WorldWideScience

Sample records for building cooling energy

  1. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  2. Analysis of annual cooling energy requirements for glazed academic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S.A. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering; Hassan, A.H. [Vinyl Chloride Malaysia Sdn Bhd, Terengganu (Malaysia). Dept. of Engineering

    2011-07-01

    Malaysia experienced rapid increase in energy consumption in the last decade due to its high economic growth and increase in the standard living of household. Energy is becoming more costly and the situation is worsened by the global warming as a result of greenhouse gas emission. A more efficient energy usage and significant reduction in the released emission is therefore required. Space cooling with the use of air conditioners is practiced all year round in Malaysia and this accounts for 42% of total electricity energy consumption for commercial buildings and 30% of residential buildings. Reduction in the energy used for cooling in the built environment is a vital step to energy conservation in Malaysia. The objective of the present study was to analyze the annual cooling energy of highly glazed academic buildings which are located in a university in Malaysia. The outcome of the study would enable further remedial actions in reducing the energy consumption of the buildings' air conditioning system. The study is conducted by computer simulation using EnergyPlus software to calculate the cooling energy of a selected building or area. Comparison is made against the rated equipment load (i.e., the air handling unit) installed in the buildings. Since the buildings in the present study are not constructed parallel to each other the effect of building orientations with respect to the sun positions are also studied. The implications of shades such as venetian blind on the cooling energy are investigated in assessing their effectiveness in reducing the cooling energy, apart from providing thermal comfort to the occupants. In the aspect of operation, the present study includes the effects of reducing the set point air temperature and infiltration of outdoor air due to doors that are left open by the occupants. It is found from the present study that there are significant potentials for savings in the cooling energy of the buildings.

  3. Thermal comfort and energy-efficient cooling of nonresidential buildings

    CERN Document Server

    Kalz, Doreen

    2014-01-01

    This book supports HVAC planners in reducing the cooling energy demand, improving the indoor environment and designing more cost-effective building concepts. High performance buildings have shown that it is possible to go clearly beyond the energy requirements of existing legislation and obtaining good thermal comfort. However, there is still a strong uncertainty in day-to-day practice due to the lack of legislative regulations for mixed-mode buildings which are neither only naturally ventilated nor fully air-conditioned, but use a mix of different low-energy cooling techniques. Based on the f

  4. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  5. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  6. Cool roofs as an energy conservation measure for federal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  7. Low energy building with novel cooling unit using PCM

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, Samar

    2012-02-13

    This thesis aims to reduce the energy consumption as well as greenhouse gases to the environment without negatively affecting the thermal comfort. In the present work, thermal, energetic and economic impacts of employing passive solar systems combined with energy conservation systems have been investigated. These energy systems have been integrated with a typical residential building located in three different climate zones in Europe and Middle East regions.Hour-by-hour energy computer simulations have been carried out using TRNSYS and INSEL programs to analyze the performance of integrated energy systems. Furthermore, IESU software module has been developed to simulate a novel cooling unit using Phase Change Material (PCM). This unit is named as Indirect Evaporative and Storage Unit (IESU). Thereafter, complete economic equations for the Life Cycle Cost (LCC) criterion have been formulated. Furthermore this criterion has been optimized for different variables as a function of thermal parameters and economic figures from local markets. An optimum design of both residential buildings and energy systems has great impact on energy consumption. In fact, results showed that the energy consumption is reduced by 85.62%, 86.33% and 74.05% in Berlin, Amman and Aqaba, respectively. Moreover, the LCC criterion is reduced by 41.85% in Berlin, 19.21% in Amman and 15.22% in Aqaba.The macro economic analysis shows that once this research is applied in one million typical residential buildings in the selected climate zones, the annual avoided CO{sub 2} emissions are estimated to be about 5.7 million Tons in Berlin. In Aqaba, around 2.96 million Tons CO{sub 2} emissions will be saved annually and in Amman about 2.98 million Tons will be reduced. The payback period from the achieved saving is 18 years, 11 years and 8.6 years in Amman, Aqaba and Berlin, respectively.

  8. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  9. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  10. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  11. Sustainable Heating/Cooling for Low Energy Buildings

    DEFF Research Database (Denmark)

    Krajčík, M.; Olesen, Bjarne W.; Petráš, D.

    2012-01-01

    Experimental evaluation is one of the means that allow thorough investigation of the indoor environment in a room. Providing that the measurement procedures are correct and that the investigator has the necessary experimental equipment available, experimental measurements can provide results with...... located in a low-energy building. Procedures and indicators that can be successfully used for experimental investigations of indoor environment are described and a sample of measured data is reported....

  12. Multicriteria aided design of integrated heating-cooling energy systems in buildings.

    Science.gov (United States)

    Mróz, Tomasz M

    2010-08-01

    This paper presents an analysis of the possible application of integrated heating-cooling systems in buildings. The general algorithm of integrated heating-cooling system design aid was formulated. The evaluation criteria of technically acceptable variants were defined. Fossil fuel energy consumption, carbon dioxide emission, investment, and total exploitation cost were identified as the most important factors describing the considered decision problem. The multicriteria decision aid method ELECTRE III was proposed as the decision tool for the choice of the most compromised variant. The proposed method was used for a case study calculation-the choice of an integrated heating-cooling system for an office building.

  13. Sustainable Heating/Cooling for Low Energy Buildings

    DEFF Research Database (Denmark)

    Krajčík, M.; Olesen, Bjarne W.; Petráš, D.

    2012-01-01

    with high accuracy and under well defined boundary conditions, which can be further verified by field measurements or used for validation of a computer simulation. A set of experimental studies of air distribution, ventilation effectiveness and thermal environment were carried out in a simulated room heated....../cooled and ventilated by different concepts, at various boundary conditions, differing in supply air temperature, floor temperature, simulated heat gain/heat loss, nominal air change rate and positions of air terminal devices. The experimental room simulated corresponds to a residential room or a single office room...

  14. Passive Method to Reduce Solar Energy Effect on the Cooling Load in Buildings

    Directory of Open Access Journals (Sweden)

    Orfi J.

    2012-10-01

    Full Text Available Energy needed for cooling residential and industrial buildings in hot weather countries is the major issue. The period needed for cooling or comfort conditions in those countries exceeds five months and outdoor temperature reaches more than 40 °C. Also, the solar intensity usually high and can reach about one kW per m2. Hence, any attempt to reduce the effect of solar energy on the cooling load is worthy to investigate. The present work analyzes using artificial, naturally ventilated, shading covers to reduce the effect of solar energy. Analytical and numerical analyzes were performed on the effect of adding a ventilated cover to walls and roof exposed to the solar energy.

  15. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long......-term (seasonal) storage for the introduction of natural and renewable energy sources. TES systems for heating or cooling are utilized in applications where there is a time mismatch between the demand and the most economically favorable supply of energy. The selection of a TES system mainly depends on the storage...

  16. Energy Efficient Green Building Based on Geo Cooling System in Sustainable Construction of Malaysia

    Directory of Open Access Journals (Sweden)

    Md. Rabiul Alam

    2012-12-01

    Full Text Available This paper is focused to utilize geo energy in cooling of building in tropical country like Malaysia where temperature rises in daytime and goes beyond to a comfortable limit. In daytime inside temperature of the room is considered to be reduced by adding thermal conductivity media inside the room elements such as walls through its connectivity to the underground where temperature is less than the ambient room temperature. Due to the ground connectivity of thermal conductivity media a flow of heat creates from the room to the ground and tries to produce a thermal balance between these two medias and therefore, room temperature drops to a temperature close to the underground soil temperature. Aluminium pipes are considered as high thermal conductivity material. The entire study is done numerically using ANSYS 11 finite element software to determine the role of underground soil and thermal conductivity pipes. In numerical investigation heat flow between two systems (building rooms equipped with thermal conductivity pipe and underground soil is studied and the performance of the conductivity materials is examined. The room temperature in the presence of thermal conductivity media as well as mechanical cooling system is also investigated in this study. It is seen that high thermal conductivity media plays a role in transferring heat from room to the ground and makes cooling of the building effectively. It acts also effectively when it uses with other mechanical cooling system of building.

  17. The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings

    Science.gov (United States)

    Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.

    1979-01-01

    The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.

  18. Effect of passive cooling strategies on overheating in low energy residential buildings for Danish climate

    DEFF Research Database (Denmark)

    Simone, Angela; Avantaggiato, Marta; de Carli, Michele

    2014-01-01

    Climate changes have progressively produced an increase of outdoors temperature resulting in tangible warmer summers even in cold climate regions. An increased interest for passive cooling strategies is rising in order to overcome the newly low energy buildings’ overheating issue. The growing level...... of air-tightness plays in low-energy buildings a double-acting role: reduction of energy demand and lack of adequate infiltration rate. In particular, the last one combined with higher outside air temperatures brings these new concepts buildings to progressively experience higher indoor temperatures...... creating not negligible thermal discomfort. In the present work the effect of passive strategies, such as solar shading and natural night-time ventilation, are evaluated through computer simulations. The analyses are performed for 1½-storey single-family house in Copenhagen’s climate. The main result...

  19. Elaboration of global quality standards for natural and low energy cooling in French tropical island buildings

    CERN Document Server

    Garde, F; Gatina, J C

    2012-01-01

    Electric load profiles of tropical islands in developed countries are characterised by morning, midday and evening peaks arising from all year round high power demand in the commercial and residential sectors, due mostly to air conditioning appliances and bad thermal conception of the building. The work presented in this paper has led to the conception of a global quality standards obtained through optimized bioclimatic urban planning and architectural design, the use of passive cooling architectural components, natural ventilation and energy efficient systems such as solar water heaters. We evaluated, with the aid of an airflow and thermal building simulation software (CODYRUN), the impact of each technical solution on thermal comfort within the building. These technical solutions have been implemented in 280 new pilot dwelling projects through the year 1996.

  20. Augmenting natural ventilation using solar heat and free cool energy for residential buildings

    Directory of Open Access Journals (Sweden)

    N. B. Geetha

    2014-03-01

    Full Text Available In many urban buildings ventilation is not sufficient that will increase the temperature and also create unhealthy atmosphere inside the room. In such buildings artificially induced ventilation through freely available energy promote comfort conditions by reducing the temperature by 2 to 3°C and also creating good circulation of fresh air inside the room. In the present work the concept of improving the ventilation by excess hot energy available during summer days from the solar flat plate collector and by storing cool energy available during the early morning hour in the Phase Change Material (PCM based storage system is attempted. An experimental setup is made to study the effect of improvement in natural ventilation and the results are reported. A visible reduction in temperature is observed through circulation of air from the bottom side of the room to the roof of the house using the stored hot and cool energy. A CFD analysis is also carried out using ANSYS-CFX software to simulate and evaluate the mass flow of air at the inlet and at the selected RTD location by matching the transient temperature profile of the simulated result with the experimental results at the selected RTD location.

  1. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  2. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-06-01

    Full Text Available Light-emitting diode (LED lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC system to move the lighting’s waste heat outdoors. An experiment was carried out to investigate the thermal effects in a test chamber and the heat exchange rate between the heat sink and the duct air. The heat generated by the light-emitting diode (LED lighting was calculated as 78.1% of light-emitting diode (LED input power and the heat exchange rate of the lighting heat exchange module was estimated to be between 86.5% and 98.1% according to the light-emitting diode (LED input power and the flow rate of air passing the heat sink. As a result, the average light-emitting diode (LED lighting heat contribution rate for internal heat gain was determined as 0.05; this value was used to calculate the heating and cooling energy demand of the office building through an energy simulation program. In the simulation results, the cooling energy demand was reduced by 19.2% compared with the case of conventionally installed light-emitting diode (LED lighting.

  3. Comparative Thermal Analysis of Different Cool Roof Materials for Minimizing Building Energy Consumption

    Directory of Open Access Journals (Sweden)

    Y. Anand

    2014-01-01

    Full Text Available The roof and walls in the urban areas contribute to major share in the absorption of solar radiations and also retard the outflow of the absorbed radiation from the building envelope, thereby increasing the global warming by inducing the heat island effect. The impact of using cool roof technologies on the thermal comfort of the office buildings has been estimated. Cool roofs reduce electricity consumption for maintaining the temperature of the air-conditioned buildings in the comfort level and also increase comfort in buildings merely not relying completely on cooling equipment. The cool roofs and cool pavements, however, can mitigate summer urban heat islands by improving indoor air quality and comfort. The thermal analysis of different materials has been carried out to analyze the impact of the rate of heat transfer on the building envelope and the results obtained indicate that different cool roof techniques are beneficial in maintaining the comfort level of the building which purely depends on the ambient temperature conditions.

  4. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings

    Directory of Open Access Journals (Sweden)

    Hanan M. Taleb

    2014-06-01

    Full Text Available Passive design responds to local climate and site conditions in order to maximise the comfort and health of building users while minimising energy use. The key to designing a passive building is to take best advantage of the local climate. Passive cooling refers to any technologies or design features adopted to reduce the temperature of buildings without the need for power consumption. Consequently, the aim of this study is to test the usefulness of applying selected passive cooling strategies to improve thermal performance and to reduce energy consumption of residential buildings in hot arid climate settings, namely Dubai, United Arab Emirates. One case building was selected and eight passive cooling strategies were applied. Energy simulation software – namely IES – was used to assess the performance of the building. Solar shading performance was also assessed using Sun Cast Analysis, as a part of the IES software. Energy reduction was achieved due to both the harnessing of natural ventilation and the minimising of heat gain in line with applying good shading devices alongside the use of double glazing. Additionally, green roofing proved its potential by acting as an effective roof insulation. The study revealed several significant findings including that the total annual energy consumption of a residential building in Dubai may be reduced by up to 23.6% when a building uses passive cooling strategies.

  5. Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W.; Kedl, R.J.

    1976-11-01

    This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

  6. Impact of the temperature dependency of fiberglass insulation R-value on cooling energy use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, R.; Akbari, H.; Gartland, L.

    1996-08-01

    Building energy models usually employ a constant, room-temperature-measured value for the thermal resistance of fiberglass roof insulation. In summer, however, the mean temperature of roof insulation can rise significantly above room temperature, lowering the insulation`s thermal resistance by 10% to 20%. Though the temperature dependence of the thermal resistance of porous materials like fiberglass has been extensively studied, it is difficult to theoretically predict the variation with temperature of a particular fiberglass blanket, from first principles. Heat transfer within fiberglass is complicated by the presence of three significant mechanisms - conduction through air, conduction through the glass matrix, and radiative exchange within the matrix - and a complex, unknown internal geometry. Purely theoretical models of fiberglass heat transfer assume highly simplified matrix structures and require typically-unavailable information about the fiberglass, such as its optical properties. There is also a dearth of useful experimental data. While the thermal resistances of many individual fiberglass samples have been measured, there is only one practical published table of thermal resistance vs. both temperature and density. Data from this table was incorporated in the DOE-2 building energy model. DOE-2 was used to simulate the roof surface temperature, roof heat flux, and cooling energy consumption of a school bungalow whose temperature and energy use had been monitored in 1992. The DOE-2 predictions made with and without temperature variation of thermal conductivity were compared to measured values. Simulations were also run for a typical office building. Annual cooling energy loads and annual peak hourly cooling powers were calculated for the office building using both fixed and variable thermal conductivities, and using five different climates. The decrease in the R-value of the office building`s roof led to a 2% to 4% increase in annual cooling energy load.

  7. Evaluation of energy savings related to building envelope retrofit techniques and ventilation strategies for low energy cooling in offices and commercial sector

    OpenAIRE

    Grignon-Massé, Laurent; Marchio, Dominique; Pietrobon, Marco; Pagliano, Lorenzo

    2010-01-01

    International audience; The energy savings achievable in the end-use space cooling depend on a number of variables related to the building envelope, the plants and to some extent the behavior of occupants. They are hence complex to evaluate and consequently often underrepresented in designers, energy managers and policy makers decisions.This paper is based on some results of the European Commission supported project KeepCool2. It discusses a methodology for bottom-up assessment of the energy ...

  8. Energy conservation on large air-conditioned buildings: use of evaporative roof cooling in hot and dry climates

    Energy Technology Data Exchange (ETDEWEB)

    Sodha, M.S.; Sawhney, R.L.; Deshmukh, M.K.

    Energy conservation potential of the evaporative roof cooling technique for a cinema house in a composite climate (characterized by Delhi) has been evaluated. Thermal loads due to heat conduction through the building envelope, the required ventilation and the occupants have been taken into account. Life-cycle-cost analysis has been employed to evaluate the cost effectiveness of this energy conservation technique. It is seen that evaporative cooling on the roof leads to a net saving of 14% in the initial investment and 17% in the annual cost.

  9. Design and Analysis of Phase Change Material based thermal energy storage for active building cooling: a Review

    Directory of Open Access Journals (Sweden)

    Nitin .D. Patil

    2012-06-01

    Full Text Available Phase Change Materials (PCMs are "latent" thermal storage materials. They use chemical bonds to store and release heat. The thermal energy transfer occurs when a material changes from a solid to a liquid orfrom a liquid to a solid form. This is called a change in state or "phase." Initially, these solid-liquid PCMs perform like conventional storage materials; their temperature rises as they absorb solar heat. Unlike conventional heat storage materials, when PCMs reach the temperature at which they change phase (their melting point, they absorb large amounts of heat without getting hotter. When the ambient temperature in the space around the PCM material drops, the Phase Change Material solidifies, releasing its stored latent heat. PCMs absorb and emit heat while maintaining a nearly constant temperature. Within the human comfort and electronic-equipment tolerance range of 20°C to 35°C, latent thermal storage materials are very effective.They can be used for equalization of day & night temperature and for transport of refrigerated products. In the proposed project heat of fusion of Cacl2. 6H2o as PCM is used for cooling water during night and this cooled water is used as circulating medium trough fan coil unit, air trough FCU will get cooled by transferring heat to water and fresh & cool air will be thrown in a room. In the proposed project FREE COOLING & ACTIVE BUILDING COOLING concepts of Thermal Energy Storage are used in combine

  10. Use of solar energy for heating and cooling buildings. [Rooftop hydroponic hothouse

    Energy Technology Data Exchange (ETDEWEB)

    Yakubov, Yu.N.; Dustov, Kh.B.; Shodiev, O.Kh.

    1977-01-01

    Two houses have been constructed at the Bukhara State Pedagogical Institute solar test station. A hothouse consisting of a water-filled trough has been installed on the roof of one of these buildings. Water poured into the trough to a depth of 25 to 30 cm serves as the hothouse soil in the hydroponic technique for growing products. The hothouse is covered with polyethylene film, is oriented directly south, and is inclined at an angle of 52/sup 0/ to the horizon, which ensures maximal solar radiation input to the hothouse in the October-to-March period. The principle of solar radiation use for cooling, heating, and growing agricultural crops is discussed. Three full-scale experiment variants were conducted for confirmation.

  11. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  12. Market potential for solar heating and cooling in buildings

    Science.gov (United States)

    1973-01-01

    The use of solar heating and cooling for buildings as a method of conserving fossil fuels is discussed. The residential and commercial end use consumption of energy is tabulated. A survey to project the energy requirements for home and industry heating and cooling is developed. The survey indicates that there is a market potential for solar heating and cooling of buildings. A prediction of three to five billion dollars per year as the potential for solar heating and cooling is made.

  13. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  14. Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Ashfaque Ahmed; Rasul, M.G.; Khan, M.M.K. [College of Engineering and the Built Environment, Faculty of Sciences, Engineering and Health, Central Queensland University, Rockhampton, Qld 4702 (Australia)

    2008-06-15

    Simulation of buildings' thermal-performances is necessary to predict comfort of the occupants in buildings and to identify alternate cooling control-systems for achieving better indoor thermal environments. An analysis and prediction of thermal-comfort using DesignBuilder, based on the state-of-the-art building performance simulation software EnergyPlus, is carried out in an air-conditioned multi-storeyed building in the city of Rockhampton in Central Queensland, Australia. Rockhampton is located in a hot humid-region; therefore, indoor thermal-comfort is strongly affected by the outdoor climate. This study evaluates the actual thermal conditions of the Information Technology Division (ITD) building at Central Queensland University during winter and summer seasons and identifies the thermal comfort level of the occupants using low-energy cooling technologies namely, chilled ceiling (CC), economiser usages and pre-cooling. The Fanger comfort-model, Pierce two-node model and KSU two-node model were used to predict thermal performance of the building. A sophisticated building-analysis tool was integrated with the thermal comfort models for determining appropriate cooling-technologies for the occupants to be thermally comfortable while achieving sufficient energy savings. This study compares the predicted mean-vote (PMV) index on a seven-point thermal-sensation scale, calculated using the effective temperature and relative humidity for those cooling techniques. Simulated results show that systems using a chilled ceiling offer the best thermal comfort for the occupants during summer and winter in subtropical climates. The validity of the simulation results was checked with measured values of temperature and humidity for typical days in both summer and winter. The predicted results show a reasonable agreement with the measured data. (author)

  15. Geothermal Energy Production from Oil/Gas Wells and Application for Building Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honggang [Rutgers University; Liu, Xiaobing [ORNL

    2016-01-01

    One significant source of low-temperature geothermal energy is the coproduced hot water from oil/gas field production. In the United States, daily oil production has reached above 8 million barrels in recent years. Considering various conditions of wells, 5-10 times or more water can be coproduced in the range of temperature 120 F to 300 F. Like other geothermal resources, such energy source from oil/gas wells is under-utilized for its typical long distance from consumption sites. Many oil/gas fields, however, are relatively close (less than 10 miles) to consumers around cities. For instance, some petroleum fields in Pennsylvania are only a few miles away from the towns in Pittsburg area and some fields in Texas are quite close to Houston. In this paper, we evaluate geothermal potential from oil/gas wells by conducting numerical simulation and analysis of a fractured oil well in Hastings West field, Texas. The results suggest that hot water can be continuously coproduced from oil wells at a sufficient rate (about 4000 gallons/day from one well) for more than 100 years. Viable use of such geothermal source requires economical transportation of energy to consumers. The recently proposed two-step geothermal absorption (TSGA) system provides a promising energy transport technology that allows large-scale use of geothermal energy from thousands of oil/gas wells.

  16. Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Booten, C.; Tabares-Velasco, P. C.

    2012-08-01

    This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

  17. Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: The case of Malaysia

    Directory of Open Access Journals (Sweden)

    Allen Khin Kiet Lau

    2016-12-01

    Full Text Available Rapid growing of energy use has raised critical concerns over energy supply difficulties and negative environmental impacts globally and among ASEAN countries. Malaysia is experiencing a high average annual energy demand growth rate of approximately 2.3% which large portion of that energy is used by office buildings. Under the hot-humid climatic conditions in Malaysia, high-rise office buildings with large or fully glazed façades are facing a major problem of overheating due to high solar radiation through the glazed façades. This has caused high cooling energy requirements. The aim of this study is to investigate the potential of three types of shading devices on cooling energy savings when applied at different façade orientations. The aim also extends to investigations on different cooling energy savings when shading devices are applied on façade glazing with different configurations and thermal performances. This was done through a case study of a high-rise office building in Kuala Lumpur, Malaysia using IES (VE building thermal simulation software. Twenty simulation building models were applied with different shading devices at different façade orientations and with high and low performance façade glazing. The simulation results indicate that high-rise office buildings in Malaysia use approximately 45.9% of total building energy for cooling purposes. The results also suggest that use of various shading devices on low-e double glazed façades will result between 1.0% and 3.4% annual cooling energy savings, depending on the types of shading devices and façade orientations. The estimated annual cooling energy savings increase to between 5.0% and 9.9% when the shading devices are applied to all orientations of low-e double glazed façades. The estimated annual cooling energy savings further increase to between 5.6% and 10.4% when the façade glazing is replaced by single clear glazing. This study recommends prioritizing shading devices on

  18. Solar energy and heat pumps: evaluation of combined systems for heating and cooling of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.; Catan, M.A.; Le Doux, P.

    1982-09-01

    An analysis of a broad range of solar assisted heat pump systems was carried out. Systems were divided into three categories on the basis of whether ground coupling was included in the system and, if so, whether solar energy was stored in the ground or used in some other way. In the category of non-ground-coupled systems, an advanced air-source heat pump concept designed to improve capacity and coefficient of performance at low source temperatures was used as the basis for a dual source heat pump. For ground coupled systems which do not store solar heat in the ground, three options were considered: use of simple passive techniques to reduce the effective heating load; use of photovoltaics to drive the heat pump compressor; and use of active solar components as a source to the heat pump, for direct space heating, or for domestic hot water only. For systems which do store solar energy in the ground, the minimum size for efficient thermal carryover from summer to winter was determined to be a system capable of serving approx. 100 houses. Use of a fuel-fired heat pump is also an advantage in these larger systems. Economic analyses were based on a maximum allowable payback of 8 years for residential systems. For the large-scale system, a simplified 10-year life-cycle costing was employed.

  19. Results and experience of an aquifer thermal energy storage for heating and cooling of an office building and a demonstration center

    Energy Technology Data Exchange (ETDEWEB)

    Bael, Johan van; Desmedt, Johan; Vanhoudt, Dirk [Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol (Belgium)

    2010-07-01

    Aquifer Thermal Energy Storage (ATES) was introduced in the Belgian market since 1995. Until now over 10 installations with a thermal power of more than 300 kW cooling are installed. One of the first projects consists of the integration of ATES with a nominal power of 570 kWh in an existing office building and a new built demonstration center (3,000 m{sup 2}) for new lighting systems. The ATES system exists of a doublet: a cold and a warm well. The groundwater flow between the wells amounts to 90 m{sup 3}/h in the cooling modus and 45 m{sup 3}/h in the heating modus. The ATES system delivers the complete cooling demand of both buildings and a part of the heating demand. A gas fired boiler delivers the remaining heat demand. The project was funded by the Flemish Government in the Program of the Flemish Energy Demonstration Projects. The research institute VITO monitored the project during an evaluation period of three years. The energy flows (cooling and heating delivered to both buildings), the groundwater flow, the groundwater temperatures, the electricity consumption of the ATES and the gas consumption of the boiler were measured and stored every 30 minutes. This paper provides an overview of the monitoring results. (orig.)

  20. Cooling load across glazed building surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, S.; Krochmann, J. (Technische Univ. Berlin (Germany, F.R.). Inst. fuer Lichttechnik)

    1980-05-01

    It is only possible to build favourably with regard to costs and energy requirements, if the windows which are required for the direct visual contact between the inner and outer space are favourably selected with regard to the thermal loading of the internal space during the summer months and the heat losses during the cold season of the year. To achieve this an exact calculation of the partial cooling load is required, which is caused by the solar radiation entering into the inner space through the glazed building surfaces. Described are the items for the calculation of the magnitude of the radiation which defines this part of the cooling load on to any inclined surface and the influence of the properties of the glazing.

