WorldWideScience

Sample records for building envelope components

  1. Building envelope

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-01-01

    Full Text Available for use in the building. This is done through photovoltaic and solar water heating panels and wind turbines. Ideally these are integrated in the design of the building envelope to improve the aesthetic quality of the building and minimise material... are naturally ventilated. Renewable energy The building envelope includes renewable energy generation such as photovoltaics, wind turbines and solar water heaters and 10% of the building’s energy requirements are generated from these sources. Views All...

  2. Innovative Danish Building Envelope Components for Passive Houses

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    and in some cases very innovative envelope constructions. In this paper, two of the most interesting components are described; a prefabricated light-weight exterior wall element with a load-bearing plywood and steel frame and a foundation / slab on ground solution based on concrete and EPS insulation...

  3. Methods for designing building envelope components prepared for repair and maintenance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian

    2000-01-01

    the deterministic and probabilistic approach. Based on an investigation of the data-requirement, user-friendliness and supposed accuracy (the accuracy of the different methods has not been evaluated due to the absence of field data) the method which combines the deterministic factor method with statistical...... to be prepared for repair and maintenance. Both of these components are insulation systems for flat roofs and low slope roofs; components where repair or replacement is very expensive if the roofing material fails in its function. The principle of both roofing insulation systems is that the insulation can...... of issues which are specified below:Further development of methods for designing building envelope components prepared for repair and maintenance, and ways of tracking and predicting performance through time once the components have been designed, implemented in a building design and built...

  4. Simulation-based support for product development of innovative building envelope components

    NARCIS (Netherlands)

    Loonen, R.C.G.M.; Singaravel, S.; Trcka, M.; Costola, D.; Hensen, J.L.M.

    2014-01-01

    A need for innovation in building envelope technologies forms a key element of technology roadmaps focusing on improvements in building energy efficiency. Many new products are being proposed and developed, but often, a lack of insights into building integration issues is an obstacle in typical

  5. Format for description of building envelope components for use in an optimization process

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1999-01-01

    are decided by the architect or kept within limits due to public regulations, but even when these factors have been decided, some are left to be decided. Aspects like durability and the thermal performance are seldom specified by the architect, but might be addressed in national building codes. The national...... building codes specify minimum requirements for the aspects in question, but no trade-offs between the different aspects are allowed, being un-flexible. To allow for the use of optimization procedures in the design process a larger degree of flexibility is needed but first of all there is a need......When designing a building the number of possible combinations of aspects related to the performance of the building envelope are almost unlimited. Due to the physical laws governing e.g. the static performance of the building, some aspects should be kept within a certain interval. Other aspects...

  6. Analysis of Building Envelope Construction in 2003 CBECS

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

    2007-06-01

    The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOE’s Reference Buildings .

  7. Moisture dynamics in building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Peuhkuri, R.

    2003-07-01

    The overall scope of this Thesis 'Moisture dynamics in building envelopes' has been to characterise how the various porous insulation materials investigated performed hygro thermally under conditions similar to those in a typical building envelope. As a result of the changing temperature and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. (au)

  8. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work...

  9. Bellanca building, Yellowknife : building envelope retrofit project

    Energy Technology Data Exchange (ETDEWEB)

    Rajewski, G. [A.D. Williams Engineering Inc., Edmonton, AB (Canada)

    2008-07-01

    The Bellanca building is a ten-story, commercial office building, located in Yellowknife, Northwest Territories. The owner was concerned about annual fuel consumption, relative to other buildings of similar size. Tenants reported cold drafts and some ice build-up had been reported in the past, on the exterior of the cladding. In addition, some water penetration had occurred during rainfall. This presentation provided background information on the Bellanca building and discussed a building envelope retrofit project. A.D. Williams was hired in late 2006 in order to provide an opinion on the present condition of the building envelope. This presentation described the site investigation and presented an interior and exterior review of the building. It also presented a thermographic survey in order to map thermal anomalies and establish trends. Following acceptance of the report on findings, one of five options was selected for further development. This included removal of existing cladding, exterior gypsum wallboard, fiberglass insulation and application of BASF Walltite CT foam, sheathing, rigid insulation, drainage plane and new cladding. The preliminary design was then presented. This paper also described the tender and award of the contract; construction phase; and substantial completion of the project. tabs, figs.

  10. Intelligent building envelopes. Architectural concept and applications for daylighting quality

    Energy Technology Data Exchange (ETDEWEB)

    Wyckmans, Annemie

    2005-11-15

    How does an intelligent building envelope manage the variable and sometimes conflictive occupant requirements that arise in a day lit indoor environment. This is the research question that provides the basis for this Ph.D. work. As it touches upon several fields of application, the research question is untangled into four steps, each of which corresponds to a chapter of the thesis. 1) What characterises intelligent behaviour for a building envelope. 2) What characterises indoor day lighting quality. 3) Which functions can an intelligent building envelope be expected to perform in the context of day lighting quality. 4) How are the materials, components and composition of an intelligent building envelope designed to influence this performance. The emphasis is on design, environmental aspects, energy conservation, functional analysis and physical applications.

  11. Wall envelopes in office buildings: design trend and implications on cooling load of buildings

    International Nuclear Information System (INIS)

    Ibrahim, N.; Ahmed, A.Z.; Ahmed, S.S.

    2006-01-01

    The wall envelope is a vital element of a building especially to a high rise building where its wall to building volume ratio is higher compared to other building forms. As well as a means of architectural expression, the wall envelope protects and regulates the indoor environment. In recent years there have been many applications of glass products and cladding systems in high-rise buildings built in Kuala Lumpur. This paper describes a recent research and survey on wall envelope designs adopted in 33 high-rise office buildings built in the central business district of Kuala Lumpur since 1990. This research adopts component design analysis to identify dominant trends on wall envelope design for the surveyed buildings. The paper seeks to discourse the implications of this design trend on energy consumption of high-rise office buildings in the country

  12. CONTROL OF INDOOR ENVIRONMENTS VIA THE REGULATION OF BUILDING ENVELOPES

    Directory of Open Access Journals (Sweden)

    Mitja Košir

    2011-01-01

    Full Text Available The design of comfortable, healthy and stimulating indoor environments in buildings has a direct impact on the users and on energy consumption, as well as on the wider soci-economic environment of society.The indoor environment of buildings is defined with the formulation of the building envelope, which functions as an interface between the internal and external environments and its users. A properly designed, flexible and adequately controlled building envelope is a starting point in the formulation of a high-quality indoor environment. The systematic treatment of the indoor environment and building envelope from a user’s point of view represents an engineering approach that enables the holistic treatment of buildings, as well as integrated components and systems. The presented division of indoor environment in terms of visual, thermal, olfactory, acoustic and ergonomic sub-environments enables the classification and selection of crucial factors influencing design. This selection and classification can be implemented in the design, as well as in control applications of the building envelope. The implementation of the approach described is demonstrated with an example of an automated control system for the internal environment of an office in the building of the Faculty of Civil and Geodetic Engineering.

  13. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...

  14. Development of Building Envelope Constructions

    DEFF Research Database (Denmark)

    Tommerup, Henrik Monefeldt; Munch-Andersen, Jørgen; Esbensen, Peter Kjær

    2000-01-01

    It is expected that the heat insulation demands in the Danish Building Regulations will be further increased around 2005, in order to reduce the heating demand and the CO2-emission. A simple increase of the insulation thickness of common wall types seems not to be attractive due to the increased...... effect of the 2-dimensional heat loss, the large wall thickness, and the costs of the wide foundation. Therefore, new types of walls have been developed. It is sought to minimise the total heat loss as well as the material consumption. The target was to come up with new walls for which the construction...

  15. Selecting Energy Efficient Building Envelope Retrofits to Existing Department of Defense Building Using Value Focused Thinking

    National Research Council Canada - National Science Library

    Pratt, David M

    2006-01-01

    ... these facilities that have the greatest potential for energy efficient building envelope retrofits. There are hundreds of various new building envelope technologies available to retrofit an existing building envelope, including window, roof, and wall technologies...

  16. Modeling of heat and mass transfer in lateritic building envelopes

    International Nuclear Information System (INIS)

    Meukam, Pierre

    2004-10-01

    The aim of the present work is to investigate the behavior of building envelopes made of local lateritic soil bricks subjected to different climatic conditions. The analysis is developed for the prediction of the temperature, relative humidity and water content behavior within the walls. The building envelopes studied in this work consist of lateritic soil bricks with incorporation of natural pozzolan or sawdust in order to obtain small thermal conductivity and low-density materials, and limit the heat transfer between the atmospheric climate and the inside environment. In order to describe coupled heat and moisture transfer in wet porous materials, the coupled equations were solved by the introduction of diffusion coefficients. A numerical model HMtrans, developed for prediction of beat and moisture transfer in multi-layered building components, was used to simulate the temperature, water content and relative humidity profiles within the building envelopes. The results allow the prediction of the duration of the exposed building walls to the local weather conditions. They show that for any of three climatic conditions considered, relative humidity and water content do not exceed 87% and 5% respectively. There is therefore minimum possibility of water condensation in the materials studied. The durability of building envelopes made of lateritic soil bricks with incorporation of natural pozzolan or sawdust is not strongly affected by the climatic conditions in tropical and equatorial regions. (author)

  17. Moisture accumulation in a building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Forest, T.W.; Checkwitch, K.

    1988-09-01

    In a large number of cases, the failure of a building envelope can be traced to the accumulation of moisture. In a cold winter climate, characteristic of the Canadian prairies, moisture is deposited in the structure by the movement of warm, moist air through the envelope. Tests on the moisture accumulation in a building envelope were initiated in a test house at an Alberta research facility during the 1987/88 heating season. The indoor moisture generation rate was measured and compared with the value inferred from the measured air infiltration rate. With the flue open, the moisture generation rate was approximately 5.5 kg/d of which 0.7 kg/d entered the building envelope; the remainder was exhausted through the flue. With the flue blocked, the moisture generation rate decreased to 3.4 kg/d, while the amount of moisture migrating through the envelope increased to 4.0 kg/d. The moisture accumulation in wall panels located on the north and south face of the test house was also monitored. Moisture was allowed to enter the wall cavity via a hole in the drywall. The fiberglass insulation remained dry throughout the test period. The moisture content of the exterior sheathing of the north panel increased to a maximum of 18% wt in the vicinity of the hole, but quickly dried when the ambient temperatures increased towards the end of the season. The south panel showed very little moisture accumlation due to the effects of solar radiation. 14 refs., 9 figs.

  18. Shape Control of Responsive Building Envelopes

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning; Christensen, Jesper Thøger

    2010-01-01

    The present paper considers shape control of adaptive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability. The general scop...... environmental system to a primary structural system joint into a collective behavioral system equipment with an actuator system is presented....... alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock-up concept of a secondary...

  19. Genetic algorithm for building envelope calibration

    International Nuclear Information System (INIS)

    Ramos Ruiz, Germán; Fernández Bandera, Carlos; Gómez-Acebo Temes, Tomás; Sánchez-Ostiz Gutierrez, Ana

    2016-01-01

    Highlights: • Calibration methodology using Multi-Objective Genetic Algorithm (NSGA-II). • Uncertainty analysis formulas implemented directly in EnergyPlus. • The methodology captures the heat dynamic of the building with a high level of accuracy. • Reduction in the number of parameters involved due to sensitivity analysis. • Cost-effective methodology using temperature sensors only. - Abstract: Buildings today represent 40% of world primary energy consumption and 24% of greenhouse gas emissions. In our society there is growing interest in knowing precisely when and how energy consumption occurs. This means that consumption measurement and verification plans are well-advanced. International agencies such as Efficiency Valuation Organization (EVO) and International Performance Measurement and Verification Protocol (IPMVP) have developed methodologies to quantify savings. This paper presents a methodology to accurately perform automated envelope calibration under option D (calibrated simulation) of IPMVP – vol. 1. This is frequently ignored because of its complexity, despite being more flexible and accurate in assessing the energy performance of a building. A detailed baseline energy model is used, and by means of a metaheuristic technique achieves a highly reliable and accurate Building Energy Simulation (BES) model suitable for detailed analysis of saving strategies. In order to find this BES model a Genetic Algorithm (NSGA-II) is used, together with a highly efficient engine to stimulate the objective, thus permitting rapid achievement of the goal. The result is a BES model that broadly captures the heat dynamic behaviour of the building. The model amply fulfils the parameters demanded by ASHRAE and EVO under option D.

  20. The performance of energy efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    Proskiw, G.

    1996-08-01

    The adequacy and durability of residential building envelope systems under actual field conditions were evaluated. A building envelope offers protection from cold, heat, moisture, wind and noise. However, they are exposed to thermal, structural, and moisture stresses and their performance can degrade over time. Envelope performance was evaluated at 20 energy efficient and four conventional, detached modern homes in Winnipeg, Canada. The three complementary measurement tools were wood moisture content (WMC) of framing members, thermographic examinations, and airtightness tests. As expected, energy efficient building envelope systems performed better than the conventional systems. No evidence of envelope degradation was found in any of the energy efficient houses. The building envelopes using polyethylene air barriers performed slightly better than those which used the airtight drywall approach, although both were considered satisfactory. WMC levels were a bit lower in the polyethylene-clad house. 1 ref., 1 tab.

  1. Building envelope for New Buildings and Energy Renovation of Existing Buildings. Project results

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Rose, Jørgen; Esbensen, Peter Kjær

    1999-01-01

    of heat- and moistureflow is insufficiently documented for large insulation thicknesses. Thermal bridges, for instance, plays a larger role for the overall heat loss in these constructions, and moisture in insulation materials will decrease the overall performance of the construction.Due to these facts...... on the following subjects:Scientific basis for calculation programs, Development of calculationsmethods for heat transfer, Development of new building envelope components, Roofing system based on wooden roof elements, Roofing system with drying properties, Moisture uptake and drying from brick constructions...

  2. Integrated energy design of the building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Vraa Nielsen, M.

    2012-07-01

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building's facades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1) the importance of integrating knowledge in the early stages of design, and how it can be done; 2) understanding the facade's typology; and 3) the complex notion of comfort. The project touched not only on the technical capabilities and requirements governing facade design, but also the process by which it takes place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of facades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages of design not only can qualify the geometrical processing, but also facilitate the design development of the facade. Thereby a more holistic performance optimisation can be obtained through parameters such as overall facade geometry and orientation, functional organisation, room height and depth, facade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over

  3. Development of building envelope structures; Udvikling af klimaskaermskonstruktioner

    Energy Technology Data Exchange (ETDEWEB)

    Monefeldt Tommerup, H. [Danmarks Tekniske Univ., Lyngby (Denmark); Munch-Andersen, J. [Statens Byggeforskningsinstitut, Hoersholm (Denmark); Kjaer Esbensen, P. [Danmarks Tekniske Univ., Lyngby (Denmark)

    2000-08-01

    The present report concludes the work concerning the development of building envelope constructions, which can form the basis of new buildings with considerably less heat demand than in the present building regulations. It has been made probable that it is technically possible to build exterior walls with less heat loss than those just complying with the requirements of the current building regulations with no considerable added use of material apart from insulation. In their structure many of the shown constructions resemble types that are used today, while others presuppose that one part of the wall is attached to the other part or possibly to the rafters. Calculations concerning the importance of heat capacity for a 100 m{sup 2} single-family house have been made which confirm that by using heavy rather than light envelope constructions the reduction of the heating requirements is relatively small. Therefore optimisation of the insulation level can be carried out separately on the building components. A method has been developed for the evaluation of the optimum insulation level for the individual building components of the building envelope based on life cycle cost analysis. The method is based on making up the changes in the operational energy costs/ heating-costs and the cost of construction due to a change in the insulation thickness over a 30-year period. The life span of the primary parts of the building envelope is estimated at 100 years. It is assumed that the gross energy consumption that covers the heating requirements and the heat loss (determined by a simple calculation of degree days) changes concurrently with the change in the insulation thickness, which has been proved to be a reasonable approximation. The life cycle cost analysis has been carried out for a test-house of about 100 m{sup 2} and with two different energy price scenarios: 0.60 dkk/kWh (including taxes and VAT) which roughly corresponds to the present energy price level, and 1.20 dkk

  4. Solar envelope concepts: moderate density building applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, R.L.; Berry, R.D.

    1980-04-01

    Solar energy utilization in urban areas requires public guarantees that all property owners have direct access to the sun. The study examines the implications of this premise in relation to the need for cities to also encourage or accommodate rebuilding and future development. The public policy mechanism for guaranteeing solar access is conceptualized as a solar zoning envelope that allows the largest possible building bulk on a land parcel without shadowing neighboring properties during specified times. Step-by-step methods for generating solar envelopes are described with extensive drawings, showing a variety of urban platting and lot configurations. Development and design possibilities are examined on a selected set of Los Angeles sites with typically diverse urban characteristics. Envelope attributes suitable for encouraging moderate-density commercial and residential building are examined in the context of two hypothetical but realistic development programs: one for speculative office buildings and one for condominium housing. Numerous illustrations of envelope forms and prototypical building designs are provided. The results of development simulation studies on all test sites are tabulated to show building bulk, density, land-coverage and open space characteristics obtainable under the hypothesized envelopes.

  5. Specifics of Building Envelope Air Leakage Problems and Airtightness Measurements

    Directory of Open Access Journals (Sweden)

    Borodinecs Anatolijs

    2016-01-01

    Full Text Available In addition to transmission heat loses the infiltration of outdoor air can cause significant heat losses. The external building envelope should be airtight in order to prevent uncontrolled cold air infiltration. The article analysis modern building materials and structures influence on airtightness. The practical measurements of renovated buildings’ airtightness are presented and compared to non-renovated buildings. In addition paper presents data on airtightness measurements of whole multi apartment building and single apartment in analyzed building taking inco accout properties of building materials. The airtightness of single apartment was evaluated with support pressure in neighbor apartments. The results show that the airtightness measurements of multi apartment building can be evaluated by measuring single apartment on last floor with support pressure in neighbor apartments. The practical measurement of renovated buildings had shown the air leakage rate q50 of typical Latvian construction after renovation is between 2.5 and 2.9 m3/(m2·h. Since the building envelope has to minimize the heat loses (transmission and infiltration and ventilation system either mechanical or natural has to provide necessary air exchange, the building envelope airtightness shouldn’t be dependent on type of ventilation systems.

  6. Envelope as Climate Negotiator: Evaluating adaptive building envelope's capacity to moderate indoor climate and energy

    Science.gov (United States)

    Erickson, James

    Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.

  7. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    cavity such as behind the exterior cladding of a building envelope, i.e. a flow which is parallel to the construction plane. (2) Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the constructionplane. The paper presents the models and how they have...

  8. Towards a fourth skin? sustainability and double-envelope buildings

    Energy Technology Data Exchange (ETDEWEB)

    Diprose, P.R.; Robertson, G. [Auckland Univ. (New Zealand)

    1996-05-01

    In several well publicised designs for `green` office buildings, the zone of meditation between inside and outside has been increased by the addition of a second building envelope. When interpreted as exemplars of sustainable architecture, the addition of a second wall in these buildings is questionable both biophysically and psycho-culturally. More constructive design strategies acknowledge the wider biophysical contexts of the human ecosystem, the prudent use of material and energy resources throughout a building`s life, make realistic use of climate, and promote psycho-cultural needs arising out of ecologism. (author)

  9. A model for the sustainable selection of building envelope assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Huedo, Patricia, E-mail: huedo@uji.es [Universitat Jaume I (Spain); Mulet, Elena, E-mail: emulet@uji.es [Universitat Jaume I (Spain); López-Mesa, Belinda, E-mail: belinda@unizar.es [Universidad de Zaragoza (Spain)

    2016-02-15

    The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate the impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.

  10. A model for the sustainable selection of building envelope assemblies

    International Nuclear Information System (INIS)

    Huedo, Patricia; Mulet, Elena; López-Mesa, Belinda

    2016-01-01

    The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate the impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.

  11. Biomimetic Architecture in Building Envelope Maintenance (A Literature

    Directory of Open Access Journals (Sweden)

    Agus Salim N.A.

    2014-01-01

    Full Text Available The study of biomimetic architecture on building envelope is the main structure of this research. The concept is believed more sustainable and efficient for energy saving, operating cost consumption, waste recycle and design renewal in the future. The inspiration from the nature developed the intention on this study to explore on what and how this concept to overcome the problems through design. Biomimicry does catch the attention of human to study more on the system and function of its nature course. The designers are not exception influenced by this concept when the form, shape, texture and colour inspired them in their design. The domination of building form will affect the building envelope as the skin of the structure. A clear impact on building failure is begun with building envelope appearance without a proper maintenance. The faults in building design place a heavy burden on the building for the rest of its operational life and there is no compensation for it. In such situations, the responsibility falls on the shoulders of the designer.

  12. Hygrothermal Simulation: A Tool for Building Envelope Design Analysis

    Science.gov (United States)

    Samuel V. Glass; Anton TenWolde; Samuel L. Zelinka

    2013-01-01

    Is it possible to gauge the risk of moisture problems while designing the building envelope? This article provides a brief introduction to computer-based hygrothermal (heat and moisture) simulation, shows how simulation can be useful as a design tool, and points out a number of im-portant considerations regarding model inputs and limita-tions. Hygrothermal simulation...

  13. The potential of building envelope greening to achieve quietness

    NARCIS (Netherlands)

    Van Renterghem, T.; Hornikx, M.C.J.; Forssén, J.; Botteldooren, D.

    2013-01-01

    Reduction of noise is one of the multiple benefits of building envelope greening measures. The potential of wall vegetation systems, green roofs, vegetated low screens at roof edges, and also combinations of such treatments, have been studied by means of combining 2D and 3D full-wave numerical

  14. Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT Analysis

    Directory of Open Access Journals (Sweden)

    Ilaria Vigna

    2018-01-01

    Full Text Available Building envelopes can play a crucial role in building improvement efficiency, and the adoption of Phase Change Materials (PCMs, coupled with transparent elements, may: (i allow a better control of the heat flows from/to the outdoor environment, (ii increase the exploitation of solar energy at a building scale and (iii modulate light transmission in order to prevent glare effects. Starting from a literature review, focused on experimental works, this research identifies the main possible integrations of PCMs in transparent/translucent building envelope components (in glazing, in shutters and in multilayer façade system in order to draw a global picture of the potential and limitations of these technologies. Transparent envelopes with PCMs have been classified from the simplest “zero” technology, which integrates the PCM in a double glass unit (DGU, to more complex solutions—with a different number of glass cavities (triple glazed unit TGU, different positions of the PCM layer (internal/external shutter, and in combination with other materials (TIM, aerogel, prismatic solar reflector, PCM curtain controlled by an electric pump. The results of the analysis have been summarised in a Strengths, Weakness, Opportunities and Threats (SWOT analysis table to underline the strengths and weaknesses of transparent building envelope components with PCMs, and to indicate opportunities and threats for future research and building applications.

  15. Switching from static to adaptable and dynamic building envelopes: A paradigm shift for the energy efficiency in buildings

    Directory of Open Access Journals (Sweden)

    Marco Perino

    2015-11-01

    Full Text Available The key role of the building envelope in attaining building energy efficiency and satisfactory indoor comfort has long been established. Nevertheless, until recent times, all efforts and attention have mainly been focused on increasing and optimizing the thermal insulation of the envelope components. This strategy was a winning approach for a long time, but its limitations became obvious when users and designers started to consider the overall energy demand of a building and started to aim for Zero Energy Building (ZEB or nearly ZEB goals. New and more revolutionary concepts and technologies needed to be developed to satisfy such challenging requirements. The potential benefits of this technological development are relevant since the building envelope plays a key role in controlling the energy and mass flows from outdoors to indoors (and vice versa and, moreover, the facades offer a significant opportunity for solar energy exploitation. Several researches have demonstrated that the limitation of the existing facades could be overcome only by switching from ‘static’ to ‘responsive’ and ‘dynamic’ systems, such as Multifunctional Facade Modules (MFMs and Responsive Building Elements (RBE. These components are able to continuously and pro-actively react to outdoor and indoor environment conditions and facilitate and enhance the exploitation of renewable and low exergy sources. In order to reduce the energy demand, to maximize the indoor comfort conditions and to produce energy at the site, these almost ‘self-sufficient’, or even ‘positive energy’ building skins frequently incorporate different technologies and are functionally connected to other building services and installations. An overview of the technological evolution of the building envelope that has taken place, ranging from traditional components to the innovative skins, will be given in this paper, while focusing on the different approaches that have characterized this

  16. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  17. CISBAT 2007 - Design and renovation of building envelopes (bioclimatic architecture)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This is the second part of the proceedings of the 2007 CISBAT conference on Renewables in a changing climate, held in Lausanne, Switzerland. On the subject of sustainable building envelopes the following oral contributions are summarised: 'Flexible photovoltaics integrated in transparent membrane and pneumatic foil constructions', 'Development of a numerical thermal model for double skin facades', 'Thermal performance analysis for an electrochromic vacuum glazing with low emittance coatings', 'Challenging the public building sector: optimization of energy performance by sustainable strategies', 'Simulation of the thermal performance of a climate adaptive skin', 'Possibilities for upgrading prefabricated concrete building envelopes', 'Experimental study of airflow and heat transfer in a double skin facade with blinds', 'Energy efficiency of a glazing system - Case study: a dynamic glazing and double skin facades - the use of venetian blinds and night ventilation for saving energy on mediterranean climate'. Poster-sessions on the subject include 'Adaptive building envelopes design ', 'GRC facade panels in Brazil', 'Solar absorptance of building opaque surfaces', 'Evaluating the thermal behavior of exterior walls (in residential buildings of hot-dry climate of Yazd)', 'Energy performance of buildings and local energy policy: the case of new residential buildings in Greve in Chianti (Firenze)', 'Space heating and domestic hot water energy demand in high-level-insulation multi-storey buildings in Tuscany (Italy)', 'Is 2000 W society possible, affordable, and socially acceptable for the Vaud existing school building?', 'Development of simplified method for measuring solar shading performance of windows', 'Studies of ecological architecture in China's Loess Plateau region', 'Contemporary mud

  18. Utilizing the building envelope for power generation and conservation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, C.H.; Wang, F.J.

    2016-01-01

    Heat loading of the building envelope is caused by strong solar radiation and incorrect material selection. As a result of the heat loading of the building envelope, the indoor air temperature is increased, resulting in high energy consumption by air conditioners to maintain a comfortable indoor thermal environment. This study explores the use of a hybrid wall integrated with heat collectors (water piping system) and solar thermal power generators, which absorbs solar radiation through water to reduce heat transmission thereby saving energy and generating power. Power generation is achieved by an OD (oscillator device) that installed between a water tank (hot side) and building interior (cold side). The device acts by temperature differences between hot air (expansion) and cold air (contraction). CFD (computational dynamic simulation) was used to assess the effects of the hybrid wall on the interior environment. The results show that exterior heat is absorbed by cool water thereby reducing the heat transmission into the building, resulting in less energy consumption by air conditioners and power generation by use of temperature differences. - Highlights: • This study explores a hybrid building wall to save energy and generate power. • Power generators operated by air pressure change via hot tank and cool interior. • Less energy consumption by air conditioners and heating water. • Performance of CFD simulated results and experiment results are similar. • The energy saving efficiency is around 15 kWh/day via hybrid wall in west façade.

  19. Residential building envelope heat gain and cooling energy requirements

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Tsang, C.L.; Li, Danny H.W.; Cheung, S.O.

    2005-01-01

    We present the energy use situation in Hong Kong from 1979 to 2001. The primary energy requirement (PER) nearly tripled during the 23-year period, rising from 195,405 TJ to 572,684 TJ. Most of the PER was used for electricity generation, and the electricity use in residential buildings rose from 7556 TJ (2099 GWh) to 32,799 TJ (9111 GWh), an increase of 334%. Air-conditioning accounted for about 40% of the total residential sector electricity consumption. A total of 144 buildings completed in the month of June during 1992-2001 were surveyed. Energy performance of the building envelopes was investigated in terms of the overall thermal transfer value (OTTV). To develop the appropriated parameters used in OTTV calculation, long-term measured weather data such as ambient temperature (1960-2001), horizontal global solar radiation (1992-2001) and global solar radiation on vertical surfaces (1996-2001) were examined. The OTTV found varied from 27 to 44 W/m 2 with a mean value of 37.7 W/m 2 . Building energy simulation technique using DOE-2.1E was employed to determine the cooling requirements and hence electricity use for building envelope designs with different OTTVs. It was found that cooling loads and electricity use could be expressed in terms of a simple two-parameter linear regression equation involving OTTV

  20. Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Gireesh [Ecotechnology, Mid Sweden University, SE-83125 Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, SE-83125 Ostersund (Sweden); Mahapatra, Krushna [Ecotechnology, Mid Sweden University, SE-83125 Ostersund (Sweden)

    2010-07-15

    The paper focuses on Swedish homeowners' need for and perceptions about adopting building envelop energy efficiency measures. The paper is based on a questionnaire survey of 3059 homeowners (response rate of 36%) selected by stratified random sampling during the summer of 2008. The results showed that 70-90% of the respondents had no intention of adopting such a measure over the next 10 years. The main reasons for non-adoption were that homeowners were satisfied with the physical condition, thermal performance, and aesthetics of their existing building envelope components. A greater proportion of respondents perceived that improved attic insulation has more advantages than energy efficient windows and improved wall insulation, but windows were more likely to be installed than improved attic insulation. Respondents gave high priority to economic factors in deciding on an energy efficiency measure. Interpersonal sources, construction companies, installers, and energy advisers were important sources of information for homeowners as they planned to adopt building envelope energy efficiency measures. Policy measures to facilitate the rate of adoption of energy efficient building envelope measures are discussed.

  1. Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses

    International Nuclear Information System (INIS)

    Nair, Gireesh; Gustavsson, Leif; Mahapatra, Krushna

    2010-01-01

    The paper focuses on Swedish homeowners' need for and perceptions about adopting building envelop energy efficiency measures. The paper is based on a questionnaire survey of 3059 homeowners (response rate of 36%) selected by stratified random sampling during the summer of 2008. The results showed that 70-90% of the respondents had no intention of adopting such a measure over the next 10 years. The main reasons for non-adoption were that homeowners were satisfied with the physical condition, thermal performance, and aesthetics of their existing building envelope components. A greater proportion of respondents perceived that improved attic insulation has more advantages than energy efficient windows and improved wall insulation, but windows were more likely to be installed than improved attic insulation. Respondents gave high priority to economic factors in deciding on an energy efficiency measure. Interpersonal sources, construction companies, installers, and energy advisers were important sources of information for homeowners as they planned to adopt building envelope energy efficiency measures. Policy measures to facilitate the rate of adoption of energy efficient building envelope measures are discussed.

  2. Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Gireesh; Gustavsson, Leif; Mahapatra, Krushna [Ecotechnology, Mid Sweden University, SE-83125 Oestersund (Sweden)

    2010-07-15

    The paper focuses on Swedish homeowners' need for and perceptions about adopting building envelop energy efficiency measures. The paper is based on a questionnaire survey of 3059 homeowners (response rate of 36%) selected by stratified random sampling during the summer of 2008. The results showed that 70-90% of the respondents had no intention of adopting such a measure over the next 10 years. The main reasons for non-adoption were that homeowners were satisfied with the physical condition, thermal performance, and aesthetics of their existing building envelope components. A greater proportion of respondents perceived that improved attic insulation has more advantages than energy efficient windows and improved wall insulation, but windows were more likely to be installed than improved attic insulation. Respondents gave high priority to economic factors in deciding on an energy efficiency measure. Interpersonal sources, construction companies, installers, and energy advisers were important sources of information for homeowners as they planned to adopt building envelope energy efficiency measures. Policy measures to facilitate the rate of adoption of energy efficient building envelope measures are discussed. (author)

  3. Evolution of building envelope construction techniques in coastal British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Mattock, C.; Ito, K.; Oshikawa, T. [International Eco-House Inc., (Canada)

    1999-11-01

    Changes in the significant evolutionary development over the past 3 years in building envelope construction for multi storey wood frame housing in British Columbia are described. The urban areas of this region are characterized by a maritime climate which features a high frequency of wind driven rain and little accumulation of snow. Buildings are exposed to high wetting with little drying potential, and moderate temperatures allow for fungal growth even in the winter. While as in the rest of Canada wetting is often due to condensation of moisture contained in indoor air as it leaks out of the building, in British Columbia wind driven rain is a much larger source of moisture. Given this, the following principles of moisture control have been promoted to the B.C. building industry in order of priority: 1) deflection - using parts and elements of the building such as overhangs and flashings that reduce the exposure of the exterior walls to rain, 2) drainage - using envelope assemblies that will then redirect liquid water to the outside, 3) employing drying elements that promote drying through diffusion such as highly permeable wall sheathings, and 4) use of durable materials - using materials that resist rot such as treated lumber, stainless steel fastenings, etc. A variety of air barrier systems other than the conventional sealed polyethylene approach have been employed because of the introduction of recent building code requirements for enhanced airtightness and air barrier durability combined with the use of rain screen construction. This variety of air barrier systems includes: an airtight drywall, an exterior permeable membrane, and an exterior impermeable membrane.

  4. Low-Cost Phase Change Material for Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Abhari, Ramin [Renewable Energy Group

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCM thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.

  5. Analyzing energy consumption while heating one-layer building envelopes in conditions of intermittent heating

    Directory of Open Access Journals (Sweden)

    Vytchikov Yury

    2017-01-01

    Full Text Available This paper focuses on energy consumption for heating single layer building envelopes, used in conditions of intermittent heating in different physical and mechanical and thermophysical parameters of construction materials. The authors investigated several variants of single-layer building envelopes, used frequently in building practice, with different density and coefficients of building materials thermal conductivity. For each variant of a building envelope heat leakage and time spent on heating were calculated. Heating time was calculated by both exact and approximate analytical method. Then the researchers draw a graphic dependence of energy consumption on the density of the material taking this computational data as a basis. Further analysis showed that building envelopes made of lightweight aggregate concrete and porous concrete were the most energy efficient.This paper focuses on energy consumption for heating single layer building envelopes, used in conditions of intermittent heating in different physical and mechanical and thermophysical parameters of construction materials. The authors investigated several variants of single-layer building envelopes, used frequently in building practice, with different density and coefficients of building materials thermal conductivity. For each variant of a building envelope heat leakage and time spent on heating were calculated. Heating time was calculated by both exact and approximate analytical method. Then the researchers draw a graphic dependence of energy consumption on the density of the material taking this computational data as a basis. Further analysis showed that building envelopes made of lightweight aggregate concrete and porous concrete were the most energy efficient.

  6. Operative air temperature data for different measures applied on a building envelope in warm climate

    Directory of Open Access Journals (Sweden)

    Cristina Baglivo

    2018-04-01

    Full Text Available Several technical combinations have been evaluated in order to design high energy performance buildings for the warm climate. The analysis has been developed in several steps, avoiding the use of HVAC systems.The methodological approach of this study is based on a sequential search technique and it is shown on the paper entitled “Envelope Design Optimization by Thermal Modeling of a Building in a Warm Climate” [1].The Operative Air Temperature trends (TOP, for each combination, have been plotted through a dynamic simulation performed using the software TRNSYS 17 (a transient system simulation program, University of Wisconsin, Solar Energy Laboratory, USA, 2010.Starting from the simplest building configuration consisting of 9 rooms (equal-sized modules of 5 × 5 m2, the different building components are sequentially evaluated until the envelope design is optimized. The aim of this study is to perform a step-by-step simulation, simplifying as much as possible the model without making additional variables that can modify their performances. Walls, slab-on-ground floor, roof, shading and windows are among the simulated building components. The results are shown for each combination and evaluated for Brindisi, a city in southern Italy having 1083 degrees day, belonging to the national climatic zone C. The data show the trends of the TOP for each measure applied in the case study for a total of 17 combinations divided into eight steps.

  7. Study of an experimental methodology for thermal properties diagnostic of building envelop

    OpenAIRE

    Yang , Yingying; Sempey , Alain; Vogt Wu , Tingting; Sommier , Alain; Dumoulin , Jean; Batsale , Jean ,

    2017-01-01

    International audience; The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used f...

  8. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M.K.

    1998-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  9. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M K

    1999-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  10. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    Directory of Open Access Journals (Sweden)

    Thomas Henriksen

    2017-06-01

    With this research the current architectural knowledge base has been advanced in terms of complex geometry thin-walled GFRC for building envelopes. The identified solutions should allow building with complex geometries to be realised using thin-walled GFRC as the envelope cladding.

  11. Tightness of the thermal envelope of office and educational buildings; Klimaskaermens taethed i kontor- og undervisningsbygninger

    Energy Technology Data Exchange (ETDEWEB)

    Bergsoee, N.C. (SBi, Aalborg (Denmark)); Radisch, N.H.; Nickel, J.; Treldal, J. (Ramboell Danmark A/S, Koebenhavn (Denmark)); Bundesen, E.W.; Nielsen, Carsten (DanEjendomme, Hellerup (Denmark))

    2011-07-01

    In 2006 tightening of the energy regulations in the Danish Building Regulations were introduced including requirements regarding the tightness of the building envelope. The requirements are, with minor changes, continued in the current Building Regulations, BR10. During the past few years experience has been gained regarding both the actual execution of air tightness measurements and solutions that will lead to more air tight building envelopes. Experiences, however, are primarily related to single family houses. The report presents results of measurements in large buildings and discusses reasons for lack of knowledge and experience on the tightness of the building envelope in large buildings. Apparently, there is a need for dissemination of knowledge on the importance of a tight building envelope both in terms of energy consumption and indoor climate and in terms of the difficulties and costs associated with repairing leaks in a completed envelope. Air tightness must be brought into focus at an early stage in the planning process, and during the construction phase air tightness measurements should be performed, e.g. on facade sections or in parts of the building. The project team has attended a number of measurements in large buildings and further gained access to results of a large number of measurements. In summary, the results show that it is possible to achieve the required tightness, and in most buildings the results are better than the requirement of a maximum of 1.5 l/s per m{sub 2}. (Author)

  12. Masking Release for Sweeping Masker Components with Correlated Envelopes

    DEFF Research Database (Denmark)

    Verhey, Jesko l.; Klein-Hennig, Hendrike; Epp, Bastian

    2013-01-01

    To separate sounds from different sound sources, common properties of natural sounds are used by the auditory system, such as coherent temporal envelope fluctuations and correlated changes of frequency in different frequency regions. The present study investigates how the auditory systemprocesses...

  13. Modeling a Decision Support Tool for Buildable and Sustainable Building Envelope Designs

    Directory of Open Access Journals (Sweden)

    Natee Singhaputtangkul

    2015-05-01

    Full Text Available Sustainability and buildability requirements in building envelope design have significantly gained more importance nowadays, yet there is a lack of an appropriate decision support system (DSS that can help a building design team to incorporate these requirements and manage their tradeoffs at once. The main objective of this study is to build such a tool to facilitate a building design team to take into account sustainability and buildability criteria for assessment of building envelopes of high-rise residential buildings in Singapore. Literature reviews were conducted to investigate a comprehensive set of the sustainability and buildability criteria. This also included development of the tool using a Quality Functional Deployment (QFD approach combined with fuzzy set theory. A building design team was engaged to test the tool with the aim to evaluate usefulness of the tool in managing the tradeoffs among the sustainability and buildability criteria. The results from a qualitative data analysis suggested that the tool allowed the design team to effectively find a balance between the tradeoffs among the criteria when assessing multiple building envelope design alternatives. Main contributions of using this tool are achievement of a more efficient assessment of the building envelopes and more sustainable and buildable building envelope design.

  14. Performative building envelope design correlated to solar radiation and cooling energy consumption

    Science.gov (United States)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  15. Alternative methods for evaluation of airtightness of the building envelope; Alternativa metoder foer utvaerdering av byggnadsskalets lufttaethet

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, Eva; Wahlgren, Paula

    2008-07-01

    Airtightness plays an important role when constructing energy efficient, sustainable and healthy buildings. In order to obtain airtight buildings, the airtightness needs to be evaluated during the construction phase. This enables improvements of the airtightness in an easy and cost-efficient way. During the construction phase, it is difficult to quantify the airtightness. However, detecting and sealing air leakages are good measures to improve the airtightness of the building. Several methods to detect air leakages are presented. A methodology to search for air leakages in buildings during construction has been developed, together with contractors and experts, and the methodology has been used at two building sites. The quantifiable airtightness of a building is determined by measuring the airflow that enters or exits the building at a certain pressure difference over the building envelope. In some cases it is not possible to measure air tightness according to standard. Therefore, a number of alternative methods have been evaluated. These methods include: extrapolation of measured data to a range used in standard measurements, using a buildings ventilation system fans to create a pressure difference over the building envelope, measuring the airtightness of a smaller part of the building (apartment, fire compartment or component) and tracer gas measurements

  16. TEMPERATURE FIELDS IN THE ZONE OF CONNECTION BETWEEN WINDOW AND BUILDING ENVELOPE

    OpenAIRE

    V. V. Ivanov; A. N. Butenko; L. V. Karaseva

    2011-01-01

    Problem statement. To determine additional heat losses through window opening slopes, it is ne-cessary to calculate temperature fields of a wall in the zone of connection between window and building envelope. Two types of building envelopes are considered: solid brick wall and two-layer-wall of bricks and fiber foam concrete block interlayered with air.Results. The results obtained show the influence of a window on the temperature field of wall opening. Different types of wall structures are ...

  17. Multiobjective optimization design of green building envelope material using a non-dominated sorting genetic algorithm

    International Nuclear Information System (INIS)

    Yang, Ming-Der; Lin, Min-Der; Lin, Yu-Hao; Tsai, Kang-Ting

    2017-01-01

    Highlights: • An effective envelope energy performance model (BEM) was developed. • We integrated NSGA-II with the BEM to optimize the green building envelope. • A tradeoff plan of green building design for three conflict objectives was obtained. • The optimal envelope design efficiently reduced the construction cost of green building. - Abstract: To realize the goal of environmental sustainability, improving energy efficiency in buildings is a major priority worldwide. However, the practical design of green building envelopes for energy conservation is a highly complex optimization problem, and architects must make multiobjective decisions. In practice, methods such as multicriteria analyses that entail capitalizing on possibly many (but in nearly any case limited) alternatives are commonly employed. This study investigated the feasibility of applying a multiobjective optimal model on building envelope design (MOPBEM), which involved integrating a building envelope energy performance model with a multiobjective optimizer. The MOPBEM was established to provide a reference for green designs. A nondominated sorting genetic algorithm-II (NSGA-II) was used to achieve a tradeoff design set between three conflicting objectives, namely minimizing the envelope construction cost (ENVCOST), minimizing the envelope energy performance (ENVLOAD), and maximizing the window opening rate (WOPR). A real office building case was designed using the MOPBEM to identify the potential strengths and weaknesses of the proposed MOPBEM. The results showed that a high ENVCOST was expended in simultaneously satisfying the low ENVLOAD and high WOPR. Various designs exhibited obvious cost reductions compared with the original architects' manual design, demonstrating the practicability of the MOPBEM.

