fraunhofer USA, Inc. CSE

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of

  5. New method for simulation of VOC emission from building materials and measurement of mass transfer parameters%建材VOC散发过程模拟与传质参数测定新方法

    Institute of Scientific and Technical Information of China (English)

    宋伟; 孔庆媛; 李洪枚

    2013-01-01

    建材中挥发性有机化合物(VOC)的散发是一个复杂传质过程.为准确把握传质特性,首先建立了一套描述干建材散发行为的显性完全解析模型,适用于模拟对人体最不利的无换气情况;代入有关文献中的传质参数预测了环境舱浓度,与文献中对应的实验数据及数值算法预测值吻合良好.然后基于对模型的分析提出一套简便快捷的实验方法,能够利用不同VOC背景值下干建材在密闭舱中散发的平衡浓度或逐时浓度,求取预测散发过程的4个重要的传质参数:可散发浓度C0、扩散系数D、分配系数K和对流传质系数hm;实验部分测算了两类密度板中甲醛散发的C0、D、K、hm,代入数值算法预测了密闭舱和直流舱的环境舱浓度,与实验数据吻合良好.该套模型和测定方法能够应用于建材散发的模拟研究.%Emission of volatile organic compounds (VOC) from building materials is a complex process of mass transfer. To have a clear picture of mass transfer characteristics, this paper first established an explicitly fully analytical model describing VOC emission behavior from dry building materials, which is applicable to emission simulation in static chamber that is most unfavorable to human health. The VOC concentration in the chamber predicted based on the mass transfer parameters in literature is in good agreement with corresponding experimental data and numerical calculation in literature. Based on this model, an experimental method is proposed for convenient, rapid and simultaneous measurement of four important mass transfer parameters for VOC emission prediction (emittable concentration C0, diffusion coefficient D, partition coefficient K and convection mass transfer coefficient hm) by making use of emission equilibrium or process concentration in a static chamber at a series of background concentrations. With the values of C0, D, K and hm for formaldehyde emission mass transfer obtained

  6. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  7. Fuel cell rejuvenation of hygrothermally aged Nafion

    OpenAIRE

    Collette, Floraine,; THOMINETTE, Francette; ESCRIBANO, Sylvie; RAVACHOL, Angèle; MORIN, Arnaud; Gebel, Gérard

    2012-01-01

    International audience Nafion ® membranes stored for long periods at 80 °C under elevated relative humidity up to 95%RH exhibit large modifications of their properties attributed to the sulfonic acid end-group condensation into sulfonic anhydrides. The present study is devoted to the membrane property rejuvenation, namely the hydrolysis of the sulfonic anhydrides under different experimental conditions. Aged membranes were exposed to pure water and to acid solutions or vapors in order to c...

  8. Toward a virtual building laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Klems, J.H.; Finlayson, E.U.; Olsen, T.H.; Banks, D.W.; Pallis, J.M.

    1999-03-01

    In order to achieve in a timely manner the large energy and dollar savings technically possible through improvements in building energy efficiency, it will be necessary to solve the problem of design failure risk. The most economical method of doing this would be to learn to calculate building performance with sufficient detail, accuracy and reliability to avoid design failure. Existing building simulation models (BSM) are a large step in this direction, but are still not capable of this level of modeling. Developments in computational fluid dynamics (CFD) techniques now allow one to construct a road map from present BSM's to a complete building physical model. The most useful first step is a building interior model (BIM) that would allow prediction of local conditions affecting occupant health and comfort. To provide reliable prediction a BIM must incorporate the correct physical boundary conditions on a building interior. Doing so raises a number of specific technical problems and research questions. The solution of these within a context useful for building research and design is not likely to result from other research on CFD, which is directed toward the solution of different types of problems. A six-step plan for incorporating the correct boundary conditions within the context of the model problem of a large atrium has been outlined. A promising strategy for constructing a BIM is the overset grid technique for representing a building space in a CFD calculation. This technique promises to adapt well to building design and allows a step-by-step approach. A state-of-the-art CFD computer code using this technique has been adapted to the problem and can form the departure point for this research.

