WorldWideScience

Sample records for building hygrothermal simulation

  1. Hygrothermal Numerical Simulation Tools Applied to Building Physics

    CERN Document Server

    Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto

    2013-01-01

    This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...

  2. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  3. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2009-01-01

    Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical...... phenomena which occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: 1. Air flow in ventilated...... cavity such as in the exterior cladding of building envelopes, i.e. a flow which is parallel to the construction plane. 2. Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the construction plane. The new models make it possible to predict the thermal...

  4. Hygrothermal Behavior, Building Pathology and Durability

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    The main purpose of this book, Hygrothermal, Building Pathology and Durability, is to provide a collection of recent research works to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behaviour of buildings, durability and diagnostic techniques and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of building physics and hygrothermal behaviour, durability approach for historical and old buildings and building pathology vs. durability. The book is divided in several chapters that are a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers and other interested parties to network.

  5. Hygrothermal behavior, building pathology and durability

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto de Freitas V.; Delgado, J.M.P.Q. (eds.) [Porto Univ. (Portugal). Building Physics Lab.

    2013-03-01

    Includes a set of new developments in the field of building physics and hygrothermal behavior. Presents a new durability approach for historical and old buildings. Reviews the current state of knowledge. The main purpose of this book, Hygrothermal, Building Pathology and Durability, is to provide a collection of recent research works to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behaviour of buildings, durability and diagnostic techniques and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of building physics and hygrothermal behaviour, durability approach for historical and old buildings and building pathology vs. durability. The book is divided in several chapters that are a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers and other interested parties to network.

  6. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical ...

  7. Integration of a hygrothermal transfer model for envelope in a building energy simulation model: experimental validation of a HAM-BES co-simulation approach

    Science.gov (United States)

    Ferroukhi, M. Y.; Abahri, K.; Belarbi, R.; Limam, K.

    2016-11-01

    The present paper focuses on studying a new methodology to predict the overall behavior of buildings, which combines two simulation tools: COMSOL Multiphysicsand TRNSYS. The first software is used for the modeling of heat, air and moisture transfer in multilayer porous walls (HAM model—Heat, Air and Moisture transfer), and the second is used to simulate the hygrothermal behavior of the building (BES model—Building Energy Simulation). The combined software applications dynamically solve the mass and energy conservation equations of the two physical models. In this context, a coupled heat, air and mass transfer model is proposed. This model incorporates simultaneously the diffusive, convective and conductive effects on the building elements. Heat transfer is considered in the strongly coupled situation where the mass and heat flux are temperature, vapor pressure and total pressure dependents. The model input parameters are evaluated experimentally through the development of various experimental prototypes in the laboratory. Thereafter, an experimental setup has been established in order to evaluate the hygrothermal process of building walls. The experimental procedure consists to follow the temperature and relative humidity evolutions within the envelope thickness, submitted to controlled and fixed boundary conditions. Finally, using the developed experimental device, comparison between experimental data and numerical solution of the HAM-BES co-simulation platform was undertaken. Results showed good agreement with acceptable errors margins.

  8. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  9. Hygrothermal evaluation of a museum storage building based on actual measurements and simulations

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Kollias, Christos Georgios

    2015-01-01

    environment facilities of a passive museum storage building in Vejle region in Denmark, are investigated. Results demonstrate that the weather conditions of the previous yearś considerably affect the indoor environment of the storage. What is more, concentrated dehumidification is a sufficient technique...

  10. Building Enclosure Hygrothermal Performance Study, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2002-08-08

    The moisture performance of three different classes of wall systems has been investigated in the context of the preliminary hygrothermal analysis of walls in Seattle. The results reported in this phase specifically address the moisture performance of walls designed with loads that have some unintentional water penetration. The results have been developed in a manner to present the relative performance of the walls in the same climate with similar water penetration effects. The analysis was performed with the best available input data. Several limitations should be recognized within the context of this study. Results showed that selection of wooden sheathing boards on interior vapor-tight assemblies does not significantly influence the performance of stucco-clad walls. A larger effect was observed when the interior vapor control is made vapor open. When continuous cavity ventilation is employed, the effect of the selection of the type of sheathing board on the hygrothermal performance of the wall was found to be negligible. When comparing oriented strand board sheathing performance against the performance of exterior grade gypsum, the differences are very significant in terms of the amount of moisture content present in the walls. Moisture content alone does not indicate their respective durability as durability is directly related to the combination of relative humidity and temperature, mechanical, chemical, and biological properties of the substrates. This study did not investigate the durability performance of either sheathing. In terms of interior vapor control, inhabitant behavior must be considered during the wall hygrothermal design stage. If interior relative humidity is maintained below 60%, then a latex primer and paint may perform better than the use of PVA or even a polyethylene sheet. When the interior environment is maintained at a higher relative humidity, then stricter vapor control is needed. Multilayered building paper was experimentally shown to

  11. Hygrothermal analysis of a stabilised rammed earth test building in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Allinson, David [Department of Civil and Building Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Hall, Matthew [Nottingham Centre for Geomechanics, Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2010-06-15

    This paper describes the analysis of the hygrothermal behaviours of stabilised rammed earth (SRE) walls used in a building in the UK. The analysis was achieved by computer simulation using WUFI Plus v1.2 whole building hygrothermal analysis software. To validate the model, an unoccupied test room in an unheated SRE building was monitored for 10 months. The hygrothermal properties of the SRE material were measured in the laboratory. It is shown that the SRE walls significantly reduced the amplitude of relative humidity fluctuations in the room air and reduced the frequency of high humidity periods at the wall surface. By adapting the model to represent an occupied and conditioned space, it is demonstrated that SRE walls have the potential to reduce the energy demand for humidification/dehumidification plant. (author)

  12. Danish and Brazilian Modeling of Whole-Building Hygrothermal Performance

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; Grau, Karl

    2006-01-01

    computational analysis of the hygrothermal performance of whole buildings. Such developments have led to new hygrothermal models for whole buildings. The paper gives examples of two such recent developments and will illustrate some calculation results that can be obtained. Finally the paper will mention some......The humidity of rooms and moisture conditions of materials in the enclosure of buildings depend much on each other because of the moisture exchange that takes place over the interior surfaces. These moisture influences also depend strongly on the thermal conditions of indoor spaces and enclosure...... the humidity low and thus reduce the risk of moisture damage in the building enclosure. In either case the indoor humidity has a direct or indirect impact on the energy performance of the HVAC system of a building. To analyze this situation, one could benefit from some recent developments in integrated...

  13. A Model for Air Flow in Ventilated Cavities Implemented in a Tool for Whole-Building Hygrothermal Analysis

    DEFF Research Database (Denmark)

    Grau, Karl; Rode, Carsten

    2006-01-01

    A model for calculating air flows in ventilated cavities has been implemented in the whole-building hygrothermal simulation tool BSim. The tool is able to predict indoor humidity conditions using a transient model for the moisture conditions in the building envelope.......A model for calculating air flows in ventilated cavities has been implemented in the whole-building hygrothermal simulation tool BSim. The tool is able to predict indoor humidity conditions using a transient model for the moisture conditions in the building envelope....

  14. Passive hygrothermal control of a museum storage building in Vejle

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Janssen, Hans

    2010-01-01

    and maintenance costs are currently motivating a paradigm change toward passive control. Passive control, via the thermal and hygric inertia of the building, is gaining a foothold in the museum conservation and building physical community. In this report we document the hygrothermal performance optimisation...... of a museum storage building, related to an existing storage centre in Vejle (Denmark). The current building design already incorporates passive control concepts: thermal inertia is provided by the thick walls, the ground floor and its underlying soil volume, while hygric inertia is provided by the thick...... purposes. Reduction of dehumidification load: In an effort to reduce the necessary dehumidification, a number of thermal measures are investigated first. This primarily focuses on the influences of additional insulation in walls, roof and floor. Overall, the effects of extra insulation on the average...

  15. Effect of heat and moisture transport and storage properties of building stones on the hygrothermal performance of historical building envelopes

    Science.gov (United States)

    KoÅáková, Dana; Kočí, Václav; Žumár, Jaromír; Keppert, Martin; Holčapek, Ondřej; Vejmelková, Eva; Černý, Robert

    2016-12-01

    The heat and moisture transport and storage parameters of three different natural stones used on the Czech territory since medieval times are determined experimentally, together with the basic physical properties and mechanical parameters. The measured data are applied as input parameters in the computational modeling of hygrothermal performance of building envelopes made of the analyzed stones. Test reference year climatic data of three different locations within the Czech Republic are used as boundary conditions on the exterior side. Using the simulated hygric and thermal performance of particular stone walls, their applicability is assessed in a relation to the geographical and climatic conditions. The obtained results indicate that all three investigated stones are highly resistant to weather conditions, freeze/thaw cycles in particular.

  16. Moisture buffering and its consequence in whole building hygrothermal modeling

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2008-01-01

    both. A new test method specifies a protocol for determination of what has recently been termed the Moisture Buffer Value (MBV) of building products. The paper presents the definition of MBV and introduces a test protocol which has been proposed for its experimental determination. The MBV is primarily...... meant as a value to characterize the ability of building products to moderate the variations of humidity in air which is in contact with the products, since it indicates the rate of flow of moisture over the product's surface when exposed to a certain humidity excitation. Hygroscopic interaction between...... air of the indoor climate and materials in the building envelope is taken into account in a model for whole building heat and moisture simulation. By means of an example, it will be investigated if: 1. it is possible to use the benefits of moisture buffering to save energy by reducing the requirement...

  17. Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Robert Tichy; Chuck Murray

    2003-10-01

    This document serves as the Topical Report documenting the first year of work completed by Washington State University (WSU) under US Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project is being conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser Company, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August, 2002 through October, 2003. WSU's primary experimental role is the design and implementation of a field testing protocol that will monitor long term changes in the hygrothermal response of wall systems. In the first year WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, and installed instrumentation in the test walls. By the end of the contract period described in this document, WSU was recording data from the test wall specimens. The experiment described in this report will continue through December, 2005. Each year a number of reports will be published documenting the hygrothermal response of the test wall systems. Public presentation of the results will be made available to the building industry by industry partners and the University cooperators.

  18. Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Robert Tichy; Chuck Murray

    2006-05-31

    This document serves as the Topical Report documenting work completed by Washington State University (WSU) under U.S. Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project was conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August 2002 through June 2006. WSU's primary experimental role is the design and implementation of a field testing protocol that monitored long term changes in the hygrothermal response of wall systems. During the project period WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, installed instrumentation in the test walls and recorded data from the test wall specimens. Each year reports were published documenting the hygrothermal response of the test wall systems. Public presentation of the results was, and will continue to be, made available to the building industry at large by industry partners and the University.

  19. Whole-Building Hygrothermal Modeling in IEA Annex 41

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2007-01-01

    Annex 41 of the International Energy Agency’s (IEA) Energy Conservation in Buildings and Community Systems program (ECBCS) is a cooperative project on “Whole-Building Heat, Air, and Moisture Response” (MOIST-ENG). Subtask 1 of that project set out to advance development in modeling the ntegral he...

  20. HYGRO-THERMAL BEHAVIOUR OF POROUS BUILDING MATERIAL SUBJECTED TO DIFFERENT EXTERNAL TEMPERATURE AND HUMIDITY CONDITIONS

    Directory of Open Access Journals (Sweden)

    ALI CHIKHI

    2016-04-01

    Full Text Available This work is focused on the behaviour of a block of cement mortar, subjected to variable external temperature and humidity conditions. The porous building material sample is fitted inside a box, in which a heat exchanger is connected to a thermostatic bath. Three sequences of measurement are considered: (i the response of the sample, when variations of temperature are applied; (ii the air ranging between the exchanger and the non-isolated face of the mortar is continuously humidified, by injecting of sprayed water; (iii the effect of simultaneously variation on temperature and humidity. A mathematical model representative of heat and mass transfer, in multiphasic medium (cement mortar, is developed in order to confront experimental and numerical results. Displacements of moisture and temperature fronts are observed and discussed. This study would enable us to understand the hygro-thermal behaviour of construction walls, to make an adequate design according to the climatic parameters and thus to improve the control of the energy used for heating.

  1. Combining building thermal simulation methods and LCA methods

    DEFF Research Database (Denmark)

    Pedersen, Frank; Hansen, Klaus; Wittchen, Kim Bjarne

    2008-01-01

    Thsi paper describes recent efforts made by the Danish Building Research Institute regarding the integration of a life cycle assessment (LCA) method into a whole building hygro-thermal simulation tool. The motivation for the work is that the increased requirements to the energy performance...

  2. Hygrothermal analysis of characteristic public building rooms before energy efficient retrofitting solutions

    OpenAIRE

    Souaihi, Oussama; Capdevila, Roser; Lopez, Joan; Lehmkuhl Barba, Oriol; Rigola Serrano, Joaquim

    2016-01-01

    In the present paper, a modular, object-oriented and parallel methodology for the multiphysics simulation of buildings is presented. The whole building is modeled as a collection of basic elements (e.g., walls, rooms, outdoor, people, ventilation, solar radiation distributor, etc.). These elements can be modeled with different physical models and scales. A combined heat and moisture transfer model for the building envelopes and rooms have been implemented and validated with different benchmar...

  3. Effect of façade impregnation on feasibility of capillary active thermal internal insulation for a historic dormitory – A hygrothermal simulation study

    DEFF Research Database (Denmark)

    Finken, Gholam Reza; Bjarløv, Søren Peter; Peuhkuri, Ruut Hannele

    2016-01-01

    Internal insulation of external walls is known to create moisture performance challenges due to increased moisture levels and condensation risk on the cold side of the insulation. Capillary active/hydrophilic insulations have been introduced to solve these moisture problems, since they are able...... to transport liquid moisture to the inner surface and enable it to dry. Experience with this insulation type is rare in Denmark. In hygrothermal 1D computer simulations, several more or less capillary active insulation systems (AAC, calcium silicate, IQ-Therm) in various thicknesses (30–150 mm) have been...... tested for their hygrothermal performance. The original construction was a 228 mm solid brick masonry wall in a Copenhagen historic dormitory. All simulated systems showed critical relative humidity values above 80% and high risk of mould growth behind the insulation and some also on the interior surface...

  4. Hygrothermal risk on building heritage a methodology for a risk map

    CERN Document Server

    Delgado, João M P Q; Freitas, Vasco Peixoto

    2015-01-01

    This book presents a critical review of a criterion of risk, created to assess the flood risk to heritage buildings, and evaluates this criterion by applying it to the sample Portuguese heritage buildings. In a first approach, the total number of potential parameters is effectively reduced and the selected criteria are divided into two different groups: the monument’s location in relation to a waterway, and the behaviour of its construction material in contact with water. Above all, the book discusses the importance of architectural heritage and argues for the need to safeguard it from extreme climatic phenomena such as floods. As such, the book vividly reminds the scientific community that the intensification of the global warming and climate change will worsen throughout the 21st century, and that it is therefore necessary to adopt preventive measures to minimize, mitigate and control these adverse effects if we hope to avoid catastrophic consequences. At the same time, the book takes into account a broad...

  5. Hygrothermal optimisation of museum storage spaces

    DEFF Research Database (Denmark)

    Janssen, Hans; Christensen, Jørgen Erik

    2013-01-01

    Despite the large economic and ecologic costs, museum storage spaces are often equipped with extensive air conditioning, to provide the desired stable interior climate. The new “passive conditioning” paradigm aims at resolving these costs: a high-hygrothermal-inertia building with a high......-hygrothermal-resistance envelope is to satisfactorily stabilise that interior climate, with no need for mechanical air conditioning hence.This paper first studies the reliability of full passive conditioning for museum storage spaces. It is shown to be an illusion, since it usually results in excessive interior humidities...... keeps the fluctuations of the interior relative humidities to a minimum when considering adequately air tight museum storage spaces....

  6. Monitoring and simulations of hydrolysis in epoxy matrix composites during hygrothermal aging

    KAUST Repository

    El Yagoubi, Jalal

    2015-01-01

    In this paper, we studied the water transport in thermoset matrices. We used Fourier Transform Infrared analysis (FTIR) during sorption/desorption experiments to investigate the interaction between sorbed water and the epoxy network. Our results demonstrated that the polymer matrix undergoes hydrolysis. We found that the chemical species involved in the reaction process was the residual anhydride groups. These results support the physical basis of the three-dimensional (3D) diffusion/reaction model. We finally showed that this model is able to reproduce multi-cycle sorption/desorption experiment, as well as water uptake in hybrid metal/epoxy samples. We simulated the 3D distributions of the diffusing water and the reacted water.

  7. New object-oriented hygrothermal model library for calculating hygrothermal and hygienic comfort in rooms; Neue objektorientierte hygrothermische Modellbibliothek zur Ermittlung des hygrothermischen und hygienischen Komforts in Raeumen

    Energy Technology Data Exchange (ETDEWEB)

    Nouidui, Thierry; Sedlbauer, Klaus [Fraunhofer-Institut fuer Bauphysik (IBP), Institutsteil Holzkirchen, Valley (Germany); Nytsch-Geusen, Christoph [Universitaet der Kuenste Berlin (Germany). Fakultaet Gestaltung, Institut fuer Architektur und Staedtebau; Kiessl, Kurt [Fakulaet Architektur, Bauhaus-Universitaet Weimar (Germany)

    2009-10-15

    Developing energy-optimized ventilation strategies for moisture-related problems and the design and renovation of energy saving buildings requires an accurate knowledge of how hygrothermal components and buildings behave. These issues can be resolved with the aid of simulation tools before actually putting measurement technology into practice. The complexity of these issues produces complex models which can soon become unmanageable if suitable methods of description are not used. Due to their generic concepts such as class principle, inheritance principle, aggregation principle and polymorphism, modelling language standards such as Modelica enable complex systems such as these to be broken down into simple subsystems which can be verified and then reassembled. Research so far has lacked generic simulation tools for simulating components and buildings to enable a hygrothermal analysis with strong interactions between the behaviour of components, building envelope, building use and room conditions. Therefore the aim of this work was to develop a flexible, object-oriented, hygrothermal model library based on the Modelica modelling language for simulating and analysing the interactions between room conditions, the behaviour of components, building envelope and building use. This model library should be used for developing an energy-optimized ventilation system regulated according to demand in order to minimize the risk of mould forming while maintaining hygrothermal and hygienic comfort. The component and model library should be validated in example configurations in both simulations and trials. [German] Die Entwicklung energetisch optimierter Lueftungsstrategien fuer feuchtebedingte Probleme bzw. die Planung und die Sanierung energiesparender Gebaeude benoetigt eine genaue Kenntnis ueber das hygrothermische Bauteil- und Gebaeudeverhalten. Diese Fragestellungen koennen vor der eigentlichen messtechnischen Ausfuehrung mit Hilfe von Simulationstools beantwortet werden

  8. Hygrothermal rehabilitation of public buildings.A case study on “Luceafărul” theatre in Jassy

    Directory of Open Access Journals (Sweden)

    Adrian IACOB

    2014-07-01

    Full Text Available In the selection of thermo-energetic rehabilitation solutions, there are certain restrictions determined especially by the imperative of preserving the architectural characteristics, a large proportion of these buildings falling under the categories of historic or cultural monuments of high architectural value. Under the second category comes “Luceafărul” Theatre from Jassy, a representative edifice for the area in which it is located. The requirement of conserving the current appearance of the façade areas veneered with travertine has imposed the placing of thermal insulation on the interior surface. Taking into account that interior insulation implies a higher risk of interstitial condensation, a non-steady state coupled heat and mass transfer analysis was performed, by using the WUFI program. The results of this study are plotted as annual variations of relative humidity in the structure of envelope elements, pointing out the layers that are susceptible of excessive values. By numerical simulation of heat transfer with ANSYS program, the discussion is extended with the influence that the insulation of two adjacent envelope elements has on the surface condesation risk, for the case in which at the thermal bridge obtained there a discontinuity exists in the insulation layer.

  9. Hygrothermal Properties of Cross Laminated Timber and Moisture Response of Wood at High Relative Humidity

    Science.gov (United States)

    AlSayegh, George

    Cross Laminated Timber (CLT) is a new wood-based material composed of cross laminated wood boards that form a structural panel. This study focuses on identifying the appropriate methods to determine the hygrothermal properties of CLTs fabricated with Canadian and European Lumber. The laboratory tests carried out in this study will help establish heat, air and moisture response properties to be used for hygrothermal simulation to assess the durability of CLTs in building envelope construction. Measurement of water vapour permeability, liquid water absorption, sorption isotherms, thermal conductivity, and air permeability were performed on three Canadian CLT specimens composed of Hem-Fir, Eastern Spruce-Pine-Fir, and Western Spruce-Pine-Fir and one European specimen composed of Spruce. The hygrothermal properties of CLT, considered in this study, appear to be similar to commonly used wood specimens reported in the literature. However, liquid water absorption coefficients of CLT were found to be generally lower than common wood species, possibly due to the presence of glue between the wood layers which limits the moisture movement across the specimen. On the other hand, the air permeability across the CLT specimens varied due to the glue discontinuity within the specimen which led some CLTs to be permeable, however all the European specimens were found to be impermeable. This study also critically analyzed the significance of equilibrium moisture content (EMC) of wood at high relative humidity, measured by means of a pressure plate apparatus and humidity chambers, on the moisture management performance of a wood-frame stucco wall, using the hygrothermal simulation tool hygIRC-2D. The simulation results indicate that the prediction of the moisture response of a wood-frame stucco wall assembly depends significantly on the method adopted to derive the EMC of wood at high RH.

  10. Cold Climate Foundation Retrofit Energy Savings: The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, L. F.; Steigauf, B.

    2013-04-01

    A split simulation whole building energy/3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  11. Cold Climate Foundation Retrofit Energy Savings. The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Steigauf, Brianna [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2013-04-01

    A split simulation whole building energy / 3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  12. Experimental Study on Bond Behavior of FRP-Concrete Interface in Hygrothermal Environment

    Directory of Open Access Journals (Sweden)

    X. H. Zheng

    2016-01-01

    Full Text Available As the technique of fiber-reinforced polymer (FRP composite material strengthened reinforced concrete structures is widely used in the field of civil engineering, durability of the strengthened structures has attracted more attention in recent years. Hygrothermal environment has an adverse effect on the bond behavior of the interface between FRP and concrete. This paper focuses on the bond durability of carbon fiber laminate- (CFL- concrete interface in hygrothermal condition which simulates the climate characteristic in South China. Twenty 100 mm × 100 mm × 720 mm specimens were divided into 6 groups based on different temperature and humidity. After pretreatment in hygrothermal environment, the specimens were tested using double shear method. Strain gauges bonded along the CFL surface and linear variation displacement transducers (LVDTs were used to measure longitudinal strains and slip of the interface. Failure mode, ultimate capacity, load-deflection relationship, and relative slip were analyzed. The bond behavior of FRP-concrete interface under hygrothermal environment was studied. Results show that the ultimate bearing capacity of the interface reduced after exposure to hygrothermal environments. The decreasing ranges were up to 27.9% after exposure at high temperature and humidity (60°C, 95% RH. The maximum strains (εmax of the specimens pretreated decreased obviously which indicated decay of the bond behavior after exposure to the hygrothermal environment.

  13. Characterization of fracture toughness of epoxy resin after hygrothermal aging

    KAUST Repository

    Quispe, Gustavo Q.

    2013-07-01

    Characterization of fracture toughness of epoxy resin after hygrothermal ageing Gustavo Quino Quispe The aim of this work is to characterize the e ects of hygrothermal aging in the plain strain fracture toughness of the epoxy system composed by cycloaliphatic epoxy resin and diglycidyl ether of bisphenol-A (DGEBA). For this, after having been under hygrothermal aging in a climatic chamber, epoxy samples were studied using ASTM D5045 fracture toughness test, and micrography and roughness measurements of the fracture surface. It is reported a rapid decrease of GIc and KIc during the rst 2 days. Moreover, a numerical model [13] was used to simulate and see with more detail the water absorption in the aged samples. From that, it was observed the heterogeneous distribution of water. Accordingly, it was proposed that the results should be correlated with the water content at the vicinity of the crack tip. Consequently, it was possible to obtain, by quasi-static simulations, the ideal load-displacement curves of crack propagation in the heterogeneous samples. Finally, another contribution of this work is the study of the fracture surface, that gives a clue of the relationship among the fracture energy, the appearance of microcracks in the fracture surface, and the roughness (Ra).

  14. Simulating Building Fires for Movies

    Science.gov (United States)

    Rodriguez, Ricardo C.; Johnson, Randall P.

    1987-01-01

    Fire scenes for cinematography staged at relatively low cost in method that combines several existing techniques. Nearly realistic scenes, suitable for firefighter training, produced with little specialized equipment. Sequences of scenes set up quickly and easily, without compromising safety because model not burned. Images of fire, steam, and smoke superimposed on image of building to simulate burning of building.

  15. Combined heat and moisture transfer in buildings systems

    OpenAIRE

    Damle, Rashmin; Lehmkuhl Barba, Oriol; Rigola Serrano, Joaquim; Oliva Llena, Asensio

    2012-01-01

    Temperature and humidity are the two main parameters indicating the comfort level of the building occupants. Although the effect of temperature is taken into account in thermal simulation of buildings, the moisture transfer through the rooms and porous building walls is sometimes neglected. The level of humidity can give different sensations of thermal comfort. It is necessary to take into account both heat and moisture transport in and around buildings to predict the hygrothermal behavior of...

  16. Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht, Cheryn [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-09-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  17. Laboratory testing of a building envelope segment based on cellular concrete

    Science.gov (United States)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2016-07-01

    Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.

  18. Hygrothermal Performance of West Coast Wood Deck Roofing System

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B [ORNL; Kehrer, Manfred [ORNL; Desjarlais, Andre Omer [ORNL

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  19. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption

    DEFF Research Database (Denmark)

    Masaru, Abuku; Janssen, Hans; Roels, Staf

    2009-01-01

    response, mould growth at interior wall surfaces, indoor climate and energy consumption. First the WDR load oil the facades of a 4 m x 4 m x 10 m tower is determined. Then the hygrothermal behaviour of the brick walls is analysed oil a horizontal slice through the tower. The simulations demonstrate...... that WDR loads can have a significant impact on mould growth especially at the edges of the walls. Finally, for the case analysed, the WDR load Causes a significant increase of indoor relative humidity and energy consumption for heating. (C) 2008 Elsevier B.V. All rights reserved.......This paper gives an onset to whole building hygrothermal modelling in which the interaction between interior and exterior climates via building enclosures is simulated under a moderately cold and humid climate. The focus is particularly on the impact of wind-driven rain (WDR) oil the hygrothermal...

  20. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  1. Long-term monitoring of the Sedlec Ossuary - Analysis of hygrothermal conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Balík, Lukáš; Maděra, Jiří; Černý, Robert

    2016-07-01

    The Sedlec Ossuary is one of the twelve UNESCO World Heritage Sites in the Czech Republic. Although the ossuary is listed among the most visited Czech tourist attractions, its technical state is almost critical and a radical renovation is necessary. On this account, hygrothermal performance of the ossuary is experimentally researched in the presented paper in order to get information on moisture sources and to get necessary data for optimized design of renovation treatments and reconstruction solutions that will allow preserve the historical significance of this attractive heritage site. Within the performed experimental analysis, the interior and exterior climatic conditions are monitored over an almost three year period together with relative humidity and temperature profiles measured in the most damage parts of the ossuary chapel. On the basis of measured data, the long-term hygrothermal state of the ossuary building is accessed and the periods of possible surface condensation are identified.

  2. ANALYSIS OF HYGROTHERMAL CONDITIONS OF EXTERNAL PARTITIONS IN AN UNDERGROUND FRUIT STORE

    Directory of Open Access Journals (Sweden)

    Grzegorz Nawalany

    2016-09-01

    Full Text Available The paper presents the analysis of hygrothermal conditions of external partitions in an underground fruit store. The results of measurements of temperature and humidity of the indoor and outdoor air as well as the surface surrounding temperature and the temperature of the air surrounding the store constituted the boundary conditions for the hygrothermal calculations. The paper presents the calculation of the distribution of the temperature and humidity on the ground floor, the wall contacting the ground, the wall contacting the outside air, and the ceiling above the storage chamber. The heat and moisture calculations have shown high risk of condensation submerged in non-insulated external walls. The condition of the adaptation of a traditional cold store to a simple and atmosphere controlled cold one is to increase the thermal resistance of the partitions. Such a solution will let cut the energy demand in those types of agricultural buildings.

  3. Using Expert Systems To Build Cognitive Simulations.

    Science.gov (United States)

    Jonassen, David H.; Wang, Sherwood

    2003-01-01

    Cognitive simulations are runnable computer programs for modeling human cognitive activities. A case study is reported where expert systems were used as a formalism for modeling metacognitive processes in a seminar. Building cognitive simulations engages intensive introspection, ownership and meaning making in learners who build them. (Author/AEF)

  4. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  5. Experimental Study on the Hygrothermal Behavior of a Coated Sprayed Hemp Concrete Wall

    Directory of Open Access Journals (Sweden)

    Anthony Magueresse

    2013-01-01

    Full Text Available Hemp concrete is a sustainable lightweight concrete that became popular in the field of building construction because of its thermal and environmental properties. However; available experimental data on its hygrothermal behavior are rather scarce in the literature. This paper describes the design of a large-scale experiment developed to investigate the hygrothermal behavior of hemp concrete cast around a timber frame through a spraying process; and then coated with lime-based plaster. The equipment is composed of two climatic chambers surrounding the tested wall. The experiment consists of maintaining the indoor climate at constant values and applying incremental steps of temperature; relative humidity or vapor pressure in the outdoor chamber. Temperature and relative humidity of the room air and on various depths inside the wall are continuously registered during the experiments and evaporation phenomena are observed. The influence of the plaster on the hygrothermal behavior of hemp concrete is investigated. Moreover; a comparison of experimental temperatures with numerical results obtained from a purely conductive thermal model is proposed. Comparing the model with the measured data gave satisfactory agreement.

  6. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...... of the aggregated building energy use will not only ensure security of supply but also enhance the stabilization of national energy balances. In this study, the aggregation of building energy demand was investigated for a real case in Sønderborg, Denmark. Sixteen single-family houses -mainly built in the 1960s......- were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool...

  7. Empirical Validation of Building Simulation Software

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  8. Collapse simulation of building constructions

    Directory of Open Access Journals (Sweden)

    Nekrest'yanov Viktor Nikolaevich

    Full Text Available The physical reasons for building structures destruction are both the forces arising at stress-strain state of construction elements and external influences arising at emergency situations, as well as their moments, impulses and periodic impulses with the frequencies close to of fluctuations frequencies of construction elements. We shall call the mathematical calculation models for the parameters-reasons of destructions the basic models. The basic models of destruction of building structures elements allow not only providing necessary level of reliability and survivability of the elements and the construction as a whole already at the stage of their design, but also giving the chance, at their corresponding completion, to provide rational decisions on the general need of recovery works and their volume depending on destruction level. Especially important for rational design decisions development, which ensure the demanded constructional safety of building structures, is library creation of the basic mathematical models of standard processes of bearing elements destructions for standard construction designs for the purpose of the further forecast (assessment of the level and probabilities of standard destructions. Some basic mathematical models of destructions processes of the standard elements of building structures are presented in the present article. A model of accounting for construction defects and a model of obtaining requirements to probabilities of partial destructions of a construction are given. Both of these models are probabilistic.

  9. Comparative Validation of Building Simulation Software

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    _2 and DSF200_4, the third empirical test case is also specified as DSF400_3, but it's completion is under consideration. The comparative test cases can not be directly used for the validation of the software due to often disagreement of the results, however the result of the exercises...... is that the comparative validation can be regarded as the main argument to continue the validation of the building simulation software for the buildings with the double skin façade with the empirical validation test cases.......The scope of this subtask is to perform a comparative validation of the building simulation software for the buildings with the double skin façade. The outline of the results in the comparative validation identifies the areas where is no correspondence achieved, i.e. calculation of the air flow...

  10. Building America House Simulation Protocols (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Engebrecht, C.

    2010-10-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  11. 2014 Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Engebrecht, C. Metzger [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2014-03-01

    As Building America has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  12. Detailed weather data generator for building simulations

    CERN Document Server

    Adelard, L; Garde, F; Gatina, J -C

    2012-01-01

    Thermal buildings simulation softwares need meteorological files in thermal comfort, energetic evaluation studies. Few tools can make significant meteorological data available such as generated typical year, representative days, or artificial meteorological database. This paper deals about the presentation of a new software, RUNEOLE, used to provide weather data in buildings applications with a method adapted to all kind of climates. RUNEOLE associates three modules of description, modelling and generation of weather data. The statistical description of an existing meteorological database makes typical representative days available and leads to the creation of model libraries. The generation module leads to the generation of non existing sequences. This software tends to be usable for the searchers and designers, by means of interactivity, facilitated use and easy communication. The conceptual basis of this tool will be exposed and we'll propose two examples of applications in building physics for tropical hu...

  13. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  14. Simulation Of Probabilistic Wind Loads On A Building

    Science.gov (United States)

    Chamis, Christos C.; Shah, Ashwin R.

    1994-01-01

    Method of simulating probabilistic windloads on building developed. Numerical results of simulation used to assess reliability of building and risk associated with tendencies of large gusts or high steady winds to cause building to sway, buckle, and/or overturn. Using method to analyze proposed design in iterative design cycle, building designed for specified reliability.

  15. Accelerated hygrothermal stabilization of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Jeffrey Alan [Univ. of California, Davis, CA (United States)

    1994-05-01

    Experimentation validated a simple moisture conditioning scheme to prepare Gr/Ep composite parts for precision applications by measuring dimensional changes over 90 days. It was shown that an elevated temperature moisture conditioning scheme produced a dimensionally stable part from which precision structures could be built/machined without significant moisture induced dimensional changes after fabrication. Conversely, that unconditioned Gr/Ep composite panels exhibited unacceptably large dimensional changes (i.e., greater than 125 ppM). It was also shown that time required to produce stable parts was shorter, by more than an order of magnitude, employing the conditioning scheme than using no conditioning scheme (46 days versus 1000+ days). Two final use environments were chosen for the experiments: 50% RH/21C and 0% RH/21C. Fiberite 3034K was chosen for its widespread use in aerospace applications. Two typical lay-ups were chosen, one with low sensitivity to hygrothermal distortions and the other high sensitivity: [0, ± 45, 90]s, [0, ± 15, 0]s. By employing an elevated temperature, constant humidity conditioning scheme, test panels achieved an equilibrium moisture content in less time, by more than an order of magnitude, than panels exposed to the same humidity environment and ambient temperature. Dimensional changes, over 90 days, were up to 4 times lower in the conditioned panels compared to unconditioned panels. Analysis of weight change versus time of test coupons concluded that the out-of-autoclave moisture content of Fiberite 3034K varied between 0.06 and 0.1%.

  16. 2014 Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E.; Engebrecht-Metzger, C.; Horowitz, S.; Hendron, R.

    2014-03-01

    As BA has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  17. Hygrothermal Properties and Performance of Sea Grass Insulation

    DEFF Research Database (Denmark)

    Eriksen, Marlene Stenberg Hagen; Laursen, Theresa Back; Rode, Carsten

    2008-01-01

    In the attempt to obtain knowledge of the hygrothermal properties of sea grass as thermal insulation, experiments have been carried out in the laboratory to determine the thermal conductivity, sorption properties and the water vapour permeability of the material. In order to investigate...

  18. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  19. Building America Top Innovations 2012: House Simulation Protocols (the Building America Benchmark)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    This Building America Top Innovations profile describes the DOE-sponsored House Simulation Protocols, which have helped ensure consistent and accurate energy-efficiency assessments for tens of thousands of new and retrofit homes supported by the Building America program.

  20. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  1. Learning in a Landscape: Simulation-building as Reflexive Intervention

    CERN Document Server

    Beaulieu, Anne; Scharnhorst, Andrea

    2011-01-01

    This article makes a dual contribution to scholarship in science and technology studies (STS) on simulation-building. It both documents a specific simulation-building project, and demonstrates a concrete contribution to interdisciplinary work of STS insights. The article analyses the struggles that arise in the course of determining what counts as theory, as model and even as a simulation. Such debates are especially decisive when working across disciplinary boundaries, and their resolution is an important part of the work involved in building simulations. In particular, we show how ontological arguments about the value of simulations tend to determine the direction of simulation-building. This dynamic makes it difficult to maintain an interest in the heterogeneity of simulations and a view of simulations as unfolding scientific objects. As an outcome of our analysis of the process and reflections about interdisciplinary work around simulations, we propose a chart, as a tool to facilitate discussions about si...

  2. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...... and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. The first......, results, and analysis are presented (Chapters 5-7). The major findings are discussed (Chapter 8), before the final conclusion (Chapter 9). The Appendices include the material parameters used, some additional results and the description of the simulation models....

  3. Hygrothermal modeling and testing of polymers and polymer matrix composites

    Science.gov (United States)

    Xu, Weiqun

    2000-10-01

    The dissertation, consisting of four papers, presents the results of the research investigation on environmental effects on polymers and polymer matrix composites. Hygrothermal models were developed that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data. Hygrothermal testing was also conducted to provide the necessary data for characterizing of model coefficients and model verification. In part 1, a methodology is proposed that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data for a polymer adhesive below its Tg. Subsequently, these diffusion coefficients are used for predicting moisture concentration profiles through the thickness of a polymer. In part 2, a modeling methodology based on irreversible thermodynamics applied within the framework of composite macro-mechanics is presented, that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data for laminated composites with distributed uniaxial damage. Comparisons with test data for a 5-harness satin textile composite with uniaxial micro-cracks are provided for model verifications. In part 3, the same modeling methodology based on irreversible thermodynamics is extended to the case of a bi-axially damaged laminate. The model allows characterization of nonFickian diffusion coefficients as well as moisture saturation level from moisture weight gain data for laminates with pre-existing damage. Comparisons with test data for a bi-axially damaged Graphite/Epoxy woven composite are provided for model verifications. Finally, in part 4, hygrothermal tests conducted on AS4/PR500 5HS textile composite laminates are summarized. The objectives of the hygrothermal tests are to determine the diffusivity and maximum moisture content of the laminate.

  4. Method for simulating predictive control of building systems operation in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2011-01-01

    A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...

  5. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... program and a building energy performance simulation program will improve both the energy consumption data and the prediction of thermal comfort and air quality in a selected area of the building....

  6. Draught risk index tool for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Nielsen, Peter V.

    2014-01-01

    Flow elements combined with a building energy simulation tool can be used to indicate areas and periods when there is a risk of draught in a room. The study tests this concept by making a tool for post-processing of data from building energy simulations. The objective is to show indications...

  7. Learning in a landscape : Simulation-building as reflexive intervention

    NARCIS (Netherlands)

    Beaulieu, Anne; Ratto, Matt; Scharnhorst, Andrea

    2013-01-01

    This article makes a dual contribution to scholarship in science and technology studies (STS) on simulation-building. It both documents a specific simulation-building project, and demonstrates a concrete contribution to interdisciplinary work of STS insights. The article analyses the struggles that

  8. Co-simulation of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  9. Acquisition of building geometry in the simulation of energy performance

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir

    2001-06-28

    Building geometry is essential to any simulation of building performance. This paper examines the importing of building geometry into simulation of energy performance from the users' point of view. It lists performance requirements for graphic user interfaces that input building geometry, and discusses the basic options in moving from two- to three-dimensional definition of geometry and the ways to import that geometry into energy simulation. The obvious answer lies in software interoperability. With the BLIS group of interoperable software one can interactively import building geometry from CAD into EnergyPlus and dramatically reduce the effort otherwise needed for manual input.The resulting savings may greatly increase the value obtained from simulation, the number of projects in which energy performance simulation is used, and expedite decision making in the design process.

  10. Automated Comparison of Building Energy Simulation Engines (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Horowitz, S.; Booten, B.; Kruis, N.; Christensen, C.

    2012-08-01

    This presentation describes the BEopt comparative test suite, which is a tool that facilitates the automated comparison of building energy simulation engines. It also demonstrates how the test suite is improving the accuracy of building energy simulation programs. Building energy simulation programs inform energy efficient design for new homes and energy efficient upgrades for existing homes. Stakeholders rely on accurate predictions from simulation programs. Previous research indicates that software tends to over-predict energy usage for poorly-insulated leaky homes. NREL is identifying, investigating, and resolving software inaccuracy issues. Comparative software testing is one method of many that NREL uses to identify potential software issues.

  11. Hygrothermal effect of bamboo by dynamic mechanical analysis

    Institute of Scientific and Technical Information of China (English)

    GUAN Mingjie; ZHANG Qisheng

    2006-01-01

    Dynamic properties of bamboo,Phyllostachys pubescens,with moisture content (MC) ranging from -130 to 130℃,were studied by dynamic mechanical analysis (DMA).The results showed that the hygrothermal effect on dynamic mechanical properties was negative.The storage modulus decreases with increasing temperature and MC,and glass transition temperature decreases with increasing MC.The glass transition temperature and tan delta of bamboo were 30.5℃,0.02 and 10.61℃,0.04,when MC was 10% and 34%,respectively.

  12. Investigation of the Hygrothermal Performance of Alternative Insulation Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Kristiansen, Finn Harken; Rasmussen, Niels T.

    1999-01-01

    . The materials investigated are: cellulose insulation, sheep's wool, flax, and perlite. These materials, except for the last one, are very hygroscopic. The following two separate investigations are described.1. Investigation of the thermal conductivity at different humidity conditions.The thermal conductivity...... is determined for the different materials with a guarded hot plate apparatus in which different vapour pressure conditions can be maintained over the specimens. The apparatus and some results are presented.2. Computational analysis of the hygrothermal performance of constructions with alternative insulation...... designs prescribed by manufacturers of alternative insulation materials.Both investigations are compared against similar results when mineral fibre insulation is used....

  13. Building simulations supporting decision making in early design

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2016-01-01

    framework that facilitates proactive, intelligent, and experience based building simulation which aid decision making in early design. To find software candidates accommodating this framework, we compare existing software with regard to intended usage, interoperability, complexity, objectives, and ability...

  14. Geometry model construction in infrared image theory simulation of buildings

    Institute of Scientific and Technical Information of China (English)

    谢鸣; 李玉秀; 徐辉; 谈和平

    2004-01-01

    Geometric model construction is the basis of infrared image theory simulation. Taking the construction of the geometric model of one building in Harbin as an example, this paper analyzes the theoretical groundings of simplification and principles of geometric model construction of buildings. It then discusses some particular treatment methods in calculating the radiation transfer coefficient in geometric model construction using the Monte Carlo Method.

  15. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  16. Introduction to Building Systems Performance: Houses that Work II. Revised February 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-01

    The Building Science Consortium (BSC) design recommendations are based on the hygrothermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  17. Simulation of Room Climate of Public Buildings

    Directory of Open Access Journals (Sweden)

    Prorokova Maria

    2016-01-01

    Full Text Available The article presents the details of modeling of heat exchange and mass transfer in a room in the formation of a microclimate. The mathematical model is implemented in the program ANSYS Fluent and is used to predict the climate parameters after the implementation of energy saving measures in the building. Verification of the mathematical model by comparing the experimental data with the results of the measurement of microclimate parameters of the experiment.

  18. First Swiss building and urban simulation conference. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zweifel, G.; Citherlet, S.; Afjei, T.; Pahud, D.; Robinson, D.; Schaelin, A.

    2010-07-01

    These contributions presented at a conference, held in 2009 in Horw, near Lucerne, Switzerland, deal with the simulation of building technical services. Three contribution blocks dealt with thermal and heating, ventilation and air-conditioning (HVAC) simulation, airflow and stochastic modelling and urban simulation. In the thermal and HVAC simulation session, the potential and limitations of building energy performance simulation is examined from an engineering perspective, a parametric study of an air heat exchanger for the cooling of buildings is presented and a comparison of measured and estimated electric energy use and the impact of assumed occupancy patterns is made. Contributions on standard solutions for energy efficient heating and cooling with heat pumps, the validation and certification of dynamic building simulation tools, standards and tools for the energy performance of buildings with a simple chiller model and the system-simulation of a central solar heating plant with seasonal duct storage in Geneva, Switzerland, are presented. In the airflow and stochastic modelling session, the optimisation of air flow in operating theatres is examined, and air-flow phenomena in flats are explained with illustrations of computational fluid dynamics (CFD). Also, the comparison of test reference years to stochastically generated time series and a comprehensive stochastic model of window usage are discussed. Contributions on the simulation of air-flow patterns and wind loads on facades and the choice of appropriate simulation techniques for the thermal analysis of double skin facades complete the session. In the final Urban Simulation session, a new CFD approach for urban flow and pollution dispersion simulation is presented, a comprehensive micro-simulation of resource flows for sustainable urban planning, multi-scale modelling of the urban climate and the optimisation of urban energy demands using an evolutionary algorithm are discussed.