  18. Building envelope influence on the annual energy performance in office buildings

    Directory of Open Access Journals (Sweden)

    Harmati Norbert L.

    2016-01-01

    Full Text Available The objective of the research is to determine the quantitative influence of building envelope on the annual heating and cooling energy demand in office buildings demonstrated on a reference office-tower building located in Novi Sad, Serbia. The investigation intended to find preferable and applicable solutions for energy performance improvement in currently inefficient office buildings. A comparative and evaluative analysis was performed among the heating energy expenses and simulated values from the multi-zone model designed in EnergyPlus engine. The research determines an improved window to wall ratio using dynamic daylight simulation and presents the influence of glazing parameters (U-value, Solar heat gain coefficient - SHGC on the annual energy performance. Findings presented window to wall ratio reduction down to 30% and point out the significance of the SHGC parameter on the overall energy performance of buildings with high internal loads. The calculation of the air-ventilation energy demand according to EN 15251 is included respectively. Results offer effective methods for energy performance improvement in temperate climate conditions.

  19. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies

    Directory of Open Access Journals (Sweden)

    Paula M. Esquivias

    2012-07-01

    Full Text Available This work evaluates the potential for the reduction of energy demand in residential buildings by acting on the exterior envelope, both in newly constructed buildings and in the retrofitting of existing stock. It focuses on analysing social housing buildings in Mediterranean areas and on quantifying the scope of that reduction in the application of different envelope design strategies, with the purpose of prioritizing their application based on their energy efficiency. The analyses and quantifications were made by means of the generation of energy models with the TRNSYS tool for simple or combined solutions, identifying possible potentials for reduction of the energy demand from 20% to 25%, basically by acting on the windows. The case study was a newly built social housing building of a closed block type located in Seville (Spain. Its constructive techniques and the insulation level of its envelope are standardized for current buildings widespread across Mediterranean Europe.

  20. Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Fabrizio Ascione

    2015-08-01

    Full Text Available According to the increasing worldwide attention to energy and the environmental performance of the building sector, building energy demand should be minimized by considering all energy uses. In this regard, the development of building components characterized by proper values of thermal transmittance, thermal capacity, and radiative properties is a key strategy to reduce the annual energy need for the microclimatic control. However, the design of the thermal characteristics of the building envelope is an arduous task, especially in temperate climates where the energy demands for space heating and cooling are balanced. This study presents a novel methodology for optimizing the thermo-physical properties of the building envelope and its coatings, in terms of thermal resistance, capacity, and radiative characteristics of exposed surfaces. A multi-objective approach is adopted in order to optimize energy performance and thermal comfort. The optimization problem is solved by means of a Genetic Algorithm implemented in MATLAB®, which is coupled with EnergyPlus for performing dynamic energy simulations. For demonstration, the methodology is applied to a residential building for two different Mediterranean climates: Naples and Istanbul. The results show that for Naples, because of the higher incidence of cooling demand, cool external coatings imply significant energy savings, whereas the insulation of walls should be high but not excessive (no more than 13–14 cm. The importance of high-reflective coating is clear also in colder Mediterranean climates, like Istanbul, although the optimal thicknesses of thermal insulation are higher (around 16–18 cm. In both climates, the thermal envelope should have a significant mass, obtainable by adopting dense and/or thick masonry layers. Globally, a careful design of the thermal envelope is always necessary in order to achieve high-efficiency buildings.

  1. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    NARCIS (Netherlands)

    Henriksen, T.N.

    2017-01-01

    Thin-walled glass fibre reinforced concrete (GFRC) panels are being used as the primary cladding material on many landmark buildings especially in the last decade. GFRC is an ideal material for building envelopes because it is durable, it can resist fire and the environmental impact is low compared

  2. Integrated Thermal-Energy Analysis of Innovative Translucent White Marble for Building Envelope Application

    Directory of Open Access Journals (Sweden)

    Federica Rosso

    2014-08-01

    Full Text Available Marble is a natural material, used in the construction field since antiquity. It has always been used to communicate monumentality and solidity. Nowadays new technologies permit marble to express new languages: particularly, translucent marble technology overturns the concept of solidity. The main issue to address is the lack of thermal-energy performance of such a thin stone layer as the only facade component. Conversely, Bianco Carrara and Statuario marbles, for instance, have intrinsic benefits as natural cool materials, due to their high solar reflectance and thermal emissivity. Thus, this paper analyzes the thermal-energy and environmental behavior of marble facade for a new designed building in New York City. An integrated analysis of the energy performance of the marble skin is performed through a preliminary experimental characterization, carried out for two different types of naturally white marble, for comparative purposes. Then, a dynamic simulation model of the building is developed to evaluate year-round benefits and drawbacks of the translucent marble envelope in terms of indoor thermal comfort and air-conditioning requirement. The analysis showed how the proposed marble facade is able to decrease the energy requirement for cooling up to 6%, demonstrating possible relevant perspectives for marble-based facades, even in energy-efficient buildings.

  3. Analysis for Building Envelopes and Mechanical Systems Using 2012 CBECS Data

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, David W.; Halverson, Mark A.; Butzbaugh, Joshua B.; Cooke, Alan L.; Bandyopadhyay, Gopal K.; Elliott, Douglas B.

    2018-03-14

    This report describes the aggregation and mapping of certain building characteristics data available in the most recent Commercial Building Energy Consumption Survey (CBECS) (DOE EIA 2012) to describe most typical building construction practices. This report provides summary data for potential use in the support of modifications to the Pacific Northwest National Laboratory’s commercial building prototypes used for building energy code analysis. Specifically, this report outlines findings and most typical design choices for certain building envelope and heating, ventilating, and air-conditioning (HVAC) system choices.

  4. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    Science.gov (United States)

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.

  5. Procedures when calculating economy for building envelopes in Denmark

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1999-01-01

    of using total-economy. Total-economy incorporates all present and future investments (e.g. operational and maintenance costs) into one number making it possible to invest more money when constructing a building and save the money later on due to lower cost for maintenance and energy consumption.This paper...

  6. 10 CFR 434.516 - Building exterior envelope.

    Science.gov (United States)

    2010-01-01

    ... Buildings for calculating the Energy Cost Budget. In calculating the Design Energy Consumption of the... assumptions for calculating the Energy Cost Budget and default assumptions for the Design Energy Consumption... without operable windows shall be assumed to be 0.038 cfm/ft2 of gross exterior wall. Hotels/motels and...

  7. Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, Jan [Fraunhofer CSE, Cambridge, MA (United States); Shukla, Nitin [Fraunhofer CSE, Cambridge, MA (United States); Fallahi, Ali [Fraunhofer CSE, Cambridge, MA (United States)

    2013-01-01

    Traditional thermal designs of building envelope assemblies are based on static energy flows, yet building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles and their dynamic operation can decrease thermal efficiency. Design work supporting the development of low-energy houses showed that conventional insulations may not always be the most cost effective solution to improvement envelope thermal performance. PCM-enhanced building envelopes that simultaneously reduce the total cooling loads and shift the peak-hour loads are the focus of this report.

  8. Multi-objective and multidisciplinary design optimization of large sports building envelopes : A case study

    NARCIS (Netherlands)

    Yang, D.; Sun, Y.; Turrin, M.; von Buelow, P.; Paul, J.C.

    2015-01-01

    Currently, in the conceptual envelope design of sports facilities, multiple engineering performance feedbacks (e.g. daylight, energy and structural performance) are expected to assist architectural design decision-making. In general, it is known as Building Performance Optimization in the conceptual

  9. Delivering COBie data - Focus on curtain walls and building envelopes

    DEFF Research Database (Denmark)

    Karlshøj, Jan; Borin, P.; Carradori, M.

    COBie is a standard data framework whose main purpose is to transmit useful, reliable and us-able information collected throughout the whole building process and to be consumed in order to properly maintain the facility. Focusing on Facility Management information exchanges and considering the UK...... BIM policies and requirements, this paper shows the results obtained applying COBie to complex products such as curtain walls. Two Information Delivery Manuals (IDMs) were also developed, in order to provide a com-monly known and standardized framework, which can regulate the COBie-based information...

  10. Windows and Building Envelope Research and Development: A Roadmap for Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the technical and market challenges to be overcome, R&D activities and milestones, key stakeholders, and potential energy savings that could result if cost and performance targets are met. Methods for improving technology performance and specific strategies for reducing installed costs and mitigating any other market barriers, which would increase the likelihood of mass-market technology adoption, are identified. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  11. Numerical simulation of phase change material composite wallboard in a multi-layered building envelope

    International Nuclear Information System (INIS)

    Zwanzig, Stephen D.; Lian, Yongsheng; Brehob, Ellen G.

    2013-01-01

    Highlights: ► A numerical method to study the heat transfer through a PCM composite wallboard is presented. ► PCM wallboard can reduce energy consumption and shift peak electricity load. ► There is an optimal location for the PCM wallboard in the building envelop. ► The PCM wallboard performance depends on weather conditions. - Abstract: Phase change materials (PCMs) have the capability to store/release massive latent heat when undergoing phase change. When impregnated or encapsulated into wallboard or concrete systems, PCMs can greatly enhance their thermal energy storage capacity and effective thermal mass. When used in the building envelope PCM wallboard has the potential to improve building operation by reducing the energy requirement for maintaining thermal comfort, downsizing the AC/heating equipment, and shifting the peak load from the electrical grid. In this work we numerically studied the potential of PCM on energy saving for residential homes. For that purpose we solved the one-dimensional, transient heat equation through the multi-layered building envelope using the Crank–Nicolson discretization scheme. A source term is incorporated to account for the thermal-physical properties of the composite PCM wallboard. Using this code we examined a PCM composite wallboard incorporated into the walls and roof of a typical residential building across various climate zones. The PCM performance was studied under all seasonal conditions using the latest typical meteorological year (TMY3) data for exterior boundary conditions. Our simulations show that PCM performance highly depends on the weather conditions, emphasizing the necessity to choose different PCMs at different climate zones. Comparisons were also made between different PCM wallboard locations. Our work shows that there exists an optimal location for PCM placement within building envelope dependent upon the resistance values between the PCM layer and the exterior boundary conditions. We further

  12. COMPONENTS PROVISION MANAGEMENT FOR MACHINE BUILDING MANUFACTURER

    Directory of Open Access Journals (Sweden)

    Ekaterina P. Bochkareva

    2014-01-01

    Full Text Available In the paper is given an approach to themanagement of components provision formachine building manufacturer based uponinternational standards and best practicesof leading international companies. Thecomplex expertise methods are used forthe development of the proposed machinebuilding manufacturer suppliers’ operational management method. At a strategic level is proposed a tool for planning the suppliers’portfolio and a machine building manufacturer supplier development methodology.

  13. Actual service life prediction of building components

    DEFF Research Database (Denmark)

    Aagaard, Niels-Jørgen; Brandt, Erik; Hansen, Ernst Jan de Place

    2014-01-01

    In recent years, sustainability and life cycle cost in the construction industry have been given great attention in many countries due to the heavy climatic and environmental impact from this sector. In Denmark, a sustainability certification scheme for buildings has been developed including....... Finally, it is discussed how to adjust the model for practical purposes, and a scheme for actual service life for selected building components important for analysis of sustainability is linked. The schemes are now being implemented as basis for sustainability certification of new buildings in Denmark....

  14. Durability of building materials and components

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    Durability of Building Materials and Components provides a collection of recent research works to contribute to the systematization and dissemination of knowledge related to the long-term performance and durability of construction and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of durability, service life prediction methodologies, the durability approach for historical and old buildings, asset and maintenance management and on the durability of materials, systems and components. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  15. Multiobjective optimisation of energy systems and building envelope retrofit in a residential community

    International Nuclear Information System (INIS)

    Wu, Raphael; Mavromatidis, Georgios; Orehounig, Kristina; Carmeliet, Jan

    2017-01-01

    Highlights: • Simultaneous optimisation of building envelope retrofit and energy systems. • Retrofit and energy systems change interact and should be considered simultaneously. • Case study quantifies cost-GHG emission tradeoffs for different retrofit options. - Abstract: In this paper, a method for a multi-objective and simultaneous optimisation of building energy systems and retrofit is presented. Tailored to be suitable for the diverse range of existing buildings in terms of age, size, and use, it combines dynamic energy demand simulation to explore individual retrofit scenarios with an energy hub optimisation. Implemented as an epsilon-constrained mixed integer linear program (MILP), the optimisation matches envelope retrofit with renewable and high efficiency energy supply technologies such as biomass boilers, heat pumps, photovoltaic and solar thermal panels to minimise life cycle cost and greenhouse gas (GHG) emissions. Due to its multi-objective, integrated assessment of building transformation options and its ability to capture both individual building characteristics and trends within a neighbourhood, this method is aimed to provide developers, neighbourhood and town policy makers with the necessary information to make adequate decisions. Our method is deployed in a case study of typical residential buildings in the Swiss village of Zernez, simulating energy demands in EnergyPlus and solving the optimisation problem with CPLEX. Although common trade-offs in energy system and retrofit choice can be observed, optimisation results suggest that the diversity in building age and size leads to optimal strategies for retrofitting and building system solutions, which are specific to different categories. With this method, GHG emissions of the entire community can be reduced by up to 76% at a cost increase of 3% compared to the current emission levels, if an optimised solution is selected for each building category.

  16. Dynamic window daylighting systems: electropolymeric technology for solar responsive building envelopes

    Science.gov (United States)

    Krietemeyer, Elizabeth A.; Smith, Shane I.; Dyson, Anna H.

    2011-04-01

    Human health and energy problems associated with the lack of control of sunlight in contemporary buildings have necessitated research into dynamic windows for energy efficient buildings. Existing window technologies have made moderate progress towards greater energy performance for facades but remain limited in their response to dynamic solar conditions, building energy requirements, and variable user preferences for visual comfort. Recent developments in electropolymeric display technology provide opportunities to transfer electroactive polymers to windows that can achieve high levels of geometric and spectral selectivity through the building envelope in order to meet the lighting, thermal and user requirements of occupied spaces. Experimental simulations that investigate daylight quality, energy performance, and architectural effects of electropolymeric glazing technology are presented.

  17. Moisture condensation on building envelopes in differential ventilated spaces in the tropics: quantitative assessment of influencing factors

    Directory of Open Access Journals (Sweden)

    Ali Maisarah

    2016-01-01

    Full Text Available Ventilation systems play a significant role in maintaining the indoor thermal and hygric balance. Nevertheless, the systems had been implicated to result in many problems. In the tropical climate, especially for energy efficiency purposes, building spaces are operated with differential ventilation. Such spaces operate on 24-hrs basis, some on 8-hrs while others are either naturally ventilated or served with mechanical supply-exhaust fan systems with non-conditioned outdoor air. This practice had been found to result in condensation problems. This study involves a quantitative appraisal of the effect of operative conditions and hygrothermal quality of building envelopes on condensation risk. The in-situ experiment is combined with an analytical approach to assessing the hygrothermal quality of building envelopes in a tropical climate building under differential ventilation between adjacent spaces. The case-studied building is with a known history of condensation and associated damages including mould growth. The microclimate measurement and hygrothermal performance of the wall and floor against condensation and mould growth risks had been previously reported elsewhere. As a step further, the present study evaluates the effects of various envelope insulation types and configurations together with the HVAC cooling set-points on envelope hygrothermal performance. The results revealed that overcooling the air-conditioned side increases condensation risk on the non-air-conditioned side of the envelopes. The envelopes failed criteria for surface condensation at existing operative conditions irrespective of envelope hygrothermal quality improvements. However, the envelope performed well at improved cooling operative conditions even at existing envelope hygrothermal quality. It is, therefore, important to ascertain the envelope hygrothermal quality as well the cooling operative conditions while embarking on energy efficiency operations in mechanical

  18. Study of potential nonconformities of a new recreation center building's envelope

    Science.gov (United States)

    Stanescu, M.; Kajl, S.; Lamarche, L.

    2016-09-01

    This article presents a building envelope's analysis in order to verify the compliance with mandatory provisions of the Model National Energy Code for Buildings in Canada (MNECB 1997). Because some of the requirements are «not met», investigations were carried out to provide justifications in order to prove that the building can be considered as an exception to the mandatory provisions of MNECB. Therefore, we evaluate the impact of three (3) potential nonconformities of the building's walls on the building energy performance. In regards to article 3.1.1.1.4 of MNECB, there is an exception if it can be proved that permanent process (like heat recovery of refrigeration compressors) can produce at all times enough heat that no other heating source is required. First of all, by using simulation, we were able to indicate that almost all building's heating will be provided by energy recovery from ice rinks refrigeration systems (99.2%). Secondly, by using an energy analysis carried out with HEAT2 software, we can show that the increase of heating energy demand caused by the 3 studied walls is very low. This represents an increase of the heating energy demand of only 0.2%, and this, regardless of the heat recovery process. Because the nonconforming wall sections are small (0.97% of the envelope area), this mainly explains the minor impact in terms of building performance. In conclusion, according to the results obtained, we were able to recommend the building for consideration as an exception to the mandatory provisions of MNECB.

  19. Methodology for the Study of the Envelope Airtightness of Residential Buildings in Spain: A Case Study

    Directory of Open Access Journals (Sweden)

    Feijó-Muñoz Jesús

    2018-03-01

    Full Text Available Air leakage and its impact on the energy performance of dwellings has been broadly studied in countries with cold climates in Europe, US, and Canada. However, there is a lack of knowledge in this field in Mediterranean countries. Current Spanish building regulations establish ventilation rates based on ideal airtight envelopes, causing problems of over-ventilation and substantial energy losses. The aim of this paper is to develop a methodology that allows the characterization of the envelope of the housing stock in Spain in order to adjust ventilation rates taking into consideration air leakage. A methodology that is easily applicable to other countries that consider studying the airtightness of the envelope and its energetic behaviour improvement is proposed. A statistical sampling method has been established to determine the dwellings to be tested, considering relevant variables concerning airtightness: climate zone, year of construction, and typology. The air leakage rate is determined using a standardized building pressurization technique according to European Standard EN 13829. A representative case study has been presented as an example of the implementation of the designed methodology and results are compared to preliminary values obtained from the database.

  20. Dynamic Exergy Analysis for the Thermal Storage Optimization of the Building Envelope

    Directory of Open Access Journals (Sweden)

    Valentina Bonetti

    2017-01-01

    Full Text Available As a measure of energy “quality”, exergy is meaningful for comparing the potential for thermal storage. Systems containing the same amount of energy could have considerably different capabilities in matching a demand profile, and exergy measures this difference. Exergy stored in the envelope of buildings is central in sustainability because the environment could be an unlimited source of energy if its interaction with the envelope is optimised for maintaining the indoor conditions within comfort ranges. Since the occurring phenomena are highly fluctuating, a dynamic exergy analysis is required; however, dynamic exergy modelling is complex and has not hitherto been implemented in building simulation tools. Simplified energy and exergy assessments are presented for a case study in which thermal storage determines the performance of seven different wall types for utilising nocturnal ventilation as a passive cooling strategy. Hourly temperatures within the walls are obtained with the ESP-r software in free-floating operation and are used to assess the envelope exergy storage capacity. The results for the most suitable wall types were different between the exergy analysis and the more traditional energy performance indicators. The exergy method is an effective technique for selecting the construction type that results in the most favourable free-floating conditions through the analysed passive strategy.

  1. Study of an experimental methodology for thermal properties diagnostic of building envelop

    Science.gov (United States)

    Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe

    2017-04-01

    The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The

  2. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

    Science.gov (United States)

    Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei

    2018-02-26

    Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

  3. Thermoelectricity analogy method for computing the periodic heat transfer in external building envelopes

    International Nuclear Information System (INIS)

    Peng Changhai; Wu Zhishen

    2008-01-01

    Simple and effective computation methods are needed to calculate energy efficiency in buildings for building thermal comfort and HVAC system simulations. This paper, which is based upon the theory of thermoelectricity analogy, develops a new harmonic method, the thermoelectricity analogy method (TEAM), to compute the periodic heat transfer in external building envelopes (EBE). It presents, in detail, the principles and specific techniques of TEAM to calculate both the decay rates and time lags of EBE. First, a set of linear equations is established using the theory of thermoelectricity analogy. Second, the temperature of each node is calculated by solving the linear equations set. Finally, decay rates and time lags are found by solving simple mathematical expressions. Comparisons show that this method is highly accurate and efficient. Moreover, relative to the existing harmonic methods, which are based on the classical control theory and the method of separation of variables, TEAM does not require complicated derivation and is amenable to hand computation and programming

  4. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  5. Feline leukemia virus infection requires a post-receptor binding envelope-dependent cellular component.

    Science.gov (United States)

    Hussain, Naveen; Thickett, Kelly R; Na, Hong; Leung, Cherry; Tailor, Chetankumar S

    2011-12-01

    Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.

  6. A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance

    International Nuclear Information System (INIS)

    Fan, Yuling; Xia, Xiaohua

    2017-01-01

    Highlights: • A multi-objective optimization model for building envelope retrofit is presented. • Facility performance degradation and maintenance is built into the model. • A rooftop PV system is introduced to produce electricity. • Economic factors including net present value and payback period are considered. - Abstract: Retrofitting existing buildings with energy-efficient facilities is an effective method to improve their energy efficiency, especially for old buildings. A multi-objective optimization model for building envelope retrofitting is presented. Envelope components including windows, external walls and roofs are considered to be retrofitted. Installation of a rooftop solar panel system is also taken into consideration in this study. Rooftop solar panels are modeled with their degradation and a maintenance scheme is studied for sustainability of energy and its long-term effect on the retrofitting plan. The purpose is to make the best use of financial investment to maximize energy savings and economic benefits. In particular, net present value, the payback period and energy savings are taken as the main performance indicators of the retrofitting plan. The multi-objective optimization problem is formulated as a non-linear integer programming problem and solved by a weighted sum method. Results of applying the designed retrofitting plan to a 50-year-old building consisting of 66 apartments demonstrated the effectiveness of the proposed model.

  7. Benchmarking the energy performance of office buildings: A data envelopment analysis approach

    Directory of Open Access Journals (Sweden)

    Molinos-Senante, María

    2016-12-01

    Full Text Available The achievement of energy efficiency in buildings is an important challenge facing both developed and developing countries. Very few papers have assessed the energy efficiency of office buildings using real data. To overcome this limitation, this paper proposes an energy efficiency index for buildings having a large window-to-wall ratio, and uses this index to identify the main architectural factors affecting energy performance. This paper assesses, for the first time, the energy performances of 34 office buildings in Santiago, Chile, by using data envelopment analysis. Overall energy efficiency is decomposed into two indices: the architectural energy efficiency index, and the management energy efficiency index. This decomposition is an essential step in identifying the main drivers of energy inefficiency and designing measures for improvement. Office buildings examined here have significant room for improving their energy efficiencies, saving operational costs and reducing greenhouse gas emissions. The methodology and results of this study will be of great interest to building managers and policymakers seeking to increase the sustainability of cities.

  8. Selection of the Climate Parameters for a Building Envelopes and Indoor Climate Systems Design

    Directory of Open Access Journals (Sweden)

    Oleg Samarin

    2017-09-01

    Full Text Available The current research considers the principles of selection of the climate information needed for the building envelope and indoor climate design and adopted in Russia and some European countries. Special reference has been made to the shortcoming of methodologies that include the notion of a typical year, and the advantages of climate data sets generated via software-based designs, using pseudo-random number generators. The results of the average temperature of the coldest five-day period with various supplies were calculated using the numerical Monte-Carlo simulations, as well as the current climate data. It has been shown that there is a fundamental overlap between the statistical distribution of temperatures of both instances and the possibility of implementation a probabilistic-statistical method principle in the development of certain climate data, relative to envelopes and thermal conditions of a building. The calculated values were combined with the analytic expression of the normal law of random distribution and the correlations needed for the main parameter selection.

  9. Influence of PCMs in thermal insulation on thermal behaviour of building envelopes

    Science.gov (United States)

    Dydek, K.; Furmański, P.; Łapka, P.

    2016-09-01

    A model of heat transfer through a wall consisting of a layer of concrete and PCM enhanced thermal insulation is considered. The model accounts for heat conduction in both layers, thermal radiation and heat absorption/release due to phase change in the insulation as well as time variation in the ambient temperature and insolation. Local thermal equilibrium between encapsulated PCM and light-weight thermal insulation was assumed. Radiation emission, absorption and scattering were also accounted for in the model. Comparison of different cases of heat flow through the building envelope was carried out. These cases included presence or absence of PCM and thermal radiation in the insulation, effect of emissivity of the PCM microcapsules as well as an effect of solar radiation or its lack on the ambient side of the envelope. Two ways of the PCM distribution in thermal insulation were also considered. The results of simulations were presented for conditions corresponding to the mean summer and winter seasons in Warsaw. It was found that thermal radiation plays an important role in heat transfer through thermal insulation layer of the wall while the presence of the PCM in it significantly contributes to damping of temperature fluctuations and a decrease in heat fluxes flowing into or lost by the interior of the building. The similar effect was observed for a decrease in emissivity of the microcapsules containing PCM.

  10. Biomimetic Envelopes

    OpenAIRE

    Ilaria Mazzoleni

    2010-01-01

    How to translate the lessons learned from the analysis and observation of the animal world is the design learning experience presented in this article. Skin is a complex and incredibly sophisticated organ that performs various functions, including protection, sensation and heat and water regulation. In a similar way building envelopes serve multiple roles, as they are the interface between the building inhabitants and environmental elements. The resulting architectural building envelopes prot...

  11. On the merging rates of envelope-deprived components of binary systems which can give rise to supernova events

    International Nuclear Information System (INIS)

    Tornambe, Amedo

    1989-01-01

    We derive theoretical rates of mergings of envelope-deprived components of binary systems, which can give rise to supernova events. The effects of the various assumptions one is forced to make on the physical properties of the progenitor system and of its evolutionary behaviour through common envelope phases are discussed. Four cases have been analysed: CO-CO, He-CO, He-He double degenerate mergings and He star-CO dwarf merging. (author)

  12. Measuring farm sustainability using data envelope analysis with principal components: the case of Wisconsin cranberry.

    Science.gov (United States)

    Dong, Fengxia; Mitchell, Paul D; Colquhoun, Jed

    2015-01-01

    Measuring farm sustainability performance is a crucial component for improving agricultural sustainability. While extensive assessments and indicators exist that reflect the different facets of agricultural sustainability, because of the relatively large number of measures and interactions among them, a composite indicator that integrates and aggregates over all variables is particularly useful. This paper describes and empirically evaluates a method for constructing a composite sustainability indicator that individually scores and ranks farm sustainability performance. The method first uses non-negative polychoric principal component analysis to reduce the number of variables, to remove correlation among variables and to transform categorical variables to continuous variables. Next the method applies common-weight data envelope analysis to these principal components to individually score each farm. The method solves weights endogenously and allows identifying important practices in sustainability evaluation. An empirical application to Wisconsin cranberry farms finds heterogeneity in sustainability practice adoption, implying that some farms could adopt relevant practices to improve the overall sustainability performance of the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Can envelope codes reduce electricity and CO2 emissions in different types of buildings in the hot climate of Bahrain?

    International Nuclear Information System (INIS)

    Radhi, H.

    2009-01-01

    The depletion of non-renewable resources and the environmental impact of energy consumption, particularly energy use in buildings, have awakened considerable interest in energy efficiency. Building energy codes have recently become effective techniques to achieve efficiency targets. The Electricity and Water Authority in Bahrain has set a target of 40% reduction of building electricity consumption and CO 2 emissions to be achieved by using envelope thermal insulation codes. This paper investigates the ability of the current codes to achieve such a benchmark and evaluates their impact on building energy consumption. The results of a simulation study are employed to investigate the impact of the Bahraini codes on the energy and environmental performance of buildings. The study focuses on air-conditioned commercial buildings and concludes that envelope codes, at best, are likely to reduce the energy use of the commercial sector by 25% if the building envelope is well-insulated and efficient glazing is used. Bahraini net CO 2 emissions could drop to around 7.1%. The simulation results show that the current energy codes alone are not sufficient to achieve a 40% reduction benchmark, and therefore, more effort should be spent on moving towards a more comprehensive approach

  14. Climate Change Adopted Building Envelope as A Protector of Human Health in the Urban Environment

    Science.gov (United States)

    Januszkiewicz, Krystyna

    2017-10-01

    Recently, an expanded understanding of building performance acknowledges that all forces acting on buildings (climate, energies, information, and human agents) are not static and fixed, but rather mutable and transient. With the use of parametric and multi-criteria optimization digital tools, buildings’ envelopes can be designed to respond to various requirements. This paper explores the possibilities of architectural design to benefit human conditions, which encompasses mental well-being, environmental quality of life during the Climate Change era. The first part of the paper defines the main factors (such as: lack of green nature and sunlight, noise and pollution) which are influencing the formation of psychological disorder in big cities. The negative impact of these factors is constantly increasing in the time of Climate Change progressing. The second part presents results of the research program undertaken at West Pomeranian University of Technology in Szczecin by author. The program goes on to attempt to solve the problem through architectural design. This study highlights a social problem, such as mental well-being, resulting from urbanization or effects of the climate change, and serves as a useful background for further research on the possibilities of redefining sustainable and human friendly design.

  15. A multi-criteria model for the comparison of building envelope energy retrofits

    Science.gov (United States)

    Donnarumma, Giuseppe; Fiore, Pierfrancesco

    2017-02-01

    In light of the current EU guidelines in the energy field, improving building envelope performance cannot be separated from the context of satisfying the environmental sustainability requirements, reducing the costs associated with the life cycle of the building as well as economic and financial feasibility. Therefore, identifying the "optimal" energy retrofit solutions requires the simultaneous assessment of several factors and thus becomes a problem of choice between several possible alternatives. To facilitate the work of the decision-makers, public or private, adequate decision support tools are of great importance. Starting from this need, a model based on the multi-criteria analysis "AHP" technique is proposed, along with the definition of three synthetic indices associated with the three requirements of "Energy Performance", "Sustainability Performance" and "Cost". From the weighted aggregation of the three indices, a global index of preference is obtained that allows to "quantify" the satisfaction level of the i-th alternative from the point of view of a particular group of decision-makers. The model is then applied, by way of example, to the case-study of the energetic redevelopment of a former factory, assuming its functional conversion. Twenty possible alternative interventions on the opaque vertical closures, resulting from the combination of three thermal insulators families (synthetic, natural and mineral) with four energy retrofitting techniques are compared and the results obtained critically discussed by considering the point of view of the three different groups of decision-makers.

  16. Isostatic lines’ study to optimize steel space grid envelope structures for tall buildings according to their solicitations

    OpenAIRE

    Señís López, Roger

    2013-01-01

    Based on the first study completed with wind tunnel tests, the aim of this paper is to define a second methodology for the optimization of steel space grid envelope structures for tall buildings according to their isostatic lines according to their solicitations. It is by means of the comparison NatHaz online database and numerical simulation research of wind flow repercussion in buildings, through Computational Fluid Dynamics (CDF), that we can understand and analyse the grid ...

  17. Cool products for building envelope - Part I: Development and lab scale testing

    NARCIS (Netherlands)

    Revel, G.M.; Martarelli, M.; Emiliani, M.; Gozalbo, A.; Orts, M.J.; Bengochea, M.T.; Guaita Delgado, L.; Gaki, A.; Katsiapi, A.; Taxiarchou, M.; Arabatzis, I.; Fasaki, I.; Hermanns, S.

    2014-01-01

    The paper describes the methodology followed for the development of new cool products in order to widen the range of existing solutions both including coloured (even dark) materials and extending the application also to building vertical components. Cool coloured ceramic tiles and acrylic paints for

  18. Infection with the oncogenic human papillomavirus type 59 alters protein components of the cornified cell envelope

    International Nuclear Information System (INIS)

    Lehr, Elizabeth; Brown, Darron R.

    2003-01-01

    Infection of the genital tract with human papillomaviruses (HPVs) leads to proliferative and dysplastic epithelial lesions. The mechanisms used by the virus to escape the infected keratinocyte are not well understood. Infection of keratinocytes with HPV does not cause lysis, the mechanism used by many viruses to release newly formed virions. For HPV 11, a type associated with a low risk of neoplastic disease, the cornified cell envelope (CCE) of infected keratinocytes is thin and fragile, and transcription of loricrin, the major CCE protein, is reduced. The effects of high-risk HPV infection on components of the CCE have not been previously reported. HPV 59, an oncogenic genital type related to HPV types 18 and 45 was identified in a condylomata acuminata lesion. An extract of this lesion was used to infect human foreskin fragments, which were grown in athymic mice as xenografts. Continued propagation using extracts of xenografts permitted growth of additional HPV 59-infected xenografts. CCEs purified from HPV 59-infected xenografts displayed subtle morphologic abnormalities compared to those derived from uninfected xenografts. HPV 59-infected xenografts revealed dysplastic-appearing cells with mitotic figures. Detection of loricrin, involucrin, and cytokeratin 10 was reduced in HPV 59-infected epithelium, while small proline-rich protein 3 (SPR3) was increased. Reduction in loricrin was most apparent in regions of epithelium containing abundant HPV 59 DNA. Compared to uninfected epithelium, loricrin transcription was decreased in HPV 59-infected epithelium. We conclude that HPV 59 shares with HPV 11 the ability to alter CCE components and to specifically reduce transcription of the loricrin gene. Because loricrin is the major CCE protein, a reduction in this component could alter the physical properties of the CCE, thus facilitating virion release

  19. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Abhari, Mr. Ramin [Renewable Energy Group, Inc.; Shukla, Dr. Nitin [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston; Kosny, Dr. Jan [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  20. Comparative effects of building envelope improvements and occupant behavioural changes on the exergy consumption for heating and cooling

    International Nuclear Information System (INIS)

    Schweiker, Marcel; Shukuya, Masanori

    2010-01-01

    Much focus is put on measures to improve the building envelope system performance to reduce the impact of the building sector on the global environmental degradation. This paper compares the potential of building envelope improvements to those of a change in the occupant's behavioural pattern. Three cases of improvements together with a base case were analysed using exergy analysis, because the exergy concept is useful to understand the underlying processes and the necessary adjustments to the calculation of the heat-pump system. The assumptions for the occupant behaviour were set up based on our field measurements conducted in a dormitory building and the calculation was for steady-state conditions. It was found that the potential of occupant behavioural changes for the reduction in exergy consumption is more affected by the outdoor temperature compared to building envelope improvements. The influence of occupant behaviour was highly significant (more than 90% decrease of exergy consumption) when the temperature difference between indoors and outdoors is small, which is the case for long periods in regions with moderate temperatures during summer and/or winter. Nevertheless, both measures combined lead to a reduction from 76% up to 95% depending on the outside conditions and should be the final goal.

  1. Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses

    International Nuclear Information System (INIS)

    Biswas, Kaushik; Abhari, Ramin

    2014-01-01

    Highlights: • Testing of a low-cost bio-PCM in an exterior wall under varying weather conditions. • Numerical model validation and annual simulations of PCM-enhanced cellulose insulation. • Reduced wall-generated cooling electricity consumption due to the application of PCM. • PCM performance was sensitive to its location and distribution within the wall. - Abstract: A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM–HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test building in a hot and humid climate, and tested over a period of several months. To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, a side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM–HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. This article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM

  2. On the merging rates of envelope-deprived components of binary systems which can give rise to supernova events

    Science.gov (United States)

    Tornambe, Amedeo

    1989-08-01

    Theoretical rates of mergings of envelope-deprived components of binary systems, which can give rise to supernova events are described. The effects of the various assumptions on the physical properties of the progenitor system and of its evolutionary behavior through common envelope phases are discussed. Four cases have been analyzed: CO-CO, He-CO, He-He double degenerate mergings and He star-CO dwarf merging. It is found that, above a critical efficiency of the common envelope action in system shrinkage, the rate of CO-CO mergings is not strongly sensitive to the efficiency. Below this critical value, no CO-CO systems will survive for times larger than a few Gyr. In contrast, He-CO dwarf systems will continue to merge at a reasonable rate up to 20 Gyr, and more, also under extreme conditions.

  3. Greenbelt Homes Pilot Program: Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Del Bianco, M. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Mallay, D. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2015-05-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. It presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressing the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements.

  4. Experimental building with new types of building envelope structures. Part 1: Structures/systems. Building system: Brick walls; Forsoegshus med nye typer klimaskaermskonstruktioner. Del 1: Konstruktioner/systemer - Byggesystem: Fuldmuret

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The house described in this report is one of several experimental houses forming part of the project 'Experimental buildings with new types of building envelope structures'. One purpose of the project is to demonstrate that it is possible to build typical single-family houses with an energy consumption that meets expected increased building regulations. Furthermore, it is important that the houses can be made securely as regards construction technology and within reasonable financial limits. Thus, the purpose is also to contribute to strengthen the development of improved building envelope structures. Another purpose is to carry out detailed measurements of energy consumption in order to validate thermal performance of future building envelope structures. The report describes the constructive design and energy systems of the house plus heat loss calculations and expected energy consumption. (BA)

  5. Development of damage functions for high-rise building components

    International Nuclear Information System (INIS)

    Kustu, O.; Miller, D.D.; Brokken, S.T.

    1982-10-01

    The component approach for predicting the effects that ground motion from underground nuclear explosions will have on structures involves predicting the damage to each structural and nonstructural component of a building on the basis of the expected local deformation that most affects the damage to the component. This study was conducted to provide the basic data necessary to evaluate the component approach. Available published laboratory test data for various high-rise building components were collected. These data were analyzed statistically to determine damage threshold values and their variabilities, which in turn were used to derive component damage functions. The portion of construction costs attributable to various building components was determined statistically. This information was needed because component damage functions define damage as a percentage of the replacement values of the component, and, in order to calculate the overall building damage factor, the relative cost of each component must be estimated. The feasibility of the component approach to damage prediction is demonstrated. It is recommended that further experimental research directed towards developing an adequate data base of component damage thresholds for all significant building components should be encouraged. Parallel to this effort, detailed damage data from specific buildings damaged in earthquakes should be collected to verify the theoretical procedure

  6. Energy performance and optimal control of air-conditioned buildings with envelopes enhanced by phase change materials

    International Nuclear Information System (INIS)

    Zhu Na; Wang Shengwei; Ma Zhenjun; Sun Yongjun

    2011-01-01

    Highlights: → Impact of PCM on the energy consumption and peak load demand as well as electricity cost of air-conditioned buildings. → Impact of load shifting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Impact of demand limiting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Energy/cost effects of different control strategies and use of PCM in energy-plus-demand-based pricing policy. → Energy/cost effects of different control strategies and use of PCM in time-based pricing policy. - Abstract: Studies are conducted to investigate the impacts of shape-stabilized phase change material (SSPCM) and different control strategies on the energy consumption and peak load demand as well as electricity cost of building air-conditioning systems at typical summer conditions in two climates (subtropical and dry continental climates). An office building using a typical variable air volume (VAV) air-conditioning system was selected and simulated as the reference building in this study. Its envelopes were enhanced by integrating the SSPCM layers into its walls while the air-conditioning system and other configurations of the building remained unchanged. The building system was tested under two typical weather conditions and two typical electricity pricing policies (i.e. time-based pricing and energy-plus-demand-based pricing). Test results show that the use of SSPCM in the building could reduce the building electricity cost significantly (over 11% in electricity cost reduction and over 20% in peak load reduction), under two pricing policies by using load shifting control and demand limiting control respectively. This paper presents the test results and the evaluation on the energy performance and the optimal control strategies of air-conditioned commercial buildings with envelopes enhanced by SSPCM.

  7. Computational Support for the Selection of Energy Saving Building Components

    NARCIS (Netherlands)

    De Wilde, P.J.C.J.

    2004-01-01

    Buildings use energy for heating, cooling and lighting, contributing to the problems of exhaustion of fossil fuel supplies and environmental pollution. In order to make buildings more energy-efficient an extensive set of âenergy saving building componentsâ has been developed that contributes to

  8. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  9. Public health component in building information modeling

    Science.gov (United States)

    Trufanov, A. I.; Rossodivita, A.; Tikhomirov, A. A.; Berestneva, O. G.; Marukhina, O. V.

    2018-05-01

    A building information modelling (BIM) conception has established itself as an effective and practical approach to plan, design, construct, and manage buildings and infrastructure. Analysis of the governance literature has shown that the BIM-developed tools do not take fully into account the growing demands from ecology and health fields. In this connection, it is possible to offer an optimal way of adapting such tools to the necessary consideration of the sanitary and hygienic specifications of materials used in construction industry. It is proposed to do it through the introduction of assessments that meet the requirements of national sanitary standards. This approach was demonstrated in the case study of Revit® program.

  10. Principles, components and appropriateness of capacity building

    CSIR Research Space (South Africa)

    Wall, K

    2010-10-01

    Full Text Available stream_source_info Wall10_2010.pdf.txt stream_content_type text/plain stream_size 279838 Content-Encoding ISO-8859-1 stream_name Wall10_2010.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Winds..., the motivation and inspiration of people to improve their lives.? ? A less complex statement of unknown origin is that: ?Capacity building is the process of assisting people to develop the technical and decision making skills to address their own needs...

  11. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.; Long, N.; Swindler, A.