  9. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

  10. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  11. Building trust

    International Nuclear Information System (INIS)

    'Activate' is the energy magazine for secondary schools and is part of the Education Programme which is managed on behalf of the British Nuclear Industry Forum by AEA Technology. activate is the flagship communication device between the British Nuclear Industry Forum's Education Programme and secondary schools in the UK. It was developed from a previous publication, Nuclear Bulletin. There is a need for the nuclear industry to build trust with teachers and students in the UK, where for a long time, everything that the industry has said, written or printed has been disregarded by school teachers as propaganda. Over the last few years the industry has put in a great deal of effort to position itself as a provider of educationally sound and socially acceptable information. 'Activate' was an evolution of this idea and there was a hole in the market for a lively, activity and article based magazine that could be used in the classroom. The target audience is principally teachers of science, mathematics and geography, but also includes teachers of art,, English and history with students of between 11 and 18. The results were very positive in that teachers appreciated the colourful and lively nature of activate and they felt that it provided information and opinions in an un biased and non-propagandist way. Their comments about layout, number of activities style of presentation were taken into account and during the summer of 1994 activate was remodelled ready for re launch in September. The feedback so far is good with more teachers signing up every week to receive their own free copy

  12. 高层建筑典型外墙保温材料火蔓延特性数值模拟研究%Simulation of Fire Spread of Typical External Wall Insulation Materials in High-rise Building

    Institute of Scientific and Technical Information of China (English)

    章涛林; 周晓冬; 雷杲; 汪文君; 龚俊辉; 杨立中

    2012-01-01

    有机保温材料被广泛应用于高层建筑外墙保温体系的同时,也可能增加高层建筑的火灾风险.本文通过计算机模拟,着重研究了保温材料之一的聚苯乙烯泡沫塑料(EPS)的火蔓延速率、失重速率及温度场分布等特性.研究结果发现:发生火灾后,外墙保温材料可以在很短的时间内自下而上蔓延至整个材料表面,并有表皮着火的现象.在火焰到达材料顶部之前,向上火蔓延占主导地位,材料中部区域明显燃烧脱落,火焰在材料两端上部继续燃烧,有向下加速蔓延的趋势;之后,火焰沿着材料中部内侧向下剧烈燃烧,材料呈V字型燃烧直至熄灭.在高层建筑外墙外保温材料火蔓延中,不同着火点情况下的燃烧速率随时间变化的趋势相似,且会形成两个波峰.%Organic insulation materials are widely used in the external wall insulation system of high-rise buildings, but it also increases the risk of external wall fire. This paper, based on computer simulation, focuses attention mainly on the fire spread rate, mass loss rate, temperature distribution and other characteristics of one of the insulation materials Expanded Polystyrene (EPS). The study found that after the ignition of the external insulation material, in a very short period of time, fire spreads to the entire surface from bottom up, and has a feature of skin burning. Upward fire spread dominates before it reached the top of the material. The central region of the material was remarkably burned off. While the upper ends of the material continued to burn, accelerating the trend of downwards spread, then fire spreads downwards intensely along the middle of inside material and materials burned into a V-shape until extinguished. The burning rate curve is similar under different ignition points as to the fire spread of external insulation materials in high-rise building, forming two peaks.

  13. BUILDING 341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  14. Computational support for the selection of energy saving building components

    NARCIS (Netherlands)

    Wilde, P.J.C.J. de; Voorden, M. van der

    2002-01-01

    This paper summarizes a PhD.-project that is currently under completion at Delft University of Technology, Faculty of Architecture, Building Physics Group. The general problem addressed in this project is the integration of building simulation tools and building design. This problem has been narrowe

  15. Danish building typologies

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper

    The objective of TABULA is to develop a harmonised building typology for European countries. Each national building typology will consist of a set of residential model buildings with characteristic energy-related properties (element areas of the thermal building envelope, U-values, supply system...... efficiencies). The model buildings will each represent a specific construction period of the country in question and a specific building size. Furthermore the number of buildings, flats and the overall floor areas will be given, which are represented by the different building types of the national typologies....