  1. Overview of Resources for Geothermal Absorption Cooling for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  2. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  3. Assessment of building cooling energy need through a quasi-steady state model: Simplified correlation for gain-loss mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Corrado, V.; Fabrizio, E. [Dipartimento di Energetica (DENER), Politecnico di Torino, Torino (Italy)

    2007-07-01

    The objective of this work is to implement a simplified calculation procedure for building net energy need, based on a quasi-steady state model and on a monthly data set. In particular, it is intended to supply a formulation of the dynamic parameters and to adapt them to Italian climatic, typological, constructive and user data. The method was validated by determining the numerical correlations of the gain/loss utilization factor, through a comparison with a detailed building energy simulation software (EnergyPlus). The simulation was run on some test rooms defined by CEN (European Committee for Standardization) and on some real buildings that are representative of the Italian building stock, assuming weather data from different Italian locations (Torino, Roma, Palermo). The work shows that the accuracy of results is greatly affected by nonlinearities in the determination of the heat transfer and that the dynamic parameters are sensitive to some building features which are not taken into account in the CEN correlations. (author)

  4. Passive Cooling of buildings by night-time ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, Heinrich; Heiselberg, Per

    Due to an overall trend towards an increasing cooling energy demand in buildings in many European countries over the last few decades, passive cooling by night-time ventilation is seen as a promising concept. However, because of uncertainties in thermal comfort predictions, architects and engineers...... are still hesitant to apply passive cooling techniques. As night-time ventilation is highly dependent on climatic conditions, a method for quantifying the climatic cooling potential was developed and the impact of climate warming was investigated. Although a clear decrease was found, significant potential...... will remain, especially if night-time ventilation is applied in combination with other cooling methods. Building energy simulations showed that the performance of night-time ventilation is also affected by the heat transfer at internal room surfaces, as the cooling effect is very limited for heat transfer...

  5. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  6. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house...... performance of heating and cooling systems for achieving the same thermal indoor environment. The results show that it is crucial to minimize the heating and cooling demands in the design phase since these demands determine the terminal units and heat sources and sinks that could be used. Low temperature...... heating and high temperature cooling systems (a radiant water-based floor heating and cooling system in this study) proved to be superior to compared systems, evaluated with different system analysis tools; energy, exergy, and entransy. Radiant systems should be coupled to appropriate heating and cooling...

  7. Tropical Zero Energy Office Building

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Kristensen, Poul Erik

    2006-01-01

    of the building, so that windows are only towards the north and south, in order to reduce the solar heat gains. In order to reduce the loss of cooling through the building envelope, the walls and the roofs are heavily insulated, and the windows have double low energy glazing. The building will be lit primarily...... lighting. These measures include the use of high efficient lighting controlled according to demand, high efficiency pumps and fans, a high efficiency chiller, and use of energy efficient office equipment. The buildings PV system is connected to the grid. Solar electricity is exported to the grid during......The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...

  8. Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems

    Directory of Open Access Journals (Sweden)

    V. Echarri Iribarren

    2016-12-01

    Full Text Available Porcelain stoneware is a widely used building material. In recent years, its range of uses has expanded to encompass a new spectrum of innovative and inventive applications in architecture. In this research, we analysed the patented Thermal Ceramic Panel. This consists of a thin porcelain stoneware panel that incorporates a capillary system of polypropylene tubes measuring 3.5 mm in diameter embedded in a conductive ceramic interface. The system works with hot or cold water, producing healthy heating and cooling by means of radiant surfaces. Following an initial prototype test in which panels were placed on the walls of an office, we conducted simulations at the University of Alicante Museum using wall, ceiling and baffle panels, having previously monitored the state of the building. Thermal behaviour parameters were analysed and compared with those of other standard finishing materials, obtaining results for thermal comfort and energy savings in comparison with all-air systems.

  9. Solar-Heated and Cooled Office Building--Columbus, Ohio

    Science.gov (United States)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  10. Proceedings of the workshop on cool building materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  11. Model Predictive Control for the Operation of Building Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  12. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  13. Cooling Load Distribution of Large Space Building

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-bing(陈红兵); TU Guang-bei(涂光备); YANG Jie(杨洁); Chan K T

    2003-01-01

    The cooling and heating load distribution of large area air-conditioned room such as "open" offices, shopping malls and waiting rooms is usually assumed to be even in air conditioning system design. However, it is not the case in reality, and a low efficient air conditioning system results from this assumption. A simulation and analysis of the cooling load distribution of an office building in Hong Kong with TRANSYS software is provided in this paper. A typical office is divided into 13 zones for simulation, including external zone, medial zone and internal zone in the north, the south, the east and the west respectively and a central zone, instead of 4 directional zone. The result shows there is much cooling load difference between each zone, and more attention should be paid to uneven indoor cooling and heating load distribution to further guide the design.

  14. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    , radiant floor, wall and ceiling) have been compared for a typical office room, both numerically and experimentally. From the steady-state numerical analysis and the full-scale experiments, it has been observed that the difference between the two types of terminals is mainly due to changes...... not achieve the same uniformity in space. The active chilled beam theoretically achieves the most uniform comfort conditions (when disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting...

  15. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  16. Energy Efficient Electronics Cooling Project

    Energy Technology Data Exchange (ETDEWEB)

    Steve O' Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  17. Building cooling by night-time ventilation

    Institute of Scientific and Technical Information of China (English)

    卢军; 王曦; 甘灵丽

    2009-01-01

    Nowadays,the world is short of energy source,and larger proportion of building energy consumption is occupied by air conditioning system. It is urgent that not only importance should be attached on energy saving but also arcology energy technology based on green and sustainable thought should be advocated. Considering the ever growing energy consumption of residential buildings,intermittent ventilation is a solution to saving energy consumption and improving indoor thermal comfort. Aiming at reducing indoor air temperature by intermittent ventilation and decrease energy consumption of air conditioning system,with the help of DeST (Designer’s Simulation Toolkit) this paper analyzes the characteristics of air conditioning load and year round air conditioning time in Chongqing located in hot summer and cold winter zone,obtains the amount of energy consumption saved at different ventilation rates,and recommends suitable ventilation rate in hot summer and cold winter zone.

  18. Religious building energy use

    Energy Technology Data Exchange (ETDEWEB)

    Spielvogel, L.G.; Rudin, A.

    1988-02-01

    The Interfaith Coalition on Energy (ICE) was organized in 1980 by the Philadelphia area religious community and, funded in 1982 by local private foundations and corporations, began an energy management program for religious buildings whose utility bills are paid by congregations. Since that time, ICE has completed on-site energy audits for 226 congregations with a total of 546 buildings. Each audit report contains a description of the facilities and their energy systems, a baseline year of energy data, a computation of energy use per square foot, and a list of recommendations to reduce energy costs in order of simple payback.

  19. Cooling of the Building Structure by Night-time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai

    , architects and engineers are still hesitant to apply passive cooling techniques. The basic concept of night-time ventilation involves cooling the building structure overnight in order to provide a heat sink during the occupancy period. As this requires a sufficiently high temperature difference between...... a building energy simulation program (HELIOS), and the effect of different parameters such as building construction, heat gains, air change rates, heat transfer coefficients and climatic conditions on the number of overheating degree hours (operative room temperature >26 °C) was evaluated. Besides climatic...... air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. Heat transfer during night-time ventilation in case of mixing and displacement ventilation has been investigated in a full scale test room. The performance of night...

  20. Retrofitting the Southeast. The Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, W. [Steven Winter Associates, Inc., Norwalk, CT (United States); Shapiro, C. [Steven Winter Associates, Inc., Norwalk, CT (United States); Vijayakumar, G. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-02-01

    The Consortium for Advanced Residential Buildings research team has provided the technical engineering and building science support for a highly visible demonstration home that was unveiled at the National Association of Home Builders' International Builders Show on Feb. 9, 2012, in Orlando, FL. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This report describes the deep energy retrofit of the Cool Energy House (CEH), which began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  1. Retrofitting the Southeast: The Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

    2013-02-01

    The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  2. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    Science.gov (United States)

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  3. Energy efficient building design

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  4. Municipal Building Energy Usage

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set contains energy use data from 2009-2014 for 139 municipally operated buildings. Metrics include: Site & Source EUI, annual electricity, natural...

  5. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  6. Free Cooling Ratio based Energy Evaluation for the Air Conditioning System of Electronic Factory Building%电子厂房空调系统自然供冷率及节能分析

    Institute of Scientific and Technical Information of China (English)

    何克青; 晋欣桥; 颜健; 范波; 杜志敏

    2011-01-01

    Free cooling is an efficient way to save the energy use of chiller. For the air conditioning system, which only has cooling load in the whole year, cooling tower can be used for free cooling in winter. The air conditioning system of an electronic factory building located in Shanghai is selected, and free cooling ratio of cooling tower is used to evaluate the capacity of free cooling and potential of energy saving by analyzing the effect of the different supply chilled water temperature, efficiency of cooling tower and plate heat exchanger. The results show that there is significant energy saving for use of flee cooling of cooling tower, and suitable design of supply chilled water temperature, efficiency of cooling tower and plate heat exchanger is the key of energy saving for the application of free cooling of cooling tower.%电子厂房空调系统需要全年供冷,在冬季,利用冷却塔自然供冷可以节约冷水机组的运行能耗,其节能潜力较为可观。本文针对上海地区某电子厂房空调系统,分析了冷却塔间接供冷方式下供水温度、冷却塔及板式换热器效率对自然供冷率的影响。通过自然供冷率的对比,分析系统的节能潜力。研究结果表明,在12月到3月四个月内采用冷却塔自然供冷,可以取得明显的节能效果。同时,冷冻水的供水温度、冷却塔及板式换热器效率对自然供冷率有较大的影响,合适的系统设计是冷却塔自然供冷节能应用的关键。

  7. A novel system solution for cooling and ventilation in office buildings

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo;

    2015-01-01

    As a response to new energy policies in the building sector, office buildings have become well-insulated and highly-airtight, resulting in an increasing cooling need both in summer and in winter. In order to effectively save energy, new interests in cooling concepts using passive cooling technolo......As a response to new energy policies in the building sector, office buildings have become well-insulated and highly-airtight, resulting in an increasing cooling need both in summer and in winter. In order to effectively save energy, new interests in cooling concepts using passive cooling...... technologies and renewable energy sources have risen. Based on a literature review of natural ventilation, building thermal mass activation and diffuse ceiling ventilation, this paper proposes a new system solution combining these three technologies for cooling and ventilation in office buildings. This new...... solution has the special function of using natural ventilation all the year around without draught risk, even in very cold seasons. A case study of a typical office room using this solution and other traditional HVAC systems is carried out by energy simulation. The results show that there is a large energy...

  8. Energy stilts: Symbiosis of statistics and energy. Forward-looking system for environmentally-fiendly heating and cooling of buildings. Energiepfaehle: Symbiose zwischen Statistik und Energie. Zukunftsweisendes System zur umweltschonenden Beheizung und Kuehlung von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, C. (NEC Umwelttechnik AG, Zurich (Switzerland))

    1992-10-01

    The static necessity of stilted buildings can in many cases be taken advantages of by using stilts as heat exchangers and thus for alternative energy production. By inserting heat exchanger pipes in the stilts energy can be withdrawn from the soil. With this so-called energy stilts monovalent heating or conditioning of individual buildings or whole superstructures is in principle possible. Structure and mode of operation are explained with an example. (BWI).

  9. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......Full-scale experiments under both steady-state and dynamic conditions have been performed to compare the energy performance of a radiant wall and an active chilled beam. From these experiments, it has been observed that the radiant wall is a more secure and efficient way of removing heat from...... the test room than the active chilled beam. The energy saving, which can be estimated to around 10%, is due to increased ventilation losses. The asymmetry between air and radiant temperature, the air temperature gradient and the possible short-circuit between inlet and outlet play an equally important role...

  10. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... and how the Net ZEB status should be calculated differs in most countries. This paper presents an overview of Net ZEBs energy calculation methodologies proposed by organisations representing eight different countries: Austria, Canada, Denmark, Germany, Italy, Norway, Switzerland and the USA. The different...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  11. Energy intelligent buildings based on user activity : A survey

    NARCIS (Netherlands)

    Nguyen, Tuan Anh; Aiello, Marco

    2013-01-01

    Occupant presence and behaviour in buildings has been shown to have large impact on heating, cooling and ventilation demand, energy consumption of lighting and appliances, and building controls. Energy-unaware behaviour can add one-third to a building's designed energy performance. Consequently, use

  12. Computational Support for the Selection of Energy Saving Building Components

    NARCIS (Netherlands)

    De Wilde, P.J.C.J.

    2004-01-01

    Buildings use energy for heating, cooling and lighting, contributing to the problems of exhaustion of fossil fuel supplies and environmental pollution. In order to make buildings more energy-efficient an extensive set of âenergy saving building componentsâ has been developed that contributes to mini

  13. Smart energy option: Reusing wastewater for cooling energy

    Energy Technology Data Exchange (ETDEWEB)

    Clapham, A. [Boeing Co., Seattle, WA (United States); Jackman, J. [Puget Sound Power and Light Co., Bellevue, WA (United States); Lundt, M.M. [King County Department of Metropolitan Services, Seattle, WA (United States). Water Pollution Control Dept.

    1996-12-31

    The King County Department of Metropolitan Services, an airplane manufacturer, and a Seattle utility are ready to begin operating the first commercial effluent-based cooling system for buildings in the Northwest. This paper details the studies undertaken to design the system and how the manufacturer addressed its employees` concerns about a new system. There are several environmental benefits to using effluent as a cooling medium. Considerable energy savings in chiller operations are achieved because the effluent temperature is 10 to 20 degrees cooler than water returned from cooling towers. Another major benefit is water conservation. Conventional cooling towers would consume several million gallons of water each year. By using effluent, the consumption of this water will be avoided. Water run through cooling towers is treated with chemicals to prevent corrosion and biological growth. With the effluent in a closed-loop system, there will be no need to treat the effluent. Consequently there will be a reduction in use of water treatment chemicals that are ultimately discharged into the sewer system. This reduces the treatment load to the county and helps to maintain a cleaner environment. The concept is simple: recover heat wasted from one activity for reuse in another. The delivery is easy: send effluent via a pipeline to customer`s chillers to pick up heat and return that heat to the plant. The selling of this idea is the focus of this paper.

  14. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  15. JPL Energy Consumption Program (ECP) documentation: A computer model simulating heating, cooling and energy loads in buildings. [low cost solar array efficiency

    Science.gov (United States)

    Lansing, F. L.; Chai, V. W.; Lascu, D.; Urbenajo, R.; Wong, P.

    1978-01-01

    The engineering manual provides a complete companion documentation about the structure of the main program and subroutines, the preparation of input data, the interpretation of output results, access and use of the program, and the detailed description of all the analytic, logical expressions and flow charts used in computations and program structure. A numerical example is provided and solved completely to show the sequence of computations followed. The program is carefully structured to reduce both user's time and costs without sacrificing accuracy. The user would expect a cost of CPU time of approximately $5.00 per building zone excluding printing costs. The accuracy, on the other hand, measured by deviation of simulated consumption from watt-hour meter readings, was found by many simulation tests not to exceed + or - 10 percent margin.

  16. Classification of low energy houses in Danish Building Regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    The new Danish Building Regulations (Building Regulations, 2005) introduces the total energy consumption, i.e. energy use for heating, ventilation, cooling and domestic hot water, for buildings as a measure for the energy efficiency of new buildings, i.e. moving away from the former U-value demands....... In addition to the minimum requirements for new buildings, the new Building Regulations also specify requirements for characterizing a building as either low energy building class 1 or low energy building class 2. This paper describes a type-house that is presently being built in Denmark. The type......-house easily meets the requirements for being categorized as a low energy building class 1, and the paper investigates how much U-values can be increased if the type-house were to fulfil the requirements for a low energy building class 2 or a building that just fulfils the minimum demands....

  17. Climate protection by reducing cooling demands in buildings; Klimaschutz durch Reduzierung des Energiebedarfs fuer Gebaeudekuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Bettgenhaeuser, Kjell; Boermans, Thomas; Offermann, Markus; Krechting, Anja; Becker, Daniel [Ecofys Germany GmbH, Koeln (Germany)

    2011-06-15

    The aim of this study is to conduct estimation on the potential reduction in electricity demand from cooling appliances in buildings in Germany. Current electricity demand and greenhouse-gas emissions will be investigated through desk research for residential and non-residential buildings. Based on building simulations, conventional, alternative and renewable technologies will be compared for different reference buildings. An economic and environmental assessment will evaluate the technologies per reference building in further detail. The main result will be an estimation of the potential energy demand reduction for the alternative/ regenerative technologies in the building stock. This will be based on the conditioned floor area and retrofit rates per system. Furthermore, the influence of cooling in buildings on energy demand will be annotated. Barriers in the reduction of energy demand will be described possible actions will be discussed along with types of policy instruments and consumer information. (orig.)

  18. Energy conservation with alternative `silent` (passive) cooling systems in office buildings and energetic evaluation of cold generation for `silent cooling`. German contribution to the IEA Programme ECBS Annex 28, low energy cooling. Final report; Energieeinsparung durch den Einsatz von alternativen Systemen der `stillen` (passiven) Kuehlung in Buerogebaeuden und energetische Bewertung der Kaelteerzeugung fuer die `stille Kuehlung`. Deutsche Beteiligung an dem IEA-Programm ECBS Annex 28, low energy cooling. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Laabs, K.D.; Wolkenhauer, H. [STULZ GmbH, Hamburg (Germany); Heinrich, G.; Franzke, U.; Seifert, C. [Institut fuer Luft- und Kaeltetechnik GmbH, Dresden (Germany); Steimle, F.; Mengede, B. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Angewandte Thermodynamik und Klimatechnik

    1997-06-01

    In July 1993 a 3 years lasting research and development projekt, which deals with silent cooling systems (cold ceilings and cold beams), was started by the BMBF. During this projekt different tools, which allow the design of silent cooling systems, were developed in cooperation of the company STULZ GmbH Klimatechnik (coordination), the University of Essen and the ILK in Dresden. During this projekt different silent cooling systems were investigated in cooperation of the three organizations. These investigations were correlated with existing and available results form theoretical and practical investigations and publications. Main element of the investigated systems are cold surfaces and/or heat exchangers, which are installed in standard offices with different arrangements and forms. The heat transfer at the surfaces bases on free convection, which depends on the difference between the surfaces temperature and the air temperature inside the offices. By using water instead of air as heat distribution medium inside the building, it is possible to reduce the energy consumption in comparison to conventional air conditioning systems. Different variants of these systems were investigated under various operation parameters, so that a design tool could be developed by using the results form the investigations. (orig.) [Deutsch] Unter dem Thema: Einsatz von Systemen der `Stillen (passiven) Kuehlung` wurde im Juli 1993 ein Forschungsvorhaben mit einer Laufzeit von 3 Jahren vom BMBF gestartet. Im Rahmen dieses Forschungsvorhabens werden unter Fuehrung der Fa. STULZ GmbH Klimatechnik und in Kooperation mit der UNI Essen und des ILK Dresden verschiedene TOOLS zur Auslegung von Deckenkuehlsystemen erarbeitet. Auf der Grundlage bekannter und vorliegender theoretischer wissenschaftlicher Erkenntnisse der gebaeudebezogenen Klimatechnik sowie Veroeffentlichungen bundesdeutscher Forschungseinrichtungen und Hochschulinstitute relevanter Arbeitsbereiche wurde gemeinsam mit technischen

  19. Evaluation of the energy efficiency of active pass through wall cooling surface with phase change material in residential buildings combined with cistern cooling and operation optimization by development of suitable control strategies; Evaluierung der Energieeffizienz von aktiv durchstroemten Wandkuehlflaechen mit Phasenwechselmaterial in Wohngebaeuden in Kombination mit einer Zisternenkuehlung und Optimierung des Betriebes durch Entwicklung geeigneter Regelstrategien

    Energy Technology Data Exchange (ETDEWEB)

    Stoelzel, Christof [Variotec, Neumarkt (Germany); Kalz, Doreen; Wienold, Jan; Fischer, Martin [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen

    2009-07-01

    This work introduces and evaluates a novel heating and cooling concept employing thermo-active building systems and environmental energy harnessed from 22-m{sup 3} rainwater cisterns for a 290-m{sup 2} low energy residential building in Germany. The building strives for a significantly reduced primary energy use with carefully coordinated measures such as high quality building envelope by means of vacuum insulated panels, supply and exhaust air system with heat recovery, reduced solar heat gains (solar shading), and the integration of thermal solar collectors and photovoltaic in the plant system. On this premise, a comprehensive long-term monitoring over the course of two years in high time resolution was carried out with an accompanying commissioning of the building performance. Measurements comprise the energy use for heating, cooling, and ventilation, as well as the auxiliary equipment, the performance of the environmental heat source/sink, thermal comfort, air quality, and local climatic site conditions. The analysis focuses on the performance and the efficiency of the rainwater cisterns as natural heat source and sink as well as the heat pump system. First, the paper discusses the performance of the thermo-active building systems, investigates the occupant thermal comfort, determines the efficiency of the heating/cooling system, and evaluates the total end and primary energy use of the building. Second, various operation and control strategies for the cooling plant are investigated by means of a validated building and plant model in the dynamic simulation environment TRNSYS. The optimization is carried out in terms of energy efficiency, occupant thermal comfort and the availability of the rainwater cisterns over the summer months. The central findings of the analysis of the energy and efficiency performance of the HVAC according to four defined balance boundaries are the following: Rainwater cistern as environmental source und sink: The energy balance of the

  20. Solar energy in buildings: Implications for California energy policy

    Science.gov (United States)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  1. Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2015-03-01

    Full Text Available In recent years there has been a growing interest in the development and thermal-energy analysis of passive solutions for reducing building cooling needs and thus improving indoor thermal comfort conditions. In this view, several studies were carried out about cool roofs and cool coatings, producing acknowledged mitigation effects on urban heat island phenomenon. The purpose of this work is to investigate the thermal-energy performance of cool louvers of shutters, usually installed in residential buildings, compared to dark color traditional shading systems. To this aim, two full-scale prototype buildings were continuously monitored under summer conditions and the role of the cool shutter in reducing the overheating of the shading system and the energy requirements for cooling was analyzed. After an in-lab optical analysis of the cool coating, showing a huge solar reflectance increase with respect to the traditional configuration, i.e., by about 75%, field monitoring results showed that the cool shutter is able to decrease the indoor air temperature up to 2 °C under free floating conditions. The corresponding energy saving was about 25%, with even much higher peaks during very hot summer conditions.

  2. Novel heating and cooling concept employing rainwater cisterns and thermo-active building systems for a residential building

    Energy Technology Data Exchange (ETDEWEB)

    Kalz, Doreen E.; Wienold, Jan; Fischer, Martin; Cali, Davide [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2010-02-15

    This paper introduces and evaluates a novel heating and cooling concept employing thermo-active building systems and environmental energy, harnessed from two 11-m{sup 3} rainwater cisterns for a 285-m{sup 2} residential building in passive house standard in Germany. The building strives for a significantly reduced primary energy use with carefully coordinated measures, such as high quality building envelope, by means of vacuum insulated panels, supply and exhaust air system with heat recovery, reduced solar heat gains (solar shading), and the integration of thermal solar collectors and photovoltaic in the plant system. On this premise, a comprehensive long-term monitoring in high time-resolution was carried out for the building for two years with an accompanying commissioning of the building performance. Measurements comprise the energy use for heating, cooling, and ventilation, as well as the auxiliary equipment, the performance of the environmental heat source and sink (rainwater cistern), thermal comfort, and local climatic site conditions. The analysis focuses on the performance and the efficiency of rainwater cisterns as natural heat source and sink as well as the heat pump system. The paper discusses the performance of thermo-active building systems, investigates the thermal comfort, determines the efficiency of the heating/cooling system, and evaluates the total end and primary energy use of the building. (author)

  3. Energy Savings by Treating Buildings as Systems

    Science.gov (United States)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  4. Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Bergsøe, Niels Christian;

    2014-01-01

    energy between zones with one hydronic circuit, operating with a water temperature between 20°C and 23°C. To calculate the energy performance of the system, simulation-based research was developed. The two-pipe system was modelled by using EnergyPlus, a whole building energy simulation program. Hourly......The aim of this paper was to investigate the energy savings potential of an innovative two-pipe system in an active chilled beam application for heating and cooling of office buildings. The characteristic of the system is its ability to provide simultaneous heating and cooling by transferring...... heating, cooling and ventilation loads were calculated by the program and an annual energy consumption evaluation of the system was made. Simulation results showed that the innovative two-pipe active chilled beam system used approximately 5% less energy than a conventional four-pipe system....

  5. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Will [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Roux, Jordan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  6. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

    2013-01-01

    advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take......Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings...

  7. Energy Performance of Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2007-01-01

    "Sustainable development" has been defined best by the Brundtland Commission as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Adequate and affordable energy supplies have been key to economic development and are c......"Sustainable development" has been defined best by the Brundtland Commission as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Adequate and affordable energy supplies have been key to economic development...... and are central to improving social and economic well- being, and human welfare and raising living standards. Even if energy is essential for development, it is only a means to an end. The end is good health, high living standards, a sustainable economy and a clean environment. The European Climate change...... programme (ECCP) was established in June 2000 to help identify the most environmentally cost-effective measures enabling the EU to meet its target under the Kyoto Protocol, namely an 8% reduction in greenhouse gas emissions from 1990 levels by 2012. Energy use in buildings accounts for almost half of all CO...

  8. Energy efficiency of building envelope

    OpenAIRE

    2014-01-01

    November, 12-13th, in Saint-Petersburg the 7th International congress "Energy efficiency. XXI century" took place. The reports were done in breakuo groups according to the various aspects of energy efficiency challenge: HVAC systems, water supply and sewerage systems, gas supply, energy metering. One of the grourps was devoted to thermophysics of buildings and energy effective design of building envelope.

  9. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  10. Passive options for solar cooling of buildings in arid areas

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Emad H. [Department of Mechanical Power Engineering, Faculty of Engineering, Menofiya University, Gamal Abdul Nasser St., Shebin El-kom, Menofiya (Egypt)

    2006-07-15

    The major heat load of buildings and workshops, made of metal structures, is the solar energy supplied through the roof. Several passive modifications have been introduced to the roof in order to reduce the temperature of indoor air in arid areas. An experimental investigation, employing passive modifications, has been carried out to study the reduction in air temperature. The results show that the inside air temperature falls to within 6 and 3{sup o}C, respectively, from the ambient temperature when the ceiling is painted white, or provided with a layer of thermal insulation. Using evaporative cooling or a solar chimney leads to an inside temperature within 1{sup o}C of the ambient temperature. (author)

  11. Magnetocaloric materials for energy efficient cooling

    Science.gov (United States)

    Lyubina, Julia

    2017-02-01

    Solid-state magnetic cooling near room temperature has recently gained a prominent position among alternative cooling technologies that are deemed to have higher energy efficiency compared to vapour compression. This prospect has surged a rapid growth of the area of magnetocaloric materials. Although several breakthroughs were achieved, the extensive study revealed a number of challenges in the effective deployment of the magnetic refrigerants. This review focuses on fundamentally and technologically relevant aspects of the cooling with magnetocaloric materials. A critical evaluation of magnetic refrigerants and progress made in improvement of their performance is provided. Future development trends in the field of materials for the solid state cooling are highlighted.

  12. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  13. Energy Innovations for Healthy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Bogucz, Edward A. [Syracuse Univ., NY (United States)

    2016-09-23

    Healthy buildings provide high indoor environmental quality for occupants while simultaneously reducing energy consumption. This project advanced the development and marketability of envisioned healthy, energy-efficient buildings through studies that evaluated the use of emerging technologies in commercial and residential buildings. The project also provided resources required for homebuilders to participate in DOE’s Builders Challenge, concomitant with the goal to reduce energy consumption in homes by at least 30% as a first step toward achieving envisioned widespread availability of net-zero energy homes by 2030. In addition, the project included outreach and education concerning energy efficiency in buildings.