  19. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  20. Integrated thermal simulation of buildings and regenerative evaporative coolers

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P.G.; Mathews, E.H.; Grobler, L.J. (Pretoria Univ. (South Africa). Centre for Experimental and Numerical Thermoflow)

    1994-01-01

    The thermal environment inside a building, fitted with a regenerative evaporative cooler, is influenced by the performance of the cooler. However, this performance is again influenced by the indoor air conditions. It means that the thermal performance of the building and the performance of the cooler cannot be separated. This paper proposes an innovative model for simulating the integrated thermal performance of buildings and regenerative evaporative coolers. The cooler model employs a standard single equation to characterize the performance of a cooler. Only the coefficients of this equation differs for different coolers. These coefficients are found from empirical performance data available from suppliers. The model was integrated with a comprehensive building thermal analysis program and verified successfully. This model now enables the designer to simulate any regenerative evaporative cooler connected to any building in any climatic region. The control strategy best suited for different off-design conditions can now also be investigated. (Author)

  1. Simulation of probabilistic wind loads and building analysis

    Science.gov (United States)

    Shah, Ashwin R.; Chamis, Christos C.

    1991-01-01

    Probabilistic wind loads likely to occur on a structure during its design life are predicted. Described here is a suitable multifactor interactive equation (MFIE) model and its use in the Composite Load Spectra (CLS) computer program to simulate the wind pressure cumulative distribution functions on four sides of a building. The simulated probabilistic wind pressure load was applied to a building frame, and cumulative distribution functions of sway displacements and reliability against overturning were obtained using NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), a stochastic finite element computer code. The geometry of the building and the properties of building members were also considered as random in the NESSUS analysis. The uncertainties of wind pressure, building geometry, and member section property were qualified in terms of their respective sensitivities on the structural response.

  2. A Thermal Simulation Tool for Building and Its Interoperability through the Building Information Modeling (BIM Platform

    Directory of Open Access Journals (Sweden)

    Christophe Nicolle

    2013-05-01

    Full Text Available This paper describes potential challenges and opportunities for using thermal simulation tools to optimize building performance. After reviewing current trends in thermal simulation, it outlines major criteria for the evaluation of building thermal simulation tools based on specifications and capabilities in interoperability. Details are discussed including workflow of data exchange of multiple thermal analyses such as the BIM-based application. The present analysis focuses on selected thermal simulation tools that provide functionalities to exchange data with other tools in order to obtain a picture of its basic work principles and to identify selection criteria for generic thermal tools in BIM. Significances and barriers to integration design with BIM and building thermal simulation tools are also discussed.

  3. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2010-08-22

    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  4. Working mechanism and numerical simulation of assembly coastal building techniques

    Institute of Scientific and Technical Information of China (English)

    陈育民; 刘汉龙; 陈泽

    2008-01-01

    A new coastal technique, named as assembly coastal building, was introduced. The main concept of the technique was the assembling components which could be combined and locked together to form a large caisson. The assembly coastal building technique was used in a sea access road in Zhuanghai 4X1 well, Dagang Oilfield. The design plans and in-situ tests in the sea access road project were introduced in detail. According to the Zhuanghai project, the numerical simulation method of assembly coastal building technique was proposed. 2D numerical simulations were performed in FLAC to analyze the displacement and stability of the technique in the construction process and post-construction period. The settlement calculated is close to the in-situ results, which proves that the proposed numerical method is reasonable. Results show that the assembly coastal building technique has large safety factor under the gravity loading and wave loadings.

  5. Sustainable construction building performance simulation and asset and maintenance management

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research works that highlight best practice solutions, case studies and practical advice on the implementation of sustainable construction techniques. It includes a set of new developments in the field of building performance simulation, building sustainability assessment, sustainable management, asset and maintenance management and service-life prediction. Accordingly, the book will appeal to a broad readership of professionals, scientists, students, practitioners, lecturers and other interested parties.

  6. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick facades

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2016-01-01

    The use of internal insulation is investigated in a heritage building block with wooden beam construction and masonry brick walls as part of an energy renovation. Measurements were carried out and compared to results from a hygrothermal simulation model. The risk of mould growth in the wooden beams...... and in the interface between the insulation and the brick wall was evaluated. Three different insulation strategies for applying internal insulation were investigated: 1) insulation applied on the entire interior facade; 2) 200 mm gap in the insulation above the floor; and 3) 200 mm gap in the insulation both above...

  7. Communication Capacity Building through Pharmacy Practice Simulation.

    Science.gov (United States)

    Fejzic, Jasmina; Barker, Michelle; Hills, Ruth; Priddle, Alannah

    2016-03-25

    Objective. To examine the effectiveness of simulated learning modules (SLMs) encompassing EXcellence in Cultural Experiential Learning and Leadership (EXCELL) core competencies in enhancing pharmacy students' professional communication skills. Methods. Students completed three hours of preparatory lectures and eight hours of workshops comprising six SLMs themed around pharmacy practice and pharmacy placements. Each SLM comprised role-plays with actors, facilitation using EXCELL Social Interaction Maps (SIMs), and debriefing. Evaluations of SLMs included quantitative and qualitative survey responses collected before, during and after workshops, and after placements. Facilitators reflected on SLMs as a pedagogic modality. Results. Student feedback was positive about SLMs as an effective learning tool. The majority indicated areas of new learning and found SLMs enhanced their professional skills and confidence. Facilitator feedback was positive, and suggested SLM optimization strategies. Conclusion. Student and teaching team recommendations will inform future curriculum development including the optimization of SLMs in pharmacy education.

  8. Methods for implementing Building Information Modeling and Building Performance Simulation approaches

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø

    In the present thesis, a number of studies into the adoption of Building Information Modeling (BIM) and Building Performance Simulation (BPS) are presented. The thesis has two main goals. The first is to explore the benefits and challenges of adopting (a) BIM as a platform for Architecture......, Engineering, Construction, and Facility Management (AEC/ FM) communication, and (b) BPS as a platform for early-stage building performance prediction. The second is to develop (a) relevant AEC/FM communication support instruments, and (b) standardized BIM and BPS execution guidelines and information exchange...... to improve early-stage building performance prediction. However, because of complex BPS information exchange structures, the BPS process is not always practical, highlighting the need for these structures to be simplified and more, clearly articulated. In this thesis, buildingSMART standard approaches...

  9. Experimental investigation of cyclic hygrothermal aging of hybrid composite

    KAUST Repository

    El Yagoubi, Jalal

    2013-04-05

    This work provides an experimental investigation of the cyclic hygrothermal aging of a hybrid composites. We aimed to propose a general framework in the view to further optimize polymer-based composites. It reports experimental data and relevant observations collected during an aging campaign (up to 2000 cycles) where anhydride-cured epoxy samples as well as composites samples are exposed to environmental conditions. The data gathered during the whole campaign reveals that (1) the polymer displays a non-classical sorption behavior (2) the volume change is correlated to the mass uptake (3) the elastic modulus is correlated to the glass transition temperature. Matrix and interface degradation of the hybrid composite is monitored by means of microstructural observations. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

  10. MODELLING THE PROCESSES OF HYGROTHERMAL MECHANICS IN RICE DRYING

    Directory of Open Access Journals (Sweden)

    S. A. Podgornyi

    2015-01-01

    Full Text Available Grain-crops are justly considered to be the staple food in Russia as well as all over the world. The specific feature is that postharvest processing of the grain and, above all, drying is an essential stage of providing products of high quality in the sufficient amount. The changes of the technological parameters of the drying process which take place over time, have a significant practical value in terms of monitoring the process and defining the modes providing the quality of the product as well as calculating energy demands necessary to carry out this process. Hereof, the quality of the product received is defined by minimum crack formation of rice grain after the process. The aim of the work is to get a mathematical model of hygrothermal mechanics of rice drying. On the basis of A.V. Lykov’s system of differential equations which describe the changes in moisture content, temperature and pressure, transition to the system of ordinary differential equations was offered which is based on drawing up balance of mass and heat during the process of drying. This approach does not consider the properties of moisture content and temperature within the material but takes into account their mean value. Using a simplified model of hygrothermal mechanics of rice drying that we have got enabled us to reproduce the process of drying in the conditions of minimum crack formation within the studied range (the temperature of the drying agent from 50 to 70 °C, speed from 2.3 to 2.8 м/sеk. The dependences we have got enable us to predict the quality of rice grain during drying.

  11. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    -energy district heating concept for low-energy buildings. The annual energy performance is evaluated as well as the socio-economy of a demonstrative network based on realistic energy loads that derived from a human behaviour model. Finally the presentation comments on the reasonable lower limit for the heat......Building design must evolve from today's practice – where the individual building parts are optimized separately – into a future where the whole building, including all installed systems, is optimized by integrating innovative technologies that will furthermore make the building itself an active...... part of the total energy system. Integrated design is a design process informed by multidisciplinary knowledge, where different software plays an important role in the designing process. Numerous simulation programs from different kinds of engineering fields (indoor climate, energy balance, district...

  12. A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls

    Directory of Open Access Journals (Sweden)

    Pierre-Antoine Chabriac

    2014-04-01

    Full Text Available Rammed earth is a sustainable material with low embodied energy. However, its development as a building material requires a better evaluation of its moisture-thermal buffering abilities and its mechanical behavior. Both of these properties are known to strongly depend on the amount of water contained in wall pores and its evolution. Thus the aim of this paper is to present a procedure to measure this key parameter in rammed earth or cob walls by using two types of probes operating on the Time Domain Reflectometry (TDR principle. A calibration procedure for the probes requiring solely four parameters is described. This calibration procedure is then used to monitor the hygrothermal behavior of a rammed earth wall (1.5 m × 1 m × 0.5 m, instrumented by six probes during its manufacture, and submitted to insulated, natural convection and forced convection conditions. These measurements underline the robustness of the calibration procedure over a large range of water content, even if the wall is submitted to quite important temperature variations. They also emphasize the importance of gravity on water content heterogeneity when the saturation is high, as well as the role of liquid-to-vapor phase change on the thermal behavior.

  13. A Software Architecture for Simulation Support in Building Automation

    Directory of Open Access Journals (Sweden)

    Sergio Leal

    2014-07-01

    Full Text Available Building automation integrates the active components in a building and, thus, has to connect components of different industries. The goal is to provide reliable and efficient operation. This paper describes how simulation can support building automation and how the deployment process of simulation assisted building control systems can be structured. We look at the process as a whole and map it to a set of formally described workflows that can partly be automated. A workbench environment supports the process execution by means of improved planning, collaboration and deployment. This framework allows integration of existing tools, as well as manual tasks, and is, therefore, many more intricate than regular software deployment tools. The complex environment of building commissioning requires expertise in different domains, especially lighting, heating, ventilation, air conditioning, measurement and control technology, as well as energy efficiency; therefore, we present a framework for building commissioning and describe a deployment process that is capable of supporting the various phases of this approach.

  14. MALAYSIAN WEATHER DATA (TRY) FOR ENERGY SIMULATIONS IN BUILDINGS

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2001-01-01

    Detailed energy simulations for buildings in Malaysia have become possible after the recent construction of a Malaysian TRY (Test Reference Year) based on 21 years of hourly weather data from Subang Meteorological Station. The climatic parameters contained in the TRY are dry bulb temperature, wet...... bulb temperature, absolute humidity, relative humidity, cloud cover, wind speed, wind direction, sunshine hours, global, diffuse and beam solar radiation. The computer program TSBI3 uses the TRY to perform annual energy simulations for buildings hour by hour. The input and output are very detailed...... making TSBI3 a powerful tool for energy analysis and optimisation of buildings. Other applications of the TRY are manifold including energy studies for solar systems and photovoltaic architecture....

  15. Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations

    Science.gov (United States)

    Sung, Christopher Teh Boon

    2011-01-01

    Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…

  16. Structural Simulations and Conservation Analysis -Historic Building Information Model (HBIM

    Directory of Open Access Journals (Sweden)

    C. Dore

    2015-02-01

    Full Text Available In this paper the current findings to date of the Historic Building Information Model (HBIM of the Four Courts in Dublin are presented. The Historic Building Information Model (HBIM forms the basis for both structural and conservation analysis to measure the impact of war damage which still impacts on the building. The laser scan survey was carried out in the summer of 2014 of the internal and external structure. After registration and processing of the laser scan survey, the HBIM was created of the damaged section of the building and is presented as two separate workflows in this paper. The first is the model created from historic data, the second a procedural and segmented model developed from laser scan survey of the war damaged drum and dome. From both models structural damage and decay simulations will be developed for documentation and conservation analysis.

  17. Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations

    Science.gov (United States)

    Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.

    2016-07-01

    This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.

  18. HAM-Tools – a whole building simulation tool in Annex 41

    DEFF Research Database (Denmark)

    Kalagasidis, Angela Sasic; Rode, Carsten; Woloszyn, Monika

    2008-01-01

    HAM-Tools is a building simulation software. The main task of this tool is to simulate transfer processes related to building physics, i.e. heat, air and moisture transport in buildings and building components in operating conditions. The scope of the ECBCS Annex 41 “Whole Building Heat, Air and ...

  19. Building Interactive Simulations in Web Pages without Programming.

    Science.gov (United States)

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  20. Simulation and Big Data Challenges in Tuning Building Energy Models

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

    2013-01-01

    EnergyPlus is the flagship building energy simulation software used to model whole building energy consumption for residential and commercial establishments. A typical input to the program often has hundreds, sometimes thousands of parameters which are typically tweaked by a buildings expert to get it right . This process can sometimes take months. Autotune is an ongoing research effort employing machine learning techniques to automate the tuning of the input parameters for an EnergyPlus input description of a building. Even with automation, the computational challenge faced to run the tuning simulation ensemble is daunting and requires the use of supercomputers to make it tractable in time. In this proposal, we describe the scope of the problem, the technical challenges faced and overcome, the machine learning techniques developed and employed, and the software infrastructure developed/in development when taking the EnergyPlus engine, which was primarily designed to run on desktops, and scaling it to run on shared memory supercomputers (Nautilus) and distributed memory supercomputers (Frost and Titan). The parametric simulations produce data in the order of tens to a couple of hundred terabytes.We describe the approaches employed to streamline and reduce bottlenecks in the workflow for this data, which is subsequently being made available for the tuning effort as well as made available publicly for open-science.

  1. Simulation of Micro-Climate in Heated Buildings

    Directory of Open Access Journals (Sweden)

    P. I. Diachek

    2009-01-01

    Full Text Available The paper presents main theoretical principles that serve as a basis for the developed numerical model of processes pertaining to conjugated heat exchange in the heated buildings. Information on functional capabilities of the developed programme, results of calculations and comparison of the obtained data with the conditions of heat comfort are given in the paper. It has been established that an application of simulation processes pertaining to energy and substance transfer at the design stage is considered as a rather efficient method for provision of the required parameters of a micro-climate and optimization of heat consumption by heated buildings.

  2. Addendum to the Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

    2012-12-01

    As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  3. Addendum to the Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Engebrecht, C. Metzger [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-12-01

    As DOE's Building America program has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program’s goals. The House Simulation Protocols (HSP) provide guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  4. Using DOE Commercial Reference Buildings for Simulation Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.; Deru, M.; Studer, D.

    2010-08-01

    The U.S. Department of Energy developed 256 EnergyPlus models for use in studies that aim to characterize about 70% of the U.S. commercial building stock. Sixteen building types - including restaurants, health care, schools, offices, supermarkets, retail, lodging, and warehouses - are modeled across 16 cities to represent the diversity of U.S. climate zones. Weighting factors have been developed to combine the models in proportions similar to those of the McGraw-Hill Construction Projects Starts Database for 2003-2007. This paper reviews the development and contents of these models and their applications in simulation studies.

  5. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  6. Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir

    2007-08-01

    The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

  7. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  8. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    intersection points with the edges of the surface, making the method applicable to rooms with complex geometry. The method for calculating view factors is robust and applicable to building energy simulation tools. Calculation time can be long depending on the complexity of geometry, grid-size and the choice...... energy simulations. The method calculates view factors by numerical integration of projected area factor. Over time the projected area factor of a person has been simplified by geometrical shapes. These shapes were compared with more complex equations on precision and calculation time. The same was done...

  9. Hygrothermal response of a dwelling house. Thermal comfort criteria

    Directory of Open Access Journals (Sweden)

    Adrian IACOB

    2015-12-01

    Full Text Available The use of local natural materials in order to reduce the environmental negative impact of buildings has become common practice in recent years; such buildings are to be found in all regions of the planet. The high level of thermal protection provided by the envelope elements made from natural materials such as straw bale insulation, hemp insulation or sheep wool, and their lack of thermal massiveness require a more complex analysis on their ability to keep interior comfort without accentuated variations. This paper proposes a comparative analysis between different solutions for a residential building located near a Romanian city, Cluj-Napoca. The elements of the building envelope are designed in three alternative solutions, using as substitute to classical solutions (concrete and polystyrene, masonry and polystyrene, straw bales and rammed earth for enclosing elements. For this purpose there are conducted numerical simulations of heat and mass transfer, using a mathematical model that allows the analysis of indoor comfort, by comparing both objective factors (air temperature, operative temperature and relative humidity and subjective factors, which are needed to define interior thermal comfort indices PPD and PMV. Finally, a set of conclusions are presented and future research directions are drawn.

  10. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the de......In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants...... in the design of ventilation systems. However, it is not appropriate to include the detailed geometry of a large group of lying or standing animals affecting the air flow in the building. It is necessary to have relatively simple models of the animals, which are easier to implement in the computer models....... In this study laboratory measurements in a ventilated test room with "pig simulators" are compared with CFD-simulations....

  11. Guidelines for Energy Simulation of Commercial Buildings: Final.

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Michael; Caner, Phoebe

    1992-03-01

    This report distills the experience gained from intensive computer building simulation work for the Energy Edge project. The purpose of this report is twofold: to use that experience to guide conservation program managers in their use of modeling, and to improve the accuracy of design-phase computer models. Though the main emphasis of the report is on new commercial construction, it also addresses modeling as it pertains to retrofit construction. To achieve these purposes, this report will: (1) discuss the value of modeling for energy conservation programs; (2) discuss strengths and weaknesses of computer models; (3) provide specific guidelines for model input; (4) discuss input topics that are unusually large drivers of energy use and model inaccuracy; (5) provide guidelines for developing baseline models; (6) discuss types of energy conservation measures (ECMs) and building operation that are not suitable to modeling and present possible alternatives to modeling for analysis; and (7) provide basic requirements for model documentation. This project was initiated to determine whether commercial buildings can be designed and constructed to use at least 30% less energy than if they were designed and built to meet the current regional model energy code, the Model Conservation Standards (MCS) developed by the Pacific Northwest Electric Power and Conservation Planning Council. Secondary objectives of the project are to determine the incremental energy savings of a wide variety of ECMs and to compare the predictive accuracy of design-phase models with models that are carefully tuned to monitored building data.

  12. Building Simulation Modelers are we big-data ready?

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

    2014-01-01

    Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical

  13. Recent developments in building diagnosis techniques

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research on building diagnosis techniques related to construction pathology, hygrothermal behavior and durability, and diagnostic techniques. It highlights recent advances and new developments in the field of building physics, building anomalies in materials and components, new techniques for improved energy efficiency analysis, and diagnosis techniques such as infrared thermography. This book will be of interest to a wide readership of professionals, scientists, students, practitioners, and lecturers.

  14. Building intelligence in third-generation training and battle simulations

    Science.gov (United States)

    Jacobi, Dennis; Anderson, Don; von Borries, Vance; Elmaghraby, Adel; Kantardzic, Mehmed; Ragade, Rammohan

    2003-09-01

    Current war games and simulations are primarily attrition based, and are centered on the concept of force on force. They constitute what can be defined as "second generation" war games. So-called "first generation" war games were focused on strategy with the primary concept of mind on mind. We envision "third generation" war games and battle simulations as concentrating on effects with the primary concept being system on system. Thus the third generation systems will incorporate each successive generation and take into account strategy, attrition and effects. This paper will describe the principal advantages and features that need to be implemented to create a true "third generation" battle simulation and the architectural issues faced when designing and building such a system. Areas of primary concern are doctrine, command and control, allied and coalition warfare, and cascading effects. Effectively addressing the interactive effects of these issues is of critical importance. In order to provide an adaptable and modular system that will accept future modifications and additions with relative ease, we are researching the use of a distributed Multi-Agent System (MAS) that incorporates various artificial intelligence methods. The agent architecture can mirror the military command structure from both vertical and horizontal perspectives while providing the ability to make modifications to doctrine, command structures, inter-command communications, as well as model the results of various effects upon one another, and upon the components of the simulation. This is commonly referred to as "cascading effects," in which A affects B, B affects C and so on. Agents can be used to simulate units or parts of units that interact to form the whole. Even individuals can eventually be simulated to take into account the affect to key individuals such as commanders, heroes, and aces. Each agent will have a learning component built in to provide "individual intelligence" based on

  15. Indoor Environment and Energy Use in Historic Buildings - Comparing Survey Results with Measurements and Simulations

    DEFF Research Database (Denmark)

    Rohdin, P.; Dalewski, M.; Moshfegh, B.

    2012-01-01

    Increasing demand for energy efficiency places new requirements on energy use in historic buildings. Efficient energy use is essential if a historic building is to be used and preserved, especially buildings with conventional uses such as residential buildings and offices. This paper presents...... results which combine energy auditing with building energy simulation and an indoor environment survey among the occupants of the building. Both when comparing simulations with measurements as well as with survey results good agreement was found. The two efficiency measures that are predicted to increase...... energy and thermal performance the most for this group of buildings were reduced infiltration and increasing heat-exchanger efficiency....

  16. Energy simulation and optimization for a small commercial building through Modelica

    Science.gov (United States)

    Rivas, Bryan

    Small commercial buildings make up the majority of buildings in the United States. Energy consumed by these buildings is expected to drastically increase in the next few decades, with a large percentage of the energy consumed attributed to cooling systems. This work presents the simulation and optimization of a thermostat schedule to minimize energy consumption in a small commercial building test bed during the cooling season. The simulation occurs through the use of the multi-engineering domain Dymola environment based on the Modelica open source programming language and is optimized with the Java based optimization program GenOpt. The simulation uses both physically based modeling utilizing heat transfer principles for the building and regression analysis for energy consumption. GenOpt is dynamically coupled to Dymola through various interface files. There are very few studies that have coupled GenOpt to a building simulation program and even fewer studies have used Dymola for building simulation as extensively as the work presented here. The work presented proves Dymola as a viable alternative to other building simulation programs such as EnergyPlus and MatLab. The model developed is used to simulate the energy consumption of a test bed, a commissioned real world small commercial building, while maintaining indoor thermal comfort. Potential applications include smart or intelligent building systems, predictive simulation of small commercial buildings, and building diagnostics.

  17. Building performance simulation in the early design stage: An introduction to integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2015-01-01

    Designing with building performance simulation feedback in the early design stage has existed since the early days of computational modeling. However, as a consequence of a fragmented building industry building performance simulations (BPSs) in the early design stage are closely related to who is...

  18. Moisture condensation on building envelopes in differential ventilated spaces in the tropics: quantitative assessment of influencing factors

    Directory of Open Access Journals (Sweden)

    Ali Maisarah

    2016-01-01

    Full Text Available Ventilation systems play a significant role in maintaining the indoor thermal and hygric balance. Nevertheless, the systems had been implicated to result in many problems. In the tropical climate, especially for energy efficiency purposes, building spaces are operated with differential ventilation. Such spaces operate on 24-hrs basis, some on 8-hrs while others are either naturally ventilated or served with mechanical supply-exhaust fan systems with non-conditioned outdoor air. This practice had been found to result in condensation problems. This study involves a quantitative appraisal of the effect of operative conditions and hygrothermal quality of building envelopes on condensation risk. The in-situ experiment is combined with an analytical approach to assessing the hygrothermal quality of building envelopes in a tropical climate building under differential ventilation between adjacent spaces. The case-studied building is with a known history of condensation and associated damages including mould growth. The microclimate measurement and hygrothermal performance of the wall and floor against condensation and mould growth risks had been previously reported elsewhere. As a step further, the present study evaluates the effects of various envelope insulation types and configurations together with the HVAC cooling set-points on envelope hygrothermal performance. The results revealed that overcooling the air-conditioned side increases condensation risk on the non-air-conditioned side of the envelopes. The envelopes failed criteria for surface condensation at existing operative conditions irrespective of envelope hygrothermal quality improvements. However, the envelope performed well at improved cooling operative conditions even at existing envelope hygrothermal quality. It is, therefore, important to ascertain the envelope hygrothermal quality as well the cooling operative conditions while embarking on energy efficiency operations in mechanical

  19. Building Merger Trees from Cosmological N-body Simulations

    CERN Document Server

    Tweed, D; Blaizot, J; Colombi, S; Slyz, A

    2009-01-01

    Although a fair amount of work has been devoted to growing Monte-Carlo merger trees which resemble those built from an N-body simulation, comparatively little effort has been invested in quantifying the caveats one necessarily encounters when one extracts trees directly from such a simulation. To somewhat revert the tide, this paper seeks to provide its reader with a comprehensive study of the problems one faces when following this route. The first step to building merger histories of dark matter haloes and their subhaloes is to identify these structures in each of the time outputs (snapshots) produced by the simulation. Even though we discuss a particular implementation of such an algorithm (called AdaptaHOP) in this paper, we believe that our results do not depend on the exact details of the implementation but extend to most if not all (sub)structure finders. To illustrate this point, we compare AdaptaHOP s results to the standard Friend- Of-Friend algorithm (FOF), widely utilized in the astrophysical commu...

  20. Simulation Technology Laboratory Building 970 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  1. An algorithm to build mock galaxy catalogues using MICE simulations

    CERN Document Server

    Carretero, J; Gaztanaga, E; Crocce, M; Fosalba, P

    2014-01-01

    We present a method to build mock galaxy catalogues starting from a halo catalogue that uses halo occupation distribution (HOD) recipes as well as the subhalo abundance matching (SHAM) technique. Combining both prescriptions we are able to push the absolute magnitude of the resulting catalogue to fainter luminosities than using just the SHAM technique and can interpret our results in terms of the HOD modelling. We optimize the method by populating with galaxies friends-of-friends dark matter haloes extracted from the Marenostrum Institut de Ci\\`{e}ncies de l'Espai (MICE) dark matter simulations and comparing them to observational constraints. Our resulting mock galaxy catalogues manage to reproduce the observed local galaxy luminosity function and the colour-magnitude distribution as observed by the Sloan Digital Sky Survey. They also reproduce the observed galaxy clustering properties as a function of luminosity and colour. In order to achieve that, the algorithm also includes scatter in the halo mass - gala...

  2. Simulating past droughts and associated building damages in France

    Directory of Open Access Journals (Sweden)

    T. Corti

    2009-09-01

    Full Text Available Droughts can induce important building damages due to shrinking and swelling of soils, leading to costs as large as for floods in some regions. Previous studies have focused on damage data analysis, geological or constructional aspects. Here, a study investigating the climatic aspects of soil subsidence damage is presented for the first time. We develop a simple model to examine if the meteorology has a considerable impact on the interannual variability of damages from soil subsidence in France. We find that the model is capable of reproducing yearly drought-induced building damages for the time period 1989–2002, thus suggesting a strong meteorological influence. Furthermore, our results reveal a doubling of damages in these years compared to 1961–1990, mainly as a consequence of increasing temperatures. This indicates a link to climate change. We also apply the model to the extreme summer of 2003, which caused a further increase in damage by a factor four, according to a preliminary damage estimate. The simulation result for that year shows strong damage underestimation, pointing to additional sources of vulnerability. Damage data suggest a higher sensitivity to soil subsidence of regions first affected by drought in the 2003 summer, possibly due to a lack of preparedness and adaptation. This is of strong concern in the context of climate change, as densely populated regions in Central Europe and North America are expected to become newly affected by drought in the future.

  3. Building interactive simulations in a Web page design program.

    Science.gov (United States)

    Kootsey, J Mailen; Siriphongs, Daniel; McAuley, Grant

    2004-01-01

    A new Web software architecture, NumberLinX (NLX), has been integrated into a commercial Web design program to produce a drag-and-drop environment for building interactive simulations. NLX is a library of reusable objects written in Java, including input, output, calculation, and control objects. The NLX objects were added to the palette of available objects in the Web design program to be selected and dropped on a page. Inserting an object in a Web page is accomplished by adding a template block of HTML code to the page file. HTML parameters in the block must be set to user-supplied values, so the HTML code is generated dynamically, based on user entries in a popup form. Implementing the object inspector for each object permits the user to edit object attributes in a form window. Except for model definition, the combination of the NLX architecture and the Web design program permits construction of interactive simulation pages without writing or inspecting code.

  4. Thermal energy storage in buildings using PCM. Computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Khudhair, A.M.; Farid, M.M.; Chen, J.J.J. [Auckland Univ. (New Zealand). Dept. of Chemical and Materials Engineering; Bansal, P.K. [Auckland Univ. (New Zealand). Dept. of Mechanical Engineering

    2008-07-01

    This paper presents the results of phase changing material, RT20, impregnated up to 26%-wt into the gypsum wallboards to produce a significant thermal storage medium (PCMGW). A full-scale test facility using the PCMGW was monitored for two years, and was modeled using the thermal building simulation package, SUNREL, to evaluate the latent heat storage performance of the PCM treated wallboards. Measured and simulated results showed that the use of PCMGW met two needs: quick absorption of solar heat for use during off-sunshine hours and avoid overheating during sunshine hours. The PCMGWs effectively smoothed out diurnal daily fluctuations of indoor air temperatures on sunny days and, therefore, providing thermal comfort. Although the benefits of PCMGW were clearly demonstrated, it was necessary to optimize the melting point and quantity of the PCM and to highlight the importance of showing how many days the PCM could effectively minimize the indoor temperature fluctuation. In a 90-day period during summer, a PCM of with a melting range of 18 C - 22 C could be fully utilized for 39% and partially utilized for 55.5% of the summer days when there is either partial melting or partial freezing. There is no benefit for only 5.5% of the summer days when the PCM remains either in the solid or liquid state. These percentages show that the decision of using 26%-wt RT20 with the melting range of 18-22 C is a practical and realistic one. (orig.)

  5. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-09-01

    In this article, combined effect of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is investigated by developing various refined beam theories which capture shear deformation influences needless of any shear correction factor. The material properties of FG nanobeam are temperature dependent and change gradually along the thickness through the power-law model. Size-dependent description of the nanobeam is performed applying nonlocal elasticity theory of Eringen. Nonlocal governing equations of embedded FG nanobeam in hygro-thermal environment obtained from Hamilton's principle are solved analytically. To verify the validity of the developed theories, the results of the present work are compared with those available in the literature. The effects of various hygro-thermal loadings, elastic foundation, gradient index, nonlocal parameter, and slenderness ratio on the vibrational behavior of FG nanobeams modeled via various beam theories are explored.

  6. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  7. The Effect of Cyclic Hygrothermal Environment on Interlaminar Shear Strength (ilss) of CCF300/BMI Composite

    Science.gov (United States)

    Zhao, Yan; Luo, Yun-Feng; Duan, Yue-Xin; Du, Shan-Yi

    An experimental study was conducted to examine the effect of cyclic hygrothermal environment on the interfacial property of CCF300/BMI composites. The moisture weight and interlaminar shear strength of CCF300/BMI composites specimen of each stage during three absorption-desorption cyclical stages was investigated. The results showed the ILSS of composites after water absorption dramatically decreased, but it could make a comeback on the whole after removal of water.

  8. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    HAM conditions. The paper focuses on the influence of the interior surface heat and moisture transfer coefficients, and investigates its effect on the hygrothermal performance. The parameter study showed that the magnitude of the convective surface transfer coefficients have a relatively large......Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  9. Hygrothermal Fracture Analysis of Orthotropic Functionally Graded Materials Using Jk-Integral-Based Methods

    Directory of Open Access Journals (Sweden)

    Serra Topal

    2013-01-01

    Full Text Available This paper puts forward two different Jk-integral-based methods, which can be used to perform mixed-mode fracture analysis of orthotropic functionally graded materials subjected to hygrothermal stresses. The first method requires the evaluation of both components of Jk-integral, whereas the second method employs the first component J1 and the asymptotic crack tip displacement fields. Plane orthotropic hygrothermoelasticity is the basic theory behind the Jk-integral formulation, which is carried out by assuming that all material properties are functions of the spatial coordinates. Developed procedures are implemented by means of the finite element method and integrated into a general purpose finite element analysis software. Temperature and specific moisture concentration fields needed in the fracture analyses are also computed through finite element analysis. Each of the developed methods is utilized in conjunction with the superposition technique to calculate the hygrothermal fracture parameters. An inclined crack located in a hygrothermally loaded orthotropic functionally graded layer is examined in parametric analyses. Comparisons of the results generated by the proposed methods do indicate that both methods lead to numerical results of high accuracy and that the developed form of the Jk-integral is domain independent. Further results are presented so as to illustrate the influences of crack inclination angle, crack length, and crack location upon the modes I and II stress intensity factors.

  10. BUCKLING AND POSTBUCKLING OF LAMINATED THIN CYLINDRICAL SHELLS UNDER HYGROTHERMAL ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    沈惠申

    2001-01-01

    The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected by the variation of temperature and moisture, and are based on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular perturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditiors. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.

  11. Long-term hygrothermal effects on damage tolerance of hybrid composite sandwich panels

    Science.gov (United States)

    Ishai, Ori; Hiel, Clement; Luft, Michael

    1995-01-01

    A sandwich construction, composed of hybrid carbon-glass fiber-reinforced plastic skins and a syntactic foam core, was selected as the design concept for a wind tunnel compressor blade application, where high damage tolerance and durability are of major importance. Beam specimens were prepared from open-edge and encapsulated sandwich panels which had previously been immersed in water at different temperatures for periods of up to about two years in the extreme case. Moisture absorption and strength characteristics, as related to time of exposure to hygrothermal conditions, were evaluated for the sandwich specimens and their constituents (skins and foam). After different exposure periods, low-velocity impact damage was inflicted on most sandwich specimens and damage characteristics were related to impact energy. Eventually, the residual compressive strengths of the damaged (and undamaged) beams were determined flexurally. Test results show that exposure to hygrothermal conditions leads to significant strength reductions for foam specimens and open-edge sandwich panels, compared with reference specimens stored at room temperature. In the case of skin specimens and for beams prepared from encapsulated sanwich panels that had previously been exposed to hygrothermal conditions, moisture absorption was found to improve strength as related to the reference case. The beneficial effect of moisture on skin performance was, however, limited to moisture contents below 1% (at 50 C and lower temperatures). Above this moisture level and at higher temperatures, strength degradation of the skin seems to prevail.

  12. Computer simulation for better design and operation of large office building air-conditioning

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.; Zmrhal, V.

    2009-01-01

    The paper deals with the use of computer simulations both for the design support of a new buildings and HVAC system development and for the optimisation of the system control strategy in the building. This is presented on a real office building in Prague. For a new large bank head office in Prague,

  13. The mathematical simulation of the temperature fields of building envelopes under permanent frozen soil conditions

    Science.gov (United States)

    Anisimov, M. V.; Babuta, M. N.; Kuznetsova, U. N.; Safonova, E. V.; Minaeva, O. M.

    2016-04-01

    The physical-mathematical model of the thermal state of the aired technical underground taking into account the air exchange and design features of construction under permanent frozen soil conditions has been suggested. The computational scheme of the temperature fields prediction of building envelopes of projected buildings and soil under and nearby buildings has been developed. The numerical simulation of the temperature fields of building envelopes changes was conducted during a year. The results of the numerical simulation showed that the heat coming from the technical undergrounds and through the walls does not influence the temperature field of the soil neither under a building nor at a distance from it.

  14. Modeling and Simulation of Multi-Room Buildings

    Directory of Open Access Journals (Sweden)

    D.W.U. Perera

    2016-04-01

    Full Text Available Buildings are one of the largest energy consumers in the world which accounts for nearly 40% of the total global energy consumption. In the countries where cold climate conditions predominate, space heating is the key contributor to the increased energy consumption. Today there is a growing trend to use Building Energy Management Systems (BEMS to control the energy consumption of buildings in an efficient manner. BEMS require a good heating model of the building to be integrated for better control purposes. This article refers to the development of different types of physics based buillding heating models, regarding single-zone, multi-floor and multi-room buildings. They address the propriety of each model in building heating control concerning the prediction accuracy and the prediction time. These models are verified for a residential building having three floors. According to the results, the multi-floor model is recognized to have the best qualifications obliged as a model for control.

  15. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments

    Science.gov (United States)

    Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang

    2014-01-01

    The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.

  16. Simulation Tests in Whole Building Heat and Moisture Transfer

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut Hannele; Woloszyn, Monika

    2006-01-01

    An important part of the International Energy Agency project, ECBCS, Annex 41 is about modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling deals with all most relevant elements of buildings: The indoor air, the building envelope, t...

  17. Simulation Technology of Environmental Impacts by Zero-energy Residential Buildings Based on Emergy Analysis Method

    Institute of Scientific and Technical Information of China (English)

    Hong Zhou; XiaoLong Xue; WangShu Yang

    2014-01-01

    This paper presents a simulation technology of environmental impact for the building. By emergy analysis method, emergy costs of building( or construction engineering) can be calculated in the life cycle. It includes the engineering cost, environmental cost and social cost of building. Through integrating GIS technology with multi-agent technology, life cycle substance and energy metabolism of building ( construction engineering) can be simulated and their environmental influence can be dynamically displayed. Based on the case study of entries works ‘Sunny Inside’ by Xiamen University in 2013 China International Solar Decathlon Competition, we discovered the changing pattern of surrounding environmental impact from waste streams of the zero-energy building and ordinary construction. The simulation results verified and showed the Odum principles of maximum power. This paper provides a new research perspective and integration approach for the environmental impact assessment in building and construction engineering. The result will help decision-making in design and construction engineering scheme.

  18. On the Impact of Building Attenuation Models in VANET Simulations of Urban Scenarios

    Directory of Open Access Journals (Sweden)

    Luis Urquiza-Aguiar

    2015-01-01

    Full Text Available Buildings are important elements of cities for VANETs, since these obstacles may attenuate communications between vehicles. Consequently, the impact of buildings has to be considered as part of the attenuation model in VANET simulations of urban scenarios. However, the more elaborated the model, the more information needs to be processed during the simulation, which implies longer processing times. This complexity in simulations is not always worth it, because simplified channel models occasionally offer very accurate results. We compare three approaches to model the impact of buildings in the channel model of simulated VANETs in two urban scenarios. The simulation results for our evaluation scenarios of a traffic-efficiency application indicate that modeling the influence of buildings in urban areas as the total absence of communication between vehicles gives similar results to modeling such influence in a more realistic fashion and could be considered a conservative bound in the performance metrics.

  19. Numerical simulation of solar heating of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coffe, G.; Jannot, M.; Pellerin, J.F.

    1980-01-01

    This study is divided into two parts: First, the thermal modelling of a solar + electric heated building is presented; mathematical equations are established; numerical calculations are analyzed; and a calculation code in FORTRAN V is set down. Second, this calculation code was used to study the thermal performances of the solar + electric heated building in three European climates: Copenhagen (56/sup 0/ north latitude - Denmark), Trappes (48/sup 0/ north latitude - France), and Carpentras (44/sup 0/ north latitude - France).

  20. Modeling Local Hygrothermal Interaction: Local surface transfer coefficients

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the heat and moisture surface transfer coefficients. In order to obtain a reliable...... prediction of the HAM conditions in a building component, an accurate description of the indoor boundary conditions is required. This paper presents the modelling of the local indoor environmental conditions, using a (sub)zonal airflow model, focussing on the prediction of the local interior surface heat...

  1. The Database of Egyptian Building Envelopes (DEBE): A database for building energy simulations

    OpenAIRE

    Attia, Shady; Wanas, O.

    2012-01-01

    This paper is a part of an ongoing research that aims to describe the influence of building constructions on energy consumption through a survey that is conducted in Cairo and its surrounding residential neighbourhoods. An inventory of the selected neighbourhoods envelope constructions and their characteristics is described in accordance with the new Egyptian energy standard for residential buildings. After thorough screening and classification, the constructions are digitalized and uploa...

  2. Simulation-based support for integrated design of new low-energy office buildings

    DEFF Research Database (Denmark)

    Petersen, Steffen

    design disciplines (structural, fire, architecture etc.) to the integrated building design process. The research therefore revolves around the hypothesis that parametric analyses on the energy performance, indoor environment and total economy of rooms with respect to geometry and characteristics...... of building elements and services can be used to generate a useful input to the early stage of an integrated building design process. To pursue a corroboration of this hypothesis, a method for making informed decisions when establishing the input to the overall building design process is proposed. The method...... relies on the use of building simulation to illustrate how design parameters will affect the energy performance and the quality of the indoor environment prior to any actual design decision. The method is made operational in a simple building simulation tool capable of performing integrated performance...

  3. An experience on integrating monitoring and simulation tools in the design of energy-saving buildings

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S. Flores; Lesino, G. [INENCO, Universidad Nacional de Salta, CONICET, Buenos Aires 177 (4400) Salta (Argentina); Filippin, C.; Beascochea, A. [Universidad Nacional de La Pampa, CONICET, Spinetto 785 (6300) Santa Rosa, La Pampa (Argentina)

    2008-07-01

    In this paper we describe the design and thermal behaviour of a bioclimatic Auditorium at the National University of La Pampa, used for teaching activities in Santa Rosa, La Pampa (Argentina). The building was monitored in winter and simulated with SIMEDIF for Windows, a code developed at the Non Conventional Energy Research Institute (INENCO, Argentina). Then, a new project of a similar building was proposed for General Pico city, and the obtained physical model was used to simulate the building under the summer temperatures of the new city. The building was redesigned and passive solar strategies were applied to reduce heating and cooling loads. The final layout and the monitored thermal behaviour of the new building in winter and summer are described. Without additional cost, the new building savings were 50% in heating requirements respect to the conventional layout, and 70% in the requirements of conventional energy for cooling. (author)

  4. Simulated Aging and Characterization of Phase Change Materials for Thermal Management of Building Envelopes

    Science.gov (United States)

    2015-09-01

    Method B). West Conshohocken, PA: ASTM International. ———. 2009. Standard Method for Surface Burning Characteristics of Building Materials. ASTM E84-09...storage in buildings : A state of art. Renewable and Sustainable Energy Reviews 11(6):1146-1166 Yu, S., S. Jeong, C. Chyoung, and S. Kim. 2014. Bio-based...Simulated Aging and Characterization of Phase Change Materials for lhermal Management of Building Envelopes Elizabeth J. Gao, Jignesh Patel, Veera M. Boddu

  5. Ventilated buildings optimisation by using a coupled thermal-airflow simulation program

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2011-01-01

    This work shows the optimization of natural ventilation within buildings at the stage of design and behaviour of the occupants. An evaluation is done by coupled multizone air modelling and thermal building simulation by using a deterministic set of input factors comprising among others climate...

  6. Issues to Be Solved for Energy Simulation of An Existing Office Building

    Directory of Open Access Journals (Sweden)

    Ki Uhn Ahn

    2016-04-01

    Full Text Available With the increasing focus on low energy buildings and the need to develop sustainable built environments, Building Energy Performance Simulation (BEPS tools have been widely used. However, many issues remain when applying BEPS tools to existing buildings. This paper presents the issues that need to be solved for the application of BEPS tools to an existing office building. The selected building is an office building with 33 stories above ground, six underground levels, and a total floor area of 91,898 m2. The issues to be discussed in this paper are as follows: (1 grey data not ready for simulation; (2 subjective assumptions and judgments on energy modeling; (3 stochastic characteristics of building performance and occupants behavior; (4 verification of model fidelity-comparison of aggregated energy; (5 verification of model fidelity-calibration by trial and error; and (6 use of simulation model for real-time energy management. This study investigates the aforementioned issues and explains the factors that should be considered to address these issues when developing a dynamic simulation model for existing buildings.

  7. Comparison of simplified and advanced building simulation tool with measured data

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Schiønning, Peder; Dethlefsen, Espen

    2013-01-01

    In the future building design must progress to a format where CO 2 neutral societies are optimized as a whole and innovative technologies integrated. The purpose of this paper is to demonstrate the problems using a simplified design tool to simulate a complicated building and how this may not give...

  8. Computer simulation and measurements of a building with top-cooling

    NARCIS (Netherlands)

    Lain, M.; Bartak, M.; Drkal, F.; Hensen, J.