  16. Integrating Responsive Building Elements in Buildings

    DEFF Research Database (Denmark)

    Haase, Matthias; Amato, Alex; Heiselberg, Per

    2006-01-01

    energy strategies to develop guidelines and procedures for estimation of environmental performance of responsive building elements and integrated building concepts This paper introduces the ideas of this collaborative work and discusses its usefulness for Hong Kong and China. Special focus was put......There is a global need for a more sustainable building development. About 50% of energy is used in buildings indicating that buildings provide a considerable potential for operational energy savings. Studies were conducted with the following objectives: to perform a state-of-the-art review...

  17. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    OpenAIRE

    WoonSeong Jeong; Jong Bum Kim; Clayton, Mark J.; Haberl, Jeff S.; Wei Yan

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The proces...

  18. Use of air/ground heat exchangers for heating and cooling of buildings - in-situ measurements, analytical modeling, numerical simulation and system analysis[Dissertation 3357]; Utilisation des echangeurs air/sol pour le chauffage et le rafraichissement des batiments. Mesures in situ, modelisation analytique, simulation numerique et analyse systemique

    Energy Technology Data Exchange (ETDEWEB)

    Hollmuller, P.

    2002-07-01

    In this thesis, physical properties and practical implementation of air/ground heat exchangers were studied. These exchangers consist in ducts placed in the upper ground layer (up to a depth of several meters). Air is circulated through the ducts, with heat transfer from and to the surrounding earth/sand/gravel material, with heat diffusion (conductive and capacitive effects) through this material. Air/ground heat exchangers are used to preheat or cool the air needed by the ventilation system of a building (open loop systems), or to heat up or cool the air in a greenhouse (closed loop systems). The reported study consisted in: (i) case studies of built examples, by detailed measuring and monitoring and data analysis. (ii) modeling the basic system. (iii) solving the basic equations both numerically (by computerized simulation) and analytically. (iv) identifying the basic features of these systems. (v) establishing recommendations for the practical implementation, especially in what regards sizing. It turned out that daily and seasonal heat storage/delivery by means of an air/ground heat exchanger have to be considered separately, with ad hoc rules of thumb each. Depending on parameter values a phase shift by as much as half the period may even be observed, with very little damping of the temperature oscillation. In Switzerland the main relevance for these systems is for improving thermal comfort in buildings in the summer time when outdoor temperature is higher than 26 {sup o}C, and for damping the amplitude of day/night temperature variations in horticultural greenhouses. The work carried out can be considered as of basic relevance for all applications of the systems studied.

  19. 10 CFR 434.606 - Simulation tool.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Simulation tool. 434.606 Section 434.606 Energy DEPARTMENT... RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.606 Simulation tool. 606.1 The criteria established in subsection 521 for the selection of a simulation tool shall be followed when using...

  20. SmartBuildings. Implementation of demand-side-management systems; SmartBuildings. Implementierung von Lastmanagementsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Jungwirth, Johannes; Saenger, Florian; Grahovac, Milica [TU Muenchen (Germany). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik; Roessel, Timm; Schneegans, Jakob; Herzog, Simon [TU Muenchen (Germany). Lehrstuhl fuer Bauklimatik und Haustechnik; Mikulovic, Vesna [Siemens Building Technologies Headquarters, Zug (Switzerland)

    2012-07-01

    A transition to flexible consumer load can contribute significantly to the integration of renewable energies. Precisely controllable electrical consumers from the building sector (heating, ventilation, air conditioning) are applicable for demand-side-management by using the thermal inertia of the building. In order to incentivize a load shift scenarios of flexible electricity rates are developed. Flexible users can shift their operation to times of lower prices and therefore minimize their electricity costs. Within a simulation of the building and the building services the impact of modified operation mode on thermal comfort of the room is analyzed and times of operation are optimized. The implementation of resulting theoretical potential of a load shift in a real building necessitates a simulation model of the building. Since the creation of these models is very complex, universally applicable adaptive models of the buildings are developed. After a training process those adaptive models have acquired the skill to predict the building behaviour. Now they are able to forecast effects of various modes of operation and provide a cost-optimized operation schedule for building technology. Neural networks used to build adaptive models deliver promising results. However, initial measurements and training periods are to be optimized. (orig.)