  14. Embodied Energy in Sustainable Buildings

    NARCIS (Netherlands)

    Kokkos, A.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. A direct contribution to getting a more sustainable world is to reduce the energy consumption. Much is done in the operational energy of buildings. The embodied energy, used during the construction of a build

  15. Building energy governance in Shanghai

    Science.gov (United States)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  16. Solar cooling - comparative study between thermal and electrical use in industrial buildings

    Science.gov (United States)

    Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.

    2016-08-01

    The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.

  17. State building energy codes status

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

  18. Modeling and energy simulation of the variable refrigerant flow air conditioning system with water-cooled condenser under cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueming; Wu, Jingyi [Shanghai Jiao Tong University, Institute of Refrigeration and Cryogenics (China); Shiochi, Sumio [Daikin Industries Ltd. (Japan)

    2009-09-15

    As a new system, variable refrigerant flow system with water-cooled condenser (water-cooled VRF) can offer several interesting characteristics for potential users. However, at present, its dynamic simulation simultaneously in association with building and other equipments is not yet included in the energy simulation programs. Based on the EnergyPlus's codes, and using manufacturer's performance parameters and data, the special simulation module for water-cooled VRF is developed and embedded in the software of EnergyPlus. After modeling and testing the new module, on the basis of a typical office building in Shanghai with water-cooled VRF system, the monthly and seasonal cooling energy consumption and the breakdown of the total power consumption are analyzed. The simulation results show that, during the whole cooling period, the fan-coil plus fresh air (FPFA) system consumes about 20% more power than the water-cooled VRF system does. The power comparison between the water-cooled VRF system and the air-cooled VRF system is performed too. All of these can provide designers some ideas to analyze the energy features of this new system and then to determine a better scheme of the air conditioning system. (author)

  19. Radiant cooling in US office buildings: Towards eliminating the perception of climate-imposed barriers

    Energy Technology Data Exchange (ETDEWEB)

    Stetiu, Corina [Univ. of California, Berkeley, CA (United States)

    1998-01-01

    Much attention is being given to improving the efficiency of air-conditioning systems through the promotion of more efficient cooling technologies. One such alternative, radiant cooling, is the subject of this thesis. Performance information from Western European buildings equipped with radiant cooling systems indicates that these systems not only reduce the building energy consumption but also provide additional economic and comfort-related benefits. Their potential in other markets such as the US has been largely overlooked due to lack of practical demonstration, and to the absence of simulation tools capable of predicting system performance in different climates. This thesis describes the development of RADCOOL, a simulation tool that models thermal and moisture-related effects in spaces equipped with radiant cooling systems. The thesis then conducts the first in-depth investigation of the climate-related aspects of the performance of radiant cooling systems in office buildings. The results of the investigation show that a building equipped with a radiant cooling system can be operated in any US climate with small risk of condensation. For the office space examined in the thesis, employing a radiant cooling system instead of a traditional all-air system can save on average 30% of the energy consumption and 27% of the peak power demand due to space conditioning. The savings potential is climate-dependent, and is larger in retrofitted buildings than in new construction. This thesis demonstrates the high performance potential of radiant cooling systems across a broad range of US climates. It further discusses the economics governing the US air-conditioning market and identifies the type of policy interventions and other measures that could encourage the adoption of radiant cooling in this market.

  20. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  1. Future comfort cooling in domestic and commercial buildings in Sweden; Naesta generations klimatkyla i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, Roger; Haglund Stignor, Caroline; Rolfsman, Lennart; Lindahl, Markus; Alsbjer, Markus; Axell, Monica

    2010-09-15

    This report presents results from a national project on future potential for comfort cooling in the built sector. Results from an interview study are presented. Future changes in energy demand for comfort cooling in different building types based on scenarios are also presented and discussed. It is clear from the simulated results that the future need for comfort cooling will decrease due to a number of factors, including user behavior, regulations and new building codes

  2. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    Directory of Open Access Journals (Sweden)

    SIBGHA SIDDIQUE SIDDIQUE

    2016-10-01

    Full Text Available Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk® Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1% is 1 inch for external walls and roof respectively.

  3. Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2014-04-01

    Full Text Available Cool roofs represent an acknowledged passive cooling technique to reduce building energy consumption for cooling and to mitigate urban heat island effects. This paper concerns the evaluation of the dynamic effect of new cool roof clay tiles on building thermal performance in summer and winter conditions. To this end, these properties have been analyzed on traditional roof brick tiles through an indoor and outdoor two-year long continuous monitoring campaign set up in a residential building located in central Italy. The analysis and the cooperation with industrial companies producing brick tiles and reflective coatings allowed the production of a new tile with notable “cool roof” properties through the traditional industrial manufacturing path of such tiles. Notable results show that during summer the high reflection tiles are able to decrease the average external roof surface temperature by more than 10 °C and the indoor operative temperature by more than 3 °C. During winter the average external surface temperature is lower with high reflection tiles by about 1 °C. Singular optic-thermal phenomena are registered while evaluating the dynamics of the cool roof effect. Interesting findings show how the sloped cool roof application could suggest further considerations about the dynamic effect of cool roofs.

  4. Thermo Active Building Systems Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2012-01-01

    Using the thermal storage capacity of the concrete slabs between each floor in multistory buildings to heat or cool is a trend that began in the early 1990s in Switzerland.1,2 Pipes carrying water for heating and cooling are embedded in the center of the concrete slab. In central Europe (Germany,...

  5. Comparison of Software Models for Energy Savings from Cool Roofs

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  6. Stochastic cooling of a high energy collider

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

    2011-09-04

    Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

  7. A passive cooling system of residential and commercial buildings in summer or hot season

    Science.gov (United States)

    Rahman, M. M.; Mashud, M.; Chu, C. M.; Misaran, M. S. bin; Sarker, M.; Kumaresen, S.

    2015-12-01

    The increasing number of high rise buildings may contribute to lack of natural ventilation in modern buildings. Generally, fans and air conditioning are used in the modern building for cooling and air ventilation. Most of the energy in tropical regions are consumed by heating, cooling and ventilation appliances. Therefore, solar power appliances for cooling, heating and ventilation will be a suitable option for saving energy from the household sector. A modified-structure building is designed and constructed with solar chimney to enhance ventilation rate that increases cooling performance and ensure thermal comfort. An evaporative cooler is introduced with a newly designed room to enhance the temperature reduction capacity. The room temperature is compared with a non-modified room as well as with ambient temperature. The results show that passive cooling system with evaporative cooler was able to reduce temperature by 5°C compared to the ambient temperature and about 2°C to 3°C below the reference room temperature.

  8. Renewable building energy systems and passive human comfort solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen Mustafa [17 Juniper Court, Forest Road West, Nottingham NG7 4EU (United Kingdom)

    2008-08-15

    With environmental protection posing as the number one global problem, man has no choice but to reduce his energy consumption. One way to accomplish this is to resort to passive and low-energy systems to maintain thermal comfort in buildings. The conventional and modern designs of wind towers can successfully be used in hot arid regions to maintain thermal comfort (with or without the use of ceiling fans) during all hours of the cooling season, or a fraction of it. Climatic design is one of the best approaches to reduce the energy cost in buildings. Proper design is the first step of defence against the stress of the climate. Buildings should be designed according to the climate of the site, reducing the need for mechanical heating or cooling. Hence maximum natural energy can be used for creating a pleasant environment inside the built envelope. Technology and industry progress in the last decade diffused electronic and informatics' devices in many human activities, and also in building construction. The utilisation and operating opportunities components, increase the reduction of heat losses by varying the thermal insulation, optimise the lighting distribution with louver screens and operate mechanical ventilation for coolness in indoor spaces. In addition to these parameters the intelligent envelope can act for security control and became an important part of the building domotic revolution. Application of simple passive cooling measure is effective in reducing the cooling load of buildings in hot and humid climates. Fourty-three percent reductions can be achieved using a combination of well-established technologies such as glazing, shading, insulation, and natural ventilation. More advanced passive cooling techniques such as roof pond, dynamic insulation, and evaporative water jacket need to be considered more closely. The building sector is a major consumer of both energy and materials worldwide, and that consumption is increasing. Most industrialised

  9. Passive cooling of buildings by night-time ventilation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, N.; Manz, H. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heiselberg, P. [Aalborg University, Aalborg (Denmark)

    2008-07-01

    Due to an overall trend towards an increasing cooling energy demand in buildings in many European countries over the last few decades, passive cooling by night-time ventilation is seen as a promising concept. However, because of uncertainties in thermal comfort predictions, architects and engineers are still hesitant to apply passive cooling techniques. As night-time ventilation is highly dependent on climatic conditions, a method for quantifying the climatic cooling potential was developed and the impact of climate warming was investigated. Although a clear temperature decrease was found, significant potential will remain, especially if night-time ventilation is applied in combination with other cooling methods. Building energy simulations showed that the performance of night-time ventilation is also affected by the heat transfer at internal room surfaces, as the cooling effect is very limited due to heat transfer coefficients below about 4 W/m{sup 2}K. Heat transfer during night-time ventilation in case of mixing and displacement ventilation was investigated in a full scale test room at Aalborg University. In the experiments the temperature efficiency of the ventilation was determined. Based on the previous results a method for estimating the potential for cooling by night-time ventilation at an early stage of design was developed. (author)

  10. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid....... This paper presents and categorizes quantitative indicators suitable to describe both aspects of the building’s performance. These indicators, named LMGI - Load Matching and Grid Interaction indicators, are easily quantifiable and could complement the output variables of existing building simulation tools...

  11. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk

    2016-01-01

    Energy use in buildings accounts for a large part of the energy use globally and as a result of this, international building energy performance directives are becoming stricter. This trend has led to the development of zero-energy and plus-energy buildings. Some of these developments have led...... achieved and cooling might be needed even in residential buildings. This paper focuses on the cooling operation of a detached, single-family house, which was designed as a plus-energy house in Denmark. The simulation model of the house was created in IDA ICE and it was validated with measurement data...... energy use reductions. The coupling of radiant floor with the ground enables to obtain “free” cooling, although the brine pump power should be kept to a minimum to fully take advantage of this solution. By implementing a ground heat exchanger instead of the heat pump and use the crawl-space air as intake...

  12. Simplified Floor-Area-Based Energy-Moisture-Economic Model for Residential Buildings

    Science.gov (United States)

    Martinez, Luis A.

    2009-01-01

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building…

  13. Alternative energies. Keeping cool in Helsinki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Gatermann, R.

    2009-09-15

    For more than fifty years the combination of power generation with district heating has been the norm in Helsinki, Finland. A few years ago Helsinki Energy decided to integrate district cooling into the system, with great success. It showed that Helsinki is an excellent example of how the efficient use of fossil fuels can be environmentally friendly.

  14. Thermo Active Building Systems – Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2014-01-01

    , Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia). Thermo active building systems (TABS) are primarily used for cooling...

  15. Comparison of Building Energy Modeling Programs: Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dandan [Tsinghua Univ., Beijing (China); Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Da [Tsinghua Univ., Beijing (China); Wang, Chuang [Tsinghua Univ., Beijing (China)

    2012-06-01

    identify the differences in solution algorithms, modeling assumptions and simplifications. Identifying inputs of each program and their default values or algorithms for load simulation was a critical step. These tend to be overlooked by users, but can lead to large discrepancies in simulation results. As weather data was an important input, weather file formats and weather variables used by each program were summarized. Some common mistakes in the weather data conversion process were discussed. ASHRAE Standard 140-2007 tests were carried out to test the fundamental modeling capabilities of the load calculations of the three BEMPs, where inputs for each test case were strictly defined and specified. The tests indicated that the cooling and heating load results of the three BEMPs fell mostly within the range of spread of results from other programs. Based on ASHRAE 140-2007 test results, the finer differences between DeST and EnergyPlus were further analyzed by designing and conducting additional tests. Potential key influencing factors (such as internal gains, air infiltration, convection coefficients of windows and opaque surfaces) were added one at a time to a simple base case with an analytical solution, to compare their relative impacts on load calculation results. Finally, special tests were designed and conducted aiming to ascertain the potential limitations of each program to perform accurate load calculations. The heat balance module was tested for both single and double zone cases. Furthermore, cooling and heating load calculations were compared between the three programs by varying the heat transfer between adjacent zones, the occupancy of the building, and the air-conditioning schedule.

  16. Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.

    2011-01-01

    clear and consistent definition and a commonly agreed energy calculation methodology. The most important issues that should be given special attention before developing a new ZEB definition are: (1) the metric of the balance, (2) the balancing period, (3) the type of energy use included in the balance...... on the review of the most of the existing ZEB definitions and the various approaches towards possible ZEB calculation methodologies. It presents and discusses possible answers to the abovementioned issues in order to facilitate the development of a consistent ZEB definition and a robust energy calculation...

  17. Energy use in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  18. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  19. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Science.gov (United States)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  20. The building network energy statistics 2004[Norway]; Bygningsnettverkets energistatistikk 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The energy statistics for 2004 is the 8th in a row from the building network. The report presents analysis and statistics for various building energy use and technical installations. There are 1907 building objects included in the statistics situated in 254 of the counties in the country. In all this includes 9.3 mill. square meters heated area. Out of this 2.5 % residences is mainly constituted of department buildings. The rest is non-residential buildings in total 7.6 % of the entire building mass in Norway. The total energy consumption in the selection in 2004 is approx. 2.4 TWh. The climate in Norway in 2004 was the 6th warmest since the measurements started for 138 years ago. The report includes energy gradient figures and energy use from various climatic zones. The report shows the energy consumption distributed on various building types, variations in the energy consumption depending on the type of heating system, cooling, building sizes, ages and other factors. Figures for the energy consumption related to building function are included. Approx. 60 % of the buildings is new since the last yearly report. Those that were included in the 2003 report show a reduction in the temperature corrected specific energy consumption of 4.7 % from 2003 to 2004. The oil consumption has been reduced the most. Several building types have reduced the oil consumption with 50% and the total reduction is about 11 mill. litres of oil. The reasons are partly a switch to electric heating systems and partly a general reduction of the energy consumption. The report also includes statistics regarding technical conditions in the buildings such as heating system types, energy carriers, cooling, ventilation, energy flexibility, utilization and other factors. (tk)

  1. Methodology and assumptions for evaluating heating and cooling energy requirements in new single-family residential buildings: Technical support document for the PEAR (Program for Energy Analysis of Residences) microcomputer program

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J.; Ritschard, R.; Bull, J.; Byrne, S.; Turiel, I.; Wilson, D.; Hsui, C.; Foley, D.

    1987-01-01

    This report provides technical documentation for a software package called PEAR (Program for Energy Analysis of Residences) developed by LBL. PEAR offers an easy-to-use and accurate method of estimating the energy savings associated with various energy conservation measures used in site-built, single-family homes. This program was designed for use by non-technical groups such as home builders, home buyers or others in the buildings industry, and developed as an integral part of a set of voluntary guidelines entitled Affordable Housing Through Energy Conservation: A Guide to Designing and Constructing Energy Efficient Homes. These guidelines provide a method for selecting and evaluating cost-effective energy conservation measures based on the energy savings estimated by PEAR. This work is part of a Department of Energy program aimed at conducting research that will improve the energy efficiency of the nation's stock of conventionally-built and manufactured homes, and presenting the results to the public in a simplified format.

  2. geo:build - System optimisation of the cooling modus; geo:build. Systemoptimierung des Kuehlfalls von erdgekoppelter Waerme- und Kaelteversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, Franziska; Fisch, M. Norbert [Technische Univ. Braunschweig (Germany). IGS - Inst. fuer Gebaeude- und Solartechnik; Kuehl, Lars; Petruszek, Tim [Ostfalia Hochschule fuer angewandte Wissenschaften, Wolfenbuettel (Germany). Fakultaet Versorgungstechnik; Nuessle, Fritz [Zent-Frenger GmbH, Heppenheim (Germany); Sanner, Burkhard [UbeG GbR, Wetzlar (Germany)

    2012-10-16

    The authors of the contribution under consideration report on the analysis of ground-source systems for the heating and cooling supply and especially on the optimization of the cooling trap - chiller operation and free cooling. Two main operating points are integrated in the project. Firstly, the coordination and the alternating operation between free cooling and chillers in cooling operation are considered. Secondly, there is the development of energetically as well as economically meaningful possibilities of combination of this technology. The project investigates five non-residential buildings (office buildings and hotels) metrological. First results for the cooling mode could be analysed for two buildings.

  3. Model document for code officials on solar heating and cooling of buildings. Second draft

    Energy Technology Data Exchange (ETDEWEB)

    Trant, B. S.

    1979-09-01

    Guidelines and codes for the construction, alteration, moving, demolition, repair and use of solar energy systems and parts thereof used for space heating and cooling, for water heating and for processing purposes in, on, or adjacent to buildings and appurtenant structures are presented. The necessary references are included wherever these provisions affect or are affected by the requirments of nationally recognized standards or model codes. The purpose of this document is to safeguard life and limb, health, property and public welfare by regulating and controlling the design, construction, quality of materials, location and maintenance of solar energy systems in, on, or adjacent to buildings and appurtenant structures.

  4. Thermotunneling Based Cooling Systems for High Efficiency Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aimi, Marco; Arik, Mehmet; Bray, James; Gorczyca, Thomas; Michael, Darryl; Weaver, Stan

    2007-09-30

    GE Global Research's overall objective was to develop a novel thermotunneling-cooling device. The end use for these devices is the replacement of vapor cycle compression (VCC) units in residential and commercial cooling and refrigeration systems. Thermotunneling devices offer many advantages over vapor cycle compression cooling units. These include quiet, reliable, non-moving parts operation without refrigerant gases. Additionally theoretical calculations suggest that the efficiency of thermotunneling devices can be 1.5-2x that of VCC units. Given these attributes it can be seen that thermotunneling devices have the potential for dramatic energy savings and are environmentally friendly. A thermotunneling device consists of two low work function electrodes separated by a sub 10 nanometer-sized gap. Cooling by thermotunneling refers to the transport of hot electrons across the gap, from the object to be cooled (cathode) to the heat rejection electrode (anode), by an applied potential. GE Global Research's goal was to model, design, fabricate devices and demonstrate cooling base on the thermotunneling technology.

  5. Optimization of a solar cooling system with interior energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, C.; Soutullo, S.; Heras, M.R. [Department of Energy, Energy Efficiency in Buildings Unit, CIEMAT, Madrid E-28040 (Spain)

    2010-07-15

    This paper focuses on the optimization of the performance of a solar absorption cooling system composed by four units with interior energy storage. A full dynamic simulation model that includes the solar collector field, the absorption heat pump system and the building load calculation has been developed. It has been applied to optimize the coupling of a system based on this new technology of solar powered absorption heat pump, to a bioclimatic building recently constructed in the Plataforma Solar de Almeria (PSA) in Spain. The absorption heat pump system considered is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. Each heat pump is composed of two separate barrels that can charge (store energy from the solar field) and discharge (deliver heat or cold to the building) independently. Different configurations of the four units have been analysed taking into account the storage possibilities of the system and its capacity to respond to the building loads. It has been shown how strong the influence of the control strategies in the overall performance is, and the importance of using hourly simulations models when looking for highly efficient buildings. (author)

  6. Simulation of temperature in office with building integrated heating and cooling system

    DEFF Research Database (Denmark)

    Weitzmann, Peter

    2002-01-01

    by raising the temperature of the concrete to slightly above the desired room temperature. Another way of solving the problem of cooling is by using building integrated cooling in floors. This technique utilizes the thermal mass of concrete in the floors, by integrating PEX pipes in the floor. By maintaining...... and thermal comfort parameters. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer to the room air and between the room surfaces. The simulation model can be used...... for calculating situations with both cooling and heating demands. Using the model it is therefore possible to assess the thermal environment, and furthermore to calculate the energy consumption required for both heating and cooling. In the paper different construction types of the floor are examined, as well...

  7. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  8. Open cycle cooling systems using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Sovrano, M.

    Open cycle cooling systems are particularly suitable for utilizing solar energy. In all these systems the adsorption and absorption phenomena are very important, hence they are described separately. The cycles used are essentially two: the Baum-Kakabaev cycle using liquid absorbers and the dehumidification/humidification cycle where also adsorbent substances can be utilized. Solar energy is used in the regeneration process of dehumidifying substances. Reactivation modes can be various: suitability of one mode or the other can depend on the climate of the site where the system is installed.

  9. 75 FR 20833 - Building Energy Codes

    Science.gov (United States)

    2010-04-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Building Energy Codes AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for Information. SUMMARY: The...

  10. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  11. Building concepts for a transition towards energy neutrality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, B.J.; Paauw, J. [TNO Built Environment and Geosciences, Delft (Netherlands); Opstelten, I.J.; Bakker, E.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands)

    2007-03-15

    In this paper building concepts for the near future are described which enable the transition towards a net energy neutral building sector in the Netherlands by the year 2050. With 'net energy neutrality' is meant that, on a yearly basis, the total energy consumption in the built environment is compensated by local renewable energy production e.g. by using solar thermal (T), photovoltaic (PV), PVT and/or wind. A study concerning the feasibility of a 'net energy neutral built environment by 2050' set the energetic ambitions for the building concepts to be developed. This resulted in different concepts for residential buildings and for office-buildings. The building concepts are based on passive house technology to minimise the heating and cooling demand, and make optimal use of active and passive solar energy. Concepts for new to build domestic buildings are in fact energy producing to compensate for the remaining energy demand of existing, renovated dwellings. In all concepts the 'trias energetica' or 'energy pyramid' served as a general guideline, striving for minimisation of energy demand, maximal usage of renewable energy and usage of fossil fuels as efficiently as possible. Different full roof integrated options for using solar energy (PV, T or PVT) with variable storage options have been compared by making simulations with a dynamic simulation programme, to gain insight on their impact on energy, building engineering and economic impact. Also different possibilities for installations to fulfil the heating demand for the space heating and DHW demand are compared. For each concept, the resulting primary energy profiles for space heating and cooling, domestic hot water, electricity consumption for lighting, ventilation and household appliances are given.

  12. Energy end-use intensities in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  13. Commercial building design and energy conservation: a preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, A.; Rosoff, D.

    1982-02-01

    The purpose of the research was to determine the degree of change in commercial building design practice relating to energy conservation since the enactment of the Energy Conservation Standard for New Buildings Act of 1976. Data on current design practices consisted of information from 400 buildings advertised for bids or under construction in 1979 to 1980 on glass in windows and doors, exterior wall systems, roof system, heating plants, and lighting systems. In addition to these building design components, energy conservation measures used included: natural lighting; deadband thermostat; greenhouse-effect atrium collector, heat recovery from the top of the atrium, greenhouse passive heating panels; natural ventilation; insulating shutters, closable skylights, thermal shutters, Trombe wall, corridor trombe; attic ventilation; wind shielding, concrete wall; titlted windows; night flushing cycle; and cooling coils using cooling tower water. A brief explanation of these measures is given. (MCW)

  14. Free-cooling of buildings with phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zalba, B.; Marin, J.M. [Universidad de Zaragoza Maria de Luna (Spain). Departamento de Ingenieria Mecanica; Cabeza, L.F. [Universitat de Lleida (Spain). Departamento d' Informatica i Eng. Industrial; Mehling, H. [ZAE Bayern, Abt. 1 Energy Conversion and Storage, Garching (Germany)

    2004-12-01

    In this paper, the application of phase change materials (PCM) in free-cooling systems is studied. Free-cooling is understood as a means to store outdoors coolness during the night, to supply indoors cooling during the day. The use of PCMs is suitable because of the small temperature difference between day indoors and night outdoors. An installation that allows testing the performance of PCMs in such systems was designed and constructed. The main influence parameters like ratio of energy/volume in the encapsulates, load/unload rate of the storage, and cost of the installation were determined, and experiments were performed following the design of experiments strategy. The statistical analysis showed that the effects with significant influence in the solidification process are the thickness of the encapsulation, the inlet temperature of the air, the air flow, and the interaction thickness x temperature. For the melting process the same holds, but the inlet air temperature had a higher influence than the thickness of the encapsulation. With the empirical model developed in this work, a real free-cooling system was designed and economically evaluated. (author)

  15. Microbunched electron cooling for high-energy hadron beams.

    Science.gov (United States)

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  16. Cool Colored Roofs to Save Energy and Improve Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  17. Low energy class 1 typehouses according to the Danish building regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Kragh, Jesper; Svendsen, Svend

    2008-01-01

    In 2005 the Danish Building regulations introduced two low energy classes for buildings in addition to tightened minimum requirements. The low energy class 1 and low energy class 2 correspond to total energy use, i.e. energy use for heating, ventilation, cooling and domestic hot water, as 50...

  18. Assessment of solar-powered cooling of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Curran, H.M.

    1975-04-01

    Three solar-powered cooling concepts are analyzed and evaluated. These are: (1) the solar Rankine concept in which a Rankine cycle driven by solar energy is used to drive a vapor compression refrigeration machine, (2) the solar-assisted Rankine concept in which a Rankine cycle driven by both solar energy and fuel combustion is used to drive a vapor compression refrigeration machine, and (3) the solar absorption concept in which solar energy is used to drive an absorption refrigeration machine. These concepts are compared on the bases of coefficient of performance, requirements for primary fuel input, and economic considerations. Conclusions and recommendations are presented. (WHK)

  19. Thermal mass impact on energy performance of a low, medium and heavy mass building in Belgrade

    Directory of Open Access Journals (Sweden)

    Anđelković Bojan V.

    2012-01-01

    Full Text Available Heavy mass materials used in building structures and architecture can significantly affect building energy performance and occupant comfort. The purpose of this study was to investigate if thermal mass can improve the internal environment of a building, resulting in lower energy requirements from the mechanical systems. The study was focused on passive building energy performance and compared annual space heating and cooling energy requirements for an office building in Belgrade with several different applications of thermal mass. A three-dimensional building model was generated to represent a typical office building. Building shape, orientation, glazing to wall ratio, envelope insulation thickness, and indoor design conditions were held constant while location and thickness of building mass (concrete was varied between cases in a series of energy simulations. The results were compared and discussed in terms of the building space heating and cooling energy and demand affected by thermal mass. The simulation results indicated that with addition of thermal mass to the building envelope and structure: 100% of all simulated cases experienced reduced annual space heating energy requirements, 67% of all simulated cases experienced reduced annual space cooling energy requirements, 83% of all simulated cases experienced reduced peak space heating demand and 50% of all simulated cases experienced reduced peak space cooling demand. The study demonstrated that there exists a potential for reducing space heating and cooling energy requirements with heavy mass construction in the analyzed climate region (Belgrade, Serbia.