    2012-05-01

    This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

  12. New building envelope structures. Energy saving and moisture technology; Uudet vaipparakenteet. Energian saeaestoe ja kosteustekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Kokko, E.; Ojanen, T.; Salonvaara, M. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1997-12-31

    The publication summarizes the results that deal with reducing heating energy loss through building envelopes, improving hygric (moisture) behavior of structures and utilization solar energy. The objective was to produce new innovative structures and principles of applications for low-energy houses. The applications with the purpose of reducing heating energy consumption are based on conventional mineral wool and cellular plastic insulation materials, low-emissivity foils and coatings that reduce long-wave thermal radiation and building papers with desired properties. Utilization of solar energy was investigated with a solar energy collector system consisting of transparent insulation and glass layers, air circulation with natural convection and thermal mass. Thick light-weight mineral wool insulation layers in the exterior walls are in practice always somewhat non-ideal which increases convection air flows in or through the walls when compared to ideal structures. Increasing the thickness of the insulation layer makes it more non-ideal and thus susceptible to drawbacks of convection flows. Furthermore the internal moisture in the structure is distributed unevenly increasing the risk for mold growth and rotting. The convection effects in thick walls can be eliminated by isolating the insulation layers with air tight but vapor permeable vertical convection barriers. Significant portion of the total heat transfer in light-weight mineral wool insulation is caused by long-wave radiation (Infrared Radiation - IR). A low-emissivity foil attached directly to a surface of a mineral wool insulation has only a small effect on the thermal resistance of the whole insulation layer. Radiation inside thick insulation layers can be reduced significantly only by making use of fibers with low-emissivity surfaces or fibers transparent to IR-radiation and using low-emissivity foils on the sides of the layers. A `real life` structure consisting of a thick light-weight mineral wool

  13. Investigation on Prefabricated Building System Skilled Component Installers

    OpenAIRE

    Nurul Rezuana Buyung; Md Azree Othuman Mydin; Abdul Naser Abdul Ghani

    2013-01-01

    In the face of an increasingly challenging era of globalization, skills and new equipments which includes prefabricated building components, known as Industrialized Building System (IBS) has been introduced towards achievement of sustainable construction. IBS is a construction system in which the components are manufactured in a factory, on or off site, positioned and assembled into complete structures with minimal additional site work. IBS requires high construction precisi...

  14. Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ruey-Lung; Shu, Shiu-Ya [Department of Architecture, National United University, 1, Lien-Da, Kung-Ching Li, Miaoli, 36003 (China)

    2011-04-15

    This paper presents an investigation of the effect of building envelope regulation on thermal comfort and on the energy-saving potential for PMV-based comfort control in glass facade buildings. Occurrences and severity of overheating, based on the PMV-PPD model contained in ISO 7730, were used for the thermal comfort assessment. Parametric study simulations for an actual building with a large glass facade were carried out to predict the changes in thermal comfort levels in a space due to different glazing types, depths of overhang and glazing areas, which are the key parameters of the building envelope regulation index, named ENVLOAD, in Taiwan. The result demonstrates that the ENVLOAD has significant effect on thermal comfort. Additionally, comparative simulations between PMV-based comfort control and conventional thermostatic control were performed to investigate the changes in the energy-saving potential of a thermal comfort-controlled space due to changes of its ENVLOAD. The results demonstrate that the energy-saving potential in a PMV-based controlled space increases with low ENVLOAD conditions. (author)

  15. Building lifespan: effect on the environmental impact of building components in a Danish perspective

    DEFF Research Database (Denmark)

    Marsh, Rob

    2017-01-01

    of building lifespan are inadequately addressed. The aim of this research is therefore to explore how environmental impact from building components is affected by building lifespans of 50, 80, 100 and 120 years in a Danish context. LCAs are undertaken for 792 parametric variations of typical construction...... solutions, covering all primary building components and based on contemporary practice. A full statistical analysis is carried out, which shows a significant statistical correlation between changes in building lifespan and environmental impact for all primary building components, except windows......Construction professionals must now integrate environmental concerns with life cycle assessment (LCA) early in the procurement process. Building lifespan is important to LCA, since results must be normalized on an annualized basis for comparison. However, the scientific literature shows that issues...

  16. Heavy components coupling effect on building response spectra generation

    International Nuclear Information System (INIS)

    Liu, T.H.; Johnson, E.R.

    1985-01-01

    This study investigates the dynamic coupling effect on the floor response spectra between the heavy components and the Reactor Interior (R/I) building in a PWR. The following cases were studied: (I) simplified models of one and two lump mass models representing building and heavy components, and (II) actual plant building and heavy component models. Response spectra are developed at building nodes for all models, using time-history analysis methods. Comparisons of response spectra from various models are made to observe the coupling effects. In some cases, this study found that the coupling would reduce the response spectra values in certain frequency regions even if the coupling is not required according to the above criteria. (orig./HP)

  17. Nuclear component design ontology building based on ASME codes

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    The adoption of ontology analysis in the study of concept knowledge acquisition and representation for the nuclear component design process based on computer-supported cooperative work (CSCW) makes it possible to share and reuse numerous concept knowledge of multi-disciplinary domains. A practical ontology building method is accordingly proposed based on Protege knowledge model in combination with both top-down and bottom-up approaches together with Formal Concept Analysis (FCA). FCA exhibits its advantages in the way it helps establish and improve taxonomic hierarchy of concepts and resolve concept conflict occurred in modeling multi-disciplinary domains. With Protege-3.0 as the ontology building tool, a nuclear component design ontology based ASME codes is developed by utilizing the ontology building method. The ontology serves as the basis to realize concept knowledge sharing and reusing of nuclear component design. (authors)

  18. Preserving Envelope Efficiency in Performance Based Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A. [Thornton Energy Consulting (United States); Sullivan, Greg P. [Efficiency Solutions (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringent than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.

  19. State-of-the-art of intelligent building envelopes in the context of intelligent technical systems

    NARCIS (Netherlands)

    Böke, J.; Knaack, U.; Hemmerling, Marco

    2018-01-01

    The high and increasing requirements concerning energy consumption and the interior comfort of buildings result in a demand for more efficient façade constructions. In its role as a mediator between the exterior and interior of a building, the façade takes on a multitude of functions with effect

  20. PASLINK and dynamic outdoor testing of building components

    NARCIS (Netherlands)

    Baker, P.H.; Dijk, H.A.L. van

    2008-01-01

    The PASLINK test facilities and analysis procedures aim to obtain the thermal and solar characteristics of building components under real dynamic outdoor conditions. Both the analysis and the test methodology have evolved since the start of the PASSYS Project in 1985. A programme of upgrading the

  1. Parameter design for a phase change material board installed on the inner surface of building exterior envelopes for cooling in China

    International Nuclear Information System (INIS)

    Sun, Xiaoqin; Zhang, Quan; Medina, Mario A.; Lee, Kyoung Ok; Liao, Shuguang

    2016-01-01

    Highlights: • Phase change material (PCM) boards were simulated in building envelopes. • The buildings were located in four cities with different climatic conditions. • Energy and mass efficiency was proposed to evaluate utilization of PCM board. • The optimal melting temperature increased with increasing mean air temperature. - Abstract: Phase change materials (PCMs) can be used for building envelope thermal management and for energy conservation because of their potential to absorb and release large amounts of heat with small wall temperature variations. In this paper, the heat transfer theory of a PCM board used for building envelopes is presented, together with a mathematical model based on the moving heat-source method. It was found that the model accurately predicted the position of the solid–liquid interface in time and space, comparing with the published data. Energy and mass efficiency (EME) was proposed to evaluate the energy efficiency of PCM boards in office buildings located in various climatic regions in China for cooling. The influences on EME of parameters, including melting temperature of PCM, PCM board thickness and the heat transfer coefficient of building envelope, were analyzed. The optimal melting temperatures of PCM board, which resulted in the peak EME, in office building were 24.1 °C in Shenyang, 25.0 °C in Kunming, 25.3 °C in Zhengzhou and 25.5 °C Changsha, respectively. The EME increased with the increasing heat transfer coefficient of building envelope. For the city of Changsha with higher outdoor air temperature, none of the PCM boards modeled contributed effectively.

  2. Building Envelope Thermal Performance Assessment Using Visual Programming and BIM, based on ETTV requirement of Green Mark and GreenRE

    Directory of Open Access Journals (Sweden)

    Taki Eddine Seghier

    2017-09-01

    Full Text Available Accomplishment of green building design requirements and the achievement of the targeted credit points under a specific green rating system are known to be a task that is very challenging. Building Information Modeling (BIM design process and tools have already made considerable advancements in green building design and performance analysis. However, Green building design process is still lack of tools and workflows that can provide real-time feedback of building sustainability and rating during the design stage. In this paper, a new workflow of green building design assessment and rating is proposed based on the integration of Visual Programing Language (VPL and BIM. Thus, the aim of this study is to develop a BIM-VPL based tool for building envelope design and assessment support. The focus performance metric in this research is building Envelope Thermal Transfer Value (ETTV which is an Energy Efficiency (EE prerequisite requirement (up to 15 credits in both Green Mark and GreenRE rating systems. The development of the tool begins first by creating a generic integration framework between BIM-VPL functionalities and ETTV requirements. Then, data is extracted from the BIM 3D model and managed using Revit, Excel and Dynamo for visual scripting. A sample project consisting of a hypothetical residential building is run and its envelope ETTV performance and rating score are obtained for the validation of the tool. This tool will support project team in building envelope design and assessment by allowing them to select the most appropriate façade configuration according to its performance efficiency and the green rating. Furthermore, this tool serves as proof of concept that building sustainability rating and compliance checking can be automatically processed through customized workflows developed based on BIM and VPL technologies.

  3. Carbon footprint of a reflective foil and comparison with other solutions for thermal insulation in building envelope

    International Nuclear Information System (INIS)

    Proietti, Stefania; Desideri, Umberto; Sdringola, Paolo; Zepparelli, Francesco

    2013-01-01

    Highlights: ► Environmental and energy assessment of thermal insulating materials in building envelope. ► Carbon footprint of a reflective foil, conceived and produced by an Italian company. ► Study conducted according to principles of LCA – Life Cycle Assessment. ► Identification of main impacting processes and measures for reducing emissions. ► Comparison with traditional insulating materials (EPS and rockwool). - Abstract: The present study aims at assessing environmental and energy compatibility of different solutions of thermal insulation in building envelope. In fact a good insulation results in a reduction of heating/cooling energy consumptions; on the other hand construction materials undergo production, transformation and transport processes, whose energy and resources consumptions may lead to a significant decrease of the environmental benefits. The paper presents a detailed carbon footprint of a product (CFP, defined as the sum of greenhouse gas emissions and removals of a product system, expressed in CO 2 equivalents), which is a reflective foil conceived and produced by an Italian company. CFP can be seen as a Life Cycle Assessment with climate change as the single impact category; it does not assess other potential social, economic and environmental impacts arising from the provision of products. The analysis considers all stages of the life cycle, from the extraction of raw materials to the product’s disposal, i.e. “from cradle to grave”; it was carried out according to UNI EN ISO 14040 and 14044, and LCA modelling was performed using SimaPro software tool. On the basis of obtained results, different measures have been proposed in order to reduce emissions in the life cycle and neutralize residual carbon footprint. The results allowed to make an important comparison concerning the environmental performance of the reflective foil in comparison with other types of insulating materials

  4. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  5. Waste conditioning components for a new radwaste building

    International Nuclear Information System (INIS)

    Lewitz, J.C.; Stoelken, G.

    2001-01-01

    In the year 1999 Hansa Projekt Anlagentechnik GmbH made a basic study for the equipment of a new to be build radwaste building for TPC, Taiwan. Within an offer there was made an overall concept together with a proposal for system integration including supply, erection and put into operation for the following components supercompactor with in-/output device, overpack-filling station, resindrying- and filling unit, sorting tables for solid radwaste, cementation unit for liquid radwaste, cementation unit for grouting, drum inspection and decontamination station, storages for primary and conditioned radwaste, HVAC with filtration for several components and a roller conveyor system for transfer throughout the radwaste building. This overall concept was to be realized very similar by the client. The HPA scope of supply was focused onto the key components supercompactor with in-/output device, roller conveyor and turntable for cartridges and pellets, overpack-filling station, sorting tables, HVAC with filtration for supercompactor and sorting tables, and last but not least a drum inspection and decontamination system. In the following at first the functioning of HPA-components and the system as whole will be declared. At second components and system will be shown in detail together with figures and technical data. (orig.)

  6. PCM/wood composite to store thermal energy in passive building envelopes

    Science.gov (United States)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  7. Thermal mass vs. insulation building envelope design in six climatic regions of South Africa

    CSIR Research Space (South Africa)

    Kumirai, T

    2012-02-01

    Full Text Available is defined in Ecotect as a homogenous enclosed volume of air. In most cases this corresponds to a single room. It is assumed that the air within a zone is able to mix freely. Every room in the simulation model was defined as distinct thermal zone... of the Ecotect simulation model and simulation of houses with base case characteristics and energy efficient measures in six South African cities. 3.1 Building infiltration rate measurements High infiltration rates means a leaky building meaning...

  8. Green, Clean, & Mean: Pushing the Energy Envelope in Tech Industry Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Rengie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Diamond, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haves, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordman, Bruce [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Gerald [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-01

    When it comes to innovation in energy and building performance, one can expect leading-edge activity from the technology sector. As front-line innovators in design, materials science, and information management, developing and operating high-performance buildings is a natural extension of their core business. The energy choices made by technology companies have broad importance given their influence on society at large as well as the extent of their own energy footprint. Microsoft, for example, has approximately 250 facilities around the world (30 million square feet of floor area), with significant aggregate energy use of approximately 4 million kilowatt-hours per day (Figure 1).

  9. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  10. Active House: an all active eco-architecture building envelope concept

    NARCIS (Netherlands)

    Zeiler, W.

    2008-01-01

    The present trend in energy efficient eco-architecture dwellings is the passive house concept. The ventilation of many of these passive houses is critical. The development of sustainable buildings is driven by the need to preserve the balance of nature. The ventilation of many of these passive

  11. Application of Surrogate Models for Building Envelope Design Exploration and Optimization

    NARCIS (Netherlands)

    Yang, D.; Šileryte, R.; D'Aquilio, A.; Turrin, M.; Attar, Ramtin; Chronis, Angelos; Hanna, Sean; Turrin, Michela

    2016-01-01

    Building performance simulations are usually timeconsuming. They may account for the major portion of time spent in Computational Design Optimization (CDO), for instance, annual hourly daylight and energy simulations. In this case, the optimization may become less efficient or even infeasible within

  12. Multi-Objective Optimal Design of a Building Envelope and Structural System Using Cyber-Physical Modeling in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Michael L. Whiteman

    2018-03-01

    Full Text Available This paper explores the use of a cyber-physical systems (CPS “loop-in-the-model” approach to optimally design the envelope and structural system of low-rise buildings subject to wind loads. Both the components and cladding (C&C and the main wind force resisting system (MWFRS are considered through multi-objective optimization. The CPS approach combines the physical accuracy of wind tunnel testing and efficiency of numerical optimization algorithms to obtain an optimal design. The approach is autonomous: experiments are executed in a boundary layer wind tunnel (BLWT, sensor feedback is monitored and analyzed by a computer, and optimization algorithms dictate physical changes to the structural model in the BLWT through actuators. To explore a CPS approach to multi-objective optimization, a low-rise building with a parapet wall of variable height is considered. In the BLWT, servo-motors are used to adjust the parapet to a particular height. Parapet walls alter the location of the roof corner vortices, reducing suction loads on the windward facing roof corners and edges, a C&C design load. At the same time, parapet walls increase the surface area of the building, leading to an increase in demand on the MWFRS. A combination of non-stochastic and stochastic optimization algorithms were implemented to minimize the magnitude of suction and positive pressures on the roof of a low-rise building model, followed by stochastic multi-objective optimization to simultaneously minimize the magnitude of suction pressures and base shear. Experiments were conducted at the University of Florida Experimental Facility (UFEF of the National Science Foundation’s (NSF Natural Hazard Engineering Research Infrastructure (NHERI program.

  13. Active façade component integrated into the building: from the study to the innovative prototype

    Directory of Open Access Journals (Sweden)

    Andrea Levra Levron

    2014-05-01

    Full Text Available The article shows the results of a research that has been conducted within the project: “Energyskin: active building façades”. The project has been financed by the Piedmont Region and ESF (European Social Fund, among different industrial and academic partners with the aim to develop, monitor and optimize an adaptive dynamic innovative envelope component, that integrates the heat pump and the solar thermal system technology, by using the envelope as source/well for collecting heat. The research starts with the idea to integrate academic expertise with industrial realities, in order to start together the process that leads to the innovation and overcome the barriers of individual specializations. Those competences, under current practice, characterize both the functional specific models of companies on the one hand and the academic areas of expertise on the other hand.

  14. Performance Evaluation of Modern Building Thermal Envelope Designs in the Semi-Arid Continental Climate of Tehran

    Directory of Open Access Journals (Sweden)

    Shaghayegh Mohammad

    2013-10-01

    Full Text Available In this paper we evaluate the thermal performance of a range of modern wall constructions used in the residential buildings of Tehran in order to find the most appropriate alternative to the traditional un-fired clay and brick materials, which are increasingly being replaced in favor of more slender wall constructions employing hollow clay, autoclaved aerated concrete or light expanded clay aggregate blocks. The importance of improving the building envelope through estimating the potential for energy saving due to the application of the most energy-efficient wall type is presented and the wall constructions currently erected in Tehran are introduced along with their dynamic and steady-state thermal properties. The application of a dynamic simulation tool is explained and the output of the thermal simulation model is compared with the dynamic thermal properties of the wall constructions to assess their performance in summer and in winter. Finally, the best and worst wall type in terms of their cyclic thermal performance and their ability to moderate outdoor conditions is identified through comparison of the predicted indoor temperature and a target comfort temperature.

  15. THE USE OF AIR LAYERS IN BUILDING ENVELOPES FOR ENERGY SAVING DURING AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available Since there are no large natural energy resources in Belarus, energy savings ought to be a point of the special attention. With this regard it is important to develop modern ways of savings during the process of air conditioning inside new buildings with an air layer in the enclosure, especially in translucent ones. The system of ventilation of air layers in the enclosure of a building has been introduced in which air movement is caused by the gravitational and aerodynamic forces. It makes it possible to arrange further ventilation – a natural, forced or a hybrid one. With the purpose of increasing and streamlining natural draught the partitions are used separating the different parts of air layers. For natural ventilation with the use of gravitational forces the holes in the upper and lower parts of the partitions between adjacent air layers are applied. Natural ventilation in the holes of the partitions is regulated by movable shutters, blinds or other adjusting devices. For combined or forced air exchange between adjacent zones of air layers fans are used pumping air from the air layer zones with a higher temperature to zones of air layers with lower temperature and vice versa. When air exchange is forced, in order to intensify the infiltration of air into zones of air layers jets are laid on a hard surface. In order to cool a multi-layered enclosure of a building, where the movement of air between the air layers (that have been formed by internal partitions is being fulfilled by a natural, forced or combined mode, a part of the air or the total air processed inside the building (i.e. conditioned or non-conditioned air cooler as compared with the outside one is being sent to these strata. Combined or forced flow of the air processed inside the building into the air layers is done through the ducts associated with the output channels of the air conditioners. The internal partitions are equipped with the air valve hole.

  16. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  17. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  18. Rapidly evolving zona pellucida domain proteins are a major component of the vitelline envelope of abalone eggs

    Science.gov (United States)

    Aagaard, Jan E.; Yi, Xianhua; MacCoss, Michael J.; Swanson, Willie J.

    2006-01-01

    Proteins harboring a zona pellucida (ZP) domain are prominent components of vertebrate egg coats. Although less well characterized, the egg coat of the non-vertebrate marine gastropod abalone (Haliotis spp.) is also known to contain a ZP domain protein, raising the possibility of a common molecular basis of metazoan egg coat structures. Egg coat proteins from vertebrate as well as non-vertebrate taxa have been shown to evolve under positive selection. Studied most extensively in the abalone system, coevolution between adaptively diverging egg coat and sperm proteins may contribute to the rapid development of reproductive isolation. Thus, identifying the pattern of evolution among egg coat proteins is important in understanding the role these genes may play in the speciation process. The purpose of the present study is to characterize the constituent proteins of the egg coat [vitelline envelope (VE)] of abalone eggs and to provide preliminary evidence regarding how selection has acted on VE proteins during abalone evolution. A proteomic approach is used to match tandem mass spectra of peptides from purified VE proteins with abalone ovary EST sequences, identifying 9 of 10 ZP domain proteins as components of the VE. Maximum likelihood models of codon evolution suggest positive selection has acted among a subset of amino acids for 6 of these genes. This work provides further evidence of the prominence of ZP proteins as constituents of the egg coat, as well as the prominent role of positive selection in diversification of these reproductive proteins. PMID:17085584

  19. Annual energy analysis of concrete containing phase change materials for building envelopes

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Jamet, Astrid; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Adding PCM to concrete walls can significantly reduce the cooling needs of buildings. • Climate, season, and wall orientation strongly affect energy and cost savings. • The PCM melting temperature should be near the desired indoor temperature. • Benefits are maximum for outdoor temperature oscillating around set indoor temperature. • Adding PCM had little effect on heating energy needs and associated cost savings. - Abstract: This paper examines the annual energy and cost savings potential of adding microencapsulated phase change material to the exterior concrete walls of an average-sized single family home in California climate zones 3 (San Francisco, CA) and 9 (Los Angeles, CA). The annual energy and cost savings were larger for South- and West-facing walls than for other walls. They were also the largest when the phase change temperature was near the desired indoor temperature. The addition of microencapsulated phase change material to the building walls reduced the cooling load in summer substantially more than the heating load in winter. This was attributed to the cold winter temperatures resulting in nearly unidirectional heat flux on many days. The annual cooling load reduction in an average-sized single family home in San Francisco and in Los Angeles ranged from 85% to 100% and from 53% to 82%, respectively, for phase change material volume fraction ranging from 0.1 to 0.3. The corresponding annual electricity cost savings ranged from $36 to $42 in San Francisco and from $94 to $143 in Los Angeles. From an energy standpoint, the best climate for using building materials containing uniformly distributed microencapsulated phase change material would have outdoor temperature oscillations centered around the desired indoor temperature for the entire year

  20. Greenbelt Homes Pilot Program. Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [Home Innovation Research Labs, Marlboro, MD (United States); Del Bianco, M. [Home Innovation Research Labs, Marlboro, MD (United States); Mallay, D. [Home Innovation Research Labs, Marlboro, MD (United States)

    2015-05-22

    The U.S. Department of Energy Building America team Partnership for Home Innovation wrote a report on Phase 1 of the project that summarized a condition assessment of the homes and evaluated retrofit options within the constraints of the cooperative provided by GHI. Phase 2 was completed following monitoring in the 2013–2014 winter season; the results are summarized in this report. Phase 3 upgrades of heating equipment will be implemented in time for the 2014–2015 heating season and are not part of this report.

  1. Integrated Thermal-Energy Analysis of Innovative Translucent White Marble for Building Envelope Application

    OpenAIRE

    Federica Rosso; Anna Laura Pisello; Franco Cotana; Marco Ferrero

    2014-01-01

    Marble is a natural material, used in the construction field since antiquity. It has always been used to communicate monumentality and solidity. Nowadays new technologies permit marble to express new languages: particularly, translucent marble technology overturns the concept of solidity. The main issue to address is the lack of thermal-energy performance of such a thin stone layer as the only facade component. Conversely, Bianco Carrara and Statuario marbles, for instance, have intrinsic be...

  2. Optimum Application of Thermal Factors to Artificial Neural Network Models for Improvement of Control Performance in Double Skin-Enveloped Buildings

    Directory of Open Access Journals (Sweden)

    Kyung-Il Chin

    2013-08-01

    Full Text Available This study proposes an artificial neural network (ANN-based thermal control method for buildings with double skin envelopes that has rational relationships between the ANN model input and output. The relationship between the indoor air temperature and surrounding environmental factors was investigated based on field measurement data from an actual building. The results imply that the indoor temperature was not significantly influenced by vertical solar irradiance, but by the outdoor and cavity temperature. Accordingly, a new ANN model developed in this study excluded solar irradiance as an input variable for predicting the future indoor temperature. The structure and learning method of this new ANN model was optimized, followed by the performance tests of a variety of internal and external envelope opening strategies for the heating and cooling seasons. The performance tests revealed that the optimized ANN-based logic yielded better temperature conditions than the non-ANN based logic. This ANN-based logic increased overall comfortable periods and decreased the frequency of overshoots and undershoots out of the thermal comfort range. The ANN model proved that it has the potential to be successfully applied in the temperature control logic for double skin-enveloped buildings. The ANN model, which was proposed in this study, effectively predicted future indoor temperatures for the diverse opening strategies. The ANN-based logic optimally determined the operation of heating and cooling systems as well as opening conditions for the double skin envelopes.

  3. Models for describing the thermal characteristics of building components

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik

    2008-01-01

    , for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family....... The characteristics of each type of model are highlighted. Some available software tools for each of the methods described will be mentioned. A case study also demonstrating the difference between linear and nonlinear models is considered....... of these approaches may therefore be very useful for selecting a suitable approach for each particular case. This paper presents an overview of models that can be applied for modelling the thermal characteristics of buildings and building components using data from outdoor testing. The choice of approach depends...

  4. Drying and wetting of building materials and components

    CERN Document Server

    2014-01-01

    This book, Drying and Wetting of Building Materials and Components, provides a collection of recent contributions in the field of drying and wetting in porous building materials. The main benefit of the book is that it discusses some of the most important topics related to the drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  5. Optimization of sustainable buildings envelopes for extensive sheep farming through the use of dynamic energy simulation

    Directory of Open Access Journals (Sweden)

    Maria Elena Menconi

    2013-09-01

    Full Text Available Extensive sheep farming can be seen as a marginal market, compared to other livestock and agricultural activities, taking into account only the economic absolute values. But for many rural marginal areas within the European Community member states, in particular for those located in the Mediterranean area on hills or mountains with high landscape value, extensive sheep farming is not only the longest practiced animal farming activity, but also the most interesting considering its adaptability to the territorial morphology and the restrictions that have been established over the years in terms of sustainable rural development practices. At the moment, most of the structures used in this type of farming are built using low cost and sometimes recycled, but often unsuitable, materials. Few specific studies have been carried out on this particular issue assuming, presumably, that the very low profit margins of these activities made impossible any restructuring. Taken this into account, the new Rural Development Plans that will be issued in 2014 will surely contain some measure dedicated to innovations in farming structures and technology towards facilitating the application of the principles of energy optimization. This is the framework in which the present research has developed. The software that has been applied to perform the energy optimization analysis is the dynamic energy simulation engine Energy Plus. A case study farm has been identified in the small village of Ceseggi (PG, situated in Central Italy. For the case study optimum thermo hygrometric conditions have been identified to ensure the welfare of animals and operators and it has been hypothesized the insertion of an ideal HVAC system to achieve them. Afterwards were evaluated the different energy requirements of the building while varying the insulation material used on the vertical surfaces. The greater goal is to verify which could be the best insulation material for vertical

  6. Biocompuestos para perfiles avanzados adaptados a la edificación = Biocomposites for Advanced Profiles Adapted to Building Envelope

    Directory of Open Access Journals (Sweden)

    I. Roig

    2016-04-01

    Full Text Available Compuestos alternativos en el sector de la envolvente se obtienen por extrusión de estirado de secciones y perfiles de panel de enclavamiento estrechas. Estos elementos estructurales, resistentes al impacto, tienen la ventaja de una instalación más rápida y segura, y su diseño modular les hace idóneos para muchos edificios y otras aplicaciones. Un desarrollo adicional en esta área puede ser la obtención de una alternativa sostenible a los perfiles compuestos actuales. Estudios anteriores han demostrado que los compuestos fabricados a partir de materiales naturales tales como fibras y polímeros bio-derivados, ofrecen una alternativa sostenible a los polímeros y materiales compuestos tradicionales. El objetivo de este desarrollo es reemplazar el típico perfil de acero ligero. Los perfiles de acabado también se pueden utilizar para terminar tabiques de mampostería existentes, revestimiento de ejes mecánicos y de extracción y revestimiento de la columna. Los perfiles se han diseñado utilizando bio-polímeros, reforzados con fibras naturales. Se han establecido los parámetros de procesamiento y las formulaciones apropiadas de bioresina y fibras naturales. También se ha evaluado la adaptación de las técnicas de procesamiento de pultrusión existentes a las características concretas de los nuevos biomateriales y fibras naturales. Como resultado, los perfiles de pultrusión adaptados a la construcción se han desarrollado con la incorporación de nuevos materiales y biomateriales basados en resina. Abstract An alternative composites answer in the envelope sector is the fabrication by pultrusion of narrow interlocking panel sections and profiles. These impact-resistant structural elements have the advantage of quicker, safer installation and their modular design equally answers many identical building and other applications¡Error! No se encuentra el origen de la referencia.. An additional development in this area can be the

  7. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  8. Investigation on Prefabricated Building System Skilled Component Installers

    Directory of Open Access Journals (Sweden)

    Nurul Rezuana Buyung

    2013-09-01

    Full Text Available In the face of an increasingly challenging era of globalization, skills and new equipments which includes prefabricated building components, known as Industrialized Building System (IBS has been introduced towards achievement of sustainable construction. IBS is a construction system in which the components are manufactured in a factory, on or off site, positioned and assembled into complete structures with minimal additional site work. IBS requires high construction precision and needs a higher skill level of workers. Compared to the conventional construction method, the skill level of IBS workers is more demanding. Although there are a lot benefits in implementing IBS, the construction industry still not rapidly implementing IBS. The IBS method still considered new and even though there are a lot of benefits it still faces barriers. In an IBS construction, the role of the contractor is shifted from a builder to an assembler on the site. Therefore, this requires the contractor to be prepared technologically with IBS knowledge and skills. It is generally perceived that the number of skilled IBS installers in Malaysia is still low even though the system has been implemented for a long time. This research is carried out to find out whether the existing number of IBS installer is sufficient. Primary data was collected by carrying out interviews with the contractors at the IBS construction site in Penang Island in order to get the contractor’s feedback regarding this issue. Meanwhile, the secondary data was collected from government agencies to get the number of existing IBS installer and the number of IBS projects done in government projects. The results from this study indicated that not all categories of skill workers are in shortage. However, the number of precast concrete installer is in a critical shortage.

  9. CISBAT 2005 proceedings. Renewables in a changing climate - Innovation in building envelopes and environmental systems; CISBAT 2005 proceedings. Energies renouvelables et climat - Enveloppes et systemes environnementaux innovatifs

    Energy Technology Data Exchange (ETDEWEB)

    Scartezzini, J L [ed.

    2005-07-01

    These proceedings include the contributions presented at the 2005 CISBAT conference, held in Lausanne, Switzerland. Hosted by the Swiss Federal Institute of Technology (EPFL) in Lausanne and jointly organised by the Solar Energy and Buildings Physics Laboratory at the EPFL, Cambridge University and the Massachusetts Institute of Technology (MIT), this international conference looked at 'Innovation in building envelopes and environmental systems'. Along with three keynote presentations on climate change, the use of renewables in the European Union and Swiss policies on solar energy, these 632-page conference proceedings include the conference's 106 presentations grouped in 10 sections. These cover the following topics: Design and renovation of building envelopes (33 contributions); solar collectors (16 contributions); active and passive cooling (9 contributions); indoor environment quality and health (10 contributions); optimisation of daylighting and electric lighting (5 contributions); advanced building control systems (2 contributions); environmental impacts of construction (4 contributions); networks and decentralised energy production (1 contribution); sustainable urban development (12 contributions) and software and new information technologies (14 contributions). Organised each second year, the two-day CISBAT international conference 2005 attracted more than 200 participants from all over the world.

  10. CISBAT 2005 proceedings. Renewables in a changing climate - Innovation in building envelopes and environmental systems; CISBAT 2005 proceedings. Energies renouvelables et climat - Enveloppes et systemes environnementaux innovatifs

    Energy Technology Data Exchange (ETDEWEB)

    Scartezzini, J. L. (ed.)

    2005-07-01

    These proceedings include the contributions presented at the 2005 CISBAT conference, held in Lausanne, Switzerland. Hosted by the Swiss Federal Institute of Technology (EPFL) in Lausanne and jointly organised by the Solar Energy and Buildings Physics Laboratory at the EPFL, Cambridge University and the Massachusetts Institute of Technology (MIT), this international conference looked at 'Innovation in building envelopes and environmental systems'. Along with three keynote presentations on climate change, the use of renewables in the European Union and Swiss policies on solar energy, these 632-page conference proceedings include the conference's 106 presentations grouped in 10 sections. These cover the following topics: Design and renovation of building envelopes (33 contributions); solar collectors (16 contributions); active and passive cooling (9 contributions); indoor environment quality and health (10 contributions); optimisation of daylighting and electric lighting (5 contributions); advanced building control systems (2 contributions); environmental impacts of construction (4 contributions); networks and decentralised energy production (1 contribution); sustainable urban development (12 contributions) and software and new information technologies (14 contributions). Organised each second year, the two-day CISBAT international conference 2005 attracted more than 200 participants from all over the world.

  11. Climate Change: Implications for South African Building Systems and Components

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2017-12-01

    Full Text Available to determine the implications of these changes for buildings. Proposals are made on how buildings may be adapted to climate change and recommendations on further research and development are outlined....

  12. Effect of facade components on energy efficiency in office buildings

    International Nuclear Information System (INIS)

    Ihara, Takeshi; Gustavsen, Arild; Jelle, Bjørn Petter

    2015-01-01

    Highlights: • Investigation of facade properties for energy efficiency of Tokyo office buildings. • Higher reflectance for opaque parts may slightly reduce energy demand. • Lower window U-value and solar heat gain coefficient are potential solutions. • Decreased heating due to insulation did not always compensate increased cooling. • Fundamental data for adjustment of facade properties of buildings are provided. - Abstract: Properties of facade materials should be considered to determine which of them strongly affect building energy performance, regardless of the building shapes, scales, ideal locations, and building types, and thus may be able to promote energy efficiency in buildings. In this study, the effects of four fundamental facade properties related to the energy efficiency of office buildings in Tokyo, Japan, were investigated with the purpose of reducing the heating and cooling energy demands. Some fundamental design factors such as volume and shape were also considered. It was found that the reduction in both the solar heat gain coefficient and window U-value and increase in the solar reflectance of the opaque parts are promising measures for reducing the energy demand. Conversely, the reduction in the U-value of the opaque parts decreased the heating energy demand, and this was accompanied by an increase in the cooling energy demand in some cases because the total energy demands were predominantly for cooling. The above-mentioned promising measures for reducing building energy demands are thus recommended for use, and an appropriate U-value should be applied to the opaque parts based on careful considerations. This study provides some fundamental ideas to adjust the facade properties of buildings.

  13. On Innovative Cool-Colored Materials for Building Envelopes: Balancing the Architectural Appearance and the Thermal-Energy Performance in Historical Districts

    Directory of Open Access Journals (Sweden)

    Federica Rosso

    2017-12-01

    Full Text Available Architectural expression and energy performance are key decision-drivers in the selection of a particular construction element, with the purpose of Urban Heat Island mitigation, energy-consumption reductions, and cultural heritage preservation in historical centers. In historical centers, the external layer of the envelope and the visible parts of the building are built with traditional materials and technological solutions, such as single-layer walls or brickworks, depending on the country’s context, while the energy performance is usually optimized by means of internal insulation layers, or other active and passive solutions. Thermal-energy efficient materials and construction elements for the temperate, warm climate of the Mediterranean area are usually light-colored to reflect the largest part of solar radiation, thus reducing energy demands for cooling and improving thermal comfort conditions for occupants. On the other hand, many historical centers in such areas are characterized by reddish or grayish colors. In this work, we considered Italian historical areas, and other countries in the Mediterranean area with present similar situations. Thus, in this study, innovative, cool-colored, cement-based materials were developed to improve the thermal-energy performance of the external envelope of historical/historic built environments, without altering their appearance. These materials were prepared directly on-site, by mixing two types of pigments to achieve the desired color saturation. Optic and thermal properties were assessed, and yearly dynamic simulations of a historic, listed, case study building were performed, by comparing traditional-colored mortar and the prototype cool mortar envelopes. The research demonstrates that such cool-colored materials can maintain lower surface temperatures (−8 °C, while reducing energy demands for cooling (−3%.

  14. Kinetic Super-Resolution Long-Wave Infrared (KSR LWIR) Thermography Diagnostic for Building Envelopes: Scott AFB, IL

    Science.gov (United States)

    2015-08-18

    structures. The system software au- tomatically analyzes the thermal imagery and provides a custom report for each building that recommends cost-effective...possible using traditional thermogra- phy. This includes building facade data and building orientation. The au- tomated data processing system also

  15. Simulation of Time-Varying Spatially Uniform Pressure and Near-Surface Wind Flows on Building Components and Cladding

    Directory of Open Access Journals (Sweden)

    Seraphy Y. Shen

    2017-05-01

    Full Text Available This paper describes a new full-scale (FS testing apparatus for conducting performance evaluations of FS building envelope systems. The simulator can generate spatially uniform, time-varying pressure conditions associated with Saffir–Simpson Hurricane Wind Scale Category 5 winds while compensating for large air leakage through the specimen and also operate a high-speed wind tunnel, both with dynamic control. This paper presents system details, operating characteristics, and an early case study on the performance of large sectional door systems under wind pressure loading. Failure mechanisms are discussed, and finite element modeling is validated for two specimens. It demonstrates successful dynamic load control for large component and cladding systems, as well as simulation of flows near the building surface. These capabilities serve to complement other FS wind tunnel facilities by offering tools to generate ultimate load conditions on portions of the building. Further, the paper successfully demonstrates the utility of combining physical testing and computational analysis as a matter of routine, which underscores the potential of evolving FS testing to encompass cyber–physical approaches.

  16. Comparative thermal performance of static sunshade and brick cavity wall for energy efficient building envelope in composite climate

    Directory of Open Access Journals (Sweden)

    Charde Meghana

    2014-01-01

    Full Text Available Energy efficient building technologies can reduce energy consumption in buildings. In present paper effect of designed static sunshade, brick cavity wall with brick projections and their combined effect on indoor air temperature has been analyzed by constructing three test rooms each of habitable dimensions (3.0 m × 4.0 m × 3.0 m and studying hourly temperatures on typical days for one month in summer and winter each. The three rooms have also been simulated using a software and the results have been compared with the experimental results. Designed static sunshade increased indoor air temperature in winter while proposed brick cavity wall with brick projections lowered it in summer. Combined effect of building elements lowered indoor air temperature in summer and increased it in winter as compared to outdoor air temperature. It is thus useful for energy conservation in buildings in composite climate.

  17. Java Decaffeinated: experiences building a programming language from components

    OpenAIRE

    Farragher, Linda; Dobson, Simon

    2000-01-01

    non-peer-reviewed Most modern programming languages are complex and feature rich. Whilst this is (sometimes) an advantage for industrial-strength applications, it complicates both language teaching and language research. We describe our experiences in the design of a reduced sub-set of the Java language and its implementation using the Vanilla language development framework. We argue that Vanilla???s component-based approach allows the language???s feature set to be varied quickly and simp...

  18. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  19. The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources

    Science.gov (United States)

    Taylor, J; Shrubsole, C; Davies, M; Biddulph, P; Das, P; Hamilton, I; Vardoulakis, S; Mavrogianni, A; Jones, B; Oikonomou, E

    2014-01-01

    A number of studies have estimated population exposure to PM2.5 by examining modeled or measured outdoor PM2.5 levels. However, few have taken into account the mediating effects of building characteristics on the ingress of PM2.5 from outdoor sources and its impact on population exposure in the indoor domestic environment. This study describes how building simulation can be used to determine the indoor concentration of outdoor-sourced pollution for different housing typologies and how the results can be mapped using building stock models and Geographical Information Systems software to demonstrate the modifying effect of dwellings on occupant exposure to PM2.5 across London. Building archetypes broadly representative of those in the Greater London Authority were simulated for pollution infiltration using EnergyPlus. In addition, the influence of occupant behavior on indoor levels of PM2.5 from outdoor sources was examined using a temperature-dependent window-opening scenario. Results demonstrate a range of I/O ratios of PM2.5, with detached and semi-detached dwellings most vulnerable to high levels of infiltration. When the results are mapped, central London shows lower I/O ratios of PM2.5 compared with outer London, an apparent inversion of exposure most likely caused by the prevalence of flats rather than detached or semi-detached properties. PMID:24713025

  20. First and second law analysis applied to building envelope: A theoretical approach on the potentiality of Bejan’s theory

    Directory of Open Access Journals (Sweden)

    Cesare Biserni

    2015-11-01

    Full Text Available Especially in the last decade, efforts have been made in developing the sustainable building assessment tools, which are usually performed based on fundamentals of the First Law of Thermodynamics. However, this approach does not provide a faithful thermodynamic evaluation of the overall energy conversion processes that occur in buildings, and a more robust approach should be followed. The relevance of Second Law analysis has been here highlighted: in addition to the calculation of energy balances, the concept of exergy is used to evaluate the quality of energy sources, resulting in a higher flexibility of strategies to optimize a building design. Reviews of the progress being made with the constructal law show that diverse phenomena can be considered manifestations of the tendency towards optimization captured by the constructal law. The studies based on First and Second Principle of Thermodynamics results to be affected by the extreme generality of the two laws, which is consequent of the fact that in thermodynamics the “any system” is a black box with no information about design, organization and evolution. In this context, an exploratory analysis on the potentiality of constructal theory, that can be considered a law of thermodynamics, has been finally outlined in order to assess the energy performance in building design.

  1. Comparison among Detailed and Simplified Calculation Methods for Thermal and Energy Assessment of the Building Envelope and the Shadings of a New Wooden nZEB House

    Directory of Open Access Journals (Sweden)

    Cristina Carletti

    2018-02-01

    Full Text Available This paper deals with research carried out by the University of Florence on the thermal and energy performances of a recently built nZEB in Mediterranean Italian area. Heterogeneous component and thermal bridges performances have been analysed and critically evaluated with different calculation methods, and the results in terms of energy consumptions for heating and cooling have been compared. Some solar shading devices have been evaluated to reduce the building energy need for cooling. Main results of the research are presented for the components and thermal bridges properties and for the energy balance of the building implemented with different solar shadings.

  2. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Carmeliet, Jan

    2007-01-01

    While the transfer equations for moisture and heat in building components are currently undergoing standardisation, atmospheric boundary conditions, conservative modelling and numerical efficiency are not addressed. In a first part, this paper adds a comprehensive description of those boundary...