  1. The Building Commissioning Handbook.

    Science.gov (United States)

    Heinz, John A.; Casault, Rick

    This book discusses building commissioning, which is the process of certifying that a new facility meets the required specifications. As buildings have become more complex, the traditional methods for building start-up and final acceptance have been proven inadequate, and building commissioning has been developed, which often necessitates the use…

  2. On the developmenet of multi-linear regression analysis to assess energy consumption in the early stages of building design

    Science.gov (United States)

    Shams Amiri, Shideh

    Modeling of energy consumption in buildings is essential for different applications such as building energy management and establishing baselines. This makes building energy consumption estimation as a key tool to achieve the goals on energy consumption and emissions reduction. Energy performance of building is complex, since it depends on several parameters related to the building characteristics, equipment and systems, weather, occupants, and sociological influences. This paper presents a new model to predict and quantify energy consumption in commercial buildings in the early stages of the design. eQUEST and DOE-2 building simulation software was used to build and simulate individual building configuration that were generated using Monte Carlo simulation technique. Ten thousands simulations for seven building shapes were performed to create a comprehensive dataset covering the full ranges of design parameters. The present study considered building materials, their thickness, building shape, and occupant schedule as design variables since building energy performance is sensitive to these variables. Then, the results of the energy simulations were implemented into a set of regression equation to predict the energy consumption in each design scenario. The difference between regression-predicted and DOE-simulated annual building energy consumption are largely within 5%. It is envisioned that the developed regression models can be utilized to estimate the energy savings in the early stages of the design when different building schemes and design concepts are being considered. Keywords: eQUEST simulation, DOE-2 simulation, Monte Carlo simulation, Regression equations, Building energy performance

  3. Comparison of Building Energy Modeling Programs: Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dandan [Tsinghua Univ., Beijing (China); Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Da [Tsinghua Univ., Beijing (China); Wang, Chuang [Tsinghua Univ., Beijing (China)

    2012-06-01

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In the fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to

  4. Global building physics

    DEFF Research Database (Denmark)

    Rode, Carsten

    2013-01-01

    High ambitions are set for the building physics performance of buildings today. No single technology can achieve fulfilment of these ambitions alone. Integrated, multi-facetted solutions and optimization are necessary. A holistic, or ‘global’, technological perspective is needed, which includes all...... aspects of the building as defined in building engineering. We live in an international society and building solutions are developed across country borders. Building physics is a global theme. The International Association of Building Physics has global appeal. This brief article reports the keynote...

  5. Global Building Physics

    DEFF Research Database (Denmark)

    Rode, Carsten

    2012-01-01

    High ambitions are set for the building physics performance of buildings today. No single technology can achieve fulfilment of these ambitions alone. Integrated, multi-facetted solutions and optimization are necessary. A holistic, or “global”, technological perspective is needed, which includes all...... aspects of the building as defined in building engineering. We live in an international society and building solutions are developed across country borders. Building physics is a global theme. The International Association of Building Physics has global appeal. The keynote lecture and this brief paper...

  6. An Algorithm to Translate Building Topology in Building Information Modeling into Object-Oriented Physical Modeling-Based Building Energy Modeling

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2016-01-01

    Full Text Available This paper presents an algorithm to translate building topology in an object-oriented architectural building model (Building Information Modeling, BIM into an object-oriented physical-based energy performance simulation by using an object-oriented programming approach. Our algorithm demonstrates efficient mapping of building components in a BIM model into space boundary conditions in an object-oriented physical modeling (OOPM-based building energy model, and the translation of building topology into space boundary conditions to create an OOPM model. The implemented command, TranslatingBuildingTopology, using an object-oriented programming approach, enables graphical representation of the building topology of BIM models and the automatic generation of space boundaries information for OOPM models. The algorithm and its implementation allow coherent object-mapping from BIM to OOPM and facilitate the definition of space boundaries information during model translation for building thermal simulation. In order to demonstrate our algorithm and its implementation, we conducted experiments with three test cases using the BESTEST 600 model. Our experiments show that our algorithm and its implementation enable building topology information to be automatically translated into space boundary information, and facilitates the reuse of BIM data into building thermal simulations without additional export or import processes.