    2005-01-01

    This paper deals with the use of computer simulations both for design support of a new building including its heating, ventilation and air-conditioning (HVAC) systems and for optimization of the HVAC control strategy during operation of the completed building. In the early design phases for a new co

  9. Brute force optimization: combining mass energy simulation and life cycle analysis to optimize building design

    Energy Technology Data Exchange (ETDEWEB)

    Fix, Stuart; Richman, Russell [Department of Architectural Science, Faculty of Engineering, Architecture and Science, Ryerson University (Canada)], email: sfix@ryerson.ca, email: richman@ryerson.ca

    2011-07-01

    With the depletion of energy resources and the rising concerns about the environment, building designers are shifting towards green building designs. However since no design optimization for an entire building exists, a significant degree of uncertainty is involved in design decisions. The aim of this paper is to present the brute force optimization process which is a method removing the uncertainty from green building designs. This method relies on the selection of optimization criteria and then several simulations are performed. A demonstration pilot was carried out in Toronto and over one million design permutations were conducted. Results showed that parameters such as total building area, window performance and infiltration level are the most important to the lifetime energy consumption of a building. This study pointed out the important parameters to optimize in order to reduce a building's energy consumption.

  10. Building America House Simulation Protocols - Revised October 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This document was developed to track and manage progress toward multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent reference point. This report corrects editorial errors that were in the original publication.

  11. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand....... The analysis also shows that the connection of low-energy buildings to DH networks is potentially a good solution in Denmark for reaching the climatic goals, but a high degree of connection must be reached, especially for detached houses, where most of the buildings in a typical community must be connected......The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...

  12. Poverty Simulations: Building Relationships among Extension, Schools, and the Community

    Science.gov (United States)

    Franck, Karen L.; Barnes, Shelly; Harrison, Julie

    2016-01-01

    Poverty simulations can be effective experiential learning tools for educating community members about the impact of poverty on families. The project described here includes survey results from three simulations with community leaders and teachers. This project illustrated how such workshops can help Extension professionals extend their reach and…

  13. Systematization of the environmental conditioning project in buildings with a view to optimizing the architectural projects with ragard to environmental control and energy saving. Volume 3. Sistematizacion del proyecto de acondicionamiento ambiental en la edificacion con vistas a la optimizacion de los proyectos arquitectonicos en aspectos de control ambiental y ahorro energetico

    Energy Technology Data Exchange (ETDEWEB)

    Klainsek, J.C.

    1988-07-01

    Due to its significance, energy analysis should be taken into account in both developing and optimization of hygrothermic conditioning system and new building designs. It is also necessary to determine the actual costs of energy saving and conservation modifications for existing buildings. This analysis involves a large number of repetitive calculations, so a computer application has become a necessity and a computer program has been developed to simulate energy needs for a real life office and their functions in one climate region. This program predicts heating and cooling energy requirements. The purpose of the present study is to determine the affect of envelope parameters: orientation, external walls, glazing, shadings, glass-to-wall ratio, surface absorbance of external wells (color), roofs, upon energy saving and conservation for a typical office building in Madrid.

  14. Systematization of the environmental conditioning project in buildings with a view to optimizing the architectural projects with regard to environmental control and energy saving. Sistematizacion del proyecto de acondicionamiento ambiental en la edificacion con vistas a la optimizacion de los proyectos arquitectonicos en aspectos de control ambiental y ahorro energetico

    Energy Technology Data Exchange (ETDEWEB)

    Klainsek, J.C.

    1988-07-01

    Due to its significance, energy analysis should be taken into account in both developing and optimization of hygrothermic conditioning system and new building designs. It is also necessary to determine the actual costs of energy saving and conservation modifications for existing buildings. This analysis involves a large number of repetitive calculations, so a computer application has become a necessity and a computer program has been developed to simulate energy needs for a real life office and their functions in one climate region. This program predicts heating and cooling energy requirements. The purpose of the present study is to determine the effect of envelope parameters: orientation, external walls, glazing, shadings, glass-to-wall ratio, surface absorbance of external walls (color), roofs, upon energy saving and conservation for a typical office building in Madrid.

  15. Systematization of the environmental conditioning project in buildings with a view to optimizing the architectural projects with regard to environmental control and energy saving. Volume 1. Sistematizacion del proyecto de acondicionamiento ambiental en la edificacion con vistas a la optimizacion de los proyectos arquitectonicos en aspectos de control ambiental y ahorro energetico

    Energy Technology Data Exchange (ETDEWEB)

    Klainsek, J.C.

    1988-07-01

    Due to its significance, energy analysis should be taken into account in both developing and optimization of hygrothermic conditioning system and new building designs. It is also necessary to determine the actual costs of energy saving and conservation modifications for existing buildings. This analysis involves a large number of repetitive calculations, so a computer application has become a necessity and a computer program has been developed to simulate energy needs for a real life office and their functions in one climate region. This program predicts heating and cooling energy requirements. The purpose of the present study is to determine the affect of envelope parameters: orientation, external walls, glazing, shadings, glass-to-wall ratio, surface absorbance of external well (color), roofs, upon energy saving and conservation for a typical office building in Madrid.

  16. A Low-energy Building under Arctic Conditions - Experiences After Five Years of Operation

    DEFF Research Database (Denmark)

    Rode, Carsten; Vladyková, Petra; Kotol, Martin

    2011-01-01

    to the Greenlandic Building Regulations. The house has been the base of a number of research and student activities which have studied the house and evaluated how well it has performed. These investigations have clarified how the weather influences the hygrothermal performance of the house, and whether the house...

  17. Energy and thermal analysis of glazed office buildings using a dynamic energy simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Poirazis, H.; Blomsterberg, A. [Lund Inst. of Technology, Lund (Sweden). Div. of Energy and Building Design

    2005-07-01

    Although highly glazed buildings have more access to daylight than traditional buildings their energy efficiency is sometimes questionable. This paper presented energy and indoor climate simulations of single skin office buildings in Sweden with the use of a dynamic energy simulation tool. An analysis of building alternatives with 30, 60 and 100 per cent window areas were investigated. Parameters concerning the buildings' orientation, plan type, control set points and facade type were varied in the simulations. A virtual reference building was created as representative of Swedish office buildings constructed in the late 1990s. The design was determined by various Swedish agencies. Detailed performance specifications for energy and indoor climate were established and typical construction methods were determined. System descriptions and drawings were prepared. A validation of the simulated performance of the building showed that the performance specifications were accurate. A parametric study of energy use and indoor climate was conducted. Heating, ventilation and air conditioning (HVAC) systems and control systems were described in detail. Orientation, plan type, control set points, and facade elements were changed while other parameters such as the shape of the building and occupant activity levels remained the same. A sensitivity analysis was conducted regarding occupant comfort levels and the energy used for operating the building. It was concluded that the energy efficiency of a building depends on facade construction. It was suggested that highly glazed buildings will benefit through the use of advanced simulation tools during the design stage. It was also noted that the main aim when designing glazed buildings should be to avoid a high cooling demand. The impact of control set points on heating and cooling is also crucial for energy use, as well as the orientation of rooms. It was suggested that an increase in glazing area does not necessarily mean higher

  18. Building Blocks for the Rapid Development of Parallel Simulations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scientists need to be able to quickly develop and run parallel simulations without paying the high price of writing low-level message passing codes using compiled...

  19. Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

    2014-12-24

    Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated “dumb” nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated ‘smart grid’. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced

  20. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, A.H.M.E.

    2014-01-01

    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and inc

  1. Three approaches to integrating building performance simulations tools in architecture and engineering undergraduate education

    Energy Technology Data Exchange (ETDEWEB)

    Charles, P.P. [Roger Williams Univ., Bristol, RI (United States). School of Architecture, Art and Historic Preservation; Thomas, C.R. [Roger Williams Univ., Bristol, RI (United States). School of Engineering, Computing and Construction Management

    2008-07-01

    This paper described past and on-going teaching experiences at Roger Williams University in Bristol, Rhode Island. In particular, the university has offered several new architecture courses where building simulation tools have played a key role in explaining hard-to-grasp physical phenomena at play in a building. The university also offers a new course to both undergraduate architecture and engineering students to promote collaboration between these two disciplines. The course focuses on the elements of simulation tools that are adapted to sustainable building design. The paper concluded with the advantages and limitations of these teaching methods and provided perspectives to future improvement of some of the pedagogical models. It was concluded that in general, the integration of building simulation tools in the architecture studios and courses have provided students with valuable insight into the dynamic nature of the building environment and about comfort, particularly when the software have transient simulation capabilities. The simulation tools expand the realm of the design beyond the mere visual. Multiple simulation runs of design options help reinforce in the student the basic notion of the iterative nature of the design process. 17 refs.

  2. Simulation: learning from mistakes while building communication and teamwork.

    Science.gov (United States)

    Kuehster, Christina R; Hall, Carla D

    2010-01-01

    Medical errors are one of the leading causes of death annually in the United States. Many of these errors are related to poor communication and/or lack of teamwork. Using simulation as a teaching modality provides a dual role in helping to reduce these errors. Thorough integration of clinical practice with teamwork and communication in a safe environment increases the likelihood of reducing the error rates in medicine. By allowing practitioners to make potential errors in a safe environment, such as simulation, these valuable lessons improve retention and will rarely be repeated.

  3. A new simulation model building process for use in dynamic systems integration research

    Science.gov (United States)

    Arbuckle, P. Douglas; Buttrill, Carey S.; Zeiler, Thomas A.

    1987-01-01

    A framework to build simulation models for aircraft dynamic systems integration is described. The objective of the framework is increased simulation model fidelity and reduced time required to develop and modify these models. The equations of motion for an elastic aircraft and their impact on the framework are discussed in broad terms. A software tool which automatically generates FORTRAN routines for tabular data lookups, the language used to develop a simulation model, and the structures for passing information into a simulation are discussed. A simulation variable nomenclature is presented. The framework has been applied to build an open-loop F/A-18 simulation model. This example model is used to illustrate model reduction issues. Current deficiencies in the framework are identified as areas for future research.

  4. Simulated performance of the Thermo Active Building System (TABS) with respect to the provided thermal comfort and primary energy use

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Olesen, Bjarne W.; Toftum, Jørn

    2009-01-01

    The central module of an office building conditioned by a Thermo Active Building System (TABS) coupled with constant volume ventilation was evaluated by means of dynamic computer simulations. Additionally, the same building model was simulated with a conventional all air VAV ventilation system...

  5. Selecting Eco-Friendly Thermal Systems for the “Vittoriale Degli Italiani” Historic Museum Building

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2015-09-01

    Full Text Available Thermal systems installed in museums should guarantee the maintenance of the optimal hygrothermal parameters ranges for the conservation of their collection materials. Considering the preservation of historic buildings, according to their historical and landscaping constraints, not all the thermal system typologies could be installed in these buildings’ typologies. Therefore, the main aim of this paper is to present some indications for the choice of the best thermal system solutions for a considered historic museum building, called Vittoriale degli Italiani, in the north of Italy, taking into account their installation feasibility and their related environmental impacts. The methodology includes a monitoring of the current hygrothermal parameters as well as the assessment of design heat and cooling loads related to the maintenance of the optimal hygrothermal parameters ranges for the conservation of collection materials. In addition, a Life Cycle Assessment (LCA of each selected system typology is considered for highlighting the most eco-friendly solution among the suitable ones. The obtained results highlights the feasible thermal system solutions able to maintain the hygrothermal parameters between the optimal ranges with a lower environmental impact in the Vittoriale degli Italiani historic museum building.

  6. Biology Students Building Computer Simulations Using StarLogo TNG

    Science.gov (United States)

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  7. Simulation of thermal behavior of residential buildings using fuzzy active learning method

    OpenAIRE

    Masoud Taheri Shahraein; Hamid Taheri Shahraiyni; Melika Sanaeifar

    2015-01-01

    In this paper, a fuzzy modeling technique called Modified Active Learning Method (MALM) was introduced and utilized for fuzzy simulation of indoor and inner surface temperatures in residential buildings using meteorological data and its capability for fuzzy simulation was compared with other studies. The case studies for simulations were two residential apartments in the Fakouri and Rezashahr neighborhoods of Mashhad, Iran. The hourly inner surface and indoor temperature data were accumulated...

  8. An Analysis of the Indoor Air Quality and Mould Growth in a Multi-zone Building

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Ashfaque Ahmed, E-mail: a.chowdhury@cqu.edu.au; Rasul, M. G.; Khan, M. M. K. [Central Queensland University, College of Engineering and Built Environment, Faculty of Sciences, Engineering and Health (Australia)

    2009-12-15

    The effects of poor indoor air quality and mould growth in working environment are major problems in built environment, and there is a need to look for improvement of the health, comfort and productivity of the building occupants. Airborne mould sampling studies were conducted in a reference building located in Rockhampton, Central Queensland, Australia. Both indoor culturable and mould spore levels were observed. It was found through the indoor-outdoor ratios of the species that indoor concentrations are mostly related to the outdoor mould levels. The moulds differ in their relative humidity and temperature requirements to support surface growth. Indoor humidity has a significant effect on occupants comfort, perceived air quality, occupants' health, building durability, emissions and energy efficiency. Practical hygrothermal simulation models are employed to analyse the combined heat and moisture behaviour within the built environment. A review of the current modelling options available to predict building performance based on energy and mass transport simulation is presented, and then a case study is presented with the assessment of indoor built environment to avoid mould problem.

  9. An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Wetter, Michael; Hensen, Jan L.M.

    2010-07-01

    Integrated performance simulation of buildings and heating, ventilation and air-conditioning (HVAC) systems can help reducing energy consumption and increasing level of occupant comfort. However, no singe building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to accommodate the ever-increasing complexity and rapid innovations in building and system technologies. One way to alleviate this problem is to use co-simulation. The co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This paper elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in a co-simulation prototype. The prototype is verified and validated against the results obtained from the traditional simulation approach. It is further used in a case study for the proof-of-concept, to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling frequency. The paper concludes by defining requirements and recommendations for generic cosimulation implementations.

  10. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings

    OpenAIRE

    Carlos Moron; Luisa Garcia-Fuentevilla; Alfonso Garcia; Alberto Moron

    2016-01-01

    There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moistu...

  11. 3D COMPUTER SIMULATION FOR LIGNIFICATION OF ANCIENT CHINESE TIMBER BUILDINGS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pioneer research work was carried out by investigators engaged in surveying and mapping for describing ancient Chinese timber buildings by 3D frame graphs w ith a computer.Users can know the structural layers and the assembly process of the se buildings if the frame graphs are processed further with a computer model.Th is can be implemented by computer simulation technique.This technique display t he raw data on the screen of a computer and interactively manage them by combini ng technologies from computer graphics and image processing,multi-media technol ogy,artificial intelligence,highly parallel real-time computation technique an d human behavior science.This paper presents the implementing procedure of ligni fi cation simulation for large-sized wooden buildings as well as 3D dynamic assembl y of these buildings under the 3DS MAX environment.The results from computer sim ulation are also shown in the paper.

  12. Measurement and simulation of transparent building components with sun-shading; Messung und Simulation von transparenten Bauteilen mit Sonnenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Simmler, H.; Manz, H.; Haas, A. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Favarolo, P.A. [Universita Technica delle Marche, Ancona (Italy)

    2004-12-15

    This paper takes a look at the construction and simulation of modern office buildings that often feature lightweight construction and a high proportion of glazing or even double building skins completely made of glass. In particular, those thermal comfort and cooling aspects are discussed that require that the solar attributes of facade elements are taken into account. Work done at the Swiss Federal materials institute EMPA as part of the International Energy Agency's IEA Task 27 'Performance, durability and sustainability of advanced windows and solar components for building envelopes' is discussed. The properties of glazing and shading systems are presented and discussed. Results obtained by calculation are compared with those obtained from measurements. Modules for the calculation of the properties of glazing elements and their simulation are discussed, as are transparent insulation systems.

  13. Reducing Simulation Performance Gap in Hemp-Lime Buildings Using Fourier Filtering †

    Directory of Open Access Journals (Sweden)

    Ljubomir Jankovic

    2016-08-01

    Full Text Available Mainstream dynamic simulation tools used by designers do not have a built-in capability to accurately simulate the effect of hemp-lime on building temperature and relative humidity. Due to the specific structure of hemp-lime, heat travels via a maze of solid branches whilst the capillary tubes absorb and release moisture. The resultant heat and moisture transfer cannot be fully represented in mainstream simulation tools, causing a significant performance gap between the simulation and the actual performance. The author has developed an analysis method, based on a numerical procedure for digital signal filtering using Fourier series. The paper develops and experimentally validates transfer functions that enhance simulation results and enable accurate representation of behaviour of buildings built from hemp-lime material using the results of a post-occupancy research project. As a performance gap between design simulation and actual buildings occurs in relation to all buildings, this method has a wider scope of application in reducing the performance gap.

  14. Simulation-based coefficients for adjusting climate impact on energy consumption of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj; Hathaway, John E.

    2016-11-23

    This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity and solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.

  15. An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects

    Directory of Open Access Journals (Sweden)

    Farzad Jalaei

    2014-01-01

    Full Text Available Quantifying the environmental impacts and simulating the energy consumption of building’s components at the conceptual design stage are very helpful for designers needing to make decisions related to the selection of the best design alternative that would lead to a more energy efficient building. Building Information Modeling (BIM offers designers the ability to assess different design alternatives at the conceptual stage of the project so that energy and life cycle assessment (LCA strategies and systems are attained. This paper proposes an automated model that links BIM, LCA, energy analysis, and lighting simulation tools with green building certification systems. The implementation is within developing plug-ins on BIM tool capable of measuring the environmental impacts (EI and embodied energy of building components. Using this method, designers will be provided with a new way to visualize and to identify the potential gain or loss of energy for the building as a whole and for each of its associated components. Furthermore, designers will be able to detect and evaluate the sustainability of the proposed buildings based on Leadership in Energy and Environmental Design (LEED rating system. An actual building project will be used to illustrate the workability of the proposed methodology.

  16. Agent-based simulation of building evacuation using a grid graph-based model

    Science.gov (United States)

    Tan, L.; Lin, H.; Hu, M.; Che, W.

    2014-02-01

    Shifting from macroscope models to microscope models, the agent-based approach has been widely used to model crowd evacuation as more attentions are paid on individualized behaviour. Since indoor evacuation behaviour is closely related to spatial features of the building, effective representation of indoor space is essential for the simulation of building evacuation. The traditional cell-based representation has limitations in reflecting spatial structure and is not suitable for topology analysis. Aiming at incorporating powerful topology analysis functions of GIS to facilitate agent-based simulation of building evacuation, we used a grid graph-based model in this study to represent the indoor space. Such model allows us to establish an evacuation network at a micro level. Potential escape routes from each node thus could be analysed through GIS functions of network analysis considering both the spatial structure and route capacity. This would better support agent-based modelling of evacuees' behaviour including route choice and local movements. As a case study, we conducted a simulation of emergency evacuation from the second floor of an official building using Agent Analyst as the simulation platform. The results demonstrate the feasibility of the proposed method, as well as the potential of GIS in visualizing and analysing simulation results.

  17. Simulation-based education for building clinical teams

    Directory of Open Access Journals (Sweden)

    Marshall Stuart

    2010-01-01

    Full Text Available Failure to work as an effective team is commonly cited as a cause of adverse events and errors in emergency medicine. Until recently, individual knowledge and skills in managing emergencies were taught, without reference to the additional skills required to work as part of a team. Team training courses are now becoming commonplace, however their strategies and modes of delivery are varied. Just as different delivery methods of traditional education can result in different levels of retention and transfer to the real world, the same is true in team training of the material in different ways in traditional forms of education may lead to different levels of retention and transfer to the real world, the same is true in team training. As team training becomes more widespread, the effectiveness of different modes of delivery including the role of simulation-based education needs to be clearly understood. This review examines the basis of team working in emergency medicine, and the components of an effective emergency medical team. Lessons from other domains with more experience in team training are discussed, as well as the variations from these settings that can be observed in medical contexts. Methods and strategies for team training are listed, and experiences in other health care settings as well as emergency medicine are assessed. Finally, best practice guidelines for the development of team training programs in emergency medicine are presented.

  18. Dynamic simulation of residential buildings with seasonal sorption storage of solar energy - parametric analysis

    OpenAIRE

    Hennaut, Samuel; Thomas, Sébastien; Davin, Elisabeth; Andre, Philippe

    2011-01-01

    This work focuses on the evaluation of the performances of a solar combisystem coupled to seasonal thermochemical storage using SrBr2/H20 as adsorbent/adsorbate couple. The objective is to determine the characteristics required for solar system and storage reactor to reach a 100 % solar fraction for a building with a low heating load. The complete system, including the storage reactor, is simulated, using the dynamic simulation software TRNSYS. The influence of some components and p...

  19. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  20. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M.K.

    1998-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  1. An Empirical Validation of Building Simulation Software for Modelling of Double-Skin Facade (DSF)

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Felsmann, Clemens

    2009-01-01

    buildings, but their accuracy might be limited in cases with DSFs because of the complexity of the heat and mass transfer processes within the DSF. To address this problem, an empirical validation of building models with DSF, performed with various building simulation tools (ESP-r, IDA ICE 3.0, VA114...... of DSF: 1. Thermal buffer mode (closed DSF cavity) and 2. External air curtain mode (naturally ventilated DSF cavity with the top and bottom openings open to outdoors). By carrying out the empirical tests, it was concluded that all models experience difficulties in predictions during the peak solar loads....... None of the models was consistent enough when comparing simulation results with experimental data for the ventilated cavity. However, some models showed reasonable agreement with the experimental results for the thermal buffer mode....

  2. Earthquake disaster simulation of civil infrastructures from tall buildings to urban areas

    CERN Document Server

    Lu, Xinzheng

    2017-01-01

    Based on more than 12 years of systematic investigation on earthquake disaster simulation of civil infrastructures, this book covers the major research outcomes including a number of novel computational models, high performance computing methods and realistic visualization techniques for tall buildings and urban areas, with particular emphasize on collapse prevention and mitigation in extreme earthquakes, earthquake loss evaluation and seismic resilience. Typical engineering applications to several tallest buildings in the world (e.g., the 632 m tall Shanghai Tower and the 528 m tall Z15 Tower) and selected large cities in China (the Beijing Central Business District, Xi'an City, Taiyuan City and Tangshan City) are also introduced to demonstrate the advantages of the proposed computational models and techniques. The high-fidelity computational model developed in this book has proven to be the only feasible option to date for earthquake-induced collapse simulation of supertall buildings that are higher than 50...

  3. Simulations of the potential revenue from investment in improved indoor air quality in an office building

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Djukanovic, Rade

    2005-01-01

    of improved worker performance; benefits from reduced health costs and sickness absence were not included. The building was simulated in a cold, a moderate and a hot climate. It was ventilated by a constant air volume (CAV) system with heat recovery and by a variable air volume (VAV) system with an economizer...

  4. Tools for Performance Simulation of Heat, Air and Moisture Conditions of Whole Buildings

    DEFF Research Database (Denmark)

    Woloszyn, Monika; Rode, Carsten

    2008-01-01

    Humidity of indoor air is an important factor influencing the air quality and energy consumption of buildings as well as durability of building components. Indoor humidity depends on several factors, such as moisture sources, air change, sorption in materials and possible condensation. Since all...... and moisture transfer processes that take place in “whole buildings” by considering all relevant parts of its constituents. It is believed that full understanding of these processes for the whole building is absolutely crucial for future energy optimization of buildings, as this cannot take place without...... these phenomena are strongly dependent on each other, numerical predictions of indoor humidity need to be integrated into combined heat and airflow simulation tools. The purpose of a recent international collaborative project, IEA ECBCS Annex 41, has been to advance development in modelling the integral heat, air...

  5. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2012-01-01

    Full Text Available Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling, and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional. In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling, and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating

  6. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  7. Simulation of thermal behavior of residential buildings using fuzzy active learning method

    Directory of Open Access Journals (Sweden)

    Masoud Taheri Shahraein

    2015-01-01

    Full Text Available In this paper, a fuzzy modeling technique called Modified Active Learning Method (MALM was introduced and utilized for fuzzy simulation of indoor and inner surface temperatures in residential buildings using meteorological data and its capability for fuzzy simulation was compared with other studies. The case studies for simulations were two residential apartments in the Fakouri and Rezashahr neighborhoods of Mashhad, Iran. The hourly inner surface and indoor temperature data were accumulated during measurements taken in 2010 and 2011 in different rooms of the apartments under heating and natural ventilation conditions. Hourly meteorological data (dry bulb temperature, wind speed and direction and solar radiation were measured by a meteorological station and utilized with zero to three hours lags as input variables for the simulation of inner surface and indoor temperatures. The results of simulations demonstrated the capability of MALM to be used for nonlinear fuzzy simulation of inner surface and indoor temperatures in residential apartments.

  8. A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Maile, Tobias; Bazjanac, Vladimir; O' Donnell, James; Garr, Matthew

    2011-11-01

    Building energy performance is often inadequate when compared to design goals. To link design goals to actual operation one can compare measured with simulated energy performance data. Our previously developed comparison approach is the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured and simulated performance data. In context of this method, we developed a software tool that provides graphing and data processing capabilities of the two performance data sets. The software tool called SEE IT (Stanford Energy Efficiency Information Tool) eliminates the need for manual generation of data plots and data reformatting. SEE IT makes the generation of time series, scatter and carpet plots independent of the source of data (measured or simulated) and provides a valuable tool for comparing measurements with simulation results. SEE IT also allows assigning data points on a predefined building object hierarchy and supports different versions of simulated performance data. This paper briefly introduces the EPCM, describes the SEE IT tool and illustrates its use in the context of a building case study.

  9. Simulation of earthquake caused building damages for the development of fast reconnaissance techniques

    Directory of Open Access Journals (Sweden)

    C. Schweier

    2004-01-01

    Full Text Available Catastrophic events like strong earthquakes can cause big losses in life and economic values. An increase in the efficiency of reconnaissance techniques could help to reduce the losses in life as many victims die after and not during the event. A basic prerequisite to improve the rescue teams' work is an improved planning of the measures. This can only be done on the basis of reliable and detailed information about the actual situation in the affected regions. Therefore, a bundle of projects at Karlsruhe university aim at the development of a tool for fast information retrieval after strong earthquakes. The focus is on urban areas as the most losses occur there. In this paper the approach for a damage analysis of buildings will be presented. It consists of an automatic methodology to model buildings in three dimensions, a comparison of pre- and post-event models to detect changes and a subsequent classification of the changes into damage types. The process is based on information extraction from airborne laserscanning data, i.e. digital surface models (DSM acquired through scanning of an area with pulsed laser light. To date, there are no laserscanning derived DSMs available to the authors that were taken of areas that suffered damages from earthquakes. Therefore, it was necessary to simulate such data for the development of the damage detection methodology. In this paper two different methodologies used for simulating the data will be presented. The first method is to create CAD models of undamaged buildings based on their construction plans and alter them artificially in such a way as if they had suffered serious damage. Then, a laserscanning data set is simulated based on these models which can be compared with real laserscanning data acquired of the buildings (in intact state. The other approach is to use measurements of actual damaged buildings and simulate their intact state. It is possible to model the geometrical structure of these

  10. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    Energy Technology Data Exchange (ETDEWEB)

    Horsey, Henry; Fleming, Katherine; Ball, Brian; Long, Nicholas

    2016-08-26

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is called metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.

  11. Predicting the microbial exposure risks in urban floods using GIS, building simulation, and microbial models.

    Science.gov (United States)

    Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man

    2013-01-01

    London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events.

  12. Assessment of Retrofitting Measures for a Large Historic Research Facility Using a Building Energy Simulation Model

    Directory of Open Access Journals (Sweden)

    Young Tae Chae

    2016-06-01

    Full Text Available A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG emissions. An energy simulation model was developed to study the energy usage patterns not only at a building level, but also of the internal thermal zones, and system operations. The model was validated using site measurements of energy usage and a detailed audit of the internal load conditions, system operation, and space programs to minimize the discrepancy between the documented status and actual operational conditions. Based on the results of the calibrated model and end-used energy consumption, the study proposed potential energy conservation measures (ECMs for the building envelope, HVAC system operational methods, and system replacement. It also evaluated each ECM from the perspective of both energy and utility cost saving potentials to help retrofitting plan decision making. The study shows that the energy consumption of the building was highly dominated by the thermal requirements of laboratory spaces. Among other ECMs the demand management option of overriding the setpoint temperature is the most cost effective measure.

  13. Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds

    Science.gov (United States)

    Cheng, Tian

    Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A

  14. Statistical simulation of user behaviour in low-energy office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Pfafferott, J.; Herkel, S. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, D-79110 Freiburg (Germany)

    2007-05-15

    A large number of design guidelines and tools are available for the design of passive cooling systems. Using the underlying thermodynamic models, a certain input (e.g. air change rate, internal heat gains or sun control) results in a certain output (i.e. room temperature). However, in real buildings the room temperature at a given outdoor temperature is a distribution rather than a single value. Therefore, the building engineer should take uncertainties into account, since the actual use of the building, the building physical properties or the user behaviour are statistically distributed. One promising approach to include these uncertainties in the design procedure is the use of statistical models: the design parameter is defined by a mean value and its deviation. From a control theoretical point of view, the deterministic controlled system responds to random disturbance variables by a statistically distributed response function. Considering the institute building of Fraunhofer ISE as example, this study shows how statistical simulations can be applied to the design process of passive cooling in low-energy office buildings. (author)

  15. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  16. A GIS-Based 3D Simulation for Occupant Evacuation in a Building

    Institute of Scientific and Technical Information of China (English)

    TANG Fangqin; ZHANG Xin

    2008-01-01

    The evacuation efficiency of building plans is of obvious importance to the public safety.The cem- plexity of building plans,however,makes it difficult for the efficiency evaluation.This paper presents a com- putational model AutoEscape,which can simulate the evacuation process for any given occupant distribu. Uon in buildings.Designed as an extensible multi-level structure, the model constructs the geometry level and occupant level and establishes the interactions between levels.The GIS-based environmental analysis is realized to automatically generate the geometric representation and formulate the cognition of agents. The multi-agent based technology is employed to simulate the crowd behaviom with autonomously acting individuals.A visualization component,which provides 3D free observations for the simulation process,is developed on the platform of OGRE and integrated into the system interface in form of ActiveX control.Fi- nally,a case study has been conducted and the results have been compared with the results of an existing model to show the reliability and capacity of AutoEscape simulation.

  17. Indoor environment and energy consumption optimization using field measurements and building energy simulation

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Chasapis, Kleanthis; Gazovic, Libor

    2015-01-01

    Modern buildings are usually equipped with advanced climate conditioning systems to ensure comfort of their occupants. However, analysis of their actual operation usually identifies large potential for improvements with respect to their efficiency. Present study investigated potential...... for improvements in an existing office building – a Town Hall of Viborg, Denmark. Thorough field measurements of indoor environment and occupant satisfaction survey were conducted to identify and describe indoor environmental quality problems. Collected data were also used to calibrate computer simulation model......, which was used for optimization of building’s performance. Proposed optimization scenarios bring 21-37% reduction on heating consumption and thermal comfort improvement by 7-12%. The approach (procedure) can help to optimize building operation and shorten the adjustment period....

  18. Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S. [Architectural Engineering, University of Nebraska-Lincoln, PKI 243, Omaha, NE (United States); Henze, G. P. [Architectural Engineering, University of Nebraska-Lincoln, PKI 203D, Omaha, NE (United States)

    2006-07-01

    This paper is the first part of a two-part investigation of a novel approach to optimally control commercial building passive and active thermal storage inventory. The proposed building control approach is based on simulated reinforcement learning, which is a hybrid control scheme that combines features of model-based optimal control and model-free learning control. An experimental study was carried out to analyze the performance of a hybrid controller installed in a full-scale laboratory facility. The first part presents an overview of the project with an emphasis on the theoretical foundation. The motivation of the research will be introduced first, followed by a review of past work. A brief introduction of the theory is provided including classic reinforcement learning and its variation, so-called simulated reinforcement learning, which constitutes the basic architecture of the hybrid learning controller. A detailed discussion of the experimental results will be presented in the companion paper. (author)

  19. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Magnier, Laurent; Haghighat, Fariborz [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., BE-351, Montreal, Quebec H3G 1M8 (Canada)

    2010-03-15

    Building optimization involving multiple objectives is generally an extremely time-consuming process. The GAINN approach presented in this study first uses a simulation-based Artificial Neural Network (ANN) to characterize building behaviour, and then combines this ANN with a multiobjective Genetic Algorithm (NSGA-II) for optimization. The methodology has been used in the current study for the optimization of thermal comfort and energy consumption in a residential house. Results of ANN training and validation are first discussed. Two optimizations were then conducted taking variables from HVAC system settings, thermostat programming, and passive solar design. By integrating ANN into optimization the total simulation time was considerably reduced compared to classical optimization methodology. Results of the optimizations showed significant reduction in terms of energy consumption as well as improvement in thermal comfort. Finally, thanks to the multiobjective approach, dozens of potential designs were revealed, with a wide range of trade-offs between thermal comfort and energy consumption. (author)

  20. Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

    2011-11-01

    The test suite represents a set of cases applying the new Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology developed by NREL. (Judkoff et al. 2010a). The NREL team developed the test cases in consultation with the home retrofit industry (BESTEST-EX Working Group 2009), and adjusted the test specifications in accordance with information supplied by a participant with access to large utility bill datasets (Blasnik 2009).

  1. A novel preparation procedure of future weather datasets for building performance simulation

    Science.gov (United States)

    Huang, Kuo-Tsang; Chuang, Kai-Han

    2014-05-01

    The concern on climate change leads to growing demand for countermeasures against its impact on building performance. The aspects of building performance study includes the analysis of indoor thermal environment, building energy use, and energy efficiency design of building envelope. It enables and facilitates the evaluation of a building's performance during the design phase for adjusting the proposed architectural design to meet the expected performance criteria. The assessment of a building's performance is often done by hourly or sub-hourly computer dynamic simulation software with local weather datasets. These weather datasets, which are termed typical meteorological years (TMYs), are selected from long-term observed historical weather by means of Sandia method to ensure their representatives of local climate. Each TMY contains hourly values of observed data of a 1-year period. For the reason of longevous building lifespan and on-going climate change, one might ask how well the building is able to cope with future climate and what kind of countermeasure we should implement in advanced in face of climate change. However, the results obtained from the simulation with TMY couldn't forecast a building's performance in a future climate context without future climate is concerned. In this regard, future climate responsive meteorological data is needed for future climate impact study. From previous studies, as Belcher proposed, the future responsive weather data could be constructed by morphing existing TMY with future weather predicted by general circulation models (GCMs), which could substantially alleviate efforts from spatial and temporal downscaling processes. Consequently, choosing an adequate GCM that fits well with local climatic change pattern is in crucial need. The objective of the study is to develop a new GCMs selection method for generating future meteorological data. During TMY morphing procedure, monthly changes of a certain meteorological element in

  2. IFC BIM-Based Methodology for Semi-Automated Building Energy Performance Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir

    2008-07-01

    Building energy performance (BEP) simulation is still rarely used in building design, commissioning and operations. The process is too costly and too labor intensive, and it takes too long to deliver results. Its quantitative results are not reproducible due to arbitrary decisions and assumptions made in simulation model definition, and can be trusted only under special circumstances. A methodology to semi-automate BEP simulation preparation and execution makes this process much more effective. It incorporates principles of information science and aims to eliminate inappropriate human intervention that results in subjective and arbitrary decisions. This is achieved by automating every part of the BEP modeling and simulation process that can be automated, by relying on data from original sources, and by making any necessary data transformation rule-based and automated. This paper describes the new methodology and its relationship to IFC-based BIM and software interoperability. It identifies five steps that are critical to its implementation, and shows what part of the methodology can be applied today. The paper concludes with a discussion of application to simulation with EnergyPlus, and describes data transformation rules embedded in the new Geometry Simplification Tool (GST).

  3. Validation studies of the DOE-2 Building Energy Simulation Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.; Winkelmann, F.

    1998-06-01

    This report documents many of the validation studies (Table 1) of the DOE-2 building energy analysis simulation program that have taken place since 1981. Results for several versions of the program are presented with the most recent study conducted in 1996 on version DOE-2.1E and the most distant study conducted in 1981 on version DOE-1.3. This work is part of an effort related to continued development of DOE-2, particularly in its use as a simulation engine for new specialized versions of the program such as the recently released RESFEN 3.1. RESFEN 3.1 is a program specifically dealing with analyzing the energy performance of windows in residential buildings. The intent in providing the results of these validation studies is to give potential users of the program a high degree of confidence in the calculated results. Validation studies in which calculated simulation data is compared to measured data have been conducted throughout the development of the DOE-2 program. Discrepancies discovered during the course of such work has resulted in improvements in the simulation algorithms. Table 2 provides a listing of additions and modifications that have been made to various versions of the program since version DOE-2.1A. One of the most significant recent changes in the program occurred with version DOE-2.1E. An improved algorithm for calculating the outside surface film coefficient was implemented. In addition, integration of the WINDOW 4 program was accomplished resulting in improved ability in analyzing window energy performance. Validation and verification of a program as sophisticated as DOE-2 must necessarily be limited because of the approximations inherent in the program. For example, the most accurate model of the heat transfer processes in a building would include a three-dimensional analysis. To justify such detailed algorithmic procedures would correspondingly require detailed information describing the building and/or HVAC system and energy plant parameters

  4. Development of a Computational Simulation Model for Conflict Management in Team Building

    Directory of Open Access Journals (Sweden)

    W. M. Wang

    2011-05-01

    Full Text Available Conflict management is one of the most important issues in leveraging organizational competitiveness. However, traditional social scientists built theories or models in this area which were mostly expressed in words and diagrams are insufficient. Social science research based on computational modeling and simulation is beginning to augment traditional theory building. Simulation provides a method for people to try their actions out in a way that is cost effective, faster, appropriate, flexible, and ethical. In this paper, a computational simulation model for conflict management in team building is presented. The model is designed and used to explore the individual performances related to the combination of individuals who have a range of conflict handling styles, under various types of resources and policies. The model is developed based on agent-based modeling method. Each of the agents has one of the five conflict handling styles: accommodation, compromise, competition, contingency, and learning. There are three types of scenarios: normal, convex, and concave. There are two types of policies: no policy, and a reward and punishment policy. Results from running the model are also presented. The simulation has led us to derive two implications concerning conflict management. First, a concave type of resource promotes competition, while convex type of resource promotes compromise and collaboration. Second, the performance ranking of different styles can be influenced by introducing different policies. On the other hand, it is possible for us to promote certain style by introducing different policies.

  5. Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2014-08-01

    Full Text Available Many studies in Italy showed that buildings are responsible for about 40% of total energy consumption, due to worsening performance of building envelope; in fact, a great number of Italian buildings were built before the 1970s and 80s. In particular, the energy consumptions for cooling are considerably increased with respect to the ones for heating. In order to reduce the cooling energy demand, ensuring indoor thermal comfort, a careful study on building envelope performance is necessary. Different dynamic software could be used in order to evaluate and to improve the building envelope during the cooling period, but much time and an accurate validation of the model are required. However, when a wide experimental data is available, the Artificial Neural Network (ANN can be an alternative, simple and fast tool to use. In the present study, the indoor thermal conditions in many dwellings built in Umbria Region were investigated in order to evaluate the envelope performance. They were recently built and have very low energy consumptions. Based on the experimental data, a feed forward network was trained, in order to evaluate the different envelopes performance. As input parameters the outdoor climatic conditions and the thermal characteristics of building envelopes were set, while, as a target parameter, the indoor air temperature was provided. A good training of network was obtained with a high regression value (0.9625 and a very small error (0.007 °C on air temperature. The network was also used to simulate the envelope behavior with new innovative glazing systems, in order to evaluate and to improve the energy performance.

  6. Implementation of window shading models into dynamic whole-building simulation

    Science.gov (United States)

    Lomanowski, Bartosz Aleksander

    An important consideration in energy efficient building design is the management of solar gain, as it is the largest and most variable gain in a building. The design of buildings with highly glazed facades, as well as decreased energy transfer rates through better insulated and tighter envelopes are causing interior spaces to become highly sensitive to solar gain. Shading devices such as operable slat-type louver blinds are very effective in controlling solar gain, yet their impact on peak cooing loads and annual energy consumption is poorly understood. With the ever-increasing role of building energy simulation tools in the design of energy efficient buildings, there is a clear need to model windows with shading devices to assess their impact on building performance. Recent efforts at the University of Waterloo's Advanced Glazing Systems Laboratory (AGSL) in window shading research have produced a set of flexible shading models. These models were developed with emphasis on generality and computational efficiency, ideally suited for integration into building simulation. The objective of the current research is to develop a complex fenestration facility within a general purpose integrated building simulation software tool, ESP-r, using the AGSL shading models. The strategy for implementation of the AGSL shading models is the addition of a new multi-layer construction within ESP-r, the Complex Fenestration Construction (CFC). The CFC is based on the standard ESP-r multi-layer nodal structure and finite control volume numerical model, with additional measures for coping with the complexities that arise in the solar, convective and radiant exchanges between glazing/shading layers, the interior zone and exterior surroundings. The CFC algorithms process the solar, convective and radiant properties of the glazing/shading system at each time-step, making it possible to add control (e.g., changing the slat angle of a slat-type blind) at the time-step level. Thermal

  7. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...... of the energy consumption in a large building where the building energy simulation program is modified by CFD predictions of the flow between three zones that are connected by pressure and buoyancy-driven air flow through open areas. The two programs are interconnected in an iterative procedure. The article...... shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is demonstrated that an interconnection between a CFD program and a building energy performance simulation program will improve both the energy consumption data and the prediction of thermal...

  8. Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S. [Architectural Engineering, University of Nebraska-Lincoln, PKI 243, Omaha, NE (United States); Henze, G. P. [Architectural Engineering, University of Nebraska-Lincoln, PKI 203D, Omaha, NE (United States)

    2006-07-01

    This paper is the second part of a two-part investigation of a novel approach to optimally control commercial building passive and active thermal storage inventory. The proposed building control approach is based on simulated reinforcement learning, which is a hybrid control scheme that combines features of model-based optimal control and model-free learning control. An experimental study was carried out to analyze the performance of a hybrid controller installed in a full-scale laboratory facility. The first paper introduced the theoretical foundation of this investigation including the fundamental theory of reinforcement learning control. This companion paper presents a discussion and analysis of the experimental results. The results confirm the feasibility of the proposed control approach. Operating cost savings were attained with the proposed control approach compared with conventional building control; however, the savings are lower than for the case of model-based predictive optimal control. As for the case of model-based predictive control, the performance of the hybrid controller is largely affected by the quality of the training model, and extensive real-time learning is required for the learning controller to eliminate any false cues it receives during the initial training period. Nevertheless, compared with standard reinforcement learning, the proposed hybrid controller is much more readily implemented in a commercial building. (author)

  9. Evaluation and simulation of event building techniques for a detector at the LHC

    CERN Document Server

    Spiwoks, R

    1995-01-01

    The main objectives of future experiments at the Large Hadron Collider are the search for the Higgs boson (or bosons), the verification of the Standard Model and the search beyond the Standard Model in a new energy range up to a few TeV. These experiments will have to cope with unprecedented high data rates and will need event building systems which can offer a bandwidth of 1 to 100GB/s and which can assemble events from 100 to 1000 readout memories at rates of 1 to 100kHz. This work investigates the feasibility of parallel event building sys- tems using commercially available high speed interconnects and switches. Studies are performed by building a small-scale prototype and by modelling this proto- type and realistic architectures with discrete-event simulations. The prototype is based on the HiPPI standard and uses commercially available VME-HiPPI interfaces and a HiPPI switch together with modular and scalable software. The setup operates successfully as a parallel event building system of limited size in...

  10. Simulation of Natural Gas Saving Through Foam Light Weight Concrete Utilization in Residential Buildings

    Directory of Open Access Journals (Sweden)

    H. Kamalan

    2011-10-01

    Full Text Available Heat loss through walls in houses is remarkable and it shares about 25% of total loss. Utilizing Foam Lightweight Concrete (FLC block in walls may lead to reduction in both gas consumption and greenhouse gas emissions. This is due to heat insulation property of the block and consequently less energy consumption. The main objective of this research was to investigate how FLC block can save natural gas usage within building envelop. A typical residential building was simulated for pressed brick, terra-cotta block, 3D panel, and FLC block by utilizing Behsazan software. Afterwards, building gas consumption and relevant carbon dioxide emissions were compared for abovementioned wall materials, while the building area was constant and its height was variable. Results showed that annual gas reduction attributed to utilizing FLC block walls with different heights varies from 25.7% to 30.6% and from 18.5% to 23.3% in comparison with pressed brick and terra-cotta block walls, respectively. This reduction for 3D panel walls was about 4.6%. Moreover, CO2 emission reduction depending on the number of floors for FLC block walls with pressed brick, terra-cotta block, and 3D panel walls were equal to 20.8 to 24, 15 to 18.3, and 3.4 to 3.8 kg CO2/m2, respectively.