  3. Benchmarking energy performance of residential buildings using two-stage multifactor data envelopment analysis with degree-day based simple-normalization approach

    International Nuclear Information System (INIS)

    Wang, Endong; Shen, Zhigang; Alp, Neslihan; Barry, Nate

    2015-01-01

    Highlights: • Two-stage DEA model is developed to benchmark building energy efficiency. • Degree-day based simple normalization is used to neutralize the climatic noise. • Results of a real case study validated the benefits of this new model. - Abstract: Being able to identify detailed meta factors of energy performance is essential for creating effective residential energy-retrofitting strategies. Compared to other benchmarking methods, nonparametric multifactor DEA (data envelopment analysis) is capable of discriminating scale factors from management factors to reveal more details to better guide retrofitting practices. A two-stage DEA energy benchmarking method is proposed in this paper. This method includes (1) first-stage meta DEA which integrates the common degree day metrics for neutralizing noise energy effects of exogenous climatic variables; and (2) second-stage Tobit regression for further detailed efficiency analysis. A case study involving 3-year longitudinal panel data of 189 residential buildings indicated the proposed method has advantages over existing methods in terms of its efficiency in data processing and results interpretation. The results of the case study also demonstrated high consistency with existing linear regression based DEA.

  4. Analysis 6. Component requirements, competition and export. A survey of innovation related to building components; Analyse 6. Komponentkrav, konkurrence og eksport. En kortlaegning af innovation i byggekomponenter

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend

    2011-02-15

    The report collates several sub-analyses about feasible developments in relation to improved energy requirements for the most important building parts, components and installations for low-energy buildings. The aim is to achieve 75% reduction of energy consumption in the future building class 2020. The findings will contribute to the plans of introducing new building component requirements to force Danish manufacturers to use innovative solutions and to force manufacturers from other countries to market the best products only. (LN)

  5. Research on Energy-Saving Optimization for the Performance Parameters of Rural-Building Shape and Envelope by TRNSYS-GenOpt in Hot Summer and Cold Winter Zone of China

    Directory of Open Access Journals (Sweden)

    Shilei Lu

    2017-02-01

    Full Text Available The aim of this paper is to optimize the building shape parameters and envelope parameters influencing the rural building energy consumption in cold winter and hot summer climate. Several typical models are established and optimized by integrated TRNSYS and GenOpt. Single-objective optimization has provided guidance to the multi-dimensional optimization. Building shape and envelope parameters are considered simultaneously by multi-dimensional optimization. Results of the optimization showed significant reduction in terms of EC (energy consumption. When O (building orientation was SW (south by west 10°, LWR (length-width ratio was 1.1, WWRS (window-wall ratio in south with the range of 0.6–0.8, ITE (insulation thickness of exterior wall and ITR (insulation thickness of roof was 0.05 m and 0.08 m respectively, the building had minimal energy consumption. The results also indicated that the optimal EWT (exterior window type was plastic single-frame Low-E insulating glazing filled with inert gas, and the optimal shape of building is Re (rectangle. An effective method was provided to optimize the design of the rural building for the purpose of reducing building energy consumption in cold winter and hot summer climate.

  6. The ORC method. Effective modelling of thermal performance of multilayer building components

    Energy Technology Data Exchange (ETDEWEB)

    Akander, Jan

    2000-02-01

    The ORC Method (Optimised RC-networks) provides a means of modelling one- or multidimensional heat transfer in building components, in this context within building simulation environments. The methodology is shown, primarily applied to heat transfer in multilayer building components. For multilayer building components, the analytical thermal performance is known, given layer thickness and material properties. The aim of the ORC Method is to optimise the values of the thermal resistances and heat capacities of an RC-model such as to give model performance a good agreement with the analytical performance, for a wide range of frequencies. The optimisation procedure is made in the frequency domain, where the over-all deviation between model and analytical frequency response, in terms of admittance and dynamic transmittance, is minimised. It is shown that ORC's are effective in terms of accuracy and computational time in comparison to finite difference models when used in building simulations, in this case with IDA/ICE. An ORC configuration of five mass nodes has been found to model building components in Nordic countries well, within the application of thermal comfort and energy requirement simulations. Simple RC-networks, such as the surface heat capacity and the simple R-C-configuration are not appropriate for detailed building simulation. However, these can be used as basis for defining the effective heat capacity of a building component. An approximate method is suggested on how to determine the effective heat capacity without the use of complex numbers. This entity can be calculated on basis of layer thickness and material properties with the help of two time constants. The approximate method can give inaccuracies corresponding to 20%. In-situ measurements have been carried out in an experimental building with the purpose of establishing the effective heat capacity of external building components that are subjected to normal thermal conditions. The auxiliary

  7. Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry

    International Nuclear Information System (INIS)

    Kvaratskhelia, Mamuka; Clark, Patrick K.; Hess, Sonja; Melder, Deborah C.; Federspiel, Mark J.; Hughes, Stephen H.

    2004-01-01

    We used enzymatic digestion and mass spectrometry to identify the sites of glycosylation on the SU component of the Avian Sarcoma/Leukosis virus (ASLV) Envelope Glycoprotein (Subgroup A). The analysis was done with an SU(A)-rIgG fusion protein that binds the cognate receptor (Tva) specifically. PNGase F removed all the carbohydrate from the SU(A)-rIgG fusion. PNGase F is specific for N-linked carbohydrates; this shows that all the carbohydrate on SU(A) is N-linked. There are 10 modified aspargines in SU(A) (N17, N59, N80, N97, N117, N196, N230, N246, N254, and N330). All conform to the consensus site for N-linked glycosylation NXS/T. There is one potential glycosylation site (N236) that is not modified. Removing most of the carbohydrate from the mature SU(A)-rIgG by PNGase F treatment greatly reduces the ability of the protein to bind Tva, suggesting that carbohydrate may play a direct role in receptor binding

  8. Evaluation of building envelopes from the viewpoint of capability of controlling thermal environment; Onnetsu kankyo chosei noryoku ni yoru kenchiku gaihi no hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K; Ono, S [Taisei Corp., Tokyo (Japan); Shukuya, M [Musashi Institute of Technology, Tokyo (Japan)

    1996-10-27

    The ability that architectural space improves the thermal environment in comparison with outdoor environment is called the `capability of controlling thermal environment.` As the value becomes higher, the indoor thermal environment is more improved. In this paper, the controlling capability of six building envelopes with different window systems was compared. The heat transfer in the wall and window system is approximated using a lumped mass model of heat capacity to obtain a heat balance equation and combined with the heat balance equation in indoor air for backward difference. The wall surface temperature and indoor air temperature in a calculation model are then calculated. A radiation absorption coefficient is used for mutual radiation on each wall. In the model, the adjoining room or first- and second-floor rooms were made the same in conditions as the model on the assumption that the one-side lighted office in an RC reference floor is in the non-illumination and non-airconditioning state. In summer, the controlling capability remarkably varies depending on the window system. For the window facing the south, the annual capability is more advanced than in other directions and the indoor thermal environment is improved on the average. 7 refs., 12 figs., 1 tab.

  9. Methodology for estimating realistic responses of buildings and components under earthquake motion and its application

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Abe, Kiyoharu; Kohno, Kunihiko; Nakamura, Hidetaka; Itoh, Mamoru.

    1996-11-01

    Failure probabilities of buildings and components under earthquake motion are estimated as conditional probabilities that their realistic responses exceed their capacities. Two methods for estimating their failure probabilities have already been developed. One is a detailed method developed in the Seismic Safety margins Research Program of Lawrence Livermore National Laboratory in U.S.A., which is called 'SSMRP method'. The other is a simplified method proposed by Kennedy et al., which is called 'Zion method'. The Zion method is sometimes called 'response factor method'. The authors adopted the response factor method. In order to enhance the estimation accuracy of failure probabilities of buildings and components, however, a new methodology for improving the response factor method was proposed. Based on the improved method, response factors of buildings and components designed to seismic design standard in Japan were estimated, and their realistic responses were also calculated. By using their realistic responses and capacities, the failure probabilities of a reactor building and relays were estimated. In order to identify the difference between new method, SSMRP method and original response factor method, the failure probabilities were compared estimated by these three methods. A similar method of SSMRP was used instead of the original SSMRP for saving time and labor. The viewpoints for selecting the methods to estimate failure probabilities of buildings and components were also proposed. (author). 55 refs

  10. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material

    International Nuclear Information System (INIS)

    Jouhara, H.; Milko, J.; Danielewicz, J.; Sayegh, M.A.; Szulgowska-Zgrzywa, M.; Ramos, J.B.; Lester, S.P.

    2016-01-01

    A novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name “heat mat” and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system. - Highlights: • A new flat heat pipe PV/T system that can be used as building materials is reported. • The new solar collector enhanced the performance of the PV by about 15%. • The new solar collector is capable of absorbing heat from ambient efficiently. • The new system is efficient from the solar/thermal conversion point of view.

  11. Implementation of envelope detection based Wake-Up Receiver for IEEE 802.15.4 WPAN from off-the-shelf components

    Science.gov (United States)

    Arndt, Josua; Krystofiak, Lukas; Bonehi, Vahid; Wunderlich, Ralf; Heinen, Stefan

    2017-09-01

    Power consumption in wireless networks is crucial. In most scenarios the transmission time is short compared to the idle listening time for data transmission, the most power is consumed by the receiver. In low latency systems there is a need for low power wake-up receivers (WuRx) that reduce the power consumption when the node is idle, but keep it responsive. This work presents a WuRx designed out of commercial components to investigate the needs of a WuRx when it is embedded in a Wireless Personal Area Network (WPAN) system in a real environment setup including WLAN and LTE communication and considering interferer rejection. The calculation necessary for the attenuation of those interferers is explained in detail. Furthermore, a system design is presented that fulfills the requirements for this environment and is build from off-the-shelf components.

  12. Prototypic implementations of the building block for component based open Hypermedia systems (BB/CB-OHSs)

    DEFF Research Database (Denmark)

    Mohamed, Omer I. Eldai

    2005-01-01

    In this paper we describe the prototypic implementations of the BuildingBlock (BB/CB-OHSs) that proposed to address some of the Component-based Open Hypermedia Systems (CB-OHSs) issues, including distribution and interoperability [4, 11, 12]. Four service implementations were described below. The...

  13. Identification of the main thermal characteristics of building components using MATLAB

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Andersen, Klaus Kaae

    2008-01-01

    This paper presents the application of the IDENT Graphical User Interface of MATLAB to estimate the thermal properties of building components from outdoor dynamic testing, imposing appropriate physical constraints and assuming linear and time invariant parametric models. The theory is briefly...

  14. A simple component-connection method for building binary decision diagrams encoding a fault tree

    International Nuclear Information System (INIS)

    Way, Y.-S.; Hsia, D.-Y.

    2000-01-01

    A simple new method for building binary decision diagrams (BDDs) encoding a fault tree (FT) is provided in this study. We first decompose the FT into FT-components. Each of them is a single descendant (SD) gate-sequence. Following the node-connection rule, the BDD-component encoding an SD FT-component can each be found to be an SD node-sequence. By successively connecting the BDD-components one by one, the BDD for the entire FT is thus obtained. During the node-connection and component-connection, reduction rules might need to be applied. An example FT is used throughout the article to explain the procedure step by step. Our method proposed is a hybrid one for FT analysis. Some algorithms or techniques used in the conventional FT analysis or the newer BDD approach may be applied to our case; our ideas mentioned in the article might be referred by the two methods

  15. Layout Optimization Model for the Production Planning of Precast Concrete Building Components

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2018-05-01

    Full Text Available Precast concrete comprises the basic components of modular buildings. The efficiency of precast concrete building component production directly impacts the construction time and cost. In the processes of precast component production, mold setting has a significant influence on the production efficiency and cost, as well as reducing the resource consumption. However, the development of mold setting plans is left to the experience of production staff, with outcomes dependent on the quality of human skill and experience available. This can result in sub-optimal production efficiencies and resource wastage. Accordingly, in order to improve the efficiency of precast component production, this paper proposes an optimization model able to maximize the average utilization rate of pallets used during the molding process. The constraints considered were the order demand, the size of the pallet, layout methods, and the positional relationship of components. A heuristic algorithm was used to identify optimization solutions provided by the model. Through empirical analysis, and as exemplified in the case study, this research is significant in offering a prefabrication production planning model which improves pallet utilization rates, shortens component production time, reduces production costs, and improves the resource utilization. The results clearly demonstrate that the proposed method can facilitate the precast production plan providing strong practical implications for production planners.

  16. Advanced Hygrothermal Performance of Building Component at Reconstruction of S. Radonezhskiy Temple in Volgograd

    Directory of Open Access Journals (Sweden)

    Korniyenko Sergey

    2016-01-01

    Full Text Available The paper presents new thermal design of external wall S. Radonezhskiy temple in Volgograd is developed according to author’s concept. The three-layer brick wall, including a thermal insulation layer from concrete with polystyrene aggregates, is considered. Calculation of interstitial condensation in building component is carried out according to simplified calculation method developed by the author and harmonized to ISO 13788. Analysis of calculation results shows that condensation occurs at one interface during some months but there is no accumulation over the year as all the condensate is predicted to evaporate again. Thus, there is no systematic moisture accumulation at the building component within a year. The risk of run-off from non-absorbent materials will be very low. Analysis of the evaporation rates at the interface shows that duration of drying wetted layer in external wall during initial stage does not exceed admissible values.

  17. Building of nested components by a double-nozzle droplet deposition process

    Science.gov (United States)

    Li, SuLi; Wei, ZhengYing; Du, Jun; Zhao, Guangxi; Wang, Xin; Lu, BingHeng

    2016-07-01

    According to the nested components jointed with multiple parts,a double-nozzle droplet deposition process was put forward in this paper, and the experimental system was developed. Through the research on the properties of support materials and the process of double-nozzle droplet deposition, the linkage control of the metal droplet deposition and the support material extrusion was realized, and a nested component with complex construction was fabricated directly. Compared with the traditional forming processes, this double-nozzle deposition process has the advantages of short cycle, low cost and so on. It can provide an approach way to build the nested parts.

  18. Study To Build Method For Analyzing Some Component Of Airborne Which Cause Respiratory Disease

    International Nuclear Information System (INIS)

    Vo Thi Anh; Nguyen Thuy Binh; Vuong Thu Bac; Ha Lan Anh; Nguyen Hong Thinh; Duong Van Thang; Nguyen Mai Anh; Vo Tuong Hanh

    2013-01-01

    Aerosol sampler is located at the top of the three floors building of INST. The amount of PM particle and components such as black carbon; chemical elements; violated organic compounds and microorganisms are analyzed by appropriate methods. Using the method of regression and analysis of variance ANOVA to find out correlation between there pollution components and patients treated at the Department of Respiratory in Hanoi E-Hospital. It shown that microorganisms, benzene, toluene, element sulfur and element silica have effects on monthly number of patients treated respiratory diseases at the E-Hospital. (author)

  19. Verification of the local structural response of building structures in the anchorage areas of heavy components

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Tropp, R.

    1993-01-01

    In both nuclear and non-nuclear areas of power plants, sections of structures, parts of systems and components are attached to walls and floors by means of anchor plates with bolts, anchor sleeves and bolts and through bolts arranged either in groups or individually. In order to simplify the determination of the transfered vibrations induced by external events (e.g. earthquake, aircraft crash), it is normally assumed that the nodal point between component and concrete possesses rigid body characteristics and the building structure (walls, floors) is also inflexible in the anchorage area. In the course of the parametric studies performed, the nonlinear effects on the anchorage area of a component (in this case an anchor plate and concrete slab) were calculated and the effect of these on the actual vibration behavior and the local structural responses of the building structure at the place of installation of heavy components were investigated. The investigations performed reveal that by taking into account the local behaviour in the anchoring point, it is possible to reduce the dynamic response considerably. More detailed examination of the influence of additional parameters (especially of the geometry of the anchor plates and anchor bolts and their material characteristics) will require further investigations aimed at establishing the characteristics of typical anchor plates. (orig.)

  20. Application of building envelope energy-saving design in public architecture%建筑围护结构节能设计在公共建筑中的应用

    Institute of Scientific and Technical Information of China (English)

    杨子江

    2012-01-01

    以孝感市公共建筑——天工楼为例,根据建筑功能要求和当地气候特点,在建筑单体设计中,合理地确定建筑的朝向、平面形状、外观体型,选用节能建筑材料对建筑围护结构的墙体、屋面、窗户进行节能设计的实践应用,使围护结构的热工参数达到了《公共建筑节能设计标准》(GB50189-2005)的要求,改善了建筑室内热环境,实现了公共建筑减少建筑总能耗50%的目标.%According to the construction of functional requirements and characteristics of local climate, taking Tiangong building of Xiaogan public building as an example, we reasonably determined the orientation, plane shape and appearance physique of the building, and selected the energy - saving building materials to the building envelope wall, roof and windows. The results show that the thermal parameter of enclosure structure meets the requirement of Design Standard for Energy Efficiency of Public (GB50189 -2005), the indoor thermal environment of building is improved and the goal of reducing the total energy consumption 50% of the building is achieved.

  1. Environmental zoning for service life prediction of building components in Malaysia

    International Nuclear Information System (INIS)

    Fathoni U; Rohayu C O; Zakaria C M

    2013-01-01

    Interactions between building materials and environment are very complex. More often than not, deterioration of building component is due to environmental loads with the result of reducing its durability. The environmental loads are less overlooked or underestimated in early design phase. Objective of this study is to distinguish the difference of environmental load for different area in Malaysia. The environmental data consist of climate and pollution data which extracted from the Malaysia Meteorology Department's data bank. From this study, six different environmental zones in Malaysia are distinguished. There are different characteristic of environmental parameters found where some of them dominant to others. This information can assist the engineer to justify the use of different technology, material or construction method in construction industry.

  2. The effect of vertical earthquake component on the uplift of the nuclear reactor building

    International Nuclear Information System (INIS)

    Kobayashi, Toshio

    1986-01-01

    During a strong earthquake, the base mat of a nuclear reactor building may be lifted partially by the response overturning moment. And it causes geometrical nonlinear interaction between the base mat and rock foundation beneath it. In order to avoid this uplift phenomena, the base mat and/or plan of the building is enlarged in some cases. These special design need more cost and/or time in construction. In the evaluation of the uplift phenomena, a parameter ''η'' named ''contact ratio'' is used defined as the ratio of compression stress zone area of base mat for total area of base mat. Usually this contact ratio is calculated under the combination of the maximum overturning moment obtained by the linear earthquake response analysis and the normal force by the gravity considering the effect of the vertical earthquake component. In this report, the effect of vertical earthquake component for the uplift phenomena is studied and it concludes that the vertical earthquake component gives little influence on the contact ratio. In order to obtain more reasonable contact retio, the nonlinear rocking analysis subjected to horizontal and vertical earthquake motions simultaneously is proposed in this report. As the second best method, the combination of the maximum overturning moment obtained by linear analysis and the normal force by only the gravity without the vertical earthquake effect is proposed. (author)

  3. Building Envelope Thermal Performance Assessment Using Visual Programming and BIM, based on ETTV requirement of Green Mark and GreenRE

    OpenAIRE

    Taki Eddine Seghier; Lim Yaik Wah; Mohd Hamdan Ahmad; Williams Opeyemi Samuel

    2017-01-01

    Accomplishment of green building design requirements and the achievement of the targeted credit points under a specific green rating system are known to be a task that is very challenging. Building Information Modeling (BIM) design process and tools have already made considerable advancements in green building design and performance analysis. However, Green building design process is still lack of tools and workflows that can provide real-time feedback of building sustainability and rating du...

  4. AM Envelope. The potential of Additive Manufacturing for facade constructions

    Directory of Open Access Journals (Sweden)

    Holger Strauss

    2017-11-01

    and enhanced performance. Advancements can for example be achieved in the semi-finished goods: more effective glueing of window frames can be supported by Snap-On fittings. Solving the most critical part of a free-form structure and allowing for a smart combination with the approved standards has a great potential, as well. Next to those product oriented approaches toward future envelopes, this thesis provides the basic knowledge about AM technologies and AM materials. The basic principle of AM opens a fascinating new world of engineering, no matter what applications can be found: to ‘design for function’ rather to ‘design for production’ turns our way of engineering of the last century upside down. A collection of AM applications therefore offers the outlook to our (built future in combination with the acquired knowledge. AM will never replace established production processes but rather complement them where this seems practical. AM is not the proverbial Swiss-army knife that can resolve all of today’s façade issues! But it is a tool that might be able to close another link in the ‘file-to-factory chain’. AM allows us a better, more precise and safer realization of today’s predominantly free designs that are based on the algorithms of the available software. With such extraordinary building projects, the digital production of neuralgic system components will become reality in the near future – today, an AM Envelope is close at hand. Still, ‘printing’ entire buildings lies in the far future; for a long time human skill and craftsmanship will be needed on the construction site combined with high-tech tools to translate the designers’ visions into reality. AM Envelope is one possible result of this!

  5. Verification of the local structural response of building structures in the anchorage areas of heavy components

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Tropp, R.

    1989-01-01

    In conventional dynamic structural analyses for determining dynamic system response for various locations at which components are installed inside the structures it is common practice (in order to simplify analytical effort) to assume that the anchorage (anchor plate, anchor bolts or throughbolts, concrete and reinforcement in the area of bound) has rigid body characteristics and that the building structure itself does not display any local response of its own. The influence of the stiffness of the anchor plate as well anchor bolts and its stress level on the dynamic response is also neglected. For a large number of anchoring systems, especially for all those components and systems having only a small mass, this assumption is certainly appropriate. At some locations, particularly at points where heavy components are anchored or when loading input has been increased, this can lead to local loading of the anchor system as well as of the building structure well into the nonlinear range. Often, verification of capability to accommodate these loads is not possible without changing the wall thicknesses or increasing the percentage of reinforcement. Since the presence of linear or nonlinear effects can be expected to result in energy dissipation (increase in damping capacity and also a change in the stiffness of the coupled system) it must be assumed that the dynamic response between the theoretical coupling point A and the real connection point B of the component on the anchor plate can be considerably altered. Some changes of the dynamic response in the connection point B have to be expected generally even in cases of linear-elastic loading of the anchorage. Using typical anchoring systems as an example, the influence of consideration of nonlinear effects in the anchorage area of a typical anchor plate on the dynamic response as well as the conservatism of conventional analytical approaches are investigated

  6. Experiences when employing different alternatives for envelope upgrading

    Directory of Open Access Journals (Sweden)

    Peru Elguezabal Esnarrizaga

    2015-06-01

    Full Text Available The challenges of achieving the 2020 goals in terms of energy savings and improving efficiency are guiding numerous research initiatives looking for more insulated envelopes, dealing with thermal performance of insulation materials and envelope systems. Nevertheless, the envelope integrates within the building and this improvement on the insulation performance has to be properly adopted, taking into account the interrelation of main elements composing the overall system (facade, frame, slabs, openings, partitions etc., as well as side effects originated not only for new erected buildings, but specifically in renovation and retrofitting works. This paper describes real experiences when considering various options for upgrading the facade through the increase of the insulation capacity, starting from external overcladding prefabricated panels and ventilated facades, advancing to more sustainable low carbon systems and ending with even more highly insulated solutions employing aerogels. Lessons from these cases, where energy and hygrothermal assessments have being carried out, demonstrate the influence of the design and construction phases and the relevance of disregarded effects such as minor thermal bridges, uncontrolled craftsmanship on site, and moisture transfer for the different technologies considered. Finally, possible alternatives are provided to overcome some of the detected difficulties, such as combination with non-metallic structural components and building membranes, and being prepared for future challenges and new developments when these isolative elements are combined with other technologies, as for example, renewable energy harvesting devices.  

  7. Energy Optimized Envelope for Cold Climate Indoor Agricultural Growing Center

    Directory of Open Access Journals (Sweden)

    Caroline Hachem-Vermette

    2017-07-01

    Full Text Available This paper presents a study of the development of building envelope design for improved energy performance of a controlled indoor agricultural growing center in a cold climate zone (Canada, 54° N. A parametric study is applied to analyze the effects of envelope parameters on the building energy loads for heating, cooling and lighting, required for maintaining growing requirement as obtained in the literature. A base case building of rectangular layout, incorporating conventionally applied insulation and glazing components, is initially analyzed, employing the EnergyPlus simulation program. Insulation and glazing parameters are then modified to minimize energy loads under assumed minimal lighting requirement. This enhanced design forms a base case for analyzing effects of additional design parameters—solar radiation control, air infiltration rate, sky-lighting and the addition of phase change materials—to obtain an enhanced design that minimizes energy loads. A second stage of the investigation applies a high lighting level to the enhanced design and modifies the design parameters to improve performance. A final part of the study is an investigation of the mechanical systems and renewable energy generation. Through the enhancement of building envelope components and day-lighting design, combined heating and cooling load of the low level lighting configuration is reduced by 65% and lighting load by 10%, relative to the base case design. Employing building integrated PV (BIPV system, this optimized model can achieve energy positive status. Solid Oxide Fuel Cells (SOFC, are discussed, as potential means to offset increased energy consumption associated with the high-level lighting model.

  8. Enveloping Aerodynamic Decelerator

    Science.gov (United States)

    Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)

    2018-01-01

    An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.

  9. Capacity building in water demand management as a key component for attaining millennium development goals

    Science.gov (United States)

    Gumbo, Bekithemba; Forster, Laura; Arntzen, Jaap

    Successful water demand management (WDM) implementation as a component of integrated water resource management (IWRM) can play a significant role in the alleviation of poverty through more efficient use of available water resources. The urban population in Southern African cities is characterised by so-called ‘water poor’ communities who typically expend a high percentage of their household income on poor quality water. Usually they have no access to an affordable alternative source. Although WDM as a component of IWRM is not a panacea for poverty, it can help alleviate poverty by facilitating water services management by municipal water supply agencies (MWSAs) in the region. WDM is a key strategy for achieving the millennium development goals (MDGs) and, as such, should be given due attention in the preparation of national IWRM and water efficiency plans. Various studies in the Southern African region have indicated that capacity building is necessary for nations to develop IWRM and water-use efficiency plans to meet the targets set out in the MDGs. WDM education and training of water professionals and end-users is particularly important in developing countries, which are resource and information-access poor. In response to these findings, The World Conservation Union (IUCN) and its consulting partners, the Training and Instructional Design Academy of South Africa (TIDASA), and Centre for Applied Research (CAR) designed, developed and presented a pilot WDM Guideline Training Module for MWSAs as part of Phase II of IUCN’s Southern Africa regional WDM project. Pilot training was conducted in July 2004 in Lusaka, Zambia for a group of 36 participants involved in municipal water supply from nine Southern African countries. This paper looks at the links between building the capacity of professionals, operational staff and other role-players in the municipal water supply chain to implement WDM as part of broader IWRM strategies, and the subsequent potential for

  10. MHTGR thermal performance envelopes: Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.B.

    1992-05-01

    This document discusses thermal performance envelopes which are used to specify steady-state design requirements for the systems of the Modular High Temperature Gas-Cooled Reactor to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point accounting for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion

  11. Flood vulnerability assessment of residential buildings by explicit damage process modelling

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2015-01-01

    The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water...

  12. Fusion of LIDAR Data and Multispectral Imagery for Effective Building Detection Based on Graph and Connected Component Analysis

    Science.gov (United States)

    Gilani, S. A. N.; Awrangjeb, M.; Lu, G.

    2015-03-01

    Building detection in complex scenes is a non-trivial exercise due to building shape variability, irregular terrain, shadows, and occlusion by highly dense vegetation. In this research, we present a graph based algorithm, which combines multispectral imagery and airborne LiDAR information to completely delineate the building boundaries in urban and densely vegetated area. In the first phase, LiDAR data is divided into two groups: ground and non-ground data, using ground height from a bare-earth DEM. A mask, known as the primary building mask, is generated from the non-ground LiDAR points where the black region represents the elevated area (buildings and trees), while the white region describes the ground (earth). The second phase begins with the process of Connected Component Analysis (CCA) where the number of objects present in the test scene are identified followed by initial boundary detection and labelling. Additionally, a graph from the connected components is generated, where each black pixel corresponds to a node. An edge of a unit distance is defined between a black pixel and a neighbouring black pixel, if any. An edge does not exist from a black pixel to a neighbouring white pixel, if any. This phenomenon produces a disconnected components graph, where each component represents a prospective building or a dense vegetation (a contiguous block of black pixels from the primary mask). In the third phase, a clustering process clusters the segmented lines, extracted from multispectral imagery, around the graph components, if possible. In the fourth step, NDVI, image entropy, and LiDAR data are utilised to discriminate between vegetation, buildings, and isolated building's occluded parts. Finally, the initially extracted building boundary is extended pixel-wise using NDVI, entropy, and LiDAR data to completely delineate the building and to maximise the boundary reach towards building edges. The proposed technique is evaluated using two Australian data sets

  13. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete. MARCH

  14. Building community partnerships to implement the new Science and Engineering component of the NGSS

    Science.gov (United States)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership

  15. Dry desulfurization product as raw material for building components. Afsvovlingstoerprodukt som raavare fortrinsvis i byggematerialer

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J P; Tram, B

    1988-05-01

    The report describes a number of investigations carried out with the purpose of finding useful applications for a waste product form the flue-gas cleaning process at coal-fired power plants, especially applications in the field of industrial building components. The waste product originates from a cleaning device, where the content of sulphur dioxide is removed from the flue-gas by the so called spray absorption method, developed by the Danish company Niro Atomizer A/S. The product is a finely divided, dry powder, consisting of a mix of calcium sulfite, calcium sulfate, calcium hydroxide, calcium carbonate, calcium chloride and fly ash. Trials were made, using the waste product mainly as a filler in the following products: Brick mortar, flue for ceramic tiles, stopping, filler for plastic paint, filler for plastics, filler for paper and paper-coating, autoclaved light-weight concrete, autoclaved fibre-cement sheets. The investigations has shown some interesting possiblilities for the use of named waste product in light-weight concrete, where good mechanical properties could be obtained, using a raw material mix, consisting mainly of the sulfuric waste product and fly ash. Also used as a filler in fibre-cement sheets, the waste material showed some interesting abilities. The waste product affects the properties of cellulosefibre reinforced sheets with a cementsilica matrix in a way, that leads to increased toughness of these, often rather brittle sheets. The MOR however will decrease slightly. (EG).

  16. Wind-induced single-sided natural ventilation in buildings near a long street canyon: CFD evaluation of street configuration and envelope design

    DEFF Research Database (Denmark)

    Ai, Z.T.; Mak, C.M.

    2018-01-01

    an urban context, this study investigates the wind-induced single-sided natural ventilation in buildings near a long street canyon under a perpendicular wind direction using CFD method. Four aspect ratios (AR) of the street canyon, from 1.0, 2.0, 4.0 to 6.0, are investigated to examine the influence...

  17. Chinese wood frame buildings and the changing dimensions of their structural components in different time periods

    Directory of Open Access Journals (Sweden)

    Nujaba Binte Kabir

    2012-06-01

    Full Text Available The Features of the Chinese wood frame buildings are same in character from dynasty to dynasty. The study concentrates on 9 Chinese wood frame buildings from Tang to Yuan dynasty and tries to relate these buildings with the text described in a building manual book published in Song dynasty Yingzao fashi. The features of some buildings match with the text described in the book some do not. But on the other hand Liang Sicheng, scholar of Chinese architecture in his book claimed that Chinese wood frame architecture has a unique system of characteristics (Liang, 1984. The system of wood frame Chinese architecture did not change but the proportion of the features has changed in different dynasty. The aim of the paper is to compare the features of the buildings those have been studied according to Yingzao fashi with Liang's observation on the change of building style in different periods.

  18. Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course

    Science.gov (United States)

    Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John

    2008-01-01

    A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…

  19. Object-Oriented Database for Managing Building Modeling Components and Metadata: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, N.; Fleming, K.; Brackney, L.

    2011-12-01

    Building simulation enables users to explore and evaluate multiple building designs. When tools for optimization, parametrics, and uncertainty analysis are combined with analysis engines, the sheer number of discrete simulation datasets makes it difficult to keep track of the inputs. The integrity of the input data is critical to designers, engineers, and researchers for code compliance, validation, and building commissioning long after the simulations are finished. This paper discusses an application that stores inputs needed for building energy modeling in a searchable, indexable, flexible, and scalable database to help address the problem of managing simulation input data.

  20. Storage envelopes or sleeves

    International Nuclear Information System (INIS)

    Freshwater, J.R.; Wagman, P.I.

    1980-01-01

    A storage envelope or sleeve particularly for processed X-ray films is described. It consists of front and back panels joined together at a hinge line and connected along the intermediate sides by connecting flaps. An inner pocket is formed from a third flap which is folded to lie against the inner face of the back panel. The panels may have additional score lines parallel to the closed sides of the envelope and the inner pocket so that the envelope and the inner pocket can accommodate bulky contents. The free edge of the pocket is inset from the open side of the envelope, and finger cut-outs may be provided to facilitate access to the contents of the envelope and the pocket. (author)

  1. A Method for Thermal Dimensioning and for Energy Behavior Evaluation of a Building Envelope PCM Layer by Using the Characteristic Days

    Directory of Open Access Journals (Sweden)

    Domenico Mazzeo

    2017-05-01

    Full Text Available Net zero energy buildings (nZEB require the development of innovative technologies such as the use of phase change materials (PCMs in walls for the energy requalification of low inertia buildings. The presence of a PCM layer in the external building wall, due to the effect of storage and release of latent energy phenomena, modifies the energy behavior, both during the summer and winter periods. This paper addresses the problem of the definition of the energetic behavior of a layer subject to phase change with periodic non-sinusoidal boundary conditions, characterizing the external walls of air-conditioned buildings. In such conditions, the layer is the site of the formation of one or more bi-phase interfaces, which originate on the boundary surfaces, or are always present and fluctuate within the layer. It is also possible that the layer does not undergo any phase change. The study has been developed by a finite difference numeric calculation model which explicitly determines the number and the position of the bi-phase interfaces that originate in the layer and the temperature and the heat flux fields. The surface heat fluxes are used to evaluate the PCM layer energetic behavior in terms of energy transferred through the boundary surfaces and of stored energy in sensible and latent form. The proposed method employs the characteristic day that it is periodically repeated for all the days of the considered month. The use of the characteristic days drastically reduces the computational burden of the numerical calculation and it allows to obtain guidance on the behaviour of the PCM throughout the year, in accordance with the variability of external climatic conditions, in order to select the PCM with the most suitable thermophysical properties. The methodology developed is applied to PCM layers with different melting temperatures and subject to climatic conditions of two locations, one with a continental climate and the second one with a

  2. Protective plasma envelope

    International Nuclear Information System (INIS)

    Bocharov, V.N.; Konstantinov, S.G.; Kudryavtsev, A.M.; Myskin, O.K.; Panasyuk, V.M.; Tsel'nik, F.A.

    1984-06-01

    A method of creating an annular plasma envelope used to protect the hot plasma from flows of impurities and gases from the walls of the vacuum chamber is described. The diameter of the envelope is 30 cm, the thickness of the wall is 1.5 cm, the length is 2.5 m, and its density is from 10 13 to 10 14 cm -3 . The envelope attenuates the incident (from outside) flow of helium 10-fold and the low of hydrogen 20-fold

  3. Systems and components for intelligent buildings; Sistemi e componenti per la domotica

    Energy Technology Data Exchange (ETDEWEB)

    Benzi, F. [Pavia Univ., Pavia (Italy). Dipt. di Elettronica

    2001-06-01

    The rapid development of automation and communication techniques involve also the intelligent buildings project. [Italian] Il rapido sviluppo delle tecniche di automazione e telecomunicazione investe anche la progettazione degli edifici intelligenti.

  4. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  5. Safe operating envelope

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, N [Ontario Hydro, Toronto, ON (Canada)

    1997-12-01

    Safe Operating Envelope is described representing: The outer bound of plant conditions within which day-to-day plant operation must be maintained in order to comply with regulatory requirements, associated safety design criteria and corporate nuclear safety goals. Figs.

  6. Safe operating envelope

    International Nuclear Information System (INIS)

    Oliva, N.

    1997-01-01

    Safe Operating Envelope is described representing: The outer bound of plant conditions within which day-to-day plant operation must be maintained in order to comply with regulatory requirements, associated safety design criteria and corporate nuclear safety goals. Figs

  7. Creating a Lunar EVA Work Envelope

    Science.gov (United States)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  8. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Sleiman, Mohamad [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Berdahl, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gilbert, Haley E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quelen, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Marlot, Lea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Preble, Chelsea V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Chen, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Montalbano, Amandine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosseler, Olivier [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Akbari, Hashem [Concordia Univ., Montreal (Canada); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  9. Experimental study on modelling and control of lighting components in a test-cell building

    NARCIS (Netherlands)

    Yahiaoui, Azzedine

    2018-01-01

    The perfect control of shading devices, particularly venetian blinds can significantly improve the rational use of daylight in buildings and provide enhanced visual comfort for occupants while saving the electricity that would be used for artificial lighting. This study proposes a control strategy

  10. The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter

    KAUST Repository

    Benedet, Mattia

    2016-08-16

    The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in gamma-Proteobacteria. LptBFG constitute the IMABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable Delta lptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptF(SupC)). In complementation tests, lptF(SupC) mutants suppress lethality of both Delta lptC and lptC conditional expressionmutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine.

  11. The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter

    KAUST Repository

    Benedet, Mattia; Falchi, Federica A.; Puccio, Simone; Di Benedetto, Cristiano; Peano, Clelia; Polissi, Alessandra; Deho, Gianni

    2016-01-01

    The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in gamma-Proteobacteria. LptBFG constitute the IMABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable Delta lptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptF(SupC)). In complementation tests, lptF(SupC) mutants suppress lethality of both Delta lptC and lptC conditional expressionmutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine.

  12. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Directory of Open Access Journals (Sweden)

    Korniyenko Sergey

    2018-01-01

    Full Text Available Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects. Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  13. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Science.gov (United States)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  14. 24 CFR 242.47 - Insured advances for building components stored off-site.

    Science.gov (United States)

    2010-04-01

    ... HOUSING ACT AND OTHER AUTHORITIES MORTGAGE INSURANCE FOR HOSPITALS Construction § 242.47 Insured advances... only for components stored off-site in a quantity required to permit uninterrupted installation at the...

  15. Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2012-01-01

    Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.

  16. Building integrated photovoltaics

    NARCIS (Netherlands)

    Ritzen, M.J.; Vroon, Z.A.E.P.; Geurts, C.P.W.; Reinders, Angèle; Verlinden, Pierre; Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Photovoltaic (PV) installations can be realized in different situations and on different scales, such as at a building level. PV installations at the building level can either be added to the building envelope, which is called building added PV (BAPV), or they can be integrated into the building

  17. Building Block Approach' for Structural Analysis of Thermoplastic Composite Components for Automotive Applications

    Science.gov (United States)

    Carello, M.; Amirth, N.; Airale, A. G.; Monti, M.; Romeo, A.

    2017-12-01

    Advanced thermoplastic prepreg composite materials stand out with regard to their ability to allow complex designs with high specific strength and stiffness. This makes them an excellent choice for lightweight automotive components to reduce mass and increase fuel efficiency, while maintaining the functionality of traditional thermosetting prepreg (and mechanical characteristics) and with a production cycle time and recyclability suited to mass production manufacturing. Currently, the aerospace and automotive sectors struggle to carry out accurate Finite Elements (FE) component analyses and in some cases are unable to validate the obtained results. In this study, structural Finite Elements Analysis (FEA) has been done on a thermoplastic fiber reinforced component designed and manufactured through an integrated injection molding process, which consists in thermoforming the prepreg laminate and overmolding the other parts. This process is usually referred to as hybrid molding, and has the provision to reinforce the zones subjected to additional stresses with thermoformed themoplastic prepreg as required and overmolded with a shortfiber thermoplastic resin in single process. This paper aims to establish an accurate predictive model on a rational basis and an innovative methodology for the structural analysis of thermoplastic composite components by comparison with the experimental tests results.

  18. STUDSVIK's methods for treatment/free release of components and buildings structures from decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Krause, G.

    2005-01-01

    This paper will describe methods for treatment of retired, large, contaminated components from NPPs. The treatment includes transports, decontamination, segmentation, melting as well recycling of the metal in Sweden. Decontamination and free release of building strictures is also one of services which Studsvik provides for the nuclear industry. For this services different techniques are used for 'shaving' and subsequent measurements of the concrete surfaces. Since the mid of 1980-ies different procedures for decontamination and segmentation as well as pre- and post treatment have been developed and successively applied at Studsvik's melting facility in Sweden. The experience on this sector are permanent used for improvement and development of methods for treatment of both domestic and foreign large components like: heat exchangers, reactors vessel heads, turbine parts, steam generators and boilers. The high metal recycling rate is due to optimized production and results in extremely low percentage of secondary waste. The driving force is to maximize recycling rate of metal to the steel industry and to minimize the volume of the secondary waste and by that owner's costs for final storage in the national repositories. For decontamination of building structures several options are available using shaving or hammering tools to remove the contaminated concrete layers. This treatment is carried out in the closed circuit where removed dust is directly evacuated into the waste collection drums. During and after the decontamination process the treated and surrounding areas are free from dust and risk of cross contamination has been eliminated. The equipment capacity is up to 30 m2/h with simultaneous concrete removal of 3 mm at very high accuracy. It is not necessary of in-housing (tent, containment) of working area. The presentation will focus on methods, equipment used and experience in treatment of components and methods for decontamination of building structures

  19. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  20. Folded Plate Structures as Building Envelopes

    DEFF Research Database (Denmark)

    Falk, Andreas; Buelow, Peter von; Kirkegaard, Poul Henning

    2012-01-01

    This paper treats applications of cross-laminated timber (CLT) in structural systems for folded façade solutions. Previous work on CLT-based systems for folded roofs has shown a widening range of structural possibilities to develop timber-based shells. Geometric and material properties play...... CLT-based systems, which are studied and analysed by using a combination of digital tools for structural and environmental design and analysis. The results show gainful, rational properties of folded systems and beneficial effects from an integration of architectural and environmental performance...... criteria in the design of CLT-based façades....

  1. Discrete optimization in architecture building envelope

    CERN Document Server

    Zawidzki, Machi

    2017-01-01

    This book explores the extremely modular systems that meet two criteria: they allow the creation of structurally sound free-form structures, and they are comprised of as few types of modules as possible. Divided into two parts, it presents Pipe-Z (PZ) and Truss-Z (TZ) systems. PZ is more fundamental and forms spatial mathematical knots by assembling one type of unit (PZM). The shape of PZ is controlled by relative twists of a sequence of congruent PZMs. TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. TZ structures are composed of four variations of a single basic unit subjected to affine transformations (mirror reflection, rotation and combination of both). .

  2. Component build-up method for engineering analysis of missiles at low-to-high angles of attack

    Science.gov (United States)

    Hemsch, Michael J.