  7. Retrofitting Listed Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2011-01-01

    The paper presents a case study where the energy demand for a listed building constructed in 1900 is reduced. Many older buildings are listed and have restrictions that include the entire building or that include only its exterior. For the building presented, only its exterior facade is listed...... of the local urban environment and therefore listed. The reduced energy demand, related to individual measures, is estimated and building physics requirements are addressed together with the economic options for evaluating the profitability....

  8. The Guide to Computer Simulations and Games

    CERN Document Server

    Becker, K

    2011-01-01

    The first computer simulation book for anyone designing or building a game Answering the growing demand for a book catered for those who design, develop, or use simulations and games this book teaches you exactly what you need to know in order to understand the simulations you build or use all without having to earn another degree. Organized into three parts, this informative book first defines computer simulations and describes how they are different from live-action and paper-based simulations. The second section builds upon the previous, with coverage of the technical details of simulations

  9. Field test of a thermal active building system (tabs) in an office building in Denmark

    DEFF Research Database (Denmark)

    Raimondo, Daniela; Olesen, Bjarne W.; Corgnati, Stefano P.

    2013-01-01

    an experimental study in an office building in Denmark where cooling in summer is provided by thermally activated building systems (TABS). Indoor climate quality evaluation, cooling system performance and energy consumption for a specific room were analyzed with different levels of internal gains. The experiments...... in the pipes of the hydronic system, and energy consumption of the chillers were monitored. The performance of this test room was also analyzed by the dynamic building simulation tool Energy Plus. The paper includes a comparison between experimental collected data and simulation results. Besides the paper show...

  10. Thermal and airflow prediction in buildings by associating models with different levels of details within an object-oriented simulation environment; Prediction des performances thermo-aerauliques des batiments par association de modeles de differents niveaux de finesse au sein d'un environnement oriente objet

    Energy Technology Data Exchange (ETDEWEB)

    Mora, L.

    2003-09-01

    The design of innovative HVAC systems, as well as the evaluation of the comfort of occupants requires a detailed estimation of airflows and heat transfers within building zones. Zonal and CFD methods can in principal provide such details, but in practice they are difficult to apply to study a whole building over long periods of time. In this study, we propose a new simulation platform based on the object oriented simulation environment SPARK to treat most of building zones using the nodal approach. This modeling method considers each zone as a fully and instantaneously well mixed volume. In this case, each zone can be characterized by a unique computational node where temperature, pressure and concentration are determined. Then, some specific rooms are studied with more details. In order to see the impact of these details on the entire building model, we propose different coupling methods depending on models associations between the nodal approach, and zonal or CFD room models. After a brief presentation of the different modeling methods used in this study, we attempt to demonstrate the interest to use one method instead of another depending on the room characteristics or the modeler's objectives. We then present the developed platform in which we solve both nodal and zonal models, and we couple detailed room models with the first method. Finally, a few applications demonstrate some capabilities of the developed platform to not only adjust the level of detail for each room model, but also propose new ways of research. In fact, the last application shows a new coupling method between zonal and CFD methods. In this approach, the first method acquires the airflow structure from results obtained using a CFD model in the room. Consequently, the developed platform has numerous applications, to study the dynamics of heat and mass transfers in buildings as well as in their immediate surroundings. (author)

  11. ICT Enhanced Buildings Potentials

    DEFF Research Database (Denmark)

    Christiansson, Per

    2007-01-01

    The paper describes and gives example on how Information and Communication, ICT, can and will enhance and support the building functional systems defined from client and end-user needs and requirements. The building systems may be derived from functional requirements on buildings such as usability...... and security on highest level with sub-systems definitions on lever levels. Building functional sub-systems may be defined for user comfort, indoor-climate, evacuation, space configuration, aesthetics, O&M etc. These building systems are supported by Information and Communication Technology, ICT, and building...... with focus on virtual building models support, new services and user environment definitions and development, virtual spaces and augmented reality, intelligent building components, application ontologies, and ICT systems integration to illustrate ICT enhanced buildings potentials and R&D needs.  ...