  11. Quantifying Earthquake Collapse Risk of Tall Steel Braced Frame Buildings Using Rupture-to-Rafters Simulations

    Science.gov (United States)

    Mourhatch, Ramses

    This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis. As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California. Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2s-2.0s) empirical Green's function synthetics on top of long-period (> 2.0s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms. Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with

  12. End-to-end interoperability and workflows from building architecture design to one or more simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Tian-Jy; Kim, Younghun

    2015-02-10

    An end-to-end interoperability and workflows from building architecture design to one or more simulations, in one aspect, may comprise establishing a BIM enablement platform architecture. A data model defines data entities and entity relationships for enabling the interoperability and workflows. A data definition language may be implemented that defines and creates a table schema of a database associated with the data model. Data management services and/or application programming interfaces may be implemented for interacting with the data model. Web services may also be provided for interacting with the data model via the Web. A user interface may be implemented that communicates with users and uses the BIM enablement platform architecture, the data model, the data definition language, data management services and application programming interfaces to provide functions to the users to perform work related to building information management.

  13. Weather data analysis based on typical weather sequence analysis. Application: energy building simulation

    CERN Document Server

    David, Mathieu; Garde, Francois; Boyer, Harry

    2014-01-01

    In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...

  14. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  15. Combining a building simulation with energy systems analysis to assess the benefits of natural ventilation

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2013-01-01

    systems analysis. Results show that for an energy system such as the Mexican, with a relatively simple connection between supply and demand of electricity, natural ventilation mainly creates savings, whereas in the Danish system, the system operation is also affected by energy savings through natural......This article shows the combination of a thermal air flow simulation program with an energy systems analysis model in order to assess the use of natural ventilation as a method for saving energy within residential buildings in large-scale scenarios. The aim is to show the benefits for utilizing...... natural airflow instead of active systems such as mechanical ventilation or air-conditioning in buildings where the indoor temperature is over the upper limit of the comfort range. The combination is done by introducing the energy saving output - calculated with a model of natural ventilation using...

  16. Hourly test reference weather data in the changing climate of Finland for building energy simulations

    Directory of Open Access Journals (Sweden)

    Kirsti Jylhä

    2015-09-01

    Full Text Available Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled “Energy demand for the heating and cooling of residential houses in Finland in a changing climate” [1].

  17. Building dynamic thermal simulation of low-order multi-dimensional heat transfer

    Institute of Scientific and Technical Information of China (English)

    高岩; 范蕊; 张群力

    2014-01-01

    Multi-dimensional heat transfers modeling is crucial for building simulations of insulated buildings, which are widely used and have multi-dimensional heat transfers characteristics. For this work, state-model-reduction techniques were used to develop a reduced low-order model of multi-dimensional heat transfers. With hot box experiment of hollow block wall, heat flow relative errors between experiment and low-order model predication were less than 8%and the largest errors were less than 3%. Also, frequency responses of five typical walls, each with different thermal masses or insulation modes, the low-order model and the complete model showed that the low-order model results agree very well in the lower excitation frequency band with deviations appearing only at high frequency. Furthermore, low-order model was used on intersection thermal bridge of a floor slab and exterior wall. Results show that errors between the two models are very small. This low-order model could be coupled with most existing simulation software for different thermal mass envelope analyses to make up for differences between the multi-dimensional and one-dimensional models, simultaneously simplifying simulation calculations.

  18. Large Eddy Simulation of the Wind Field and Pollution Dispersion in Building Array

    Science.gov (United States)

    Shi, R. F.; Cui, G. X.; Xu, C. X.; Zhang, Z. S.; Wang, Z. S.

    The air quality is one of the significant issues in sustainable development of modern city. In the paperthe Large Eddy Simulation (LES) is used to predict the wind field and pollution dispersion in residence district. The flow in residence district is characterized by the complicated geometry, vortex patterns, unsteadiness etc.; hence the LES is the suitable method for the flow. The finite volume method with fourth order accuracy is utilized for numerical simulation and immerse boundary method (IBM) is applied to the solid boundary condition. The numerical scheme has been validated for a number of complex flows (Xu et al. 2006). A number of testing cases have been performed and the results are compared with experimental data in good agreement. One of the testing cases is an array of cubic buildings with height H, length B and width W of 0.12m. The flow Reynolds number based on the free stream velocity and the height of the building is equal to 4 x 106. A point concentration source is located at 4W in front of the building array. The dynamic Smagorinsky model is used for the subgrid stress. The predicted results are compared with the wind tunnel measurements by Davidson et al. (1996). Figure 1 and 2 shows the typical wind speed distributions and the mean concentration at H/2 and L ay /2, They are in good agreement with experimental data. The results indicate that the proposed numerical scheme of LES is capable of predicting wind field and pollution dispersion in residence district. Moreover numerical simulation can provide more information about the flow pattern and concentration distribution for better understanding the phenomena.

  19. Coarse-Grained Simulations of the Self-Assembly of DNA-Linked Gold Nanoparticle Building Blocks

    Science.gov (United States)

    Armistead, Charles

    The self-assembly of nanoparticles (NPs) of varying shape, size, and composition for the purpose of constructing useful nanoassemblies with tailored properties remains challenging. Although progress has been made to design anisotropic building blocks that exhibit the required control for the precise placement of various NPs within a defined arrangement, there still exists obstacles in the technology to maximize the programmability in the self-assembly of NP building blocks. Currently, the self-assembly of nanostructures involves much experimental trial and error. Computational modeling is a possible approach that could be utilized to facilitate the purposeful design of the self-assembly of NP building blocks into a desired nanostructure. In this report, a coarse-grained model of NP building blocks based on an effective anisotropic mono-functionalization approach, which has shown the ability to construct six building block configurations, was used to simulate various nanoassemblies. The purpose of the study was to validate the model's ability to simulate the self-assembly of the NP building blocks into nanostructures previously produced experimentally. The model can be programmed to designate up to six oligonucleotides attached to the surface of a Au NP building block, with a modifiable length and nucleotide sequence. The model successfully simulated the self-assembly of Au NP building blocks into a number of previously produced nanostructures and demonstrated the ability to produce visualizations of self-assembly as well as calculate interparticle distances and angles to be used for the comparison with the previous experimental data for validation of the model. Also, the model was used to simulate nanoassemblies which had not been produced experimentally for its further validation. The simulations showed the capability of the model to use specific NP building blocks and self-assemble. The coarse-grained NP building block model shows promise as a tool to complement

  20. Experimental study and advanced CFD simulation of fire safety performance of building external wall insulation system

    Directory of Open Access Journals (Sweden)

    Yan Zhenghua

    2013-11-01

    Full Text Available Large scale fire tests of building external wall insulation system were conducted. In the experiment, thermal-couples were mounted to measure the insulation system surface temperature and the gas temperature inside rooms at the second and third floors. Photos were also taken during the fire tests. The measurement provides information of the ignition and fire spread of the external insulation system which consists of surface protection layer, glass fibre net, bonding thin layer, anchor and the load bearing wall. Comprehensive simulations of the fire tests were carried out using an advanced CFD fire simulation software Simtec (Simulation of Thermal Engineering Complex [1, 2], which is now released by Simtec Soft Sweden, with the turbulent flow, turbulent combustion, thermal radiation, soot formation, convective heat transfer, the fully coupled three dimensional heat transfer inside solid materials, the ‘burn-out' of the surface protection layer and the pyrolysis of the insulation layer, etc, all computed. The simulation is compared with experimental measurement for validation. The simulation well captured the burning and fire spread of the external insulation wall.

  1. Wind flow and wind loads on the surface of a tower- shaped building: Numerical simulations and wind tunnel experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non- hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.

  2. Computer simulated building energy consumption for verification of energy conservation measures in network facilities

    Science.gov (United States)

    Plankey, B.

    1981-01-01

    A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.

  3. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    CERN Document Server

    Abbasi, Akbar

    2015-01-01

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  4. Simulations

    CERN Document Server

    Ngada, N M

    2015-01-01

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  5. Simulation of thermal indoor climate in buildings by using human Projected Area Factors

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik

    2009-01-01

    Nowadays many new and old buildings in Denmark have large glass surfaces. This is a consequence of the technical development of windows with low U-values that has made it possible to build houses with windows from floor to ceiling in northern climates. On the other hand if one is sitting close to...... for dynamic building thermal analysis. The method is demonstrated in a newer apartment with windows from floor to ceiling and shows how impotent it is to include the radiant effect from the glass sur-faces and how it influences the indoor thermal climate significantly....... to these large windows on a cold winter day it is recognized that this can cause thermal discomfort. The calculation of this discomfort needs to be taken properly into account in the simulation of the thermal indoor climate and energy consumption of the rooms. The operative temperature can be used as a simple...... measure for thermal environ-ment. The operative temperature is a function of the air temperature, the mean radiant temperature and the relative air velocity. However, in many programs for calculation of energy consumption and thermal indoor climate the model for calculating the mean radiant temperature...

  6. Window opening behaviour: simulations of occupant behaviour in residential buildings using models based on a field survey

    DEFF Research Database (Denmark)

    Valentina, Fabi; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Window opening behaviour has been shown to have a significant impact on airflow rates and hence energy consumption. Nevertheless, the inhabitant behaviour related to window opening in residential buildings is currently poorly investigated through both field surveys and building energy simulations....... In particular, reliable information regarding user behaviour in residential buildings is crucial for suitable prediction of building performance (energy consumption, indoor environmental quality, etc.). To face this issue, measurements of indoor climate and outdoor environmental parameters and window “opening...... and closing” actions were performed in 15 dwellings from January to August 2008 in Denmark. Probabilistic models of inhabitants’ window “opening and closing” behaviour were developed and implemented in the energy simulation software IDA ICE to improve window opening and closing strategies in simulations...

  7. Methodology to Assess No Touch Audit Software Using Simulated Building Utility Data

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States); Langner, M. Rois [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    This report describes a methodology developed for assessing the performance of no touch building audit tools and presents results for an available tool. Building audits are conducted in many commercial buildings to reduce building energy costs and improve building operation. Because the audits typically require significant input obtained by building engineers, they are usually only affordable for larger commercial building owners. In an effort to help small building and business owners gain the benefits of an audit at a lower cost, no touch building audit tools have been developed to remotely analyze a building's energy consumption.

  8. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  9. Construction Process Simulation and Safety Analysis Based on Building Information Model and 4D Technology

    Institute of Scientific and Technical Information of China (English)

    HU Zhenzhong; ZHANG Jianping; DENG Ziyin

    2008-01-01

    Time-dependent structure analysis theory has been proved to be more accurate and reliable com-pared to commonly used methods during construction. However, so far applications are limited to partial pe-riod and part of the structure because of immeasurable artificial intervention. Based on the building informa-tion model (BIM) and four-dimensional (4D) technology, this paper proposes an improves structure analysis method, which can generate structural geometry, resistance model, and loading conditions automatically by a close interlink of the schedule information, architectural model, and material properties. The method was applied to a safety analysis during a continuous and dynamic simulation of the entire construction process.The results show that the organic combination of the BIM, 4D technology, construction simulation, and safety analysis of time-dependent structures is feasible and practical. This research also lays a foundation for further researches on building lifecycle management by combining architectural design, structure analy-sis, and construction management.

  10. Large eddy simulation of wind-induced interunit dispersion around multistory buildings.

    Science.gov (United States)

    Ai, Z T; Mak, C M

    2016-04-01

    Previous studies regarding interunit dispersion used Reynolds-averaged Navier-Stokes (RANS) models and thus obtained only mean dispersion routes and re-entry ratios. Given that the envelope flow around a building is highly fluctuating, mean values could be insufficient to describe interunit dispersion. This study investigates the wind-induced interunit dispersion around multistory buildings using the large eddy simulation (LES) method. This is the first time interunit dispersion has been investigated transiently using a LES model. The quality of the selected LES model is seriously assured through both experimental validation and sensitivity analyses. Two aspects are paid special attention: (i) comparison of dispersion routes with those provided by previous RANS simulations and (ii) comparison of timescales with those of natural ventilation and the survival times of pathogens. The LES results reveal larger dispersion scopes than the RANS results. Such larger scopes could be caused by the fluctuating and stochastic nature of envelope flows, which, however, is canceled out by the inherent Reynolds-averaged treatment of RANS models. The timescales of interunit dispersion are comparable with those of natural ventilation. They are much shorter than the survival time of most pathogens under ordinary physical environments, indicating that interunit dispersion is a valid route for disease transmission.

  11. Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications

    Directory of Open Access Journals (Sweden)

    Julia Marín-Sáez

    2016-07-01

    Full Text Available A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel and Avignon (France—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented. The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon to 20% (Sde Boker. Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.

  12. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  13. Simulation of occupant evacuation using Building GIS and behavioral rule base%基于Building GIS与行为规则库的人员疏散模拟

    Institute of Scientific and Technical Information of China (English)

    唐方勤; 任爱珠; 徐峰

    2011-01-01

    为有效描述要素空间分布,结合面向建筑的地理信息系统(Building GIS)与行为规则库,构建了人员疏散行为模型。通过CAD数据的语义解析,描述建筑空间单元连通性等特征。应用GIS技术构建疏散网络,实时分析建筑场景内要素分布特征及行为规律。在此基础上为智能体设计行为规则库,描述疏散中人员的行为意图与策略。结合应用实例,与实测数据和building EXODUS模拟结果进行了对比验证。结果表明:该模型能够表现建筑场景的人员疏散进程,反映出口疏散效率随时间的变化规律。%Spatial distributions of variables were properly described based on a developed behavioral model for evacuation using Building GIS and behavioral rule base with CAD data parsed to capture building features,including the internal connectivity.An evacuation network was established based on GIS to analyze variable distributions and behaviors in real time.A behavioral rule base was then designed accordingly to specify intensions and strategies for agents.A case study was conducted to validate the model by comparing with the buildingEXODUS simulation results and the experimental data.The result demonstrates that the model can simulate the evacuation process in buildings and evaluate the exit evacuation efficiency varying with time.

  14. Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM

    OpenAIRE

    Kuznik, F.; Virgone, J.; Johannes, K.

    2010-01-01

    International audience; In building construction, the use of phase change materials (PCMs) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. However, in order to assess and optimize phase change materials included in building wall, numerical simulation is mandatory. For that purpose, a new TRNSYS Type...

  15. Accurate Assessment of RSET for Building Fire Based on Engineering Calculation and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Zhenzhen

    2016-01-01

    Full Text Available In order to obtain the Required Safety Egress Time (RSET accurately, traditional engineering calculation method of evacuation time has been optimized in this paper. Several principles and fact situations were used to optimize the method, such as detecting principle of the fire detecting system, reaction characteristics of staff being in urgent situation, evacuating queuing theory, building structure and the plugging at the porthole. Taking a three-storey KTV as an example, two methods are used to illustrate the reliability and scientific reasonability of the calculation result. The result is deduced by comparing the error (less than 2% at an allowable range between two results. One result is calculated by a modified method of engineering calculation method, and the other one is given based on a Steering model of Pathfinder evacuation simulation software. The optimized RSET has a good feasibility and Accuracy.

  16. Laser welding process simulation for ship building industry: Strategy and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Carmignani, B.; Daneri, A.; Toselli, G. [ENEA, Bologna (Italy). Centro Ricerche Energia `E. Clementel` - Area Energia e Innovazione

    1994-09-01

    Feasibility studies on the simulation of the metal sheet laser welding process for the ship building industry, using the implicit version of ABAQUS code, have been made for an european EUREKA-FASP project. In this frame a strategy of approch has been set up for the evaluation of the stress and strain states induced on the sheet by the process considered. In order to reach this goal, it has been necessary to develop some ``ad hoc`` routines for a correct description of the laser movement and effects of the metal annealing after the melting phase due to the laser transit. The numerical approach adopted and first results obtained will be presented and discussed.

  17. Application of experimental design techniques to structural simulation meta-model building using neural network

    Institute of Scientific and Technical Information of China (English)

    费庆国; 张令弥

    2004-01-01

    Neural networks are being used to construct meta-models in numerical simulation of structures. In addition to network structures and training algorithms, training samples also greatly affect the accuracy of neural network models. In this paper, some existing main sampling techniques are evaluated, including techniques based on experimental design theory,random selection, and rotating sampling. First, advantages and disadvantages of each technique are reviewed. Then, seven techniques are used to generate samples for training radial neural networks models for two benchmarks: an antenna model and an aircraft model. Results show that the uniform design, in which the number of samples and mean square error network models are considered, is the best sampling technique for neural network based meta-model building.

  18. Simulation of temperature in office with building integrated heating and cooling system

    DEFF Research Database (Denmark)

    Weitzmann, Peter

    2002-01-01

    by raising the temperature of the concrete to slightly above the desired room temperature. Another way of solving the problem of cooling is by using building integrated cooling in floors. This technique utilizes the thermal mass of concrete in the floors, by integrating PEX pipes in the floor. By maintaining...... and thermal comfort parameters. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer to the room air and between the room surfaces. The simulation model can be used...... for calculating situations with both cooling and heating demands. Using the model it is therefore possible to assess the thermal environment, and furthermore to calculate the energy consumption required for both heating and cooling. In the paper different construction types of the floor are examined, as well...

  19. Effects of damage build-up in range profiles in crystalline Si; Molecular dynamics simulations

    CERN Document Server

    Peltola, J; Keinonen, J

    2002-01-01

    Molecular dynamics (MD) has been successful in predicting range profiles for ions implanted into crystalline materials in the fluence regime where it can be approximated that changes in the sample structure do not affect the profiles. Many experimental distributions are, however, strongly fluence-dependent due to the amorphization of the crystalline material. This has so far been taken into account only in some binary-collision-approximation calculations with a damage build-up model that depends on the probability of amorphization occurring at a certain depth. We present here a fast MD model for predicting range profiles of ions in crystalline Si. The model includes cumulative damage build-up, where the amorphization states of the material are taken from MD simulations of cascade damage. The method can be used to predict profiles for any material. We used silicon because of the large amount of experimental data available. No free parameters were used. Comparison of results with the results of a wide range of ...

  20. Design of passive cooling by night ventilation: evaluation of a parametric model and building simulation with measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pfafferott, J.; Herkel, S.; Jaeschke, M. [Fraunhofer-Institute for Solar Energy Systems, Freiburg (Germany)

    2003-12-01

    At the new institute building of Fraunhofer ISE, both mechanical and free night ventilation is used for passive cooling of the offices. The results from a long-term monitoring show, that room temperatures are comfortable even at high ambient air temperatures. In two offices, experiments were carried out in order to determine the efficiency of night ventilation dependent on air change rate, solar and internal heat gains. The aim is to identify characteristic building parameters and to determine the night ventilation effect with these parameters. The experiments (one room with and one without night ventilation) are evaluated by using both a parametric model and the ESP-r building simulation programme. Both models are merged in order to develop a method for data evaluation in office buildings with night ventilation and to provide a simple model for integration in a building management system. (Author)

  1. Simulation of energy use, human thermal comfort and office work performance in buildings with moderately drifting operative temperatures

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2011-01-01

    ) supplemented with CAV ventilation. Simulations comprised moderate, hot–dry and hot–humid climate. Heavy and light wall construction and two orientations of the building (east–west and north–south) were considered. Besides the energy use, also capability of examined systems to keep a certain level of thermal......Annual primary energy use in a central module of an office building consisting of two offices separated with a corridor was estimated by means of dynamic computer simulations. The simulations were conducted for conventional all-air VAV ventilation system and thermo active building system (TABS...... comfort was examined. The results showed that with the moderate climate, the TABS decreased the primary energy use by about 16% as compared with the VAV. With hot–humid climate, the portion of the primary energy saved by TABS was ca. 50% even with the supply air dehumidification taken into account...

  2. Application of Lidar Data and 3D-City Models in Visual Impact Simulations of Tall Buildings

    Science.gov (United States)

    Czynska, K.

    2015-04-01

    The paper examines possibilities and limitations of application of Lidar data and digital 3D-city models to provide specialist urban analyses of tall buildings. The location and height of tall buildings is a subject of discussions, conflicts and controversies in many cities. The most important aspect is the visual influence of tall buildings to the city landscape, significant panoramas and other strategic city views. It is an actual issue in contemporary town planning worldwide. Over 50% of high-rise buildings on Earth were built in last 15 years. Tall buildings may be a threat especially for historically developed cities - typical for Europe. Contemporary Earth observation, more and more available Lidar scanning and 3D city models are a new tool for more accurate urban analysis of the tall buildings impact. The article presents appropriate simulation techniques, general assumption of geometric and computational algorithms - available methodologies and individual methods develop by author. The goal is to develop the geometric computation methods for GIS representation of the visual impact of a selected tall building to the structure of large city. In reference to this, the article introduce a Visual Impact Size method (VIS). Presented analyses were developed by application of airborne Lidar / DSM model and more processed models (like CityGML), containing the geometry and it's semantics. Included simulations were carried out on an example of the agglomeration of Berlin.

  3. Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components

    Science.gov (United States)

    Ferroukhi, M. Y.; Abahri, K.; Belarbi, R.; Limam, K.; Nouviaire, A.

    2016-10-01

    The present paper lies to study the coupled heat, air and moisture transfer in multi-layer building materials. Concerning the modeling part, the interest is to predict the hygrothermal behavior, by developing a macroscopic model that incorporates simultaneously the diffusive, convective and conductive effects on the building elements. Heat transfer is considered in the strongly coupled situation where the mass and heat flux are temperature, vapor pressure and total pressure dependents. The model input parameters are evaluated experimentally through the development of various experimental prototypes in the laboratory. Thereafter, an experimental setup has been established in order to evaluate the hygrothermal process of several multilayer walls configurations. The experimental procedure consists to follow the temperature and relative humidity evolutions within the samples thickness, submitted to controlled and fixed boundary conditions. This procedure points out diverging conclusion between different testing materials combinations (e.g. red-brick and polystyrene). In fact, the hygrothermal behavior of the tested configurations is completely dependent on both materials selection and their thermophysical properties. Finally, comparison between numerical and experimental results showed good agreement with acceptable errors margins with an average of 3 %.

  4. Jake Garn Mission Simulator and Training Facility, Building 5, Historical Documentation

    Science.gov (United States)

    Slovinac, Trish; Deming, Joan

    2010-01-01

    In response to President George W. Bush's announcement in January 2004 that the Space Shuttle Program (SSP) would end in 2010, the National Aeronautics and Space Administration (NASA) completed a nation-wide historical survey and evaluation of NASA-owned facilities and properties (real property assets) at all its Centers and component facilities. The buildings and structures which supported the SSP were inventoried and assessed as per the criteria of eligibility for listing in the National Register of Historic Places (NRHP) in the context of this program. This study was performed in compliance with Section 110 of the National Historic Preservation Act (NHPA) of 1966 (Public Law 89-665), as amended; the National Environmental Policy Act (NEPA) of 1969 (Public Law 91-190); Executive Order (EO) 11593: Protection and Enhancement of the Cultural Environment; EO 13287, Preserve America, and other relevant legislation. As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities at was conducted by NASA's Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC's contractor, Archaeological Consultants, Inc. As a result of this survey, the Jake Gam Mission Simulator and Training Facility (Building 5) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 5 was still used to support the SSP as an

  5. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  6. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    and Ben Polly, Joseph Robertson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Polly, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Collis, Jon [Colorado School of Mines, Golden, CO (United States)

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  7. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    Science.gov (United States)

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  8. Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics

    Science.gov (United States)

    Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.

    2013-09-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.

  9. Predictor characteristics necessary for building a clinically useful risk prediction model: a simulation study

    Directory of Open Access Journals (Sweden)

    Laura Schummers

    2016-09-01

    Full Text Available Abstract Background Compelled by the intuitive appeal of predicting each individual patient’s risk of an outcome, there is a growing interest in risk prediction models. While the statistical methods used to build prediction models are increasingly well understood, the literature offers little insight to researchers seeking to gauge a priori whether a prediction model is likely to perform well for their particular research question. The objective of this study was to inform the development of new risk prediction models by evaluating model performance under a wide range of predictor characteristics. Methods Data from all births to overweight or obese women in British Columbia, Canada from 2004 to 2012 (n = 75,225 were used to build a risk prediction model for preeclampsia. The data were then augmented with simulated predictors of the outcome with pre-set prevalence values and univariable odds ratios. We built 120 risk prediction models that included known demographic and clinical predictors, and one, three, or five of the simulated variables. Finally, we evaluated standard model performance criteria (discrimination, risk stratification capacity, calibration, and Nagelkerke’s r2 for each model. Results Findings from our models built with simulated predictors demonstrated the predictor characteristics required for a risk prediction model to adequately discriminate cases from non-cases and to adequately classify patients into clinically distinct risk groups. Several predictor characteristics can yield well performing risk prediction models; however, these characteristics are not typical of predictor-outcome relationships in many population-based or clinical data sets. Novel predictors must be both strongly associated with the outcome and prevalent in the population to be useful for clinical prediction modeling (e.g., one predictor with prevalence ≥20 % and odds ratio ≥8, or 3 predictors with prevalence ≥10 % and odds ratios ≥4. Area

  10. Summary of the Effects of Two Years of Hygro-Thermal Cycling on a Carbon/Epoxy Composite Material

    Science.gov (United States)

    Kohlman, Lee W.; Binienda, Wieslaw K.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael; Bail, Justin L.

    2011-01-01

    Composite materials are beginning to be used for structures in the fan section of commercial gas turbine engines. This paper explores the type of damage that could occur within one type of composite material after exposure to hygrothermal cycles (temperature/humidity cycles) that are representative of the environment in the fan section of an engine. The effect of this damage on composite material properties is measured. Chemical changes in the matrix material were limited to the exposed surface. Microcrack formation was identified in the composite material. This damage did not cause a significant reduction in tensile strength or impact penetration resistance of the composite material. Additional data is needed to assess the effect of damage on compressive strength.

  11. A modified Kelvin impact model for pounding simulation of base-isolated building with adjacent structures

    Institute of Scientific and Technical Information of China (English)

    Ye Kun; Li Li; Zhu Hongping

    2009-01-01

    Base isolation can effectively reduce the seismic forces on a superstructure, particularly in low- to medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level between the base-isolated building (BIB) and its surrounding retaining walls. To effectively investigate the behavior of the BIB pounding with adjacent structures, after assessing some commonly used impact models, a modified Kelvin impact model is proposed in this paper. Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case. At the same time, inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures. The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models. However, the difference between the numerical results from the various impact analytical models is not significant. Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drills and floor accelerations during pounding. It is shown that pounding can substantially increase floor accelerations, especially at the ground floor where impacts occur. Higher modes of vibration are excited during poundings, increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure. Furthermore, higher ductility demands can be imposed on lower floors of the superstructure. Moreover, impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure. Finally, the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding

  12. Simulation of building performance. Recent Dutch developments and applications. Special issue; Gebouwprestatiesimulatie. Recente Nederlandse ontwikkelingen en toepassing

    Energy Technology Data Exchange (ETDEWEB)

    Hensen, J. [Knowledge Center Building and Systems, TNO en Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Yu, B.; Luscuere, P.G.; Ruchti, J.P. [Raadgevend Technisch Bureau van Heugten, Nijmegen (Netherlands); Den Boer, D.J.; Mertens, J.J.; Van Oerle, N.J. [Peutz, Mook (Netherlands); Eimermann, M. [Smits van Burgst, Zoetermeer (Netherlands); Slockers, A.M. [Admea, Zoetermeer (Netherlands); Van Maarschalkerwaard, A. [Colt Technology, Delft (Netherlands); Houtenbos, R.J. [Imtech Utiliteit West, Capelle a/d IJssel (Netherlands); Wisse, C.J.; Buitenhuis, J.J.; Boot, F.; Karels, M. [DWA installatie- en energieadvies, Bodegraven (Netherlands); Maassen, W.; Wijsman, A. [TNO Bouw, Delft (Netherlands); Plokker, W. [Vereniging voor Automatisering in de Bouw en Installatietechniek VABI, Delft (Netherlands); Van Paassen, A.H.C. [Technische Universiteit Delft, Faculteit der Werktuigbouwkunde en Maritieme Techniek, Energietechnologie, Delft (Netherlands); Rooijakkers, E.G. [Halmos Adviesbureau Elektrotechniek, Den Haag (Netherlands)

    2004-09-01

    In 11 articles this issue is dedicated to recent developments and applications of programmes and tools to simulate of building performance in the Netherlands. The subjects of the articles concern the use of Computational Fluid Dynamics (CFD) simulation of an atrium in a hospital and ventilation systems in parking lots and tunnels, the use of CFD in wind engineering, simulation of building performance in the industry, the choice between using CFD or test rooms, the comfort, control and use of concrete core activation, the simulation of energy systems in combination with asphalt collectors, an overview of simulation models on the internet, and the use of building simulations as a communication tool. [Dutch] In 11 artikelen wordt aandacht besteed aan recente ontwikkelingen en toepassingen van programma's en gereedschappen om de restaties van gebouwen te simuleren. De onderwerpen van de artikelen betreffen Gebouwsimulaties als communicatiemiddel; de opzet van een via internet beschikbaar Simulatiemodellenboek; Simuleren van energiesystemen met asfaltcollectoren; Dynamische simulatie van een schoollokaal met betonkernactivering; BetonKernActivering in VA114 Gebouwsimulatie; Comfort en regelbaarheid van betonkernactivering; de keuze tussen het gebruik van Proefkamers of CFD (Computational Fluid Dynamics); Simulatie van gebouwprestatie in de industrie; het gebruik van CFD in Wind Engineering; CFD bij dimensionering van ventilatiesystemen in parkeergarages en tunnels; en CFD-simulatie van een atrium in een ziekenhuis onder wintercondities.

  13. Modelling, experimentation and simulation of a reversible HP/ORC unit to get a Positive Energy Building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Quoilin, Sylvain

    2015-01-01

    covering the building annual heating needs and, furthermore, electricity is produced thanks to the surplus of heat in a so-called HP/ORC reversible unit. This paper focus on these three main points: sizing, experimentation and simulation of the reversible unit. First, an optimal sizing of the components...... storage, the solar roof and the reversible HP/ORC unit is developed and allows to perform a sensivity analysis. Annual results show that this technology leads to a Positive Energy Building....... and fluid R134a shows promising performance with a net electrical energy produced over one year reaching 4030 kWh. Following that, a prototype has been built and has proven the feasibility of the technology. Finally, a simulation code including the building, the ground heat exchanger, the thermal energy...

  14. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xipeng, E-mail: xptan1985@gmail.com [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Kok, Yihong; Tan, Yu Jun [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Vastola, Guglielmo, E-mail: vastolag@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Pei, Qing Xiang; Zhang, Gang; Zhang, Yong-Wei [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore)

    2015-10-15

    Build thickness dependent microstructure of electron beam melted (EBM{sup ®}) Ti–6Al–4V has been investigated from both experiment and simulation using four block samples with thicknesses of 1, 5, 10 and 20 mm. We observe a mixed microstructure of alternate α/β with some α′ martensite inside the 1 mm-thick sample. By contrast, only the alternate α/β microstructure with both colony and basket-weave morphologies occurs inside the 5 mm-, 10 mm- and 20 mm-thick samples. It is found that β spacing is constantly increased with the build thickness, leading to an obvious decrease in microhardness. Finite element method (FEM) simulations show that cooling rates and thermal profiles during EBM process are favorable for the formation of martensite. Moreover, full-scale FEM simulations reveal that the average temperature inside the samples is higher as the build thickness increases. It suggests that martensitic decomposition is faster in thicker samples, which is in good agreement with the experimental observations. - Highlights: • Build geometry dependent microstructure and microhardness for EBM-built Ti–6Al–4V. • Phase evolution involved in EBM process. • FEM simulation of EBM process. • α′ martensite formation and its identification.

  15. Bringing simulation to implementation: Presentation of a global approach in the design of passive solar buildings under humid tropical climates

    CERN Document Server

    Garde, François; Celaire, Robert

    2012-01-01

    In early 1995, a DSM pilot initiative has been launched in the French islands of Guadeloupe and Reunion through a partnership between several public and private partners (the French Public Utility EDF, the University of Reunion Island, low cost housing companies, architects, energy consultants, etc...) to set up standards to improve thermal design of new residential buildings in tropical climates. This partnership led to defining optimized bio-climatic urban planning and architectural designs featuring the use of passive cooling architectural principles (solar shading, natural ventilation) and components, as well as energy efficient systems and technologies. The design and sizing of each architectural component on internal thermal comfort in building has been assessed with a validated thermal and airflow building simulation software (CODYRUN). These technical specifications have been edited in a reference document which has been used to build over 300 new pilot dwellings through the years 1996-1998 in Reunion...

  16. Optimization of the Building Energy Performance through Dynamic Modeling, Systems Simulation, Field Monitoring and Evaluation of Renewable Energy Applications

    Directory of Open Access Journals (Sweden)

    Reshmi Banerjee

    2015-02-01

    Full Text Available The annual energy consumption in the residential and commercial sectors, in India is rising consistently at about 8% and the overall energy consumption in buildings has seen an increase from a low of 14% in the 1970s to nearly 33% in 2004/05. The electricity sector in India had an installed capacity of 254.049 GW as of end of September 2014. The research paper will deal with the modeling and optimization of the building energy performance by means of the application of the dynamic building simulation, the optimization of the energy systems and the verification of the energy consumptions and comfort conditions. An integrated tool is at an early stage of development to optimize the building energy performance to be expressed in terms of total energy use. The goal of the research paper is to optimize the building energy performance through the potential of the passive building technologies and the increase of efficiency of the building system.

  17. C-simulation Based Building Controls Implementation with Networked Sensors and Actuators

    NARCIS (Netherlands)

    Wen, Y.J.; DiBartolomeo, D.; Rubinstein, F.

    2012-01-01

    Commercial building sector is one of the largest energy consumers inthe U.S., and lighting, heating, ventilating and air conditioning contribute to more than half of the energy consumption and carbon emissions in buildings. Controls are the most effective way of increasing energy efficiency in build

  18. Building interdisciplinary teamwork among allied health students through live clinical case simulations.

    Science.gov (United States)

    Buelow, Janet R; Rathsack, Christi; Downs, David; Jorgensen, Kathy; Karges, Joy R; Nelson, Debralee

    2008-01-01

    A limited, yet growing, body of research suggests that health care students educated in interdisciplinary teamwork may become more collaborative professionals in the workplace, which, in turn, may foster more productive and satisfied health care professionals. Researchers also have identified lower mortality and morbidity rates, fewer hospitalizations, decreased costs, and improved function by patients among significant health benefits of interdisciplinary teamwork, especially when it is applied to underserved and geriatric populations. Such positive outcomes have prompted medical schools and accreditation boards of many allied health professions to add interdisciplinary education into their training requirements. Meeting these requirements has challenged universities, where there are multiple allied health programs and limited time, faculty, and financial resources to coordinate interdisciplinary education. The challenges have been magnified by insufficient research on the most effective methods to educate university students about interdisciplinary teamwork. This article presents the background, evolution, and key building blocks of one such method: a simulation-based workshop designed at our university over 7 years to educate its allied health students about various health professions through shared learning, interaction, and collaboration.

  19. Daylight Design of Office Buildings: Optimisation of External Solar Shadings by Using Combined Simulation Methods

    Directory of Open Access Journals (Sweden)

    Javier González

    2015-05-01

    Full Text Available Integrating daylight and energy performance with optimization into the design process has always been a challenge for designers. Most of the building environmental performance simulation tools require a considerable amount of time and iterations for achieving accurate results. Moreover the combination of daylight and energy performances has always been an issue, as different software packages are needed to perform detailed calculations. A simplified method to overcome both issues using recent advances in software integration is explored here. As a case study; the optimization of external shadings in a typical office space in Australia is presented. Results are compared against common solutions adopted as industry standard practices. Visual comfort and energy efficiency are analysed in an integrated approach. The DIVA (Design, Iterate, Validate and Adapt plug-in for Rhinoceros/Grasshopper software is used as the main tool, given its ability to effectively calculate daylight metrics (using the Radiance/Daysim engine and energy consumption (using the EnergyPlus engine. The optimization process is carried out parametrically controlling the shadings’ geometries. Genetic Algorithms (GA embedded in the evolutionary solver Galapagos are adopted in order to achieve close to optimum results by controlling iteration parameters. The optimized result, in comparison with conventional design techniques, reveals significant enhancement of comfort levels and energy efficiency. Benefits and drawbacks of the proposed strategy are then discussed.

  20. DIYModeling: a place for students and faculty to build their own game-quality simulations to enhance learning.

    Science.gov (United States)

    Sones, Bryndol; Wattenberg, Frank

    2009-03-01

    DIYModeling (Do it Yourself Modeling) aims to improve both the quality of learning in the STEM disciplines and the extent to which the very best STEM learning reaches all students by leveraging the power of game- quality modeling and simulation. It builds on earlier work by many people using platforms like Java, Flash and game quality simulations like the Federation of American Scientists' Immune Attack. DIYModeling adds a new element that enables students and faculty to build their own game-quality simulations by specifying the underlying scientific and mathematical models without getting into the details of programming. The DIYModeling team is a consortium of math and basic science faculty from six universities teamed up with the software development company Tietronix Software (an 8a certified company), which does contract work for NASA to build complex software systems including game-quality immersive simulations. The goal of the program is to enable curriculum developers and students to develop game- quality, three-dimensional immersive simulations with educational benefit. Current applications under development include a first-person shooter game environment for use in data collection and statistical analysis, orbital mechanics in executing the Hohlman transfer, and solar power generation. Some pilot tests are planned for use in the spring semester.

  1. Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Directory of Open Access Journals (Sweden)

    Jin-Hee Song

    2017-01-01

    Full Text Available To increase the heat capacity in lightweight construction materials, a phase change material (PCM can be introduced to building elements. A thermally activated building system (TABS with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results.

  2. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    Science.gov (United States)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  3. Promoting the Sustainable Building Market: an Evolution Analysis and System Dynamics Simulation on Behaviors of Real Estate Developers and Government

    Directory of Open Access Journals (Sweden)

    Xiuli Xie

    2014-05-01

    Full Text Available Purpose: The Chinese government takes measures to promote the development of green building (GB. But until 2013, there are only few green buildings in China. The real estate developers are skeptical in entering GB market, which requires theories to explain developers and government’s behaviors.Design/methodology/approach: In this study, we attempt Evolutionary game theory and System dynamics (SD into the analysis. A system dynamics model is built for studying evolutionary games between the government and developers in greening building decision making.Findings and Originality/value: The results of mixed-strategy stability analysis and SD simulation show that evolutionary equilibrium does not exist with a static government incentive. Therefore, a dynamical incentive is suggested in the SD model for promoting the green building market. The symmetric game and asymmetric game between two developers show, if the primary proportion who choose GB strategy is lower, all the group in game may finally evolve to GB strategy. In this case and in this time, the government should take measures to encourage developers to enter into the GB market. If the proportion who choose GB strategy is high enough, the government should gradually cancel or reduce those incentive measure.Research limitations/implications: an Evolution Analysis and System Dynamics Simulation on Behaviors of Real Estate Developers and Government could give some advice for the government to promote the green building market.

  4. Calibrated energy simulations of potential energy savings in actual retail buildings

    Science.gov (United States)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant

  5. Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, Frederic; Virgone, Joseph; Johannes, Kevyn [Universite de Lyon, CNRS, INSA de Lyon, CETHIL, UMR 5008, F-69621 Villeurbanne, France Universite Lyon 1, F-69622 (France)

    2010-07-15

    In building construction, the use of phase change materials (PCMs) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. However, in order to assess and optimize phase change materials included in building wall, numerical simulation is mandatory. For that purpose, a new TRNSYS Type, named Type 260, is developed to model the thermal behavior of an external wall with PCM. This model is presented in this paper and validated using experimental data from the literature. (author)

  6. The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings

    Science.gov (United States)

    Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.

    1979-01-01

    The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.

  7. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However...... coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived...... and defined as a new and independent material parameter. It contains information about the moisture transport properties throughout the wide range of moisture contents from hygroscopic up to saturation. With this new and valuable coefficient, it is now possible to distinguish and select building materials...

  8. Development and integration of a green roof model within whole building energy simulation

    OpenAIRE

    Decruz, Aloysius

    2016-01-01

    Green roofs are increasingly being employed as a sustainability feature of buildings. The sustainability approach in building designs requires reducing energy consumption and adopting low carbon energy sources without compromising the increasing expectations of comfort and health levels. Given the wide range of building designs, climates and green roof types, it is desirable to evaluate at the design stage the energy saving impact and other potential benefits from the application of green roo...

  9. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  10. Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Build-Up Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Economically viable and reliable building systems and tool sets are being sought, examined, and tested for extraterrestrial habitat and infrastructure buildup. This...

  11. WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

    2009-03-20

    The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thus providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the

  12. Analysis of the building constructions from the point of view of possible freeze-thaw deterioration

    Science.gov (United States)

    Maděra, Jiří; Černý, Robert

    2016-07-01

    A mathematical model for the calculation of the amount of frozen water in the porous building materials is presented in this paper. The model is based on the analysis of temperature and moisture content fields in the investigated material together with its pore size distribution function and is primarily designed for the relative assessment of building constructions. The newly formulated model is applied on several wall assemblies made of traditional structural materials and their hygrothermal performance is analyzed in terms of possible frost induced damage. Based on the model outputs some future objectives are drawn.

  13. A virtual laboratory for the simulation of sustainable energy systems in a low energy building: A case study

    Science.gov (United States)

    Breen, M.; O'Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.

    2016-03-01

    The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.

  14. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  15. Analysis of the effect of passive strategies on a nearly zero Danish residential building by means of dynamic simulations

    DEFF Research Database (Denmark)

    Avantaggiato, Marta; Simone, Angela; de Carli, Michele;

    2014-01-01

    Increase of outdoors temperature, due to climate changes, results in warmer summers even in cold climate regions. Moreover the use of wider glazing surfaces leads to high amount of incoming solar radiation. As a consequence, the moving toward low energy buildings with the improved air tightness...... is raising the issue of overheating even in the middle seasons creating not negligible thermal discomfort. Through building simulation program, the effect of passive cooling strategies, such as solar shading and natural night-time ventilation, on a residential building under Copenhagen climate conditions.......The main result is that a crossed use of both strategies leads to a cooling demand reduction (21 kWh/m2year) that varies between 98%-100% depending on the building’s tightness. Behavioural actions of the occupants were also considered in the calculation of the cooling energy demand and their impact...

  16. Climate for Culture : assessing the impact of climate change on the future indoor climate in historic buildings using simulations

    OpenAIRE

    2015-01-01

    Background The present study reports results from the large-scale integrated EU project "Climate for Culture". The full name, or title, of the project is Climate for Culture: damage risk assessment, economic impact and mitigation strategies for sustainable preservation of cultural heritage in times of climate change. This paper focusses on implementing high resolution regional climate models together with new building simulation tools in order to predict future outdoor and indoor climate cond...

  17. Numerical simulation of {sup 222}RN exhalation from phosphogypsum building blocks and accumulation inside a closed chamber

    Energy Technology Data Exchange (ETDEWEB)

    Rabi Junior, Jose A. [Sao Paulo Univ., Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos]. E-mail: jrabi@fzea.usp.br; Silva, Nivaldo C. da [Pontificia Univ. Catolica de Minas Gerais, Pocos de Caldas, MG (Brazil)]|[Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Laboratorio]. E-mail: ncsilva@pucpcaldas.br; ncsilva@cnen.gov.br

    2005-07-01

    Zero-order models for {sup 222}Rn exhalation from phosphogypsum-bearing building materials and its transient indoor accumulation assume uniform distribution inside the enclosure. Conversely, this paper numerically simulates a transient two-dimensional {sup 222}Rn accumulation in a test chamber that contains a phosphogypsum board at one wall. Results show that above hypothesis might be oversimplified when spatial dependence is considered. (author)

  18. Simulation of Electron-Cloud Build-Up for the Cold Arcs of the LHC and Comparison with Measured Data

    CERN Document Server

    Maury Cuna, H; Rumolo, G; Tavian, L; Zimmermann, F

    2011-01-01

    The electron cloud generated by synchrotron radiation or residual gas ionization is a concern for LHC operation and performance. We report the results of simulations studies which examine the electron cloud build-up, at injection energy, 3.5 TeV for various operation parameters. In particular, we determine the value of the secondary emission yield corresponding to the multipacting threshold, and investigate the electron density, and heat as a function of bunch intensity for dipoles and field-free regions. We also include a comparison between simulations results and measured heat-load data from the LHC scrubbing runs in 2011.

  19. Large Scale Experiments Simulating Hydrogen Distribution in a Spent Fuel Pool Building During a Hypothetical Fuel Uncovery Accident Scenario

    Directory of Open Access Journals (Sweden)

    Guillaume Mignot

    2016-08-01

    This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP project carried out under the auspices of Swissnuclear (Framework 2012–2013 in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.