    1992-01-01

    Methods are presented for estimating the component build-up terms, with the exception of zero-lift drag, for missile airframes in steady flow and at arbitrary angles of attack and bank. The underlying and unifying bases of all these efforts are slender-body theory and its nonlinear extensions through the equivalent angle-of-attack concept. Emphasis is placed on the forces and moments which act on each of the fins, so that control cross-coupling effects as well as longitudinal and lateral-directional effects can be determined.

  3. Assessment and management of ageing of major nuclear power plant components important to safety: Concrete containment buildings

    International Nuclear Information System (INIS)

    1998-06-01

    The report presents the results of the Co-ordinated Research Programme (CRP) on the Management of Ageing of Concrete Containment Buildings (CCBs) addressing current practices and techniques for assessing fitness-for-service and the inspection, monitoring and mitigation of ageing degradation of selected components of CANDU reactor, BWR reactor, PWR reactor and WWER plants. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age-related licensing issues

  4. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  5. Common envelope evolution

    NARCIS (Netherlands)

    Taam, Ronald E.; Ricker, Paul M.

    2010-01-01

    The common envelope phase of binary star evolution plays a central role in many evolutionary pathways leading to the formation of compact objects in short period systems. Using three dimensional hydrodynamical computations, we review the major features of this evolutionary phase, focusing on the

  6. Construction components and energy efficiency in buildings; Componentes de construccion y eficiencia energetica en edificios

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, N.K.; Bhandari, M.S.; Kummar, P.S. [Centro para el Estudio de Energia, Instituto Hindu de Tecnologia, Hauz Khas, Nueva Delhi (Indonesia)

    2005-01-15

    An energy efficiency analysis to a set of buildings was made in India to quantify the effects of the individual design concepts with respect to the energy system in general. The saving potential of energy of different concepts as well as the orientation, windows, air cavities, insulation, etc. was quantified for the different climatic conditions that prevail in most of the Central India regions. It is demonstrated that the specific requirement of heat energy can be reduced to 300 kWh/m{sup 2} a (U{sub edifice} = 2.13 W/m{sup 2} K) for a building of normal construction up to 143 kWh/m{sup 2} a (U{sub edifice} = 0.95 W/m{sup 2} K) when using ceiling insulation and walls and by means of the use of double glass windows. [Spanish] Se realizo el analisis de eficiencia de energia a un conjunto de edificios en la India, para cuantificar los efectos de los conceptos individuales de diseno respecto al sistema de energia en general. El potencial de ahorro de energia de distintos conceptos, como la orientacion, ventanas, cavidades de aire, aislamiento, etc. fue cuantificado para las distintas condiciones climaticas que prevalecen en la mayoria de las regiones de India central. Se demuestra que el requerimiento especifico de energia calorifica puede ser reducida de 300 kWh/m{sup 2} a (U{sub edificio} = 2.13 W/m{sup 2} K) para un edificio de construccion normal hasta 143 kWh/m{sup 2} a (U{sub edificio} = 0.95 W/m{sup 2} K) al usar un aislante en el techo, paredes y mediante el empleo de ventanas de doble vidrio.

  7. Vacuum Insulation Panels - Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A)

    Energy Technology Data Exchange (ETDEWEB)

    Simmler, H.; Brunner, S. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [Bavarian Centre for Applied Energy Research (ZAE Bayern), Garching (Germany); Kumaran, K.; Mukhopadhyaya, P. [National Research Council, Institute for Research in Construction (NRC-IRC), Ottawa (Canada); Quenard, D.; Sallee, H. [Scientific and Technical Centre for Construction (CSTB), Marne la Vallee (France); Noller, K.; Kuecuekpinar-Niarchos, E.; Stramm, C. [Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising (Germany); Tenpierik, M.; Cauberg, H. [Technical University of Delft, Delft (Netherlands); Erb, M. [Dr. Eicher und Pauli AG (Switzerland)

    2005-09-15

    This comprehensive paper takes a look at the properties of vacuum insulation panels (VIP) and was presented as a contribution to the IEA's ECBCS (Energy Conservation in Buildings and Community Systems) Annex 39. The various institutions in Switzerland, Germany, Canada, France, Sweden and the Netherlands participating in the task and their activities are listed. The paper describes the concept of vacuum insulation for buildings and examines the physics involved and core materials that can be used. The physical, mechanical and thermal properties of the core materials are examined and the requirements placed on the envelope of the panels are looked at. Tests made on materials as well as on the complete vacuum insulation panels are described in detail. The results obtained are presented and reviewed. Service-life and quality assurance aspects are also discussed. A comprehensive appendix completes the report.

  8. Using synthetic data to evaluate multiple regression and principal component analyses for statistical modeling of daily building energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, T.A. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States)); Claridge, D.E. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States))

    1994-01-01

    Multiple regression modeling of monitored building energy use data is often faulted as a reliable means of predicting energy use on the grounds that multicollinearity between the regressor variables can lead both to improper interpretation of the relative importance of the various physical regressor parameters and to a model with unstable regressor coefficients. Principal component analysis (PCA) has the potential to overcome such drawbacks. While a few case studies have already attempted to apply this technique to building energy data, the objectives of this study were to make a broader evaluation of PCA and multiple regression analysis (MRA) and to establish guidelines under which one approach is preferable to the other. Four geographic locations in the US with different climatic conditions were selected and synthetic data sequence representative of daily energy use in large institutional buildings were generated in each location using a linear model with outdoor temperature, outdoor specific humidity and solar radiation as the three regression variables. MRA and PCA approaches were then applied to these data sets and their relative performances were compared. Conditions under which PCA seems to perform better than MRA were identified and preliminary recommendations on the use of either modeling approach formulated. (orig.)

  9. An information system for the building industries: A communication approach based on industrial components

    Directory of Open Access Journals (Sweden)

    A F Cutting-Decelle

    2006-01-01

    Full Text Available This paper presents the SYDOX/MATCOMP/Xi project, funded by the French Ministry of Industry. The goal of the project was to provide the construction professionals with an on-line aid for component specification and selection at different levels of the construction life cycle. This two years project started in 1997 and involved several partners. This paper describes the main features of the information system: databases, query and communication systems. SYDOX(SYstème de DOnnées compleXes is aimed at defining and demonstrating a prototype to access information about MATerials and COMPonents used in construction, implemented on a WWW server. Though the objective is general, the work was focused on a restricted sub-section of the construction domain. We describe the domain and the scope of the project, the starting point and the lessons learnt from the development of the prototype. We also propose some important ideas on which this research is based.

  10. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  11. Integrating Environmentally Responsive Elements in Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie with techno......Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie...

  12. Thermal Activated Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    The research studies the making of a responsive architectural envelope based on bi-materials. The bi-materials are organized according to a method that combines different isotropic metals and plastic into an active composite structure that reacts to temperature variations. Through an evolutionary......, environmental dynamics and occupancy dynamics. Lastly, a physical prototype is created, which illustrates the physical expression of the bi-materials and the problems related to manufacturing of these composite structures.......The research studies the making of a responsive architectural envelope based on bi-materials. The bi-materials are organized according to a method that combines different isotropic metals and plastic into an active composite structure that reacts to temperature variations. Through an evolutionary...

  13. Spatial dispersion of index components required for building invisibility cloak medium from photonic crystals

    Science.gov (United States)

    Jamilan, Saeid; Semouchkin, George; Gandji, Navid P.; Semouchkina, Elena

    2018-04-01

    The opportunities to use dielectric photonic crystals (PhCs) as the media of cylindrical invisibility cloaks, designed using transformation optics (TO) concepts, are investigated. It is shown that TO-based prescriptions for radial index dispersion, responsible for turning waves around hidden objects, can be dropped if the PhC media support self-collimation of waves in bent crystals. Otherwise, to provide prescribed anisotropy of index dispersion, it is possible to employ PhCs with rectangular lattices. It is found, however, that at acceptable cloak thicknesses, modifications of crystal parameters do not allow for achieving the prescribed level of index anisotropy. This problem is solved by finding the reduced spatial dispersion law for the radial index component, which is characterized by decreased against TO-prescriptions values near the target and increased values in outer layers of the cloak. The cloak utilizing reduced prescriptions for indices is shown to perform almost as efficiently as a TO-based cloak, in terms of both wave front restoration behind the target and reducing the total scattering cross-width of the target.

  14. CLASSIFICATION OF LIDAR DATA OVER BUILDING ROOFS USING K-MEANS AND PRINCIPAL COMPONENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Renato César dos Santos

    Full Text Available Abstract: The classification is an important step in the extraction of geometric primitives from LiDAR data. Normally, it is applied for the identification of points sampled on geometric primitives of interest. In the literature there are several studies that have explored the use of eigenvalues to classify LiDAR points into different classes or structures, such as corner, edge, and plane. However, in some works the classes are defined considering an ideal geometry, which can be affected by the inadequate sampling and/or by the presence of noise when using real data. To overcome this limitation, in this paper is proposed the use of metrics based on eigenvalues and the k-means method to carry out the classification. So, the concept of principal component analysis is used to obtain the eigenvalues and the derived metrics, while the k-means is applied to cluster the roof points in two classes: edge and non-edge. To evaluate the proposed method four test areas with different levels of complexity were selected. From the qualitative and quantitative analyses, it could be concluded that the proposed classification procedure gave satisfactory results, resulting in completeness and correctness above 92% for the non-edge class, and between 61% to 98% for the edge class.

  15. Experimental and numerical simulation of the behaviour of building components under alternating thermal stresses

    International Nuclear Information System (INIS)

    Stegmeyer, R.

    1985-01-01

    This publication is intended to clear up to what extent the results from laboratory experiments on components thermally stressed on several axes can be transferred. The turbine shaft was used for this purpose and was geometrically simulated on a reduced scale by means of a test body (model). The deviations of shape due to the design, such as shaft shoulders, grooves etc. were simulated by notches and the position of the expected crack was defined in this way. A 1% Cr steel was selected as the material, for which many results of experiments on laboratory samples were available. The turbine shaft steel 28 CrMoNiV 4 9 was used. With a specially designed experimental rig, it was possible to expose the model to a changing temperature stress, as it occurs during starting and shutdown of turbines. Different notch radii made it possible to vary the strains at the bottom of the notches due to temperature gradients. After developing special travel transducers, the strain behaviour of the sample could be determined relative to the temperature. The crack characteristics obtained were compared with the characteristics of single axis experiments at constant temperature. Fractographic examination of fatigue cracks made it possible to determine the growth of cracks per load change from the existing vibration strip (da/dN). The stress intensity factor was derived from a modified theoretical expression and the characteristic designed from it was compared with crack growth measurements on CT samples. Accompanying numerical and empirical processes (according to Neuber) were examined by direct comparison of the measured strains with the calculated or estimated strains. Finally, regulations such as the ASME code and TRD 301 were applied to the model experiments and evaluated. (orig.) [de

  16. Pre-paid envelopes commemorating the 2013 Open Days

    CERN Multimedia

    2013-01-01

    The post office on CERN's Prévessin site is still selling pre-paid envelopes commemorating the 2013 Open Days. Hurry while stocks last!   The special envelopes, which are valid in France for non-priority letters weighing up to 20 grams, are ideal for your Christmas and New Year correspondence. A set of ten envelopes, each featuring a different image, costs € 8.70 or 10 CHF. The post office is located in Building 866 on the Prévessin site and is open Mondays to Thursdays from 9.30 a.m. to 12.30 p.m.

  17. Genetic and Psychosocial Predictors of Aggression: Variable Selection and Model Building With Component-Wise Gradient Boosting

    Directory of Open Access Journals (Sweden)

    Robert Suchting

    2018-05-01

    Full Text Available Rationale: Given datasets with a large or diverse set of predictors of aggression, machine learning (ML provides efficient tools for identifying the most salient variables and building a parsimonious statistical model. ML techniques permit efficient exploration of data, have not been widely used in aggression research, and may have utility for those seeking prediction of aggressive behavior.Objectives: The present study examined predictors of aggression and constructed an optimized model using ML techniques. Predictors were derived from a dataset that included demographic, psychometric and genetic predictors, specifically FK506 binding protein 5 (FKBP5 polymorphisms, which have been shown to alter response to threatening stimuli, but have not been tested as predictors of aggressive behavior in adults.Methods: The data analysis approach utilized component-wise gradient boosting and model reduction via backward elimination to: (a select variables from an initial set of 20 to build a model of trait aggression; and then (b reduce that model to maximize parsimony and generalizability.Results: From a dataset of N = 47 participants, component-wise gradient boosting selected 8 of 20 possible predictors to model Buss-Perry Aggression Questionnaire (BPAQ total score, with R2 = 0.66. This model was simplified using backward elimination, retaining six predictors: smoking status, psychopathy (interpersonal manipulation and callous affect, childhood trauma (physical abuse and neglect, and the FKBP5_13 gene (rs1360780. The six-factor model approximated the initial eight-factor model at 99.4% of R2.Conclusions: Using an inductive data science approach, the gradient boosting model identified predictors consistent with previous experimental work in aggression; specifically psychopathy and trauma exposure. Additionally, allelic variants in FKBP5 were identified for the first time, but the relatively small sample size limits generality of results and calls for

  18. Genetic and Psychosocial Predictors of Aggression: Variable Selection and Model Building With Component-Wise Gradient Boosting.

    Science.gov (United States)

    Suchting, Robert; Gowin, Joshua L; Green, Charles E; Walss-Bass, Consuelo; Lane, Scott D

    2018-01-01

    Rationale : Given datasets with a large or diverse set of predictors of aggression, machine learning (ML) provides efficient tools for identifying the most salient variables and building a parsimonious statistical model. ML techniques permit efficient exploration of data, have not been widely used in aggression research, and may have utility for those seeking prediction of aggressive behavior. Objectives : The present study examined predictors of aggression and constructed an optimized model using ML techniques. Predictors were derived from a dataset that included demographic, psychometric and genetic predictors, specifically FK506 binding protein 5 (FKBP5) polymorphisms, which have been shown to alter response to threatening stimuli, but have not been tested as predictors of aggressive behavior in adults. Methods : The data analysis approach utilized component-wise gradient boosting and model reduction via backward elimination to: (a) select variables from an initial set of 20 to build a model of trait aggression; and then (b) reduce that model to maximize parsimony and generalizability. Results : From a dataset of N = 47 participants, component-wise gradient boosting selected 8 of 20 possible predictors to model Buss-Perry Aggression Questionnaire (BPAQ) total score, with R 2 = 0.66. This model was simplified using backward elimination, retaining six predictors: smoking status, psychopathy (interpersonal manipulation and callous affect), childhood trauma (physical abuse and neglect), and the FKBP5_13 gene (rs1360780). The six-factor model approximated the initial eight-factor model at 99.4% of R 2 . Conclusions : Using an inductive data science approach, the gradient boosting model identified predictors consistent with previous experimental work in aggression; specifically psychopathy and trauma exposure. Additionally, allelic variants in FKBP5 were identified for the first time, but the relatively small sample size limits generality of results and calls for

  19. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  20. Technical support document for proposed 1994 revision of the MEC thermal envelope requirements

    Energy Technology Data Exchange (ETDEWEB)

    Conner, C.C.; Lucas, R.G.

    1994-03-01

    This report documents the development of the proposed revision of the Council of American Building Officials` (CABO) 1994 supplement to the 1993 Model Energy Code (MEC) building thermal envelope requirements for maximum component U{sub 0}-value. The 1994 amendments to the 1993 MEC were established in last year`s code change cycle and did not change the envelope requirements. The research underlying the proposed MEC revision was conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Building Energy Standards program. The goal of this research was to develop revised guidelines based on an objective methodology that determines the most cost-effective (least total cost) combination of energy conservation measures (ECMs) (insulation levels and window types) for residential buildings. This least-cost set of ECMs was used as a basis for proposing revised MEC maximum U{sub 0}-values (thermal transmittances). ECMs include window types (for example, double-pane vinyl) and insulation levels (for example, R-19) for ceilings, walls, and floors.

  1. A Spectral Algorithm for Envelope Reduction of Sparse Matrices

    Science.gov (United States)

    Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.

    1993-01-01

    The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.

  2. Uncertain data envelopment analysis

    CERN Document Server

    Wen, Meilin

    2014-01-01

    This book is intended to present the milestones in the progression of uncertain Data envelopment analysis (DEA). Chapter 1 gives some basic introduction to uncertain theories, including probability theory, credibility theory, uncertainty theory and chance theory. Chapter 2 presents a comprehensive review and discussion of basic DEA models. The stochastic DEA is introduced in Chapter 3, in which the inputs and outputs are assumed to be random variables. To obtain the probability distribution of a random variable, a lot of samples are needed to apply the statistics inference approach. Chapter 4

  3. Inflammatory markers as predictors of depression and anxiety in adolescents: Statistical model building with component-wise gradient boosting.

    Science.gov (United States)

    Walss-Bass, Consuelo; Suchting, Robert; Olvera, Rene L; Williamson, Douglas E

    2018-07-01

    Immune system abnormalities have been repeatedly observed in several psychiatric disorders, including severe depression and anxiety. However, whether specific immune mediators play an early role in the etiopathogenesis of these disorders remains unknown. In a longitudinal design, component-wise gradient boosting was used to build models of depression, assessed by the Mood-Feelings Questionnaire-Child (MFQC), and anxiety, assessed by the Screen for Child Anxiety Related Emotional Disorders (SCARED) in 254 adolescents from a large set of candidate predictors, including sex, race, 39 inflammatory proteins, and the interactions between those proteins and time. Each model was reduced via backward elimination to maximize parsimony and generalizability. Component-wise gradient boosting and model reduction found that female sex, growth- regulated oncogene (GRO), and transforming growth factor alpha (TGF-alpha) predicted depression, while female sex predicted anxiety. Differential onset of puberty as well as a lack of control for menstrual cycle may also have been responsible for differences between males and females in the present study. In addition, investigation of all possible nonlinear relationships between the predictors and the outcomes was beyond the computational capacity and scope of the present research. This study highlights the need for novel statistical modeling to identify reliable biological predictors of aberrant psychological behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Mauritius green building handbook, vol 1: Building envelope

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available of the load- and non-load-bearing walls, including all doors and windows. Walls A wall is a continuous, usually vertical structure that is thin relative to its length and height (Emmitt & Gorse, 2005). Apart from functioning as structural elements... of thermal insulation, the greater the effect of thermal bridging (Emmitt & Gorse, 2005). Areas where thermal bridging typically occurs is through single pane glazing, metal door and window frames, solid masonry sections (window and door heads and sills...

  5. Building envelope design for renewal of air by natural ventilation in moderate climates. Proposition of a designing methodology; Conception des enveloppes de batiments pour le renouvellement d'air par ventilation naturelle en climats temperes. Proposition d'une methodologie de conception

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, Y.

    2003-12-01

    The subject of this research is to produce methods and methodological tools for the architects to support the integration of natural ventilation systems in the building envelope design. Our research is situated to the interface between the architectural practice and the physical research on natural ventilation. We are interested in phenomena that can influence or force the strategy of ventilation. A morphological analysis of naturally ventilated buildings concerning the integration modes of natural ventilation systems is done permitting US to propose a typology and a topology of ventilation systems. We define criteria in relation to the thermal comfort, to the quality of air and the economy of energy to assess air renewal techniques. In complement of the sizing tool, we elaborate a methodology of conception for the integration of passives ventilation systems. Design guidelines permit US to conclude on an effective natural ventilation system which is well adapted to collective habitat. (author)

  6. Building technolgies program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, S.E.

    1995-04-01

    The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effective solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.

  7. Build/Couple/Pair Strategy Combining the Petasis 3-Component Reaction with Ru-Catalyzed Ring-Closing Metathesis and Isomerization

    DEFF Research Database (Denmark)

    Ascic, Erhad; Le Quement, Sebastian Thordal; Ishøy, Mette

    2012-01-01

    A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene...

  8. A longitudinal study of sick building syndrome among pupils in relation to microbial components in dust in schools in China

    International Nuclear Information System (INIS)

    Zhang, Xin; Zhao, Zhuohui; Nordquist, Tobias; Larsson, Lennart; Sebastian, Aleksandra; Norback, Dan

    2011-01-01

    There are few longitudinal studies on sick building syndrome (SBS), which include ocular, nasal, throat, and dermal symptoms, headache, and fatigue. We studied the associations between selected microbial components, fungal DNA, furry pet allergens, and incidence and remission of SBS symptoms in schools in Taiyuan, China. The study was based on a two-year prospective analysis in pupils (N = 1143) in a random sample of schools in China. Settled dust in the classrooms was collected by vacuum cleaning and analyzed for lipopolysaccharide (LPS), muramic acid (MuA), and ergosterol (Erg). Airborne dust was collected in Petri dishes and analyzed for cat and dog allergens and fungal DNA. The relationship between the concentration of allergens and microbial compounds and new onset of SBS was analyzed by multi-level logistic regression. The prevalence of mucosal and general symptoms was 33% and 28%, respectively, at baseline, and increased during follow-up. At baseline, 27% reported at least one symptom that improved when away from school (school-related symptoms). New onset of mucosal symptoms was negatively associated with concentration of MuA, total LPS, and shorter lengths of 3-hydroxy fatty acids from LPS, C14, C16, and C18. Onset of general symptoms was negatively associated with C18 LPS. Onset of school-related symptoms was negatively associated with C16 LPS, but positively associated with total fungal DNA. In general, bacterial compounds (LPS and MuA) seem to protect against the development of mucosal and general symptoms, but fungal exposure measured as fungal DNA could increase the incidence of school-related symptoms. - Highlights: → SBS symptoms increased during the two-year follow-up period in school children in Taiyuan, China → We studied the associations between selected microbial components and incidence and remission of SBS symptoms. → Bacterial compounds (LPS and MuA) seem to protect against the development of mucosal and general symptoms. → Fungal

  9. A longitudinal study of sick building syndrome among pupils in relation to microbial components in dust in schools in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin, E-mail: xinzhang0051@sxu.edu.cn [Research Center for Environmental Science and Engineering, Shanxi University, 030006 Taiyuan (China); Department of Medical Sciences, Uppsala University and University Hospital, 75185 Uppsala (Sweden); Zhao, Zhuohui [Department of Environmental Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 030002 Shanghai (China); Nordquist, Tobias [Department of Medical Sciences, Uppsala University and University Hospital, 75185 Uppsala (Sweden); Larsson, Lennart; Sebastian, Aleksandra [Department of Laboratory Medicine, Division of Medial Microbiology, University of Lund, 22100 Lund (Sweden); Norback, Dan [Department of Medical Sciences, Uppsala University and University Hospital, 75185 Uppsala (Sweden)

    2011-11-15

    There are few longitudinal studies on sick building syndrome (SBS), which include ocular, nasal, throat, and dermal symptoms, headache, and fatigue. We studied the associations between selected microbial components, fungal DNA, furry pet allergens, and incidence and remission of SBS symptoms in schools in Taiyuan, China. The study was based on a two-year prospective analysis in pupils (N = 1143) in a random sample of schools in China. Settled dust in the classrooms was collected by vacuum cleaning and analyzed for lipopolysaccharide (LPS), muramic acid (MuA), and ergosterol (Erg). Airborne dust was collected in Petri dishes and analyzed for cat and dog allergens and fungal DNA. The relationship between the concentration of allergens and microbial compounds and new onset of SBS was analyzed by multi-level logistic regression. The prevalence of mucosal and general symptoms was 33% and 28%, respectively, at baseline, and increased during follow-up. At baseline, 27% reported at least one symptom that improved when away from school (school-related symptoms). New onset of mucosal symptoms was negatively associated with concentration of MuA, total LPS, and shorter lengths of 3-hydroxy fatty acids from LPS, C14, C16, and C18. Onset of general symptoms was negatively associated with C18 LPS. Onset of school-related symptoms was negatively associated with C16 LPS, but positively associated with total fungal DNA. In general, bacterial compounds (LPS and MuA) seem to protect against the development of mucosal and general symptoms, but fungal exposure measured as fungal DNA could increase the incidence of school-related symptoms. - Highlights: {yields} SBS symptoms increased during the two-year follow-up period in school children in Taiyuan, China {yields} We studied the associations between selected microbial components and incidence and remission of SBS symptoms. {yields} Bacterial compounds (LPS and MuA) seem to protect against the development of mucosal and general symptoms

  10. Method for a component-based economic optimisation in design of whole building renovation versus demolishing and rebuilding

    DEFF Research Database (Denmark)

    Morelli, Martin; Harrestrup, Maria; Svendsen, Svend

    2014-01-01

    investing in retrofit measures and buying renewable energy. The overall cost of the renovation considers the market value of the property, the investment in the renovation, the operational and maintenance costs. A multi-family building is used as an example to clearly illustrate the application...... of the method from macroeconomic and private financial perspectives. Conclusion: The example shows that the investment cost and future market value of the building are the dominant factors in deciding whether to renovate an existing building or to demolish it and thereafter erect a new building. Additionally...

  11. Danish building typologies

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper

    The objective of TABULA is to develop a harmonised building typology for European countries. Each national building typology will consist of a set of residential model buildings with characteristic energy-related properties (element areas of the thermal building envelope, U-values, supply system...... efficiencies). The model buildings will each represent a specific construction period of the country in question and a specific building size. Furthermore the number of buildings, flats and the overall floor areas will be given, which are represented by the different building types of the national typologies....

  12. Method for a component-based economic optimisation in design of whole building renovation versus demolishing and rebuilding

    International Nuclear Information System (INIS)

    Morelli, Martin; Harrestrup, Maria; Svendsen, Svend

    2014-01-01

    Aim: This paper presents a two-fold evaluation method determining whether to renovate an existing building or to demolish it and thereafter erect a new building. Scope: The method determines a combination of energy saving measures that have been optimised in regards to the future cost for energy. Subsequently, the method evaluates the cost of undertaking the retrofit measures as compared to the cost of demolishing the existing building and thereafter erecting a new one. Several economically beneficial combinations of energy saving measures can be determined. All of them are a trade-off between investing in retrofit measures and buying renewable energy. The overall cost of the renovation considers the market value of the property, the investment in the renovation, the operational and maintenance costs. A multi-family building is used as an example to clearly illustrate the application of the method from macroeconomic and private financial perspectives. Conclusion: The example shows that the investment cost and future market value of the building are the dominant factors in deciding whether to renovate an existing building or to demolish it and thereafter erect a new building. Additionally, it is concluded in the example that multi-family buildings erected in the period 1850–1930 should be renovated. - highlights: • Development of a method for evaluation of renovation projects. • Determination of an economic optimal combination of various energy saving measures. • The method compared the renovation cost to those for demolishing and building new. • Decision was highly influence by the investment cost and buildings market value. • The results indicate that buildings should be renovated and not demolished

  13. Envelope Protection for In-Flight Ice Contamination

    Science.gov (United States)

    Gingras, David R.; Barnhart, Billy P.; Ranaudo, Richard J.; Ratvasky, Thomas P.; Morelli, Eugene A.

    2010-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  14. The LHC on an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays ...

  15. The LHC in an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays de Gex (Ferney-Voltaire, Prévessin...

  16. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  17. Reuse and Upcycling of Municipal Waste for ZEB Envelope Design in European Urban Areas

    Directory of Open Access Journals (Sweden)

    Elisa Pennacchia

    2016-06-01

    Full Text Available Building energy efficiency and urban waste management are two focal issues for improving environmental status and reducing greenhouse gas emissions. The main aim of this paper is to compare economic costs of new building envelope structures designed by authors reusing and upcycling municipal waste in order to decrease energy demand from the building sector and, at the same time, improve eco-friendly waste management at the local scale. The reuse of waste for building envelope structures is one of the main principles of the Earthship buildings model, based on the use of passive solar principles in autonomous earth-sheltered homes. This Earthship principle has been analyzed in order to optimize buildings’ energy performance and reuse municipal waste for new building envelope structures in urban areas. Indeed, the elaborated structures have been designed for urban contexts, with the aim of reuse waste coming from surrounding landfills. The methods include an analysis of thermal performance of urban waste for designing new building envelope structures realized by assembling waste and isolating materials not foreseen in Earthship buildings. The reused materials are: cardboard tubes, automobile tires, wood pallets, and plastic and glass bottles. Finally, comparing economic costs of these new building envelope structures, the obtained results highlight their economic feasibility compared to a traditional structure with similar thermal transmittance.

  18. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  19. Effect of Various External Shading Devices on Windows for Minimum Heat Gain and Adequate Day lighting into Buildings of Hot and Dry Climatic Zone in India

    Directory of Open Access Journals (Sweden)

    Kirankumar Gorantla

    2018-01-01

    Full Text Available Glass is the major component of the building envelope to provide visual comfort to inside the buildings. In général clear and bronze glass was used as a main building envelope for both residential and commercial buildings to provide better day lighting into the buildings. If we use more glass area as a building envelope more radiation allows into the buildings. So that it is necessary to reduce more solar radiation and provide sufficient daylight factor inside the building's through glass windows with the help of external devices called shading devices. In this work four shading devices was tried on bronze glass window to find the heat gain and daylighting into buildings. This paper presents the experimental measurement of spectral characteristics of bronze glass which include transmission and reflection in entire solar spectrum region (300nm-2500nm based on ASTM standards. A MATLAB code was developed to compute visible and solar optical properties as per the British standards. A building model was designed by design builder software tool. 40% window to wall ratio was considered for building models, thermal and day lighting analysis of buildings through windows was carried out in Energy plus software tool for hot and dry climatic zone of India.

  20. A new insight into opaque envelopes in a passive solar house: Properties and roles

    International Nuclear Information System (INIS)

    Long, Linshuang; Ye, Hong; Liu, Minghou

    2016-01-01

    Highlights: • A new insight into the opaque envelopes of a passive solar house was gained. • Five parts of envelopes, i.e., roof, south/east/west/north walls, were discussed. • Each part of envelopes were analyzed separately rather than treated as a whole. • Ideal properties of materials for each envelope are diverse from one another. • Differences are related to the envelopes’ leading roles as a heater or a cooler. - Abstract: Passive solar houses are effective solutions for minimizing the operating energy of buildings. The building envelopes of passive solar houses exert a significant influence on the degree of indoor thermal comfort. The focus of this study was the construction of high-performance opaque envelopes, i.e., the roof and walls, for a passive solar house, and a new conception of the envelopes from the perspective of the relation between the properties and roles was provided. The discussion was conducted based on a comprehensive range of envelope materials that were distinguished by the thermal conductivity and volumetric heat capacity. For the first time, each part of the envelopes was analyzed separately rather than considered as an entire envelope. By analyzing each envelope individually, the optimum properties of each envelope were found to be distinct from each other. The distinctions are determined by the dominant role of each envelope, which is associated with the location and absorbed solar irradiation. For summer or hot climate applications, when the dominant role is a cooler, the envelope, e.g., the south wall, should consist of materials with high thermal conductivity and large heat capacity; if a heater is the dominant role, the envelope, e.g., the roof, should consist of materials with low thermal conductivity. For winter or cold climate applications, the envelopes with a leading role of a heater or a cooler require materials with high or low thermal conductivity, respectively. Under the guidance of the results, a discussion

  1. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  2. Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata.

    Science.gov (United States)

    Puverel, S; Houlbrèque, F; Tambutté, E; Zoccola, D; Payan, P; Caminiti, N; Tambutté, S; Allemand, D

    2007-08-01

    Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization.

  3. Safeguards Envelope Progress FY08

    International Nuclear Information System (INIS)

    Bean, Robert; Metcalf, Richard; Bevill, Aaron

    2008-01-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant's large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis

  4. The South Carolina bridge-scour envelope curves

    Science.gov (United States)

    Benedict, Stephen T.; Feaster, Toby D.; Caldwell, Andral W.

    2016-09-30

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a series of three field investigations to evaluate historical, riverine bridge scour in the Piedmont and Coastal Plain regions of South Carolina. These investigations included data collected at 231 riverine bridges, which lead to the development of bridge-scour envelope curves for clear-water and live-bed components of scour. The application and limitations of the South Carolina bridge-scour envelope curves were documented in four reports, each report addressing selected components of bridge scour. The current investigation (2016) synthesizes the findings of these previous reports into a guidance manual providing an integrated procedure for applying the envelope curves. Additionally, the investigation provides limited verification for selected bridge-scour envelope curves by comparing them to field data collected outside of South Carolina from previously published sources. Although the bridge-scour envelope curves have limitations, they are useful supplementary tools for assessing the potential for scour at riverine bridges in South Carolina.

  5. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology

    Science.gov (United States)

    Cesaretti, Giovanni; Dini, Enrico; De Kestelier, Xavier; Colla, Valentina; Pambaguian, Laurent

    2014-01-01

    3D-printing technologies are receiving an always increasing attention in architecture, due to their potential use for direct construction of buildings and other complex structures, also of considerable dimensions, with virtually any shape. Some of these technologies rely on an agglomeration process of inert materials, e.g. sand, through a special binding liquid and this capability is of interest for the space community for its potential application to space exploration. In fact, it opens the possibility for exploiting in-situ resources for the construction of buildings in harsh spatial environments. The paper presents the results of a study aimed at assessing the concept of 3D printing technology for building habitats on the Moon using lunar soil, also called regolith. A particular patented 3D-printing technology - D-shape - has been applied, which is, among the existing rapid prototyping systems, the closest to achieving full scale construction of buildings and the physical and chemical characteristics of lunar regolith and terrestrial regolith simulants have been assessed with respect to the working principles of such technology. A novel lunar regolith simulant has also been developed, which almost exactly reproduces the characteristics of the JSC-1A simulant produced in the US. Moreover, tests in air and in vacuum have been performed to demonstrate the occurrence of the reticulation reaction with the regolith simulant. The vacuum tests also showed that evaporation or freezing of the binding liquid can be prevented through a proper injection method. The general requirements of a Moon outpost have been specified, and a preliminary design of the habitat has been developed. Based on such design, a section of the outpost wall has been selected and manufactured at full scale using the D-shape printer and regolith simulant. Test pieces have also been manufactured and their mechanical properties have been assessed.

  6. Nature of 'unseen' galactic envelopes

    International Nuclear Information System (INIS)

    McCrea, W.H.

    1983-01-01

    In this paper, it is suggested that unseen matter in a galactic envelope or in a group of galaxies may consist of substellar bodies originating as the first permanent 'stars' in the formation of a very massive galaxy according to a model for galaxy-formation on the basis of simple big-bang cosmology. (Auth.)

  7. Handbook on data envelopment analysis

    CERN Document Server

    Cooper, William W; Zhu, Joe

    2011-01-01

    Focusing on extensively used Data Envelopment Analysis topics, this volume aims to both describe the state of the field and extend the frontier of DEA research. New chapters include DEA models for DMUs, network DEA, models for supply chain operations and applications, and new developments.

  8. Technical - Economic Research for Passive Buildings

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.

  9. The Role of a Facilitated Online Workspace Component of a Community of Practice: Knowledge Building and Value Creation for NASA

    Science.gov (United States)

    Davey, Bradford Thomas

    2013-01-01

    The purpose of this study was to examine the role of an online workspace component of a community in the work of a community of practice. Much has been studied revealing the importance of communities of practice to organizations, project success, and knowledge management and some of these same successes hold true for virtual communities of…

  10. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  11. Solar envelope zoning: application to the city planning process. Los Angeles case study

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Solar envelope zoning represents a promising approach to solar access protection. A solar envelope defines the volume within which a building will not shade adjacent lots or buildings. Other solar access protection techniques, such as privately negotiated easements, continue to be tested and implemented but none offer the degree of comprehensiveness evident in this approach. Here, the City of Los Angeles, through the Mayor's Energy Office, the City Planning Department, and the City Attorney's Office, examine the feasibility of translating the concept of solar envelopes into zoning techniques. They concluded that envelope zoning is a fair and consistent method of guaranteeing solar access, but problems of complexity and uncertainty may limit its usefulness. Envelope zoning may be inappropriate for the development of high density centers and for more restrictive community plans. Aids or tools to administer envelope zoning need to be developed. Finally, some combination of approaches, including publicly recorded easements, subdivision approval and envelope zoning, need to be adopted to encourage solar use in cities. (MHR)

  12. Spectral Envelopes and Additive + Residual Analysis/Synthesis

    Science.gov (United States)

    Rodet, Xavier; Schwarz, Diemo

    The subject of this chapter is the estimation, representation, modification, and use of spectral envelopes in the context of sinusoidal-additive-plus-residual analysis/synthesis. A spectral envelope is an amplitude-vs-frequency function, which may be obtained from the envelope of a short-time spectrum (Rodet et al., 1987; Schwarz, 1998). [Precise definitions of such an envelope and short-time spectrum (STS) are given in Section 2.] The additive-plus-residual analysis/synthesis method is based on a representation of signals in terms of a sum of time-varying sinusoids and of a non-sinusoidal residual signal [e.g., see Serra (1989), Laroche et al. (1993), McAulay and Quatieri (1995), and Ding and Qian (1997)]. Many musical sound signals may be described as a combination of a nearly periodic waveform and colored noise. The nearly periodic part of the signal can be viewed as a sum of sinusoidal components, called partials, with time-varying frequency and amplitude. Such sinusoidal components are easily observed on a spectral analysis display (Fig. 5.1) as obtained, for instance, from a discrete Fourier transform.

  13. Envelope proteins of bovine herpesvirus 1: immunological and biochemical studies

    International Nuclear Information System (INIS)

    Rodriguez Roque, L.L.

    1986-01-01

    The authors studied immunological and biochemical properties of the bovid herpesvirus 1 (BHV-1) envelope proteins in order to understand the pathogenesis of BHV-1 infection and to provide basic information for the production of effective subunit vaccines against BHV-1. Ten glycoproteins MW 180, 150, 130, 115, 97, 77, 74, 64, 55, and 45 kilodaltons (K), and a single non-glycosylated 108 K protein were quantitatively removed from purified BHV-1 virions by detergent treatment. These glycoproteins were present on the virion envelope and on the surface of BHV-1 infected cells. The quantitative removal from virions by treatment with nonionic detergents and their presence on the surface of infected cells indicate that 180/97, 150/77, and 130/74/55 K are major components of the BHV-1 envelope and are also the targets of virus neutralizing humoral immune response. Envelope glycoproteins of herpes simplex type 1 (HSV-1) bind immunoglobulin by the Fc end and it is suggested this may increase pathogenicity of this virus. They searched for a similar function in BVH-1 by measuring the ability of BHV-1 infected cells and viral envelope proteins to bind radiolabelled rabbit and bovine IgG. Binding activity for rabbit IgG or bovine IgG-Fc could not be demonstrated by BHV-1 infected MDBK cells, whereas, MDBK cells infected with HSV-1 bound rabbit IgG and bovine IgG-Fc. None of the three major envelope proteins of BHV-1 bound to rabbit or bovine IgG. The results of this study indicate that BHV-1, unlike some other herpesviruses, lack Fc binding activity

  14. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  15. The challenge of measuring emergency preparedness: integrating component metrics to build system-level measures for strategic national stockpile operations.

    Science.gov (United States)

    Jackson, Brian A; Faith, Kay Sullivan

    2013-02-01

    Although significant progress has been made in measuring public health emergency preparedness, system-level performance measures are lacking. This report examines a potential approach to such measures for Strategic National Stockpile (SNS) operations. We adapted an engineering analytic technique used to assess the reliability of technological systems-failure mode and effects analysis-to assess preparedness. That technique, which includes systematic mapping of the response system and identification of possible breakdowns that affect performance, provides a path to use data from existing SNS assessment tools to estimate likely future performance of the system overall. Systems models of SNS operations were constructed and failure mode analyses were performed for each component. Linking data from existing assessments, including the technical assistance review and functional drills, to reliability assessment was demonstrated using publicly available information. The use of failure mode and effects estimates to assess overall response system reliability was demonstrated with a simple simulation example. Reliability analysis appears an attractive way to integrate information from the substantial investment in detailed assessments for stockpile delivery and dispensing to provide a view of likely future response performance.

  16. Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH plan and build wet decontamination plant for disposal of components of Russian nuclear submarines

    International Nuclear Information System (INIS)

    Schneider, Jan; Konitzer, Arnold; Luedeke, Michael

    2010-01-01

    Anlagen- und Kraftwerksrohrleitungsbau Greifswald, on behalf of Energiewerke Nord GmbH, Lubmin, plan and build a wet decontamination facility for the waste management center at Saida Bay, Russia (EZS). The plant is part of a large project with a total volume on the order of 3-digit millions funded by the German Federal Ministry for Economics and Technology. This project involves construction at Saida Bay near the port city of Murmansk of a complete waste management center and a long-term interim store for radioactively contaminated components. These components are mainly parts of decommissioned nuclear vessels and submarines whose metals, after decontamination, can be returned to economic use. The basis of the wet decontamination plant is a former AKB project for disposal and re-use of contaminated metal components of Energiewerke Nord GmbH at Lubmin, which is being adapted and developed further. The plant is to allow unrestricted re-use of the metals after surface cleaning and surface abrasion, respectively. For this purpose, the contaminated layer is removed far enough for the clearance limits under the Radiation Protection Ordinance to be met. A large fraction of the metals can be re-used after cleaning and do not have to be stored in a financially and logistically expensive process. The contract gives AKB an excellent opportunity to demonstrate its capabilities in plant construction, especially in the very sensitive area of disposal of radioactively contaminated objects. (orig.)

  17. Cortical processing of dynamic sound envelope transitions.

    Science.gov (United States)

    Zhou, Yi; Wang, Xiaoqin

    2010-12-08

    Slow envelope fluctuations in the range of 2-20 Hz provide important segmental cues for processing communication sounds. For a successful segmentation, a neural processor must capture envelope features associated with the rise and fall of signal energy, a process that is often challenged by the interference of background noise. This study investigated the neural representations of slowly varying envelopes in quiet and in background noise in the primary auditory cortex (A1) of awake marmoset monkeys. We characterized envelope features based on the local average and rate of change of sound level in envelope waveforms and identified envelope features to which neurons were selective by reverse correlation. Our results showed that envelope feature selectivity of A1 neurons was correlated with the degree of nonmonotonicity in their static rate-level functions. Nonmonotonic neurons exhibited greater feature selectivity than monotonic neurons in quiet and in background noise. The diverse envelope feature selectivity decreased spike-timing correlation among A1 neurons in response to the same envelope waveforms. As a result, the variability, but not the average, of the ensemble responses of A1 neurons represented more faithfully the dynamic transitions in low-frequency sound envelopes both in quiet and in background noise.