  20. Energy management handbook for building operating engineers student workbook

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The handbook provides operating engineers with the basic information needed to implement specific energy conservation opportunities, and additional information is presented relative to the formulation and development of the energy management plan. Chapters are entitled: The Need for Energy Management (International Factors, The US Energy Situation, Energy and the Building Owner); The Fundamentals of Energy Consumption in Buildings (Energy Basics, Heat Basics, Heat Flow and the Building Envelope, Air and Comfort, Factors Affecting Energy Use In Buildings); Principles of Energy Conservation (Building Energy Consumption Characteristics); Planning the Energy Management Program (Obtaining Commitment and Support, Establishing the Energy Use Index, Organizing to Develop the Plan, Developing and Implementing the Plan); Conducting a Survey of Facilities and Operations (The Energy Audit, Preparation of Building and Systems Profile, Measurement and Instrumentation); Guidelines for Energy Conservation (Operator ECO's, Owner ECO'S); Developing the Draft Final Plan (Analyze Survey Findings, Putting the Plan on Paper, Review and Submit); Implementing the Program (Developing the Final Plan, Implementing the Plan, Monitoring and Updating the Program). A glossary is included and specific information on degree days and cooling hours for some selected cities and a computer energy study data for the New York Hilton are included in appendices. (MCW)

  1. Solar heating and cooling of buildings: activities of the private sector of the building community and its perceived needs relative to increased activity

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    A description of the state of affairs existing in the private sector of the building community between mid-1974 and mid-1975 with regard to solar heating and cooling of buildings is presentd. Also, information on the needs perceived by the private sector with regard to governmental actions (besides research) required to induce widespread application of solar energy for the heating and cooling of buildings is given. The information is based on surveys, data obtained at workshops, sales literature of manufacturers, symposia, and miscellaneous correspondence. Selected interests and projects of individuals and organizations are described. (WHK)

  2. Energy saving potential of semi-transparent photovoltaic elements for building integration

    OpenAIRE

    Olivieri, Lorenzo; Caamaño Martín, Estefanía; Moralejo Vázquez, Francisco José; Martín Chivelet, Nuria; Olivieri, Francesca; Neila Gonzalez, Francisco Javier

    2014-01-01

    Within the building energy saving strategies, BIPV (building integrated photovoltaic systems) present a promising potential based on the close relationship existing between these multifunctional systems and the overall building energy balance. Building integration of STPV (semi-transparent photovoltaic) elements affects deeply the building energy demand since it influences the heating, cooling and lighting loads as well as the local electricity generation. This work analyses over different wi...

  3. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K.

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  4. Energy savings in Polish buildings

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  5. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  6. Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume III. Appendixes. [10 appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs, Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)

  7. Analysis of advanced solar hybrid desiccant cooling systems for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Schlepp, D.; Schultz, K.

    1984-10-01

    This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

  8. Controlled evaporative cooling on a superhydrophilic surface: building a green wall

    Science.gov (United States)

    Shim, Suin; Shin, Sangwoo; Meggers, Forrest; Bou-Zeid, Elie; Stone, Howard A.

    2016-11-01

    We propose a way to design of an evaporative cooling device using continuous water flow on a superhydrophilic surface. Continuous flow helps prevent contaminant fouling on the surface of the cooler, which is a major challenge for conventional evaporative (swamp) coolers. A superhydrophilic surface leads to a reduced coolant flow rate, allowing for a maximum ratio of evaporative heat transfer to coolant thermal mass. Also, a staggered structure increases the surface area of the thin film flow of water which results in higher cooling efficiency. We performed both experimental and theoretical studies on the temperature change in the thin film flow of water. By keeping the water film thickness below 100 μm, 5 K of temperature drop in the device was achieved. The cooling device can be manufactured using conventional cost-effective processes, offering practical applications in energy-efficient buildings.

  9. Cost benefit analysis of the night-time ventilative cooling in office building

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli; Fisk, William J.; Faulkner, David

    2003-06-01

    The indoor temperature can be controlled with different levels of accuracy depending on the building and its HVAC system. The purpose of this study was to evaluate the potential productivity benefits of improved temperature control, and to apply the information for a cost-benefit analyses of night-time ventilative cooling, which is a very energy efficient method of reducing indoor daytime temperatures. We analyzed the literature relating work performance with temperature, and found a general decrement in work performance when temperatures exceeded those associated with thermal neutrality. These studies included physiological modelling, performance of various tasks in laboratory experiments and measured productivity at work in real buildings. The studies indicate an average 2% decrement in work performance per degree C temperature rise, when the temperature is above 25 C. When we use this relationship to evaluate night-time ventilative cooling, the resulting benefit to cost ratio varies from 32 to 120.

  10. Experimental study of passive cooling of building facade using phase change materials to increase thermal comfort in buildings in hot humid areas

    Directory of Open Access Journals (Sweden)

    A. A. Madhumathi, B. M.C. Sundarraja

    2012-01-01

    Full Text Available Storage of cooler night temperatures using Phase Change Material (PCM energy storage technique, for cooling of ambient air during hot day times can be an alternate of current cooling techniques in building sector. This work presents the results of an experimental set-up to test energy saving potential of phase change materials with typical construction materials in building facade in Hot-Humid Climatic Regions in real conditions. The main objective of this research is to demonstrate experimentally that it is possible to improve the thermal comfort and reduce the energy consumption of a building without substantial increase in the weight of the construction materials with the inclusion of PCM. This research was conducted to study and evaluate the performance of the existing materials integrated with Organic PCM Polyethylene glycol (PEG E600. This research suggested that the heat gain is significantly reduced when the PCM is incorporated into the brick (conventional building material.

  11. Town planning parameters in the function of building energy efficiency

    Directory of Open Access Journals (Sweden)

    Bogdanović-Protić Ivana

    2015-01-01

    Full Text Available Energy efficient building is that consuming the least energy while providing comfort. The energy consumption of buildings, in general, as well as in Serbia, is among other things conditioned by the heating, cooling and lighting requirements with a goal of achieving of thermal and light comfort. Heating energy consumption is the result of heat loss and gain, and their values, in addition to other parameters, depend on town planning parameters. The paper focuses on the comparative analysis of impact of building different exposures to wind as well as on impact of the different prevailing orientations on energy efficiency of buildings. [Projekat Ministarstva nauke Republike Srbije, br. 36042: Optimizacija arhitektonskog i urbanističkog planiranja i projektovanja u funkciji održivog razvoja Srbije

  12. Sustainable solutions for cooling systems in residential buildings: case study in the Western Cape Province, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Foudzai, F.; M' Rithaa, M. [Cape Peninsula University of Technology, Cape Town (South Africa). Dept. of Industrial Design

    2010-07-01

    The energy demand in building sectors for summer air-conditioning is growing exponentially due to thermal loads, increased living standards and occupant comfort demands throughout the last decades. This increasing consumption of primary energy is contributing significantly to emission of greenhouse gases and therefore to global warming. Moreover, fossil fuels, current main sources of energy used for electricity generation, are being depleted at an alarming rate despite continued warning. In addition, most air-conditioning equipment still utilise CFCs, promoting further destruction of our planet's protective ozone layer. Concerns over these environmental changes, have begun shifting the emphasis from current cooling methods, to 'sustainable strategies' of achieving equally comfortable conditions in building interiors. Study of ancient strategies applied by vernacular architecture shows how the indigenously clean energies to satisfy the cooling need were used. One of the most important influences on vernacular architecture is the macro-climate of the area in which the building is constructed. Mediterranean vernacular architecture, as well as that of much of the Middle East, often includes a courtyard with a fountain or pond; air cooled by water mist and evaporation is drawn through the building by the natural ventilation set up by the building form, and in many cases also includes wind-catchers to draw air through the internal spaces. Similarly, Northern African vernacular designs often have very high thermal mass and small windows to keep the occupants cool. Not only vernacular structure but also the recent development in solar and geothermal cooling technologies could be used to the needs for environmental control. Intelligent coupling of these methods as alternative design strategies could help developing countries such as South Africa toward sustainable development in airconditioning of building. In this paper, the possible strategies for

  13. Multi-Criteria Analysis of Alternative Energy Supply Solutions to Public Nearly Zero Energy Buildings

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2013-12-01

    Full Text Available The article analyzes energy supply alternatives for modernised public nearly zero energy buildings. The paper examines alternative energy production systems such as heat pumps (air-water and ground-water, solar collectors, adsorption cooling, biomass boiler, solar photovoltaic, wind turbines and combinations of these systems. The simulation of the analysed building energy demand for different energy production alternatives has been performed using TRNSYS modelling software. In order to determine an optimal energy supply variant, the estimated results of energy, environmental, and economic evaluation have been converted into non-dimensional variables (3E using multi-criteria analysis.Article in Lithuanian

  14. Analysis of building energy efficiency in China

    Institute of Scientific and Technical Information of China (English)

    LIDeying; FANYun; HAOBin

    2003-01-01

    This paper analyzes the matter of building energy efficiency and heating system, and puts forward the measure of heating innovation, aiming at the improvement of Chinese building energy efficiency and heating innovation, which exceeds some possible advice for future development.

  15. Three pipe technology for simultaneous heating and cooling. Energy efficient heating and air conditioning of an official building; Dreirohrtechnik fuer zeitgleiches Heizen und Kuehlen. Energieeffiziente Heizung und Klimatisierung eines Buerohauses

    Energy Technology Data Exchange (ETDEWEB)

    Timm, Juergen [Dithmarscher Kaeltetechnik GmbH, Marne (Germany)

    2011-09-15

    The new office building of the shipping company Strahlmann at the North Sea/Baltic Sea Canal in Brunsbuettel was equipped with heating systems as well as air conditioning systems according to the state of the art. The building has three office floors, two stacked storeys as well as a basement garage. When designing and engineering a system the advanced technology was considered in order to take account the environmental issues associated with long-term energy costs savings.

  16. Annual Energy Savings and Thermal Comfort of Autonomously Heated and Cooled Office Chairs

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chin, Justin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Doug [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Energy use in offices buildings is largely driven by air conditioning demands. But the optimal temperature is not the same for all building occupants, leading to the infamous thermostat war. And many occupants have independently overcome building comfort weaknesses with their own space heaters or fans. NREL tested is a customized office chair that automatically heats and cools the occupant along the seat and chair back according to the occupants' personal preferences. This product is shown to deliver markedly better comfort at room temperatures well above typical office cooling setpoints. Experimental subjects reported satisfaction in these elevated air temperatures, partly because the chair's cooling effect was tuned to their own individual needs. Simulation of the chair in office buildings around the U.S. shows that energy can be saved everywhere, with impacts varying due to the climate. Total building HVAC energy savings exceeded 10% in hot-dry climate zones. Due to high product cost, simple payback for the chair we studied is beyond the expected chair life. We then understood the need to establish cost-performance targets for comfort delivery packages. NREL derived several hypothetical energy/cost/comfort targets for personal comfort product systems. In some climate regions around the U.S., these show the potential for office building HVAC energy savings in excess of 20%. This report documents this research, providing an overview of the research team's methods and results while also identifying areas for future research building upon the findings.

  17. The role of absorption cooling for reaching sustainable energy systems

    OpenAIRE

    Lindmark, Susanne

    2005-01-01

    The energy consumption is continuous to increase around the world and with that follows the demand for sustainable solutions for future energy systems. With growing energy consumption from fossil based fuels the threat of global warming through release of CO2 to the atmosphere increases. The demand for cooling is also growing which would result in an increased consumption of electricity if the cooling demand was to be fulfilled by electrically driven cooling technology. A more sustainable sol...

  18. Benchmarking Hong Kong and China energy codes for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.L.; Chen, Hua [The Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom (China)

    2008-07-01

    Mandatory energy codes to curb energy use of residential buildings have been formally launched in China for more than two decades but little has been publicized in literature. Similar codes are not available for residential buildings in Hong Kong, but most residential buildings in Hong Kong, especially public housing estates, are HK-BEAM certified to demonstrate their compliance with regulatory and basic design requirements. Given HK-BEAM is internationally recognized and there are doubts about the effectiveness of the China codes, how the energy efficiency of the HK-BEAM certified buildings compare with buildings in compliance with the China codes is of interest to most building designers and policy makers. This paper describes how the energy efficiency of a case study building in compliance with the China codes compare with the one in compliance with HK-BEAM. The energy simulation by HTB2 and BECRES reveal that the case study building in compliance with the China codes is 51.1% better in energy use. In the study, the relative impact of each compliance criterion on energy use and cooling load has been quantified by sensitivity analysis. The sensitivity values indicate that energy use is most sensitive to air-conditioning operation hours, indoor design temperature, coefficient of performance (COP) of the room air-conditioners (RAC) units, and the envelop characteristics. The results of this study indicate that a HK-BEAM certified building cannot satisfy the China codes requirements. This provides good reference to the policy makers, the building owners, and to the China and Hong Kong Governments when considering reciprocal recognition of building energy codes. (author)

  19. Monitoring of Building Heating and Cooling Systems Based on Geothermal Heat Pump in Galicia (Spain

    Directory of Open Access Journals (Sweden)

    Franco D.

    2012-10-01

    Full Text Available In November 2009 was signed an agreement between Galicia’s Government and EnergyLab to develop a project related with the geothermal heatpumps (hereafter, GSHP technology. That project consisted in replacing the existing thermal equipment generators (diesel boilers and air-water heat pumps by GSHP systems in representative public buildings: two nursery schools, a university library, a health centre and a residential building. This new systems will reach the demands of existing heating, cooling and domestic hot water (hereafter, DHW. These buildings can serve as examples of energy and economic savings that can offer this technology. We will show detailed analysis of the GSHP facilities monitored, since the starting-up of them. Which includes: COP’s, EER’s, energy consumption, operating costs, operation hours of the system, economic and emissions comparative, geothermal exchange evolution graphs, environmental conditions evolution graphs (temperature and demands, etc. The results presented show an example of the important benefits of the GSHP technology and the significant savings that can offer its implementation for heating, cooling and DHW production.

  20. Monitoring of Building Heating and Cooling Systems Based on Geothermal Heat Pump in Galicia (Spain)

    Science.gov (United States)

    Iglesias, M.; Rodriguez, J.; Franco, D.

    2012-10-01

    In November 2009 was signed an agreement between Galicia's Government and EnergyLab to develop a project related with the geothermal heatpumps (hereafter, GSHP) technology. That project consisted in replacing the existing thermal equipment generators (diesel boilers and air-water heat pumps) by GSHP systems in representative public buildings: two nursery schools, a university library, a health centre and a residential building. This new systems will reach the demands of existing heating, cooling and domestic hot water (hereafter, DHW). These buildings can serve as examples of energy and economic savings that can offer this technology. We will show detailed analysis of the GSHP facilities monitored, since the starting-up of them. Which includes: COP's, EER's, energy consumption, operating costs, operation hours of the system, economic and emissions comparative, geothermal exchange evolution graphs, environmental conditions evolution graphs (temperature and demands), etc. The results presented show an example of the important benefits of the GSHP technology and the significant savings that can offer its implementation for heating, cooling and DHW production. Note to the reader: The article number has been corrected on web pages on November 22, 2013.

  1. An Investigation of Envelope Situation and Simulation of Heating/Cooling Energy Consumption for Rural Residential Buildings in Shanghai%上海农村住宅围护结构现状调查与供暖空调能耗模拟

    Institute of Scientific and Technical Information of China (English)

    孙雨林; 林忠平; 王晓梅

    2011-01-01

    In this paper, based on the building envelope investigation results of 108 rural residential houses in Shanghai, the comparison work with the national standard of Hot Summer and Cold Winter Region Residential Building Design Standard was carried out. The envelope thermal performance of current rural residential buildings was obtained. Based on the investigation results and with the building energy simulation software of DesignBuilder, a basic model for Shanghai rural residential buildings was established.Furthermore, the heating and cooling energy consumption was simulated, and the energy consumption level was achieved. In addition, the importance of energy conservation of rural residential buildings was presented.%本文基于对108户上海农村住宅围护结构的实际调查结果,通过与(JGJ 134-2001)进行比较,分析得到了上海农村住宅围护结构的热工现状.而后以调查分析结果为基础,采用逐时能耗分析软件DesignBuilder建立了上海农村住宅的基本模型,通过对基本模型进行全年能耗模拟,获得了上海农村住宅的供暖空调能耗水平,并简要分析了农村住宅节能的重要性.

  2. New Carrollton Federal Building Lighting Retrofit Captures Cool Savings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    Case study describes how the U.S. General Services Administration cut a $291,000 annual lighting electric bill to an estimated $53,500 by upgrading their fluorescent lighting to a new LED troffer lighting and controls system in the New Carrollton Federal Building in Lanham, Maryland. The lighting project yielded an 82% reduction in energy use and earned GSA two awards for exemplary performance from the Interior Lighting Campaign in 2016.

  3. Renewable Energy Applications for Existing Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  4. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  5. Analysis of Energy Demand for Low-Energy Multi-Dwelling Buildings of Different Configuration

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2014-10-01

    Full Text Available To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined.

  6. Energy Efficiency Approach to Intelligent Building

    Directory of Open Access Journals (Sweden)

    Gitanjali Birangal

    2015-07-01

    Full Text Available Energy efficiency has nowadays become one of the most challenging tasks and this has boosted research on fresh fields, such as Ambient Intelligence. Energy consumption in the housing and tertiary sectors is especially high in developed countries. There is a great potential for energy savings in these sectors. Energy conservation measures are developed for newly constructed buildings and for buildings under restoration. However, to achieve a significant diminution in energy consumption apart from the standard energy-efficiency methods, pioneering technologies should be implemented, including renewable energy. Now, buildings are increasingly anticipated to meet higher and more complex performance requirements. Among these requirements, energy efficiency is renowned as an international goal to promote energy sustainability. Different approaches have been adapted to concentrate on this goal, the most up to date relating consumption patterns with human occupancy. Energy efficiency is keywords that can be originate these days in all domains in which energy demand exists. A significant aspect that can improve the energy efficiency in buildings is the use of building automation systems. Alternatively, building automation systems are usually not considered for energy conservation, as they are mostly used for comfort and safety. This consistently causes immense problems due to an fruitless use of these systems and unawareness of energy consumption. It is therefore essential that the existing system solutions are adapted to focus on energy conservation. Our research approach in developing an intelligent system to improve energy efficiency in intelligent buildings, which takes into account the different technical infrastructures of building

  7. Energy Management System Audit and Implementation in Educational Buildings

    Directory of Open Access Journals (Sweden)

    J. Nouri

    2006-01-01

    Full Text Available Concerning the high energy consumption of educational buildings in available study; it is conducted to estimate the energy consumption at the Faculty of Humanities (Building No. 2, Science and Research Campus (SRC of the Islamic Azad University (IAU, Tehran, Iran. Auditing and implementing the energy management system in the implied building, efforts are finally made to propose managerial solutions towards reducing energy consumption in this building. After gathering data of the building, including quantity of energy consumption in a one-year period of study in 2005 and the energy consumption equipment in the building followed by a detailed data analysis, the overall energy consumption tendency is investigated in the building. As a result, it is found that the lightening system and electric motors of central heating system consumed the highest level of electricity energy and the highest thermal energy consumption due to boilers. By more analysis of the entire data, solutions are suggested for reducing the energy consumption used in lightening, central heating and cooling systems and boilers. A review of all the practical solutions for improving the systems available in the building showed that regarding the energy management matrix, the energy management system in the building stood at zero point, because the building lacked any operating unit under the title of 'Energy Management' which could monitor energy consumption at the university. Therefore, it is concluded that the energy efficiency in the building may be optimized to a certain extent by presenting a system for energy data collection, analysis and systematic implementation as well as a system for collection of basic information about energy-consuming equipment by means of measurement instruments. By providing this system, procedures are presented for optimizing energy consumption and saving in the building, while a management system and a complete information system are created at the

  8. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...... of the aggregated building energy use will not only ensure security of supply but also enhance the stabilization of national energy balances. In this study, the aggregation of building energy demand was investigated for a real case in Sønderborg, Denmark. Sixteen single-family houses -mainly built in the 1960s......- were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool...

  9. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  10. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  11. FLUIDIZATION COOLING OF RETURN SANDS AND ENERGY ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    In order to find out the optimal operation condition for return sands cooler, a cooling model including heat and mass transfer is constructed, and computer simulation is carried out. The results are compared with the operation data obtained from a fluidized bed sand cooler. A method is proposed for the evaluation whether the practical cooling system provides a reasonable energy cost performance. Several key points are discussed concerning enhancement of particles to air heat removal and improvement of energy effciency for cooling.

  12. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    Science.gov (United States)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  13. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  14. Climatic potential for passive cooling of buildings by night-time ventilation in Europe

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2006-01-01

    Due to an overall trend towards less heating and more cooling demands in buildings in many European countries over the last few decades, passive cooling by night-time ventilation is seen as a promising technique, particularly for commercial buildings in the moderate or cold climates of Central...

  15. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  16. The buildings networks' energy statistics 2003; Bygningsnettverkets energistatistikk 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The report presents analyses and statistics for the energy consumption in various types of building, mostly commercial buildings. It shows how the energy consumption varies with the type of heating system, cooling, size of building, age etc. Also shown are figures for the energy consumption in relation to function, such as number of students in schools, number of people in nursing homes etc. The climate in Norway was the 6th warmest in 137 years. Energy consumption is given for different climatic zones.

  17. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  18. Climate impacts on extreme energy consumption of different types of buildings.

    Science.gov (United States)

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  19. On the influence of the urban heat island on the cooling load of a school building in Athens, Greece

    Science.gov (United States)

    Bagiorgas, H. S.; Mihalakakou, G.

    2016-02-01

    The present study investigates the effect of the urban heat island (UHI) phenomenon, measured in the Greater Athens Area (GAA), on the energy consumption of a typical modern school building. The energy performance of the selected building has been calculated using an accurate, extensively validated, transient simulation model for 17 different sites of the GAA, for the summer period. Calculations showed that the urban heat island phenomenon affects remarkably the thermal behavior of the school building, as suburban areas presented much lower cooling loads. The cooling load values fluctuated between 3304.3 kWh for the rural stations and 14,585.1 kWh for the central stations (for the year 2011) or between 3206.5 kWh and 14,208.3 kWh (for the year 2012), respectively. Moreover, the mean monthly cooling load values varied between 0.4-2 kWh/m2 for the rural stations and 4-6.9 kWh/m2 for the central stations, for the selected time period. Furthermore, a neural network model was designed and developed in order to quantify the contribution of various meteorological parameters (such as the mean daily air temperature values, the mean daily solar radiation values, the average wind speed and the urban heat island intensity) to the energy consumption of the building and it was found that the urban heat island intensity is the predominant parameter, influencing remarkably the energy consumption of the typical school building.

  20. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  1. IEA EBC Annex 67 Energy Flexible Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Jensen, Søren Østergaard

    2016-01-01

    The foreseen large deployment of renewable energy sources may seriously affect the stability of energy grids. It will be necessary to control energy consumption to match instantaneous energy production. The built-in Energy Flexibility in buildings may be utilized for stabilizing the energy grids......, allowing for a larger roll out of renewable technologies. The Energy Flexibility of a building is the ability to manage its energy demand and generation according to local climate conditions, user needs and grid requirements. Energy Flexibility of buildings will thus allow for demand side management...... and load control and thereby demand response based on the requirements of the surrounding grids. Currently there is, however, no overview or insight into how much Energy Flexibility different building types and their usage may be able to offer to future energy systems. Three is thus a need for increasing...

  2. Implications of building energy standard for sustainable energy efficient design in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Iwaro, Joseph; Mwasha, Abraham [University of West Indies, W. Department of Civil and Environmental Engineering, St. Augustine Campus (Trinidad and Tobago)

    2010-07-01

    The rapid growth of energy use, worldwide, has raised concerns over problems of energy supply, energy sustainability and exhaustion of energy resources. While most of the developed countries are implementing building energy standard rapidly to reduce building energy consumption and moving aggressively to achieve sustainable energy efficient building; the position of developing countries respect to energy standard implementation for this purpose is either poorly documented or not documented at all. Presently, there exists a gap between existing building designs and the increasing demand for sustainable energy efficient building design in developing countries. In that respect, this paper investigates the implementation status of building energy standards in developing countries and its implications for sustainable energy efficient designs in building. The present implementation status of building energy standard in 60 developing countries around the world, were analyzed using online survey. Hence, this study revealed the present implementation status of building energy standards in developing countries, implications for sustainable energy efficient designs in building and how building energy standards can be used to fill the gap between existing building designs and increasing demand for sustainable energy efficient building.

  3. Energy and Process Assessment Protocol for Industrial Buildings

    Science.gov (United States)

    2007-05-01

    operation and maintenance procedures pertaining to building energy efficiency . _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _______________________________________________________ ERDC

  4. Evaluating Cool Impervious Surfaces: Application to an Energy-Efficient Residential Roof and to City Pavements

    Science.gov (United States)

    Rosado, Pablo Javier

    Summer urban heat island (UHI) refers to the phenomenon of having higher urban temperatures compared to the those in surrounding suburban and rural areas. Higher urban air temperatures lead to increased cooling demand, accelerates the formation of smog, and contributes to the generation of greenhouse gas emissions. Dark-colored impervious surfaces cover a significant fraction of an urban fabric, and as hot and dry surfaces, are a major contributor to the UHI effect. Adopting solar-reflective ("cool") roofs and cool pavements, and increasing the urban vegetation, are strategies proven to mitigate urban heat islands. These strategies often have an "indirect" effect (ambient cooling) and "direct" effect (change in solar energy flux entering the conditioned space) on the energy use of buildings. This work investigates some elements of the UHI mitigation strategies, specifically the annual direct effect of a cool roof, and the direct and indirect effects of cool pavements. The first topic researched in this paper consists in an experimental assessment of the direct effects from replacing a conventional dark roof with a highly energy-efficient cool roof. The study measures and calculates the annual benefits of the cool roof on the cooling and heating energy uses, and the associated emission reductions. The energy savings attributed to the cool roof are validated by measuring the difference between the homes in the heat loads that entered the conditioned space through the ceiling and HVAC ducts. Fractional annual cooling energy savings (26%) were 2.6 times the 10% daily cooling energy savings measured in a previous study that used a white coating to increase the albedo of an asphalt shingle roof by the same amount (0.44). The improved cooling energy savings (26% vs. 10%) may be attributed to the cool tile's above-sheathing ventilation, rather than to its high thermal mass. The roof also provided energy savings during the heating season, yielding fractional annual gas

  5. Air Source Heat Pump a Key Role in the Development of Smart Buildings in Future Energy Systems

    DEFF Research Database (Denmark)

    Craciun, Vasile S.; Trifa, Viorel; Bojesen, Carsten

    2012-01-01

    of energy is used for space heating, space cooling, and domestic hot water production which are provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies all over the world for providing building thermal energy services as: cooling, heating...

  6. Handbook of energy use for building construction

    Energy Technology Data Exchange (ETDEWEB)

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  7. The European Energy Performance of Buildings Directive

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy ...... calculated energy use. More buildings should be investigated in the same manner before any sound conclusion can be made regarding whether the implementation of EPBD in a wide context leads to truly energy-efficient buildings.......This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy...... performance is used for estimating investment security, operating budgets and for policy making. A case study shows that the actual and calculated energy use is practically the same in an average scenario. In the worst-case uncertainty scenario, the actual energy use is 20 % higher than the corrected...

  8. Lights, Camera, Action ... and Cooling - The case for centralized low carbon energy at Fox Studios

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-01

    Fox Studios partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit two production stages and one of its central cooling plants, to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program. Although this case study reports expected savings arising from proposed design recommendations for a unique building type and the unusual load characteristics associated with its use, the EEMs implemented for the central plant are applicable to any large campus, office and higher education facility. The intent is that by making the energy-efficiency measures (EEMs) set that were assessed as cost-effective from this project applicable to a larger number of buildings on the campus Fox Studios will be able to implement an integrated campus-wide energy strategy for the long term. The significant challenges for this project in the design phase included identifying how to assess and analyze multiple system types, develop a coherent strategy for assessment and analysis, implement the measurement and verification activities to collect the appropriate data (in terms of capturing ‘normal’ operating characteristics and granularity) and determine the best approach to providing cooling to the site buildings based on the nature of existing systems and the expected improvement in energy performance of the central cooling plant. The analytical framework adopted provides a blueprint for similar projects at other large commercial building campuses.