  20. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  1. Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar

    Directory of Open Access Journals (Sweden)

    Hery Tiana Rakotondramiarana

    2015-05-01

    Full Text Available Green roofs improve building energy performance and constitute an alternative to sustainable buildings. A green roof model is dynamically coupled with a building thermal model to assess its energy performance that takes into account the indoor air temperature dynamic changes. Under the climate conditions in Antananarivo, we compared green and conventional roofs. The present study shows that green roofs protect the roof structure under extreme temperature and large temperature fluctuations. For the case of Antananarivo, the amplitude of the temperature fluctuations at the top face of the support is reduced by 28 °C when using green roof. The impact of the green roof on indoor air temperature and energy demand is investigated. The vegetation decreases the maximum indoor air temperature and improves the building thermal comfort during summer days. It has no effect on the minimum indoor air temperature, but additional soil thickness can increase it. In addition, a global sensitivity analysis, which is carried out on the proposed model without considering any specific weather data, allows us to identify the most influential parameters on the energy demand. It has been found that green roofs have almost insignificant thermal impact in insulated buildings; however, their potential prevails over the building envelope and weather characteristics in the case of non-insulated building.

  2. CODYBA - v 6: new version of software for building dynamical behaviour simulation

    Energy Technology Data Exchange (ETDEWEB)

    Duta, Anca Gh.; Roux, Jean-Jacques P.; Noel, Jean X. [Institute National de Sciences Appliquees de Lyon, Villeurbanne Cedex, (France). Centre de Thermique de Lyon (CETHIL). Equipe Thermique du Batiment]. E-mail: duta@insa-cethil-etb.insa-lyon.fr; roux@insa-cethil-etb.insa-lyon.fr; codyba@insa-cethil-etb.insa-lyon.fr

    2000-07-01

    In CODYBA software new version, a building model is based on its decomposition in elementary objects (air volumes, walls, windows, control systems, etc). The global building model is obtained by the connection of these different 'objects/models', associated to excitations like the exterior climate and/or the internal loads. These excitations are also manipulated as 'objects/models'. To summarize, the CODYBA's graphical user interface introduces concepts that are identical to those manipulated in everyday practice by building professionals (walls, windows, materials, regulators, etc) and reproduced on screen by a classic 'iconographical' representation in the 'Windows' environment. (author)

  3. Optimization of sustainable buildings envelopes for extensive sheep farming through the use of dynamic energy simulation

    Directory of Open Access Journals (Sweden)

    Maria Elena Menconi

    2013-09-01

    Full Text Available Extensive sheep farming can be seen as a marginal market, compared to other livestock and agricultural activities, taking into account only the economic absolute values. But for many rural marginal areas within the European Community member states, in particular for those located in the Mediterranean area on hills or mountains with high landscape value, extensive sheep farming is not only the longest practiced animal farming activity, but also the most interesting considering its adaptability to the territorial morphology and the restrictions that have been established over the years in terms of sustainable rural development practices. At the moment, most of the structures used in this type of farming are built using low cost and sometimes recycled, but often unsuitable, materials. Few specific studies have been carried out on this particular issue assuming, presumably, that the very low profit margins of these activities made impossible any restructuring. Taken this into account, the new Rural Development Plans that will be issued in 2014 will surely contain some measure dedicated to innovations in farming structures and technology towards facilitating the application of the principles of energy optimization. This is the framework in which the present research has developed. The software that has been applied to perform the energy optimization analysis is the dynamic energy simulation engine Energy Plus. A case study farm has been identified in the small village of Ceseggi (PG, situated in Central Italy. For the case study optimum thermo hygrometric conditions have been identified to ensure the welfare of animals and operators and it has been hypothesized the insertion of an ideal HVAC system to achieve them. Afterwards were evaluated the different energy requirements of the building while varying the insulation material used on the vertical surfaces. The greater goal is to verify which could be the best insulation material for vertical

  4. Monte Carlo simulation of indoor external exposure due to gamma-emitting radionuclides in building materials

    Science.gov (United States)

    Deng, Jun; Cao, Lei; Su, Xu

    2014-10-01

    The use of building materials containing naturally occurring radionuclides, such as 40K, 238U, 232Th and their progeny, could lead to external exposures to the residents of such buildings. In this paper, a set of models are constructed to calculate the specific effective dose rates (the effective dose rate per Bq/kg of 40K, the 238U series, and the 232Th series) imposed on residents by building materials with the MCNPX code. The effect of chemical composition, position concerned in the room and thickness as well as density of material is analyzed. In order to facilitate more precise assessment of indoor external dose due to gamma-emitting radionuclides in building materials, three regressive expressions are proposed and validated by measured data to calculate specific effective rates for 40K. the 238U series and the 232Th series, respectively.

  5. Monte Carlo Simulation of Indoor External Exposure due to Gamma-emitting Radionuclides in Building Materials

    CERN Document Server

    Deng, Jun; Su, Xu

    2014-01-01

    The use of building materials containing naturally occurring radionuclides,such as K-40, U-238 and Th-232 and their progeny, could lead to external exposures of the residents of such buildings. In this paper, a set of models are set up to calculate the specific effective dose rates(the effective dose rate per Bq/kg of K-40, U-238 series, and Th-232 series) imposed to residents by building materials with MCNPX code. Effect of chemical composition, position concerned in the room and thickness as well as density of material is analyzed. In order to facilitate more precise assessment of indoor external dose due to gamma emitting radionuclides in building materials, three regressive expressions are proposed and validated by measured data to calculate specific effective rate for K-40, U-238 series and Th-232 series, respectively.

  6. Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations-BDW-1

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set is associated with the results found in the journal article: Perry et al, 2016. Characterization of pollutant dispersion near elongated buildings based...

  7. A simulation-based optimization method for the integrative design of the building envelope

    OpenAIRE

    2015-01-01

    An effective design of green buildings requires a process of optimization to meet all the sustainability goals through an integrative design approach. The research focuses on the development of a replicable methodology for the optimization of the building features that affects specifically the energy demand and indoor comfort conditions. Optimal design solutions are found following two steps: minimization of the total energy demand for heating, cooling and lighting coupling TRNSYS®, a dynamic...

  8. Redesigning Terraced Social Housing in the UK for Flexibility Using Building Energy Simulation with Consideration of Passive Design

    Directory of Open Access Journals (Sweden)

    Hasim Altan

    2015-05-01

    Full Text Available A chosen case study house forms the basis of this paper, which is a pilot energy-efficient social housing project, completed by one of the largest housing developers in the UK. The main aim of this study is to inform the redesign of flexible energy-efficient housing units. The housing, designed for social tenants, was built by the Accent Group in 2005, using modern construction methods and sustainable materials, based on extensive research from the adaptable and “Grow Home” principles of Avi Friedman as well as open building implementation. The first pilot scheme was designed in collaboration with the Building Energy Analysis Unit at the University of Sheffield, together with the Goddard Wybor Practise, and was a successful housing development with respect to being environmentally friendly and a low-energy design scheme for the UK climate. This paper presents redesigning of flexible terraced housing units, and their performance evaluation, using a building simulation method as well as the passive-house planning package. The aim was to plan a row of terraced houses that can not only utilize a flexible design concept in floor planning layout, but also to reduce energy consumption with a passive design with particular attention paid to material selection. In addition, building simulation work has been carried out with the use of DesignBuilder software for both thermal and energy performance evaluation. The study examines the annual energy performance and comfort conditions in the designed house to be situated in the Northeast of England, UK. A terraced house unit design is considered a flexible home that can adjust to the needs of different tenants for the purpose of achieving a sustainable building under different aspects, such as low energy, low carbon, use of renewables, and low impact materials, with flexibility by design.

  9. Post Occupancy energy evaluation of Ronald Tutor Hall using eQUEST; Computer based simulation of existing building and comparison of data

    Science.gov (United States)

    Dulom, Duyum

    Buildings account for about 40 percent of total U.S. energy consumption. It is therefore important to shift our focus on important measures that can be taken to make buildings more energy efficient. With the rise in number of buildings day by day and the dwindling resources, retrofitting buildings is the key to an energy efficiency future. Post occupancy evaluation (POE) is an important tool and is ideal for the retrofitting process. POE would help to identify the problem areas in the building and enable researchers and designers to come up with solutions addressing the inefficient energy usage as well as the overall wellbeing of the users of the building. The post occupancy energy evaluation of Ronald Tutor Hall (RTH) located at the University of Southern California is one small step in that direction. RTH was chosen to study because; (a) relatively easy access to the building data (b) it was built in compliance with Title 24 2001 and (c) it was old enough to have post occupancy data. The energy modeling tool eQuest was used to simulate the RTH building using the background information of the building such as internal thermal comfort profile, occupancy profile, building envelope profile, internal heat gain profile, etc. The simulation results from eQuest were then compared with the actual building recorded data to verify that our simulated model was behaving similar to the actual building. Once we were able to make the simulated model behave like the actual building, changes were made to the model such as installation of occupancy sensor in the classroom & laboratories, changing the thermostat set points and introducing solar shade on northwest and southwest facade. The combined savings of the proposed interventions resulted in a 6% savings in the overall usage of energy.

  10. Large scale experiments simulating hydrogen distribution in a spent fuel pool building during a hypothetical fuel uncovery accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Mignot, Guillaume; Paranjape, Sidharth; Paladino, Domenico; Jaeckel, Bernd; Rydl, Adolf [Paul Scherrer Institute, Villigen (Switzerland)

    2016-08-15

    Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012–2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.

  11. Automated post-simulation visualization of modular building production assembly line

    NARCIS (Netherlands)

    Han, Sang Hyeok; Al-Hussein, Mohamed; Al-Jibouri, Saad; Yu, Haitao

    2012-01-01

    Simulation is often used to model production processes with the aim of understanding and improving them. In many cases, however, information produced by simulation is not detailed enough and can be misinterpreted. The use of visualization in combination with simulation can provide project participan

  12. Quantifying the potential of automated dynamic solar shading in office buildings through integrated simulations of energy and daylight

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa; Svendsen, Svend; Bjerregaard Jensen, Lotte

    2011-01-01

    The façade design is and should be considered a central issue in the design of energy-efficient buildings. That is why dynamic façade components are increasingly used to adapt to both internal and external impacts, and to cope with a reduction in energy consumption and an increase in occupant com...... solar shading, which emphasises the need for dynamic and integrated simulations early in the design process to facilitate informed design decisions about the façade....... components by using integrated simulations that took energy demand, the indoor air quality, the amount of daylight available, and visual comfort into consideration. Three types of façades were investigated (without solar shading, with fixed solar shading, and with dynamic solar shading), and we simulated...

  13. An indoor augmented reality mobile application for simulation of building evacuation

    Science.gov (United States)

    Sharma, Sharad; Jerripothula, Shanmukha

    2015-03-01

    Augmented Reality enables people to remain connected with the physical environment they are in, and invites them to look at the world from new and alternative perspectives. There has been an increasing interest in emergency evacuation applications for mobile devices. Nearly all the smart phones these days are Wi-Fi and GPS enabled. In this paper, we propose a novel emergency evacuation system that will help people to safely evacuate a building in case of an emergency situation. It will further enhance knowledge and understanding of where the exits are in the building and safety evacuation procedures. We have applied mobile augmented reality (mobile AR) to create an application with Unity 3D gaming engine. We show how the mobile AR application is able to display a 3D model of the building and animation of people evacuation using markers and web camera. The system gives a visual representation of a building in 3D space, allowing people to see where exits are in the building through the use of a smart phone or tablets. Pilot studies were conducted with the system showing its partial success and demonstrated the effectiveness of the application in emergency evacuation. Our computer vision methods give good results when the markers are closer to the camera, but accuracy decreases when the markers are far away from the camera.

  14. Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Build-Up

    Science.gov (United States)

    Khoshnevis, B.; Carlson, A.; Leach N.; Thangavelu, M.

    2016-01-01

    Economically viable and reliable building systems and tool sets are being sought, examined and tested for extraterrestrial infrastructure buildup. This project focused on a unique architecture weaving the robotic building construction technology with designs for assisting rapid buildup of initial operational capability Lunar and Martian bases. The project aimed to study new methodologies to construct certain crucial infrastructure elements in order to evaluate the merits, limitations and feasibility of adapting and using such technologies for extraterrestrial application. Current extraterrestrial settlement buildup philosophy holds that in order to minimize the materials needed to be flown in, at great transportation costs, strategies that maximize the use of locally available resources must be adopted. Tools and equipment flown as cargo from Earth are proposed to build required infrastructure to support future missions and settlements on the Moon and Mars.

  15. EXPANDING THE CAPABILITIES OF DOE'S ENERGYPLUS BUILDING ENERGY SIMULATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Don B. Shirey, III; Richard A. Raustad

    2004-04-01

    EnergyPlus{trademark} is a new generation analysis tool that is being developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It will also support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by six updated versions over the ensuing three-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features: (1) A model for energy recovery ventilation equipment that transfers both sensible (temperature) and latent (moisture) energy between building exhaust air and incoming outdoor ventilation air; (2) A model to account for the degradation of cooling coil dehumidification performance at part-load conditions; (3) A model for cooling coils augmented with air-to-air heat exchangers for improved dehumidification; and (4) A heat transfer coefficient calculator and automatic sizing algorithms for the existing EnergyPlus cooling tower model. UCF/FSEC located existing mathematical models for these features and incorporated them into EnergyPlus. The software models were written using Fortran-90 and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (Input Output Reference and Engineering Document) was updated with information describing the new model/feature.

  16. Topographica: building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components

    Directory of Open Access Journals (Sweden)

    James A Bednar

    2009-03-01

    Full Text Available Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major technical challenge. In this paper, we show that the Python-based Topographica simulator makes it straightforward to build systems that cross levels of analysis, as well as providing a common framework for evaluating and comparing models implemented in other simulators. These results rely on the general-purpose abstractions around which Topographica is designed, along with the Python interfaces becoming available for many simulators. In particular, we present a detailed, general-purpose example of how to wrap an external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines of Python code, making it possible to use any of the extensive input presentation, analysis, and plotting tools of Topographica. Additional examples show how to interface easily with models in other types of simulators. Researchers simulating topographic maps externally should consider using Topographica's analysis tools (such as preference map, receptive field, or tuning curve measurement to compare results consistently, and for connecting models at different levels. This seamless interoperability will help neuroscientists and computational scientists to work together to understand how neurons in topographic maps organize and operate.

  17. A technical framework to describe occupant behavior for building energy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William; Hong, Tianzhen

    2013-12-20

    Green buildings that fail to meet expected design performance criteria indicate that technology alone does not guarantee high performance. Human influences are quite often simplified and ignored in the design, construction, and operation of buildings. Energy-conscious human behavior has been demonstrated to be a significant positive factor for improving the indoor environment while reducing the energy use of buildings. In our study we developed a new technical framework to describe energy-related human behavior in buildings. The energy-related behavior includes accounting for individuals and groups of occupants and their interactions with building energy services systems, appliances and facilities. The technical framework consists of four key components: i. the drivers behind energy-related occupant behavior, which are biological, societal, environmental, physical, and economical in nature ii. the needs of the occupants are based on satisfying criteria that are either physical (e.g. thermal, visual and acoustic comfort) or non-physical (e.g. entertainment, privacy, and social reward) iii. the actions that building occupants perform when their needs are not fulfilled iv. the systems with which an occupant can interact to satisfy their needs The technical framework aims to provide a standardized description of a complete set of human energy-related behaviors in the form of an XML schema. For each type of behavior (e.g., occupants opening/closing windows, switching on/off lights etc.) we identify a set of common behaviors based on a literature review, survey data, and our own field study and analysis. Stochastic models are adopted or developed for each type of behavior to enable the evaluation of the impact of human behavior on energy use in buildings, during either the design or operation phase. We will also demonstrate the use of the technical framework in assessing the impact of occupancy behavior on energy saving technologies. The technical framework presented is

  18. Simulation of the GHG Abatement Potentials in the U.S. Building Sector by 2050

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; DeForest, Nicholas; Marnay, Chris; Bonnet, Florence; Lai, Judy; Phan, Trucy

    2010-10-01

    Given the substantial contribution of the U.S. building sector to national carbon emissions, it is clear that to address properly the issue of climate change, one must first consider innovative approaches to understanding and encouraging the introduction of new, low-carbon technologies to both the commercial and residential building markets. This is the motivation behind the development of the Stochastic Lite Building Module (SLBM), a long range, open source model to forecast the impact of policy decisions and consumer behavior on the market penetration of both existing and emerging building technologies and the resulting carbon savings. The SLBM, developed at Lawrence Berkeley National Laboratory (LBNL), is part of the Stochastic Energy Deployment System (SEDS) project, a multi-laboratory effort undertaken in conjunction with the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL) and private companies. The primary purpose of SEDS is to track the performance of different U.S. Department of Energy (USDOE) Research and Development (R&D) activities on technology adoption, overall energy efficiency, and CO{sub 2} reductions throughout the whole of the U.S. economy. The tool is fundamentally an engineering-economic model with a number of characteristics to distinguish it from existing energy forecasting models. SEDS has been written explicitly to incorporate uncertainty in its inputs leading to uncertainty bounds on the subsequent forecasts. It considers also passive building systems and their interactions with other building service enduses, including the cost savings for heating, cooling, and lighting due to different building shell/window options. Such savings can be compared with investments costs in order to model real-world consumer behavior and forecast adoption rates. The core objective of this paper is to report on the new window and shell features of SLBM and to show the implications of

  19. Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

    2011-08-01

    This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

  20. Climate classification for the simulation of thermally activated building systems (TABS)

    DEFF Research Database (Denmark)

    Behrendt, Benjamin; Christensen, Jørgen Erik

    2013-01-01

    Thermally activated building systems (TABS) provide high temperature cooling and low temperature heating which has a better efficiency compared to traditional heating and cooling solutions. Additionally the moderate required temperature levels for heating and cooling create the opportunity to use...... entirely. The proposed climate classification should fill this gap by providing the missing data in a simple manner....

  1. Evaluation of Moisture Buffer Effects by Performing Whole-Building Simulations

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; K., Grau

    2004-01-01

    The humidity of rooms and the moisture conditions of materials in the enclosure of buildings depend much on each other because of the moisture exchange that takes place over the interior surfaces. These moisture influences also depend strongly on the thermal conditions of indoor spaces and enclos...

  2. BUSICO 3D: building simulation and control in unity 3D

    DEFF Research Database (Denmark)

    Fürst, Jonathan; Fierro, Gabe; Bonnet, Philippe;

    2014-01-01

    with simulations and easier transferring of schedules and configurations from the simulated virtual environment to a real-world deployment. We provide an implementation using a widely used game engine (Unity 3D) and sMAP (Simple Measurement and Actuation Profile), a developed time series database and metadata...

  3. Wind flow and wind loads on the surface of a tower-shaped building:Numerical simulations and wind tunnel experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non-hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.

  4. Application of sensitivity analysis in building energy simulations: combining first and second order elementary effects Methods

    CERN Document Server

    Sanchez, David Garcia; Musy, Marjorie; Bourges, Bernard

    2012-01-01

    Sensitivity analysis plays an important role in the understanding of complex models. It helps to identify influence of input parameters in relation to the outputs. It can be also a tool to understand the behavior of the model and then can help in its development stage. This study aims to analyze and illustrate the potential usefulness of combining first and second-order sensitivity analysis, applied to a building energy model (ESP-r). Through the example of a collective building, a sensitivity analysis is performed using the method of elementary effects (also known as Morris method), including an analysis of interactions between the input parameters (second order analysis). Importance of higher-order analysis to better support the results of first order analysis, highlighted especially in such complex model. Several aspects are tackled to implement efficiently the multi-order sensitivity analysis: interval size of the variables, management of non-linearity, usefulness of various outputs.

  5. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper

  6. Efficient ventilation in school buildings. Design guidebook; Ventilation performante dans les ecoles. Guide de conception

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This guidebook aims at giving practical advices for the design of ventilation systems for school buildings in order to maintain air quality levels and energy consumptions conformable with the real needs: 1 - the specific problem of schools (various types of rooms, particular indoor pollutions); 2 - main criteria to consider (air quality and hygiene, hygro-thermal comfort, ventilation efficiency, acoustic comfort, energy mastery); 3 - main existing solutions (simple-flux blow-off or blow-in mechanical ventilation systems, dual-flux systems, air conditioning systems); 4 - choice of an adapted solution (selection criteria, global solution for the school); setting-up and follow-up (rules, training, maintenance). (J.S.)

  7. Method for Building a Medical Training Simulator with Bayesian Networks: SimDeCS.

    Science.gov (United States)

    Flores, Cecilia Dias; Fonseca, João Marcelo; Bez, Marta Rosecler; Respício, Ana; Coelho, Helder

    2014-01-01

    Distance education has grown in importance with the advent of the internet. An adequate evaluation of students in this mode is still difficult. Distance tests or occasional on-site exams do not meet the needs of evaluation of the learning process for distance education. Bayesian networks are adequate for simulating several aspects of clinical reasoning. The possibility of integrating them in distance education student evaluation has not yet been explored much. The present work describes a Simulator based on probabilistic networks built to represent knowledge of clinical practice guidelines in Family and Community Medicine. The Bayesian Network, the basis of the simulator, was modeled to playable by the student, to give immediate feedback according to pedagogical strategies adapted to the student according to past performance, and to give a broad evaluation of performance at the end of the game. Simulators structured by Bayesian Networks may become alternatives in the evaluation of students of Medical Distance Education.

  8. Building an open-source simulation platform of acoustic radiation force-based breast elastography

    Science.gov (United States)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-01

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast

  9. Investigation on Building a Simulated Skill Training Platform for the E-commerce Students and Teachers

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2009-10-01

    Full Text Available To determine the need for simulated training of e-commerce activities prior to working in the real environment, we studied the views of undergraduates and college teachers from several aspects. Two hundred university students while also 200 college teachers were asked what the real problem was when they learned or taught in the e-commerce courses. Next, they were surveyed to inquire what knowledge they really need when students go to work positions and what type of job do they expect to have. Finally, they were asked whether using a simulated training platform would be beneficial. Through analysis, the aspects which are contained above we know that simulation should be incorporated into the education of e-commerce to students as a tool to practice their hands-on abilities prior to working. And from the survey we also obtain some useful information and references that may help us to design our electronic commerce training platform.

  10. Lightweight object oriented structure analysis: tools for building tools to analyze molecular dynamics simulations.

    Science.gov (United States)

    Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan

    2014-12-15

    LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development.

  11. Application of data mining techniques in the analysis of indoor hygrothermal conditions

    CERN Document Server

    Ramos, Nuno M M; Almeida, Ricardo M S F; Simões, Maria L; Manuel, Sofia

    2016-01-01

    The main benefit of the book is that it explores available methodologies for both conducting in-situ measurements and adequately exploring the results, based on a case study that illustrates the benefits and difficulties of concurrent methodologies. The case study corresponds to a set of 25 social housing dwellings where an extensive in situ measurement campaign was conducted. The dwellings are located in the same quarter of a city. Measurements included indoor temperature and relative humidity, with continuous log in different rooms of each dwelling, blower-door tests and complete outdoor conditions provided by a nearby weather station. The book includes a variety of scientific and engineering disciplines, such as building physics, probability and statistics and civil engineering. It presents a synthesis of the current state of knowledge for benefit of professional engineers and scientists.

  12. Simple Simulated Propagation Modeling and Experimentation within and around Buildings at 2700 MHz

    Directory of Open Access Journals (Sweden)

    Tanay Bhatt

    2016-01-01

    Full Text Available There is a growing interest in understanding wave behavior in urban and suburban environment for 5th generation broadband applications. With the advent of using broadband technologies in buildings, office space and vehicle have become a necessity on a large scale. Models, predictions, and calculations for in-building, within a vehicle or near a reflective object with microscale details, are becoming highly classified in a competitive telecom environment. This paper provides an improved understanding of signal strength behavior within suburban residences with predictions prequalified using a vehicular scanner. Supporting predictions are provided by a ray tracing algorithm developed for dissertation. Results indicate signal strength variation of more than 50 dB from “strong signal” locations such as room centers and far corners to “weak signal” locations where shadowing and tunneling effects are evident. Based on this unique classification a scheme is proposed which indicates that specular scattering provides the major signal energy at more than 70% of the locations within the residences. Finally, an observed rake stabilizing effect is attributed to the proximity of strong scatterers.

  13. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yixing [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Zhang, Jianshun [Syracuse Univ., NY (United States); Pelken, Michael [Syracuse Univ., NY (United States); Gu, Lixing [Univ. of Central Florida, Orlando, FL (United States); Rice, Danial [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Meng, Zhaozhou [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Semahegn, Shewangizaw [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Feng, Wei [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Ling, Francesca [Syracuse Univ., NY (United States); Shi, Jun [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Henderson, Hugh [CDH Energy, Cazenovia, NY (United States)

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus

  14. Build up An Operational Flood Simulation from Existing 1D Channel Flow Works

    Science.gov (United States)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Lien, Ho-Cheng; Shen, Jhih-Cyuan; Chung, Ming-Ko

    2016-04-01

    Several 2D flood simulations will be developed for urban area in recent years in Taiwan. Original ideas focus on the static flood maps produced by the 2D flood simulation with respect to design events, which could be useful no matter for planning or disaster awareness. However, an extra bonus is expected to see if we can reuse the 2D flood simulation framework for operational use or not. Such a project goal inspire us to setup a standard operation procedure before any progress from existing 1D channel flow works. 3 key issues are taken into account in the SOP: 1. High Resolution Terrain: A 1m resolution digital terrain model (DTM) is considered as a reference. The Channels and structures should be setup in 1D channel flow works if we can identify under such high resolution. One should examine the existing 1D channel flow works consistent with the DTM or not. 2. Meteo Stations Referenced: Real time precipitation would be send to referenced location in RR models during an operational forecast. Existing 1D channels flow works are usually specifically for design events which are not necessarily equipped with such references. 3. Time Consuming: A full scale 2D flood simulation needs a lot of computation resources. A solution should be derived within practical time limits. Under the above consideration, some impacts and procedures will be analyzed and developed to setup the SOP for further model modification.

  15. McStas 1.1: a tool for building neutron Monte Carlo simulations

    Science.gov (United States)

    Lefmann, K.; Nielsen, K.; Tennant, A.; Lake, B.

    2000-03-01

    McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron scattering instrument. The method compares well with the analytical calculations of Popovici.

  16. McStas 1.1: A tool for building neutron Monte Carlo simulations

    DEFF Research Database (Denmark)

    Lefmann, K.; Nielsen, K.; Tennant, D.A.;

    2000-01-01

    McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron...

  17. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Lai, Judy; Stadler, Michael; Siddiqui, Afzal

    2009-05-07

    The Distributed Energy Resources Customer Adoption Model is used to estimate the value an Oakland nursing home, a Riverside high school, and a Sunnyvale data center would need to put on higher electricity service reliability for them to adopt a Consortium for Electric Reliability Technology Solutions Microgrid (CM) based on economics alone. A fraction of each building's load is deemed critical based on its mission, and the added cost of CM capability to meet it added to on-site generation options. The three sites are analyzed with various resources available as microgrid components. Results show that the value placed on higher reliability often does not have to be significant for CM to appear attractive, about 25 $/kWcdota and up, but the carbon footprint consequences are mixed because storage is often used to shift cheaper off-peak electricity to use during afternoon hours in competition with the solar sources.

  18. Business statistics for competitive advantage with Excel 2016 basics, model building, simulation and cases

    CERN Document Server

    Fraser, Cynthia

    2016-01-01

    The revised Fourth Edition of this popular textbook is redesigned with Excel 2016 to encourage business students to develop competitive advantages for use in their future careers as decision makers. Students learn to build models using logic and experience, produce statistics using Excel 2016 with shortcuts, and translate results into implications for decision makers. The textbook features new examples and assignments on global markets, including cases featuring Chipotle and Costco. Exceptional managers know that they can create competitive advantages by basing decisions on performance response under alternative scenarios, and managers need to understand how to use statistics to create such advantages. Statistics, from basic to sophisticated models, are illustrated with examples using real data such as students will encounter in their roles as managers. A number of examples focus on business in emerging global markets with particular emphasis on emerging markets in Latin America, China, and India. Results are...

  19. Experimental measurements of thermal properties for Mexican building materials to simulate thermal behavior to save energy

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Galan, Jesus; Almanza, Rafael; Rodriguez, Neftali [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ingenieria

    2008-07-01

    One of the main factors that determine the reliability of building's thermal design is the values of thermal and heat transfer properties used during this process. In order to optimizing such thermal design process, there is little information available of the most utilized building materials in Mexico; hence, some measurements were carried out. We present thermal conductivity experimental results for: red brick, tepetate, adobe and concrete. Furthermore, experimental data of convective heat transfer coefficients are reported on: red brick, tepetate, adobe and concrete walls. Kondratyev methodology was used for thermal conductivity estimations. Kondratyev methodology is based on the cooling off of bodies in regular state analysis. Thermal conductivity values were: red brick k{sub L} = 0.906 W/mC, tepetate k{sub T} = 0.648 W/mC, adobe k{sub A} = 0.570 W/mC, and concrete k{sub C} = 1.918 W/mC. Red brick, tepetate, adobe and concrete test walls of 0.46 x 0.56 and 0.06 m thick, were manufactured, as well as a prototype of testing for mounting the walls, in order to evaluate their convective heat transfer coefficients. Measurements were carried out at the Institute of Engineering-UNAM Wind-Tunnel, for an air velocities interval of 2-10 m/s. Reported values for convective coefficients fluctuate on 16-134 W/m{sup 2}2 C, depending on material and position wall, as well as air velocity. (orig.)

  20. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7.

  1. How should we build a generic open-source water management simulator?

    Science.gov (United States)

    Khadem, M.; Meier, P.; Rheinheimer, D. E.; Padula, S.; Matrosov, E.; Selby, P. D.; Knox, S.; Harou, J. J.

    2014-12-01

    Increasing water needs for agriculture, industry and cities mean effective and flexible water resource system management tools will remain in high demand. Currently many regions or countries use simulators that have been adapted over time to their unique system properties and water management rules and realities. Most regions operate with a preferred short-list of water management and planning decision support systems. Is there scope for a simulator, shared within the water management community, that could be adapted to different contexts, integrate community contributions, and connect to generic data and model management software? What role could open-source play in such a project? How could a genericuser-interface and data/model management software sustainably be attached to this model or suite of models? Finally, how could such a system effectively leverage existing model formulations, modeling technologies and software? These questions are addressed by the initial work presented here. We introduce a generic water resource simulation formulation that enables and integrates both rule-based and optimization driven technologies. We suggest how it could be linked to other sub-models allowing for detailed agent-based simulation of water management behaviours. An early formulation is applied as an example to the Thames water resource system in the UK. The model uses centralised optimisation to calculate allocations but allows for rule-based operations as well in an effort to represent observed behaviours and rules with fidelity. The model is linked through import/export commands to a generic network model platform named Hydra. Benefits and limitations of the approach are discussed and planned work and potential use cases are outlined.

  2. Measuring Pilot Workload in a Moving-base Simulator. Part 2: Building Levels of Workload

    Science.gov (United States)

    Kantowitz, B. H.; Hart, S. G.; Bortolussi, M. R.; Shively, R. J.; Kantowitz, S. C.

    1984-01-01

    Pilot behavior in flight simulators often use a secondary task as an index of workload. His routine to regard flying as the primary task and some less complex task as the secondary task. While this assumption is quite reasonable for most secondary tasks used to study mental workload in aircraft, the treatment of flying a simulator through some carefully crafted flight scenario as a unitary task is less justified. The present research acknowledges that total mental workload depends upon the specific nature of the sub-tasks that a pilot must complete as a first approximation, flight tasks were divided into three levels of complexity. The simplest level (called the Base Level) requires elementary maneuvers that do not utilize all the degrees of freedom of which an aircraft, or a moving-base simulator; is capable. The second level (called the Paired Level) requires the pilot to simultaneously execute two Base Level tasks. The third level (called the Complex Level) imposes three simultaneous constraints upon the pilot.

  3. The Argo Simulation: II. The Early Build-up of the Hubble Sequence

    CERN Document Server

    Feldmann, Robert

    2014-01-01

    The Hubble sequence is a common classification scheme for the structure of galaxies. Despite the tremendous usefulness of this diagnostic, we still do not fully understand when, where, and how this morphological ordering was put in place. Here, we investigate the morphological evolution of a sample of 22 high redshift ($z\\geq3$) galaxies extracted from the Argo simulation. Argo is a cosmological zoom-in simulation of a group-sized halo and its environment. It adopts the same high resolution ($\\sim10^4$ M$_\\odot$, $\\sim100$ pc) and sub-grid physical model that was used in the Eris simulation but probes a sub-volume almost ten times bigger with as many as 45 million gas and star particles in the zoom-in region. Argo follows the early assembly of galaxies with a broad range of stellar masses ($\\log M_{\\star}/{\\rm M}_{\\odot}\\sim8-11$ at $z\\simeq3$), while resolving properly their structural properties. We recover a diversity of morphologies, including late-type/irregular disc galaxies with flat rotation curves, s...

  4. Building a three-dimensional model of the upper gastrointestinal tract for computer simulations of swallowing.

    Science.gov (United States)

    Gastelum, Alfonso; Mata, Lucely; Brito-de-la-Fuente, Edmundo; Delmas, Patrice; Vicente, William; Salinas-Vázquez, Martín; Ascanio, Gabriel; Marquez, Jorge

    2016-03-01

    We aimed to provide realistic three-dimensional (3D) models to be used in numerical simulations of peristaltic flow in patients exhibiting difficulty in swallowing, also known as dysphagia. To this end, a 3D model of the upper gastrointestinal tract was built from the color cryosection images of the Visible Human Project dataset. Regional color heterogeneities were corrected by centering local histograms of the image difference between slices. A voxel-based model was generated by stacking contours from the color images. A triangle mesh was built, smoothed and simplified. Visualization tools were developed for browsing the model at different stages and for virtual endoscopy navigation. As result, a computer model of the esophagus and the stomach was obtained, mainly for modeling swallowing disorders. A central-axis curve was also obtained for virtual navigation and to replicate conditions relevant to swallowing disorders modeling. We show renderings of the model and discuss its use for simulating swallowing as a function of bolus rheological properties. The information obtained from simulation studies with our model could be useful for physicians in selecting the correct nutritional emulsions for patients with dysphagia.

  5. Influence of Indoor Hygrothermal Conditions on Human Quality of Life in Social Housing

    Science.gov (United States)

    Soares, Sara; Fraga, Silvia; Delgado, Joao M.P.Q.

    2015-01-01

    adopt a similar approach. The case study results will allow to define building rehabilitation policies, improving residents’ quality of life and adding great contribution to public health promotion. PMID:26753162

  6. Current State of Numerical Simulations and Testing for the Blast and Impact Protection of the Build Civil Engineering Infrastructure

    Institute of Scientific and Technical Information of China (English)

    GEBBEKEN Norbert

    2006-01-01

    The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere,even with the IT-infrastructure.Therefore,the passive safety of structures is demanded.Security associations have analysed that most assaults came along with explosion and impact scenarios,which amount in 80% of assaults.Consequently,these are the extraordinary loads the structures have to be planned and designed for.To carry out such an engineering job,the engineer has to be educated in multiple disciplines as physics,material science,continuum mechanics,numerical mechanics,testing,structural engineering and related specific fields as wave propagation etc.In this paper we will concentrate on the subjects of numerical simulation and testing.

  7. Simulation and experimental study of thermal performance of a building roof with a phase change material (PCM)

    Indian Academy of Sciences (India)

    A Mannivannan; M T Jaffarsathiq Ali

    2015-12-01

    Latent heat storage in a phase change material (PCM) is very attractive because of its high-energy storage density and its isothermal behaviour during the phase change process. Low thermal conductivity of the walls and roof reduces the heat gain at a steady state condition. Chloride hexahydrate (CaCl26H2O) as a phase change material (PCM) for a room was proposed in this paper to control the indoor air temperature for a better thermal comfort for human beings. Building concrete roof with vertical cylindrical hole of 0.5 $\\times$ 0.5 m and array of 3 $\\times$ 3 filled with phase change material (PCM) was considered for analysis. A detailed thermal analysis was carried by both simulation and experimental study. Results showed that this type of PCM room can decrease the indoor air temperature fluctuation by a maximum of 4°C.

  8. Building a LiDAR point cloud simulator: Testing algorithms for high resolution topographic change

    Science.gov (United States)

    Carrea, Dario; Abellán, Antonio; Derron, Marc-Henri; Jaboyedoff, Michel

    2014-05-01

    Terrestrial laser technique (TLS) is becoming a common tool in Geosciences, with clear applications ranging from the generation of a high resolution 3D models to the monitoring of unstable slopes and the quantification of morphological changes. Nevertheless, like every measurement techniques, TLS still has some limitations that are not clearly understood and affect the accuracy of the dataset (point cloud). A challenge in LiDAR research is to understand the influence of instrumental parameters on measurement errors during LiDAR acquisition. Indeed, different critical parameters interact with the scans quality at different ranges: the existence of shadow areas, the spatial resolution (point density), and the diameter of the laser beam, the incidence angle and the single point accuracy. The objective of this study is to test the main limitations of different algorithms usually applied on point cloud data treatment, from alignment to monitoring. To this end, we built in MATLAB(c) environment a LiDAR point cloud simulator able to recreate the multiple sources of errors related to instrumental settings that we normally observe in real datasets. In a first step we characterized the error from single laser pulse by modelling the influence of range and incidence angle on single point data accuracy. In a second step, we simulated the scanning part of the system in order to analyze the shifting and angular error effects. Other parameters have been added to the point cloud simulator, such as point spacing, acquisition window, etc., in order to create point clouds of simple and/or complex geometries. We tested the influence of point density and vitiating point of view on the Iterative Closest Point (ICP) alignment and also in some deformation tracking algorithm with same point cloud geometry, in order to determine alignment and deformation detection threshold. We also generated a series of high resolution point clouds in order to model small changes on different environments

  9. A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2011-07-01

    Full Text Available The need for improved lifetime of air-breathing proton exchange membrane (PEM fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a planar ambient air-breathing, proton exchange membrane fuel cell has been developed and used to study the effects of ambient conditions on the temperature distribution, displacement, deformation, and stresses inside the cell. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. A unique feature of the present model is to incorporate the effect of mechanical, hygro and thermal stresses into actual three-dimensional fuel cell model. The results show

  10. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    Science.gov (United States)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of

  11. An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    comfortable and healthy indoor environments. New paradigms for demand control of ventilation will be investigated, which consider the pollution loads and occupancy in buildings. As well, the thermal and moisture conditions of such advanced building shall be considered because of interactions between...... focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ). Annex 68...... the hygrothermal parameters, the chemical conditions, ventilation and the wellbeing of occupants. The project is divided into the five subtasks: 1. Defining the metrics. 2. Pollutant loads in residential buildings. 3. Modeling. 4. Strategies for design and control of buildings. 5. Field measurements and case...

  12. Building Model for the University of Mosul Computer Network Using OPNET Simulator

    Directory of Open Access Journals (Sweden)

    Modhar Modhar A. Hammoudi

    2013-04-01

    Full Text Available This paper aims at establishing a model in OPNET (Optimized Network Engineering Tool simulator for the University of Mosul computer network. The proposed network model was made up of two routers (Cisco 2600, core switch (Cisco6509, two servers, ip 32 cloud and 37 VLANs. These VLANs were connected to the core switch using fiber optic cables (1000BaseX. Three applications were added to test the network model. These applications were FTP (File Transfer Protocol, HTTP (Hyper Text Transfer Protocol and VoIP (Voice over Internet Protocol. The results showed that the proposed model had a positive efficiency on designing and managing the targeted network and can be used to view the data flow in it. Also, the simulation results showed that the maximum number of VoIP service users could be raised upto 5000 users when working under IP Telephony. This means that the ability to utilize VoIP service in this network can be maintained and is better when subjected to IP telephony scheme.

  13. On the estimation of wind comfort in a building environment by micro-scale simulation

    Directory of Open Access Journals (Sweden)

    Günter Gross

    2014-06-01

    Full Text Available A three-dimensional micro-scale model is used to study some aspects of wind comfort in a built-up area. The equations for calculating the mean wind have been extended by a Markov approach for short-term wind fluctuations. The model components have been successfully verified against wind tunnel measurements and observations of a field experiment. The simulated time series are used to estimate wind comfort measures. It turns out that the frequency of exceedance of prescribed thresholds depends strongly on the specification of the gust duration time. It was also possible to calculate the spatial distribution of a gust factor g$g$ depending on local wind characteristics. The simulated range is much broader than a value of g=3–3.5$g=3\\text{--}3.5$ commonly used for wind comfort assessments. Again, the order of magnitude and the bandwidth of g$g$ depends strongly on the definition of a gust.

  14. The Open Source Stochastic Building Simulation Tool SLBM and Its Capabilities to Capture Uncertainty of Policymaking in the U.S. Building Sector

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Azevedo, Ines Lima; Komiyama, Ryoichi; Lai, Judy

    2009-05-14

    The increasing concern about climate change as well as the expected direct environmental economic impacts of global warming will put considerable constraints on the US building sector, which consumes roughly 48percent of the total primary energy, making it the biggest single source of CO2 emissions. It is obvious that the battle against climate change can only be won by considering innovative building approaches and consumer behaviors and bringing new, effective low carbon technologies to the building / consumer market. However, the limited time given to mitigate climate change is unforgiving to misled research and / or policy. This is the reason why Lawrence Berkeley National Lab is working on an open source long range Stochastic Lite Building Module (SLBM) to estimate the impact of different policies and consumer behavior on the market penetration of low carbon building technologies. SLBM is designed to be a fast running, user-friendly model that analysts can readily run and modify in its entirety through a visual interface. The tool is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies. It also incorporates consumer preferences and passive building systems as well as interactions between technologies (such as internal heat gains). Furthermore, everything is based on service demand, e.g. a certain temperature or luminous intensity, instead of energy intensities. The core objectives of this paper are to demonstrate the practical approach used, to start a discussion process between relevant stakeholders and to build collaborations.

  15. Modeling, simulation and analysis of the evacuation process on stairs in a multi-floor classroom building of a primary school

    Science.gov (United States)

    Li, Wenhang; Li, Yi; Yu, Ping; Gong, Jianhua; Shen, Shen; Huang, Lin; Liang, Jianming

    2017-03-01

    Few studies have focused on the evacuation of multi-floor classroom buildings in a primary school, a process that differs from evacuations in other buildings. A stair-unit model was proposed to describe the spatial topology of twisting stairwells and to describe the spatial relationship between stairwells and floors. Based on the stair-unit model, a schedule-line model was proposed to calculate evacuation paths in stair-units; a modified algorithm to calculate pedestrian forces were proposed to describe the evacuee movements in stairwells; and a projection strategy was proposed to model the 3-dimensional evacuation process in multi-floor buildings. The simulated processes were compared with a real evacuation drill. The results showed that the simulated process achieved qualitative and quantitative consistencies with the real drill, proving the appropriateness of the proposed models and algorithms. Based on the validation, further simulations were conducted and a few rules for evacuations in stairwells were identified including rules governing the impact of the moment of entering a staircase, the number of students in a class, the stagger strategy, and the layout of grades on different floors on the time in stairwell and the total evacuation duration. The results can be used to mitigate the effects of a fire disaster, and the proposed models and algorithms can also be referenced by evacuation simulation for other multi-floor buildings such as residential buildings.

  16. Dynamic model building and simulation for mechanical main body of lunar lander

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-chun; DENG Zong-quan; HU Ming; GAO Hai-bo

    2005-01-01

    Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.

  17. Simulation study of electron cloud build up in the SPS MKD kickers

    CERN Document Server

    Rumolo, G

    2009-01-01

    During the 2008 run, an unusual behavior characterizing pressure and temperature increase in some of the dump kickers of the SPS was noticed. In particular, it was observed that 1) the MKDV2 kicker would exhibit maximum heating with 75 ns spaced LHC beams and 2) the pressure rise was specially critical in MKDV1 in presence of 50 ns spaced LHC beams [1]. While the anomalous heating of MKDV2 with 75 ns beams could be tentatively explained by the denser beam current spectrum that would more likely hit one of the kicker impedance peaks, the fast pressure rise in MKDV1 with 50 ns spaced beams was ascribed to a surface effect, namely beam induced multipacting leading to electron cloud formation. This report summarizes a simulation study that was done in order to check whether the electron cloud behavior in the dump kickers could explain the experimental observations.

  18. Numerical Simulation of Multistory Building Fire with Zone—Modeling Method

    Institute of Scientific and Technical Information of China (English)

    FuZhuman; FanWeicheng

    1996-01-01

    Based on the basic idea of zone modeling method,a two-layer zone model is developed and programmed to calculate the fire growth and smoke spread in a multi-room buiding subjected to a fire.The related predictive equations,numerical simulation method and sub-models implemented in this model are concisely described.A set of experimental data from Cooper's work at NIST for a two-room compartment fire are chosen for comparison with the model and program,and the numerical results fundamentally agree well with the experimental data,Then,an example of numerical calculation of a two-stoy duilding fire is presented,and the relevant output results are given and analyzed.