  18. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs

  19. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

  20. Safeguards Envelope Progress FY10

    International Nuclear Information System (INIS)

    Metcalf, Richard

    2010-01-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  1. Intelligent Facades for High Performance Green Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building

  2. Evolution of envelope solitons of ionization waves

    International Nuclear Information System (INIS)

    Ohe, K.; Hashimoto, M.

    1985-01-01

    The time evolution of a particle-like envelope soliton of ionization waves in plasma was investigated theoretically. The hydrodynamic equations of one spatial dimension were solved and the nonlinear dispersion relation was derived. For the amplitude of the wave the nonlinear Schroedinger equation was derived. Its soliton solution was interpreted as the envelope soliton which was experimentally found. The damping rate of the envelope soliton was estimated. (D.Gy.)

  3. Thermal performance envelopes for MHTGRs - Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.

    1992-01-01

    Thermal performance envelopes are used to specify steady-state design requirements for the systems of the modular high-temperature gas-cooled reactor (MHTGR) to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point to account for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion. This is accomplished by coordinating these requirements with the various system and component designers in the early stages of the design, applying the principles of total quality management. The design is challenged by the more complex requirements associated with a range of operating conditions, but in return, high probability of delivering reliable performance throughout the plant life is ensured

  4. Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis

    Science.gov (United States)

    Vidal, Christopher; Bermeo, Sandra; Fatkin, Diane; Duque, Gustavo

    2012-01-01

    The nuclear envelope is the most important border in the eukaryotic cell. The role of the nuclear envelope in cell differentiation and function is determined by a constant interaction between the elements of the nuclear envelope and the transcriptional regulators involved in signal transcription pathways. Among those components of the nuclear envelope, there is a growing evidence that changes in the expression of A-type lamins, which are essential components of the nuclear lamina, are associated with age-related changes in bone affecting the capacity of differentiation of mesenchymal stem cells into osteoblasts, favoring adipogenesis and affecting the function and survival of the osteocytes. Overall, as A-type lamins are considered as the 'guardians of the soma', these proteins are also essential for the integrity and quality of the bone and pivotal for the longevity of the musculoskeletal system. PMID:23951459

  5. Mosaic HIV envelope immunogenic polypeptides

    Science.gov (United States)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon; Sodroski, Joseph; Haynes, Barton

    2018-01-02

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in a subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.

  6. LCA profiles for building components:

    DEFF Research Database (Denmark)

    Marsh, Rob

    2016-01-01

    . A full bivariate linear regression analysis is performed, showing statistically significant correlations with strong direct relationships between environmental impact categories. A simplified LCA profile consisting of total primary energy, global warming potential and acidification potential is developed...

  7. Preservative treatments for building components

    Science.gov (United States)

    Stan Lebow

    2007-01-01

    The wood species most commonly used in construction have little natural durability Thus, they are treated with preservatives when used in conditions that favor biodeterioration. The type of preservative used varies with the type of wood product, exposure condition, and specific agent of deterioration. This paper discusses the characteristics of several preservative...

  8. Assessment of infiltration heat recovery and its impact on energy consumption for residential buildings

    International Nuclear Information System (INIS)

    Solupe, Mikel; Krarti, Moncef

    2014-01-01

    Highlights: • Five steady-state air infiltration heat recovery or IHR models are described and compared. • IHR models are incorporated within whole-building simulation analysis tool. • IHR can reduce the thermal loads of residential buildings by 5–30%. - Abstract: Infiltration is a major contributor to the energy consumption of buildings, particularly in homes where it accounts for one-third of the heating and cooling loads. Traditionally, infiltration is calculated independent of the building envelope performance, however, it has been established that a thermal coupling exists between the infiltration and conduction heat transfer of the building envelope. This effect is known as infiltration heat recovery (IHR). Experiments have shown that infiltration heat recovery can typically reduce the infiltration thermal load by 10–20%. Currently, whole-building energy simulation tools do not account for the effect of infiltration heat recovery on heating and cooling loads. In this paper, five steady-state IHR models are described to account for the thermal interaction between infiltration air and building envelope components. In particular, inter-model and experimental comparisons are carried out to assess the prediction accuracy of five IHR models. In addition, the results from a series of sensitivity analyses are presented, including an evaluation of the predictions for heating energy use associated with four audited homes obtained from whole-building energy simulation analysis with implemented infiltration heat recovery models. Experimental comparison of the IHR models reveal that the predictions from all the five models are consistent and are within 2% when 1-D flow and heat transfer conditions are considered. When implementing IHR models to a whole-building simulation environment, a reduction of 5–30% in heating consumption is found for four audited residential homes

  9. Implementation of an Improved Safe Operating Envelope

    International Nuclear Information System (INIS)

    Prime, Robyn; McIntyre, Mark; Reeves, David

    2008-01-01

    This paper is a continuation of the paper presented at IYNC 2004 on 'The Definition of a Safe Operating Envelope'. The current paper concentrates on the implementation process of the Safe Operating Envelope employed at the Point Lepreau Generating Station. (authors)

  10. Physical properties of the red giant envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, W J [Instituto de Astronomia e Geofisico da Universidade de Sao Paulo (Brazil)

    1978-12-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained.

  11. Physical properties of the red giant envelopes

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1978-01-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained [pt

  12. Implementation of an Improved Safe Operating Envelope

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Robyn; McIntyre, Mark [NB Power Nuclear, P.O. Box 600, Lepreau, NB (Canada); Reeves, David [Atlantic Nuclear Services Ltd., PO Box 1268 Fredericton, NB (Canada)

    2008-07-01

    This paper is a continuation of the paper presented at IYNC 2004 on 'The Definition of a Safe Operating Envelope'. The current paper concentrates on the implementation process of the Safe Operating Envelope employed at the Point Lepreau Generating Station. (authors)

  13. Performance Based Envelopes: A Theory of Spatialized Skins and the Emergence of the Integrated Design Professional

    Directory of Open Access Journals (Sweden)

    Franca Trubiano

    2013-10-01

    Full Text Available Realigning the design of building envelopes within the measures of air, light and heat has rendered possible an inventive form of practice whose benefits are far in excess of the metrics of data and analysis. For many of its most advanced practitioners, the contemporary design of facades engages the true potential of “performance” when it deepens, broadens and complicates the theoretical dimension of this most liminal of surfaces. Of particular interest to this paper is a discussion of new theoretical paradigms associated with the design and operation of high performance envelopes of which four characteristics of this emergent sub-discipline are herein examined. To begin with, the way in which building envelopes are no longer separators, dividers and barriers between a building’s interior and exterior conditions, but rather, “spatially” defined environments that fully engage the totality of a building’s engineering systems, is discussed. Cantilevered Louvers, Double Skin Facades and Hybrid Conditioned Atria are representative of this new paradigm as is the use of Responsive Technologies to optimize their behaviors. Lastly, the paper examines the rise of the new integrated design building envelope professional called upon to deliver ever-better performing skins, whether in the guise of energy modeler, climate engineer or façade construction specialist. Hence, this paper develops a theoretical structure within which to describe, analyze and interpret the values made possible by this new and expanding field of performance based envelopes.

  14. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams

    International Nuclear Information System (INIS)

    Sawakuchi, Gabriel O; Titt, Uwe; Mirkovic, Dragan; Ciangaru, George; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T; Mohan, Radhe

    2010-01-01

    Scanned proton pencil beams carry a low-dose envelope that extends several centimeters from the individual beam's central axis. Thus, the total delivered dose depends on the size of the target volume and the corresponding number and intensity of beams necessary to cover the target volume uniformly. This dependence must be considered in dose calculation algorithms used by treatment planning systems. In this work, we investigated the sources of particles contributing to the low-dose envelope using the Monte Carlo technique. We used a validated model of our institution's scanning beam line to determine the contributions to the low-dose envelope from secondary particles created in a water phantom and particles scattered in beam line components. Our results suggested that, for high-energy beams, secondary particles produced by nuclear interactions in the water phantom are the major contributors to the low-dose envelope. For low-energy beams, the low-dose envelope is dominated by particles undergoing multiple Coulomb scattering in the beam line components and water phantom. Clearly, in the latter situation, the low-dose envelope depends directly on beam line design features. Finally, we investigated the dosimetric consequences of the low-dose envelope. Our results showed that if not modeled properly the low-dose envelope may cause clinically relevant dose disturbance in the target volume. This work suggested that this low-dose envelope is beam line specific for low-energy beams, should be thoroughly experimentally characterized and validated during commissioning of the treatment planning system, and therefore is of great concern for accurate delivery of proton scanning beam doses.

  15. 10 CFR 434.402 - Building envelope assemblies and materials.

    Science.gov (United States)

    2010-01-01

    ... sections. (b) Openings between walls and foundations, between walls and roof and wall panels. (c) Openings... increased by 50% if a shading device is used that blocks over 50% of the solar gain during the peak cooling.... The cumulative annual energy flux attributable to thermal transmittance and solar gains shall be less...

  16. Development and Evaluation of a Responsive Building Envelope

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Foged, Isak Worre

    2011-01-01

    . The general scopes of this paper are to present the development and evaluation of a new adaptive kinetic architectural structure. This reconfigurable structure can transform body shape from planar geometries to hyper-surfaces using different control strategies, i.e. a transformation into more than one or two...... of a secondary environmental system to a primary structural system joint into a collective behavioural system equipment with an actuator system is presented....

  17. Field performance of energy-efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The airtightness of 24 new houses was measured on a regular basis over periods of up to three years to evaluate the structures' air barrier systems and to study the possibility of air barrier degradation, as would be indicated by an increase in the measured air leakage rate. Ten of the houses were built with the polyethylene air barrier system and 14 using an early version of the airtight drywall approach (ADA). The 24 project houses were architecturally similar and of approximately equal size and general layout; stucco was the predominate wall finish.

  18. Field performance of energy-efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    Prowskiw, G.

    1992-05-01

    The air tightness of 24 new houses was measured on a regular basis over periods up to three years to evaluate the structures' air barrier systems and to study the possibility of air barrier degradation, as would be indicated by an increase in the measured leakage rate. Ten of the houses were built with the polyethylene air barrier system and 14 using an early version of the Airtight Drywall Approach (ADA). The 24 project houses were architecturally similar and of approximately equal size and general layout. The airtightness of the polyethylene air barrier houses was found to remain stable over their respective monitoring periods. It was concluded that no evidence could be found to indicate polyethylene is unsuited for use as an air barrier material in residential construction. Although 2 of the 10 houses demonstrated possible, albeit slight, evidence of airtightness degradation, the magnitude of these changes was small and judged not to be of practical significance. All but one of the polyethylene houses met the airtightness requirements of the R-2000 program at the end of their monitoring periods. The project houses with the lowest measured leakage rates were those built with the double wall system and polyethylene barriers. The study also found that the airtightness of the 14 ADA houses remained stable during the monitoring period and it was concluded that no evidence could be found to indicate that the ADA system is unsuited for use in residential construction. Although 6 of the 15 houses displayed possible, but also slight, evidence of airtightness degradation, the magnitude of the changes was small and not of practical significance. All 14 houses met the airtightness requirements of the R-2000 program at the end of their respective monitoring periods. 19 refs., 191 figs., 39 tabs.

  19. Removal of envelope protein-free retroviral vectors by anion-exchange chromatography to improve product quality.

    Science.gov (United States)

    Rodrigues, Teresa; Alves, Ana; Lopes, António; Carrondo, Manuel J T; Alves, Paula M; Cruz, Pedro E

    2008-10-01

    We have investigated the role of the retroviral lipid bilayer and envelope proteins in the adsorption of retroviral vectors (RVs) to a Fractogel DEAE matrix. Intact RVs and their degradation components (envelope protein-free vectors and solubilized vector components) were adsorbed to this matrix and eluted using a linear gradient. Envelope protein-free RVs (Env(-)) and soluble envelope proteins (gp70) eluted in a significantly lower range of conductivities than intact RVs (Env(+)) (13.7-30 mS/cm for Env(-) and gp70 proteins vs. 47-80 mS/cm for Env(+)). The zeta (zeta)-potential of Env(+) and Env(-) vectors was evaluated showing that envelope proteins define the pI of the viral particles (pI (Env(+)) improvement to the quality of retroviral preparations for gene therapy applications.

  20. Estimating envelope thermal characteristics from single point in time thermal images

    Science.gov (United States)

    Alshatshati, Salahaldin Faraj

    Energy efficiency programs implemented nationally in the U.S. by utilities have rendered savings which have cost on average 0.03/kWh. This cost is still well below generation costs. However, as the lowest cost energy efficiency measures are adopted, this the cost effectiveness of further investment declines. Thus there is a need to more effectively find the most opportunities for savings regionally and nationally, so that the greatest cost effectiveness in implementing energy efficiency can be achieved. Integral to this process. are at scale energy audits. However, on-site building energy audits process are expensive, in the range of US1.29/m2-$5.37/m2 and there are an insufficient number of professionals to perform the audits. Energy audits that can be conducted at-scale and at low cost are needed. Research is presented that addresses at community-wide scales characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer U-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate U-values have been limited to rare steady exterior weather conditions. The approaches posed here are based upon the development two models first is a dynamic model of a building envelope component with unknown U-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model U-value and thermal capacitance are tuned in order to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. This model is developed simply to show that such a model cannot be relied upon to accurately estimate the U-value. The second is a data

  1. Injection envelope matching in storage rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the β-tron frequency indicate the presence of a β-mismatch, while envelope oscillations at the β-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported

  2. Speech rhythm analysis with decomposition of the amplitude envelope: characterizing rhythmic patterns within and across languages.

    Science.gov (United States)

    Tilsen, Sam; Arvaniti, Amalia

    2013-07-01

    This study presents a method for analyzing speech rhythm using empirical mode decomposition of the speech amplitude envelope, which allows for extraction and quantification of syllabic- and supra-syllabic time-scale components of the envelope. The method of empirical mode decomposition of a vocalic energy amplitude envelope is illustrated in detail, and several types of rhythm metrics derived from this method are presented. Spontaneous speech extracted from the Buckeye Corpus is used to assess the effect of utterance length on metrics, and it is shown how metrics representing variability in the supra-syllabic time-scale components of the envelope can be used to identify stretches of speech with targeted rhythmic characteristics. Furthermore, the envelope-based metrics are used to characterize cross-linguistic differences in speech rhythm in the UC San Diego Speech Lab corpus of English, German, Greek, Italian, Korean, and Spanish speech elicited in read sentences, read passages, and spontaneous speech. The envelope-based metrics exhibit significant effects of language and elicitation method that argue for a nuanced view of cross-linguistic rhythm patterns.

  3. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  4. Parametric study of the thermal performance of a typical administrative building in the six thermal zones according to the RTCM, using TRNSYS

    Directory of Open Access Journals (Sweden)

    Abdelghafour LAMRANI

    2018-01-01

    Full Text Available In this work, we present a parametric study of a new administrative building, located in El-Ksar El Kebir region (Morocco. In order to have a building that complies with the RTCM in a technically and economically sound manner, we have carried out a number of interventions to insulate the components of the building, namely external walls, exposed roofs and openings. In this perspective, we have modelled the building envelope as a multi-zone building in TRNSYS and we have adopted an occupation scenario for this type of building. After determining the optimal insulation solutions, we simulated the administrative building in the five other thermal zones, to determine its feasibility in the latter.

  5. Constructing canonical bases of quantized enveloping algebras

    OpenAIRE

    Graaf, W.A. de

    2001-01-01

    An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.

  6. The Arabidopsis Nuclear Pore and Nuclear Envelope

    OpenAIRE

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities...

  7. An energy efficient building for the Arctic climate

    DEFF Research Database (Denmark)

    Vladyková, Petra

    through the building envelope in the winter due to the pressure difference, strong winds and low water ratio in the outdoor air. The Arctic is also defined by different conditions such as building techniques and availability of the materials and energy supply. The passive house uses the basic idea......The Arctic is climatically very different from a temperate climate. In the Arctic regions, the ambient temperature reaches extreme values and it has a direct large impact on the heat loss through the building envelope and it creates problems with the foundation due to the permafrost. The solar...... influence the infiltration heat loss through the building envelope. The wind patterns have large influences on the local microclimate around the building and create the snowdrift and problems with thawing, icing and possible condensation in the building envelope. The humidity in the interior is driven out...

  8. All the Universe in an envelope

    CERN Multimedia

    2007-01-01

    Do you know which force is hidden in an envelope or how many billions of years old are the atoms it contains? You will find the answers to these (curious) questions in a post office in the Pays de Gex. The French postal services of the Pays de Gex are again issuing pre-paid envelopes in collaboration with CERN (see Bulletin No. 24/2006). The new series presents some of the concepts of modern physics in an amazing way by showing what you can learn about the Universe with a single envelope. Packets of ten pre-stamped envelopes, each carrying a statement on fundamental physics, will be on sale from 7 July onwards. To learn more about the physics issues presented on the envelopes, people are invited to go to the CERN Web site where they will find the explanations. Five thousand envelopes will be put on sale in July and five thousand more during the French "Fête de la science" in October. They will be available from five post offices in the Pays de Gex (F...

  9. Genetic Diversity of Koala Retroviral Envelopes

    Directory of Open Access Journals (Sweden)

    Wenqin Xu

    2015-03-01

    Full Text Available Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  10. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  11. The Impact of Insulation and HVAC Degradation on Overall Building Energy Performance: A Case Study

    Directory of Open Access Journals (Sweden)

    Georgios Eleftheriadis

    2018-02-01

    Full Text Available Through monitoring of buildings, it can be proven that the performance of envelope elements and energy supply systems deteriorates with time. The results of this degradation are higher energy consumption and life cycle costs than projected in the building design phase. This paper considers the impacts of this deterioration on the whole building energy performance with the goal of improving the accuracy of long term performance calculations. To achieve that, simplified degradation equations found in literature are applied on selected envelope elements and heating system components of a single-family house in Germany. The energy performance of the building over 20 years is determined through simulations by EnergyPlus and MATLAB. The simulation results show that, depending on maintenance and primary heating system, the building can consume between 18.4% and 47.1% more primary energy over 20 years compared to a scenario in which no degradation were to occur. Thus, it can be concluded that considering performance drop with time is key in order to improve the decision-making process when designing future-proof buildings.

  12. ICT Enhanced Buildings Potentials

    DEFF Research Database (Denmark)

    Christiansson, Per

    2007-01-01

    component systems that are accessed and integrated in the real world of building use in different contexts. The ICT systems may be physically or virtually embedded in the building. Already in 1982 AT&T established the 'intelligent buildings', IB, concept due to marketing reasons and the Informart building...... with focus on virtual building models support, new services and user environment definitions and development, virtual spaces and augmented reality, intelligent building components, application ontologies, and ICT systems integration to illustrate ICT enhanced buildings potentials and R&D needs.  ...

  13. Solitary Alfven wave envelopes and the modulational instability

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1987-06-01

    The derivative nonlinear Schroedinger equation describes the modulational instability of circularly polarized dispersive Alfven wave envelopes. It also may be used to determine the properties of finite amplitude localized stationary wave envelopes. Such envelope solitons exist only in conditions of modulational stability. This leaves open the question of whether, and if so, how, the modulational instability produces envelope solitons. 12 refs

  14. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Whole-House Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Mullens, M.; Rath, P.

    2014-04-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.

  15. Magnetic compatibility of standard components for electrical installations: Computation of the background field and consequences on the design of the electrical distribution boards and control boards for the ITER Tokamak building

    International Nuclear Information System (INIS)

    Benfatto, I.; Bettini, P.; Cavinato, M.; Lorenzi, A. De; Hourtoule, J.; Serra, E.

    2005-01-01

    Inside the proposed Tokamak building, the ITER poloidal field magnet system would produce a stray magnetic field up to 70 mT. This is a very unusual environmental condition for electrical installation equipment and limited information is available on the magnetic compatibility of standard components for electrical distribution boards and control boards. Because this information is a necessary input for the design of the electrical installation inside the proposed ITER Tokamak building specific investigations have been carried out by the ITER European Participant Team. The paper reports on the computation of the background magnetic field map inside the ITER Tokamak building and the consequences on the design of the electrical installations of this building. The effects of the steel inside the building structure and the feasibility of magnetic shields for electrical distribution boards and control boards are also reported in the paper. The results of the test campaigns on the magnetic field compatibility of standard components for electrical distribution boards and control boards are reported in companion papers published in these proceedings

  16. Solar building construction - new technologies; Solares Bauen - Neue Technologien fuer Gebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Luther, J.; Voss, K.; Wittwer, V. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. ``Thermische und Optische Systeme``

    1998-02-01

    There is an increasing demand for integrated building concepts in order to reduce energy consumption. Building design, construction and heating, ventilation and air-conditioning (HVAC) technology are decisive in this respect. Thus, an essentially higher energy efficiency is achieved and solar energy becomes the main energy source. An `active building envelope` assumes the task of controlling the energy flows between inside and outside. This paper reports on new components, system concepts and planning tools for solar building. (orig.) [Deutsch] Fuer zukuenftige Bauten werden in hohem Masse Forderungen nach integrierten Konzepten zur Begrenzung des Energieverbrauchs gestellt. Gestalt, Konstruktion und Klimatechnik sind dabei massgebliche Einflussfaktoren. Hierdurch wird eine wesentlich hoehere Energieeffizienz erzielt und Solarenergie kann die uebrigen Energiequellen zurueckdraengen. Eine `aktive Gebaeudehuelle` uebernimmt die Aufgabe, den Energiefluss zwischen Innen und Aussen zu steuern. Der Beitrag berichtet ueber neue Komponenten, Systemkonzepte und Planungswerkzeuge fuer das Solare Bauen. (orig.)

  17. New developments in illumination, heating and cooling technologies for energy-efficient buildings

    International Nuclear Information System (INIS)

    Han, H.J.; Jeon, Y.I.; Lim, S.H.; Kim, W.W.; Chen, K.

    2010-01-01

    This paper gives a concise review of new designs and developments of illumination, heating and air-conditioning systems and technologies for energy-efficient buildings. Important breakthroughs in these areas include high-efficiency and/or reduced cost solar system components, LED lamps, smart windows, computer-controlled illumination systems, compact combined heat-power generation systems, and so on. To take advantage of these new technologies, hybrid or cascade energy systems have been proposed and/or investigated. A survey of innovative architectural and building envelope designs that have the potential to considerably reduce the illumination and heating and cooling costs for office buildings and residential houses is also included in the review. In addition, new designs and ideas that can be easily implemented to improve the energy efficiency and/or reduce greenhouse gas emissions and environmental impacts of new or existing buildings are proposed and discussed.

  18. A study on the effects of double skin facades on the energy management in buildings

    International Nuclear Information System (INIS)

    Chou, S.K.; Chua, K.J.; Ho, J.C.

    2009-01-01

    Double skin facades (DSF) are gaining popularity for their ability to reduce solar heat gain in buildings. However, research works on the impact of DSF on the energy management, aerophysics and air conditioning of buildings are still at their infancy. The concept of envelope thermal transfer value (ETTV) has been specifically applied to evaluate the solar radiation gain component through a DSF fenestration system. The aim of this paper is to study the effects of DSF on the solar heat gain, the ETTV and hence the energy management within buildings. A systematic methodology to investigate the effectiveness of DSF in reducing solar heat gain has been presented. Experimental works have been performed to obtain the solar heat gain coefficient (SHGC) values of a DSF fenestration system. These values are then applied to compare the ETTVs generated from a model building with different DSF configurations, namely, different wall-to-window ratios and varying shading coefficients.

  19. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  20. Featured Image: Orbiting Stars Share an Envelope

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9

  1. Inhibition of Enveloped Viruses Infectivity by Curcumin

    Science.gov (United States)

    Wen, Hsiao-Wei; Ou, Jun-Lin; Chiou, Shyan-Song; Chen, Jo-Mei; Wong, Min-Liang; Hsu, Wei-Li

    2013-01-01

    Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA) activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB)-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter) than for the pseudorabies virus (approximately 180 nm) and the vaccinia virus (roughly 335 × 200 × 200 nm). These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses. PMID:23658730

  2. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Maric, Martina; Haugo, Alison C. [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States); Dauer, William [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Johnson, David [Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201 (United States); Roller, Richard J., E-mail: richard-roller@uiowa.edu [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States)

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  3. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology.

    Science.gov (United States)

    Janin, Alexandre; Bauer, Delphine; Ratti, Francesca; Millat, Gilles; Méjat, Alexandre

    2017-08-30

    Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.

  4. Renewable building energy systems and passive human comfort solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen Mustafa [17 Juniper Court, Forest Road West, Nottingham NG7 4EU (United Kingdom)

    2008-08-15

    With environmental protection posing as the number one global problem, man has no choice but to reduce his energy consumption. One way to accomplish this is to resort to passive and low-energy systems to maintain thermal comfort in buildings. The conventional and modern designs of wind towers can successfully be used in hot arid regions to maintain thermal comfort (with or without the use of ceiling fans) during all hours of the cooling season, or a fraction of it. Climatic design is one of the best approaches to reduce the energy cost in buildings. Proper design is the first step of defence against the stress of the climate. Buildings should be designed according to the climate of the site, reducing the need for mechanical heating or cooling. Hence maximum natural energy can be used for creating a pleasant environment inside the built envelope. Technology and industry progress in the last decade diffused electronic and informatics' devices in many human activities, and also in building construction. The utilisation and operating opportunities components, increase the reduction of heat losses by varying the thermal insulation, optimise the lighting distribution with louver screens and operate mechanical ventilation for coolness in indoor spaces. In addition to these parameters the intelligent envelope can act for security control and became an important part of the building domotic revolution. Application of simple passive cooling measure is effective in reducing the cooling load of buildings in hot and humid climates. Fourty-three percent reductions can be achieved using a combination of well-established technologies such as glazing, shading, insulation, and natural ventilation. More advanced passive cooling techniques such as roof pond, dynamic insulation, and evaporative water jacket need to be considered more closely. The building sector is a major consumer of both energy and materials worldwide, and that consumption is increasing. Most industrialised

  5. Computation of Phase Equilibrium and Phase Envelopes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...

  6. Boundaries, injective envelopes, and reduced crossed products

    DEFF Research Database (Denmark)

    Bryder, Rasmus Sylvester

    In this dissertation, we study boundary actions, equivariant injective envelopes, as well as theideal structure of reduced crossed products. These topics have recently been linked to thestudy of C-simple groups, that is, groups with simple reduced group C-algebras.In joint work with Matthew Kennedy......, we consider reduced twisted crossed products overC-simple groups. For any twisted C-dynamical system over a C-simple group, we provethat there is a one-to-one correspondence between maximal invariant ideals in the underlyingC-algebra and maximal ideals in the reduced crossed product. When......*-algebras, and relate the intersection property for group actions on unital C*-algebras to the intersection property for theequivariant injective envelope. Moreover, we also prove that the equivariant injective envelopeof the centre of the injective envelope of a unital C*-algebra can be regarded as a C...

  7. Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality.

    Science.gov (United States)

    Kates, James M; Arehart, Kathryn H

    2015-10-01

    This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships.

  8. Envelope method for determination of the ion linear accelerator acceptance

    International Nuclear Information System (INIS)

    Sharshanov, A.A.; Goncharenko, I.I.; Revutskij, E.I.

    1974-01-01

    The acceptance defined by the slit u 2 2 in space u, ν, z (u=coordinate of the accelerated particle in the direction perpendicular to the accelerator axis, ν=ratio of the transverse particle velocity component to the longitudinal component, z=accelerator axis, a=dimensions of slit) represents a convex curvilinear polygon with centre of symmetry at the origin of the co-ordinates. The sides of the polygon are sections of ellipses and straight lines, the ellipses being part of an envelope to the set of proto-types of all cross-sections of the slit in planes z=3, where 0<=xi<=z and z is the length of the accelerator, and the straight lines are tangents to the ends of the envelope. In the paper the equations of the ellipses forming the sides of the polygon are written using an elementary variable matrix of the accelerator structure, and the co-ordinates of the polygon apexes are found. A numerical value is derived for the area of the polygon for one transverse co-ordinate of the particular accelerator, the pre-stripping section of the LUMZI-10. (author)

  9. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kessler, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mullens, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rath, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  10. Advanced Envelope Research for Factory Built Housing, Phase 3. Design Development and Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [ARIES Collaborative, New York, NY (United States); Kessler, B. [ARIES Collaborative, New York, NY (United States); Mullens, M. [ARIES Collaborative, New York, NY (United States); Rath, P. [ARIES Collaborative, New York, NY (United States)

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  11. Super-structure and building performance

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-11-01

    Full Text Available The super-structure consists predominantly of the load- and no-load-bearing walls-including all doors and windows and suspended floor slabs. The building envelope plays a significant role in the performance of a building, especially with regard...

  12. A study of some Be star envelopes

    International Nuclear Information System (INIS)

    Kitchen, C.R.

    1976-01-01

    The envelope model and emission region radius of six Be stars have been determined from 36 lines on 15 spectra taken with the Isaac Newton telescope. The results have been compared with earlier determinations to search for changes with the time. No definite evidence for such changes has been found, although there may be an indication of a change in phi Per. A re-determination of the errors involved in the method of analysis shows that these are smaller than previously estimated and range from about 9% to 35% for both envelope model and emission region radius. (Auth.)

  13. Asymmetry of the SN 1987A envelope

    International Nuclear Information System (INIS)

    Chugaj, N.N.

    1991-01-01

    The origin of the peculiar structure in the profiles of the emission lines observed in the spectrum of SN 1987A, namely, (1) redshift of maxima, and (2) fine structure of hydrogen lines, is considered. Among the three proposed hypothesis for the redshift, at least two (electron scattering in the spherically-symmetric envelope, and geometrical effects in the fragmented envelope) have serious drawbacks. More favorable is the third hypothesis which invokes asymmetric distribution of 56 Ni and of the iron-peak elements

  14. Radio Imaging of Envelopes of Evolved Stars

    Science.gov (United States)

    Cotton, Bill

    2018-04-01

    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  15. Global Envelope Tests for Spatial Processes

    DEFF Research Database (Denmark)

    Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel

    2017-01-01

    Envelope tests are a popular tool in spatial statistics, where they are used in goodness-of-fit testing. These tests graphically compare an empirical function T(r) with its simulated counterparts from the null model. However, the type I error probability α is conventionally controlled for a fixed d......) the construction of envelopes for a deviation test. These new tests allow the a priori selection of the global α and they yield p-values. We illustrate these tests using simulated and real point pattern data....

  16. Global envelope tests for spatial processes

    DEFF Research Database (Denmark)

    Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel

    Envelope tests are a popular tool in spatial statistics, where they are used in goodness-of-fit testing. These tests graphically compare an empirical function T(r) with its simulated counterparts from the null model. However, the type I error probability α is conventionally controlled for a fixed......) the construction of envelopes for a deviation test. These new tests allow the a priori selection of the global α and they yield p-values. We illustrate these tests using simulated and real point pattern data....

  17. Occupant behaviour and robustness of building design

    DEFF Research Database (Denmark)

    Buso, Tiziana; Fabi, Valentina; Andersen, Rune Korsholm

    2015-01-01

    in a dynamic building energy simulation tool (IDA ICE). The analysis was carried out by simulating 15 building envelope designs in different thermal zones of an Office Reference Building in 3 climates: Stockholm, Frankfurt and Athens.In general, robustness towards changes in occupants' behaviour increased......Occupant behaviour can cause major discrepancies between the designed and the real total energy use in buildings. A possible solution to reduce the differences between predictions and actual performances is designing robust buildings, i.e. buildings whose performances show little variations...... with alternating occupant behaviour patterns. The aim of this work was to investigate how alternating occupant behaviour patterns impact the performance of different envelope design solutions in terms of building robustness. Probabilistic models of occupants' window opening and use of shading were implemented...

  18. Analysis of the documents about the core envelopment of nuclear reactor at the Laguna Verde U-1 power plant

    International Nuclear Information System (INIS)

    Zamora R, L.; Medina F, A.

    1999-01-01

    The degradation of internal components at BWR type reactors is an important subject to consider in the performance availability of the power plant. The Wuergassen nuclear reactor license was confiscated due to the presence of cracking in the core envelopment. In consequence it is necessary carrying out a detailed study with the purpose to avoid these problems in the future. This report presents a review and analysis of documents and technical information referring to the core envelopment of a BWR/5/6 and the Laguna Verde Unit 1 nuclear reactor in Mexico. In this document are presented design data, documents about fabrication processes, and manufacturing of core envelopment. (Author)

  19. Classification of buildings mold threat using electronic nose

    Science.gov (United States)

    Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk

    2017-07-01

    Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.

  20. Derivation of design response spectra for analysis and testing of components and systems

    International Nuclear Information System (INIS)

    Krutzik, N.

    1996-01-01

    Some institutions participating in the Benchmark Project performed parallel calculations for the WWER-1000 Kozloduy NPP. The investigations were based on various mathematical models and procedures for consideration of soil-structure interaction effects, simultaneously applying uniform soil dynamic and seismological input data. The methods, mathematical models and dynamic response results were evaluated and discussed in detail and finally compared by means of different structural models and soil representations with the aim of deriving final enveloped and smoothed dynamic response data (benchmark response spectra). This should be used for requalification by analysis testing of the mechanical and electrical components and systems located in this type of reactor building

  1. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    International Nuclear Information System (INIS)

    Metcalf, Richard; Bevill, Aaron; Charlton, William; Bean, Robert

    2008-01-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of 'non-traditional' operating data, and exploration of new methods of identifying subtle events in transient processes

  2. Multi-layered breathing architectural envelope

    DEFF Research Database (Denmark)

    Lund Larsen, Andreas; Foged, Isak Worre; Jensen, Rasmus Lund

    2014-01-01

    A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage...

  3. Cost Allocation and Convex Data Envelopment

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tind, Jørgen

    such as Data Envelopment Analysis (DEA). The convexity constraint of the BCC model introduces a non-zero slack in the objective function of the multiplier problem and we show that the cost allocation rules discussed in this paper can be used as candidates to allocate this slack value on to the input (or output...

  4. Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes

    Science.gov (United States)

    Morozov, Yu. V.; Spektor, A. A.

    2017-11-01

    A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.

  5. Validating predictions from climate envelope models.

    Directory of Open Access Journals (Sweden)

    James I Watling

    Full Text Available Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species' distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967-1971 (t1 and evaluated using occurrence data from 1998-2002 (t2. Model sensitivity (the ability to correctly classify species presences was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on

  6. Validating predictions from climate envelope models

    Science.gov (United States)

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  7. Structural and functional adaptations of the mammalian nuclear envelope to meet the meiotic requirements.

    Science.gov (United States)

    Link, Jana; Jahn, Daniel; Alsheimer, Manfred

    2015-01-01

    Numerous studies in the past years provided definite evidence that the nuclear envelope is much more than just a simple barrier. It rather constitutes a multifunctional platform combining structural and dynamic features to fulfill many fundamental functions such as chromatin organization, regulation of transcription, signaling, but also structural duties like maintaining general nuclear architecture and shape. One additional and, without doubt, highly impressive aspect is the recently identified key function of selected nuclear envelope components in driving meiotic chromosome dynamics, which in turn is essential for accurate recombination and segregation of the homologous chromosomes. Here, we summarize the recent work identifying new key players in meiotic telomere attachment and movement and discuss the latest advances in our understanding of the actual function of the meiotic nuclear envelope.

  8. Novel Real-Time Flight Envelope Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  9. Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings

    International Nuclear Information System (INIS)

    Long, Linshuang; Ye, Hong; Gao, Yanfeng; Zou, Ruqiang

    2014-01-01

    Highlights: • VO 2 and PCM were combined in passive building application for the first time. • Synergetic performance of them is demonstrated in a full size room. • Synergetic application has a better performance than the solo ones. • The materials interact with each other in synergetic application. • ESI can be used to evaluate the performance of the synergetic application. - Abstract: One of the key methods to improve the energy saving performance of a building is to apply advanced materials or components to the building envelope. However, the two parts of a building’s envelope, the transparent one and the non-transparent one, are usually investigated individually by existing literature. In this study, vanadium dioxide (VO 2 ) glazing, an advanced energy-efficient element applied to the transparent parts of the building envelope, and phase change material (PCM), a typical thermal storage material used to improve the non-transparent parts of the building envelope, were adopted simultaneously for the first time. The synergetic performance of VO 2 glazing and PCM, demonstrated in a full-scale, lightweight, passive room, resulted in a significant improvement in the thermal comfort degree. The Energy Saving Index (ESI) is a simple and effective indicator that can be used to evaluate the passive application performance of a single energy-efficient material or component on a common standpoint. In this work, the index was broadened to evaluate the performance of more than one material, showing that ESI is feasible and favorable to analyze the coefficient application of several building materials and/or components. Using the ESI, the performance of the synergetic application was also compared with those of the sole materials, indicating that the synergetic application has a better performance during the cooling period. Furthermore the synergetic application involves an interplay rather than a simple combination of the energy-efficient materials. The

  10. Multi-component optical solitary waves

    DEFF Research Database (Denmark)

    Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.

    2000-01-01

    We discuss several novel types of multi-component (temporal and spatial) envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for highperformance computer networks......, multi-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons due to quasi-phase-matching in Fibonacci optical superlattices. (C) 2000 Elsevier Science B.V. All rights reserved....

  11. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Rafi eRashid

    2016-06-01

    Full Text Available Antimicrobial peptides (AMPs are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs target anionic lipids (e.g. phosphatidylglycerol (PG and cardiolipins (CL in the cell membrane and anionic components (e.g. lipopolysaccharide (LPS and lipoteichoic acid (LTA of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g. lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1 CAMP disruption mechanisms, (2 delocalization of membrane proteins and lipids by CAMPs, and (3 CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging and non-detergent-based membrane domain extraction.

  12. Hospitals Productivity Measurement Using Data Envelopment Analysis Technique.

    Science.gov (United States)

    Torabipour, Amin; Najarzadeh, Maryam; Arab, Mohammad; Farzianpour, Freshteh; Ghasemzadeh, Roya

    2014-11-01

    This study aimed to measure the hospital productivity using data envelopment analysis (DEA) technique and Malmquist indices. This is a cross sectional study in which the panel data were used in a 4 year period from 2007 to 2010. The research was implemented in 12 teaching and non-teaching hospitals of Ahvaz County. Data envelopment analysis technique and the Malmquist indices with an input-orientation approach, was used to analyze the data and estimation of productivity. Data were analyzed using the SPSS.18 and DEAP.2 software. Six hospitals (50%) had a value lower than 1, which represents an increase in total productivity and other hospitals were non-productive. the average of total productivity factor (TPF) was 1.024 for all hospitals, which represents a decrease in efficiency by 2.4% from 2007 to 2010. The average technical, technologic, scale and managerial efficiency change was 0.989, 1.008, 1.028, and 0.996 respectively. There was not a significant difference in mean productivity changes among teaching and non-teaching hospitals (P>0.05) (except in 2009 years). Productivity rate of hospitals had an increasing trend generally. However, the total average of productivity was decreased in hospitals. Besides, between the several components of total productivity, variation of technological efficiency had the highest impact on reduce of total average of productivity.

  13. Stress envelope of silicon carbide composites at elevated temperatures

    International Nuclear Information System (INIS)

    Nozawa, Takashi; Kim, Sunghun; Ozawa, Kazumi; Tanigawa, Hiroyasu

    2014-01-01

    To identify a comprehensive stress envelope, i.e., strength anisotropy map, of silicon carbide fiber-reinforced silicon carbide matrix composite (SiC/SiC composite) for practical component design, tensile and compressive tests were conducted using the small specimen test technique specifically tailored for high-temperature use. In-plane shear properties were, however, estimated using the off-axial tensile method and assuming that the mixed mode failure criterion, i.e., Tsai–Wu criterion, is valid for the composites. The preliminary test results indicate no significant degradation to either proportional limit stress (PLS) or fracture strength by tensile loading at temperatures below 1000 °C. A similarly good tolerance of compressive properties was identified at elevated temperatures, except for a slight degradation in PLS. With the high-temperature test data of tensile, compressive and in-plane shear properties, the stress envelopes at elevated temperatures were finally obtained. A slight reduction in the design limit was obvious at elevated temperatures when the compressive mode is dominant, whereas a negligibly small impact on the design is expected by considering the tensile loading case

  14. Stress envelope of silicon carbide composites at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, Takashi, E-mail: nozawa.takashi67@jaea.go.jp [Japan Atomic Energy Agency, 2-166 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Kim, Sunghun [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Ozawa, Kazumi; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2014-10-15

    To identify a comprehensive stress envelope, i.e., strength anisotropy map, of silicon carbide fiber-reinforced silicon carbide matrix composite (SiC/SiC composite) for practical component design, tensile and compressive tests were conducted using the small specimen test technique specifically tailored for high-temperature use. In-plane shear properties were, however, estimated using the off-axial tensile method and assuming that the mixed mode failure criterion, i.e., Tsai–Wu criterion, is valid for the composites. The preliminary test results indicate no significant degradation to either proportional limit stress (PLS) or fracture strength by tensile loading at temperatures below 1000 °C. A similarly good tolerance of compressive properties was identified at elevated temperatures, except for a slight degradation in PLS. With the high-temperature test data of tensile, compressive and in-plane shear properties, the stress envelopes at elevated temperatures were finally obtained. A slight reduction in the design limit was obvious at elevated temperatures when the compressive mode is dominant, whereas a negligibly small impact on the design is expected by considering the tensile loading case.

  15. Inversion of Auditory Spectrograms, Traditional Spectrograms, and Other Envelope Representations

    DEFF Research Database (Denmark)

    Decorsière, Remi Julien Blaise; Søndergaard, Peter Lempel; MacDonald, Ewen

    2015-01-01

    Envelope representations such as the auditory or traditional spectrogram can be defined by the set of envelopes from the outputs of a filterbank. Common envelope extraction methods discard information regarding the fast fluctuations, or phase, of the signal. Thus, it is difficult to invert, or re...... to the framework is proposed, which leads to a more accurate inversion of traditional spectrograms...

  16. 200 Area Deactivation Project Facilities Authorization Envelope Document

    International Nuclear Information System (INIS)

    DODD, E.N.

    2000-01-01

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation

  17. 14 CFR 27.87 - Height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... applicable power failure condition in paragraph (b) of this section, a limiting height-speed envelope must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-speed envelope. 27.87 Section 27.87... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.87 Height-speed envelope. (a) If there is any...

  18. 14 CFR 29.87 - Height-velocity envelope.

    Science.gov (United States)

    2010-01-01

    ... Category A engine isolation requirements, the height-velocity envelope for complete power failure must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a...