  9. EULEB EUropean high quality Low Energy Buildings

    OpenAIRE

    2006-01-01

    ABSTRACT: The EULEB-Project is intended to supply information to architects and engineers throughout Europe and beyond it. Within the EU it will support the new Energy Directive on Buildings through providing design and engineering details of European public high quality buildings with low energy consumption. By providing a CD containing information on architecture, energy consumption and economical efficiency as well as the comfort of these innovative buildings in use, the lac...

  10. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Yasin [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  11. Advanced Energy Retrofit Guide Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  12. Advanced Energy Retrofit Guide Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  13. Building energy modeling for green architecture and intelligent dashboard applications

    Science.gov (United States)

    DeBlois, Justin

    Buildings are responsible for 40% of the carbon emissions in the United States. Energy efficiency in this sector is key to reducing overall greenhouse gas emissions. This work studied the passive technique called the roof solar chimney for reducing the cooling load in homes architecturally. Three models of the chimney were created: a zonal building energy model, computational fluid dynamics model, and numerical analytic model. The study estimated the error introduced to the building energy model (BEM) through key assumptions, and then used a sensitivity analysis to examine the impact on the model outputs. The conclusion was that the error in the building energy model is small enough to use it for building simulation reliably. Further studies simulated the roof solar chimney in a whole building, integrated into one side of the roof. Comparisons were made between high and low efficiency constructions, and three ventilation strategies. The results showed that in four US climates, the roof solar chimney results in significant cooling load energy savings of up to 90%. After developing this new method for the small scale representation of a passive architecture technique in BEM, the study expanded the scope to address a fundamental issue in modeling - the implementation of the uncertainty from and improvement of occupant behavior. This is believed to be one of the weakest links in both accurate modeling and proper, energy efficient building operation. A calibrated model of the Mascaro Center for Sustainable Innovation's LEED Gold, 3,400 m2 building was created. Then algorithms were developed for integration to the building's dashboard application that show the occupant the energy savings for a variety of behaviors in real time. An approach using neural networks to act on real-time building automation system data was found to be the most accurate and efficient way to predict the current energy savings for each scenario. A stochastic study examined the impact of the

  14. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  15. Commercial Buildings Energy Performance within Context

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza

    2015-01-01

    Existing commercial buildings represent a challenge in the energy efficiency domain. Energy efficiency of a building, very often equalized to a building’s performance should not be observed as a standalone issue. For commercial buildings, energy efficiency needs to be observed and assessed within...... the context of performance of resident businesses. We examine both business performance and energy performance and how they relate to one another to conclude that building occupants, who are also employees, hold the key to optimizing both metrics in one of the most cost-efficient ways. Finally, the goal...... of our contribution is twofold: 1) to re-scope the concept of building performance to and show the importance to consider, hand- in-hand, both energy performance and performance of resident businesses, and 2) re-state the importance of the potential that lies in the active involvement of building...

  16. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    Science.gov (United States)

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  17. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

  18. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  19. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  20. The impact of indoor thermal conditions, system controls and building types on the building energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Corgnati, Stefano Paolo; Fabrizio, Enrico; Filippi, Marco [Dipartimento di Energetica (DENER), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2008-07-01

    It is possible to evaluate the energy demand as well as the parameters related to indoor thermal comfort through building energy simulation tools. Since energy demand for heating and cooling is directly affected by the required level of thermal comfort, the investigation of the mutual relationship between thermal comfort and energy demand (and therefore operating costs) is of the foremost importance both to define the benchmarks for energy service contracts and to calibrate the energy labelling according to European Directive 2002/92/CE. The connection between indoor thermal comfort conditions and energy demand for both heating and cooling has been analyzed in this work with reference to a set of validation tests (office buildings) derived from a European draft standard. Once a range of required acceptable indoor operative temperatures had been fixed in accordance with Fanger's theory (e.g. -0.5 < PMV < -0.5), the effective hourly comfort conditions and the energy consumptions were estimated through dynamic simulations. The same approach was then used to quantify the energy demand when the range of acceptable indoor operative temperatures was fixed in accordance with de Dear's adaptive comfort theory. (author)

  1. Gray energy of building materials; Graue Energie von Baustoffen

    Energy Technology Data Exchange (ETDEWEB)

    Kasser, U.; Poell, M.

    1995-12-31

    The tables of this publication present gray energy data for 500 building materials, chemicals, processes and transportation processes stemming from over 50 sources. Explications and recommendations for the building practice are included. 9 figs., tabs., 59 refs.

  2. Flexible Framework for Building Energy Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

    2012-09-01

    In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

  3. Energy and Environmental Research in the Building Area; Energie- und Umweltforschung im Bauwesen

    Energy Technology Data Exchange (ETDEWEB)

    Afjei, T. [Institut Energie am Bau, Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Filleux, Ch. [Basler and Hofmann AG, Zuerich (Switzerland); Gutzwiller, L. [Swiss Federal Office of Energy (SFOE), Berne (Switzerland); Frank, T.; Zimmermann, M. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Gaegauf, Ch. [Oekozentrum Langenbruck, Langenbruck (Switzerland); Preisig, H. [Architekturbuero, Zuerich (Switzerland); Hartmann, P. [Ingenieur-Buero, Effretikon (Switzerland); Luzzi, A. [Institut fuer Solartechnik (SPF), HSR Hochschule fuer Technik, Rapperswil (Switzerland); Schwehr, P.; Zweifel, G. [brenet, building and renewable energies network of technology, HTA Luzern, Horw (Switzerland)

    2008-07-01

    These proceedings of the 15{sup th} Swiss Status Seminar held in September 2008 at the Swiss Federal Institute of Technology ETH in Zurich, Switzerland, present a comprehensive overview of the two-day event on Swiss energy and environmental topics in the building area. A total of 69 lectures in up to three parallel sessions covered topics in the ten thematic areas of energy economics, pilot plant and demonstration of energy technologies, electricity and automation, building ventilation, building physics and building envelope, planning tools, sustainable building, renovation and renewal, building cooling systems, heat pumps and renewable forms of energy. A further 8 lectures covered general topics including Energy supply in the future - accent on buildings, climate change - a challenge for town and building planning, basics for the implementation of the 2000-Watt Society, building construction suited to climatic conditions, climate as a design factor, energy-related prerequisites in building norms, labels and strategies, energy certificates for buildings and the Solar Decathlon 2007 - buildings as 'power stations'. Energy economics topics covered include energy-related aspects of metropolitan areas and countryside villages, the effects of the various 'Minergie' standards on building costs, implementation and optimisation of heating and hot-water cost billing and the monitoring and analysis of electricity consumption in buildings. The 'Pilot and Demonstration' contributions include reports on the results obtained and experienced gained in the 'Forum Chriesbach' sustainable complex, a school building that attained 'Minergie-P' status, energy-efficient heating and cooling in a 'Minergie-P' apartment block, a practical example of 'Minergie-P' modernisation along with a report on cost-efficient 'Minergie-P' refurbishment. The 'Building services and automation' block includes

  4. Cost and Benefit Tradeoffs in Using a Shade Tree for Residential Building Energy Saving

    Directory of Open Access Journals (Sweden)

    Sappinandana Akamphon

    2014-01-01

    Full Text Available Global warming and urban heat islands result in increased cooling energy consumption in buildings. Previous literature shows that planting trees to shade a building can reduce its cooling load. This work proposes a model to determine the cost effectiveness and profitability of planting a shade tree by considering both its potential to reduce cooling energy and its purchase and maintenance cost. A comparison between six selected tree species is used for illustration. Using growth rates, crown sizes, and shading coefficients, cooling energy savings from the tree shades are computed using an industrial-standard building energy simulation program, offset by costs of purchase, planting, and maintenance of these trees. The result shows that most worthwhile tree to plant should have high shading coefficient and moderate crown size to maximize shading while keeping the maintenance costs manageable.

  5. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability

  6. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  7. Analysis of alternative strategies for energy conservation in new buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.M.; Tawil, J.J.

    1980-12-01

    Building Energy Performance Standards (BEPS) were mandated by the Energy Conservation Standards for New Buildings Act of 1976 (Title III of Energy Conservation and Production Act) to promote energy efficiency and the use of renewable resources in new buildings. The report analyzes alternative Federal strategies and their component policy instruments and recommends a strategy for achieving the goals of the Act. The concern is limited to space conditioning (heating, cooling, and lighting) and water heating. The policy instruments considered include greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are then described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) BEPS with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings. (MCW)

  8. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  9. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    This report is reviewing different heat driven technologies for the production of cooling. It is shown that the supply of cooling gives the highest fuel utilization if heat from CHP production is used for the production of cooling instead of maximizing the electricity output in a condensing plant. High fuel utilization is reached since the direct production of cooling from heat is a thermodynamic shortcut as compared to the production of electricity as an intermediate product before cooling is produced. At direct production of cooling from heat it is possible to obtain 70 percent of the obtainable cooling of an ideal process. If electricity is produced from heat, 70 percent electricity could be obtained as compared to an ideal process. If this electricity would be used for the production of cooling 70 percent of the obtainable cooling in an ideal process would the result. The total production of cooling from heat with electricity as an intermediate product would therefore give 50 percent cooling as compared to an ideal process. Hence, heat driven cooling will give more cooling for a given fuel input. In the review of the different heat driven cooling options it was found that there are many alternatives suitable for different applications. Absorption cooling is suitable for water distributed cooling if the latent cooling load is low. Desiccant cooling is believed to have a large market in climates (applications) with high latent cooling loads. In the energy efficiency evaluation it is found that the highest fuel utilization is given for a central production of electricity using either district heating or district cooling as the energy carrier to supply cooling. In fact the potential of district heating as the energy carrier is thought to be the largest in large cities with humid climates. Further it is found that the chiller heat sink can contribute significantly to the cost in many applications, especially if water and/or electricity consumption are issues with

  10. Energy and thermal analysis of glazed office buildings using a dynamic energy simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Poirazis, H.; Blomsterberg, A. [Lund Inst. of Technology, Lund (Sweden). Div. of Energy and Building Design

    2005-07-01

    Although highly glazed buildings have more access to daylight than traditional buildings their energy efficiency is sometimes questionable. This paper presented energy and indoor climate simulations of single skin office buildings in Sweden with the use of a dynamic energy simulation tool. An analysis of building alternatives with 30, 60 and 100 per cent window areas were investigated. Parameters concerning the buildings' orientation, plan type, control set points and facade type were varied in the simulations. A virtual reference building was created as representative of Swedish office buildings constructed in the late 1990s. The design was determined by various Swedish agencies. Detailed performance specifications for energy and indoor climate were established and typical construction methods were determined. System descriptions and drawings were prepared. A validation of the simulated performance of the building showed that the performance specifications were accurate. A parametric study of energy use and indoor climate was conducted. Heating, ventilation and air conditioning (HVAC) systems and control systems were described in detail. Orientation, plan type, control set points, and facade elements were changed while other parameters such as the shape of the building and occupant activity levels remained the same. A sensitivity analysis was conducted regarding occupant comfort levels and the energy used for operating the building. It was concluded that the energy efficiency of a building depends on facade construction. It was suggested that highly glazed buildings will benefit through the use of advanced simulation tools during the design stage. It was also noted that the main aim when designing glazed buildings should be to avoid a high cooling demand. The impact of control set points on heating and cooling is also crucial for energy use, as well as the orientation of rooms. It was suggested that an increase in glazing area does not necessarily mean higher

  11. Scalable Deployment of Advanced Building Energy Management Systems

    Science.gov (United States)

    2013-06-01

    Building Automation and Control Network BDAS Building Data Acquisition System BEM building energy model BIM building information modeling BMS...A prototype toolkit to seamlessly and automatically transfer a Building Information Model ( BIM ) to a Building Energy Model (BEM) has been...circumvent the need to manually construct and maintain a detailed building energy simulation model . This detailed

  12. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    by 33% compared to current level and that the CO2 emission should be halved. This calls for sustainable development in the building sector, but at the same time, it has to be economically efficient. People are conscious about savings in energy, but consideration to economic aspects are their primary......In 1996 the Danish government presented their plan (Energi21) formulating how Denmark could fulfill the demands for CO2-reduction recommended by United Nations. The major issues in the plan, regarding new and existing buildings, is that heat demand for new buildings in year 2005 should be reduced...... concern which can be seen during the construction of new buildings. People want energy-friendly solutions, but they should be economical optimized. An exonomical optimized building design with respect to energy consumption is the design with the lowest total cost (investment plus operational cost over its...

  13. Kaon Condensates, Nuclear Symmetry Energy and Cooling of Neutron Stars

    CERN Document Server

    Kubis, S

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  14. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    Science.gov (United States)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  15. Cool products for building envelope - Part II: Experimental and numerical evaluation of thermal performances

    NARCIS (Netherlands)

    Revel, G.M.; Martarelli, M.; Emiliani, M.; Celotti, L.; Nadalini, R.; Ferrari, A.D.; Hermanns, S.; Beckers, E.

    2014-01-01

    Cool materials have a large potential as cost-effective solution for reducing cooling energy consumption in hot summer and mild winter regions like Mediterranean countries. A previous paper has described in detail the development of cool coloured ceramic tiles, acrylic paints and bituminous membrane

  16. Cool products for building envelope - Part I: Development and lab scale testing

    NARCIS (Netherlands)

    Revel, G.M.; Martarelli, M.; Emiliani, M.; Gozalbo, A.; Orts, M.J.; Bengochea, M.T.; Guaita Delgado, L.; Gaki, A.; Katsiapi, A.; Taxiarchou, M.; Arabatzis, I.; Fasaki, I.; Hermanns, S.

    2014-01-01

    The paper describes the methodology followed for the development of new cool products in order to widen the range of existing solutions both including coloured (even dark) materials and extending the application also to building vertical components. Cool coloured ceramic tiles and acrylic paints for

  17. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  18. Solar energy system installed at the North Georgia APDC office building

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    Information is provided on the solar energy system installed in the newly constructed office building of the North Georgia Area Planning and Development Commission near downtown Dalton, Georgia. This solar heating, cooling and hot water system supplies 65 to 70% of the cooling demand and 90 to 95% of the heating demand. There are 2,001 square feet of effective Revere collector area, and the absorption chiller is in Arkla model 300 and provides 16 tons of cooling.

  19. From Zero Energy Buildings to Zero Energy Districts

    Energy Technology Data Exchange (ETDEWEB)

    Polly, Ben; Kutscher, Chuck; Macumber, Dan; Schott, Marjorie; Pless, Shanti; Livingood, Bill; Van Geet, Otto

    2016-08-26

    Some U.S. cities are planning advanced districts that have goals for zero energy, water, waste, and/or greenhouse gas emissions. From an energy perspective, zero energy districts present unique opportunities to cost-effectively achieve high levels of energy efficiency and renewable energy penetration across a collection of buildings that may be infeasible at the individual building scale. These high levels of performance are accomplished through district energy systems that harness renewable and wasted energy at large scales and flexible building loads that coordinate with variable renewable energy supply. Unfortunately, stakeholders face a lack of documented processes, tools, and best practices to assist them in achieving zero energy districts. The National Renewable Energy Laboratory (NREL) is partnering on two new district projects in Denver: the National Western Center and the Sun Valley Neighborhood. We are working closely with project stakeholders in their zero energy master planning efforts to develop the resources needed to resolve barriers and create replicable processes to support future zero energy district efforts across the United States. Initial results of these efforts include the identification and description of key zero energy district design principles (maximizing building efficiency, solar potential, renewable thermal energy, and load control), economic drivers, and master planning principles. The work has also resulted in NREL making initial enhancements to the U.S. Department of Energy's open source building energy modeling platform (OpenStudio and EnergyPlus) with the long-term goal of supporting the design and optimization of energy districts.

  20. Occupant performance and building energy consumption with different philosophies of determining acceptable thermal conditions

    DEFF Research Database (Denmark)

    Toftum, Jørn; Andersen, Rune Vinther; Jensen, Kasper Lynge

    2009-01-01

    Based on building energy and indoor environment simulations, this study uses a recently developed method relying on Bayesian Network theory to estimate and compare the consequences for occupant performance and energy consumption of applying temperature criteria set according to the adaptive model...... of thermal comfort and the more conventional PMV model. Simulations were carried out for an example building with two configurations (with and without mechanical cooling) located in tropical, subtropical, and temperate climate regions. Even though indoor temperatures differed significantly between building...

  1. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; de Carli, Michele

    2011-01-01

    According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...... systems. This energy declaration must refer to the primary energy or CO2 emissions. The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant...... CEN-standards are presented and a sample calculation of energy performance is made for a small single family house, an office building and an industrial building in three different geographical locations: Stockholm, Brussels, and Venice. The additional heat losses from heating systems can be 10...

  2. The Potential of Vegetation in Reducing Summer Cooling Loads in Residential Buildings.

    Science.gov (United States)

    Huang, Y. J.; Akbari, H.; Taha, H.; Rosenfeld, A. H.

    1987-09-01

    The potential of trees and other vegetation to reduce building cooling loads has been recorded in a number of studies but the meso- and microclimate changes producing such savings are not well understood. This paper describes a preliminary attempt to model the effects of landscaping on temperature, humidity, windspeed and solar gain in urban climates using information from existing agricultural and meteorological studies, with particular attention placed on quantifying the effects of plant evapotranspiration. The climate model is then used in conjunction with the DOE-2.1C building simulation program to calculate the net reductions in air-conditioning requirements due to trees and other vegetation.Preliminary results show that an additional 25% increase in the urban tree cover can save 40% of the annual cooling energy use of an average house in Sacramento, and 25% in Phoenix and Lake Charles. If this additional tree cover is located to optimize summer shading, the savings are further increased to more dun 50% in Sacramento and 33% in the other two cities. The calculated savings are minimal for Los Angeles because the base case cooling energy use is small (65 hours) on the assumption that window venting is used whenever possible in lieu of mechanical cooling. There are additional benefits in lowering peak power consumption, where the savings are as much as 34% in Sacramento, 18% in Phoenix, 22% in Lake Charles, and 44% in Los Angeles. Parametric analysis reveals that most of the savings can be attributed to the effects of increased plant evapotranspiration, and only 10% to 30% to shading. The energy penalties of reduced windspeeds are found to be small in all four locations.The preliminary results suggest that while the conservation benefits of planting trees are appreciable at the individual house level, equally dramatic savings can be realized at the urban level through modifications of the urban climate by increasing the total amount of vegetative cover. Such a

  3. Solar heating and cooling demonstration project at the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, J.D.

    1980-02-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

  4. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since...... the authorities fail to mobilise the stakeholders to implement energy efficient technologies in local building practices. This points towards a need to reframe policy initiatives in order to take the complexity of the challenge of dissemination of energy efficient technologies in practice into account......; acknowledging that singular instruments are seldom sufficient to boost a wider transition in building practices, since no simple cause or driver for change exists. The municipal level is essential in facilitating change within energy efficient technologies, since municipals have strong interrelations...

  5. Energy simulation and optimization for a small commercial building through Modelica

    Science.gov (United States)

    Rivas, Bryan

    Small commercial buildings make up the majority of buildings in the United States. Energy consumed by these buildings is expected to drastically increase in the next few decades, with a large percentage of the energy consumed attributed to cooling systems. This work presents the simulation and optimization of a thermostat schedule to minimize energy consumption in a small commercial building test bed during the cooling season. The simulation occurs through the use of the multi-engineering domain Dymola environment based on the Modelica open source programming language and is optimized with the Java based optimization program GenOpt. The simulation uses both physically based modeling utilizing heat transfer principles for the building and regression analysis for energy consumption. GenOpt is dynamically coupled to Dymola through various interface files. There are very few studies that have coupled GenOpt to a building simulation program and even fewer studies have used Dymola for building simulation as extensively as the work presented here. The work presented proves Dymola as a viable alternative to other building simulation programs such as EnergyPlus and MatLab. The model developed is used to simulate the energy consumption of a test bed, a commissioned real world small commercial building, while maintaining indoor thermal comfort. Potential applications include smart or intelligent building systems, predictive simulation of small commercial buildings, and building diagnostics.

  6. Energy Aspects of Green Buildings - International Experience

    Science.gov (United States)

    Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.

    2016-12-01

    At present, reduction of greenhouse gas emissions is one of the main environmental priorities globally, and implementation of sustainability aspects in the construction industry, including energy aspects, is of major importance for long-term environmental development, as buildings have a long life cycle and require many resources both for construction and operation periods. The aim of the research is to analyse energy aspects of green buildings. The results of research show that the construction of green buildings can significantly result in energy savings and has other benefits for different market participants. Future research directions have been identified as well.

  7. UCC's Western Gateway Building: a Case Study for the Integration of Low Temperature Heating and High Temperature Cooling Systems

    Directory of Open Access Journals (Sweden)

    Michael F. Keohane

    2012-04-01

    Full Text Available This paper deals with the installation of a 1 MW groundwater heat pump for cool ing and heating, a server room heat recovery system and a novel VAV underfloor mechanical ventilation system, in a large third level university building in Cork, Ireland. After describing the building and the mechanical systems the paper presents energy usage and analysis of results for the first year in operation. Such an installation is of interest to engineers and facil ity managers in order to determine how all the systems complement each other, as well as the resultant energy saving potential compared to conventional systems. Large scale groundwater heat pumps with simultaneous heating and cooling capabilities can provide significant operational cost savings, as described in the paper.

  8. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunctional ventilation concept...... of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building...

  9. Optimization of the Public Buildings Energy Supply

    DEFF Research Database (Denmark)

    Filipović, P.; Dominkovic, Dominik Franjo; Ćosić, B.

    2016-01-01

    There is a rising interest in the improvement of energy efficiency in public buildings nowadays atthe EU level. Increasing energy efficiency can lead to both better thermal comfort, as well as netsavings on energy bills. Furthermore, the right choice of energy source can lead to large savings inCO2...... be achieved by taking a holistic approach during the refurbishment of thebuilding, at the same time increasing thermal comfort of the students and employees. Finally, thedeveloped model would be easy to adapt to any other similar public building, which could lead tofurther savings in energy consumption....

  10. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...

  11. Intelligent buildings in context of energy rationalization

    Directory of Open Access Journals (Sweden)

    Pucar Mila

    2005-01-01

    Full Text Available This paper overviews state of the art, the development activities, and futuristic vision on 'smart' and 'intelligent' buildings' construction in context of measures which improve their energy efficiency. The technologies for programming, regulation and automation of energy consumption in buildings, which characterize the current form of 'smart' buildings together with the implementation of 'intelligent' facades, are already pointing to some significant results which may be accomplished in relation to energy efficiency optimization of buildings without compromising their greater flexibility and comfort in use. One of the major preconditions for further development of these systems is the integration of design processes which refer to the core of a building and to its installation utilities.

  12. Impact of Urban Heat Island under the Hanoi Master Plan 2030 on Cooling Loads in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Tran Hoang Hai Nam

    2015-01-01

    Full Text Available This study aims to evaluate the influence of urban heat island (UHI under the Hanoi Master Plan 2030 on the energy consumption for space cooling in residential buildings. The weather conditions under the current and future status (master plan condition simulated in the previous study (Trihamdani et al., 2014 were used and cooling loads in all the residential buildings in Hanoi over the hottest month were estimated under the simulated current and future conditions by using the building simulation program, TRNSYS (v17. Three most typical housing types in the city were selected for the simulation. The cooling loads of respective housing types were obtained in each of the districts in Hanoi. The results show that the total cooling loads over June 2010 is approximately 683 Terajoule (TJ under the current status, but it is predicted to increase to 903 TJ under the master plan condition. The increment is largely due to the increase in number of households (203 TJ or 92%, but partially due to the increase in urban temperature, i.e. UHI effect (17 TJ or 8%. The increments in new built-up areas were found to be larger than those in existing built-up areas. The cooling load in apartment is approximately half of that in detached house, which is approximately half of that in row house. Moreover, it was seen that although sensible cooling loads increased with the increase in outdoor temperature, the latent cooling loads decreased due to the decrease in absolute humidity and the increase in air temperature.

  13. Policy Pathways: Modernising Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Buildings are the largest consumers of energy worldwide and will continue to be a source of increasing energy demand in the future. Globally, the sector’s final energy consumption doubled between 1971 and 2010 to reach 2 794 million tonnes of oil equivalent (Mtoe), driven primarily by population increase and economic growth. Under current policies, the global energy demand of buildings is projected by the IEA experts to grow by an additional 838 Mtoe by 2035 compared to 2010. The challenges of the projected increase of energy consumption due to the built environment vary by country. In IEA member countries, much of the future buildings stock is already in place, and so the main challenge is to renovate existing buildings stock. In non-IEA countries, more than half of the buildings stock needed by 2050 has yet to be built. The IEA and the UNDP partnered to analyse current practices in the design and implementation of building energy codes. The aim is to consolidate existing efforts and to encourage more attention to the role of the built environment in a low-carbon and climate-resilient world. This joint IEA-UNDP Policy Pathway aims to share lessons learned between IEA member countries and non-IEA countries. The objective is to spread best practices, limit pressures on global energy supply, improve energy security, and contribute to environmental sustainability. Part of the IEA Policy Pathway series, Modernising building energy codes to secure our global energy future sets out key steps in planning, implementation, monitoring and evaluation. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations endorsed by IEA Ministers (2011).

  14. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-08-01

    Full Text Available We investigated the synergetic effect between light-emitting diode (LED lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement data; the annual energy savings of an office building in heating and cooling were calculated through simulation. The LED lighting illuminance increased by approximately 40% and the lighting contribution for indoor heat gain was 7.8% in summer, while 69.8% in winter with the ATOS. Consequently, the annual total energy use of the office building could be reduced by 5.9%; the energy use in cooling and heating was reduced by 18.4% and 3.3%, respectively.

  15. Sault Tribe Building Efficiency Energy Audits

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  16. Energy Signal Tool for Decision Support in Building Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  17. Zero energy buildings and mismatch compensation factors

    DEFF Research Database (Denmark)

    Lund, Henrik; Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    This paper takes an overall energy system approach to analysing the mismatch problem of zero energy and zero emission buildings (ZEBs). The mismatch arises from hourly differences in energy production and consumption at the building level and results in the need for exchange of electricity via...... of the energy production unit. Based on historical data for the electricity supply area in western Denmark, this paper makes a first attempt to quantify mismatch compensation factors. The results indicate that such compensation factors are a little below one for buildings with photovoltaics (PV) and a little...... the public grid even though the building has an annual net-exchange of zero. This paper argues that, when looked upon from the viewpoint of the overall electricity supply system, a mismatch can be both negative and positive. Moreover, there are often both an element of levelling out mismatches between...

  18. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  19. Buildings Interaction with Urban Energy Systems

    DEFF Research Database (Denmark)

    Heller, Alfred; Wyckmans, Annemie; Zucker, Gerhard

    2015-01-01

    The goal towards a fossil free energy system is expressed in amongst others European and national targets, and puts pressure on the application of renewable energy sources combined with energy efficiency. Many cities are even more ambitious than their national targets and want to be among the first...... on the impacts that buildings play in the overall energy system. Here buildings are not only consumers but rather prosumers that are able to produce renewable energy themselves. Buildings moreover offer potential storage capacities that can be utilized in demand shifting, which is necessary to enable increased...... to demonstrate that they can become not only smart fossil-free energy cities but sustainable in a wider sense, including water, waste, transportation and more. In the current paper, the research agenda to support such goals through smart city efforts is presented for a few European cases as examples, focusing...