  19. Monte Carlo Simulations of Luminescent Solar Concentrators with Front-Facing Photovoltaic Cells for Building Integrated Photovoltaics

    Science.gov (United States)

    Leow, Shin; Corrado, Carley; Osborn, Melissa; Carter, Sue

    2013-03-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles and concentrate the captured light on to small photo active areas. This enables LSCs to be integrated more extensively into buildings as windows and wall claddings on top of roof installations. LSCs with front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. It also allows for flexibility in determining the placement and percentage coverage of PV cells when designing panels to balance reabsorption losses, power output and the level of concentration desired. A Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels and aid in design optimization. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters. Interactions of photons with the LSC panel are determined by comparing calculated probabilities with random number generators. Simulation results reveal optimal panel dimensions and PV cell layouts to achieve maximum power output.

  20. An urban scale inverse modelling for retrieving unknown elevated emissions with building-resolving simulations

    Science.gov (United States)

    Kumar, Pramod; Singh, Sarvesh Kumar; Feiz, Amir-Ali; Ngae, Pierre

    2016-09-01

    This study illustrates an atmospheric source reconstruction methodology for identification of an unknown continuous point release in the geometrically complex urban environments. The methodology is based on the renormalization inversion theory coupled with a building resolving Computational Fluid Dynamics (CFD) modelling approach which estimates the release height along with the projected location on the ground surface and the intensity of an unknown continuous point source in an urban area. An estimation of the release height in a three-dimensional urban environment is relatively more difficult from both technical and computational point of view. Thus, a salient feature of the methodology is to address the problem of vertical structure (i.e. height of a source) in atmospheric source reconstruction in three-dimensional space of an urban region. The inversion methodology presents a way to utilize a CFD model fluidyn-PANACHE in source reconstruction in the urban regions. The described methodology is evaluated with 20 trials of the Mock Urban Field Setting Test (MUST) field experiment in various atmospheric stability conditions varying from neutral to stable and very stable conditions. The retrieved source parameters in all the 20 trials are estimated close to their true source. The source height is retrieved within a factor of two and four in 55% and 75% of the MUST trials, respectively. The averaged location error for all 20 trials is obtained 14.54 m with a minimum of 3.58 m and maximum of 34.55 m. The averaged estimated release rate for all trials is overpredicted within a factor of 1.48 of the true source intensity and in 85% of the trials, it is retrieved within in factor of two. In source reconstruction with non-zero measurements, it was observed that the use of all concentration measurements instead of only non-zero essentially makes only the small differences in quality of the source reconstruction and gives a little additional information for better

  1. Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Ashfaque Ahmed; Rasul, M.G.; Khan, M.M.K. [College of Engineering and the Built Environment, Faculty of Sciences, Engineering and Health, Central Queensland University, Rockhampton, Qld 4702 (Australia)

    2008-06-15

    Simulation of buildings' thermal-performances is necessary to predict comfort of the occupants in buildings and to identify alternate cooling control-systems for achieving better indoor thermal environments. An analysis and prediction of thermal-comfort using DesignBuilder, based on the state-of-the-art building performance simulation software EnergyPlus, is carried out in an air-conditioned multi-storeyed building in the city of Rockhampton in Central Queensland, Australia. Rockhampton is located in a hot humid-region; therefore, indoor thermal-comfort is strongly affected by the outdoor climate. This study evaluates the actual thermal conditions of the Information Technology Division (ITD) building at Central Queensland University during winter and summer seasons and identifies the thermal comfort level of the occupants using low-energy cooling technologies namely, chilled ceiling (CC), economiser usages and pre-cooling. The Fanger comfort-model, Pierce two-node model and KSU two-node model were used to predict thermal performance of the building. A sophisticated building-analysis tool was integrated with the thermal comfort models for determining appropriate cooling-technologies for the occupants to be thermally comfortable while achieving sufficient energy savings. This study compares the predicted mean-vote (PMV) index on a seven-point thermal-sensation scale, calculated using the effective temperature and relative humidity for those cooling techniques. Simulated results show that systems using a chilled ceiling offer the best thermal comfort for the occupants during summer and winter in subtropical climates. The validity of the simulation results was checked with measured values of temperature and humidity for typical days in both summer and winter. The predicted results show a reasonable agreement with the measured data. (author)

  2. Building Energy Simulation and Analysis for A Building Group in Guangzhou%广州地区某建筑群典型建筑能耗模拟及分析

    Institute of Scientific and Technical Information of China (English)

    江向阳; 张勇华

    2011-01-01

    In this paper, the software of eQUEST is used to simulate energy consumption for two typical buildings in building group in Guangzhou, by which two typical buildings energy-saving rates are obtained. Simulation results show that through enhanced natural ventilation, improved thermal performance of envelope and improved EER of air conditioning system, the energy-saving rates of building A1 and building B1 are 69.7% and 64.8% respectively. The building energy efficiency design is superior to《Residential building energy efficiency design standard in hot summer and warm winter zone》 JGJ 75-2003. It plays an exemplary role in progressively implementing the design stan- dard of energy-saving 65% in Guangzhou.%本文运用eQUEST软件对广州地区某建筑群内典型建筑进行能耗模拟计算.计算两栋典型建筑的节能率。计算结果表明,通过强化建筑自然通风降温功能,提高围护结构隔热性能和提高空调设备能效比等节能措施,A1建筑和B1建筑节能率分别为69.7%和64.8%。该建筑群的节能设计优于《夏热冬暖地区建筑节能设计标准》JGJ75—2003提出的建筑节能50%标准,对在广州地区居住建筑中逐步实施节能65%的建筑节能设计标准具有重要的示范作用。

  3. On the Use of Integrated Daylighting and Energy Simulations to Drive the Design of a Large Net-Zero Energy Office Building: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmetti, R.; Pless, S.; Torcellini, P.

    2010-08-01

    This paper illustrates the challenges of integrating rigorous daylight and electric lighting simulation data with whole-building energy models, and defends the need for such integration to achieve aggressive energy savings. Through a case study example, we examine the ways daylighting -- and daylighting simulation -- drove the design of a large net-zero energy project. We give a detailed review of the daylighting and electric lighting design process for the National Renewable Energy Laboratory's Research Support Facility (RSF), a 220,000 ft2 net-zero energy project the author worked on as a daylighting consultant. A review of the issues involved in simulating and validating the daylighting performance of the RSF will be detailed, including daylighting simulation, electric lighting control response, and integration of Radiance simulation data into the building energy model. Daylighting was a key strategy in reaching the contractual energy use goals for the RSF project; the building's program, layout, orientation and interior/furniture design were all influenced by the daylighting design, and simulation was critical in ensuring these many design components worked together in an integrated fashion, and would perform as required to meet a very aggressive energy performance goal, as expressed in a target energy use intensity.

  4. Large-Eddy Simulation of pollutant dispersion around a cubical building: analysis of the turbulent mass transport mechanism by unsteady concentration and velocity statistics.

    Science.gov (United States)

    Gousseau, P; Blocken, B; van Heijst, G J F

    2012-08-01

    Pollutant transport due to the turbulent wind flow around buildings is a complex phenomenon which is challenging to reproduce with Computational Fluid Dynamics (CFD). In the present study we use Large-Eddy Simulation (LES) to investigate the turbulent mass transport mechanism in the case of gas dispersion around an isolated cubical building. Close agreement is found between wind-tunnel measurements and the computed average and standard deviation of concentration in the wake of the building. Since the turbulent mass flux is equal to the covariance of velocity and concentration, we perform a detailed statistical analysis of these variables to gain insight into the dispersion process. In particular, the fact that turbulent mass flux in the streamwise direction is directed from the low to high levels of mean concentration (counter-gradient mechanism) is explained. The large vortical structures developing around the building are shown to play an essential role in turbulent mass transport.

  5. Radon exhalation from phosphogypsum building boards: symmetry constraints, impermeable boundary conditions and numerical simulation of a test case.

    Science.gov (United States)

    Rabi, J A; da Silva, Nivaldo C

    2006-01-01

    Comprehensive understanding of (222)Rn exhalation from phosphogypsum-bearing building material and its accumulation in indoor air is likely to rely on numerical simulation, particularly if transient effects, three-dimensional domains and convection are to be included and investigated. Yet, experimental data and analytical results are helpful (if not crucial) as far as validation is concerned. Having in mind computational code simplicity and in the light of a recent experimental and theoretical report on (222)Rn release from phosphogypsum boards for housing panels, this paper presents and discusses an alternative testing set-up and the corresponding boundary conditions, namely one side of the panel bounded by impermeable wall. Although this is a new facility to be tested, the resultant steady-state one-dimensional diffusion-dominant analytical solution is shown to match the counterpart deduced in the aforementioned previous report, despite it relaxes the constraint of symmetry about the phosphogypsum board centerline, which is inferred in that prior experimental scenario. In addition, numerical results are conducted for a diffusion-dominant two-dimensional time-varying test case concerning (222)Rn accumulation in a closed chamber having an exhaling phosphogypsum board tightly placed at one wall.

  6. A cellular automaton based model simulating HVAC fluid and heat transport in a building. Modeling approach and comparison with experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, A. [Department of Applied Mathematics, Polytechnic University of Valencia, ETSGE School, Camino de Vera s/n, 46022 Valencia (Spain); Urchueguia, J.F. [Department of Applied Physics, Polytechnic University of Valencia, ETSII School, Camino de Vera s/n, 46022 Valencia (Spain); Martos, J. [Superior Technical School of Engineering, Department of Electronic Engineering, University of Valencia, Vicente Andres Estelles s/n, Burjassot 46100, Valencia (Spain)

    2010-09-15

    A discrete model characterizing heat and fluid flow in connection with thermal fluxes in a building is described and tested against experiment in this contribution. The model, based on a cellular automaton approach, relies on a set of a few quite simple rules and parameters in order to simulate the dynamic evolution of temperatures and energy flows in any water or brine based thermal energy distribution network in a building or system. Using an easy-to-record input, such as the instantaneous electrical power demand of the heating or cooling system, our model predicts time varying temperatures in characteristic spots and the related enthalpy flows whose simulation usually requires heavy computational tools and detailed knowledge of the network elements. As a particular example, we have applied our model to simulate an existing fan coil based hydronic heating system driven by a geothermal heat pump. When compared to the experimental temperature and thermal energy records, the outcome of the model coincides. (author)

  7. Teaching Practice and Pondering of Green Building Design Based on Building Performance Simulation Technology%基于建筑性能模拟技术的绿色建筑设计教学实践与思考

    Institute of Scientific and Technical Information of China (English)

    宗德新; 曾旭东; 王景阳

    2012-01-01

    可持续发展理论促进了生态城市和绿色建筑的发展,建筑教育需要积极地将相关内容融入原有的教学体系中。建筑性能模拟技术可以为绿色建筑设计提供技术支撑,本文列举了不同类型的建筑性能模拟软件的各自特点与适用范围,介绍了绿色建筑系列毕业设计课程教学中准备阶段、中期阶段和成果阶段的教学过程,以及在不同阶段运用数字技术的方法,总结了教学中遇到的问题及经验,提出了建立绿色建筑教学体系的思考与展望。%The development of ecological city and green building has been pushed up by the thoughts of sustainable development, and the architectural education should integrate the related content of green building into the original teaching system step by step. Building performance simulation technology can provide the technical support for green building design. This paper summarized the respective characteristics and applicable scopes of various building performance simulation software, and introduced the teaching process of graduation design in preparatory stage, middle stage and outcome stage and the different digital technology methods in each stage. It also made a summary of the encountered problems and the experience in the teaching process and prospected the future work.

  8. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yixing [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Zhang, Jianshun [Syracuse Univ., NY (United States); Pelken, Michael [Syracuse Univ., NY (United States); Gu, Lixing [Univ. of Central Florida, Orlando, FL (United States); Rice, Danial [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Meng, Zhaozhou [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Semahegn, Shewangizaw [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Feng, Wei [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Ling, Francesca [Syracuse Univ., NY (United States); Shi, Jun [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Henderson, Hugh [CDH Energy, Cazenovia, NY (United States)

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus

  9. Numerical simulation study of the effect of buildings and complex terrain on the low-level winds at an airport in typhoon situation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei [Shenzhen Meteorological Bureau, Shenzhen (China). Shenzhen National Climate Observatory; Chinese Academy of Sciences, Beijing (China). State Key of Lab. of Atmospheric Boundary Physics and Atmospheric Chemistry; Chan, P.W. [Hong Kong Observatory, Kowloon, Hong Kong (China)

    2012-04-15

    Apart from terrain-induced airflow disturbances and thunderstorms, buildings and artificial structures at airports may bring about sudden wind changes to aircraft in certain weather conditions. In the typhoon situation in the morning of 22 August 2008 under a generally crosswind situation, two aircraft landing at the Hong Kong International Airport reported encountering significant wind changes, which were considered to affect the operation of the aircraft. At the same time, a wind speed difference in the order of 10-15 knots was observed between the anemometers at the north and the south parallel runways of the airport. The cause of the wind changes experienced by the aircraft is studied in this paper by using numerical simulation, namely, using mesoscale meteorological models to provide the background wind fields, and nesting them with a computational fluid dynamics (CFD) model to study the effect of buildings and terrain on the airflow along the glide path of the landing aircraft. It is found that the complete set of simulation (i.e. including both buildings and terrain) successfully captures the wind speed difference between the north and the south runways, and gives the drop of the crosswind along the glide path exceeding the 7-knot criterion as adopted for building-induced wind changes affecting the normal operation of the aircraft. The results of the present study suggest that, for the timely warning of wind changes to be encountered by the landing aircraft, it may be necessary to consider examining the low-level wind effects of the buildings on the airfield by performing numerical simulations by mesoscale meteorological models as nested with a CFD model. (orig.)

  10. The improvement of the hygrothermal and mechanical properties of bismaleimide and K3B/IM7 carbon-fiber composites through a systematic study of the interphase

    Science.gov (United States)

    Wilenski, Mark Stewart

    Advanced aircraft travel at speeds in excess of mach 2 result in external skin temperatures ranging from {-}60sp°C to +190sp°C with extreme heating and cooling rates in the presence of moisture. This combination of environments presents a challenge to current materials. IM7 carbon fiber composites made with either bismaleimide (a thermoset) or K3B (a thermoplastic polyimide) resin are being considered for this use. The overall objective of this research was to develop a greater understanding of both the macroscopic response of these materials to hygrothermal and thermal spike environments, as well as the molecular level interactions which affect the ability of the resins to bond to the fiber. Hygrothermal testing of BMI/IM7 composites showed that resin properties are reduced by the presence of moisture while composite properties are virtually unaffected. Exposure of composites to a relatively small number of thermal spikes between room temperature and 250sp°C was shown to have little effect on BMI/IM7 composites, but causes excessive blistering of wet K3B/IM7 composites. A macroscopic microcracking phenomenon is observed in cross-ply laminates of the BMI/IM7 system. This was shown to be due to the generation of thermal residual stresses formed during cool down from a "stress-free temperature." Both finite element and analytical models were utilized to analyze the causes of this microcracking with a focus on methods for minimizing the resultant stresses. Several methods with potential were identified and suggestions for future work are made. Microscopically, tests of the bond strength between both the BMI and K3B resins with the unsized IM7 fiber indicated that the adhesion was low. Experimentation on the BMI/IM7 system was able to identify that the only active adhesion promoting mechanism was mechanical interlocking and not chemical bonds between functionalities on the fiber surface and the resin. Various methods for improving the adhesion in the BMI/IM7 system

  11. A CFD study of hygro-thermal stresses distribution in tubular-shaped ambient air-breathing PEM micro fuel cell during regular cell operation

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2010-03-01

    Full Text Available The need for improved lifetime of air-breathing proton exchange membrane (PEM fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature, humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a novel, tubular, ambient air-breathing, proton exchange membrane micro fuel cell has been developed and used to investigate the displacement, deformation, and stresses inside the whole cell, which developed during the cell operation due to the changes of temperature and relative humidity. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. In addition to the new and complex geometry, a unique feature of the present model is to incorporate the effect of

  12. Two-Dimensional Transient Modeling of Energy and Mass Transfer in Porous Building Components using COMSOL Multiphysics

    Directory of Open Access Journals (Sweden)

    Mustapha Maliki

    2017-01-01

    Full Text Available This paper reports on a transient heat, air and moisture transfer (HAM model. The governing partial-differential equations are simultaneously solved for temperature and capillary pressure through multi-layered porous media, including the non-linear transfer and storage properties of materials. Using partial differential equations functions, some thermo-physical properties of porous media are converted into coefficients depending on temperature and capillary pressure. Major features of the model are multi-dimensional and transient coupling of heat, air and moisture transport. The coupled equations are solved using the COMSOL Multiphysics time-dependent solver. This solver enables HAM (Heat, Air, Moisture modeling in porous media. Besides, the good agreements obtained with a 2D benchmark suggest that the model can be used to assess the hygrothermal performance of building envelope components. This paper concludes that the total heat flux in the insulated wall represents only the quarter of that crossing the uninsulated concrete roof. On the other hand, the concrete having the lowest water vapour permeability of all used materials allows maintaining the vapour pressure levels close to the initial value (103 Pa. This induces a situation of interstitial condensation within the concrete of the roof. Being able to evaluate the hygrothermal behaviour, the proposed model may turn out to be a valuable tool to solve other building problems.

  13. The Interdisciplinary Research of Virtual Recovery and Simulation of Heritage Buildings. Take Lingzhao Xuan in the Palace Museum as an Example

    OpenAIRE

    Liyu Fang

    2014-01-01

    Due to natural disasters, economic development, tourism development and other factors, many precious heritage buildings have been in endangered situation. How to protect, research and develop these heritage resources effectively has become very urgent and important. Three-dimensional (3D) digital technology plays a more and more important role in protecting and using cultural heritage. The article will take the synthetic study on the mode of virtual construction, recovery, simulation and exhi...

  14. The impact of hygrothermal preconditioning on mode II interlaminar fracture toughness in unidirectional carbon fiber reinforced epoxy composites: An experimental investigation

    Science.gov (United States)

    Hempowicz, Michael L.

    The correlation between the interlaminar Mode II fracture toughness (GIIC) of a carbon fiber reinforced epoxy and other material properties across different conditioning regimes was investigated. Specimens were preconditioned using select hygrothermal criteria to evaluate how changes in the material and mechanical properties in a carbon fiber/epoxy composite correlations with changes in GIIC for each regime. An increase in GIIC from baseline values was demonstrated across all conditions from end-notched flexure (ENF) testing. Dynamic mechanical analysis (DMA) and tensile tests had varying responses based on preconditioning environment. Since tensile and some DMA properties rely on fiber strength and show property loss with increased plasticization, fiber strength may not have a large impact on GIIC properties. Test data also implied that the GIIC increased when consolidation of the polymer chains occurred in the arid condition as well as when crosslink density increased in the moisture exposed conditions. From these results it is believed that the chemical and physical changes in matrix cohesion are more important to GIIC behavior prediction than fiber behavior.

  15. Use of model reduction techniques for a simulation code in building thermal behaviour modelling; Integration de la reduction de modele a un code de simulation hygro-thermo-aeraulique de batiments

    Energy Technology Data Exchange (ETDEWEB)

    Berthomieu, Th.; Boyer, H. [Universite de la Reunion (France). Laboratoire de Genie Industriel

    2004-02-01

    It is possible at present to perform complex thermal studies, integrating various thermal sources and for various buildings, using energetic software. It is always interesting to simplify the calculation process with numerical reduction techniques. In this paper a reduction technique using the decomposition of a complex system in elementary components linked each other by simple relations is presented. This reduction is performed in simulation code Codyrum, which can be used for research purpose of for design help. The results of simulation are compared with experimental results. (authors)

  16. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  17. CFD simulation of pollutant dispersion around isolated buildings: on the role of convective and turbulent mass fluxes in the prediction accuracy.

    Science.gov (United States)

    Gousseau, P; Blocken, B; van Heijst, G J F

    2011-10-30

    Computational Fluid Dynamics (CFD) is increasingly used to predict wind flow and pollutant dispersion around buildings. The two most frequently used approaches are solving the Reynolds-averaged Navier-Stokes (RANS) equations and Large-Eddy Simulation (LES). In the present study, we compare the convective and turbulent mass fluxes predicted by these two approaches for two configurations of isolated buildings with distinctive features. We use this analysis to clarify the role of these two components of mass transport on the prediction accuracy of RANS and LES in terms of mean concentration. It is shown that the proper simulation of the convective fluxes is essential to predict an accurate concentration field. In addition, appropriate parameterization of the turbulent fluxes is needed with RANS models, while only the subgrid-scale effects are modeled with LES. Therefore, when the source is located outside of recirculation regions (case 1), both RANS and LES can provide accurate results. When the influence of the building is higher (case 2), RANS models predict erroneous convective fluxes and are largely outperformed by LES in terms of prediction accuracy of mean concentration. These conclusions suggest that the choice of the appropriate turbulence model depends on the configuration of the dispersion problem under study. It is also shown that for both cases LES predicts a counter-gradient mechanism of the streamwise turbulent mass transport, which is not reproduced by the gradient-diffusion hypothesis that is generally used with RANS models.

  18. Development of a simplified method for intelligent glazed façade design under different control strategies and verified by building simulation tool BSim

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    The research aims to develop a simplified calculation method for intelligent glazed facade under different control conditions (night shutter, solar shading and natural ventilation) to simulate the energy performance and indoor environment of an office room installed with the intelligent facade....... The method took the angle dependence of the solar characteristic into account, including the simplified hourly building model developed according to EN 13790 to evaluate the influence of the controlled façade on both the indoor environment (indoor air temperature, solar transmittance through the façade......, it is possible to calculate the whole year performance of a room or building with intelligent glazed façade, which makes it a less time consuming tool to investigate the performance of the intelligent façade under different control strategies in the design stage with acceptable accuracy. Results showed good...

  19. 建筑能耗模拟在能源审计中的应用%Application of building energy simulation to energy audit

    Institute of Scientific and Technical Information of China (English)

    宋应乾; 曾艺; 龙惟定

    2011-01-01

    以某大厦为例,阐述了建筑能耗模拟时的模型校验方法,并利用经过校验的模型进行了能耗预测和节能量计算.指出在进行能源审计时,必须用实际的建筑资料和历史能耗数据对所建模型进行校验,只有经过实测能耗数据校验的模型才能对建筑能耗进行准确预测;通过能耗模拟进行能耗预测和节能量计算,可以节省大量的时间,且更加准确、直观,具有很好的应用前景.%Taking a group of buildings as an example, describes the model verification method in building energy simulation, and makes energy consumption prediction and energy saving calculation based on the verified model. Points out that actual building energy consumption data and historical data should be used to verify the model during energy audit, only the model that is verified by the measured energy consumption data can be used to accurately predict building energy consumption; demonstrates that using energy simulation to make energy consumption prediction and energy saving calculation can save a lot of time, be more accurate and intuitive, and it will have a good prospect.

  20. 高层住宅建筑火灾人员疏散仿真研究%Study on evacuation simulation of high-rise residential building fire

    Institute of Scientific and Technical Information of China (English)

    邢志祥; 唐永; 高文莉

    2012-01-01

    基于高层建筑火灾的严重危害,本文在具体分析阐述我国目前高层住宅建筑的户型设计现状后,以长沙市某高层塔式住宅建筑为研究对象,利用人员疏散软件Building EXODUS( V4.06版)和烟气模拟软件CFAST对发生火灾后建筑物的人员疏散和烟气流动情况仿真模拟.研究表明,逃生楼梯的设计位置对高层塔式住宅的人员疏散效率影响较大;在发生紧急情况后,事前是否进行过疏散演习和事中的人工干预引导疏散对保障高层住宅建筑火灾居民的生命安全尤为重要;高层住宅建筑火灾,起火楼层越底,伤亡越大.%Based on the serious danger of high-rise building fire, in this paper the passenger evacuation and the smoke movement of a high-rise tower partment structural fire in Changsha were simulated using evacuation software Building EXODUS V4. 06 and fire simulation software CFAST after the analysis of different design of high-rise partment building at present particularly. The computation results showed that the location of evacuation staircase has a significant effect to the evacuation efficiency and preventative evacuation practice and manual intervention are propitious to passenger evacuation. It is also indicated that the higher floors fire is more dangerous than the lower floors fire.

  1. Numerical Simulation of the Application of Solar Radiant Systems, Internal Airflow and Occupants’ Presence in the Improvement of Comfort in Winter Conditions

    Directory of Open Access Journals (Sweden)

    Eusébio Z. E. Conceição

    2016-09-01

    Full Text Available In this work, the use of numerical simulation in the application of solar radiant systems, internal airflow and occupants’ presence in the improvement of comfort in winter conditions is made. The thermal comfort, the local thermal discomfort and the air quality in an occupied chamber space are evaluated. In the experimental measurements, a wood chamber, a desk, two seats, two seated hygro-thermal manikins, a warm radiant floor, a solar radiation simulator and a water solar collector are used. The air velocity and the air temperature fluctuation are experimentally evaluated around 15 human body sections. The chamber surface temperature is experimentally measured. In the numerical simulation, a coupling human thermal comfort (HTC integral model, a computational fluids dynamics (CFD differential model and a building thermal response (BTR integral model are applied. The human thermal comfort level is evaluated by the HTC numerical model. The airflow inside the virtual chamber, using the k-epsilon and RNG turbulence models, is evaluated by the CFD numerical model. The chamber surface and the collector temperatures are evaluated by the BTR numerical model. In the human thermal comfort level, in non-uniform environments, the predicted mean vote (PMV and the predicted percentage of dissatisfied (PPD people are numerically evaluated; in the local thermal discomfort level the draught risk (DR is experimentally and numerically analyzed; and in the air quality, the carbon dioxide CO2 concentration is numerically calculated. In the validation tests, the experimental and numerical values of the chamber surface temperature, the air temperature, the air velocity, the air turbulence intensity and the DR are presented.

  2. Simulating Single-Effect Absorption Cooling Lithium Bromide A Solar System With Flat Plate Collector And Contribute To An Office Building

    OpenAIRE

    MIRI, Mohadaseh

    2015-01-01

    Use solar energy to provide hot water consumption, space heating and cooling in recent decades is considered. In this article a model varies with time, a solar adsorption cooling system consists of a single effect lithium bromide absorption system, a flat plate collector and a storage tank or linear or parabolic simulated separately. The system for cooling an office building for hours of operation from 7 am to 18 pm is considered.About 7 kW peak cooling load occurs in July. Results obtained s...

  3. Building Blocks on the Sea – simulating the realisation of the M2Cell system in contemporary context of cruise industry

    OpenAIRE

    Ylirisku, Vesa

    2012-01-01

    Building Blocks on the Sea – Simulating realisation of M2 Cell -concept in contemporary context on projektiin pohjautuva opinnäytetyö, jonka perustavana päämääränä on kehittää eteenpäin muunneltavaa moduulisysteemiä nimeltään M2Cell simuloimalla konseptin toimintaa nykyaikaisen risteilyteollisuuden kontekstissa. Toisin sanoen työn tavoitteena on vastata tämän innovatiivisen systeemin kehittämistarpeeseen niin uusien ideoiden kuin yleisen kehittämisenkin kautta keskittyen systeemin toiminnalli...

  4. Numerical simulation and performance assessment of an absorption solar air-conditioning system coupled with an office building

    OpenAIRE

    Thomas, Sébastien; Andre, Philippe

    2010-01-01

    To minimize environmental impact and CO2 production associated with air-conditioning, it is reasonable to evaluate the prospects of a clean energy source. Solar energy, via thermal collectors can provide a part of the heating needs. Moreover, it can drive absorption chiller in order to satisfy the cooling needs of buildings. The objective of the work is to evaluate accurately the energy consumption of an air conditioning system including a solar driven absorption chiller. The c...

  5. JPL Energy Consumption Program (ECP) documentation: A computer model simulating heating, cooling and energy loads in buildings. [low cost solar array efficiency

    Science.gov (United States)

    Lansing, F. L.; Chai, V. W.; Lascu, D.; Urbenajo, R.; Wong, P.

    1978-01-01

    The engineering manual provides a complete companion documentation about the structure of the main program and subroutines, the preparation of input data, the interpretation of output results, access and use of the program, and the detailed description of all the analytic, logical expressions and flow charts used in computations and program structure. A numerical example is provided and solved completely to show the sequence of computations followed. The program is carefully structured to reduce both user's time and costs without sacrificing accuracy. The user would expect a cost of CPU time of approximately $5.00 per building zone excluding printing costs. The accuracy, on the other hand, measured by deviation of simulated consumption from watt-hour meter readings, was found by many simulation tests not to exceed + or - 10 percent margin.

  6. Calibration of forcefields for molecular simulation: sequential design of computer experiments for building cost-efficient kriging metamodels.

    Science.gov (United States)

    Cailliez, Fabien; Bourasseau, Arnaud; Pernot, Pascal

    2014-01-15

    We present a global strategy for molecular simulation forcefield optimization, using recent advances in Efficient Global Optimization algorithms. During the course of the optimization process, probabilistic kriging metamodels are used, that predict molecular simulation results for a given set of forcefield parameter values. This enables a thorough investigation of parameter space, and a global search for the minimum of a score function by properly integrating relevant uncertainty sources. Additional information about the forcefield parameters are obtained that are inaccessible with standard optimization strategies. In particular, uncertainty on the optimal forcefield parameters can be estimated, and transferred to simulation predictions. This global optimization strategy is benchmarked on the TIP4P water model.

  7. Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level

    Directory of Open Access Journals (Sweden)

    Yongwei Shan

    2014-07-01

    Full Text Available Steel construction activities are often undertaken in an environment with limited climate control. Both hot and cold temperatures can physically and psychologically affect construction workers, thus decreasing their productivity. Temperature and humidity are two factors that constantly exert forces on workers and influence their performance and efficiency. Previous studies have established a relationship between labor productivity and temperature and humidity. This research is built on the existing body of knowledge and develops a framework of integrating building information modeling (BIM with a lower level critical path method (CPM schedule to simulate the overall impact of temperature and humidity on a healthcare facility’s structural steel installation project in terms of total man hours required to build the project. This research effort utilized historical weather data of four cities across the U.S., with each city having workable seasons year-round and conducted a baseline assessment to test if various project starting dates and locations could significantly impact the project’s schedule performance. It was found that both varied project start dates and locations can significantly contribute to the difference in the man hours required to build the model project and that the project start date and location can have an interaction effect. This study contributes to the overall body of knowledge by providing a framework that can help practitioners better understand the overall impact of a productivity influencing factor at a project level, in order to facilitate better decision making.

  8. Modeling a Naturally Ventilated Double Skin Façade with a Building Thermal Simulation Program

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Kalyanova, Olena; Heiselberg, Per

    2008-01-01

    The use of Double Skin Façade (DSF) has increased during the last decade. There are many reasons for this including e.g. aesthetics, sound insulation, improved indoor environment and energy savings. However, the influence on the indoor environment and energy consumption are very difficult...... to predict. This is manly due to the very transient and complex air flow in the naturally ventilated double skin façade cavity. In this paper the modelling of the DSF using a thermal simulation program, BSim, is discussed. The simulations are based on the measured weather boundary conditions......, and the simulation results are compared to the measurement results like energy consumption for cooling, air temperature, temperature gradient and mass flow rate in the DSF cavity, etc. Details about the measurements are reported in \\Kalyanova et al. 2008\\. The thermal simulation program does not at the moment...

  9. Numerical simulation on wind-induced continuous damage of building envelope%围护结构风致连续破坏数值模拟

    Institute of Scientific and Technical Information of China (English)

    潘攀; 田玉基

    2011-01-01

    Mean wind pressures of a large span space structure were computed based on CFX5.7 software with shear stress transport.According to the numerical simulation,the influence of wind-induced internal pressure was studied.Comparisons between the results from the present computation and the results from the related items in Load code for the design of building structures were made,and it showed that the method provided in the code was not complete.According to the results from the numerical simulation,some rules about wind-induced continuous damage of building envelope were put forward.%基于CFX5.7软件平台,对一典型大跨度空间结构进行风荷载数值模拟,研究结构模型各墙面及屋盖等围护结构存在开孔时内外压联合作用的情况。并将模拟结果与依据《建筑结构荷载规范》(GB50009—2001)中关于内部压力修正的规定得出的结果进行对比,指出规范中存在的一些不足之处。归纳出建筑物围护结构风致连续破坏的一些规律。

  10. A simple method to estimate the urban heat island intensity in data sets used for the simulation of the thermal behaviour of buildings

    Directory of Open Access Journals (Sweden)

    Uwe Wienert

    2013-04-01

    Full Text Available Test Reference Years (TRY are data sets tailored for use in the context of simulations with respect to the thermal behaviour of buildings. They are based on measurements and observations from weather stations of the German Meteorological Service (Deutscher Wetterdienst, DWD and represent the climate conditions of a larger area with an order of magnitude of 100 km x 100 km. The data sets cannot, however, be readily applied to urban areas. The air temperature as one of the most important meteorological elements for the building-related simulations frequently is subject to an increase with respect to the conditions outside the city area due to what is called the urban heat island effect. Numerous field measurements have led to the development of empirical relations to assess the urban temperature modification. These relations were implemented in a straightforward method. It applies a set of easily accessible parameters in a combination of different empirical formulae to derive an estimate of the urban air temperature modification. An intercomparison of calculated versus measured air temperature data showed that this method might yield a realistic representation of the urban heat island intensity.

  11. Simulation of the processes of heat- and the mass transfer in the rooms of public building with the natural ventilation

    Directory of Open Access Journals (Sweden)

    Prorokova Maria

    2017-01-01

    Full Text Available In the article the mathematical model of the processes of heat exchange and mass exchange in the room of building with the natural ventilation is shown. The verification of mathematical model is performed via the comparison of the results of calculation in ANSYS Fluent with the data of experiment. Experiment was conducted in the room of educational institution. In the experiment were measured the temperature of air, air speed and moisture content in air. A low relative error in the calculation with the use of a mathematical model makes its use for predicting the parameters of microclimate after the introduction of the energy-saving measures possible

  12. CFD Simulation of a Concrete Cubicle to Analyze the Thermal Effect of Phase Change Materials in Buildings

    Directory of Open Access Journals (Sweden)

    José L. Míguez

    2012-06-01

    Full Text Available In this work, a CFD-based model is proposed to analyse the effect of phase change materials (PCMs on the thermal behaviour of the walls of a cubicle exposed to the environment and on the resistance of the walls to climate changes. The effect of several days of exposure to the environment was simulated using the proposed method. The results of the simulation are compared with experimental data to contrast the models. The effects of exposure on the same days were simulated for several walls of a cubicle made of a mixture of concrete and PCM. The results show that the PCM stabilizes temperatures within the cubicle and decreases energy consumption of refrigeration systems.

  13. Simulation of fire and evacuation in a large building%某大型体育馆火灾安全疏散模拟

    Institute of Scientific and Technical Information of China (English)

    邢志祥; 戴闯; 宋华; 赵晓芳

    2011-01-01

    Fire simulation software FDS and evacuation software Building EXODUS were used to evaluate the fire safety desigof a gymnasium, and the available safety egress time and required safety egress time were calculated and compared.According to the simulation, and combining the existing " prescription" fire safety design, the performance-based fire safety design took account of extending the time before the dangers,shortening people reacting time, shortening the evacuating time.Based on the simulation and the exist fire facilities in the gym, suggestions were put forward in points of fire compart mentation, fire facilities, safety evacuating path, combined exits improvements.%使用火灾模拟软件FDS和人员疏散软件BuildingEXODUS对某体育馆消防设计进行评估,得出可用安全疏散时间与所需安全疏散时间并进行比较.根据模拟结果,结合现有的"处方式消防设计规范",从延长危险来临时间、缩短人员疏散反应时间、缩短疏散撤离时间三方面进行性能化防火设计.在综合模拟结果与该体育馆现有消防设施的基础上,从防火分区设置、消防系统、安全疏散通道设计、组合出口改进四方面提出修改建议.

  14. Building a Better Workforce: A Case Study in Management Simulations and Experiential Learning in the Construction Industry

    Science.gov (United States)

    Douglas-Lenders, Rachel Claire; Holland, Peter Jeffrey; Allen, Belinda

    2017-01-01

    Purpose: The purpose of this paper is to examine the impact of experiential simulation-based learning of employee self-efficacy. Design/Methodology/Approach: The research approach is an exploratory case study of a group of trainees from the same organisation. Using a quasi-experiment, one group, pre-test-post-test design (Tharenou et al., 2007), a…

  15. IEA ECBCS Annex 42 'FC+GOGEN-SIM'. The simulation of building-integrated fuel cell and other cogeneration systems - Summary; IEA ECBCS Annex 42 'FC+GOGEN-SIM'. The simulation of building-integrated fuel cell and other cogeneration systems - Summary

    Energy Technology Data Exchange (ETDEWEB)

    Dorer, V.

    2008-07-01

    This summary report for the Swiss Federal Office of Energy (SFOE) takes a look at the results of three sub-tasks performed within the framework of an IEA task-annex. The sub-tasks aimed to develop simulation models for fuel-cell appliances and other micro-CHP units and to integrate them into various building simulation programs. The first sub-task covered the compilation of a technology overview as well as household power and hot-water requirements. The second one was devoted to the development of models for micro-CHP units. A third sub-task covered the simulation of various system configurations and evaluated general methods for dealing with energy, emissions and costs. The work done is briefly reviewed and the various institutions involved in the work are noted.

  16. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures

    Science.gov (United States)

    Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  17. Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Booten, C.; Tabares-Velasco, P. C.

    2012-08-01

    This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

  18. Hygrothermal adaptability traditional housing in Tampico, Mexico / Adaptabilidad higrotérmica de la vivienda tradicional en Tampico, México

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Fuentes Pérez

    2014-09-01

    Full Text Available The annual increase in the concentration of CO2 in the air is on average 1.5 parts per million, is 0.5% per year, due to the anthropogony generating global climate change, estimates half a century predict a temperature rise of about 2.0°C. The human population is facing an environmental intramural and extramural change in housing. This research aims to determine the degree of hygrothermal adaptability into traditional housing during the year of 2013 in Tampico, Mexico. Depending on the level of scientific knowledge and observation the investigator arrives, makes that labour is diachronic first instance, made as a case study because it analyses the research problem in its genesis and historical conformation with an overview. The thermal behaviour is the thread, therefore, is the methodology to implement multimodal type and by triangulation, since different methods applied provide quantitative and qualitative research approach to the experimental oscillating applied to identify patterns of temperature and relative humidity only, not previously performed in this type of housing. El incremento anual de la concentración de CO2 en el aire es por término medio de 1.5 partes por millón, es decir un 0.5% por año, producto de la antropogenia que genera un cambio climático global, las estimaciones a medio siglo pronostican un aumento de temperatura de unos 2.0°C. La población humana está confrontando un cambio ambiental intramuros y extramuros en la vivienda.La presente investigación tiene como objetivo determinar el grado de adaptabilidad higrotérmica, al interior de la vivienda tradicional durante el año de 2013 en Tampico, México.Según el nivel de conocimiento científico y observación al que llega el investigador, formula que el trabajo es en primera instancia diacrónico, conformado como estudio de caso, porque analiza el problema de investigación en su génesis y conformación histórica con una visión de conjunto. El comportamiento

  19. 绿色保温建筑的博弈平衡造价控制仿真%Simulation of Game Equilibrium Cost Control of Green Building

    Institute of Scientific and Technical Information of China (English)

    胡晓娟

    2016-01-01

    传统方法中对建筑的造价控制模型采用静态层次融合方法进行数学建模,随着建筑规模的扩大和用料成本的市场变动,导致对建筑工程造价的预估性能不好.提出一种基于博弈平衡控制的绿色保温建筑造价预测算法,实现对工程造价的成本控制.分析了绿色保温建筑的材料结构模型,对绿色保温建筑的混凝土墙面进行柔性造价与热应力梯度边界数值模拟,得到成本造价与绿色保温建筑生产效率约束关系函数.采用博弈平衡控制算法实现造价准确预测和评估.仿真结果表明,采用该模型能有效实现对建筑工程造价的预测和控制,精度较高,性能较好.%In the traditional method, the cost control model of the building uses the static level fusion method to carry on the mathematical modeling, with the construction scale and the cost of the market, the forecast performance is not good. This paper presents a new method of cost prediction of green building, which is based on the equilibrium of the game, and realizes the cost control of the project cost. The material structure model of green building is analyzed, and the thermal stress gradient boundary value of the concrete wall is simulated, and the relationship function of the cost and the production efficiency is obtained. Using the game balance control algorithm to realize the cost prediction and evaluation. The simulation results show that the model can effectively achieve the prediction and control of the construction cost, and the precision is high, and the performance is good.

  20. Numerical simulation of the fire smoke flow in a building corridor%建筑物条形走廊烟气运动特性研究

    Institute of Scientific and Technical Information of China (English)

    杨培培; 石必明; 穆朝民; 陆占金

    2012-01-01

    Building corridor is the necessary way in fire evacuation. Knowing the distributions of fire smoke flow in a building corridor under different conditions was helpful to evacuate and rescue. A numerical simulation of the fire smoke flow in a building corridor were presented. The distributions of gas mass fractions and gas temperature is obtained. The results showed that smoke-proof pendant wall can effectively prevent the spread of the gas in the early fire. Because of the effect of its smoke storage, it should be set in the central of the corridor. With the fire continues to expand, the effect of the smoke-proof pendant gradually abate, then mechanical smoke exhaust must be added to discharge smoke promptly. Comparing the different modes, it was concluded that the effect of the mechanical smoke exhaust at the back is better than in the front. Finally a numerical simulation combining with the real experimental was used to verify the correctness of the conclusion.%建筑物走廊是火灾时人员疏散的必经之路,了解走廊烟气的运动规律,对人员疏散与救援具有重大意义.本文对走廊内的火灾烟气进行了数值模拟,得出了不同排烟场景下走廊烟气质量分数及烟气温度的分布情况.研究表明:挡烟垂壁在火灾初期能有效地阻止烟气蔓延;由于其蓄烟作用,应该将其设置在走廊中部.但随着火势的不断扩大,挡烟垂壁效果逐渐减弱,此时必须增设机械排烟机才能及时排出烟气.对比不同机械排烟场景可知,为达到更好的排烟效果,机械排烟口应该设置在挡烟垂壁上游.最后将模拟结果与实验结果对比,验证了本文结论的正确性.

  1. Building Materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Building Materials Sub-council of CCPIT is the other sub-council in construction field. CCPIT Building Materials Sub-council (CCPITBM), as well as CCOIC Build-ing Materials Chamber of Commerce, is au-thorized by CCPIT and state administration of building materials industry in 1992. CCPITBM is a sub-organization of CCPIT and CCOIC.

  2. Bio-aggregates based building materials state-of-the-art report of the RILEM Technical Committee 236-BBM

    CERN Document Server

    Collet, Florence

    2017-01-01

    The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. .

  3. Study of the Hygric Behaviour and Moisture Buffering Performance of a Hemp–Starch Composite Panel for Buildings

    Directory of Open Access Journals (Sweden)

    Chadi Maalouf

    2014-11-01

    Full Text Available This paper presents the results of a laboratory investigation into the hygric properties and moisture buffering performance of hemp-starch composite panels designed for building applications. Composite panels were produced by bonding hemp shiv with wheat starch as a binder. Two types of hemp shiv were tested: chemically processed shiv with enhanced adhesion between fibers and starch matrix, and non-treated shiv. The panels were then characterised in terms of their hygroscopic properties (sorption curve and vapour diffusion resistance factor and their moisture buffering performance (moisture buffering value, MBV. The determination of theoretical MBV was based on the effusivity of the material, which is obtained from its basic hygroscopic characterisation. The results show that both panels are excellent hydric regulators that can be used to improve indoor hygrothermal comfort by buffering indoor relative humidity variations.

  4. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J;

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  5. Numerical simulation of fire smoke flowing at typical lower part of hillside buildings%典型坡地建筑吊层空间火灾烟气流动数值模拟

    Institute of Scientific and Technical Information of China (English)

    张建荣

    2012-01-01

    以局部下沉式典型坡地建筑吊层空间为研究对象,利用火灾计算机模拟工具FDS研究吊层空间发生火灾时烟气流动的特性.模拟分为无边坡建筑、三面边坡建筑、背面边坡建筑三种情况.分析得到各情况下3 m高度处的CO体积分数、温度和气流速度场的空间分布.边坡建筑无自然通风口的一侧或几侧应设置机械通风口.%With the lower part of typical locality sink hillside buildings as the object of study, computer simulation tool FDS was used to study the smoke flow characteristics of lower part of hillside buildings fires. The simulation has three scenarios as normal building, three hillside building and back hillside building. The distribution of CO concentration, temperature, temperature and gas flow velocity at 3 m form the ground were analyzed. The hillside of building that have no natural vents should have mechanical vents.