  19. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    Science.gov (United States)

    Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

  20. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    International Nuclear Information System (INIS)

    Jurco, B.; Schraml, S.; Wess, J.; Schupp, P.

    2000-01-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)

  1. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [Max-Planck-Institut fuer Mathematik, Bonn (Germany); Schraml, S.; Wess, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany); Schupp, P. [Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany)

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)

  2. Advanced Envelope Research for Factory Built Housing, Phase 3. Whole-House Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [Advanced Residential Integrated Energy Solutions (ARIES), New York, NY (United States); Mullens, M. [Advanced Residential Integrated Energy Solutions (ARIES), New York, NY (United States); Rath, P. [Advanced Residential Integrated Energy Solutions (ARIES), New York, NY (United States)

    2014-04-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. This work is part of a multiphase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). This report describes Phase 3, which was completed in two stages and continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.

  3. Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106

    Energy Technology Data Exchange (ETDEWEB)

    Esch, R.A.

    1997-04-14

    This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

  4. Envelope colour on thermal load in hot humid Hong Kong: Effect of hue, value, and chroma

    Institute of Scientific and Technical Information of China (English)

    VickyCHENG; EdwardNG

    2003-01-01

    Cooling energy consumption of a building can be significantly reduced by limiting solar heat gain through envelope, in which depends on the intensity of impinging solar radiation and on the colour of external surface. Albedo, from the thermal point of view, is the prime parameter of interest; however, it does appear to be too conceptual in practice. Architects, when considering choices of envelope colour, the actual decision is between various colours: yellow, blue, or green rather than a single numerical albedo. This study is to investigate the effect and magnitude of colour, in terms of visual qualities hue, value (lightness), and chroma (saturation), on thermal load of buildings. In the experiment, air temperatures inside test cells painted into different colours were measured, the results suggest that colour attribute: chroma has negligible effect on thermal performance of building envelope, while value has significant thermal effect. The effect of hue, as shown in this study, was insignificant, however further study might be needed as to obtain a clearer picture of its effect.

  5. System impact of energy efficient building refurbishment within a district heated region

    International Nuclear Information System (INIS)

    Lidberg, T.; Olofsson, T.; Trygg, L.

    2016-01-01

    The energy efficiency of the European building stock needs to be increased in order to fulfill the climate goals of the European Union. To be able to evaluate the impact of energy efficient refurbishment in matters of greenhouse gas emissions, it is necessary to apply a system perspective where not only the building but also the surrounding energy system is taken into consideration. This study examines the impact that energy efficient refurbishment of multi-family buildings has on the district heating and the electricity production. It also investigates the impact on electricity utilization and emissions of greenhouse gases. The results from the simulation of four energy efficiency building refurbishment packages were used to evaluate the impact on the district heating system. The packages were chosen to show the difference between refurbishment actions that increase the use of electricity when lowering the heat demand, and actions that lower the heat demand without increasing the electricity use. The energy system cost optimization modeling tool MODEST (Model for Optimization of Dynamic Energy Systems with Time-Dependent Components and Boundary Conditions) was used. When comparing two refurbishment packages with the same annual district heating use, this study shows that a package including changes in the building envelope decreases the greenhouse gas emissions more than a package including ventilation measures. - Highlights: • Choice of building refurbishment measures leads to differences in system impact. • Building refurbishment in district heating systems reduces co-produced electricity. • Valuing biomass as a limited resource is crucial when assessing global GHG impact. • Building envelope measures decrease GHG (greenhouse gas) emissions more than ventilation measures.

  6. Definition and means of maintaining the emergency notification and evacuation system portion of the plutonium finishing plant safety envelope

    International Nuclear Information System (INIS)

    WHITE, W.F.

    1999-01-01

    The Emergency Evacuation and Notification System provides information to the Plutonium Finishing Plant (PFP) Building Emergency Director to assist in determining appropriate emergency response, notifies personnel of the required response, and assists in their response. The report identifies the equipment in the Safety Envelope (SE) for this System and the Administrative, Maintenance, and Surveillance Procedures used to maintain the SE Equipment

  7. Definition and means of maintaining the emergency notification and evacuation system portion of the plutonium finishing plant safety envelope; TOPICAL

    International Nuclear Information System (INIS)

    WHITE, W.F.

    1999-01-01

    The Emergency Evacuation and Notification System provides information to the Plutonium Finishing Plant (PFP) Building Emergency Director to assist in determining appropriate emergency response, notifies personnel of the required response, and assists in their response. The report identifies the equipment in the Safety Envelope (SE) for this System and the Administrative, Maintenance, and Surveillance Procedures used to maintain the SE Equipment

  8. Definition and means of maintaining the emergency notification and evacuation system portion of the Plutonium Finishing Plant safety envelope

    International Nuclear Information System (INIS)

    White, W.F.

    1997-01-01

    The Emergency Evacuation and Notification System provides information to the PFP Building Emergency Director to assist in determining appropriate emergency response, notifies personnel of the required response, and assists in their response. The report identifies the equipment in the Safety Envelope (SE) for this System and the Administrative, Maintenance, and Surveillance Procedures used to maintain the SE Equipment

  9. Equivariant calculus in the differential envelope

    International Nuclear Information System (INIS)

    Kastler, D.

    1991-01-01

    The author shows how Z/2-graded cyclic cohomology is related to the equivariant calculus of S. Klimek, W. Kondracki, and A. Lesniewski (HUTMP 90/B247 (1990)). He uses the differential envelope of a complex unital differential algebra. After a presentation of fiber-preserved operators on equivariant functions valued in this algebra on a group he considers certain operators on this algebra. Finally he discusses explicitly the case G=Z/2. (HSI)

  10. Equivariant calculus in the differential envelope

    Energy Technology Data Exchange (ETDEWEB)

    Kastler, D. (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique)

    1991-01-01

    The author shows how Z/2-graded cyclic cohomology is related to the equivariant calculus of S. Klimek, W. Kondracki, and A. Lesniewski (HUTMP 90/B247 (1990)). He uses the differential envelope of a complex unital differential algebra. After a presentation of fiber-preserved operators on equivariant functions valued in this algebra on a group he considers certain operators on this algebra. Finally he discusses explicitly the case G=Z/2. (HSI).

  11. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  12. Development and Implementation of a Model-Driven Envelope Protection System for In-Flight Ice Contamination

    Science.gov (United States)

    Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  13. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    Science.gov (United States)

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  14. Spectral envelope sensitivity of musical instrument sounds.

    Science.gov (United States)

    Gunawan, David; Sen, D

    2008-01-01

    It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model.

  15. Retrofitting solutions for two different occupancy levels of educational buildings in tropics

    Science.gov (United States)

    Yang, Junjing; Pantazaras, Alexandros; Lee, Siew Eang; Santamouris, Mattheos

    2018-01-01

    Within the multi-functionality of educational buildings, the energy conservation potential can be very different. In addition, among different retrofitting solutions investigated involving interventions on the building envelope, ventilation strategies, artificial lighting systems as well as equipment upgrading, different saving potential would come from different aspects. The opportunities for energy saving potential from the overall point of view and from the detailed aspect view of different retrofitting solutions would be very useful and important for building renovation decision making. This study presents a detailed retrofitting study of two different educational buildings. One represents a building with average occupancy variation and containing mainly offices and labs. The other one represents a building with high occupancy variation and containing mainly lecture rooms and studios. This comparison of the results gives an idea of the different energy saving potential for different types of educational buildings. Principal component analysis is also adopted to investigate the detailed performance of one of the buildings which is influenced stronger by these retrofitting solutions.

  16. Velocity structure of protostellar envelopes: gravitational collapse and rotation

    International Nuclear Information System (INIS)

    Belloche, Arnaud

    2002-01-01

    Stars form from the gravitational collapse of pre-stellar condensations in molecular clouds. The major aim of this thesis is to compare the predictions of collapse models with observations of both very young (class 0) protostars and starless condensations in millimeter molecular lines. We wish to understand what determines the masses of forming stars and whether the initial conditions have an effect on the dynamical evolution of a condensation. Using a Monte-Carlo radiative transfer code, we analyze rotation and infall spectroscopic signatures to study the velocity structure of a sample of protostellar condensations. We show that the envelope of the class 0 protostar IRAM 04191 in the Taurus molecular cloud is undergoing both extended, subsonic infall and fast, differential rotation. We propose that the inner part of the envelope is a magnetically supercritical core in the process of decoupling from the ambient cloud still supported by the magnetic field. We suggest that the kinematical properties observed for IRAM 04191 are representative of the physical conditions characterizing isolated protostars shortly after point mass formation. On the other hand, a similar study for the pre-stellar condensations of the Rho Ophiuchi proto-cluster yields mass accretion rates that are an order of magnitude higher than in IRAM 04191. This suggests that individual protostellar collapse in clusters is induced by external disturbances. Moreover, we show that the condensations do not have time to orbit significantly through the proto-cluster gas before evolving into protostars and pre-main-sequence stars. This seems inconsistent with models which resort to dynamical interactions and competitive accretion to build up a mass spectrum comparable to the stellar initial mass function. We conclude that protostellar collapse is nearly spontaneous in regions of isolated star formation such as the Taurus cloud but probably strongly induced in proto-clusters. (author) [fr

  17. Foundation helps refurbish buildings

    International Nuclear Information System (INIS)

    Camenzind, B.

    2006-01-01

    This article looks at the activities of the Swiss 'Climate-Cent' foundation, which is helping support the energetic refurbishment of building envelopes. The conditions which have to be fulfilled to receive grants are explained. Work supported includes the replacement of windows and the insulation of roofs and attics as well as outside walls. Details on the financial support provided and examples of projects supported are given. The source of the finance needed to provide such support - a voluntary levy on petrol - and further support provided in certain Swiss cantons is commented on

  18. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  19. Country Report on Building Energy Codes in China

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  20. Country Report on Building Energy Codes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  1. Country Report on Building Energy Codes in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  2. Country Report on Building Energy Codes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  3. Country Report on Building Energy Codes in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  4. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Directory of Open Access Journals (Sweden)

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  5. Dispersion - does it degrade a pulse envelope

    International Nuclear Information System (INIS)

    Deighton, M.O.

    1985-01-01

    In hostile environments, transmitting information as ultrasonic Lamb wave pulses has advantages, since the stainless steel strip serving as a waveguide is very durable. Besides attenuation, velocity dispersion (inherent in Lamb waves) can be important even in fairly short guides. Theory shows that unlimited propagation of a pulsed r.f. envelope is possible, even with dispersion present. The constant group velocity needed would favour asub(o)-mode pulses over other modes, provided ordinary attenuation is small. An approximate formula indicates the useful range of a pulse, when group velocity does vary. (author)

  6. Snell Envelope with Small Probability Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Del Moral, Pierre, E-mail: Pierre.Del-Moral@inria.fr; Hu, Peng, E-mail: Peng.Hu@inria.fr [Universite de Bordeaux I, Centre INRIA Bordeaux et Sud-Ouest and Institut de Mathematiques de Bordeaux (France); Oudjane, Nadia, E-mail: Nadia.Oudjane@edf.fr [EDF R and D Clamart (France)

    2012-12-15

    We present a new algorithm to compute the Snell envelope in the specific case where the criteria to optimize is associated with a small probability or a rare event. This new approach combines the Stochastic Mesh approach of Broadie and Glasserman with a particle approximation scheme based on a specific change of measure designed to concentrate the computational effort in regions pointed out by the criteria. The theoretical analysis of this new algorithm provides non asymptotic convergence estimates. Finally, the numerical tests confirm the practical interest of this approach.

  7. DEA (data envelopment analysis)-assisted supporting measures for ground coupled heat pumps implementing in Italy: A case study

    International Nuclear Information System (INIS)

    Longo, L.; Colantoni, A.; Castellucci, S.; Carlini, M.; Vecchione, L.; Savuto, E.; Pallozzi, V.; Di Carlo, A.; Bocci, E.; Moneti, M.; Cocchi, S.; Boubaker, K.

    2015-01-01

    Nowadays, the increasing of the energy consumption is producing serious global warming issues. Mainly most of greenhouse gas emissions in developed countries come from building equipments. In this context, GCHPs (ground coupled heat pumps) are candidate solution as air conditioning systems in buildings due to their higher efficiency compared to conventional devices. Actually, ground coupled heat pump systems are widely, recognized among the most efficient and comfortable used systems. Nevertheless, economic efficiency of the ground coupled heat pumps has to be proved. In this study, DEA (data envelopment analyses) method is applied to a real case in Italy. - Highlights: • Original investigation in terms of energy demands in buildings. • Gathering conjoint classical and scientific analyses. • Presenting original DEA (data envelopment analysis) economic optimization scheme analyses. • Outlining economical feasibility of an efficient low enthalpy-geothermal plant with GCHP (ground coupled heat pump) exchangers.

  8. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  9. Economic Optimal HVAC Design for Hybrid GEOTABS Buildings and CO2 Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Damien Picard

    2018-02-01

    Full Text Available In the early design phase of a building, the task of the Heating, Ventilation and Air Conditioning (HVAC engineer is to propose an appropriate HVAC system for a given building. This system should provide thermal comfort to the building occupants at all time, meet the building owner’s specific requirements, and have minimal investment, running, maintenance and replacement costs (i.e., the total cost and energy use or environmental impact. Calculating these different aspects is highly time-consuming and the HVAC engineer will therefore only be able to compare a (very limited number of alternatives leading to suboptimal designs. This study presents therefore a Python tool that automates the generation of all possible scenarios for given thermal power profiles and energy load and a given database of HVAC components. The tool sizes each scenario properly, computes its present total cost (PC and the total CO 2 emissions associated with the building energy use. Finally, the different scenarios can be searched and classified to pick the most appropriate scenario. The tool uses static calculations based on standards, manufacturer data and basic assumptions similar to those made by engineers in the early design phase. The current version of the tool is further focused on hybrid GEOTABS building, which combines a GEOthermal heat pump with a Thermally Activated System (TABS. It should further be noted that the tool optimizes the HVAC system but not the building envelope, while, ideally, both should be simultaneously optimized.

  10. The influence of ventilated façade on sound insulation properties of envelope walls

    Directory of Open Access Journals (Sweden)

    Fišarová Zuzana

    2017-01-01

    Full Text Available Presented article deals with sound insulation properties of timber structures’ envelope walls. Particularly, the influence of heavy board ventilated façade on laboratory airborne sound insulation R and Rw in dB was studied. The installation method and gaps between façade boards can cause building defects originating in overrating the influence of ventilated cladding on envelope wall acoustic parameters. Real constructions were built for the experimental purposes and measurements, one with gaps between boards and one with simply eliminated gaps for mutual comparison. The results obtained were processed to make tables and graphs and to derive recommendations for the design of this type of constructions involving the general installation method of façade boards. Detailed results are depicted in conclusions.

  11. Buildings interoperability landscape - Draft

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Dave B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Stephan, Eric G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Widergren, Steven E. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-02-01

    Buildings are an integral part of our nation’s energy economy. The advancement in information and communications technology (ICT) has revolutionized energy management in industrial facilities and large commercial buildings. As ICT costs decrease and capabilities increase, buildings automation and energy management features are transforming the small-medium commercial and residential buildings sectors. A vision of a connected world in which equipment and systems within buildings coordinate with each other to efficiently meet their owners’ and occupants’ needs, and where buildings regularly transact business with other buildings and service providers (such as gas and electric service providers) is emerging. However, while the technology to support this collaboration has been demonstrated at various degrees of maturity, the integration frameworks and ecosystems of products that support the ability to easily install, maintain, and evolve building systems and their equipment components are struggling to nurture the fledging business propositions of their proponents.

  12. Grain formation in cool stellar envelopes

    International Nuclear Information System (INIS)

    Deguchi, S.

    1980-01-01

    The nucleation and growth of dust grains in the stellar envelope are investigated for the case of oxygen-rich stars, where the mass loss occurs as a result of the radiation pressure on the dust grains. The number density of grains, the final grain sizes, and the final amount of metals remaining in gaseous states are calculated based on the grain-nucleation theory proposed by Yamamoto and Hasegawa and Draine and Salpeter. It is shown that, even if we base our calculations on the Lothe-Pound nucleation rate equation instead of the classical, homogeneous nucleation rate equation, the proposed theory gives a number density of grains quite similar to that based on the classical rate equation. The approximate solution of the flow, in this paper, brings physical insight to the problem of how the formation of grains couples the flow passing the sonic point. The metals in the outer envelope remain in gaseous state by the amount of 1--10% of the initial content for the mass-loss rate of 10 -5 M/sub sun/ yr -1 and by less than 1% for the massloss are less than 3 x 10 -6 M/sub sun/ yr -1 . Species of metals condensed onto the grains are also discussed

  13. Chemistry of Protostellar Envelopes and Disks

    Science.gov (United States)

    Flores Rivera, Lizxandra; Terebey, Susan; Willacy, Karen

    2018-06-01

    Molecule formation is dynamic during the protostar collapse phase, driven by changes in temperature, density, and UV radiation as gas and dust flows from the envelope onto the forming protoplanetary disk. In this work, we compare physical models based on two different collapse solutions. We modeled the chemistry (created by Karen Willacy) for C18O to see how its abundance changes over time using as primary input parameters the temperature and density profile that were produced by the dust Radiative Transfer (MCRT) model called HOCHUNK3D from Whitney (2003). Given this model, we produce synthetic line emission maps from L1527 IRS to simulate the Class 0/I protostar L1527 IRS using RADMC3D code and compare them with previous observations from ALMA. High concentrations of gas phase molecules of C18O are found within the 20 AU in areas in the envelope that are close to the surface of the disk. In the outermost part of the disk surface, the C18O freezes out beyond 400 AU, showing a much reduced abundance where the temperature profile drops down below 25 K. In cold regions, the radiation field plays an important role in the chemistry.

  14. [An improved algorithm for electrohysterogram envelope extraction].

    Science.gov (United States)

    Lu, Yaosheng; Pan, Jie; Chen, Zhaoxia; Chen, Zhaoxia

    2017-02-01

    Extraction uterine contraction signal from abdominal uterine electromyogram(EMG) signal is considered as the most promising method to replace the traditional tocodynamometer(TOCO) for detecting uterine contractions activity. The traditional root mean square(RMS) algorithm has only some limited values in canceling the impulsive noise. In our study, an improved algorithm for uterine EMG envelope extraction was proposed to overcome the problem. Firstly, in our experiment, zero-crossing detection method was used to separate the burst of uterine electrical activity from the raw uterine EMG signal. After processing the separated signals by employing two filtering windows which have different width, we used the traditional RMS algorithm to extract uterus EMG envelope. To assess the performance of the algorithm, the improved algorithm was compared with two existing intensity of uterine electromyogram(IEMG) extraction algorithms. The results showed that the improved algorithm was better than the traditional ones in eliminating impulsive noise present in the uterine EMG signal. The measurement sensitivity and positive predictive value(PPV) of the improved algorithm were 0.952 and 0.922, respectively, which were not only significantly higher than the corresponding values(0.859 and 0.847) of the first comparison algorithm, but also higher than the values(0.928 and 0.877) of the second comparison algorithm. Thus the new method is reliable and effective.

  15. Solution of K-V envelope equations

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1995-04-01

    The envelope equations for a KV beam with space charge have been analyzed systematically by an e expansion followed by integrations. The focusing profile as a function of axial length is assumed to be symmetric but otherwise arbitrary. Given the bean current, emittance, and peak focusing field, we find the envelopes a(s) and b(s) and obtain , a max , σ, and σ 0 . Explicit results are presented for various truncations of the expansion. The zeroth order results correspond to those from the well-known smooth approximation; the same convenient format is retained for the higher order cases. The first order results, involving single correction terms, give 3--10 times better accuracy and are good to ∼1% at σ 0 = 70 degree. Third order gives a factor of 10--30 improvement over the smooth approximation and derived quantities accurate to ∼1% at σ 0 = 112 degree. The first order expressions are convenient design tools. They lend themselves to variable energy problems and have been applied to the design, construction, and testing of ESQ accelerators at LBL

  16. Solitons, envelope solitons in collisonless plasmas

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Watanabe, S.

    1977-08-01

    A review is given to extensive development of theoretical, computational and experimental studies of nonlinear wave propagation in collisionless plasmas. Firstly, the historical experiment of Ikezi et al. is discussed in comparison with theoretical analysis based on the Korteweg-de Vries equation. Systematic discrepancy between the observation and the theoretical prediction suggests that it is necessary to examine such as higher order mode coupling effect and contribution of trapped particles. Secondly, effects of the nonlinear Landau damping on the envelope solution of ion plasma wave is discussed on the basis of theoretical study of Ichikawa-Taniuti, experimental observation of Watanabe and numerical analysis of Yajima et al. Finally, a new type of evolution equation derived for the Alfven wave is examined in some detail. The rigorous solution obtained for this mode represents a new kind of envelope solution, in which both of its phase and amplitude are subject to modulation of comparable spatial extension. In conclusion, the emphasis will be placed on the fact that much more intensive experimental researches are expected to be done, since the powerful methods to disentangle various nonlinear evolution equations are now available for theoretical approach. (auth.)

  17. An Experimental Study of Cavitation Detection in a Centrifugal Pump Using Envelope Analysis

    Science.gov (United States)

    Tan, Chek Zin; Leong, M. Salman

    Cavitation represents one of the most common faults in pumps and could potentially lead to a series of failure in mechanical seal, impeller, bearing, shaft, motor, etc. In this work, an experimental rig was setup to investigate cavitation detection using vibration envelope analysis method, and measured parameters included sound, pressure and flow rate for feasibility of cavitation detection. The experiment testing included 3 operating points of the centrifugal pump (B.E.P, 90% of B.E.P and 80% of B.E.P). Suction pressure of the centrifugal pump was decreased gradually until the inception point of cavitation. Vibration measurements were undertaken at various locations including casing, bearing, suction and discharge flange of the centrifugal pump. Comparisons of envelope spectrums under cavitating and non-cavitating conditions were presented. Envelope analysis was proven useful in detecting cavitation over the 3 testing conditions. During the normal operating condition, vibration peak synchronous to rotational speed was more pronounced. It was however during cavitation condition, the half order sub-harmonic vibration component was clearly evident in the envelope spectrums undertaken at all measurement locations except at the pump bearing. The possible explanation of the strong sub-harmonic (½ of BPF) during cavitation existence in the centrifugal pump was due to insufficient time for the bubbles to collapse completely before the end of the single cycle.

  18. Building a good initial model for full-waveform inversion using frequency shift filter

    Science.gov (United States)

    Wang, Guanchao; Wang, Shangxu; Yuan, Sanyi; Lian, Shijie

    2018-05-01

    Accurate initial model or available low-frequency data is an important factor in the success of full waveform inversion (FWI). The low-frequency helps determine the kinematical relevant components, low-wavenumber of the velocity model, which are in turn needed to avoid FWI trap in local minima or cycle-skipping. However, in the field, acquiring data that common point of low- and high-frequency signal, then utilize the high-frequency data to obtain the low-wavenumber velocity model. It is well known that the instantaneous amplitude envelope of a wavelet is invariant under frequency shift. This means that resolution is constant for a given frequency bandwidth, and independent of the actual values of the frequencies. Based on this property, we develop a frequency shift filter (FSF) to build the relationship between low- and high-frequency information with a constant frequency bandwidth. After that, we can use the high-frequency information to get a plausible recovery of the low-wavenumber velocity model. Numerical results using synthetic data from the Marmousi and layer model demonstrate that our proposed envelope misfit function based on the frequency shift filter can build an initial model with more accurate long-wavelength components, when low-frequency signals are absent in recorded data.

  19. Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope

    Energy Technology Data Exchange (ETDEWEB)

    White, W.F.

    1997-05-13

    The purpose of this document is to provide the definition and means of maintaining the Safety Envelope (SE) related to the Criticality Alarm System (CAS). This document provides amplification of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements (OSR), WHC-SD-CP-OSR-010, Rev. 0, 1994, Section 3.1.2, Criticality Detectors and Alarms. This document, with its appendices, provides the following: (1) System functional requirements for determining system operability (Section 3); (2) A list of annotated system block diagrams which indicate the safety envelope boundaries (Appendix C); (3) A list of the Safety Class 1 and 2 Safety Envelope (SC-1/2 SE) equipment for input into the Master Component Index (Appendix B); (4) Functional requirements for individual SC-1/2 SE components, including appropriate setpoints and process parameters (Section 6 and Appendix A); (5) A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the SC-1/2 SE components as required by the LCO (Section 6 and Appendix A).

  20. Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope

    International Nuclear Information System (INIS)

    White, W.F.

    1997-01-01

    The purpose of this document is to provide the definition and means of maintaining the Safety Envelope (SE) related to the Criticality Alarm System (CAS). This document provides amplification of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements (OSR), WHC-SD-CP-OSR-010, Rev. 0, 1994, Section 3.1.2, Criticality Detectors and Alarms. This document, with its appendices, provides the following: (1) System functional requirements for determining system operability (Section 3); (2) A list of annotated system block diagrams which indicate the safety envelope boundaries (Appendix C); (3) A list of the Safety Class 1 and 2 Safety Envelope (SC-1/2 SE) equipment for input into the Master Component Index (Appendix B); (4) Functional requirements for individual SC-1/2 SE components, including appropriate setpoints and process parameters (Section 6 and Appendix A); (5) A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the SC-1/2 SE components as required by the LCO (Section 6 and Appendix A)

  1. Definition and Means of Maintaining the Criticality Prevention Design Features Portion of the PFP Safety Envelope

    International Nuclear Information System (INIS)

    RAMBLE, A.L.

    2000-01-01

    The purpose of this document is to record the technical evaluation of the Operational Safety Requirements described in the Plutonium Finishing Plant Final (PFP) Operational Safety Requirements, WHC-SD-CP-OSR-010. Rev. 0-N , Section 3.1.1, ''Criticality Prevention System.'' This document, with its appendices, provides the following: (1) The results of a review of Criticality Safety Analysis Reports (CSAR), later called Criticality Safety Evaluation Reports (CSER), and Criticality Prevention Specifications (CPS) to determine which equipment or components analyzed in the CSER or CPS are considered as one of the two unlikely, independent, and concurrent changes before a criticality accident is possible. (2) Evaluations of equipment or components to determine the safety boundary for the system (Section 4). (3) A list of essential drawings that show the safety system or component (Appendix A). (4) A list of the safety envelope (SE) equipment (Appendix B). (5) Functional requirements for the individual safety envelope equipment (Sections 3 and 4). (6) A list of the operational and surveillance procedures necessary to maintain the system equipment within the safety envelope (Section 5)

  2. Mechanism of protein import across the chloroplast envelope.

    Science.gov (United States)

    Chen, K; Chen, X; Schnell, D J

    2000-01-01

    The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.

  3. Adaptive Flight Envelope Estimation and Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, in collaboration with the Georgia Institute of Technology, proposes to develop and demonstrate an innovative flight envelope estimation and...

  4. Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2014-01-01

    According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  5. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  6. Buildings exposed to fire

    International Nuclear Information System (INIS)

    1987-01-01

    The 24 lectures presented to the colloquium cover the following subject fields: (1) Behaviour of structural components exposed to fire; (2) Behaviour of building materials exposed to fire; (3) Thermal processes; (4) Safety related, theoretical studies. (PW) [de

  7. Radiative transfer in spherical circumstellar dust envelopes. III. Dust envelope models of some well known infrared stars

    International Nuclear Information System (INIS)

    Apruzese, J.P.

    1975-01-01

    The radiative transfer techniques described elsewhere by the author have been employed to construct dust envelope models of several well known infrared stars. The resulting calculations indicate that the infrared emissivity of circumstellar grains generally must be higher than that which many calculations of small nonsilicate grains yield. This conclusion is dependent to some degree on the (unknown) size of the stellar envelopes considered, but is quite firm in the case of the spatially resolved envelope of IRC+10216. Further observations of the spatial distribution of the infrared radiation from stellar envelopes will be invaluable in deciphering the properties of the circumstellar grains

  8. Polarimetry and physics of Be star envelopes

    International Nuclear Information System (INIS)

    Coyne, G.V.; McLean, I.S.

    1982-01-01

    A review of the most recent developments in polarization studies of Be stars is presented. New polarization techniques for high-resolution spectropolarimetry and for near infrared polarimetry are described and a wide range of new observations are discussed. These include broad-band, intermediate-band and multichannel observations of the continuum polarization of Be stars in the wavelength interval 0.3-2.2 microns, high resolution (0.5 A) line profile polarimetry of a few stars and surveys of many stars for the purposes of statistical analyses. The physical significance of the observational material is discussed in the light of recent theoretical models. Emphasis is placed on the physical and geometrical parameters of Be star envelopes which polarimetry helps to determine. (Auth.)

  9. Enveloping branes and brane-world singularities

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios; Cotsakis, Spiros [CERN-Theory Division, Department of Physics, Geneva 23 (Switzerland); Klaoudatou, Ifigeneia [University of the Aegean, Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering, Samos (Greece)

    2014-12-01

    The existence of envelopes is studied for systems of differential equations in connection with the method of asymptotic splittings which allows one to determine the singularity structure of the solutions. The result is applied to brane-worlds consisting of a 3-brane in a five-dimensional bulk, in the presence of an analog of a bulk perfect fluid parameterizing a generic class of bulk matter. We find that all flat brane solutions suffer from a finite-distance singularity contrary to previous claims. We then study the possibility of avoiding finite-distance singularities by cutting the bulk and gluing regular solutions at the position of the brane. Further imposing physical conditions such as finite Planck mass on the brane and positive energy conditions on the bulk fluid, excludes, however, this possibility as well. (orig.)

  10. Performance measurement with fuzzy data envelopment analysis

    CERN Document Server

    Tavana, Madjid

    2014-01-01

    The intensity of global competition and ever-increasing economic uncertainties has led organizations to search for more efficient and effective ways to manage their business operations.  Data envelopment analysis (DEA) has been widely used as a conceptually simple yet powerful tool for evaluating organizational productivity and performance. Fuzzy DEA (FDEA) is a promising extension of the conventional DEA proposed for dealing with imprecise and ambiguous data in performance measurement problems. This book is the first volume in the literature to present the state-of-the-art developments and applications of FDEA. It is designed for students, educators, researchers, consultants and practicing managers in business, industry, and government with a basic understanding of the DEA and fuzzy logic concepts.

  11. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  12. Data envelopment analysis of randomized ranks

    Directory of Open Access Journals (Sweden)

    Sant'Anna Annibal P.

    2002-01-01

    Full Text Available Probabilities and odds, derived from vectors of ranks, are here compared as measures of efficiency of decision-making units (DMUs. These measures are computed with the goal of providing preliminary information before starting a Data Envelopment Analysis (DEA or the application of any other evaluation or composition of preferences methodology. Preferences, quality and productivity evaluations are usually measured with errors or subject to influence of other random disturbances. Reducing evaluations to ranks and treating the ranks as estimates of location parameters of random variables, we are able to compute the probability of each DMU being classified as the best according to the consumption of each input and the production of each output. Employing the probabilities of being the best as efficiency measures, we stretch distances between the most efficient units. We combine these partial probabilities in a global efficiency score determined in terms of proximity to the efficiency frontier.

  13. Simulation Tests in Whole Building Heat and Moisture Transfer

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut Hannele; Woloszyn, Monika

    2006-01-01

    An important part of the International Energy Agency project, ECBCS, Annex 41 is about modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling deals with all most relevant elements of buildings: The indoor air, the building envelope...

  14. Chaetomium and Stachybotrys in water-damaged buildings

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Lewinska, Anna Malgorzata; Nielsen, Jakob Blæsbjerg

    Fungal growth occurs when parts of the building envelope get very wet due to unfortunate combinations of factors, e.g. thermal bridges/lack of ventilation, shoddy foundations/flooding or leaks in build-in pipes. Chaetomium and Stachybotrys are not as abundant as Penicillium and Aspergillus (Table 1...

  15. Enhanced conformational sampling using enveloping distribution sampling.

    Science.gov (United States)

    Lin, Zhixiong; van Gunsteren, Wilfred F

    2013-10-14

    To lessen the problem of insufficient conformational sampling in biomolecular simulations is still a major challenge in computational biochemistry. In this article, an application of the method of enveloping distribution sampling (EDS) is proposed that addresses this challenge and its sampling efficiency is demonstrated in simulations of a hexa-β-peptide whose conformational equilibrium encompasses two different helical folds, i.e., a right-handed 2.7(10∕12)-helix and a left-handed 3(14)-helix, separated by a high energy barrier. Standard MD simulations of this peptide using the GROMOS 53A6 force field did not reach convergence of the free enthalpy difference between the two helices even after 500 ns of simulation time. The use of soft-core non-bonded interactions in the centre of the peptide did enhance the number of transitions between the helices, but at the same time led to neglect of relevant helical configurations. In the simulations of a two-state EDS reference Hamiltonian that envelops both the physical peptide and the soft-core peptide, sampling of the conformational space of the physical peptide ensures that physically relevant conformations can be visited, and sampling of the conformational space of the soft-core peptide helps to enhance the transitions between the two helices. The EDS simulations sampled many more transitions between the two helices and showed much faster convergence of the relative free enthalpy of the two helices compared with the standard MD simulations with only a slightly larger computational effort to determine optimized EDS parameters. Combined with various methods to smoothen the potential energy surface, the proposed EDS application will be a powerful technique to enhance the sampling efficiency in biomolecular simulations.

  16. Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis

    DEFF Research Database (Denmark)

    Jansson, Michael

    This paper derives asymptotic power envelopes for tests of the unit root hypothesis in a zero-mean AR(1) model. The power envelopes are derived using the limits of experiments approach and are semiparametric in the sense that the underlying error distribution is treated as an unknown...

  17. Full waveform inversion using envelope-based global correlation norm

    Science.gov (United States)

    Oh, Ju-Won; Alkhalifah, Tariq

    2018-05-01

    To increase the feasibility of full waveform inversion on real data, we suggest a new objective function, which is defined as the global correlation of the envelopes of modelled and observed data. The envelope-based global correlation norm has the advantage of the envelope inversion that generates artificial low-frequency information, which provides the possibility to recover long-wavelength structure in an early stage. In addition, the envelope-based global correlation norm maintains the advantage of the global correlation norm, which reduces the sensitivity of the misfit to amplitude errors so that the performance of inversion on real data can be enhanced when the exact source wavelet is not available and more complex physics are ignored. Through the synthetic example for 2-D SEG/EAGE overthrust model with inaccurate source wavelet, we compare the performance of four different approaches, which are the least-squares waveform inversion, least-squares envelope inversion, global correlation norm and envelope-based global correlation norm. Finally, we apply the envelope-based global correlation norm on the 3-D Ocean Bottom Cable (OBC) data from the North Sea. The envelope-based global correlation norm captures the strong reflections from the high-velocity caprock and generates artificial low-frequency reflection energy that helps us recover long-wavelength structure of the model domain in the early stages. From this long-wavelength model, the conventional global correlation norm is sequentially applied to invert for higher-resolution features of the model.

  18. Calculation of CWKB envelope in boson and fermion productions

    Indian Academy of Sciences (India)

    Abstract. We present the calculation of envelope of boson and of both low- and high- mass fermion production at the end of inflation when the coherently oscillating inflatons decay into bosons and fermions. We consider three different models of inflation and use. CWKB technique to calculate the envelope to understand the ...

  19. 14 CFR 29.1517 - Limiting height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of... following power failure, the range of heights and its variation with forward speed must be established...

  20. Beam envelope profile of non-centrosymmetric polygonal phase space

    International Nuclear Information System (INIS)

    Chen Yinbao; Xie Xi

    1984-01-01

    The general theory of beam envelope profile of non-centrosymmetric polygonal phase space is developed. By means of this theory the beam envelope profile of non-centrosymmetric polygonal phase space can be calculated directly. An example is carried out in detail to show the practical application of the theory

  1. Neural representation in the auditory midbrain of the envelope of vocalizations based on a peripheral ear model

    Directory of Open Access Journals (Sweden)

    Thilo eRode

    2013-10-01

    Full Text Available The auditory midbrain implant (AMI consists of a single shank array (20 sites for stimulation along the tonotopic axis of the central nucleus of the inferior colliculus (ICC and has been safely implanted in deaf patients who cannot benefit from a cochlear implant (CI. The AMI improves lip-reading abilities and environmental awareness in the implanted patients. However, the AMI cannot achieve the high levels of speech perception possible with the CI. It appears the AMI can transmit sufficient spectral cues but with limited temporal cues required for speech understanding. Currently, the AMI uses a CI-based strategy, which was originally designed to stimulate each frequency region along the cochlea with amplitude-modulated pulse trains matching the envelope of the bandpass-filtered sound components. However, it is unclear if this type of stimulation with only a single site within each frequency lamina of the ICC can elicit sufficient temporal cues for speech perception. At least speech understanding in quiet is still possible with envelope cues as low as 50 Hz. Therefore, we investigated how ICC neurons follow the bandpass-filtered envelope structure of natural stimuli in ketamine-anesthetized guinea pigs. We identified a subset of ICC neurons that could closely follow the envelope structure (up to ~100 Hz of a diverse set of species-specific calls, which was revealed by using a peripheral ear model to estimate the true bandpass-filtered envelopes observed by the brain. Although previous studies have suggested a complex neural transformation from the auditory nerve to the ICC, our data suggest that the brain maintains a robust temporal code in a subset of ICC neurons matching the envelope structure of natural stimuli. Clinically, these findings suggest that a CI-based strategy may still be effective for the AMI if the appropriate neurons are entrained to the envelope of the acoustic stimulus and can transmit sufficient temporal cues to higher

  2. Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing.

    Directory of Open Access Journals (Sweden)

    Douglas E H Hartley

    Full Text Available Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs. In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps was assessed in response to dichotically-presented i sinusoidal amplitude-modulated (SAM and ii half-wave rectified (HWR tones (100-ms duration; 70 dB SPL presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli

  3. Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses.

    Science.gov (United States)

    Fay, Nikta; Panté, Nelly

    2015-06-01

    The nuclear import of viral genomes is an important step of the infectious cycle for viruses that replicate in the nucleus of their host cells. Although most viruses use the cellular nuclear import machinery or some components of this machinery, others have developed sophisticated ways to reach the nucleus. Some of these have been known for some time; however, recent studies have changed our understanding of how some non-enveloped DNA viruses access the nucleus. For example, parvoviruses enter the nucleus through small disruptions of the nuclear membranes and nuclear lamina, and adenovirus tugs at the nuclear pore complex, using kinesin-1, to disassemble their capsids and deliver viral proteins and genomes into the nucleus. Here we review recent findings of the nuclear import strategies of three small non-enveloped DNA viruses, including adenovirus, parvovirus, and the polyomavirus simian virus 40. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Re-configurable digital receiver for optically envelope detected half cycle BPSK and MSK radio-on-fiber signals

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Prince, Kamau; Zibar, Darko

    2011-01-01

    We present the first known integration of a digital receiver into optically envelope detection radio-on-fiber systems. We also present a re-configurable scheme for two different types of optically envelope detected wireless signals while keeping the complexity of used optical components low. Our...... novel digital receiver consists of a digital signal processing unit integrating functions such as filtering, peak-powers detection, symbol synchronization and signal demodulation for optically envelope detected half-cycle binary phase-shift-keying and minimum-shift-keying signals. Furthermore, radio......-frequency signal down-conversion is not required in our proposed approach; simplifying evens more the optical receiver front-end. We experimentally demonstrate error-free optical transmission (bit-error rate corresponding to 10−3 related to FEC-compatible levels) for both 416.6 Mbit/s half-cycle binary phase...

  5. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    Science.gov (United States)

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Use of response envelopes for seismic margin assessment of reinforced concrete walls and slabs

    Energy Technology Data Exchange (ETDEWEB)

    Ile, Nicolas; Frau, Alberto, E-mail: alberto.frau@cea.fr

    2017-04-01

    Highlights: • Proposal of a method for application of the elliptical envelope to RC shell elements. • Proposal of new algorithms for the seismic margin evaluation for RC shell elements. • Verification of a RC wall 3D structure, using the proposed assessment approach. - Abstract: Seismic safety evaluations of existing nuclear facilities are usually based on the assumption of structural linearity. For the design basis earthquake (DBE), it is reasonable to apply a conventional evaluation of the seismic safety of building structures and carry out a linear elastic analysis to assess the load effects on structural elements. Estimating the seismic capacity of a structural element requires an estimation of the critical combination of responses acting in this structural element and compare this combination with the capacity of the element. By exploiting the response-spectrum-based procedure for predicting the response envelopes in linear structures formulated by Menun and Der Kiureghian (2000a), algorithms are developed for the seismic margin assessment of reinforced concrete shell finite elements. These algorithms facilitate the comparison of the response-spectrum-based envelopes to prescribed capacity surfaces for the purpose of assessing the safety margin of this kind of structures. The practical application of elliptical response envelopes in case of shell finite elements is based on the use of layer models such as those developed by Marti (1990), which transfer the generalized stress field to three layers under the assumption that the two outer layers carry membrane forces and the internal layer carries only the out-of-plane shears. The utility of the assessment approach is discussed with reference to a case study of a 3D structure made of reinforced concrete walls.

  7. Use of response envelopes for seismic margin assessment of reinforced concrete walls and slabs

    International Nuclear Information System (INIS)

    Ile, Nicolas; Frau, Alberto

    2017-01-01

    Highlights: • Proposal of a method for application of the elliptical envelope to RC shell elements. • Proposal of new algorithms for the seismic margin evaluation for RC shell elements. • Verification of a RC wall 3D structure, using the proposed assessment approach. - Abstract: Seismic safety evaluations of existing nuclear facilities are usually based on the assumption of structural linearity. For the design basis earthquake (DBE), it is reasonable to apply a conventional evaluation of the seismic safety of building structures and carry out a linear elastic analysis to assess the load effects on structural elements. Estimating the seismic capacity of a structural element requires an estimation of the critical combination of responses acting in this structural element and compare this combination with the capacity of the element. By exploiting the response-spectrum-based procedure for predicting the response envelopes in linear structures formulated by Menun and Der Kiureghian (2000a), algorithms are developed for the seismic margin assessment of reinforced concrete shell finite elements. These algorithms facilitate the comparison of the response-spectrum-based envelopes to prescribed capacity surfaces for the purpose of assessing the safety margin of this kind of structures. The practical application of elliptical response envelopes in case of shell finite elements is based on the use of layer models such as those developed by Marti (1990), which transfer the generalized stress field to three layers under the assumption that the two outer layers carry membrane forces and the internal layer carries only the out-of-plane shears. The utility of the assessment approach is discussed with reference to a case study of a 3D structure made of reinforced concrete walls.