  20. Energy and exergy analysis of counter flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Saravanan Mani

    2008-01-01

    Full Text Available Cooling tower is an open system direct contact heat exchanger, where it cools water by both convection and evaporation. In this paper, a mathematical model based on heat and mass transfer principle is developed to find the outlet condition of water and air. The model is solved using iterative method. Energy and exergy analysis infers that inlet air wet bulb temperature is found to be the most important parameter than inlet water temperature and also variation in dead state properties does not affect the performance of wet cooling tower. .

  1. IEA Solar Heating and Cooling Task 37: Solar facade for residential buildings - Refurbishment with extremely low energy consumption; IEA SHC Task 37: Solarfassade fuer Wohnbau - Erneuerungen mit tiefstem Energieverbrauch - die bauphysikalischen, energetischen und architektonischen Potentiale - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.; Fent, G.

    2009-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at solar facades and discusses their structural-physical, energetic and architectural potentials. The insulation of a building's envelope is the key issue discussed in this paper. Traditional insulation methods (mineral wool or wood fibre) can produce walls 50 to 60 cm thick, making the renovation of old buildings to high standards a lot more difficult. The 'Lucido' solar facade is described. This is a highly efficient insulation system which absorbs the solar radiation and stores it as heat in the outer layer of the facade, thus reducing the amount of conventional insulation needed. The basic components - protective, transparent glazing with an air gap and a solid wood absorber followed by a layer of regular insulation - are described. During the summer the lamellae act as a shading device reducing the impact of the sun thus preventing overheating, while in the winter the lamellae enhance the absorption of solar radiation. The report discusses the simulation of the system's dynamic insulation properties and ecological factors and presents examples of the system's use in refurbishment projects.

  2. Modernizing buildings. Saving energy. 4. ed.; Gebaeude modernisieren. Energie sparen

    Energy Technology Data Exchange (ETDEWEB)

    Burk, Peter [Institut Bauen und Wohnen, Freiburg (Germany)

    2012-06-15

    Where and how does a building lose energy? How can energy consumption be reduced? What are the most relevant legal boundary conditions? How to find the best experts in this field? What aspects must be considered in the final acceptance of the construction work, in the final invoice verification, and in the issuing of Energy Performance Certificates? Energy conservation and the use of renewable energy sources are getting ever more important. Especially in the building sector, the energy conservation potential is high. Step by step, this practical guide shows how to choose the best investments and reduce the energy cost in following years.

  3. Energy conservation in cooling systems. Blowers; Energiebesparing in koelsystemen. Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Huijgens, G.

    2009-03-15

    On the role of blowers with regard to the options to save energy with cooling systems. In particular attention is paid to so-called Electronically Commutated (EC) Motors. [Dutch] Over de rol van ventilatoren in de mogelijkheden om energie te besparen met koelsystemen. In het bijzonder wordt aandacht besteed aan de zogenaamde Electronically Commutated (EC) Motors.

  4. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  5. Simulating Single-Effect Absorption Cooling Lithium Bromide A Solar System With Flat Plate Collector And Contribute To An Office Building

    OpenAIRE

    MIRI, Mohadaseh

    2015-01-01

    Use solar energy to provide hot water consumption, space heating and cooling in recent decades is considered. In this article a model varies with time, a solar adsorption cooling system consists of a single effect lithium bromide absorption system, a flat plate collector and a storage tank or linear or parabolic simulated separately. The system for cooling an office building for hours of operation from 7 am to 18 pm is considered.About 7 kW peak cooling load occurs in July. Results obtained s...

  6. Revealing myths about people, energy and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.; Moezzi, M.

    2000-05-01

    In this essay we take a closer look at some energy myths, focusing on the ways energy professionals and the public alike, talk, write and teach about how energy affects the way in which we design, operate, retrofit and inhabit buildings. What myths about people, energy and buildings are current today? Who tells these myths and why do we believe them? How do myths affect our behavior? Myths are a way of understanding the world we live in. They may represent incomplete understanding, or be based on premises that are scientifically not valid, but they help us understand and explain how the world works, and we shape our behavior accordingly.

  7. Solar integrated energy system for a green building

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, X.Q.; Wang, R.Z.; Dai, Y.J.; Wu, J.Y.; Xu, Y.X.; Ma, Q. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2007-08-15

    Shanghai is characteristic of subtropical monsoonal climate with the mean annual temperature of 17.6 {sup o}C, and receives annual total solar irradiation above 4470 MJ/m{sup 2} with approximately 2000 h of sunshine. A solar energy system capable of heating, cooling, natural ventilation and hot water supply has been built in Shanghai Research Institute of Building Science. The system mainly contains 150 m{sup 2} solar collector arrays, two adsorption chillers, floor radiation heating pipes, finned tube heat exchangers and a hot water storage tank of 2.5 m{sup 3} in volume. It is used for heating in winter, cooling in summer, natural ventilation in spring and autumn, hot water supply all the year round, for 460 m{sup 2} building area. The whole system is controlled by an industrial control computer and operates automatically. Under typical Shanghai weather condition, it is found that the average heating capacity is up to 25.04 kW in winter, the average refrigerating output reaches 15.31 kW in summer and the solar-enhanced natural ventilation air flow rate doubles in transitional seasons. The experimental investigation validated the practical effective operation of the adsorption cooling-based air-conditioning system. After 1-year operation, it is confirmed that the solar system contributes 70% total energy of the involved space for the weather conditions of Shanghai. (author)

  8. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  9. Energy efficiency in new museum build: THEpUBLIC

    Science.gov (United States)

    Battle, G.; Yuen, C. H. N.; Zanchetta, M.; D'Cruz, P.

    2006-12-01

    The project MUSEUMS, awarded the Thermie Grant from the European Commission, has applied and tested new and innovative technologies for optimizing energy efficiency and sustainability in nine retrofitted and new museum buildings in Europe. The project will significantly contribute to the acceptance of innovative and renewable technologies in public buildings by demonstrating that retrofitted and new museum buildings can fully meet architectural, functional, comfort, control and safety requirements as well as achieve total energy savings of over 35% and reduce CO2 emissions by over 50%. THEpUBLIC will be a stunning and modern flagship building containing six storeys, with a total area of 11,000Âm2 of galleries for exhibitions, digital art and hands-on displays. In addition, there will be workspaces, creative spaces, retail opportunities, restaurant facilities, public areas, conference rooms and other multi-function spaces. Initiated by Jubilee Arts, the THEpUBLIC, designed by Alsop Architects, will introduce and engage its 400,000 expected visitors in the principles of energy and the environment through a display of art, education, technology and entertainment in the centre of West Bromwich, Sandwell. It will serve as a catalyst for urban regeneration within Sandwell.Battle McCarthy's key environmental design solutions for THEpUBLIC include natural daylighting, mixed-mode ventilation system with operable windows, low energy and maintenance cost systems, potential for integrating renewable energy collection systems, borehole water systems for cooling and water supply, an intelligent facade system with external shading and natural ventilation and night cooling systems.

  10. Buildings and energy in the 1980`s

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Many energy programs were put into place during the 1970`s and 1980`s to lessen the dependence upon foreign oil supplies and to improve how all forms of energy are used. A significant percent of total energy consumption occurred in the residential and commercial sectors. This report concentrates on the physical makeup of the residential and commercial buildings sectors and their use of energy, and examines changes that occurred during the 1980`s. Chapter 1 presents a summary of major findings. The following three chapters focus on different aspects of the overarching theme of buildings and energy in the 1980`s. Chapter 2 discusses major characteristics of residential and commercial buildings. Chapter 3 considers the major energy sources and end uses in terms of number of buildings and floorspace. Chapter 4 focuses on energy consumption and expenditures. Chapters 2, 3, and 4 contain tables at the end of each chapter that summarize data from detailed tables that are available separately on diskette or via EIA`s Electronic Publishing System (EPUB). Following the body of the report, appendices and a glossary provide additional information on the methodologies used in this report and on the residential and commercial building consumption surveys on which this report is based. 62 figs., 30 tabs.

  11. Experimental investigation of using ambient energy to cool Internet Data Center with thermosyphon heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F.; Tian, X.; Ma, G. [Beijing Univ. of Technology, Beijing (China). College of Environmental and Energy Engineering

    2010-07-01

    The energy consumption of the air-conditioning system at the Internet Data Center (IDC) in Beijing comprises 40 per cent of the building's total energy consumption. Of all the energy energy management strategies available at the IDC, the most unique one is the use of ambient energy to cool the IDC by the thermosyphon heat exchanger. Atmospheric energy can reduce the air conditioner's running time while maintaining the humidity and cleanliness of the IDC. In this study, an IDC test model was set up to analyze the heat dissipating characteristics and the energy consumption of the thermosyphon heat exchanger and the air conditioner in the IDC for winter conditions. The heat dissipating capacity of the building envelope was measured and calculated. The energy consumption of the air conditioner was compared under different indoor and outdoor temperatures. The study showed that the heat dissipating need of the IDC cannot be met just by the heat dissipation of the building envelope in winter conditions. The heat dissipating capacity of the IDC building envelope comprises 19.5 per cent of the total heat load. The average energy consumption of the air conditioner is 3.5 to 4 kWh per day. The temperature difference between indoor and outdoor temperature in the IDC with the thermosyphon heat exchanger was less than 20 degrees C, and the energy consumption of the thermosyphon heat exchanger comprised only 41 per cent of that of the air conditioner. 8 refs., 1 tab., 8 figs.

  12. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  13. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  14. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  15. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  16. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems,this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  17. Controlling Energy-Efficient Buildings in the Context of Smart Grid: A Cyber Physical System Approach

    OpenAIRE

    Maasoumy, Mehdi

    2013-01-01

    The building sector is responsible for about 40% of energy consumption, 40% of greenhouse gas emissions, and 70% of electricity use in the US. Over 50% of the energy consumed in buildings is directly related to space heating, cooling and ventilation. Optimal control of heating, ventilation and air conditioning (HVAC) systems is crucial for reducing energy consumption in buildings. We present a physics-based mathematical model of thermal behavior of buildings, along with a novel Param...

  18. Intelligent energy buildings based on RES and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, S., E-mail: kaplanis@teipat.gr; Kaplani, E. [R.E.S. Laboratory, Mechanical Engineering Dept., Technological Educational Institute of Western Greece M. Alexandrou 1, Koukouli 26 334, Patra (Greece)

    2015-12-31

    The paper presents the design features, the energy modelling and optical performance details of two pilot Intelligent Energy Buildings, (IEB). Both are evolution of the Zero Energy Building (ZEB) concept. RES innovations backed up by signal processing, simulation models and ICT tools were embedded into the building structures in order to implement a new predictive energy management concept. In addition, nano-coatings, produced by TiO2 and ITO nano-particles, were deposited on the IEB structural elements and especially on the window panes and the PV glass covers. They exhibited promising SSP values which lowered the cooling loads and increased the PV modules yield. Both pilot IEB units were equipped with an on-line dynamic hourly solar radiation prediction model, implemented by sensors and the related software to manage effectively the energy source, the loads and the storage or the backup system. The IEB energy sources covered the thermal loads via a south façade embedded in the wall and a solar roof which consists of a specially designed solar collector type, while a PV generator is part of the solar roof, like a compact BIPV in hybrid configuration to a small wind turbine.

  19. Intelligent energy buildings based on RES and nanotechnology

    Science.gov (United States)

    Kaplanis, S.; Kaplani, E.

    2015-12-01

    The paper presents the design features, the energy modelling and optical performance details of two pilot Intelligent Energy Buildings, (IEB). Both are evolution of the Zero Energy Building (ZEB) concept. RES innovations backed up by signal processing, simulation models and ICT tools were embedded into the building structures in order to implement a new predictive energy management concept. In addition, nano-coatings, produced by TiO2 and ITO nano-particles, were deposited on the IEB structural elements and especially on the window panes and the PV glass covers. They exhibited promising SSP values which lowered the cooling loads and increased the PV modules yield. Both pilot IEB units were equipped with an on-line dynamic hourly solar radiation prediction model, implemented by sensors and the related software to manage effectively the energy source, the loads and the storage or the backup system. The IEB energy sources covered the thermal loads via a south façade embedded in the wall and a solar roof which consists of a specially designed solar collector type, while a PV generator is part of the solar roof, like a compact BIPV in hybrid configuration to a small wind turbine.

  20. Smart Building: Decision Making Architecture for Thermal Energy Management.

    Science.gov (United States)

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  1. Smart Building: Decision Making Architecture for Thermal Energy Management

    Directory of Open Access Journals (Sweden)

    Oscar Hernández Uribe

    2015-10-01

    Full Text Available Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  2. Smart Building: Decision Making Architecture for Thermal Energy Management

    Science.gov (United States)

    Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978

  3. Building Energy Use Modeling at the U.S. State Level Under Climate Change

    Science.gov (United States)

    Zhou, Y.; Eom, J.; Clarke, L.; Kyle, P.

    2012-12-01

    Climate change plays an important role in building energy use for heating and cooling. As global building energy use accounts for as much as about 32% of global final energy consumption in 2005, the impact of climate change on greenhouse gas emissions may also be significant. As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into regional energy system planning. In this study, we have developed a detailed building energy model with U.S. 50-state representation, embedded in an integrated assessment framework (Global Change Assessment Model). The climate change impact on heating and cooling demand is measured through estimating heating and cooling degree days (HDD/CDDs) derived from MIT Integrated Global System Model (IGSM) climate data and linking the estimates to the building energy model. Having the model calibrated against historical data at the U.S. state level, we estimated the building energy use in the 21st century at the U.S. state level and analyzed its spatial pattern. We have found that the total building energy use (heating and cooling) in U.S. states is over- or under-estimated without having climate feedback taken into account, and that the difference with and without climate feedback at the state level varies from -25% to 25% in reference scenario and -15% to 10% in climate mitigation scenario. The result not only confirms earlier finding that global warming leads to increased cooling and decreased heating energy use, it also indicates that climate change has a different impact on total building energy use at national and state level, exhibiting large spatial heterogeneity across states (Figure 1). The scale impact in building energy use modeling emphasizes the importance of developing a building energy model that represents socioeconomic development, energy service expansion, and

  4. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    OpenAIRE

    Mikhail Vasiliev; Ramzy Alghamedi; Mohammad Nur-E-Alam; Kamal Alameh

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minim...

  5. An experience on integrating monitoring and simulation tools in the design of energy-saving buildings

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S. Flores; Lesino, G. [INENCO, Universidad Nacional de Salta, CONICET, Buenos Aires 177 (4400) Salta (Argentina); Filippin, C.; Beascochea, A. [Universidad Nacional de La Pampa, CONICET, Spinetto 785 (6300) Santa Rosa, La Pampa (Argentina)

    2008-07-01

    In this paper we describe the design and thermal behaviour of a bioclimatic Auditorium at the National University of La Pampa, used for teaching activities in Santa Rosa, La Pampa (Argentina). The building was monitored in winter and simulated with SIMEDIF for Windows, a code developed at the Non Conventional Energy Research Institute (INENCO, Argentina). Then, a new project of a similar building was proposed for General Pico city, and the obtained physical model was used to simulate the building under the summer temperatures of the new city. The building was redesigned and passive solar strategies were applied to reduce heating and cooling loads. The final layout and the monitored thermal behaviour of the new building in winter and summer are described. Without additional cost, the new building savings were 50% in heating requirements respect to the conventional layout, and 70% in the requirements of conventional energy for cooling. (author)

  6. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    comprehensive renovations in the coming years and in connection with this renovation process energy saving measures can be implemented relatively inexpensive and cost effective. This opportunity should be used to insure the buildings in the future as far as energy consumption is concerned. This paper gives...

  7. Design of low-energy building and energy consumption analyses

    Institute of Scientific and Technical Information of China (English)

    刘鸣; 陈滨; 范悦; 朱佳音; 索健

    2009-01-01

    In China,a new "Design standard for energy efficiency of residential buildings (for cold region)" was introduced in 2006. In this new standard,more high level insulation of the building envelope is required,yearly energy requirement for heating must be less than 55 kWh/(m2·a)(regarded as a low-energy house). The new attempt was carried out in the process of architecture design with an evaluation on energy consumption of the building. The design plan was brought forward and compared. PHPP software from German was applied to calculate energy consumption of the passive residential building. The optimum design planning was discussed and model of passive house suited to China’s national conditions were attempted. The compactness,solar air collector and the window-wall ratio have essential influence on the energy consumption of buildings. The annual heat demands for the buildings with the window-wall ratio 0.35 and 0.50 are 48 kWh/(m2·a) and 46 kWh/(m2·a),respectively. The yearly auxiliary heat of building with the wall-mounted solar air collectors and the window-wall ratio 0.35 is just 4.8 kWh/(m2·a).

  8. Main Street Net-Zero Energy Buildings: The Zero Energy Method in Concept and Practice

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, P.; Pless, S.; Lobato, C.; Hootman, T.

    2010-01-01

    Until recently, large-scale, cost-effective net-zero energy buildings (NZEBs) were thought to lie decades in the future. However, ongoing work at the National Renewable Energy Laboratory (NREL) indicates that NZEB status is both achievable and repeatable today. This paper presents a definition framework for classifying NZEBs and a real-life example that demonstrates how a large-scale office building can cost-effectively achieve net-zero energy. The vision of NZEBs is compelling. In theory, these highly energy-efficient buildings will produce, during a typical year, enough renewable energy to offset the energy they consume from the grid. The NREL NZEB definition framework classifies NZEBs according to the criteria being used to judge net-zero status and the way renewable energy is supplied to achieve that status. We use the new U.S. Department of Energy/NREL 220,000-ft{sub 2} Research Support Facilities (RSF) building to illustrate why a clear picture of NZEB definitions is important and how the framework provides a methodology for creating a cost-effective NZEB. The RSF, scheduled to open in June 2010, includes contractual commitments to deliver a Leadership in Energy Efficiency and Design (LEED) Platinum Rating, an energy use intensity of 25 kBtu/ft{sub 2} (half that of a typical LEED Platinum office building), and net-zero energy status. We will discuss the analysis method and cost tradeoffs that were performed throughout the design and build phases to meet these commitments and maintain construction costs at $259/ft{sub 2}. We will discuss ways to achieve large-scale, replicable NZEB performance. Many passive and renewable energy strategies are utilized, including full daylighting, high-performance lighting, natural ventilation through operable windows, thermal mass, transpired solar collectors, radiant heating and cooling, and workstation configurations allow for maximum daylighting.

  9. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  10. Analysis of a Building Energy Efficiency Certification System in Korea

    Directory of Open Access Journals (Sweden)

    Duk Joon Park

    2015-12-01

    Full Text Available The Korean government has established a national plan for the promotion of zero energy buildings to respond to climate change and energy crises. To achieve this plan, several energy efficiency policies for new and existing buildings have been developed. The Building Energy Efficiency Certification System (BEECS aims to promote the spread of high energy-efficient buildings by evaluating and certifying building energy performance. This study discussed Korean building energy efficiency policies and analyzed especially the influence of the BEECS on the actual energy consumption of a residential building and calculated energy performance of non-residential buildings. The BEECS was evaluated to have influence on gas and district heating consumption in residential buildings. For non-residential buildings, a decreasing trend was shown in calculated primary energy consumption in the years since the BEECS has been enacted. Appropriate improvements of the certification system were also discussed by analyzing relationship between building characteristics and their energy consumptions.

  11. Country Report on Building Energy Codes in China

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  12. Country Report on Building Energy Codes in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  13. Country Report on Building Energy Codes in India

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

    2009-04-07

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

  14. Country Report on Building Energy Codes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  15. Country Report on Building Energy Codes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  16. Country Report on Building Energy Codes in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  17. Country Report on Building Energy Codes in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

    2009-04-17

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

  18. About energy saving and increase of energy efficiency in buildings

    OpenAIRE

    2010-01-01

    In the article the analysis of National law №261 "Energy saving and increase of energy efficiency..." from the point of view of building systems is given. The recommendations for modernization of heat, ventilation and air conditioning (HVAC) systems taking into account energy efficiency requirements are given.

  19. A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions

    Energy Technology Data Exchange (ETDEWEB)

    Aktacir, Mehmet Azmi [Harran University, Department of Mechanical Engineering, Osmanbey Campus, Sanliurfa (Turkey); Bueyuekalaca, Orhan; Yilmaz, Tuncay [Cukurova University, Department of Mechanical Engineering, Adana (Turkey)

    2010-02-15

    Ensuring the effective thermal insulation in regions, where the cooling requirement of building with respect to heating requirement is dominant, is very important from the aspect of energy economy. In this study, the influence of thermal insulation on the building cooling load and the cooling system in case of air-conditioning by an all-air central air-conditioning system was evaluated for a sample building located in Adana, based on the results of three different types of insulation (A, B and C-type buildings) according to the energy efficiency index defined in the Thermal Insulation Regulation used in Turkey. The operating costs of the air-conditioning system were calculated using cooling bin numbers. Life-cycle cost analysis was carried out utilizing the present-worth cost method. Results showed that both the initial and the operating costs of the air-conditioning system were reduced considerably for all three insulation thicknesses. However, the optimum results in view of economic measurements were obtained for a C-type building. The thickness of thermal insulation for the buildings in the southern Turkey should be determined according to the guidelines for a C-type building. (author)

  20. Status and prospects of building energy efficiency in China

    Institute of Scientific and Technical Information of China (English)

    LONGWeiding; ZHOUHui

    2003-01-01

    The paper briefly describes situation of building energy consumption in China. The authors indicate some relations in building energy efficiency should be dealt with properly: energy saving and energy efficiency, envelopes and building services systems, energy use and indoor environment, electric power saving and energy saving, devices and system, energy efficiency at stable state and at dynamic state. The authors suggest to use Coefficient of Energy Consumption as a Indicator of building energy efficiency.

  1. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio; Sathaye, Jayant

    2010-05-14

    We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

  2. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and

  3. Potential Use of Radiant Walls to Transfer Energy Between two Building Zones

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per

    2011-01-01

    Due to a reduced energy demand in low energy buildings, low temperature heating and high temperature cooling can be used to control thermal comfort. Nevertheless, highly varying heat loads due to solar radiation can create sometimes an imbalanced energy demand inside the building. Instead of being...... considered as a disturbance, this asymmetry can be used as a heat source for another zone of the building. By means of computer simulations, the possibility of shifting the energy demand between two office rooms with different thermal loads has been studied. Due to the small temperature difference between...

  4. Integrated energy, economic, and environmental assessment for the optimal solar absorption cooling and heating system

    Science.gov (United States)

    Hang, Yin

    Buildings in the United States are responsible for 41% of the primary energy use and 30% of carbon dioxide emissions. Due to mounting concerns about climate change and resource depletion, meeting building heating and cooling demand with renewable energy has attracted increasing attention in the energy system design of green buildings. One of these approaches, the solar absorption cooling and heating (SACH) technology can be a key solution to addressing the energy and environmental challenges. SACH system is an integration of solar thermal heating system and solar thermal driven absorption cooling system. So far, SACH systems still remain at the demonstration and testing stage due to not only its high cost but also complicated system characteristics. This research aims to develop a methodology to evaluate the life cycle energy, economic and environmental performance of SACH systems by high-fidelity simulations validated by experimental data. The developed methodology can be used to assist the system design. In order to achieve this goal, the study includes four objectives as follows: * Objective 1: Develop the evaluation model for the SACH system. The model includes three aspects: energy, economy, and environment from a life cycle point of view. * Objective 2: Validate the energy system model by solar experiments performance data. * Objective 3: Develop a fast and effective multi-objective optimization methodology to find the optimal system configuration which achieves the maximum system benefits on energy, economy and environment. Statistic techniques are explored to reveal the relations between the system key parameters and the three evaluation targets. The Pareto front is generated by solving this multi-objective optimization problem. * Objective 4: Apply the developed assessment methodology to different building types and locations. Furthermore, this study considered the influence of the input uncertainties on the overall system performance. The sensitivity

  5. Gray energy of building materials; Graue Energie von Baustoffen

    Energy Technology Data Exchange (ETDEWEB)

    Kasser, U.; Poell, M. [Buero fuer Umweltchemie, Zurich (Switzerland)

    1995-05-15

    The report highlights the importance of gray energy and discusses the relationship to environmental balances. Literature values for the most important building materials are collated and commented. 9 figs., tabs., 59 refs.

  6. Energy Metrics for State Government Buildings

    Science.gov (United States)

    Michael, Trevor

    Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation

  7. Energy flow and thermal comfort in buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome

    the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam, radiant floor, wall and ceiling) have been compared for a typical office room, both numerically...... radiant terminals, only small differences have been observed for the geometry considered. Only if the occupants are assumed to be sitting, the large view factor with the floor can lead to a reduction of the energy need for floor cooling systems. These conclusions are valid for multi-storey and/or highly...... disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting and standing positions. Local comfort conditions (radiant asymmetry, vertical air temperature gradient, risk of draught) have also...

  8. Improved Large-Scale Process Cooling Operation through Energy Optimization

    Directory of Open Access Journals (Sweden)

    Kriti Kapoor

    2013-11-01

    Full Text Available This paper presents a study based on real plant data collected from chiller plants at the University of Texas at Austin. It highlights the advantages of operating the cooling processes based on an optimal strategy. A multi-component model is developed for the entire cooling process network. The model is used to formulate and solve a multi-period optimal chiller loading problem, posed as a mixed-integer nonlinear programming (MINLP problem. The results showed that an average energy savings of 8.57% could be achieved using optimal chiller loading as compared to the historical energy consumption data from the plant. The scope of the optimization problem was expanded by including a chilled water thermal storage in the cooling system. The effect of optimal thermal energy storage operation on the net electric power consumption by the cooling system was studied. The results include a hypothetical scenario where the campus purchases electricity at wholesale market prices and an optimal hour-by-hour operating strategy is computed to use the thermal energy storage tank.

  9. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted turned by 180-degrees and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  10. Tools for Energy Efficiency in Buildings

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Aden, Nate; Tsakiris, Aristeidis

    With growing urbanization, our cities are playing an increasingly important role in accelerating energy efficiency improvements and mitigating climate change (REN21 2016). Cities are one of the biggest consumers of energy in the world, representing almost two-thirds of global primary energy demand...... and accounting for 70 per cent of greenhouse gas (GHG) emissions in the energy sector (IEA2016). Therefore, with urbanization forecast to continue cities will be a critical driver in the sustainable energy transition. Typically city governments have direct decision powers to implement policy actions, which have...... (Holder 2016). Population growth and urbanization are together expanding global building stocks that are increasing the urgency to reduce GHG emissions from the buildings sector by at least a quarter by 2030, in order to have a chance of limiting average global temperature increase to less than 2 degrees...

  11. Building Energy Codes: Policy Overview and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-19

    Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.

  12. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    Jan Skovajsa

    2017-01-01

    Full Text Available The article deals with the use of modern materials and technologies that can improve the thermal comfort in buildings. The article describes the design and usage of a special accumulation device, which is composed of thermal panels based on phase change materials (PCMs. The thermal panels have an integrated tube heat exchanger and heating foils. The technology can be used as a passive or active system for heating and cooling. It is designed as a “green technology”, so it is able to use renewable energy sources, e.g., photovoltaic (PV panels, solar thermal collectors and heat pumps. Moreover, an interesting possibility is the ability to use thermoelectric coolers. In the research, measurements of the different operating modes were made, and the results are presented in the text. The measurement approves that the technology improves the thermal capacity of the building, and it is possible to use it for active heating and cooling.

  13. Climate change, renewable energy and population impact on future energy demand for Burkina Faso build environment

    Science.gov (United States)

    Ouedraogo, B. I.