  6. Scalable Deployment of Advanced Building Energy Management Systems

    Science.gov (United States)

    2013-06-01

    Building Automation and Control Network BDAS Building Data Acquisition System BEM building energy model BIM building information modeling BMS...A prototype toolkit to seamlessly and automatically transfer a Building Information Model ( BIM ) to a Building Energy Model (BEM) has been...circumvent the need to manually construct and maintain a detailed building energy simulation model . This detailed

  7. Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings

    Science.gov (United States)

    Lokko, Mae-ling Jovenes

    As global quantities of waste by-products from food production as well as the range of their applications increase, researchers are realizing critical opportunities to transform the burden of underutilized wastes into ecological profits. Within the tropical hot-humid region, where half the world's current and projected future population growth is concentrated, there is a dire demand for building materials to meet ambitious development schemes and rising housing deficits. However, the building sector has largely overlooked the potential of local agricultural wastes to serve as alternatives to energy-intensive, imported building technologies. Industrial ecologists have recently investigated the use of agrowaste biocomposites to replace conventional wood products that use harmful urea-formaldehyde, phenolic and isocyanate resins. Furthermore, developments in the performance of building material systems with respect to cost, energy, air quality management and construction innovation have evolved metrics about what constitutes material 'upcycling' within building life cycle. While these developments have largely been focused on technical and cost performance, much less attention has been paid to addressing deeply-seated social and cultural barriers to adoption that have sedimented over decades of importation. This dissertation evaluates the development coconut agricultural building material systems in four phases: (i) non-toxic, low-energy production of medium-high density boards (500-1200 kg/m3) from coconut fibers and emerging biobinders; (ii) characterization and evaluation of coconut agricultural building materials hygrothermal performance (iii) scaled-up design development of coconut modular building material systems and (iv) development of a value translation framework for the bottom-up distribution of value to stakeholders within the upcycling framework. This integrated design methodological approach is significant to develop ecological thinking around agrowaste

  8. Comparison between numerical building simulation models and experimental data on dwelling level; Vergelijking tussen numerieke gebouwsimulatiemodellen en experimentele gegevens op woningniveau

    Energy Technology Data Exchange (ETDEWEB)

    Romer, J.C.; Jong, M.J.M.; Bakker, E.J. Helden van W.G.J. [ECN Duurzame Energie in de Gebouwde Omgeving DEGO, Petten (Netherlands); Maassen, W. [TNO-Bouw, Delft (Netherlands); Berben, J. [EBM Consult, Arnhem (Netherlands)

    2002-11-01

    Numerical building simulation models are applied as tools for the design of energy efficient buildings. In this report experimental data are compared with results of calculations with several simulation models: TRNSYS, ESPr, Energy10, and VA114. The experimental data are collected from a complex of 4 test houses on the premises of the Energy research Centre of the Netherlands (ECN) in Petten, Netherlands. [Dutch] Numerieke gebouwsimulatiemodellen worden in toenemende mate gebruikt als hulpmiddel bij het ontwerpen van (zeer) energiezuinige gebouwen. Er kunnen grote verschillen optreden tussen de vooraf berekende gebouwprestaties en de prestaties die na realisatie van een gebouw worden gemeten. Dit ondanks het feit dat de werking van genoemde gebouwsimulatiemodellen vaak gevalideerd is onder strikt omschreven randvoorwaarden. De alledaagse praktijk van het bouwen brengt met zich mee dat veel randvoorwaarden die in een numeriek model als bekend worden verondersteld, behept zijn met een zekere onbepaaldheid. Bovendien kunnen het gedrag van regelingen en bewoners tot totaal andere randvoorwaarden leiden. Dit project heeft tot doel om te onderzoeken wat de verschillen en overeenkomsten zijn tussen de resultaten van numerieke gebouwsimulaties en daadwerkelijk gemeten gebouwprestaties. De vergelijking tussen modellering en praktijk is uitgevoerd aan enkele testwoningen, die zijn gerealiseerd op het terrein van ECN in Petten. Het uitgebreide meetsysteem in de woningen maakt het mogelijk om tot in detail de gemeten temperaturen en warmtestromen vast te leggen en te gebruiken voor toetsing van enkele gebouwsimulatiemodellen. Deze modellen zijn TRNSYS, ESPr, VA114 en Energy10, in samenwerking toegepast door respectievelijk ECN, TN0 en EBM-consult. Uit de vergelijkingen tussen model en experiment voor de woning met natuurlijke toevoer van ventilatielucht is naar voren gekomen dat een goede beschrijving van deze natuurlijke ventilatie noodzakelijk is voor een goede validatie. Na

  9. Simulation and experiment on response of building to microwave pulses%建筑物对微波脉冲响应仿真与实验

    Institute of Scientific and Technical Information of China (English)

    张存波; 王弘刚; 杜广星; 李国林

    2011-01-01

    The paper conducts the 3D simulation of microwave pulses propagating, reflecting and transmitting in a building, to analyze the distribution of the maximum value of electric field in time domain. For narrow-band modulated square pulses with different incident angles, the size of field enhancement region is in direct proportion to the size of region irradiated by microwaves directly through the windows and doors, and the size of windows exerts great influence upon the the size of field enhancement region. The field amplitude in the area behind windowsills reduces significantly in the propagation direction of microwave pulse. The pulse width has little influence upon the size of field enhancement region and the maximum value of electric field. For narrow-band modulated square pulses with zero rise time and fall time, the effect of field superimposition is stronger. The density of power in the building is measured under the irradiation of microwave pulses, validating the simulation results.%建立了微波脉冲在建筑物内传播、反射及透射过程的3维仿真模型,提取了空间电场时域最大值进行统计分析.分析表明;不同入射角窄带调制方波脉冲激励下,场增强区域大小与微波通过窗户和门能直接照射到的区域大小呈正比,窗户的大小对建筑物内空间场强增强区域的大小有显著影响;同时在微波脉冲的传播方向上,窗沿后的区域场强幅值明显减小;脉冲宽度对建筑物内空间场强增强区域的大小及空间场强最大值影响很小;无上升下降沿的窄带调制方波脉冲激励下,空间电场叠加增强效应更强.测量了微波脉冲辐照下,建筑物内空间功率密度分布,验证了仿真结果.

  10. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  11. Empirical validation of building simulation programs - Swiss contribution to IEA Task 34, Annex 43; Empirische Validierung von Gebaeudesimulationsprogrammen. Schweizer Beitrag zu IEA Task 34 / Annex 43. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Loutzenhiser, P.; Manz, H. (eds.)

    2006-11-15

    This comprehensive, illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on work carried out on the validation of building simulation programs. the purpose of this project was to create a data set for use when evaluating the accuracy of models for glazing units and windows with and without shading devices. A series of eight experiments that subsequently increased in complexity were performed in an outdoor test cell located on the Swiss Federal Laboratories for Material Testing and Research (EMPA) campus in Duebendorf, Switzerland. Particular emphasis was placed on accurately determining the test cell characteristics. The report presents information on experimental set-ups, their validation and the methodology used. Further chapters describe particular experiments made, including transient characterisation, evaluation of irradiation models on tiled facades, as well as those made on glazing units with various types of shading and blinds. The thermal properties of windows are looked at. The results of experiments made with four different models, HELIOS, EnergyPlus, DOE-2.1E and IDA-ICE, are discussed.

  12. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  13. Application of simulation to air conditioning design for main building of Nanjing South Railway Station%模拟计算在南京南火车站主站房空调设计中的应用

    Institute of Scientific and Technical Information of China (English)

    王力刚; 路东雁; 章宇峰; 刘加根

    2015-01-01

    采用 DeST 软件对南京南站主站房建筑全年逐时冷热负荷进行模拟,分析了建筑能耗随围护结构各种热工参数的变化规律,对围护结构进行了优化设计。利用多区域网络模型和 DeST 能耗模拟相结合的分析方法,计算了无组织渗透风量,并进行了实地测试。对通风系统进行了模拟分析,确定了自然通风优化方案。简要介绍了候车大厅空调系统的分区设置。%Simulates the annual hourly cooling and heating load of the main building of Nanjing South Railway Station with the DeST energy consumption simulation software,analyses the energy consumption variation with various building envelope thermal parameters,and optimizes the building envelope.By using the multi-zone network model and DeST simulation methods,calculates the volume of infiltration wind, and conducts a field test. Simulates the ventilation system and determines the natural ventilation optimization scheme.Presents the partition set of air conditioning system for the waiting hall briefly.

  14. 公猪舍夏季温度和流场数值CFD模拟及验证%Numerical CFD simulation and verification of summer indoor temperature and airflow field in boar building

    Institute of Scientific and Technical Information of China (English)

    林加勇; 刘继军; 孟庆利; 雷明刚; 童宇; 高云

    2016-01-01

    为研究夏季全漏缝地板公猪舍湿帘风机蒸发降温效果及舍内环境分布规律,该文利用计算流体力学 CFD (computational fluid dynamics)对北京养猪育种中心SPF(Specific Pathogen Free Swine)公猪舍进行模拟研究并通过实测数据进行验证。研究中将漏缝地板作为多孔介质简化,基于标准k-ɛ湍流模型对空载及装猪猪舍内的风速场和温度场进行模拟,通过模拟值与实测值的对比验证模型的合理性。结果表明采用该模型模拟空载时猪舍,风速场模拟值与实测值误差较小,相对误差范围在0.25%~30.8%。模拟温度与实测温度最大绝对误差为0.48 K,平均绝对误差为0.11 K,平均相对误差为0.5%。模拟装猪时的猪舍,温度分布结构与装猪前相似,但整体温度略有上升。该研究可对当前常用的含漏缝地板猪舍建模研究提供参考,并为畜禽舍内改造和建筑实践提供理论依据。%The environment inside the livestock building plays a vital role in animal growing and livestock production efficiency. The analysis of the airflow field and the temperature field can clarify the real situation of the environment and find flaws caused by the design of ventilation system and building structure, thus helps improve the building design and increase production efficiency. In this study, we used computational fluid dynamics (CFD) to simulate the airflow field and the temperature field in a Specific Pathogen Free Swine (SPF) boar building of Beijing breeding swine center, which was ventilated with mechanical evaporative cooling system. The boar building had 47 m length, 14.8 m width and 1.2 m height with a deep manure pit in 0.8 m depth. There were four rows and five aisles placed inside. Farrowing crates were used for breeding boars. Each farrowing crate was size in 2.3 m×0.8 m×1.2 m. The floor of the building was slatted in a length of 12 cm with a gap of 2 cm width. One end wall was

  15. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  16. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings

    Directory of Open Access Journals (Sweden)

    Carlos Moron

    2016-05-01

    Full Text Available There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate.

  17. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings.

    Science.gov (United States)

    Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto

    2016-05-14

    There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate.

  18. Análise do efeito higrotérmico no comportamento em fadiga de compósitos de PPS/fibras de carbono On the analysis of hygrothermal effect on fatigue behavior of PPS/carbon fiber composite

    Directory of Open Access Journals (Sweden)

    Maria C. M. de Faria

    2012-01-01

    exposed to harsh environments such as high temperature and humidity, and should be carefully evaluated before being put into service. The aim of the present work is to evaluate the hygrothermal effect on the fatigue resistance of thermoplastic PPS/carbon fiber composite. These laminates were obtained from TenCate Company, which provides composite laminates to Airbus and Embraer. PPS/carbon fibers composites exhibited increased tensile strength under hygrothermal conditioning due to plasticization of the polymer matrix, with the fracture toughness being also increased. In contrast, the hygrothermal conditioning did not alter significantly the behavior of fatigue life of laminates from PPS/carbon fiber composite.

  19. CFD simulation and energy efficient analysis of stratified cleaning in large-space clean factory buildings%高大洁净厂房分层净化CFD模拟与节能性分析

    Institute of Scientific and Technical Information of China (English)

    董秀芳; 肖武; 赵彬

    2012-01-01

    分析了高大洁净厂房的空间特点、使用时间特点、净化负荷特点,提出了在高度上分层的净化空调方案.采用CFD模拟了某高大洁净厂房采用分层净化空调时的气流组织,浓度场、温度场的模拟结果表明,该方案适用于高大洁净厂房.%Analyses the characteristics of space, service time and cleaning load in the building, and provides the stratified cleaning air conditioning scheme. Simulates the air distribution of stratified cleaning air conditioning in a large-space clean factory building with CFD. The concentration and temperature fields obtained show that the stratified cleaning air conditioning scheme suits for large-space clean factory buildings.

  20. Green buildings pay

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Edwards, Brian

    2012-01-01

    The new edition of ‘Green Buildings Pay’ authored by Brian Edwards and Emanuele Naboni explores the business and professional benefits which derive from architectural design driven by sustainability. With a new sub-title ‘Green Buildings Pay: design, productivity and ecology’ the book argues...... or environmental thinking and this finds expression in new approaches to the design of building facades, roofs, atria. Another is that new software simulation tools have changed energy assumptions and hence building forms. In a fast evolving arena, the book shows how architects are reshaping their practices....... Branding via LEED and BREEAM has taken green ideas to China and other emerging economies. The globalization of sustainability and of architectural practice is an important strand of the new edition....

  1. Laboratory Building.

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  2. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  3. 湿热载荷下含损伤夹层板分层扩展判定分析%Delamination Growth of Composite Sandwich under Hygrothermal and Mechanical Loads

    Institute of Scientific and Technical Information of China (English)

    张志民; 李向阳

    2001-01-01

    The local buckling may occur in composite sandwich with delamination induced by impact damage. This often causes delamination growth and structure failure. The delamiantion growth is studied by using the variational method of moving boundary, and the formulas of energy release rate G along the delamination front are obtained. By employing Rayleigh-Ritz method, the hygrothermal effect on buckling character of composite sandwich plates containing delamination between two faceplate laminae is studied.%含面板内分层损伤的复合材料夹层板在承受压缩载荷时,很容易发生局部屈曲,导致分层扩展和结构失效,恶劣的湿热环境更是使之加剧.利用可动边界变分问题对分层扩展进行了分析,导出了分层边界的逐点能量释放率表达式,采用Rayleigh-Ritz法研究了任意的湿热环境对含损伤的复合材料夹层板分层扩展性能的影响.

  4. Building Languages

    Science.gov (United States)

    ... Training Manually Coded English (MCE) Natural Gestures Speech Speech Reading (Lip Reading) Even though American Sign Language (ASL) is not a building block, it is sometimes used together with one or more building blocks. Close Information For... Media Policy Makers File Formats Help: How do I view ...

  5. 基于外围护结构性能的住宅建筑能耗模拟分析%Simulation and Analysis on Residential Building Energy Consumption Based on Exterior Envelope Features

    Institute of Scientific and Technical Information of China (English)

    段良飞; 邵宗义; 张航

    2015-01-01

    Different exterior envelopes of residential building were considered by simulating building cooling and heating load with eQUEST. Various factors, including the heat transfer coefficient of external wall, heat transfer coefficient of external window, comprehensive window shading coefficient and roofing, were analyzed by comparing the simulation model with the original building, which can be referenced for similar architectural design and selection of exterior envelope.%采用 eQUEST 模拟软件对某住宅建筑不同外围护结构条件下的冷、热负荷情况进行模拟。通过与原建筑模拟结果对比,得出外墙传热系数、外窗传热系数、综合遮阳系数、屋面等因素对其能耗的影响,分析了每个因素对住宅建筑负荷影响的权重,供同类建筑设计、外围护结构选型时参考。

  6. 某绿色建筑能耗实测数据校验eQUSET建筑能耗模拟软件模型的研究%Measured Data Verification of Energy Consumption in a Green Building for Building Energy Simulation Software eQUEST Model

    Institute of Scientific and Technical Information of China (English)

    郭晏京; 吴祥生; 陈金华; 张小欧

    2014-01-01

    以重庆市某高校三星绿色建筑为例,对其全年实际运行能耗进行分项统计,利用eQUEST建筑能耗模拟软件建立该建筑的能耗模拟模型。逐项比较实测数据与模拟数据,分析产生误差的原因,并使校验过后的模型模拟数据误差达到相关标准要求。通过对所建模型的校验模拟,证明了经过实测数据校验的模型能够对建筑能耗进行更准确的预测。总结了一些校验模型的方法,为后续能耗模拟提供了参考。%According to the subentry statistic of a green building in Chongqing, the building energy consumption simulation model is established by eQUEST software, comparing the measured data and simu-lated data, analyzing the cause of the error, and the checked model simulation data error achieves the re-quirements of relevant standards. Through the verification of the model, data checking model can make more accurate prediction on the energy consumption of buildings. Some methods for checking model are summarized as reference for subsequent energy simulation.

  7. BuildingPI: A future tool for building life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, James; Morrissey, Elmer; Keane, Marcus; Bazjanac,Vladimir

    2004-03-29

    Traditionally building simulation models are used at the design phase of a building project. These models are used to optimize various design alternatives, reduce energy consumption and cost. Building performance assessment for the operational phase of a buildings life cycle is sporadic, typically working from historical metered data and focusing on bulk energy assessment. Building Management Systems (BMS) do not explicitly incorporate feedback to the design phase or account for any changes, which have been made to building layout or fabric during construction. This paper discusses a proposal to develop an Industry Foundation Classes (IFC) compliant data visualization tool Building Performance Indicator (BuildingPI) for performance metric and performance effectiveness ratio evaluation.

  8. Building America Case Study: Excavationless Exterior-Side Foundation Insulation for Existing Homes, Minneapolis, Minnesota (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    NorthernSTAR

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  9. Design challenges for a climate adaptive multi-functional lightweight prefab panel for energy-efficient retrofitting of residential building based on one-room model simulations

    NARCIS (Netherlands)

    Dijkmans, T.J.A.; Donkervoort, D.R.; Phaff, J.C.; Valcke, S.L.A.

    2014-01-01

    Current solutions for highly energy-efficient retrofitting rely on thick static insulation, airtight construction and extensive ventilation systems to become independent from variable outdoor conditions. A building skin that adapts to the outdoor conditions to regulate the indoor conditions could pr

  10. Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings

    Science.gov (United States)

    Chen, Yixing

    2013-01-01

    The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…

  11. Building Inclusion

    NARCIS (Netherlands)

    Jeanet Kullberg; Isik Kulu-Glasgow

    2009-01-01

    The social inclusion of immigrants and ethnic minorities is a central issue in many European countries. Governments face challenges in ensuring housing for immigrants, delivering public services, promoting neighbourhood coexistence and addressing residential segregation. The Building Inclusion proje

  12. Sustainable Buildings

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Elle, Morten

    The scientific community agrees that: all countries must drastically and rapidly reduce their CO2 emissions and that energy efficient houses play a decisive role in this. The general attitude at the workshop on Sustainable Buildings was that we face large and serious climate change problems...... that need urgent action. The built environment is an obvious area to put effort into because of the large and cost-effective energy saving potential and potential for Renewable Energy-based supply systems for buildings....

  13. One for All and All for One: Using Multiple Identification Theory Simulations to Build Cooperative Attitudes and Behaviors in a Middle Eastern Conflict Scenario

    Science.gov (United States)

    Williams, Robert Howard; Williams, Alexander Jonathan

    2010-01-01

    The authors previously developed multiple identification theory (MIT) as a system of simulation game design intended to promote attitude change. The present study further tests MIT's effectiveness. The authors created a game (CULTURE & CREED) via MIT as a complex simulation of Middle Eastern conflict resolution, designed to change attitudes and…

  14. The importance of high-rise buildings field simulation environment evaluation of stroke%高层建筑群体环境评价中风场模拟的研究

    Institute of Scientific and Technical Information of China (English)

    谢洪兵

    2013-01-01

      本文对高层建筑群环境评价中风场模拟的重要性进行说明和分析,希望能够对相关方面工作的进行有所启示和帮助。%In this paper ,the high-rise buildings the importance of environmental evaluation of stroke field simulation ,descrip-tion and analysis related to work for some enlightenment and help .

  15. Our Buildings, Ourselves.

    Science.gov (United States)

    Roodman, David Malin; Lenssen, Nicholas

    1994-01-01

    Reviews in detail environmental impacts associated with buildings. Discusses building construction, internal environments, building life spans, building materials, protection from climate, and amenities. (LZ)

  16. Base isolation system for earthquake protection and vibration isolation of structures. Part 11. ; System identification of vibration model and earthquake response simulation analysis of base-isolated building. Tatemono no menshin boshin koho no kenkyu kaihatsu. 11. ; Shindo kaiseki model no dotei to jishin oto simulation kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Koshida, H.; Ishida, M.; Yasaka, A.; Takenaka, Y.; Yamaya, H. (Kajima Construction Co. Ltd., Tokyo (Japan))

    1992-10-31

    Before the completion of the Toshin No.24 Omori Building (an earthquake protected building in Tokyo), a forced vibration test was performed to confirm the vibration characteristics and the rigidities of the laminated rubber bearing and the damper. Seismic observation was performed after the completion to confirm the effect of the earthquake protected building on decreasing acceleration response. A vibration analysis model built by identification method utilizing those data was used to carry out a simulation analysis of the earthquake on February 2, 1992 (5 seismic intensity in Tokyo) which recorded the largest ground motion acceleration since the observation was started in the building. Relative displacement of maximum 0.8cm was observed in the base-isolation layer at the time of the earthquake, and decrease in the natural frequency was also observed in the earthquake record. Reference, therefore, was made to the results of the past experiments to modify the rigidity of this portion only considering nonlinearity of the high damping rubber portion of the damper bearing. As a result, a simulated analytical result was obtained which agreed well with the observed values. 6 refs., 11 figs., 5 tabs.

  17. Process simulation using WITNESS

    CERN Document Server

    Al-Aomar, Raid; Ulgen, Onur M

    2015-01-01

    Teaches basic and advanced modeling and simulation techniques to both undergraduate and postgraduate students and serves as a practical guide and manual for professionals learning how to build simulation models using WITNESS, a free-standing software package. This book discusses the theory behind simulation and demonstrates how to build simulation models with WITNESS. The book begins with an explanation of the concepts of simulation modeling and a "guided tour" of the WITNESS modeling environment. Next, the authors cover the basics of building simulation models using WITNESS and mode

  18. Building effectiveness communication ratios for improved building life cycle management

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, E.; Keane, M.; McCarthy, J. [Ireland National Univ., Cork (Ireland). IRUSE; O' Donnell, J. [Lawrence Berkely National Laboratory, Berkeley, CA (United States)]|[Ireland National Univ., Cork (Ireland). IRUSE

    2005-07-01

    The construction and operation of buildings consumes 35 per cent of total U.S. energy production. Although the application of building energy simulation models in early design stages can significantly increase performance throughout the building life cycle, energy simulation modeling has not been widely adopted by the design community. The complexity and length of time needed to prepare energy models are considered to be barriers, as well as the lack of energy appraisal tools capable of modeling a wide spectrum of hybrid heating, ventilation and air conditioning (HVAC) systems. A performance-based strategy using building effectiveness communication ratios stored in Building Information Models (BIM) was presented in this paper. The strategy aimed to link currently fragmented stages within the building life cycle. It was suggested that the ability to share and exchange information will reduce the amount of user time required for building simulation models. The proposed Building Energy Monitoring Analyzing and Communication (BEMAC) framework is an integrated environment that allows users to share data with other applications through an integrated data model. The data models allow each participant to employ tools specific to their needs without compromising or corrupting project data. Data values elicited from the model act as best-possible values. It was anticipated that by assigning spaces within the simulation model with proposed HVAC systems, reproductions of the energy use by these mechanical systems can contribute to overall energy data representation and analysis. Idealized Effectiveness Ratios and Performance Effectiveness Ratios were discussed in relation to a case study of the Glucksman Art Gallery at the National University of Ireland. Results indicated that the Idealized Effectiveness Ratio is applicable across the entire building life cycle, while the Performance Effectiveness Ratio allows facility managers to investigate the energy saving potential of the

  19. 镶嵌式框架围护结构典型节点热桥模拟分析%Simulation Analysis on Thermal Bridge of Typical Nodes of Inlaid Frame Structure in Building Envelope System

    Institute of Scientific and Technical Information of China (English)

    周静; 高岩; 于崇明; 刘然

    2014-01-01

    The building envelope system of inlaid frame structure is introduced. Taking the typical weather condition in Beijing as the computational parameter, it analyzes the temperature distribution on thermal bridge of typical nodes of different inlaid frame structure in building envelope system with simula-tion, the result shows that the system can avoid condensation problems on thermal bridges. Studies about the heat flux distribution in different nodes indicate that the system can basically meet the design standard for energy efficiency of residential buildings in Beijing.%介绍了镶嵌式框架围护结构体系,以北京地区气候条件为计算参数,利用模拟软件,模拟分析了不同形式镶嵌式框架围护结构中典型节点的温度分布规律,结果表明该体系能够避免热桥部分产生结露问题;还分析了不同节点处的热流分布,表明该体系的节能效果可基本满足北京市居住建筑的节能设计要求。

  20. Competence Building

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    on the one hand, and the real world of innovation policy-making on the other, typically not speaking to each other. With this purpose in mind, this paper discusses the role of competences and competence-building in the innovation process from a perspective of innovation systems; it examines how governments...... and public agencies in different countries and different times have actually approached the issue of building, maintaining and using competences in their innovation systems; it examines what are the critical and most important issues at stake from the point of view of innovation policy, looking particularly...

  1. 合肥新机场实腹式刚架钢结构的施工仿真分析%Construction simulation analysis of portal frame steel structure of terminal building in Hefei's new airport

    Institute of Scientific and Technical Information of China (English)

    杨扬; 完海鹰; 李庆锋; 丁大益; 王元清

    2011-01-01

    The steel structure of the terminal building in Hefei's new airport is long-span and complicated, so the simulation analysis of its construction process is necessary to ensure the smooth construction of the project. By using the software Etabs and according to the construction sequence, the simulation analysis of the deformations of the portal frame during the construction is carried out. And the optimal method of removing the temporary supporting system is determined in light of the results of simulation analysis with different removal sequence. The method is accepted by the construction company, and the simulation results are valuable for the rest steel structure construction.%文章针对合肥新机场航站楼钢结构跨度大且复杂的特点,对施工过程进行仿真分析,以保障施工顺利进行;应用Etabs软件按施工顺序加载分析了实腹式刚架施工过程中的刚架变形情况,根据不同刚架卸撑顺序下的仿真分析,找出了最优的卸撑方案,并被施工方所采纳;仿真分析为后续施工提供了参考.

  2. Building Procurement

    DEFF Research Database (Denmark)

    Andersson, Niclas

    2007-01-01

    despite this excellent book, the knowledge, expertise, well-articulated argument and collection of recent research efforts that are provided by the three authors will help to make project success less elusive. The book constitutes a thorough and comprehensive investigation of building procurement, which......, which gives the book a challenging contribution to the existing body of knowledge....

  3. Building Sandcastles

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø; Korsgaard, Steffen; Shumar, Wes

    of entrepreneurship education. Our theoretical and methodological approach builds on Actor-Network Theory. The empirical settings of our study consist of two entrepreneurship courses which differ in terms of temporal extension and physical setting. Data is collected using observation and interview techniques. Our...

  4. Building Partnerships.

    Science.gov (United States)

    Kisner, Mary J.; And Others

    1997-01-01

    Defines school-business partnerships and reviews changes in such partnerships over the past 25 years. Provides steps to building effective partnerships for school-to-work activities: review the school's mission; select partners that will bring strength to the relationship; set clearly defined, realistic goals; maintain the partnership; and…

  5. Effect of water-ice phase change on thermal performance of building materials

    Science.gov (United States)

    Kočí, Václav; Černý, Robert

    2016-07-01

    The effect of water ice-phase change on thermal performance of integrated building material is investigated in this paper. As a characteristic construction, simple external wall made of aerated autoclaved concrete was assumed which was exposed to dynamic climatic condition of Šerák, Czech Republic. The computational modelling of hygrothermal performance was carried out using computer codes HEMOT and SIFEL that work on the basis of finite element method. The effect of phase change was taken into account by fixed-domain method, when experimentally determined effective specific heat capacity was used as a material parameter. It comprises also the effect of heat consumption and heat release that accompany the water-ice phase change. Comparing to the results with specific heat capacity, the effect of phase change on thermal performance could be quantified. The results showed that temperature fields can differ more than 6 °C. Additionally, the amount energy transported through the wall may be higher up to 4 %. This confirmed, that the effect water-ice phase change should be included in all the relevant energy calculations.

  6. Large Eddy Simulation of Turbulence Modeling for wind Flow past Wall Mounted Cubical Building Using Smagorinsky Scheme and validation using Artificial Neural Network for Time Series Data

    OpenAIRE

    Bibhab Kumar Lodh; Ajoy K Das

    2015-01-01

    This paper will present the large eddy simulation of turbulence modeling for wind flow over a wall mounted 3D cubical model. The LES Smagorinsky scheme is employed for the numerical simulation. The domain for this study is of the size of 60 cm x 30 cm x 30 cm. The 3D cube model is taken of the size of 6 cm x 6 cm x 4 cm. The Reynolds number for the flow in respect of the height of the cube i.e, 4 cm is 5.3x104 . The hexahedral grids are used for the meshing of the flow domain. ...

  7. A methodological study of environmental simulation in architecture and engineering. Integrating daylight and thermal performance across the urban and building scales

    DEFF Research Database (Denmark)

    Sattrup, Peter Andreas; Strømann-Andersen, Jakob Bjørn

    2011-01-01

    This study presents a methodological and conceptual framework that allows for the integration and creation of knowledge across professional borders in the field of environmental simulation. The framework has been developed on the basis of interviews with leading international practitioners, key t...

  8. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    Science.gov (United States)

    Yousef, Adel K. M.; Taha, Ziad. A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  9. Simulation of Mean Flow and Turbulence over a 2D Building Array Using High-Resolution CFD and a Distributed Drag Force Approach

    Science.gov (United States)

    2016-06-16

    Journal of Wind Engineering ELSEVIER and Industrial Aerodynamics 92 (2004) 117-158 www.elsevier.com/locate/jweia Simulation of mean flow and...address: eugene.yee(<i;drdc-rddc.gc.ca (E. Yee). 0167-6105/$- see front matter (0 2003 Elsevier Ltd. All rights reserved. doi: 10.1016/j.jweia.2003.1 0.005

  10. Large Eddy Simulation of Turbulence Modeling for wind Flow past Wall Mounted Cubical Building Using Smagorinsky Scheme and validation using Artificial Neural Network for Time Series Data

    Directory of Open Access Journals (Sweden)

    Bibhab Kumar Lodh

    2015-02-01

    Full Text Available This paper will present the large eddy simulation of turbulence modeling for wind flow over a wall mounted 3D cubical model. The LES Smagorinsky scheme is employed for the numerical simulation. The domain for this study is of the size of 60 cm x 30 cm x 30 cm. The 3D cube model is taken of the size of 6 cm x 6 cm x 4 cm. The Reynolds number for the flow in respect of the height of the cube i.e, 4 cm is 5.3x104 . The hexahedral grids are used for the meshing of the flow domain. The results are discussed in terms of various parameters such as velocity profile around the cube and the computational domain, the pressure distribution over the cube, near wall velocity profile and the shear stress distribution and also the result of drag coefficient is verified by neural network time series analysis using MATLAB. In this present study we have used the OpenFoam platform for the computational and numerical analysis. The numerical scheme employed is the combination of the steady state incompressible Newtonian flow model using SIMPLE algorithm followed by the transient model of incompressible Newtonian flow using PISO algorithm. We have observed that there is a constant positive drag coefficient in case of steady state simulation where as there is a negative lift coefficient in the initial run and a very low lift coefficient at the end of the steady state simulation.

  11. 基于 CFD 模拟的绿色建筑自然通风优化设计研究%CFD-Simulation-Based Natural Ventilation Design Optimization for Green Buildings

    Institute of Scientific and Technical Information of China (English)

    郭卫宏; 刘骁; 袁旭

    2015-01-01

    自然通风是重要的绿色建筑被动式设计策略,对于节能减排、提高建筑环境舒适度和改善室内空气品质等方面具有至关重要的作用。计算流体动力学(简称 CFD)是近代流体力学、数值数学和计算机科学结合的产物,将其运用在绿色建筑设计领域,能够为更精确地预测设计方案的建筑风环境提供依据,建筑师结合建筑技术科学的相关知识与模拟的结果进行分析,进而多方案比选和优化建筑设计方案。从总体布局、建筑形体、围护界面3个层面通过 CFD 风环境模拟来进行建筑自然通风优化的方法与实例研究,为建筑风环境的优化设计提供思路。%Natural ventilation is an important passive strategy of green building design, It plays a crucial role in conserving energy, reducing emission, enhancing comfort level of built environment, and improving indoor air quality. Computational Fluid Dynamics (CFD for short), as the combination of modern fluid dynamics, numerical mathematics and computer science, could offer the architect an important basis to optimize the architectural design when applied to the green building design. In combination with relevant knowledge in science of building technology and the simulation results, it can analyze the strength and weakness of various design options and optimize them. The paper shows the methodology and case study of optimizing the building’s natural ventilation through CFD wind environment simulation from three aspects, i. e. master layout, building form and envelope interface, thus offer some ideas for optimizing the building’s wind environment.

  12. Data management for biofied building

    Science.gov (United States)

    Matsuura, Kohta; Mita, Akira

    2015-03-01

    Recently, Smart houses have been studied by many researchers to satisfy individual demands of residents. However, they are not feasible yet as they are very costly and require many sensors to be embedded into houses. Therefore, we suggest "Biofied Building". In Biofied Building, sensor agent robots conduct sensing, actuation, and control in their house. The robots monitor many parameters of human lives such as walking postures and emotion continuously. In this paper, a prototype network system and a data model for practical application for Biofied Building is pro-posed. In the system, functions of robots and servers are divided according to service flows in Biofield Buildings. The data model is designed to accumulate both the building data and the residents' data. Data sent from the robots and data analyzed in the servers are automatically registered into the database. Lastly, feasibility of this system is verified through lighting control simulation performed in an office space.

  13. Comparison of numerical simulation methods for atmospheric pollutant dispersion under the effect of buildings%建筑物影响下大气污染物扩散数值模拟方法的比较

    Institute of Scientific and Technical Information of China (English)

    赵晓辉; 张宁; 李磊

    2013-01-01

    The effect of buildings on wind flow fields plays a very important role in air pollutant dispersion.Comparison and evaluation of different numerical simulation methods help improve the prediction on pollutant concentrations.Computational Fluid Dynamics (CFD) software FLUENT and the Gaussian model AERMOD were separately used to simulate pollutant concentration around a cube.FLUENT was run in the large eddy simulation (LES) mode,using the Smagorinsky-Lilly closure model,to resolve the larger scales of the flow field.AERMOD model based the classical Gaussian model developed by EPA and AMS considered building downwash.The numerical simulation results were compared with the wind tunnel experiment-Compilation of Experimental Data for Validation of microscale dispersion models (CEDVAL).The LES model can describe the pollutant dispersion characteristics well,and the simulation capability could be accepted in the whole simulation zone.The simulation capability of AERMOD model on pollutant concentration was poor compared with LES model,especially in the downwind recirculation cavity.The hypothesis of AERMOD model was compared with the numerical simulated results of the large eddy simulation model on wind speeds.It was shown that the simulation errors of AERMOD model on pollutant concentration were from the background wind flow fields.%利用计算流体力学软件Fluent6.3.26提供的大涡模式和国标推荐的AERMOD模式分别对方形建筑物影响下的大气污染物扩散进行了模拟,通过与风洞实验结果的比较,对各模式的模拟能力进行了评价.结果表明,大涡模式对污染物散布特征的模拟与风洞实验结果基本一致,对建筑物顶部、空腔区和尾流区等区域污染物浓度分布的模拟效果均处于可接受水平;AERMOD模式模拟结果与风洞试验结果偏离较远,尤其是对空腔区污染物散布的模拟能力较差,误差较大.与大涡模式Y/H =0平面流场模拟结果对比(H为建筑物高

  14. Building Letters

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Cabinet是种十分吸引人却很简单的衬线字体,是由一名匿名字体设计师专门为Building Letters最新的资金筹集活动所设计的。这个Building Letters包中包含一个CDROM,有32种字体,以及一本专门设计的杂志和两张由Eboy和Emigre所设计的海报。字体光盘样例是由世界顶级的字体设计师们设计的.

  15. Building Bridges

    DEFF Research Database (Denmark)

    The report Building Bridges adresses the questions why, how and for whom academic audience research has public value, from the different points of view of the four working groups in the COST Action IS0906 Transforming Audiences, Transforming Societies – “New Media Genres, Media Literacy and Trust...... in the Media”, “Audience Interactivity and Participation”, “The Role of Media and ICT Use for Evolving Social Relationships” and “Audience Transformations and Social Integration”. Building Bridges is the result of an ongoing dialogue between the Action and non-academic stakeholders in the field of audience...... Belgrade), Leo Pekkala (Finnish Centre for Media Education and Audiovisual Media/MEKU), Julie Uldam (Network on Civic Engagement and Social Innovation) and Gabriella Velics (Community Media Forum Europe)....

  16. Building economics

    DEFF Research Database (Denmark)

    Pedersen, D.O.(red.)

    Publikationen er på engelsk. Den omfatter alle indlæg på det fjerde internationale symposium om byggeøkonomi, der blev arrangeret af SBI for det internationale byggeforskningsråd CIB. De fem bind omhandler: Methods of Economic Evaluation, Design Optimization, Ressource Utilization, The Building...... Market og Economics and Technological Forecasting in Construction. Et indledende bind bringer statusrapporter for de fem forskningsområder, og det sidste bind sammenfatter debatten på symposiet....

  17. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  18. Towards a Net Zero Building Cluster Energy Systems Analysis for US Army Installations

    Science.gov (United States)

    2011-05-01

    energy optimization process described to this point includes analysis of building energy efficiency improvements and optimization of energy generation... energy efficiency measures for each simulated building type. 3. Simulate the Energy Efficiency Cases – simulate the energy efficiency scenarios and...type identified in the building characterization step from the inventory. 2. Energy Efficiency Measures (EEM) – determine the appropriate building

  19. 长春市高校学生宿舍建筑风环境数值模拟研究%The wind environment numerical simulation research on student dormitory building group in Changchun City

    Institute of Scientific and Technical Information of China (English)

    孙睿珩

    2014-01-01

    T his research, taking the student dormitories in Changchun City as examples, makes the numerical simulation and analysis to the different layout forms of student dormitories building groups in Changchun universities by utilizing the CFD simulation software Fluent. Through computer simulation, the dormitory wind environment is modeled to overall evaluation and some improved measures are put forward such as wind speed ratio, wind speed distribution.%以长春市高校学生宿舍为例,利用CFD模拟软件Fluent ,对不同布局形式的长春高校学生宿舍建筑群体进行数值模拟与分析。通过计算机模拟,从风速比、风速分布、风压分布角度出发,对风环境做出整体评估并提出可行的改进措施。

  20. Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an Airport Terminal building displacement conditioning system

    OpenAIRE

    Gowreesunker, BL; Tassou, SA; Kolokotroni, M

    2013-01-01

    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier. This paper reports on the energy performance evaluation of a displacement ventilation (DV) system in an airport departure hall, with a conventional DV diffuser and a diffuser retrofitted with a phase change material storage heat exchanger (PCM-HX). A TRNSYS-CFD quasi-dynamic coupled simulation method was employed for the analysis, whereby TRNSYS® sim...

  1. Calculation of the thermal solar contribution in facilities of ACS in buildings. Comparison between the method of strong simulation and F-Chart considering lost in the circuits; Calculo de la contribucion solar termica en instalaciones de ACS en edificios. Comparacion entre el metodo de simulacion dinamica y F-Chart considerando perdidas en los circuitos

    Energy Technology Data Exchange (ETDEWEB)

    Guillo, J. F.; Lucas, M.; Lucas, R.; Vicente, P. G.

    2008-07-01

    It has analyzed the impact of distribution losses in the size of solar installations by comparing two methods commonly used in calculating the contribution of solar residential building: f-chart and dynamic simulation. 3 schemes have been analysed in a building 22 houses and 70 occupants located in the IV and climate in the province of Alicante. For comparison between the two methodologies have been used for calculating the same values input from climate data as consumption of ACS. (Author)

  2. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M

    2015-07-01

    Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death".

  3. Thermal comfort in residential buildings: Sensitivity to building parameters and occupancy

    NARCIS (Netherlands)

    Ioannou, A.; Itard, L.C.M.

    2014-01-01

    Dynamic simulation is widely used for assessing thermal comfort in dwellings. Simulation tools, though, have shortcomings due to false assumptions made during the design phase of buildings, limited information on the building's envelope and installations and misunderstandings over the role of the oc

  4. Learning from and for rare floods in Dresden – how public officials interpret damage simulation results at the building type level

    Directory of Open Access Journals (Sweden)

    Hutter Gerard

    2016-01-01

    Full Text Available Public officials in Dresden are concerned about learning from and for rare flood events like the Elbe river flood in August 2002. This is interesting because research on individual as well as organizational learning from rare events indicates that this kind of learning faces significant difficulties (e.g., overestimation of rare events for decision-making based on “emotionalized event experience”. Up to now, only little is known what and how public officials in Dresden specifically learn from and for rare floods. Therefore, the paper follows an exploratory purpose in line with principles of qualitative social research. Firstly, the paper explores dealing with rare floods with reference to a conceptual framework that highlights relations between regulative, normative, and cognitive institutions on the one hand and learning of public officials on the other. Secondly, it adopts a single case study design in Dresden with embedded sub-cases that are defined with reference to organizations of FRM. The case study shows, among others, that regulations like the Floods Directive are important for justifying FRM with regard to rare flood events which is less obvious than it sounds. However, public officials display different interpretations of the term “rare flood event”, for instance, in the context of analysing the consequences of floods on the building stock. Furthermore, the case study findings indicate that public officials may follow alternative approaches to sustain commitment in the context of rare flood events (systematic versus pragmatic approach.

  5. MYCELIUM BUILDING

    OpenAIRE

    Jondelius, Olof

    2015-01-01

    This work is looking in to what possibilites and restrictions comes with using mycelium as a building material for a small house. It includes reasoning around solutions for some of the problems and presenting some ideas of how to use some of the materials properties in your favor. A general background of why we need to start look in to alternative materials for all petroleum materials are presented. Det här arbetet har varit inriktat på att se vilka möjligheter samt begränsningar det skul...

  6. Simulation of unitary shifting of buildings with foundation and parameters of loading condition monitoring%建筑物带基础整体移位模拟及结构受力状态监测参数

    Institute of Scientific and Technical Information of China (English)

    杜永峰; 杨巧红; 张太亮

    2012-01-01

    以实际工程为例,结合在建建筑物带基础整体移位的工程特点,应用ANSYS workbench建立有限元模型,使用静力分析的方法模拟分析整个结构在顶升移位和平移移位过程中的受力状态.通过分析其变形和应力,发现采用液压悬浮滑移系统可解决该建筑物左右单元质量分布不对称对移位安全影响的问题.分析结果显示,该移位建筑物较大的变形和较大应力发生于筏板基础.通过模拟对比分析,结合工程自身特点,将筏板基础在移位过程中出现较大响应部位的变形、应力和应变作为该结构受力状态监测的参数,这些监测参数可为建筑物移位工程中和就位后安全状态的监测提供参考.%Taking an actual engineering as example and considering the engineering peculiarity of unitary shifting of building with its foundation under construction, its finite element model was set up with AN-SYS workbench and the condition of force action on its entire structure in course of vertical and horizontal shifting was simulated and analyzed by using static analysis method. It was found by analyzing the deformation and stress of the structure that the hydraulic suspension-slip system could be used to solve the problem of influence of mass asymmetry of left and right parts of the structure on the shifting security. It was also shown by the analysis that a greater deformation of and stress in the shifted building would take place in the raft foundation. By means of simulative comparison and analysis, the deformation, stress and strain of the raft foundation at the location with greater response in course of shifting should be taken as the parameters of loading condition monitoring. These parameters would be used as a reference for monitoring the security condition of building shifting in progress as well as after its settling down.

  7. Numerical Simulation of Hazardous Gas Dispersion Around Buildings in Urban Environment%城市建筑群环境有毒有害气体扩散数值模拟

    Institute of Scientific and Technical Information of China (English)

    郑茂辉; 金敏; 许建明

    2013-01-01

    应用计算流体力学(CFD)原理和方法建立街区尺度点源泄漏扩散的数值模型,并经风洞试验结果验证其正确性.对街区建筑物扰动和两种来流风速(1.5 m·s-1,3.0 m·s-1)下近地面气云扩散过程及特性进行模拟与分析.结果表明:给定合适的计算参数,基于RNG k-ε模型和SIMPLE算法能够有效模拟复杂障碍物条件下有毒有害气体的扩散过程;近地面气云扩散受道路、建筑物布局和来流风速的影响明显,建筑物周围测点浓度同该处源距、方位、高度以及风向偏离程度存在密切联系;较大的来流风速加快气云水平输送,同时有利于浓度的稀释;泄漏停止后建筑物密集区间浓度稀释相对滞缓,可能对人群健康构成威胁.%A street-level computational fluid dynamics (CFD) model was established to simulate the movement characteristics of the released gas and the concentration distribution around the complex arrangement of buildings. A wind tunnel experiment about release and dispersion in building array was used to validate the model. Then numerical simulations were carried out with two different reference wind speeds, 1. 5 m·s-1 and 3.0 m·s-1, in a genuine urban area. The results show that, given appropriate parameters, the RNG κ—ε closure and SIMPLE algorithm can be employed to predict the dispersion process accurately in obstacle terrain. The time-varying concentration distributions near the ground highlight the influences of wind speed, road and building arrangement, on the dispersion. The sampling concentration around buildings is strongly affected by the positions of sampling points relative to source, including height, distance from the source, angle from wind direction, and so on. The higher wind velocity speeds up plume propagation, as well as concentration dilution process. The results also confirm that, among dense buildings the hazardous gas may stay much longer, which constitutes a threat to public

  8. Evaluating dynamic building materials: The potential impact of climatically responsive building enclosures

    Science.gov (United States)

    Kienzl, Nico H.