  8. Building Languages

    Science.gov (United States)

    ... Glossary Contact Information Information For… Media Policy Makers Building Languages Recommend on Facebook Tweet Share Compartir Communicating ... any speech and only very loud sounds. Close × “Building Blocks” “Building Blocks” refers to the different skills ...

  9. Protein composition of the hepatitis A virus quasi-envelope.

    Science.gov (United States)

    McKnight, Kevin L; Xie, Ling; González-López, Olga; Rivera-Serrano, Efraín E; Chen, Xian; Lemon, Stanley M

    2017-06-20

    The Picornaviridae are a diverse family of RNA viruses including many pathogens of medical and veterinary importance. Classically considered "nonenveloped," recent studies show that some picornaviruses, notably hepatitis A virus (HAV; genus Hepatovirus) and some members of the Enterovirus genus, are released from cells nonlytically in membranous vesicles. To better understand the biogenesis of quasi-enveloped HAV (eHAV) virions, we conducted a quantitative proteomics analysis of eHAV purified from cell-culture supernatant fluids by isopycnic ultracentrifugation. Amino acid-coded mass tagging (AACT) with stable isotopes followed by tandem mass spectrometry sequencing and AACT quantitation of peptides provided unambiguous identification of proteins associated with eHAV versus unrelated extracellular vesicles with similar buoyant density. Multiple peptides were identified from HAV capsid proteins (53.7% coverage), but none from nonstructural proteins, indicating capsids are packaged as cargo into eHAV vesicles via a highly specific sorting process. Other eHAV-associated proteins ( n = 105) were significantly enriched for components of the endolysosomal system (>60%, P hepatitis A. No LC3-related peptides were identified by mass spectrometry. RNAi depletion studies confirmed that ESCRT-III proteins, particularly CHMP2A, function in eHAV biogenesis. In addition to identifying surface markers of eHAV vesicles, the results support an exosome-like mechanism of eHAV egress involving endosomal budding of HAV capsids into multivesicular bodies.

  10. Moisture effect on thermal conductivity of some major elements of a typical Libyan house envelope

    International Nuclear Information System (INIS)

    Suleiman, Bashir M

    2006-01-01

    The thermal conductivity and the assessment of moisture effect on building materials are essential for the calculation of the thermal loads on houses. Building materials such as simple units e.g. bricks, tiles, cement plasters, mortar and ground soils are investigated in this work. In the eastern coastal province of Libya, old buildings have thick walls (more than 50 cm thick made of mixed clay and stones) and consequently have good capacitive insulation. On the other hand, the relatively new houses have thin walls and need the addition of insulating materials. Unfortunately, these new houses were constructed without having enough technical data on the thermal properties of building materials and thermal loads were not considered. This leads to uncomfortable living conditions during hot and humid summers and cold and wet winters. This article reports the thermal conductivity values of three types of locally produced building materials used in the construction of a typical Libyan house envelope and gives suggestions to improve the thermal performance of such envelopes. The transient plane source technique (TPS) is used to measure the thermal conductivity of these materials at an average room temperature of 25 deg. C. The TPS technique uses a resistive heater pattern (TPS element) that is cut from a thin sheet of metal and covered on both sides with thin layers of an insulating material. The TPS element/sensor is used both as a heat source and as a temperature sensor. This technique has the dual advantage of short measuring time and low temperature rise (around 1 K) across the sample. This will prevent a non-uniform moisture distribution that may arise when the temperature difference across the wet samples is maintained for a long time. In addition, the flat thin shape of the TPS element substantially reduces the contact resistance between the sample and the sensor. More details about the TPS technique are included

  11. The limited role of recombination energy in common envelope removal

    Science.gov (United States)

    Grichener, Aldana; Sabach, Efrat; Soker, Noam

    2018-05-01

    We calculate the outward energy transport time by convection and photon diffusion in an inflated common envelope and find this time to be shorter than the envelope expansion time. We conclude therefore that most of the hydrogen recombination energy ends in radiation rather than in kinetic energy of the outflowing envelope. We use the stellar evolution code MESA and inject energy inside the envelope of an asymptotic giant branch star to mimic energy deposition by a spiraling-in stellar companion. During 1.7 years the envelope expands by a factor of more than 2. Along the entire evolution the convection can carry the energy very efficiently outwards, to the radius where radiative transfer becomes more efficient. The total energy transport time stays within several months, shorter than the dynamical time of the envelope. Had we included rapid mass loss, as is expected in the common envelope evolution, the energy transport time would have been even shorter. It seems that calculations that assume that most of the recombination energy ends in the outflowing gas might be inaccurate.

  12. Adaptive building skin structures

    International Nuclear Information System (INIS)

    Del Grosso, A E; Basso, P

    2010-01-01

    The concept of adaptive and morphing structures has gained considerable attention in the recent years in many fields of engineering. In civil engineering very few practical applications are reported to date however. Non-conventional structural concepts like deployable, inflatable and morphing structures may indeed provide innovative solutions to some of the problems that the construction industry is being called to face. To give some examples, searches for low-energy consumption or even energy-harvesting green buildings are amongst such problems. This paper first presents a review of the above problems and technologies, which shows how the solution to these problems requires a multidisciplinary approach, involving the integration of architectural and engineering disciplines. The discussion continues with the presentation of a possible application of two adaptive and dynamically morphing structures which are proposed for the realization of an acoustic envelope. The core of the two applications is the use of a novel optimization process which leads the search for optimal solutions by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope is ensured by the virtual force density method

  13. Critical point analysis of phase envelope diagram

    Energy Technology Data Exchange (ETDEWEB)

    Soetikno, Darmadi; Siagian, Ucok W. R. [Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id; Puspita, Dila, E-mail: rkusdiantara@s.itb.ac.id; Sidarto, Kuntjoro A., E-mail: rkusdiantara@s.itb.ac.id; Soewono, Edy; Gunawan, Agus Y. [Department of Mathematics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  14. Critical point analysis of phase envelope diagram

    International Nuclear Information System (INIS)

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Soewono, Edy; Gunawan, Agus Y.

    2014-01-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab

  15. The eikonal equation, envelopes and contact transformations

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Kamran, Niky; Newman, Ezra T

    2003-01-01

    We begin with an arbitrary but given conformal Lorentzian metric on an open neighbourhood, U, of a four-dimensional manifold (spacetime) and study families of solutions of the eikonal equation. In particular, the families that are of interest to us are the complete solutions. Their level surfaces form a two-parameter (points of S 2 ) family of foliations of U. We show that, from such a complete solution, it is possible to derive a pair of second-order PDEs defined solely on the parameter space S 2 , i.e., they have no reference to the spacetime points. We then show that if one uses the classical envelope method for the construction of new complete solutions from any given complete solution, then the new pair of PDEs (found from the new complete solution) is related to the old pair by contact transformations in the second jet bundle over S 2 . Further, we demonstrate that the pair of second-order PDEs obtained in this manner from any complete solution lies in a subclass of all pairs of second-order PDEs defined by the vanishing of a certain function obtained from the pair and is referred to as the generalized-Wuenschmann invariant. For completeness we briefly discuss the analogous issues associated with the eikonal equation in three dimensions. Finally we point out that conformally invariant geometric structures from the Lorentzian manifold have natural counterparts in the second jet bundle over S 2 on which the pair of PDEs lives

  16. Ecosystem functioning is enveloped by hydrometeorological variability.

    Science.gov (United States)

    Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris

    2017-09-01

    Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.

  17. Fullerenes and fulleranes in circumstellar envelopes

    International Nuclear Information System (INIS)

    Zhang, Yong; Kwok, Sun; Sadjadi, SeyedAbdolreza

    2016-01-01

    Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C_6_0 and C"+ _6_0 in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C"+ _6_0 as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene- related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C_6_0 is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry. (paper)

  18. Building the perfect PC

    CERN Document Server

    Thompson, Robert Bruce

    2006-01-01

    This popular Build-It-Yourself (BIY) PC book covers everything you want to know about building your own system: Planning and picking out the right components, step-by-step instructions for assembling your perfect PC, and an insightful discussion of why you'd want to do it in the first place. Most big brand computers from HP, Dell and others use lower-quality components so they can meet their aggressive pricing targets. But component manufacturers also make high-quality parts that you can either purchase directly, or obtain through distributors and resellers. Consumers and corporations

  19. Economical optimization of building elements for use in design of nearly zero energy buildings

    DEFF Research Database (Denmark)

    Hansen, Sanne

    2012-01-01

    Nearly zero energy buildings are to become a requirement as part of the European energy policy. There are many ways of designing nearly zero energy buildings, but there is a lack of knowledge on how to end up with the most economical optimal solution. Therefore this paper present a method...... for finding the economical optimal solutions based on the use of the cost of conserved energy for each main building envelope part and building service system and cost of produced energy for each energy producing system. By use of information on construction cost and developed models of the yearly energy use...

  20. Building thermography as a tool in energy audits and building commissioning procedure

    Science.gov (United States)

    Kauppinen, Timo

    2007-04-01

    A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. This procedure will confirm the precise documentation of client's goals, definition of planning goals and the performance of the building. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper the results of one pilot building (a school) will be presented. In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential. The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.

  1. 基于主成分-聚类分析法的建筑节能气候区划%Further climatic zoning of building energy efficiency based on principal component analysis and cluster analysis

    Institute of Scientific and Technical Information of China (English)

    张慧玲; 付祥钊

    2012-01-01

    Taking HDD18, CDD26, average temperature of the coldest month, average temperature of the hottest month, solar radiation in winter, solar radiation in summer, humidity ratio in winter and humidity ratio in summer as division indexes based on the analysis of climate indexes impacting the building cooling and heating energy consumptions, applies the principal component analysis and cluster analysis to building energy efficiency climatic zoning of the 270 cities in China, which are divided into the severe-cold dry heat high-solar-radiation zone, severe-cold cool high-solar-radiation zone, severe-cold summer free zone, cold slight-hot zone, temperate-hot-humid zone, temperate-cool zone and raw hot-wet zone. Describes the main climatic characteristics and geographic distribution of the seven climate zones, and clarifies the key point of building energy efficiency and the appropriate technical strategies respectively.%通过分析影响建筑冷热耗量的气候指标,提出了以采暖度日数HDD18、空调度日数CDD26、最冷月平均温度、最热月平均温度、冬季太阳辐射热量、夏季太阳辐射热量、冬季含湿量和夏季含湿量8个气候指标作为建筑节能气候区划指标,采用主成分分析与聚类分析相结合的区划方法对我国270个城市进行了建筑节能气候区划,划分为严寒干热高辐区、严寒凉爽高辐区、严寒无夏区、寒冷微热区、温和炎热湿润区、温和凉爽区和阴冷湿热区,介绍了这7个气候区的主要气候特征和主要的地理范围,明确了各区的建筑节能重点和适宜的技术策略.

  2. Office Building, Roskilde, Denmark. Parkvænget 25, 4000 Roskilde

    DEFF Research Database (Denmark)

    Rose, Jørgen; Thomsen, Kirsten Engelund

    Built in 1968 the office building was a typical precast concrete building with a very limited level of insulation. In 1991 the building envelope was renovated and insulation was added to the wall (175 mm) and windows were replaced with traditional double-glazed windows. The main objective...

  3. DATA ENVELOPMENT ANALYSIS OF BANKING SECTOR IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Md. Rashedul Hoque

    2012-05-01

    Full Text Available Banking sector of Bangladesh is flourishing and contributing to its economy. In this aspect measuring efficiency is important. Data Envelopment Analysis technique is used for this purpose. The data are collected from the annual reports of twenty four different banks in Bangladesh. Data Envelopment Analysis is mainly of two types - constant returns to scale and variable returns to scale. Since this study attempts to maximize output, so the output oriented Data Envelopment Analysis is used. The most efficient bank is one that obtains the highest efficiency score.

  4. A Search for Phosphine in Circumstellar Envelopes: PH3 in IRC +10216 and CRL 2688?

    Science.gov (United States)

    Tenenbaum, E. D.; Ziurys, L. M.

    2008-06-01

    We present the results of a search for the JK = 10→ 00 transition of PH3 (phosphine) at 267 GHz toward several circumstellar envelopes using the Arizona Radio Observatory 10 m Submillimeter Telescope (SMT). In the carbon-rich shells of IRC +10216 and CRL 2688, we have detected emission lines exactly at the PH3 frequency. Toward the oxygen-rich supergiant VY Canis Majoris, only an upper limit was obtained, while in the evolved carbon-rich proto-planetary nebula CRL 618, the transition is contaminated by vibrationally excited HC3N (ν7 = 4). The line shape in IRC +10216 appears to consist of two distinct components: a flat-topped profile with a width of ~28 km s-1, as is typical for this source, and a narrower feature approximately 4 km s-1 wide. The narrow component likely arises from the inner envelope (r < 8R*) where the gas has not reached the terminal expansion velocity, or it is nonthermal emission. Based on the broader component, the abundance of PH3 with respect to H2 is estimated to be 5 × 10-8 in a region with a radius of r < 150R*. If the narrower component is thermal, it implies a phosphine abundance of ~5 × 10-7 close to the stellar photosphere (r < 8R*). In CRL 2688, the PH3 abundance is less constrained, with plausible values ranging from 3 × 10-8 to 4 × 10-7, assuming a spherical distribution. Phosphine appears to be present in large concentrations in the inner envelope of C-rich AGB stars, and thus may function as a parent molecule for other phosphorus species.

  5. Testing second order cyclostationarity in the squared envelope spectrum of non-white vibration signals

    Science.gov (United States)

    Borghesani, P.; Pennacchi, P.; Ricci, R.; Chatterton, S.

    2013-10-01

    Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.

  6. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export.

    Science.gov (United States)

    Li, Ping; Noegel, Angelika A

    2015-11-16

    Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the l I: nker of N: ucleoskeleton and C: ytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Economic Energy Savings Potential in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  8. Variation of radon exhalation on building materials

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Wang Chunhong; Pan Ziqiang; Zhang Yonggui; Ji Dong

    2009-01-01

    The 19 samples from different building material factories were collected for four kinds of building materials. The activity concentration and radon exhalation of building materials were measured. The radon exhalations of building materials are not obviously different if the component is same and the processes of building materials are similar. However, the radon exhalations of same kind of building material are greatly different if the components are different and the processes of building material are varied even if the activity concentrations of building material are similar. (authors)

  9. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  10. GEOMETRIC AND KINEMATIC STRUCTURE OF THE OUTFLOW/ENVELOPE SYSTEM OF L1527 REVEALED BY SUBARCSECOND-RESOLUTION OBSERVATION OF CS

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Lefloch, Bertrand; Ceccarelli, Cecilia, E-mail: oya@taurus.phys.s.u-tokyo.ac.jp [Universite Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2015-10-10

    Subarcsecond-resolution images of the rotational line emissions of CS and c-C{sub 3}H{sub 2} obtained toward the low-mass protostar IRAS 04368+2557 in L1527 with the Atacama Large Millimeter/submillimeter Array are investigated to constrain the orientation of the outflow/envelope system. The distribution of CS consists of an envelope component extending from north to south and a faint butterfly shaped outflow component. The kinematic structure of the envelope is well reproduced by a simple ballistic model of an infalling rotating envelope. Although the envelope has a nearly edge-on configuration, we find that the western side of the envelope faces the observer. This configuration is opposite to the direction of the large-scale (∼10{sup 4} AU) outflow suggested previously from the {sup 12}CO (J = 3–2) observation, and to the morphology of infrared reflection near the protostar (∼200 AU). The latter discrepancy could originate from high extinction by the outflow cavity of the western side, or may indicate that the outflow axis is not parallel to the rotation axis of the envelope. Position–velocity diagrams show the accelerated outflow cavity wall, and its kinematic structure in the 2000 AU scale is explained by a standard parabolic model with the inclination angle derived from the analysis of the envelope. The different orientation of the outflow between the small and large scale implies a possibility of precession of the outflow axis. The shape and the velocity of the outflow in the vicinity of the protostar are compared with those of other protostars.

  11. The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.

    Science.gov (United States)

    Radeck, Jara; Fritz, Georg; Mascher, Thorsten

    2017-02-01

    The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.

  12. Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope.

    Directory of Open Access Journals (Sweden)

    Jose M González-Granado

    Full Text Available Nuclear lamins are important structural and functional proteins in mammalian cells, but little is known about the mechanisms and cofactors that regulate their traffic into the nucleus. Here, we demonstrate that trafficking of lamin A, but not lamin B1, and its assembly into the nuclear envelope are regulated by sorting nexin 6 (SNX6, a major component of the retromer that targets proteins and other molecules to specific subcellular locations. SNX6 interacts with lamin A in vitro and in vivo and links it to the outer surface of the endoplasmic reticulum in human and mouse cells. SNX6 transports its lamin A cargo to the nuclear envelope in a process that takes several hours. Lamin A protein levels in the nucleus augment or decrease, respectively, upon gain or loss of SNX6 function. We further show that SNX6-dependent lamin A nuclear import occurs across the nuclear pore complex via a RAN-GTP-dependent mechanism. These results identify SNX6 as a key regulator of lamin A synthesis and incorporation into the nuclear envelope.

  13. Characterization and interactome study of white spot syndrome virus envelope protein VP11.

    Directory of Open Access Journals (Sweden)

    Wang-Jing Liu

    Full Text Available White spot syndrome virus (WSSV is a large enveloped virus. The WSSV viral particle consists of three structural layers that surround its core DNA: an outer envelope, a tegument and a nucleocapsid. Here we characterize the WSSV structural protein VP11 (WSSV394, GenBank accession number AF440570, and use an interactome approach to analyze the possible associations between this protein and an array of other WSSV and host proteins. Temporal transcription analysis showed that vp11 is an early gene. Western blot hybridization of the intact viral particles and fractionation of the viral components, and immunoelectron microscopy showed that VP11 is an envelope protein. Membrane topology software predicted VP11 to be a type of transmembrane protein with a highly hydrophobic transmembrane domain at its N-terminal. Based on an immunofluorescence assay performed on VP11-transfected Sf9 cells and a trypsin digestion analysis of the virion, we conclude that, contrary to topology software prediction, the C-terminal of this protein is in fact inside the virion. Yeast two-hybrid screening combined with co-immunoprecipitation assays found that VP11 directly interacted with at least 12 other WSSV structural proteins as well as itself. An oligomerization assay further showed that VP11 could form dimers. VP11 is also the first reported WSSV structural protein to interact with the major nucleocapsid protein VP664.

  14. Sorting Nexin 6 Enhances Lamin A Synthesis and Incorporation into the Nuclear Envelope

    Science.gov (United States)

    González-Granado, Jose M.; Navarro-Puche, Ana; Molina-Sanchez, Pedro; Blanco-Berrocal, Marta; Viana, Rosa; de Mora, Jaime Font; Andrés, Vicente

    2014-01-01

    Nuclear lamins are important structural and functional proteins in mammalian cells, but little is known about the mechanisms and cofactors that regulate their traffic into the nucleus. Here, we demonstrate that trafficking of lamin A, but not lamin B1, and its assembly into the nuclear envelope are regulated by sorting nexin 6 (SNX6), a major component of the retromer that targets proteins and other molecules to specific subcellular locations. SNX6 interacts with lamin A in vitro and in vivo and links it to the outer surface of the endoplasmic reticulum in human and mouse cells. SNX6 transports its lamin A cargo to the nuclear envelope in a process that takes several hours. Lamin A protein levels in the nucleus augment or decrease, respectively, upon gain or loss of SNX6 function. We further show that SNX6-dependent lamin A nuclear import occurs across the nuclear pore complex via a RAN-GTP-dependent mechanism. These results identify SNX6 as a key regulator of lamin A synthesis and incorporation into the nuclear envelope. PMID:25535984

  15. Flight envelope protection system for unmanned aerial vehicles

    KAUST Repository

    Claudel, Christian G.; Shaqura, Mohammad

    2016-01-01

    Systems and methods to protect the flight envelope in both manual flight and flight by a commercial autopilot are provided. A system can comprise: an inertial measurement unit (IMU); a computing device in data communication with the IMU

  16. that Bind Specifically to Recombinant Envelope Protein of Dengue

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research June 2015; 14 (6): 997-1003 ... Revised accepted: 30 April 2015. Abstract ... Results: The 45 KDa, 43 KDa and 30 KDa plasma membrane proteins were identified as viral envelope targets.

  17. Early Site Permit Demonstration Program: Plant parameters envelope report

    International Nuclear Information System (INIS)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry's initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants

  18. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    International Nuclear Information System (INIS)

    McCarty, R. E.

    2004-01-01

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied

  19. Torsin Mediates Primary Envelopment of Large Ribonucleoprotein Granules at the Nuclear Envelope

    Directory of Open Access Journals (Sweden)

    Vahbiz Jokhi

    2013-04-01

    Full Text Available A previously unrecognized mechanism through which large ribonucleoprotein (megaRNP granules exit the nucleus is by budding through the nuclear envelope (NE. This mechanism is akin to the nuclear egress of herpes-type viruses and is essential for proper synapse development. However, the molecular machinery required to remodel the NE during this process is unknown. Here, we identify Torsin, an AAA-ATPase that in humans is linked to dystonia, as a major mediator of primary megaRNP envelopment during NE budding. In torsin mutants, megaRNPs accumulate within the perinuclear space, and the messenger RNAs contained within fail to reach synaptic sites, preventing normal synaptic protein synthesis and thus proper synaptic bouton development. These studies begin to establish the cellular machinery underlying the exit of megaRNPs via budding, offer an explanation for the “nuclear blebbing” phenotype found in dystonia models, and provide an important link between Torsin and the synaptic phenotypes observed in dystonia.

  20. Aspherical Dust Envelopes Around Oxygen-Rich AGB Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2006-12-01

    Full Text Available We model the aspherical dust envelopes around O-rich AGB stars. We perform the radiative transfer model calculations for axisymmetric dust distributions. We simulate what could be observed from the aspherical dust envelopes around O-rich AGB stars by presenting the model spectral energy distributions and images at various wavelengths for different optical depths and viewing angles. The model results are very different from the ones with spherically symmetric geometry.

  1. Failure envelope approach for consolidated undrained capacity of shallow foundations

    OpenAIRE

    Vulpe, Cristina; Gourvenec, Susan; Leman, Billy; Fung, Kah Ngii

    2016-01-01

    A generalized framework is applied to predict consolidated undrained VHM failure envelopes for surface circular and strip foundations. The failure envelopes for consolidated undrained conditions are shown to be scaled from those for unconsolidated undrained conditions by the uniaxial consolidated undrained capacities, which are predicted through a theoretical framework based on fundamental critical state soil mechanics. The framework is applied to results from small-strain finite-element anal...

  2. Main building complex WWER 440/213 upper range design response spectra for soft soil site conditions (Paks)

    International Nuclear Information System (INIS)

    Krutzik, N.

    1996-01-01

    Within the Benchmark studies parallel investigation were prepared for the main building complex of the WWER-440/213 Paks NPP by several participating institutions. The investigations were based on various mathematical models and procedures but all had the same seismological data as input. The calculation methods as well as software tools were different. This report covers the enveloped response results which were the basis for the benchmark studies and which should be used for upgrading of mechanical and electrical components and systems which will follow. These response spectra which consider a certain conservatism namely neglecting the frequency independence of the stiffness and the cut-off of damping values are named 'Upper Range design Benchmark Response Spectra' for the main building of Paks NPP

  3. Main building complex WWER 440/213 upper range design response spectra for soft soil site conditions (Paks)

    Energy Technology Data Exchange (ETDEWEB)

    Krutzik, N [Siemens AG, Power Generation Group (KWU) NDA2, Offenbach (Germany)

    1996-07-01

    Within the Benchmark studies parallel investigation were prepared for the main building complex of the WWER-440/213 Paks NPP by several participating institutions. The investigations were based on various mathematical models and procedures but all had the same seismological data as input. The calculation methods as well as software tools were different. This report covers the enveloped response results which were the basis for the benchmark studies and which should be used for upgrading of mechanical and electrical components and systems which will follow. These response spectra which consider a certain conservatism namely neglecting the frequency independence of the stiffness and the cut-off of damping values are named 'Upper Range design Benchmark Response Spectra' for the main building of Paks NPP.

  4. Plataforma smart building

    OpenAIRE

    Cidrera Lopez, Alain

    2013-01-01

    The overall project is a system (hardware + software) that allows monitoring and control in a building / office different security systems, energy, communications, home automation, PKI's overall business that will increase all the efficiency of the building and the business and ensure the continuity of it. My participation in this Project will mainly focus on the development of hardware components, monitoring and control system (home automation, energy, safety control elements ...) and softwa...

  5. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  6. 2-component heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1987-03-01

    The knowledge accumulated only recently of the damage to buildings and the hazards of formaldehyde, radon and hydrocarbons has been inducing louder calls for ventilation, which, on their part, account for the fact that increasing importance is being attached to the controlled ventilation of buildings. Two-component heating systems provide for fresh air and thermal comfort in one. While the first component uses fresh air blown directly and controllably into the rooms, the second component is similar to the Roman hypocaustic heating systems, meaning that heated outer air is circulating under the floor, thus providing for hot surfaces and thermal comfort. Details concerning the two-component heating system are presented along with systems diagrams, diagrams of the heating system and tables identifying the respective costs. Descriptions are given of the two systems components, the fast heat-up, the two-component made, the change of air, heat recovery and control systems. Comparative evaluations determine the differences between two-component heating systems and other heating systems. Conclusive remarks are dedicated to energy conservation and comparative evaluations of costs. (HWJ).

  7. Equipment, components and production of x-ray

    International Nuclear Information System (INIS)

    Idris Besar

    2004-01-01

    The contents of this chapter are follows - Equipment, Components and Production of x-Ray: x-ray system, generator, control panel. x-ray tube, cathode, anode, envelope, housing, collimator, other components, x-ray production, Bremsstrahlung x-ray, characteristic x-ray, heat production

  8. Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli.

    Science.gov (United States)

    Matsumoto, Ayaka; Sakamoto, Chiyomi; Matsumori, Haruka; Katahira, Jun; Yasuda, Yoko; Yoshidome, Katsuhide; Tsujimoto, Masahiko; Goldberg, Ilya G; Matsuura, Nariaki; Nakao, Mitsuyoshi; Saitoh, Noriko; Hieda, Miki

    2016-01-01

    A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells.

  9. Future Green Buildings

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Drysdale, David; Lund, Henrik

    an energy system integration perspective, heat savings, electricity savings, and user behavioural aspects as well as energy storage and household level flexibility. Many reports on green or sustainable buildings focus only on savings levels and disregard the cost of renewable energy production. Some reports......Efficient buildings are essential for an affordable Danish energy supply in 2050. The purpose of this report is to describe the contribution and role of the building sector in a 100% renewable energy future, as well as the transitions that are necessary in the building sector to support this change....... The report builds on a literature review encompassing more than 50 reports and research papers over the last 10 years and more than a two decades knowledge about the interactions between different components of the energy sector. The review has been focused on aspects such as cost-effective solutions from...

  10. Building UIs with Wijmo

    CERN Document Server

    Zhang, Yuguang

    2013-01-01

    Written with an example-based approach, Building UIs with Wijmo leads you step by step through the implementation and customization of each library component and its associated resources. Reference tables of each configuration option, method, and event for each component are provided, alongside detailed explanations of how each widget is used.Building UIs with Wijmo is targeted at readers who are familiar with HTML, CSS, JavaScript, and jQuery, and have a basic understanding of web development. Although knowledge of jQuery UI is not mandatory, it would be a bonus as it is quite similar to Wijm

  11. Building calculations

    DEFF Research Database (Denmark)

    Jensen, Bjarne Christian; Hansen, Svend Ole

    Textbook on design of large panel building including rules on robustness and a method for producing the Statical documentattion......Textbook on design of large panel building including rules on robustness and a method for producing the Statical documentattion...

  12. Other components

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter includes descriptions of electronic and mechanical components which do not merit a chapter to themselves. Other hardware requires mention because of particularly high tolerance or intolerance of exposure to radiation. A more systematic analysis of radiation responses of structures which are definable by material was given in section 3.8. The components discussed here are field effect transistors, transducers, temperature sensors, magnetic components, superconductors, mechanical sensors, and miscellaneous electronic components

  13. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  14. Auxiliary buildings

    International Nuclear Information System (INIS)

    Lakner, I.; Lestyan, E.

    1979-01-01

    The nuclear power station represents a complicated and a particular industrial project. Consequently, the design of the auxiliary buildings serving the power station (offices, kitchen, refreshment room, workshops, depots, water treatment plant building, boiler houses, etc.) requires more attention than usual. This chapter gives a short survey of the auxiliary buildings already completed and discusses the problems of their design, location and structure. (author)

  15. Building 2000

    International Nuclear Information System (INIS)

    Den Ouden, C.; Steemers, T.C.

    1992-01-01

    This is the first volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this first rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In a second volume, a similar series of studies is presented for the building categories: office buildings, public buildings and hotels and holiday complexes. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (15 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues

  16. Building 2000

    Energy Technology Data Exchange (ETDEWEB)

    Den Ouden, C [EGM Engineering BV, Dordrecht (Netherlands); Steemers, T C [Commission of the European Communities, Brussels (Belgium)

    1992-01-01

    This is the first volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this first rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In a second volume, a similar series of studies is presented for the building categories: office buildings, public buildings and hotels and holiday complexes. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (15 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues.

  17. An Assessment of Envelope Measures in Mild Climate Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Energy end-uses and interior comfort conditions have been monitored in 11 Deep Energy Retrofits (DERs) in a mild marine climate. Two broad categories of DER envelope were identified: first, bringing homes up to current code levels of insulation and airtightness, and second, enhanced retrofits that go beyond these code requirements. The efficacy of envelope measures in DERs was difficult to determine, due to the intermingled effects of enclosure improvements, HVAC system upgrades and changes in interior comfort conditions. While energy reductions in these project homes could not be assigned to specific improvements, the combined effects of changes in enclosure, HVAC system and comfort led to average heating energy reductions of 76percent (12,937 kWh) in the five DERs with pre-retrofit data, or 80percent (5.9 kWh/ft2) when normalized by floor area. Overall, net-site energy reductions averaged 58percent (15,966 kWh; n=5), and DERs with code-style envelopes achieved average net-site energy reductions of 65percent (18,923 kWh; n=4). In some homes, the heating energy reductions were actually larger than the whole house reductions that were achieved, which suggests that substantial additional energy uses were added to the home during the retrofit that offset some heating savings. Heating system operation and energy use was shown to vary inconsistently with outdoor conditions, suggesting that most DERs were not thermostatically controlled and that occupants were engaged in managing the indoor environmental conditions. Indoor temperatures maintained in these DERs were highly variable, and no project home consistently provided conditions within the ASHRAE Standard 55-2010 heating season comfort zone. Thermal comfort and heating system operation had a large impact on performance and were found to depend upon the occupant activities, so DERs should be designed with the occupants needs and patterns of consumption in mind. Beyond-code building envelopes were not found to be

  18. Energy in buildings: Efficiency, renewables and storage

    Science.gov (United States)

    Koebel, Matthias M.

    2017-07-01

    This lecture summary provides a short but comprehensive overview on the "energy and buildings" topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  19. The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis.

    Directory of Open Access Journals (Sweden)

    Jennifer M Friederichs

    2011-11-01

    Full Text Available The budding yeast spindle pole body (SPB is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.

  20. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass

    Science.gov (United States)

    Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.

    2017-11-01

    It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.

  1. A building characterization-based method for the advancement of knowledge on external architectural features of traditional rural buildings

    Directory of Open Access Journals (Sweden)

    Porto, S. M. C.

    2013-12-01

    Full Text Available The significant role that traditional rural buildings have with regard to environmental conservation and rural development is widely acknowledged by the scientific community. These buildings must be protected from inappropriate building interventions that may stem from their rather superficial knowledge. Therefore, this study was directed towards overcoming such a limitation by developing a method based on traditional rural buildings’ characterization. In particular, the study aimed at the characterization of building materials and techniques used for the construction of a number of building components that make up the external envelope of traditional rural buildings. The application of the method to a homogeneous area of the Etna Regional Park (Italy highlighted the need to improve the technical norms of the park’s Territorial Coordination Plan to respect the building characteristics of the traditional rural buildings located in the protected area.La comunidad científica le atribuye a las construcciones rurales tradicionales un papel fundamental en términos de conservación del medioambiente y de evolución rural. Dichos edificios deben ser protegidos contra obras inapropiadas debidas a un conocimiento más bien superficial. Por lo tanto, el objetivo de este estudio fue el de eliminar dichas limitaciones desarrollando un método basado en la caracterización de las construcciones rurales tradicionales, que puede ser aplicado para mejorar el conocimiento de estas últimas. En particular, el susodicho estudio tiene la finalidad de caracterizar los materiales y las técnicas constructivas a emplear para la construcción de algunos componentes del envoltorio externo de las construcciones rurales tradicionales. La aplicación del método propuesto a una zona homogénea del Parque Regional del Etna (Italia puso de relieve la necesidad de mejorar las normas técnicas del Plan de Coordinación Territorial del parque para respetar las caracter

  2. INFALLING–ROTATING MOTION AND ASSOCIATED CHEMICAL CHANGE IN THE ENVELOPE OF IRAS 16293–2422 SOURCE A STUDIED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Ceccarelli, Cecilia; Lefloch, Bertrand; Favre, Cécile, E-mail: oya@taurus.phys.s.u-tokyo.ac.jp [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2016-06-20

    We have analyzed rotational spectral line emission of OCS, CH{sub 3}OH, HCOOCH{sub 3}, and H{sub 2}CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0.″6 × 0.″5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH{sub 3}OH and HCOOCH{sub 3} are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of the centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M {sub ⊙}, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH{sub 3}OH and HCOOCH{sub 3} may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H{sub 2}CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.

  3. High frequency vibration analysis by the complex envelope vectorization.

    Science.gov (United States)

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  4. Safety analysis to support a safe operating envelope for fuel

    International Nuclear Information System (INIS)

    Gibb, R.A.; Reid, P.J.

    1998-01-01

    This paper presents an approach for defining a safe operating envelope for fuel. 'Safe operating envelope' is defined as an envelope of fuel parameters defined for application in safety analysis that can be related to, or used to define, the acceptable range of fuel conditions due to operational transients or deviations in fuel manufacturing processes. The paper describes the motivation for developing such a methodology. The methodology involved four steps: the update of fission product inventories, the review of sheath failure criteria, a review of input parameters to be used in fuel modelling codes, and the development of an improved fission product release code. This paper discusses the aspects of fuel sheath failure criteria that pertain to operating or manufacturing conditions and to the evaluation and selection of modelling input data. The other steps are not addressed in this paper since they have been presented elsewhere. (author)

  5. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  6. The nuclear envelope from basic biology to therapy.

    Science.gov (United States)

    Worman, Howard J; Foisner, Roland

    2010-02-01

    The nuclear envelope has long been a focus of basic research for a highly specialized group of cell biologists. More recently, an expanding group of scientists and physicians have developed a keen interest in the nuclear envelope since mutations in the genes encoding lamins and associated proteins have been shown to cause a diverse range of human diseases often called laminopathies or nuclear envelopathies. Most of these diseases have tissue-selective phenotypes, suggesting that the nuclear envelope must function in cell-type- and developmental-stage-specific processes such as chromatin organization, regulation of gene expression, controlled nucleocytoplasmic transport and response to stress in metazoans. On 22-23 April 2009, Professor Christopher Hutchison organized the 4th British Nuclear Envelope Disease and Chromatin Organization meeting at the College of St Hild and St Bede at Durham University, sponsored by the Biochemical Society. In attendance were investigators with one common interest, the nuclear envelope, but with diverse expertise and training in animal and plant cell biology, genetics, developmental biology and medicine. We were each honoured to be keynote speakers. This issue of Biochemical Society Transactions contains papers written by some of the presenters at this scientifically exciting meeting, held in a bucolic setting where the food was tasty and the wine flowed freely. Perhaps at the end of this excellent meeting more questions were raised than answered, which will stimulate future research. However, what became clear is that the nuclear envelope is a cellular structure with critical functions in addition to its traditional role as a barrier separating the nuclear and cytoplasmic compartments in interphase eukaryotic cells.

  7. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  8. Performance analysis of an energy efficient building prototype by using TRNSYS

    OpenAIRE

    Lai, Kun; Wang, Wen; Giles, Harry

    2014-01-01

    Buildings section accouts for a large part of the total primary energy consumption. This paper reports a simulative study on an energy efficient building prototype named MIDMOD by using TRNSYS program. The prototype is a new genre of affordable medium density building concepts that are more adaptable, durable, and energy efficient as whole-life housing typologies than those currently available.The building envelope thermal insulation and air tightness are enhanced to reduce heat loss. Several...

  9. Building 2000

    International Nuclear Information System (INIS)

    Den Ouden, C.; Steemers, T.C.

    1992-01-01

    This is the second volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this second rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In the first volume, a similar series of studies is presented for the building categories: schools, laboratories and universities, and sports and educational centres. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (11 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues

  10. Building 2000

    Energy Technology Data Exchange (ETDEWEB)

    Den Ouden, C [EGM Engineering BV, Dordrecht (Netherlands); Steemers, T C [Commission of the European Communities, Brussels (Belgium)

    1992-01-01

    This is the second volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this second rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In the first volume, a similar series of studies is presented for the building categories: schools, laboratories and universities, and sports and educational centres. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (11 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues.

  11. Dynamic thermal behavior of building using phase change materials for latent heat storage

    Directory of Open Access Journals (Sweden)

    Selka Ghouti

    2015-01-01

    Full Text Available This study presents a two-dimensional model with a real size home composed of two-storey (ground and first floor spaces separated by a slab, enveloped by a wall with rectangular section containing phase change material (PCM in order to minimize energy consumption in the buildings. The main objective of the PCM-wall system is to decrease the temperature change from outdoor space before it reaches the indoor space during the daytime. The numerical approach uses effective heat capacity Ceff model with realistic outdoor climatic conditions of Tlemcen city, Algeria. The numerical results showed that by using PCM in wall as energy storage components may reduce the room temperature by about 6 to 7°C of temperature depending on the floor level (first floor spaces or ground floor spaces.

  12. Enveloping algebras of Lie groups with descrete series

    International Nuclear Information System (INIS)

    Nguyen huu Anh; Vuong manh Son

    1990-09-01

    In this article we shall prove that the enveloping algebra of the Lie algebra of some unimodular Lie group having discrete series, when localized at some element of the center, is isomorphic to the tensor product of a Weyl algebra over the ring of Laurent polynomials of one variable and the enveloping algebra of some reductive Lie algebra. In particular, it will be proved that the Lie algebra of a unimodular solvable Lie group having discrete series satisfies the Gelfand-Kirillov conjecture. (author). 6 refs

  13. Constant envelope OFDM scheme for 6PolSK-QPSK

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2018-03-01

    A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.

  14. Data Envelopment Analysis (DEA) Model in Operation Management

    Science.gov (United States)

    Malik, Meilisa; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    Quality management is an effective system in operation management to develops, maintains, and improves quality from groups of companies that allow marketing, production, and service at the most economycal level as well as ensuring customer satisfication. Many companies are practicing quality management to improve their bussiness performance. One of performance measurement is through measurement of efficiency. One of the tools can be used to assess efficiency of companies performance is Data Envelopment Analysis (DEA). The aim of this paper is using Data Envelopment Analysis (DEA) model to assess efficiency of quality management. In this paper will be explained CCR, BCC, and SBM models to assess efficiency of quality management.

  15. Asymmetry of the envelope of supernova 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-04-13

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author).

  16. Asymmetry of the envelope of supernova 1987A

    International Nuclear Information System (INIS)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-01-01

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author)

  17. Calculation of CWKB envelope in boson and fermion productions

    International Nuclear Information System (INIS)

    Biswas, S.; Chowdhury, I.

    2007-01-01

    We present the calculation of envelope of boson and of both low-and high-mass fermion production at the end of inflation when the coherently oscillating inflations decay into bosons and fermions. We consider three different models of inflation and use CWKB technique to calculate the envelope to understand the structure of resonance band formation. We observe that though low-mass fermion production is not effective in preheating because of Pauli blocking, it is quite probable for high-mass fermion to take part in pre heating. (author)

  18. Refractive index dispersion measurement using carrier-envelope phasemeters

    International Nuclear Information System (INIS)

    Hansinger, Peter; Töpfer, Philipp; Adolph, Daniel; Hoff, Dominik; Rathje, Tim; Sayler, A Max; Paulus, Gerhard G; Dimitrov, Nikolay; Dreischuh, Alexander

    2017-01-01

    We introduce a novel method for direct and accurate measurement of refractive index dispersion based on carrier-envelope phase detection of few-cycle laser pulses, exploiting the difference between phase and group velocity in a dispersive medium. In a layout similar to an interferometer, two carrier-envelope phasemeters are capable of measuring the dispersion of a transparent or reflective sample, where one phasemeter serves as the reference and the other records the influence of the sample. Here we report on proof-of-principle measurements that already reach relative uncertainties of a few 10 −4 . Further development is expected to allow for unprecedented precision. (paper)

  19. Analysis of the documents about the core envelopment of nuclear reactor at the Laguna Verde U-1 power plant; Analisis de documentos de los materiales de la envolvente del nucleo del reactor nuclear de la CLV U-1

    Energy Technology Data Exchange (ETDEWEB)

    Zamora R, L.; Medina F, A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The degradation of internal components at BWR type reactors is an important subject to consider in the performance availability of the power plant. The Wuergassen nuclear reactor license was confiscated due to the presence of cracking in the core envelopment. In consequence it is necessary carrying out a detailed study with the purpose to avoid these problems in the future. This report presents a review and analysis of documents and technical information referring to the core envelopment of a BWR/5/6 and the Laguna Verde Unit 1 nuclear reactor in Mexico. In this document are presented design data, documents about fabrication processes, and manufacturing of core envelopment. (Author)

  20. Real-time 2.5 Gbit/s ultra-wideband transmission using a Schottky diode-based envelope detector

    DEFF Research Database (Denmark)

    Rommel, Simon; Cimoli, Bruno; Valdecasa, Guillermo Silva

    2017-01-01

    An experimental demonstration of 2.5 Gbit/s real-time ultra-wideband transmission is presented, using a Schottky diode-based envelope detector fabricated ad-hoc using microstrip technology on a Rogers6002 substrate and surface-mount components. Real-time transmission with a BER below FEC threshold...