    This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. It was found base don climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2oC between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25oC inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. Shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Based on the Net Present Cost, hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

  14. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  15. Utilization of the horizontal ground heat exchanger in the heating and cooling system of a residential building

    Science.gov (United States)

    Hanuszkiewicz-Drapała, Małgorzata; Bury, Tomasz

    2016-03-01

    This paper presents the results of thermodynamic analyses of a system using a horizontal ground heat exchanger to cool a residential building in summer and heat it in the autumn-winter period. The main heating device is a vapour compression heat pump with the ground as the lower heat source. The aim of the analyses is to examine the impact of heat supply to the ground in the summer period, when the building is cooled, on the operation of the heating system equipped with a heat pump in the next heating season, including electricity consumption. The processes occurring in cooling and heating systems have an unsteady nature. The main results of the calculations are among others the time-dependent values of heat fluxes extracted from or transferred to the ground heat exchanger, the fluxes of heat generated by the heat pump and supplied to the heated building by an additional heat source, the parameters in characteristic points of the systems, the temperature distributions in the ground and the driving electricity consumption in the period under analysis. The paper presents results of analysis of cumulative primary energy consumption of the analyzed systems and cumulative emissions of harmful substances.

  16. Utilization of the horizontal ground heat exchanger in the heating and cooling system of a residential building

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available This paper presents the results of thermodynamic analyses of a system using a horizontal ground heat exchanger to cool a residential building in summer and heat it in the autumn-winter period. The main heating device is a vapour compression heat pump with the ground as the lower heat source. The aim of the analyses is to examine the impact of heat supply to the ground in the summer period, when the building is cooled, on the operation of the heating system equipped with a heat pump in the next heating season, including electricity consumption. The processes occurring in cooling and heating systems have an unsteady nature. The main results of the calculations are among others the time-dependent values of heat fluxes extracted from or transferred to the ground heat exchanger, the fluxes of heat generated by the heat pump and supplied to the heated building by an additional heat source, the parameters in characteristic points of the systems, the temperature distributions in the ground and the driving electricity consumption in the period under analysis. The paper presents results of analysis of cumulative primary energy consumption of the analyzed systems and cumulative emissions of harmful substances.

  17. Energy conservation with comfort factor. Green building SV - corporate headquarters; Energiesparen mit hohem Wohlfuehlfaktor. Green Building SV-Konzernzentrale

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-05-15

    One of the most current examples in the increasing Green Building spectrum is the new corporate headquarters of the South German publishing house in Munich (Federal Republic of Germany). This corporate headquarters recently was distinguished as the first office building of Germany with the LEED certificate in gold. Together with a trade-spreading automation of the space functions, the new front creates the conditions for the minimization of the energy consumption of the building. A new fact: The co-workers can select between manual and automated operation of heating, ventilation and space cooling at will.

  18. Assessment of energy utilization and leakages in buildings with building information model energy

    Directory of Open Access Journals (Sweden)

    Egwunatum I. Samuel

    2017-03-01

    Full Text Available Given the ability of building information models (BIM to serve as a multidisciplinary data repository, this study attempts to explore and exploit the sustainability value of BIM in delivering buildings that require less energy for operations, emit less carbon dioxide, and provide conducive living environments for occupants. This objective was attained by a critical and extensive literature review that covers the following: (1 building energy consumption, (2 building energy performance and analysis, and (3 BIM and energy assessment. Literature cited in this paper shows that linking an energy analysis tool with a BIM model has helped project design teams to predict and create optimized energy consumption by conducting building energy performance analysis utilizing key performance indicators on average thermal transmitters, resulting heat demand, lighting power, solar heat gains, and ventilation heat losses. An in-depth analysis was conducted on a completed BIM integrated construction project utilizing the Arboleda Project in the Dominican Republic to validate the aforementioned findings. Results show that the BIM-based energy analysis helped the design team attain the world׳s first positive energy building. This study concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results, and deliver energy-efficient buildings. This study further recommends that the adoption of level 2 BIM and BIM integration in energy optimization analysis must be demanded by building regulatory agencies for all projects regardless of procurement method (i.e., government funded or otherwise or size.

  19. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  20. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    windows have already been developed and prototypes constructed for laboratory test and a third generation of the window design is now in the developing and designing face in a new project. The first window constructed was made of wood profiles and a low-energy double glazing unit. The second and third......This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...

  1. Energy balances of four office buildings in different locations in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Soutullo, Silvia; Enriquez, Ricardo; San Juan, Cristina; Ferrer, Jose Antonio; Heras, M Rosario [Energy Efficiency in Buildings R and D Unit., CIEMAT, Madrid (Spain)], email: silvia.soutullo@ciemat.es

    2010-07-01

    Southern Europe climates are characterized by important heating and cooling needs, thus to minimize the greenhouse gas emissions, efficient buildings must be designed. Two types of techniques can be used: passive techniques which consist in optimizing the building design to reduce its energy demand and then the implementation of active renewable energy systems to supply all the demand. The aim of this study is to present the design and analysis process of buildings in Spain. Simulations using TRNSYS 16 were performed on 4 buildings situated in Madrid, Almeria, Asturias and Soria to represent all climates of Spain. Results showed that efficient buildings can be designed in Southern Europe and that the simulation tool is a good means to optimize the combination of passive and active solar systems; it was found that 80% of the present energy consumption can be saved. The design and analysis process presented herein was proved to help in optimizing the energy consumption of buildings in Southern Europe.

  2. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  3. Better Duct Systems for Home Heating and Cooling; Building Technologies Program (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Duct systems used in forced-air space-conditioning systems are a vital element in home energy efficiency. How well a system works makes a big difference in the cost and the effectiveness of heating and cooling a home.

  4. Building energy, building leadership : recommendations for the adoption, development, and implementation of a commercial building energy code in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Akerstream, T. [Manitoba Hydro, Winnipeg, MB (Canada); Allard, K. [City of Thompson, Thompson, MB (Canada); Anderson, N.; Beacham, D. [Manitoba Office of the Fire Commissioner, Winnipeg, MB (Canada); Andrich, R. [The Forks North Portage Partnership, MB (Canada); Auger, A. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency; Downs, R.G. [Shindico Realty Inc., Winnipeg, MB (Canada); Eastwood, R. [Number Ten Architectural Group, Winnipeg, MB (Canada); Hewitt, C. [SMS Engineering Ltd., Winnipeg, MB (Canada); Joshi, D. [City of Winnipeg, Winnipeg, MB (Canada); Klassen, K. [Manitoba Dept. of Energy Science and Technology, Winnipeg, MB (Canada); Phillips, B. [Unies Ltd., Winnipeg, MB (Canada); Wiebe, R. [Ben Wiebe Construction Ltd., Winnipeg, MB (Canada); Woelk, D. [Bockstael Construction Ltd., Winnipeg, MB (Canada); Ziemski, S. [CREIT Management LLP, Winnipeg, MB (Canada)

    2006-09-15

    This report presented a strategy and a set of recommendations for the adoption, development and implementation of an energy code for new commercial construction in Manitoba. The report was compiled by an advisory committee comprised of industry representatives and government agency representatives. Recommendations were divided into 4 categories: (1) advisory committee recommendations; (2) code adoption recommendations; (3) code development recommendations; and (4) code implementation recommendations. It was suggested that Manitoba should adopt an amended version of the Model National Energy Code for Buildings (1997) as a regulation under the Buildings and Mobile Homes Act. Participation in a national initiative to update the Model National Energy Code for Buildings was also advised. It was suggested that the energy code should be considered as the first step in a longer-term process towards a sustainable commercial building code. However, the code should be adopted within the context of a complete market transformation approach. Other recommendations included: the establishment of a multi-stakeholder energy code task group; the provision of information and technical resources to help build industry capacity; the establishment of a process for energy code compliance; and an ongoing review of the energy code to assess impacts and progress. Supplemental recommendations for future discussion included the need for integrated design by building design teams in Manitoba; the development of a program to provide technical assistance to building design teams; and collaboration between post-secondary institutions to develop and deliver courses on integrated building design to students and professionals. 17 refs.

  5. Energy Demands and Efficiency Strategies in Data Center Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature

  6. Building Cyber-Physical Energy Systems

    OpenAIRE

    Stamatescu, Grigore; Stamatescu, Iulia; Arghira, Nicoleta; Calofir, Vasile; Fagarasan, Ioana

    2016-01-01

    The built environment, as hallmark of modern society, has become one of the key drivers of energy demand. This makes for meaningful application of novel paradigms, such as cyber-physical systems, with large scale impact for both primary energy consumption reduction as well as (micro-) grid stability problems. In a bottom-up approach we analyze the drivers of CPS design, deployment and adoption in smart buildings. This ranges from low-level embedded and real time system challenges, instrumenta...

  7. To build an energy-saving society

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ To speed up the development of cycling economy and build an energy-saving society is the key point of work in the coming years for the General Administration of Qualitv Supervision, Inspection and Quarantine of the People's Republic of China(AQSIQ).

  8. Investigation of Energy Saving Possibilities in Buildings

    Directory of Open Access Journals (Sweden)

    Edita Milutienė

    2010-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Buildings sector is the largest single energy end-user in the EU. There are numerous possibilities to save energy in buildings. This research deals with the analysis of the possibilities to save energy in buildings of northern latitudes by applying a passive solar energy technique. The article presents results of solar radiation monitoring in Vilnius for a 12 years period and assessment of the possibilities to save heat energy. Data could be used in designing solar houses, calculating passive solar energy gains and evaluating CO2 emissions reduction.

  9. Energy Efficiency Improvement Potential in Historical Brick Building

    OpenAIRE

    Žogla, Gatis; Blumberga, Andra; Zvaigznītis, Kristaps; Dzikēvičs, Miķelis; Blumberga, Dagnija; Burinskiene, Marija

    2013-01-01

    Energy efficiency in historical heritage buildings is viewed as a taboo because these buildings usually are law-protected and no energy efficiency measures that would change the appearance of building are allowed. In this paper we look at a potential of increasing energy efficiency level in historical buildings. Measurements to determine energy efficiency of a historical brick building have been done, which also give the possibility to determine the potential of energy efficiency measures in ...

  10. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  11. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...... of the external envelope and the thermal capacity of the internal walls as the main parameters that affect the load shifting potential of the apartment....... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...

  12. Development of a new controller for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Hultmark, Göran;

    2016-01-01

    with a temperature of about 22 °C. Therefore, the same supply water temperature is delivered to all the thermal zones in the building, no matter whether a single zone needs heating or cooling. In previous studies, the supply water temperature varied between 20 °C and 23 °C, according to outdoor air temperature......This paper aims to develop a new controller to regulate the supply water temperature of a room-temperature loop integrated in a novel HVAC for office buildings. The main feature of the room-temperature loop is its ability to provide simultaneous heating and cooling by circulating water...... by signals of actual room air temperatures and return water temperature. Depending on the minimum and maximum air temperatures in the rooms, the supply water temperature was set by adjusting the return water temperature with two offsets, one for heating demand and one for cooling demand. The behaviour...

  13. The influence of thermal insulation position in building exterior walls on indoor thermal comfort and energy consumption of residential buildings in Chongqing

    Science.gov (United States)

    Wang, D.; Yu, W.; Zhao, X.; Dai, W.; Ruan, Y.

    2016-08-01

    This paper focused on the influence of using position of thermal insulation materials in exterior walls on the indoor thermal comfort and building energy consumption of residential building in Chongqing. In this study, four (4) typical residential building models in Chongqing were established, which have different usage of thermal insulation layer position in exterior walls. Indoor thermal comfort hours, cooling and heating energy consumption of each model were obtained by using a simulation tool, Energyplus. Based on the simulation data, the influence of thermal insulation position on indoor thermal comfort and building energy consumption in each season was analyzed. The results showed that building with internal insulation had the highest indoor thermal comfort hours and least cooling and heating energy consumption in summer and winter. In transitional season, the highest indoor thermal comfort hours are obtained when thermal insulation is located on the exterior side.

  14. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC

  15. Energy consumption in office buildings. Trends and drivers; Energibruk i kontorbygg. Trender og drivere

    Energy Technology Data Exchange (ETDEWEB)

    Langseth, Benedicte

    2013-02-01

    This report focuses on the energy usage of Norwegian office buildings. Historic data on the subject is limited, so qualitative input is gathered through interviews with property owners and contractors for energy solutions. We have looked at what affects the total area of office buildings in Norway, and realized that it more or less follows the inland gross domestic product. The report also includes cross-sectional analyses from various data sources to find what affects the specific energy usage of office buildings. The actual measured consumption deviates from estimated consumption, especially in newer buildings and especially within ventilation and cooling. Additionally, a model has been developed for projective purposes. It is well suited to test the effect of various input parameters and assumptions on the total area of office buildings and their energy consumption. Though as of yet the quality of data is not good enough to make a profound and credible estimate of total energy usage.(eb)

  16. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  17. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  18. Energy consumptions in existing buildings; Les consommations d'energie des batiments existants

    Energy Technology Data Exchange (ETDEWEB)

    Nuss, St. [Ecole Nationale Superieure des Arts et Industries de Strasbourg, 78 - Saint-Remy-Les-Chevreuse (France)]|[Costic, 78 - Sainte Remy les Chevreuses (France)

    2002-05-01

    This document presents a sectoral analysis of the energy consumptions in existing French buildings: 1) - residential sector: social buildings, private dwellings; 2) - tertiary sector: office buildings, hotels, commercial buildings, school buildings, hospitals; 3) - industry; 4) - general status. (J.S.)

  19. Indoor Air Quality Assessment in a Radiantly Cooled Tropical Building: a Case Study

    Directory of Open Access Journals (Sweden)

    Qi Jie KWONG

    2015-10-01

    Full Text Available Background: Many studies have been conducted to assess the indoor air quality (IAQ of buildings throughout the world because it is closely related to comfort, safety and work productivity of occupants. However, there is still lack of available literature about IAQ in tropical buildings that apply radiant cooling systems in conditioning the indoor air.Methods: This paper reports the results obtained from an IAQ audit that was conducted in a new radiantly cooled building in Malaysia, by focusing on the IAQ and thermal comfort parameters.Results: It was identified that the measured concentration levels for the five indoor air contaminants (CO, CO2, TVOC, formaldehyde and respirable particulates were within the threshold limit values (TLVs specified in the IAQ guidelines. Besides, no significant difference was found between the contaminant levels in each floor of the studied building, and a majority of the respondents did not encounter any form of physical discomfort. There is a risk of condensation problem, judging from the measured RH level.Conclusion: An increase of airflow rate and more dehumidification work in the studied building can be made to improve IAQ and prevention of condensation problem. Nevertheless, these schemes should be implemented carefully to avoid occupants’ discomfort. Relocation of workstations was suggested, especially for the lower floors, which had higher occupancy levels. Keywords: Indoor air quality (IAQ, Radiant cooling systems, IAQ audit, Indoor air contaminants, Condensation 

  20. The Proposed Heating and Cooling System in the CH2 Building and Its Impact on Occupant Productivity

    Directory of Open Access Journals (Sweden)

    Lu Aye

    2012-11-01

    Full Text Available Melbourne's climatic conditions demand that its buildings require both heating and cooling systems. In a multi-storey office building , however, cooling requirements will dominate. How the internal space is cooled and ventilation air is delivered will significantly impact on occupant comfort. This paper discusses the heating and cooling systems proposed for the CH2building. The paper critiques the proposed systems against previous experience, both internationally and in Australia. While the heating system employs proven technologies, less established techniques are proposed for the cooling system. Air movement in the shower towers, for example, is to be naturally induced and this has not always been successful elsewhere. Phase change material for storage of "coolth" does not appear to have been demonstrated previously in a commercial building, so the effectiveness of the proposed system is uncertain. A conventional absorption chiller backs up the untried elements of the cooling system, so that ultimately occupant comfort should not be compromised .

  1. Building Energy Information Systems: User Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

    2010-03-22

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  2. Simplified floor-area-based energy-moisture-economic model for residential buildings

    Science.gov (United States)

    Martinez, Luis A.

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building energy modeling tools, which are well advanced and established but lack generality (each building has to be modeled individually) and require high cost, which limits many residential buildings from taking advantage of such powerful tools. This dissertation attempts to develop guidelines based on a per-building-floor-area basis for designing residential buildings that achieve maximum energy efficiency and minimum life cycle cost. Energy and moisture-mass conservation principles were formulated for residential buildings on a per-building-floor-area basis. This includes thermal energy balance, moisture-mass conservation and life cycle cost. The analysis also includes the effects of day-lighting, initial cost estimation and escalation rates. The model was implemented on Excel so it is available for broader audiences and was validated using the standard BESTEST validation procedure for energy models yielding satisfactory results for different scenarios, within a 90% confidence interval. Using the model, parametric optimization studies were conducted in order to study how each variable affects energy and life cycle cost. An efficient whole-building optimization procedure was developed to determine the optimal design based on key design parameters. Whole-building optimization studies were conducted for 12 climate zones using four different criteria: minimum energy consumption, minimum life cycle cost (35 years) using constant energy costs and minimum life cycle cost (35 years) varying escalation rates (-5%, 10%). Conclusions and recommendations were inferred on how to design an optimal house, using each criterion and for all

  3. EXPANDING THE CAPABILITIES OF DOE'S ENERGYPLUS BUILDING ENERGY SIMULATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Don B. Shirey, III; Richard A. Raustad

    2004-04-01

    EnergyPlus{trademark} is a new generation analysis tool that is being developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It will also support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by six updated versions over the ensuing three-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features: (1) A model for energy recovery ventilation equipment that transfers both sensible (temperature) and latent (moisture) energy between building exhaust air and incoming outdoor ventilation air; (2) A model to account for the degradation of cooling coil dehumidification performance at part-load conditions; (3) A model for cooling coils augmented with air-to-air heat exchangers for improved dehumidification; and (4) A heat transfer coefficient calculator and automatic sizing algorithms for the existing EnergyPlus cooling tower model. UCF/FSEC located existing mathematical models for these features and incorporated them into EnergyPlus. The software models were written using Fortran-90 and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (Input Output Reference and Engineering Document) was updated with information describing the new model/feature.

  4. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand....... The analysis also shows that the connection of low-energy buildings to DH networks is potentially a good solution in Denmark for reaching the climatic goals, but a high degree of connection must be reached, especially for detached houses, where most of the buildings in a typical community must be connected......The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...

  5. Building technology. Renewable energies, building automation, energy efficiency; Gebaeudetechnik. Erneuerbare Energien, Gebaeudeautomation, Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Veit, Joerg; Schmidt, Peer (eds.)

    2012-07-01

    The functionality and efficiency of a building significantly are influenced by the installations of technical building equipment and especially by the building automation. Under this aspect, the authors of the book under consideration report on new ideas for an enhanced energy efficiency. At first, important regulations and laws (Renewable Energy Law, Act for the Retention, Modernisation and Expansion of Combined Heat and Power) are presented. In the chapter on renewable energies, the authors specifically address photovoltaic systems. Other features of this book are building automation, energy efficiency, operational and project management. The last chapter of this book presents an overview of trade fairs and events as well as training centres of the Zentralverband der Deutschen Elektro- und Informationstechnischen Handwerke (Frankfurt (Main), Federal Republic of Germany) and of the national associations.

  6. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    involved in the building design process. This project also illustrates the importance of understanding the interdisciplinary collaboration between engineers and architects. Contrary to the traditional notion that the building’s performance is determined by the architect’s first sketch on a napkin......, to a great extent it is already determined by the building’s context and the building programme. This places great responsibilities on the shoulders of both engineers and architects in the critical first phases of design.......This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...

  7. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  8. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... windows have already been developed and prototypes constructed for laboratory test and a third generation of the window design is now in the developing and designing face in a new project. The first window constructed was made of wood profiles and a low-energy double glazing unit. The second and third...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  9. Energy efficiency in buildings, industry and transportation

    Science.gov (United States)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2013-01-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  10. House Embodied Energy and Zero Energy Building Concept

    Directory of Open Access Journals (Sweden)

    Edita MILUTIENĖ

    2011-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Seeking to mitigate climate change it is impossible to avoid radical changes in construction sector, because it accounts for 40% of primary energy use for buildings operation in Europe and other countries.  Production of building materials also affects climate change and environment quality.  The concept of zero energy building (ZEB emphasizes energy efficiency, energy saving and renewable energy use during the operation of buildings and it is a necessary step in changing the present situation. Nevertheless there are more possibilities for improving building sector sustainability. The article presents analysis of embodied energy reduction using straw bales and other local materials for wall construction. Estimations have shown that replacing a structural component as bricks with local wood, and thermal insulation material - stone wool with straw bales, it is possible to reduce embodied energy and embodied carbon of a wall more than 7 times. Pressed straw being a building material with good thermal properties, straw bale buildings could meet the passive houses standard or help fulfilling the concept of zero energy building without additional harm to the nature of extra thermal

  11. Thermal indoor environment and energy consumption in a plus-energy house: cooling season measurements

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    . The house was cooled by a floor cooling system and was ventilated with a mechanical ventilation system. Different operative temperature set-points and different ventilation rates were tested. Operative temperature at a representative location inside the occupied zone was used as an indicator of the thermal...... the floor cooling system) and increasing the ventilation rate provided a better thermal indoor environment but with increased energy consumption. The thermal indoor environment and energy performance of the house can be improved with decreased glazing area, increased thermal mass, installation of solar......The present study is concerned with the thermal indoor environment and HVAC system energy consumption of a detached, one-story, single family, plus-energy house during a cooling season. The house was located in Denmark and it has been used as a full-scale experimental facility for one year...

  12. Energy Efficiency and Sustainability of Different Building Structures in Latvian Climate

    Science.gov (United States)

    Jakovičs, A.; Gendelis, S.; Bandeniece, L.

    2015-11-01

    Five experimental test buildings have been built in Riga, Latvia. They are identical except external walls for which different mainly regional building materials are used. Calculated U-values of the other walls, floor and ceiling are the same for each test building. Initial moisture influences the relative humidity of indoor air, which can be higher in the initial time period; as a result, heat transmittances are also very different and cause different heating/cooling energy consumption. Overheating risk in summer exists for test buildings with the smallest thermal inertia. Both summer and heating seasons have been analysed and differences between five test houses have been discussed in details.

  13. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  14. Scripted Building Energy Modeling and Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

    2012-08-01

    Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

  15. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  16. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  17. Climate change and its role in forecasting energy demand in buildings: A case study of Douala City, Cameroon

    Indian Academy of Sciences (India)

    Modeste Kameni Nematchoua; Gh R Roshan; René Tchinda; T Nasrabadi; Paola Ricciardi

    2015-02-01

    The foremost role of a building is to assure the comfort of its occupants. The thermal comfort of a building depends on the outdoor climate and requires a demand in energy for heating and cooling. In this paper, demand of energy (heating/cooling) in the buildings is discussed in Douala, Cameroon. Daily data of the last 40 years coming from five weather stations of Cameroon have been studied. Some forecasts have been carried out with 14 GCM models, associated to three future climate scenarios B1, A2, and A1B. However, only INCM3 of General Circulation Model (GCM) and A2 scenario was used. Energy demand in buildings is valued by HDD (heating degree day) and CDD (cooling degree day) indices. Obtained results show that the temperature evolves more quickly in dry season than in rainy season in Douala. Climate rise indicates an increasing demand of energy in the buildings for cooling. Global Douala heating shows a definite effect on outdoor comfort. From 2045 to 2075, the demand of energy for cooling will be superior to 50%. The total demand in energy for heating in the buildings is estimated to be 67.882 kcal from 1970 to 2000 and will be around 67.774 kcal from 2013 to 2043.

  18. Building envelope for New Buildings and Energy Renovation of Existing Buildings. Project results

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Rose, Jørgen; Esbensen, Peter Kjær

    1999-01-01

    At the energy conference in 1995, Denmark agreed on reducing the total CO2-emission by 20%. To achieve this goal, it is necessary to increase thermal insulation thickness both in new and retrofitted buildings.This will, for both cases, impose a series of building physics problems, as the knowledge...... of heat- and moistureflow is insufficiently documented for large insulation thicknesses. Thermal bridges, for instance, plays a larger role for the overall heat loss in these constructions, and moisture in insulation materials will decrease the overall performance of the construction.Due to these facts......, External insulation systems for facades, Integral Building Envelope Performance Assessment...

  19. Building as active elements of energy systems

    OpenAIRE

    Bulut, Mehmet Börühan

    2016-01-01

    Buildings account for approximately 40% of the energy demand and 33% of the total greenhouse gas emissions in the European Union. Accordingly, there are several efforts that target energy efficiency in buildings both at the European and Swedish levels. The role of buildings in climate change mitigation, however, is not limited to energy savings. Buildings are expected to become key elements of the future smart energy systems by supplying and using energy in a more flexible way. Reducing the e...

  20. Hourly test reference weather data in the changing climate of Finland for building energy simulations

    Directory of Open Access Journals (Sweden)

    Kirsti Jylhä

    2015-09-01

    Full Text Available Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled “Energy demand for the heating and cooling of residential houses in Finland in a changing climate” [1].

  1. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1981-05-01

    The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

  2. Simulation-based coefficients for adjusting climate impact on energy consumption of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj; Hathaway, John E.

    2016-11-23

    This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity and solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.

  3. IEA Energy Training Capacity-building Programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The IEA has carried out training activities in energy-related areas from its origins as an agency, with the Emergency Response Exercises (ERE), designed to prepare member countries for oil supply disruption through a set of specially prepared drills simulating crisis conditions. The globalisation of world energy markets in recent years and the wider engagement of the IEA beyond its members have expanded this role, as demand for training instruction has increased. In response, the IEA has created the Energy Training and Capacity-Building Programme, which, through seminars and workshops, secondments and internships, will offer training in the methods and standards that make IEA work in a wide range of energy-related areas, including statistics, the international standard for objective policy recommendations.

  4. Integrated energy design of the building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Vraa Nielsen, M.

    2012-07-01

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building's facades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1) the importance of integrating knowledge in the early stages of design, and how it can be done; 2) understanding the facade's typology; and 3) the complex notion of comfort. The project touched not only on the technical capabilities and requirements governing facade design, but also the process by which it takes place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of facades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages of design not only can qualify the geometrical processing, but also facilitate the design development of the facade. Thereby a more holistic performance optimisation can be obtained through parameters such as overall facade geometry and orientation, functional organisation, room height and depth, facade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over

  5. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  6. Chinese kangs and building energy consumption

    Institute of Scientific and Technical Information of China (English)

    LI YuGuo; ZHUANG Zhi; LIU JiaPing

    2009-01-01

    Chinese kangs are an integrated system for cooking, sleeping and heating in rural Northern China with more than 2000 years history. In 2004 there were 67 million Chinese kangs used by 44 million rural families or 174 million people. Chinese kangs store surplus heat from stove during cooking and releases it later for both home heating and localized bed heating. Such a widely used heating system has been rarely studied. Understanding kangs is important for developing new effective home heating systems for better energy efficiency and improving indoor air quality in Northern China. In this paper,we review and present some preliminary results from our field measurement and mathematical modeling, and discuss the development of Chinese kangs as related to future energy consumption in rural homes, and building energy consumption in China in general. We suggest that transition and new technologies for rural home heating in Northern China, i.e. the future of Chinese kangs, should be considered as the top priority in managing future building energy consumption in China.