    Despite the great interest and investment in new material technologies and advanced simulation tools, predictions for the potential impact of dynamic envelope systems so far have been based on simulations of the overall building. However, overall building simulations provide limited insights into the behavior of the building envelope since results of these types of simulations are affected by many factors that are independent of or indirectly influenced by the building envelope. Therefore, it is difficult to isolate the impact of the building envelope on building energy consumption independent of building-specific factors such as building geometry, construction, environmental systems, and building use. In order to understand and quantify the dynamic nature of environmentally responsive envelope systems, designers and engineers necessitate a new method that enables the direct evaluation of only the envelope. This method needs to be able to predict the heat transfer through dynamic building envelopes under variable environmental conditions. Ultimately, this new method should help identify the applicability of new technologies early in the design process when detailed information on a building's design or operation are not yet available. This thesis establishes a new method and a validated reference case for the evaluation of climatically responsive building envelopes with dynamic material properties. The method isolates the performance of the building envelope in a building energy simulation model through transformation of a validated BESTEST model. It allows for parametric evaluation of the thermal performance of dynamic building envelopes under a wide range of environmental boundary conditions in comparison to existing reference technologies. This method can serve as a starting point for the critical evaluation of the impact that dynamic envelope systems have on the heat balance of buildings. The method was applied to the evaluation of electrochromic glazing to

  9. Simulation on the smoke transport process to remote room during a residential building fire based on FDS%基于FDS的居民楼火灾烟气远距离传播过程研究

    Institute of Scientific and Technical Information of China (English)

    徐晓楠; 吴迪; 施照成

    2012-01-01

    利用大涡模拟软件FDS对某居民楼火灾发生发展和烟气传播过程进行数值模拟,探讨烟气质量浓度在侧间-走廊建筑的分布情况.在不同房间的目标位置设置探测点,分析烟气质量浓度、CO体积分数分布.结果表明,距离火源位置最远的房间烟气质量浓度、CO体积分数最高且在短时间内达到致死浓度;烟气更容易在最远的房间聚集,在特定的时间段内,始终比其他房间的危险性要高.对于此类居民楼建筑火灾中的人员安全而言,最远端房间的危险性最高,火灾时要着重注意此区域的疏散.此外,在走廊顶棚上间隔适当的距离设置了挡烟垂壁,并且模拟了该工况下烟气质量浓度分布.结果表明,加入挡烟垂壁后走廊的烟气蔓延相对均匀,各个房间烟气质量浓度更为接近,最大烟气质量浓度也有明显降低,从而延缓了整个建筑达到危险状态的时间.%The present paper is aimed to introduce the basic information of residential building fire, to develop LES filed simulation software FDS in setting up a numerical simulation model of the residential building and to simulate the process of smoke movement as well as fire development. The result reveals that the speed of smoke move to other rooms was very fast as the smoke filled all of the space after 430 s. In order to analyze the soot density, some simulated detectors have been installed at some selected locations in each room. The results of our simulation demonstrate that the soot densities in center point of room S and N1 which were farthest from the fire room firstly reach the peak. In addition, during the fast growing of soot density, room S1 and Nl have always significantly higher soot density compared to other rooms throughout the full development stage of fire. The soot density change trends of other locations were same as the center location . Meanwhile, in order to analyze the carbon monoxide concentration, several

  10. Existing buildings

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2014-01-01

    their homes. These policy measures include building regulations, energy tax and different types of incentives and information dissemination. The conclusion calls for new and innovative policy measures to cope with the realities of renovations of owner-occupied houses and how energy efficiency improvement......This paper deals with the energy consumption of existing owner-occupied detached houses and the question of how they can be energy renovated. Data on the age of the Danish housing stock, and its energy consumption is presented. Research on the potential for energy reductions in the Danish housing...... sector is discussed, and it is shown that there is a huge potential for reductions. It is a well-known problem that even if there are relevant technical means and even if it is economically feasible, the majority of house owners do not energy renovate their homes. This paper intends to address what can...

  11. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  12. Integrating Responsive Building Elements in Buildings

    DEFF Research Database (Denmark)

    Haase, Matthias; Amato, Alex; Heiselberg, Per

    2006-01-01

    There is a global need for a more sustainable building development. About 50% of energy is used in buildings indicating that buildings provide a considerable potential for operational energy savings. Studies were conducted with the following objectives: to perform a state-of-the-art review...... energy strategies to develop guidelines and procedures for estimation of environmental performance of responsive building elements and integrated building concepts This paper introduces the ideas of this collaborative work and discusses its usefulness for Hong Kong and China. Special focus was put...... of responsive building elements, of integrated building concepts and of environmental performance assessment methods to improve and optimize responsive building elements to develop and optimize new building concepts with integration of responsive building elements, HVAC-systems as well as natural and renewable...

  13. 基于Galerkin法的地下粮仓围护结构传热特性数值模拟%Numerical simulation of heat transfer characteristics of building envelopes of underground warehouse based on element-free Galerkin method

    Institute of Scientific and Technical Information of China (English)

    王海涛; 李向前

    2014-01-01

    The element-free Galerkin method is a new numerical simulation method that has many advantages such as no mesh or elements, convenient node insertion or elimination, high computational accuracy, and rapid convergence, etc. In this paper, the element-free Galerkin method (EFGM) is extended to solve the heat transfer problem of building envelopes of underground warehouses. Based on a real underground warehouse, the EFGM program for the ground-coupled heat transfer problems of underground warehouse is developed in MATLAB software. Heat transfer laws of building envelopes of underground warehouses is studied by using the EFGM numerical simulation method. The prediction precision of the element-free Galerkin method was validated by comparison between the predicted and measured temperatures of building envelopes of underground warehouses. In the steady-state analysis of heat transfer of underground warehouses, the sensitivity analysis of soil thermal conductivity, outdoor surface wind speed, and distance of the roof from the ground surface were carried out. Furthermore, the relationship between heat transfer of underground structures and insulation thickness, length and layout of the location were investigated in detail. Results of numerical simulation show the maximal error between predicted and measured temperatures of building envelopes of underground warehouses is-0.17℃in the summer. In addition, the maximal error between predicted and measured temperatures of building envelopes of underground warehouse is 0.24℃in winter. It implies the element-free Galerkin method proposed in this paper has a higher forecasting precision. In the unsteady analysis of heat transfer of underground warehouses, parameter sensitivity investigations show that heat transfer of building envelopes of underground warehouses is very sensitive to the soil thermal conductivity. Therefore, the soil thermal conductivity should be determined cautiously. The temperature gradient is larger in the

  14. 汽车悬架系统建模与仿真研究%The Model Building And Simulation Of The Automobile Suspension System Reserch

    Institute of Scientific and Technical Information of China (English)

    赵海宾; 赵巍

    2016-01-01

    The automobile suspension is a multi-body system and the motion relationship among the parts is very complicated, so it brings many difficulties to compute the various characteristics with traditional methods. The Automobile suspension kinetics and dynamic simulation has been a very critical task in automobile design and development and it provides a rapid and effective method to design automobile suspension.%汽车悬架系统是一个比较复杂的多体系统,其构件之间的运动关系十分复杂,这就给使得传统的计算方法分析悬架的各种特性带来许多的困难。因此,悬架的运动学和动力学仿真分析在汽车悬架特性的研究中起着重要作用,并为悬架系统的设计和开发提供了一种先进高效快捷的方法。

  15. 350m塔楼顶部皇冠钢结构施工过程模拟分析%SIMULATION ANALYSIS OF THE CONSTRUCTION PROCESS OF STEEL CROWN STRUCTURE AT THE TOP OF 350 METER-HIGH BUILDING

    Institute of Scientific and Technical Information of China (English)

    段海; 汪晓阳; 张希博; 柳超; 彭湃

    2015-01-01

    通过对沈阳市府恒隆广场350 m 高塔楼顶部的皇冠钢结构施工过程进行模拟分析,简要介绍了复杂钢结构施工过程模拟分析的方法、步骤、施工阶段划分的原则、条件假定、临时支撑的反力分析、加固结构的承载力分析以及后装缺口的变形控制等,通过施工阶段模拟分析的方法,来确定施工方案、优化施工顺序,确保施工方案的可行性、科学性,同时避免盲目施工所带来的结构安全和质量隐患。%ABSTRACT:Through the simulation analysis of the construction process of steel crown structure at the top of 350-meter-high building of Hang Lung Plaza in Shenyang,this paper briefly introduced the simulation analysis of the construction process of complex steel structure in terms of the approaches, the steps,the principles of the construction stage division,the assumption of conditions,the reaction force analysis of temporary supports,the bearing capacity analysis of the reinforced structure,as well as the analysis of the deformation control of the afterloading gaps and so on.The construction scheme was identified and the construction sequence was optimized through simulation analysis of construction process,thus the feasibility and scientificity of the construction scheme was confirmed which could avoid the quality problems caused by blind construction.

  16. 水价政策模拟模型构建及其应用研究%A model building for water price policy simulation and its application

    Institute of Scientific and Technical Information of China (English)

    秦长海; 甘泓; 贾玲; 汪林

    2014-01-01

    Aiming at the situation of non-market pricing system of water resources, a general equilibrium model for water price policy simulation (WaGE) has been built up to analyze the influence on national economy variation and household income, etc. and to establish a reasonable water price. Based on general equilibrium theory, WaGE is able to analyze and simulate water price policy, involving water element in the element supply system and separating water related enterprises from industries. Taking Beijing as the re-search area to implement practical application, the results show that there is little influence on economic growth, industrial structure, and residents living level by appropriate water price rising and water related subsidy, while the positive effect on the water supply enterprise is significant. Under the circumstance of low water price and imbalance of water supply enterprises income and expenditure, improving water price could effectively enhance the income of water supply enterprises and reduce the water usage, which would take a positive role on reducing the depletion of water resources and water environmental degradation due to excessive development of water resources.%针对水资源非完全市场化、主要以政府主导的定价情况,构建价格政策模拟模型,分析水价比价、差价及整体变动对国民经济和居民收入等指标的影响,为合理制定水价提供依据。基于一般均衡模型方法,利用GMAS软件,建立将水要素纳入到要素供给中、将水行业单独考虑的水价政策模拟模型,开展水价格政策模拟分析。以北京市为研究区开展实践应用,结果表明,在适当的调价范围内,水价提高和政府涉水补贴等政策对物价水平、经济增长、产业结构及居民生活水平影响不明显,但是对水生产供应企业影响意义重大。在水价偏低、水生产供应企业收支不平衡的情况下,水价提高可有效提高水生产

  17. The Re-invention of the Tower House for the Construction of Green Buildings NZEB, Integrated With the Vertical Axis Small Wind System

    Science.gov (United States)

    Marino, Francesco Paolo R.

    Nowadays the cultural and economic context aims to create a sustainable "carbon zero" society through energy-efficient green buildings NZEB, but it has so far overlooked a construction type widely spread throughout Europe, especially in the Middle Ages, and that in Italy still characterizes the most beautiful landscapes of Tuscany and other cities: the tower-house. The aim of the research was to verify the possibility of reinventing the type of the familiar tower-house, which is intrinsically directed to conquer the height and therefore higher wind conditions, assuming the installation on the top of a small wind system to use wind energy, to make the building energetically self-sufficient. This building is designed from a wooden structure of a deciduous tree widespread in the Italian region of Basilicata, the Turkish Oak, which, subject to processes of hygrothermal conditioning, can be transformed into the base material to compose laminated timber beams and pillars, able to guarantee a load of exercise, to bending stress, equal to 40.9 N/mm2, as followed by tests in the Laboratory of Engineering of the University of Basilicata, Potenza. With normal wind conditions in the city of Potenza (average of 6.5 m/s), a 5 kW wind turbine mounted at 25 m tall on a 13 m high building is able to provide all the energy the building needs, with its attractive tapered oval top that minimizes turbulence. Entirely made with structures, finishes and natural insulation, the building is a sign in the landscape, history and future together.

  18. An Investigation of Envelope Situation and Simulation of Heating/Cooling Energy Consumption for Rural Residential Buildings in Shanghai%上海农村住宅围护结构现状调查与供暖空调能耗模拟

    Institute of Scientific and Technical Information of China (English)

    孙雨林; 林忠平; 王晓梅

    2011-01-01

    In this paper, based on the building envelope investigation results of 108 rural residential houses in Shanghai, the comparison work with the national standard of Hot Summer and Cold Winter Region Residential Building Design Standard was carried out. The envelope thermal performance of current rural residential buildings was obtained. Based on the investigation results and with the building energy simulation software of DesignBuilder, a basic model for Shanghai rural residential buildings was established.Furthermore, the heating and cooling energy consumption was simulated, and the energy consumption level was achieved. In addition, the importance of energy conservation of rural residential buildings was presented.%本文基于对108户上海农村住宅围护结构的实际调查结果,通过与(JGJ 134-2001)进行比较,分析得到了上海农村住宅围护结构的热工现状.而后以调查分析结果为基础,采用逐时能耗分析软件DesignBuilder建立了上海农村住宅的基本模型,通过对基本模型进行全年能耗模拟,获得了上海农村住宅的供暖空调能耗水平,并简要分析了农村住宅节能的重要性.

  19. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  20. Simulation Study on Solar PV/T System Performance of Building in Chongqing%重庆地区建筑太阳能PV/T系统性能模拟研究

    Institute of Scientific and Technical Information of China (English)

    宋石海; 庄春龙; 张洪宇

    2013-01-01

    The two application forms of solar PV/T in roof sand walls in Chongqing are studied through simulation with TRNSYS for a year and photo-electric and photo-thermal features are analyzed. The results show that the power production and photo-thermal transfer amount of R-PV/T system are higher than those of W-PV/T, but W-PV/T laying is out of the limit of building, so it can be applied by building walls and it's feasible. It offers some ref-erences for the application of PV/T in parts of low solar radiation in Chongqing.%  利用TRNSYS软件对太阳能光电/热综合利用系统(PV/T)在重庆地区的屋顶及墙面两种应用形式进行了全年模拟研究,对其光电、光热特性进行了分析。得出R-PV/T系统的发电总量与系统的光热转换总量高于W-PV/T系统,而W-PV/T系统的敷设可以不受屋面场地的限制,使建筑墙体表面获得利用,因此仍然具有较大可行性。论文的研究为PV/T在重庆等太阳辐射强度较弱地区的应用提供了参考。

  1. Analysis of Indoor Thermal Performance of Solar Buildings and Simulation Software Development%太阳能建筑室内热工性能分析与模拟软件开发

    Institute of Scientific and Technical Information of China (English)

    敖永安; 车丹; 彭亮; 张茜; 李玉雯

    2013-01-01

    According to the solar building characteristics,we established simulation analysis software suitable for solar building indoor thermal performance; analysed the impact of solar energy applied in the building on indoor temperature and load; and provided reference data for the design of the solar building heating and cooling systems. Based on VB visual programming language, using the method of " ADO data control + SQL statement" and through the ODBC connected with database interface, established the national climate database; databases of different wall types, window types, and radiation floor materials in different regions, etc. The program refers to the outer - wall temperature heat transfer calculation method to calculate the indoor cold (heat) load, and the parametric thought that uses APDL( ANSYS parametric design language) to realize the visualization parametric modeling of floor for heat transfer calculation. Then we got the results: for example, on 1 st January in Shenyang, with only solar energy floor heating in practical building conditions, the standard indoor design temperature, 18℃ ,can not be reached;and the amount of auxiliary heat for the water supply temperature controlled at 40℃ is greater than the amount for that uncontrolled when we use solar energy for heating only. This software could calculate thermal parameters of rooms in different locations.different time and different rooms, so it could be used broadly. It also has opened databases and outputs in graphs and tables, so it is easily understood.%目的 针对太阳能建筑自身的特点,编制适用于太阳能建筑的室内热工性能模拟分析软件,分析太阳能在建筑中应用时对室内温度和负荷的影响,为太阳能建筑冷热源系统的设计提供参考.方法 基于Visual Basic可视化程序设计语言,运用“ADO数据控制项+SQL语句”并通过ODBC同数据库接口相连接的方法建立全国气候数据库、适用于不同区域的墙型窗型和

  2. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

  3. Simulation Model of Sound Field in Street Space Caused by Noise Transmitted from Bordering Large Workshop Buildings%临街高大厂房噪声引起的街道声场的仿真模型

    Institute of Scientific and Technical Information of China (English)

    张红虎; 郑卫

    2012-01-01

    为控制临街高大厂房内空气噪声通过围护结构向相邻街道的透射传播,需在建筑设计阶段预测该噪声引起的街道声场,以确定隔声降噪措施.文中根据相关声场的特点,综合运用经典室内声场理论、虚声源法与声学辐射度方法,给出了一个仿真模型来计算厂房内噪声对街道声场的贡献,模型核心在于将声场界面进行离散化求解,并对声能透射与反射的指向性进行合理简化,使其可有效处理复杂的声场空间几何形状及声学特性的不均匀分布.%In order to control the propagation of air-borne noise from the interior of large workshop buildings to their neighboring streets through the envelop enclosure, the sound field in the street space caused by the noise should be predicted in the design stage of buildings, which helps to determine the measures of sound insulation and noise reduction. In this paper, by considering the features of the related sound field and by synthetically employing the classical room sound field theory, the image source method and the acoustical radiosity method, a simulation model is established to calculate the contribution of the noise inside the workshop building to the sound field in the street space. Tlie core of the model lies in the calculation by discretizing the boundary of the sound field and in the reasonable simplification of the directionality of sound reflection and sound transmission, which makes the model effective in dealing with the sound field with complex space geometry and nonuniform acoustical property distribution.

  4. RP{sub P}erformance, a design tool to simulate the thermal performance of high-latitude roof pond buildings (Skytherm North roof ponds); Programa de computo para la simulacion termica de sistemas de techo con estanque para latitudes altas (Skytherm North Roofponds)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A. G.

    2004-07-01

    This article introduces RP{sub P}erformance, a design tool to simulate the thermal performance of high-latitude roof pond buildings (also known as Skytherm North roof ponds). RP{sub P}erformance is an interactive Microsoft Excel spreadsheet that allows users to modify all the parameters that influence the thermal performance of a Skytherm North roof pond building giving as outputs the heating and cooling costs, as well as a series of indoor temperature charts for a roof pond, a highly-insulated reference building, and a conventionally insulated reference building. This article also presents the calibration study of RP{sub P}erformance using experimental results obtained over a nine-month period in an 11.9 m2 test-room located in Muncie, Indiana. (Author)

  5. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carbary, Lawrence D. [Dow Corning Corporation; Perkins, Laura L. [Dow Corning Corporation; Serino, Roland [Dryvit Systems, Inc; Preston, Bill [Dryvit Systems, Inc; Kosny, Jan [Fraunhofer USA, Inc. CSE

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of

  6. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  7. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  8. New method for simulation of VOC emission from building materials and measurement of mass transfer parameters%建材VOC散发过程模拟与传质参数测定新方法

    Institute of Scientific and Technical Information of China (English)

    宋伟; 孔庆媛; 李洪枚

    2013-01-01

    建材中挥发性有机化合物(VOC)的散发是一个复杂传质过程.为准确把握传质特性,首先建立了一套描述干建材散发行为的显性完全解析模型,适用于模拟对人体最不利的无换气情况;代入有关文献中的传质参数预测了环境舱浓度,与文献中对应的实验数据及数值算法预测值吻合良好.然后基于对模型的分析提出一套简便快捷的实验方法,能够利用不同VOC背景值下干建材在密闭舱中散发的平衡浓度或逐时浓度,求取预测散发过程的4个重要的传质参数:可散发浓度C0、扩散系数D、分配系数K和对流传质系数hm;实验部分测算了两类密度板中甲醛散发的C0、D、K、hm,代入数值算法预测了密闭舱和直流舱的环境舱浓度,与实验数据吻合良好.该套模型和测定方法能够应用于建材散发的模拟研究.%Emission of volatile organic compounds (VOC) from building materials is a complex process of mass transfer. To have a clear picture of mass transfer characteristics, this paper first established an explicitly fully analytical model describing VOC emission behavior from dry building materials, which is applicable to emission simulation in static chamber that is most unfavorable to human health. The VOC concentration in the chamber predicted based on the mass transfer parameters in literature is in good agreement with corresponding experimental data and numerical calculation in literature. Based on this model, an experimental method is proposed for convenient, rapid and simultaneous measurement of four important mass transfer parameters for VOC emission prediction (emittable concentration C0, diffusion coefficient D, partition coefficient K and convection mass transfer coefficient hm) by making use of emission equilibrium or process concentration in a static chamber at a series of background concentrations. With the values of C0, D, K and hm for formaldehyde emission mass transfer obtained

  9. BUILDING 341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  10. Tribal Green Building Toolkit

    Science.gov (United States)

    This Tribal Green Building Toolkit (Toolkit) is designed to help tribal officials, community members, planners, developers, and architects develop and adopt building codes to support green building practices. Anyone can use this toolkit!

  11. Occupant behaviour and robustness of building design

    DEFF Research Database (Denmark)

    Buso, Tiziana; Fabi, Valentina; Andersen, Rune Korsholm;

    2015-01-01

    with alternating occupant behaviour patterns. The aim of this work was to investigate how alternating occupant behaviour patterns impact the performance of different envelope design solutions in terms of building robustness. Probabilistic models of occupants' window opening and use of shading were implemented...... in a dynamic building energy simulation tool (IDA ICE). The analysis was carried out by simulating 15 building envelope designs in different thermal zones of an Office Reference Building in 3 climates: Stockholm, Frankfurt and Athens.In general, robustness towards changes in occupants' behaviour increased...... with increasing thermal mass and with decreasing transparent area of the envelope. The importance of the robustness' evaluation is highlighted in this paper, in order to obtain optimized buildings' designs for more accurate and realistic energy predictions....

  12. Energy modeling of two office buildings with data center for green building design

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yiqun; Yin, Rongxin; Huang, Zhizhong [Institute of Building Performance and Technology, Sino-German College of Applied Sciences, Tongji University, Shanghai 200092 (China)

    2008-07-01

    Energy simulation models are developed with EnergyPlus for two office buildings in a R and D center in Shanghai, China to evaluate the energy cost savings of green building design options compared with the baseline building. As a R and D center of an international IT corporation, there are data centers in the two buildings, which make them different from typical office buildings. The data centers house high energy consuming IT equipments and need 24 h air-conditioning every day all year round. In order to achieve energy cost savings, multiple energy efficiency strategies are employed for design proposed building, encompassing high performance building envelope, lighting system, and HVAC system. Through energy modeling, the design proposed options are compared to an ASHRAE 90.1-2004 compliant budget model to highlight energy cost savings versus ''standard practice'' and show the potential LEED trademark Credit EA1 - Optimize Energy Performance. Meanwhile, they are also compared to China Code model to figure out the energy cost savings versus the most popular practice conforming to China Public Building Energy Saving Design Standard. The whole building energy simulation results show that the yearly energy cost saving of the proposed design will be approximately 27% from China Code building and 21% from ASHRAE budget building, which can achieve 4 points for LEED credit due to energy performance optimization. (author)

  13. Green building: sustainable building quality; Green Building: nachhaltige Gebaeudequalitaet

    Energy Technology Data Exchange (ETDEWEB)

    Staub, R.

    2010-07-01

    This article takes a look at the 'Portikon' office building near Zurich, Switzerland, that meets the 'Minergie-P' very low energy consumption requirements. The author is of the opinion that the project can be seen as a reference project for sustainable building technology. The structure of the seven-storey building with a central atrium is described and discussed. The 'Minergie-P' energy concept is discussed, as are the 1,100 square meters of photovoltaic panels on the roof of the building. Heating energy is provided by Zurich's waste incineration plant nearby. Electro-biological aspects in the building are taken care of by appropriate earthing and shielding of cables. The building's facility management system and the installations used are briefly discussed.

  14. Danish building typologies

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper

    The objective of TABULA is to develop a harmonised building typology for European countries. Each national building typology will consist of a set of residential model buildings with characteristic energy-related properties (element areas of the thermal building envelope, U-values, supply system...... efficiencies). The model buildings will each represent a specific construction period of the country in question and a specific building size. Furthermore the number of buildings, flats and the overall floor areas will be given, which are represented by the different building types of the national typologies....

  15. Danish building typologies and building stock analyses

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper

    enough to meet the government’s plan to make Danish buildings free from use of fossil fuels by 2035. This will probably require around 50 % energy savings in the Danish building stock as a whole. However, the project has proven that dedicated engagement of locals can speed up market penetration...... energy savings in residential buildings. The intension with this analysis was to investigate the possible energy reduction in Denmark if the same approach had been taken for the entire Danish building stock. The report concludes that the ZeroHome initiative clearly results in energy savings, but far from...... for energy savings in the existing Building stock....

  16. Simplified analysis of naturally ventilated desert buildings

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, E.H.; Richards, P.G.; Rousseau, P.G. (Pretoria Univ. (South Africa). Dept. of Mechanical Engineering); Etzion, Y.; Erell, E. (Ben-Gurion Univ. of the Negev, Sede Boqer (Israel). J. Blaustein Inst. for Desert Research)

    1992-10-01

    The verification of a simplified thermal analysis procedure and its application to naturally ventilated desert buildings are discussed. Measurements for buildings in the Negev Desert, made independently by the Desert Architecture Unit of the Jacob Blaustein Institute for Desert Research, were inter alia used to verify the simplified thermal analysis procedure QUICK, developed by the Centre for Experimental and Numerical Thermoflow. As detailed information for validation purposes is not always readily available to researchers, the measurements as well as the buildings' descriptions are given in detail in this paper. The effect of natural ventilation strategies on the indoor air temperatures is also investigated for the desert buildings. A simplified but novel procedure to calculate the air change rates through the building from the measured wind speeds, building geometry and surroundings is proposed. Hourly air change rates determined with the proposed procedure are employed in the simulations with QUICK. (author)

  17. 高层建筑典型外墙保温材料火蔓延特性数值模拟研究%Simulation of Fire Spread of Typical External Wall Insulation Materials in High-rise Building

    Institute of Scientific and Technical Information of China (English)

    章涛林; 周晓冬; 雷杲; 汪文君; 龚俊辉; 杨立中

    2012-01-01

    有机保温材料被广泛应用于高层建筑外墙保温体系的同时,也可能增加高层建筑的火灾风险.本文通过计算机模拟,着重研究了保温材料之一的聚苯乙烯泡沫塑料(EPS)的火蔓延速率、失重速率及温度场分布等特性.研究结果发现:发生火灾后,外墙保温材料可以在很短的时间内自下而上蔓延至整个材料表面,并有表皮着火的现象.在火焰到达材料顶部之前,向上火蔓延占主导地位,材料中部区域明显燃烧脱落,火焰在材料两端上部继续燃烧,有向下加速蔓延的趋势;之后,火焰沿着材料中部内侧向下剧烈燃烧,材料呈V字型燃烧直至熄灭.在高层建筑外墙外保温材料火蔓延中,不同着火点情况下的燃烧速率随时间变化的趋势相似,且会形成两个波峰.%Organic insulation materials are widely used in the external wall insulation system of high-rise buildings, but it also increases the risk of external wall fire. This paper, based on computer simulation, focuses attention mainly on the fire spread rate, mass loss rate, temperature distribution and other characteristics of one of the insulation materials Expanded Polystyrene (EPS). The study found that after the ignition of the external insulation material, in a very short period of time, fire spreads to the entire surface from bottom up, and has a feature of skin burning. Upward fire spread dominates before it reached the top of the material. The central region of the material was remarkably burned off. While the upper ends of the material continued to burn, accelerating the trend of downwards spread, then fire spreads downwards intensely along the middle of inside material and materials burned into a V-shape until extinguished. The burning rate curve is similar under different ignition points as to the fire spread of external insulation materials in high-rise building, forming two peaks.

  18. Transient Performance Simulation on Building Integrated Photovoltaic/thermal Solar Energy System%建筑太阳能光电热一体化系统的瞬态性能模拟

    Institute of Scientific and Technical Information of China (English)

    杨小凤; 庄春龙; 成镭; 张洪宇

    2013-01-01

    The software TRNSYS is used to simulate and analyze transient working situations of the building roof integrated photovoltaic/thermal(PV/T)solar energy system which is designed to provide power and hot water simultaneously. Thought series of tests in summer,instantaneous power output,cumulative capacity,transient in/out water temperature of PV/T module and flat plate solar collector,cumulative effective heat gain of PV/T module and flat plate solar energy collector in a given period,efficiency of photovoltaic and photothermal transfer and comprehensive solar energy utilization efficiency of system are recorded. Consequences manifest solar energy PV/T integrated system on the roof is an appropriate type for solar energy use of buildings in summer in Chongqing area where is usually thought no valuable possibility to use solar.%  利用TRNSYS软件对重庆夏季建筑屋顶太阳能光电热一体化系统进行瞬态模拟分析计算,得到系统瞬时发电量与一段时间内累计发电量,光电热模块瞬时进出水温度与太阳能平板集热器瞬时进出水温度,系统一段时间内光电热模块累计有效得热量与一段时间内太阳能平板集热器累计有效得热量,系统的光电转换效率、光热转换效率以及太阳能综合利用效率。结果表明,建筑屋顶太阳能光电热一体化系统是重庆地区建筑太阳能光电热一体化系统适宜的型式。

  19. Value engineering in building construction : applications simulation

    OpenAIRE

    Joyce de Andrade Ruiz

    2011-01-01

    Resumo: Proposta: A Engenharia de Valor (EV) é uma abordagem sistemática que busca o melhor balanço funcional entre custo, confiabilidade e desempenho de um produto. Ela concentra os esforços na análise das funções, gerações de ideias e busca por alternativas de forma a proporcionar reduções de custos e garantia da entrega do valor, funcionalidade e qualidade desejados para o produto. A EV insere-se na abordagem proativa do custeio-meta uma vez que busca sua operacionalização para alcance do ...

  20. Global building physics

    DEFF Research Database (Denmark)

    Rode, Carsten

    2013-01-01

    High ambitions are set for the building physics performance of buildings today. No single technology can achieve fulfilment of these ambitions alone. Integrated, multi-facetted solutions and optimization are necessary. A holistic, or ‘global’, technological perspective is needed, which includes all...... aspects of the building as defined in building engineering. We live in an international society and building solutions are developed across country borders. Building physics is a global theme. The International Association of Building Physics has global appeal. This brief article reports the keynote...... lecture and illustrates global relations to highlight some of the challenges that we see today....

  1. Global Building Physics

    DEFF Research Database (Denmark)

    Rode, Carsten

    2012-01-01

    aspects of the building as defined in building engineering. We live in an international society and building solutions are developed across country borders. Building physics is a global theme. The International Association of Building Physics has global appeal. The keynote lecture and this brief paper......High ambitions are set for the building physics performance of buildings today. No single technology can achieve fulfilment of these ambitions alone. Integrated, multi-facetted solutions and optimization are necessary. A holistic, or “global”, technological perspective is needed, which includes all...

  2. SmartBuildings. Implementation of demand-side-management systems; SmartBuildings. Implementierung von Lastmanagementsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Jungwirth, Johannes; Saenger, Florian; Grahovac, Milica [TU Muenchen (Germany). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik; Roessel, Timm; Schneegans, Jakob; Herzog, Simon [TU Muenchen (Germany). Lehrstuhl fuer Bauklimatik und Haustechnik; Mikulovic, Vesna [Siemens Building Technologies Headquarters, Zug (Switzerland)

    2012-07-01

    A transition to flexible consumer load can contribute significantly to the integration of renewable energies. Precisely controllable electrical consumers from the building sector (heating, ventilation, air conditioning) are applicable for demand-side-management by using the thermal inertia of the building. In order to incentivize a load shift scenarios of flexible electricity rates are developed. Flexible users can shift their operation to times of lower prices and therefore minimize their electricity costs. Within a simulation of the building and the building services the impact of modified operation mode on thermal comfort of the room is analyzed and times of operation are optimized. The implementation of resulting theoretical potential of a load shift in a real building necessitates a simulation model of the building. Since the creation of these models is very complex, universally applicable adaptive models of the buildings are developed. After a training process those adaptive models have acquired the skill to predict the building behaviour. Now they are able to forecast effects of various modes of operation and provide a cost-optimized operation schedule for building technology. Neural networks used to build adaptive models deliver promising results. However, initial measurements and training periods are to be optimized. (orig.)

  3. ICT Enhanced Buildings Potentials

    DEFF Research Database (Denmark)

    Christiansson, Per

    2007-01-01

    The paper describes and gives example on how Information and Communication, ICT, can and will enhance and support the building functional systems defined from client and end-user needs and requirements. The building systems may be derived from functional requirements on buildings such as usability...... and security on highest level with sub-systems definitions on lever levels. Building functional sub-systems may be defined for user comfort, indoor-climate, evacuation, space configuration, aesthetics, O&M etc. These building systems are supported by Information and Communication Technology, ICT, and building...... component systems that are accessed and integrated in the real world of building use in different contexts. The ICT systems may be physically or virtually embedded in the building. Already in 1982 AT&T established the 'intelligent buildings', IB, concept due to marketing reasons and the Informart building...

  4. Retrofitting Listed Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2011-01-01

    The paper presents a case study where the energy demand for a listed building constructed in 1900 is reduced. Many older buildings are listed and have restrictions that include the entire building or that include only its exterior. For the building presented, only its exterior facade is listed...... of the local urban environment and therefore listed. The reduced energy demand, related to individual measures, is estimated and building physics requirements are addressed together with the economic options for evaluating the profitability....

  5. T800 H碳纤维表面特性及T800 H/BA9918复合材料湿热性能研究%Study on surface characteristic of T800H carbon fiber and hygrothermal performance of T800H/BA9918 composite

    Institute of Scientific and Technical Information of China (English)

    王迎芬; 彭公秋; 李国丽; 谢富原; 刘勇

    2015-01-01

    This paper intends to analyze the surface characteristics of T800H carbon fiber and the interface matching performance between T800H and BA9918 resin. Scanning electronic microscopy ( SEM) , atomic force microscopy (AFM), X⁃ray photoelectron spectroscopy (XPS) and thermogravimetry analysis (TGA) were used to characterize the surface morphology/chemical properties of carbon fibers and the heat resistance of sizing agent. Then, the 0° compression strength, 90° tensile strength and interlaminar shear strength ( ILSS ) of T800H/BA9918 were tested before and after hygrothermal treatment. Last, the open hole compression and compression after impact performance of T800H/BA9918 were obtained. Tests found that there are obvious grooves in the surface of T800H, which benefits the interfacial mechanical engagement between fiber and resin. The compressive strength after a 29 J impact is 314 MPa. In 130℃ hygrothermal environment the retention ratio of 0° compression strength and ILSS are above 58% while open hole compression strength are above 60%. Test results demonstrates that T800H carbon fiber and BA9918 resin have good interface matching performance, and T800H/BA9918 composite material has good hygrothermal performance.%为了研究T800H碳纤维的表面特性及其与BA9918树脂的界面匹配性,分别采用SEM、AFM、XPS和TGA对T800H碳纤维表面形貌、表面化学特性以及碳纤维上浆剂热稳定性进行表征,测试了T800H/BA9918复合材料湿热处理前后0°压缩强度、90°拉伸强度和层间剪切强度,并得到了其在湿热处理前后的开孔压缩和冲击后压缩性能。测试发现T800H碳纤维表面有明显的沟槽,有利于表面机械啮合作用;T800H/BA9918复合材料经29 J能量冲击后压缩强度为314 MPa;在130℃湿态环境下其0°压缩强度和层间剪切强度保持率高于58%,开孔压缩强度保持率高于60%。试验结果证明T800H碳纤维与BA9918树脂具有

  6. Comparison of Building Energy Modeling Programs: Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dandan [Tsinghua Univ., Beijing (China); Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Da [Tsinghua Univ., Beijing (China); Wang, Chuang [Tsinghua Univ., Beijing (China)

    2012-06-01

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In the fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to

  7. Sustainable Buildings in Interaction

    DEFF Research Database (Denmark)

    Elle, Morten

    2007-01-01

    The first attempts to build sustainable buildings in Denmark were typically located on the countryside. The basic idea was to create buildings that were independent of the technical infrastructure. District heating has, however, been the dominating solution to heating in buildings in Denmark......, and the focus on sustainable building have gradually turned from special houses on the countryside to normally looking houses in the urban fabric, integrated in the technical infrastructure. Some new built urban areas in Denmark will, however, not have to be supplied with district heating – these developments...... are going to consist of passive houses. The first sustainable buildings were built by their users, and the user – building interaction still play a decisive role for the performance of the present sustainable buildings. The users have to understand how the building functions. Urban design is essential...

  8. Importance of Building Code

    Directory of Open Access Journals (Sweden)

    Reshmi Banerjee

    2015-06-01

    Full Text Available A building code, or building control, is a set of rules that specify the minimum standards for constructed objects such as buildings and non building structures. The main purpose of building codes are to protect public health, safety and general welfare as they relate to the construction and occupancy of buildings and structures. The building code becomes law of a particular jurisdiction when formally enacted by the appropriate governmental or private authority. Building codes are generally intended to be applied by architects, engineers, constructors and regulators but are also used for various purposes by safety inspectors, environmental scientists, real estate developers, subcontractors, manufacturers of building products and materials, insurance companies, facility managers, tenants and others.

  9. 10 CFR 434.521 - The simulation tool.

    Science.gov (United States)

    2010-01-01

    ... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.521 The simulation tool. 521.1Annual energy consumption shall be simulated with a multi-zone, 8760 hours per year building energy model. The... buildings. In addition, models shall be capable of translating the Design Energy Consumption into......

  10. Use of air/ground heat exchangers for heating and cooling of buildings - in-situ measurements, analytical modeling, numerical simulation and system analysis[Dissertation 3357]; Utilisation des echangeurs air/sol pour le chauffage et le rafraichissement des batiments. Mesures in situ, modelisation analytique, simulation numerique et analyse systemique

    Energy Technology Data Exchange (ETDEWEB)

    Hollmuller, P.

    2002-07-01

    In this thesis, physical properties and practical implementation of air/ground heat exchangers were studied. These exchangers consist in ducts placed in the upper ground layer (up to a depth of several meters). Air is circulated through the ducts, with heat transfer from and to the surrounding earth/sand/gravel material, with heat diffusion (conductive and capacitive effects) through this material. Air/ground heat exchangers are used to preheat or cool the air needed by the ventilation system of a building (open loop systems), or to heat up or cool the air in a greenhouse (closed loop systems). The reported study consisted in: (i) case studies of built examples, by detailed measuring and monitoring and data analysis. (ii) modeling the basic system. (iii) solving the basic equations both numerically (by computerized simulation) and analytically. (iv) identifying the basic features of these systems. (v) establishing recommendations for the practical implementation, especially in what regards sizing. It turned out that daily and seasonal heat storage/delivery by means of an air/ground heat exchanger have to be considered separately, with ad hoc rules of thumb each. Depending on parameter values a phase shift by as much as half the period may even be observed, with very little damping of the temperature oscillation. In Switzerland the main relevance for these systems is for improving thermal comfort in buildings in the summer time when outdoor temperature is higher than 26 {sup o}C, and for damping the amplitude of day/night temperature variations in horticultural greenhouses. The work carried out can be considered as of basic relevance for all applications of the systems studied.

  11. Applied building physics

    CERN Document Server

    Hens, Hugo S L C

    2012-01-01

    The energy crises of the 1970s, persisting moisture problems, complaints about sick buildings, thermal, visual and olfactory discomfort, and the move towards more sustainability in building construction have pushed Building Physics to the forefront of building innovation. The societal pressure to diminish energy consumption in buildings without impairing usability acted as a trigger to activate the whole notion of performance based design and construction. As with all engineering sciences, Building Physics is oriented towards application, which is why, after a first book on fundamentals this s

  12. Perceptions of Building-layout Complexity

    OpenAIRE

    Dalton, Ruth; Wilbertz, Gregor; Hoelscher, Christoph

    2008-01-01

    This poster presents an experiment on judgments of design\\ud complexity, based on two modes of stimuli: the layouts of corridor systems in buildings shown in plan view and movies of simulated walkthroughs. Randomly selected stimuli were presented to 166 subjects: ‘experts’ (architects or students currently enrolled on an architectural course) and ‘lay people’ (all others). The aims were to investigate whether there were differences between these two groups in terms of their judgments of build...

  13. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  14. Building-to-Grid Integration through Commercial Building Portfolios Participating in Energy and Frequency Regulation Markets

    Science.gov (United States)

    Pavlak, Gregory S.

    Building energy use is a significant contributing factor to growing worldwide energy demands. In pursuit of a sustainable energy future, commercial building operations must be intelligently integrated with the electric system to increase efficiency and enable renewable generation. Toward this end, a model-based methodology was developed to estimate the capability of commercial buildings to participate in frequency regulation ancillary service markets. This methodology was integrated into a supervisory model predictive controller to optimize building operation in consideration of energy prices, demand charges, and ancillary service revenue. The supervisory control problem was extended to building portfolios to evaluate opportunities for synergistic effect among multiple, centrally-optimized buildings. Simulation studies performed showed that the multi-market optimization was able to determine appropriate opportunities for buildings to provide frequency regulation. Total savings were increased by up to thirteen percentage points, depending on the simulation case. Furthermore, optimizing buildings as a portfolio achieved up to seven additional percentage points of savings, depending on the case. Enhanced energy and cost savings opportunities were observed by taking the novel perspective of optimizing building portfolios in multiple grid markets, motivating future pursuits of advanced control paradigms that enable a more intelligent electric grid.

  15. BUILDING SUSTAINABLE ARCHITECTURAL DESIGN: A RENOVATION PROJECT

    Directory of Open Access Journals (Sweden)

    Hakan ÜNALAN,

    2011-12-01

    Full Text Available Today, the conservation of energy and respect for the natural environment appears to be the most important phenomena in all areas. In this regard, "sustainability" concept emerged and the architectural platform "Sustainable Architecture" is composed of a research subject to the new and permanent. Architecture underlying the "design" as including also the new concept of "sustainable architectural design" has revealed that field. Sustainable architecture "building in-house", "building envelope" and "physical environment" as shown in three different areas of development. Each consisting of three fields that directly affect andconcern. Sustainable architectural design within the scope of this study, "Building Envelope" developments will be discussed. In this context, building envelope, "the new building design" and "existingstructures" as appeared in two different ways. Existing structures, building envelope, sustainable architectural design in the literature in terms of "renovation" is considered within the scope. In terms of energy efficiency and performance (as Energy Performance of Buildings [BEP] with the energy policies of the various measures are being taken to reduce the energy consumption of the new building design. Not been received, but no measures in existing buildings (apartment buildings until 2012, except for heat insulation Remodeling obligation, energy consumption has remained constant. Therefore, the energy consumption of buildings on a sectoral basis is changing in the range 36-25% share of the portion of (Anonim 2011, but can not be reduced. In addition, operating costs of existing buildings and to reduce reliance on energy-environment systems (except for collectors used is noteworthy. In this study the appropriate design of sustainable architecture, renewable energy systems can be integrated into the shell structure will be investigated. In this context, a renovation project of the Department of Architecture at Anadolu

  16. Building Design & Construction - Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-11-01

    Offers a brief history of green building; presents the results of a specially commissioned survey; and analyzes the chief trends, issues, and published research, based on interviews with dozens of experts and participants in green building.

  17. Better Buildings Challenge Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-06-01

    The Better Buildings Challenge is a national leadership initiative calling on corporate chief executive officers, university presidents, and state and local leaders to make a significant commitment to building energy efficiency.

  18. Environmental indicators for buildings

    DEFF Research Database (Denmark)

    Dammann, Sven

    Environmental Indicators for Buildings are studied using two different perspectives: with a technological, environmental scientific departing point and with a social scientific departing point. Different relevant groups in the building sector are identified and analysed, using the Social...

  19. Integrated Building Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected...

  20. Building Services Systems

    DEFF Research Database (Denmark)

    Zinzi, Michele; Romeo, Carlo; Thomsen, Kirsten Engelund

    2015-01-01

    This guideline on Building Services Systems is one of four guidelines produced by the School of the Future project. The other three guidelines cover: Building Construction Elements, Improved Indoor Environmental Quality and Concepts for Zero Emission Schools. This guideline consists...