  12. Sustainable Buildings in Interaction

    DEFF Research Database (Denmark)

    Elle, Morten

    2007-01-01

    The first attempts to build sustainable buildings in Denmark were typically located on the countryside. The basic idea was to create buildings that were independent of the technical infrastructure. District heating has, however, been the dominating solution to heating in buildings in Denmark......, and the focus on sustainable building have gradually turned from special houses on the countryside to normally looking houses in the urban fabric, integrated in the technical infrastructure. Some new built urban areas in Denmark will, however, not have to be supplied with district heating – these developments...... are going to consist of passive houses. The first sustainable buildings were built by their users, and the user – building interaction still play a decisive role for the performance of the present sustainable buildings. The users have to understand how the building functions. Urban design is essential...

  13. Applied building physics

    CERN Document Server

    Hens, Hugo S L C

    2012-01-01

    The energy crises of the 1970s, persisting moisture problems, complaints about sick buildings, thermal, visual and olfactory discomfort, and the move towards more sustainability in building construction have pushed Building Physics to the forefront of building innovation. The societal pressure to diminish energy consumption in buildings without impairing usability acted as a trigger to activate the whole notion of performance based design and construction. As with all engineering sciences, Building Physics is oriented towards application, which is why, after a first book on fundamentals this s

  14. Building with Earthquakes in Mind

    Science.gov (United States)

    Mangieri, Nicholas

    2016-04-01

    Earthquakes are some of the most elusive and destructive disasters humans interact with on this planet. Engineering structures to withstand earthquake shaking is critical to ensure minimal loss of life and property. However, the majority of buildings today in non-traditional earthquake prone areas are not built to withstand this devastating force. Understanding basic earthquake engineering principles and the effect of limited resources helps students grasp the challenge that lies ahead. The solution can be found in retrofitting existing buildings with proper reinforcements and designs to deal with this deadly disaster. The students were challenged in this project to construct a basic structure, using limited resources, that could withstand a simulated tremor through the use of an earthquake shake table. Groups of students had to work together to creatively manage their resources and ideas to design the most feasible and realistic type of building. This activity provided a wealth of opportunities for the students to learn more about a type of disaster they do not experience in this part of the country. Due to the fact that most buildings in New York City were not designed to withstand earthquake shaking, the students were able to gain an appreciation for how difficult it would be to prepare every structure in the city for this type of event.

  15. Comfort control in buildings

    CERN Document Server

    Castilla, Maria del Mar; Rodriguez, Francisco de Asis

    2014-01-01

    This book describes both concepts and development of advanced comfort control systems in buildings, with significant energy saving, and attention to thermal, visual and indoor air quality. The concepts are proven through real tests in a bioclimatic building.

  16. Building the Korogwe Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob; von Seidlein, Lorenz; Richard, Jean Pierre

    2011-01-01

    An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania.......An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania....

  17. Building Design & Construction - Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-11-01

    Offers a brief history of green building; presents the results of a specially commissioned survey; and analyzes the chief trends, issues, and published research, based on interviews with dozens of experts and participants in green building.

  18. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically supp

  19. Better Buildings Challenge Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-06-01

    The Better Buildings Challenge is a national leadership initiative calling on corporate chief executive officers, university presidents, and state and local leaders to make a significant commitment to building energy efficiency.

  20. Requirements for existing buildings

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Wittchen, Kim Bjarne

    2012-01-01

    This report collects energy performance requirements for existing buildings in European member states by June 2012.......This report collects energy performance requirements for existing buildings in European member states by June 2012....