  7. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    Science.gov (United States)

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  8. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  9. 76 FR 74050 - Measured Building Energy Performance Data Taxonomy

    Science.gov (United States)

    2011-11-30

    ... energy performance data taxonomy as part of its DOE Buildings Performance Database project. This... energy performance data taxonomy as part of its DOE Buildings Performance Database project. This... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF...

  10. Controlling indoor climate. Passive cooling of residential buildings in hot-humid climates in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiwu

    1996-10-01

    Overheating is a paramount problem in residential buildings in hot and humid climates in China during summer. This study aims to deal with the overheating problem and the problem of poor air quality in dwellings. The main objective is to improve indoor thermal conditions by passive cooling approaches, climatisation techniques in buildings without auxiliary cooling from air conditioning equipment. This thesis focuses on the study of cross-ventilation in apartments, which is one of the most effective ways of natural cooling in a hot humid climate, but is also one of the least understood parts in controlling indoor climate. The Computational Fluid Dynamics (CFD) technique is used, which is a new approach, since cross-ventilation studies have been conventionally made by wind tunnel tests. The validations of the CFD technique are examined by a comparison between wind tunnel tests and computer simulations. The factors influencing indoor air movement are investigated for a single room. Cross-ventilation in two apartments is studied, and the air change efficiency in a Chinese kitchen is calculated with CFD techniques. The thermal performance of ventilated roofs, a simple and widely used type of roof in the region, is specially addressed by means of a full-scale measurement, wind tunnel tests and computer simulations. An integrated study of passive cooling approaches and factors affecting indoor thermal comfort is carried out through a case study in a southern Chinese city, Guangzhou. This thesis demonstrates that passive cooling measure have a high potential in significantly improving indoor thermal conditions during summer. This study also gives discussions and conclusions on the evaluation of indoor thermal environment; effects influencing cross-ventilation in apartments; design guidelines for ventilated roofs and an integrated study of passive cooling. 111 refs, 83 figs, 65 tabs

  11. Curriculum for Commissioning Energy Efficient Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Lia

    2012-09-30

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual

  12. Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rotzetter, A.C.C.; Schumacher, C.M.; Bubenhofer, S.B.; Grass, R.N.; Gerber, L.C.; Zeltner, M.; Stark, W.J. [Institute for Chemical and Bioengineering, ETH Zurich (Switzerland)

    2012-10-09

    Buildings can be effectively cooled by a bioinspired sweating-like action based on thermoresponsive hydrogels (PNIPAM), which press out their stored water when exceeding the lower critical solution temperature. The surface temperature is reduced by 15 C compared to that of a conventional hydrogel (pHEMA) and by 25 C compared to the bare ground. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  14. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  15. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  16. Energy Costs of Energy Savings in Buildings: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Rousse

    2012-08-01

    Full Text Available It is often claimed that the cheapest energy is the one you do not need to produce. Nevertheless, this claim could somehow be unsubstantiated. In this article, the authors try to shed some light on this issue by using the concept of energy return on investment (EROI as a yardstick. This choice brings semantic issues because in this paper the EROI is used in a different context than that of energy production. Indeed, while watts and negawatts share the same physical unit, they are not the same object, which brings some ambiguities in the interpretation of EROI. These are cleared by a refined definition of EROI and an adapted nomenclature. This review studies the research in the energy efficiency of building operation, which is one of the most investigated topics in energy efficiency. This study focuses on the impact of insulation and high efficiency windows as means to exemplify the concepts that are introduced. These results were normalized for climate, life time of the building, and construction material. In many cases, energy efficiency measures imply a very high EROI. Nevertheless, in some circumstances, this is not the case and it might be more profitable to produce the required energy than to try to save it.

  17. Do LEED-certified buildings save energy? Not really...

    Energy Technology Data Exchange (ETDEWEB)

    Scofield, John H. [Department of Physics and Astronomy, Oberlin College, Oberlin, OH (United States)

    2009-12-15

    Newsham et al. have recently published a re-analysis of energy-consumption data for LEED-certified commercial buildings supplied by the New Buildings Institute (NBI) and US Green Building Council. They find that, on average, LEED buildings use 18-39% less energy per floor area than their conventional counterparts, consistent with and adding clarity to conclusions originally reached by NBI. These conclusions, however, hang on a particular definition of the mean energy intensity of a collection of buildings that is not related to the total energy used by those buildings. Furthermore, site energy considered by Newsham et al. and NBI, unlike source energy used for the EPA's building Energy Star rating, does not account for the energy consumed off-site in generating and delivering electric energy to the building, whose inclusion is crucial for understanding greenhouse gas emission associated with building operation. Here I demonstrate that both the site energy and source energy used by the set of 35 LEED office buildings and Newsham et al.'s matching CBECS office buildings are statistically equivalent. Hence Newsham et al. offer no evidence that LEED-certification has collectively lowered either site or source energy for office buildings. (author)

  18. Pusat Tenaga Malaysia's Zero Energy Office (ZEO) Building

    DEFF Research Database (Denmark)

    Tang, C.K.; Reimann, Gregers Peter; Kristensen, Poul Erik

    Technical Review of the Zero Energy Office building in Malaysia. The building, which has an energy index of 50 kWh/m2/year, reaches a net annual energy of zero through the use of building integrated photovoltaic panels. For reference, ordinary offices in Malaysia consume 200 - 300 kWh/m2/year...

  19. Energy modeling of two office buildings with data center for green building design

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yiqun; Yin, Rongxin; Huang, Zhizhong [Institute of Building Performance and Technology, Sino-German College of Applied Sciences, Tongji University, Shanghai 200092 (China)

    2008-07-01

    Energy simulation models are developed with EnergyPlus for two office buildings in a R and D center in Shanghai, China to evaluate the energy cost savings of green building design options compared with the baseline building. As a R and D center of an international IT corporation, there are data centers in the two buildings, which make them different from typical office buildings. The data centers house high energy consuming IT equipments and need 24 h air-conditioning every day all year round. In order to achieve energy cost savings, multiple energy efficiency strategies are employed for design proposed building, encompassing high performance building envelope, lighting system, and HVAC system. Through energy modeling, the design proposed options are compared to an ASHRAE 90.1-2004 compliant budget model to highlight energy cost savings versus ''standard practice'' and show the potential LEED trademark Credit EA1 - Optimize Energy Performance. Meanwhile, they are also compared to China Code model to figure out the energy cost savings versus the most popular practice conforming to China Public Building Energy Saving Design Standard. The whole building energy simulation results show that the yearly energy cost saving of the proposed design will be approximately 27% from China Code building and 21% from ASHRAE budget building, which can achieve 4 points for LEED credit due to energy performance optimization. (author)

  20. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  1. Energy efficiency in multi-story buildings

    Directory of Open Access Journals (Sweden)

    Staritcyna Anastasiia

    2016-01-01

    Full Text Available In this project a research on energy efficiency of Malta house was provided, it is a residential multi-story building in Helsinki, Jätkäsaari area. This project describes introduction with a new heating system for residential dwellings, which uses only heated air. To maintain air temperature in comfort level heat recovery and district heating is used in the same system. The task was to research efficacy of the enclosure structures. For research the 3D model has been created in the program the Revit 2015 and Lumion 13. Thermotechnical calculation for three types of a design has been executed in the program U-value.net.

  2. Parameter study on performance of building cooling by night-time ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2008-01-01

    Especially for commercial buildings in moderate climates, night-time ventilation seems to be a simple and energy-efficient approach to improve thermal comfort in summer. However, due to uncertainties in the prediction of thermal comfort in buildings with night-time ventilation, architects...

  3. Theoretical study on volatile organic compound removal and energy performance of a novel heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Zhang, Ge

    2015-01-01

    A theoretical model was established for predicting the volatile organic compound (VOC) removal and energy performance of a novel heat pump assisted solid desiccant cooling system (HP-SDC). The HP-SDC was proposed based on the combination of desiccant rotor with heat pump, and was designed...... for cooling, dehumidification and indoor air cleaning in normal office, commercial or residential buildings. The desiccant rotor was used for dehumidification and indoor air cleaning; the heat pump provided sensible cooling and regeneration heat for the desiccant rotor. The theoretical model consisted of two...... sub-models. One sub-model was used to simulate the heat, moisture and VOC transfer in the desiccant rotor; the other sub-model was used to predict the energy performance of the heat pump. Combining the two sub-models, the energy performance and VOC removal effect of the HP-SDC could be simulated...

  4. Intervention strategies for energy efficient municipal buildings: Influencing energy decisions throughout buildings` lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The current energy-related decisionmaking processes that take place during the lifetimes of municipal buildings in San Francisco do not reflect our ideal picture of energy efficiency as a part of staff awareness and standard practice. Two key problems that undermine the success of energy efficiency programs are lost opportunities and incomplete actions. These problems can be caused by technology-related issues, but often the causes are institutional barriers (organizational or procedural {open_quotes}people problems{close_quotes}). Energy efficient decisions are not being made because of a lack of awareness or policy mandate, or because financial resources are not available to decisionmakers. The Bureau of Energy Conservation (BEC) is working to solve such problems in the City & County of San Francisco through the Intervention Strategies project. In the first phase of the project, using the framework of the building lifetime, we learned how energy efficiency in San Francisco municipal buildings can be influenced through delivering services to support decisionmakers; at key points in the process of funding, designing, constructing and maintaining them. The second phase of the project involved choosing and implementing five pilot projects. Through staff interviews, we learned how decisions that impact energy use are made at various levels. We compiled information about city staff and their needs, and resources available to meet those needs. We then designed actions to deliver appropriate services to staff at these key access points. BEC implemented five pilot projects corresponding to various stages in the building`s lifetime. These were: Bond Guidelines, Energy Efficient Design Practices, Commissioning, Motor Efficiency, and Facilities Condition Monitoring Program.

  5. Transient Analysis and Performance Prediction of Nocturnal Radiative Cooling of a Building in Owerri, Nigeria

    Directory of Open Access Journals (Sweden)

    K.N. Nwaigwe

    2012-08-01

    Full Text Available A study aimed at a Transient analysis and performance prediction of passive cooling of a building using long wave nocturnal radiation in Owerri, Nigeria are presented. The system modeled consists of the room of a building with a radiator panel attached to its roof, water storage tank located inside the room, pump to circulate water through the radiator panel at night and through a heat exchanger in the room during the day. The mathematical model is based on the thermal radiation properties of the local atmosphere, the heat exchange equations of the radiator panel with the sky during the night and the equations incorporating the relevant heat transfers within the space to be cooled during the day. The resulting equations were transformed into explicit finite difference forms for easy implementation on a personal computer in MATLAB language. This numerical model permits the evaluation of the rate of heat removal from the water storage tank through the radiator panel surface area, Qwt,out, temperature depression between the ambient and room temperatures (Tamb-Trm and total heat gained by water in the storage tank from the space to be cooled through the action of the convector during the day, Qwt,in. The resulting rate of heat removal from the radiator gave a value of 57.6 W/m2, temperature depression was predicted to within 1-1.5ºC and the rate of heat gain by the storage water was 60 W/m2. A sensitivity analysis of the system parameters to ±25% of the base case input values was carried out and the results given as a percentage variation of the above system performance parameters showed consistency to the base case results. An optimal scheme for the modeled 3.0×3.0×2.5 m3 room showed a radiator area of 18.2 m2, a convector area of 28.62 m2 and a tank volume of 1.57 m3. These results show that passive nocturnal cooling technique is a promising solution to the cooling needs for preservation of food and other agricultural produce. It is also

  6. Do LEED-certified buildings save energy? Yes, but...

    Energy Technology Data Exchange (ETDEWEB)

    Newsham, Guy R.; Mancini, Sandra; Birt, Benjamin J. [National Research Council Canada - Institute for Research in Construction, Ottawa (Canada)

    2009-08-15

    We conducted a re-analysis of data supplied by the New Buildings Institute and the US Green Buildings Council on measured energy use data from 100 LEED-certified commercial and institutional buildings. These data were compared to the energy use of the general US commercial building stock. We also examined energy use by LEED certification level, and by energy-related credits achieved in the certification process. On average, LEED buildings used 18-39% less energy per floor area than their conventional counterparts. However, 28-35% of LEED buildings used more energy than their conventional counterparts. Further, the measured energy performance of LEED buildings had little correlation with certification level of the building, or the number of energy credits achieved by the building at design time. Therefore, at a societal level, green buildings can contribute substantial energy savings, but further work needs to be done to define green building rating schemes to ensure more consistent success at the individual building level. Note, these findings should be considered as preliminary, and the analyses should be repeated when longer data histories from a larger sample of green buildings are available. (author)

  7. THE SOLUTION TO THE PROBLEM OF USING GROUND WATER TO COOL LIVESTOCK BUILDINGS

    Directory of Open Access Journals (Sweden)

    Thay Ngok Shon

    2017-01-01

    Full Text Available Ambient temperature in the central part of Vietnam in summer can reach 32–35°C; in some places it can be more than 42°C. Hot climate strongly affects the animal organism alongside with the animal weight reduction and reduction the quantity of egg-laying in poultry. Therefore, air conditioning in livestock buildings is necessary. There are several ways to cool the temperature in such buildings, and each one has its own advantages and disadvantages. We propose to use underground water at the temperature of 24–25°C for this purpose. One of the methods of cooling sheds for livestock is sprinkler irrigation of water on the roof. For calculating the amount of heat, removed from the indoor air in the shed to the cooling water, in the first approximation specialists believe in some cases that an appropriate amount of heat being removed is determined mainly by heat transfer from the air inside the shed to the cooling water through the surface of the roof, represented by the lower part of the wave that form the surface of a metal tile, neglecting the influence of heat conduction on top of the wave of the tile surface. Consequentially, such a simplification leads to possible errors. Therefore, the authors solved the problem of cooling shed by irrigation of water on the roof by an analytical method. Specifically, we solved the problem of heat conductivity of the fin of the finite length of constant cross section, wherein different sides of the fin are conjugate with different environments. Additionally, the calculation considered the effect of solar radiation. For this purpose, the authors have created a heat balance equation at steady state for any infinitesimal element of the fin, and solved the differential equation afterwards. The authors applied the results for calculating practical problem of ground water irrigation of a roof of a livestock shed made of metal areas tiles. 

  8. Energy research program: energy in buildings for the years 2008-2011; Energieforschungsprogramm. Energie in Gebaeuden fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Filleux, Ch.

    2009-08-15

    In Switzerland, existing buildings account for approximately 50% of primary energy consumption. Climate change, as well as the demand on supply, require that Swiss construction practices be immediately adapted. For new buildings, innovative technologies are now widely available. However, their integration into new construction is still too slow due to the fact that current construction practices still lack a holistic approach. Today there also lacks practical solutions for renovations of existing buildings. Therefore, the great challenge for research and development today are 1.5 million pre-existing buildings, which will dictate the future energy consumption for decades. The Federal Energy Research Commission (CORE) has recognized the situation and has considered these issues in its 2008 - 2011 concept for federal energy research. The present research programme Energy in Buildings of the Swiss Federal Office of Energy focuses on the long-term objectives of CORE. This results in the following actions in the building sector: (a) Reducing energy consumption and improving energy efficiency; (b) Integration of renewable energy sources; (c) Reduction of CO{sub 2} emissions through the use of improved technologies. The research programme is therefore focused on concepts and technologies that have long-term objectives, without neglecting the short and medium term goals. The objectives for the period 2008 - 2011 are: (i) Concepts for buildings and housing developments concerning the development of construction methods that are compatible with the goal of a 2,000-watt society (preservation of architectural diversity, use of passive solar energy and daylight); (ii) Concepts, technologies and planning tools for the improvement of energy systems in buildings; (iii) Heating, cooling and ventilation systems in buildings that are compatible with the goal of a 2,000-watt society (efficient cooling systems, heat pumps, etc.); (iv) Increase in efficient use of electricity in

  9. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper

  10. Energy Performance of Buildings - The European Approach to Sustainability

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong...... leadership role in promoting energy efficiency in buildings in Europe, that will be the most powerful instrument developed to date for the building sector in Europe....

  11. Energy Performance of Buildings - The European Approach to Sustainability

    OpenAIRE

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong leadership role in promoting energy efficiency in buildings in Europe, that will be the most powerful instrument developed to date for the building sector in Europe. This paper presents the European appr...

  12. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  13. Study on Auto-DR and Pre-Cooling of Commercial Buildings with Thermal Mass in California

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Rongxin; Xu, Peng; Piette, Mary Ann; Kiliccote, Sila

    2010-01-09

    This paper discusses how to optimize pre-cooling strategies for buildings in a hot California climate zone with the Demand Response Quick Assessment Tool (DRQAT), a building energy simulation tool. This paper outlines the procedure used to develop and calibrate DRQAT simulation models, and applies this procedure to eleven field test buildings. The results of a comparison between the measured demand savings during the peak period and the savings predicted by the simulation model indicate that the predicted demand shed match well with measured data for the corresponding auto-demand response (Auto-DR) days. The study shows that the accuracy of the simulation models is greatly improved after calibrating the initial models with measured data. These improved models can be used to predict load reductions for automated demand response events. The simulation results were compared with field test data to confirm the actual effect of demand response strategies. Results indicate that the optimal demand response strategies worked well for most of the buildings tested in this hot climate zone.

  14. Technical use of solar energy: Conversion from solar to thermal energy, solar cooling and thermal energy storage

    Science.gov (United States)

    Arafa, A.; Fisch, N.; Hahne, E.; Kraus, K.; Seemann, D.; Seifert, B.; Sohns, J.; Schetter, G.; Schweigerer, W.

    1983-12-01

    Experimental and theoretical studies in the field of solar energy utilization are reviewed. Specific topics considered are: flat plate water collectors, solar absorbers, air collectors, solar absorption cooling, solar simulators, aquifiers, latent heat stores, and space heating systems.

  15. Economical optimization of building elements for use in design of nearly zero energy buildings

    DEFF Research Database (Denmark)

    Hansen, Sanne

    2012-01-01

    for finding the economical optimal solutions based on the use of the cost of conserved energy for each main building envelope part and building service system and cost of produced energy for each energy producing system. By use of information on construction cost and developed models of the yearly energy use......Nearly zero energy buildings are to become a requirement as part of the European energy policy. There are many ways of designing nearly zero energy buildings, but there is a lack of knowledge on how to end up with the most economical optimal solution. Therefore this paper present a method...... for each component, a function is set up that represents the relation of the marginal cost of conserved energy and the energy use for different quantities and qualities of the components. The optimal mix of solutions for the whole building is found by selecting building parts with the same cost...

  16. Potential for passive cooling of buildings by night-time ventilation in present and future climates in Europe

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, Heinrich; Heiselberg, Per

    2006-01-01

    Given the general shift in recent decades towards a lower heating and higher cooling demand for buildings in many European countries, passive cooling by night-time ventilation has come to be seen as a promising option, particularly in the moderate or cold climates of Central, Eastern and Northern...

  17. Energy Conservation of the Designated Government Buildings in Thailand

    Directory of Open Access Journals (Sweden)

    Wangskarn Prapat

    2016-01-01

    Full Text Available The designated government buildings have implemented and administered energy program under the energy development and promotion Act 2007 for many years continuously until 2015. Appointment person responsible for energy, performing energy management and implementing the energy conservation work plan and measures are legal requirements for the designated buildings. Therefore, the ministry of Energy has launched the project to support the implementation of energy management. The aim of the project was to create the energy management system in the designated government buildings, and to reduce energy consumption. In this paper, the evaluation of the project has been presented from the achievements of 839 designated government buildings. The energy saving is more than 440 ktoe/year. This is about 3% of energy consumptions of buildings.

  18. End-use energy consumption estimates for U.S. commercial buildings, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B.; Wrench, L.E.

    1997-03-01

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs of the US Department of Energy, utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1992 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Statistical Adjusted Engineering (SAE) models were estimated by building type. The nonlinear SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption (based upon utility billing information). End-use consumption by fuel was estimated for each of the 6,751 buildings in the 1992 CBECS. The report displays the summary results for 11 separate building types as well as for the total US commercial building stock. 4 figs., 15 tabs.

  19. The unexpected energy saving of cooling water conditioning; Koelwaterconditionering spaart meer energie dan u denkt

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, A. [ed.

    1996-09-01

    On the basis of the example of the dosage of chlorinated bleaching lye in cooling water it is calculated that much more energy can be saved than expected. The use of the lye improves the energy efficiency of heat exchangers. The calculation method is developed by L. Paping and is based on the idea to express the advantages (e.g. energy conservation) and the disadvantages (e.g. environmental burden) as a dimensionless indicator.

  20. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    OpenAIRE

    Sungjoo Lee; Byungun Yoon; Juneseuk Shin

    2016-01-01

    We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indic...

  1. Commercial Building Tenant Energy Usage Aggregation and Privacy

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  2. Building Energy Audit Report for Pearl Harbor, HI

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Chvala, William D.; De La Rosa, Marcus I.; Dixon, Douglas R.

    2010-09-30

    A building energy audit was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management Program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at selected Pearl Harbor buildings, identify cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This report documents the findings of that assessment.

  3. Energy efficient design for residential buildings in China

    Institute of Scientific and Technical Information of China (English)

    R.YAO; K.STEEMERS; B.LI

    2003-01-01

    This paper illustrates an integrated energy design model based on the energy balance of a single zone. The results of energy efficient residential building design for the different climate zones of China by implementing an integrated energy model have been presented. Optimum measures of building design for typical Chinese residential buildings are introduced, with the objective of minimizingannual energy consumption for those buildings and improving thermal comfort. One overriding conclusion is that significant energy savings and thermal comfort can be achieved though optimum design.

  4. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... program and a building energy performance simulation program will improve both the energy consumption data and the prediction of thermal comfort and air quality in a selected area of the building....

  5. Energy consumption in commercial buildings: A comparison with BEPS budgets

    Science.gov (United States)

    1980-09-01

    Metered energy consumption data were collected on existing commercial buildings to help establish the proposed building energy performance standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20 percent above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

  6. Suitable scheme study of Chinese Building Energy Efficiency CDM Projects

    Science.gov (United States)

    Huang, Beijia; Yang, Haizhen; Wang, Shaoping; Wang, Feng

    2010-11-01

    China has great potential to develop Building Energy Efficiency Clean Development Mechanism (BEE CDM) projects, although have many challenges. Our results show that large-scale public buildings and urban residential buildings have relatively high BEE CDM potential, when comparing their characteristics to the CDM project requirements. The building enclosure, illumination energy conservation, air condition energy saving, solar thermal, and solar photovoltaic technology have relatively high application potential while considering the energy saving potential and marginal emission reduction cost. Case study of large-scale buildings shows that technology integration of building enclosure, illumination energy conservation, air condition energy saving, solar thermal can reduce required building number to 130 in order to meet the 1×105 tCO2 e/a reduction criteria. Some suggestions are also given in this paper.

  7. Schneider Electric called on real estate leaders to build Energy Efficient Buildings

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Schneider Electric, the global specialist of energy management, together with China Real Estate Industry Association, China Real Estate & Residential Association and China Building Electricity Efficiency Association, implored real estate industry leaders to sign a petition to pledge their dedication towards the building of energy efficient buildings.

  8. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...... and exergy consumption for auxiliary components (pumps and fans). The effects of the auxiliary components on whole system energy and exergy performance were identified. Water-based heating systems required 68% lower auxiliary exergy input than the warm-air heating system with heat recovery, and floor cooling...

  9. Intelligent energy buildings based on RES and Nanotechnology

    OpenAIRE

    Kaplanis, Socrates; Kaplani, Eleni

    2015-01-01

    The paper presents the design features, the energy modelling and optical performance details of two pilot Intelligent Energy Buildings, (IEB). Both are evolution of the Zero Energy Building (ZEB) concept. RES innovations backed up by signal processing, simulation models and ICT tools were embedded into the building structures in order to implement a new predictive energy management concept. In addition, nano-coatings, produced by TiO2 and ITO nano-particles, were deposited on the IEB structur...

  10. Thermal Comfort and Ventilation Criteria for low Energy Residential Buildings in Building Codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim;

    2012-01-01

    Indoor environmental quality and energy performance of buildings are becoming more and more important in the design and construction of low energy, passive and zero energy buildings. At the same time, improved insulation and air tightness have the potential to resulting in a deterioration...... of the indoor air quality in such buildings. Currently, there are no global guidelines for specifying the indoor thermal environment in such low-energy buildings. The objective of this paper is to analyse the classification of indoor thermal comfort levels and recommended ventilation rates for different low...... energy buildings, and propose a set of indices that would enable better quantification and comparison among low energy buildings. In this study, the building codes and voluntary guidelines have been reviewed on the basis of experience of Finland, UK, Denmark, USA and Germany. The analysis in this paper...

  11. Retrofit energy conservation in residential buildings in southern California

    Science.gov (United States)

    Turner, R. H.; Birur, G. C.; Daksla, C.

    1982-01-01

    The common energy conservation techniques (ECTs) that can be retrofit-installed into residential buildings are surveyed. The quantity of saved energy for heating and cooling attributable to each ECT is evaluated for three common modes of heating: natural gas heating at 60/therm; heating via heat pump at $1.20/therm; and electric resistance heating at $2.40/therm. In every case, a life cycle cost comparison is made between the long term revenue due to energy conservation and a safe and conventional alternative investment that might be available to the prudent homeowner. The comparison between investment in an ECT and the alternative investment is brought into perspective using the life cycle payback period and an economic Figure of Merit (FOM). The FOM allows for relative ranking between candidate ECTs. Because the entire spectrum of winter heating climates in California is surveyed, the decision maker can determine whether or not a considered ECT is recommended in a given climate, and under what conditions an ECT investment becomes attractive.

  12. Artificial neural networks for energy analysis of office buildings with daylighting

    Energy Technology Data Exchange (ETDEWEB)

    Wong, S.L.; Wan, Kevin K.W.; Lam, Tony N.T. [Building Energy Research Group, Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China)

    2010-02-15

    An artificial neural network (ANN) model was developed for office buildings with daylighting for subtropical climates. A total of nine variables were used as the input parameters - four variables were related to the external weather conditions (daily average dry-bulb temperature, daily average wet-bulb temperature, daily global solar radiation and daily average clearness index), four for the building envelope designs (solar aperture, daylight aperture, overhang and side-fins projections), and the last variable was day type (i.e. weekdays, Saturdays and Sundays). There were four nodes at the output layer with the estimated daily electricity use for cooling, heating, electric lighting and total building as the output. Building energy simulation using EnergyPlus was conducted to generate daily building energy use database for the training and testing of ANNs. The Nash-Sutcliffe efficiency coefficient for the ANN modelled cooling, heating, electric lighting and total building electricity use was 0.994, 0.940, 0.993, and 0.996, respectively, indicating excellent predictive power. Error analysis showed that lighting electricity use had the smallest errors, from 0.2% under-estimation to 3.6% over-estimation, with the coefficient of variation of the root mean square error ranging from 3% to 5.6%. (author)

  13. Alternative materials for desert buildings: a comparative life cycle energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pearlmutter, D.; Freidin, C.; Huberman, N. [Institutes for Desert Research, Ben-Gurion University of the Negev, (Israel)

    2007-03-15

    This study examines the potential life-cycle energy savings that may be achieved by combining an innovative alternative building material and a bioclimatic approach to building design under the distinctive environmental conditions of a desert region. A residential building in the Negev region of Israel is used as a model for the assessment. Designed with a number of climatically-responsive design strategies and conventional concrete-based materials, the building was energy-independent in terms of summer cooling and had only modest requirements for winter heating. As a second step to the assessment, the integration of an alternative building material based on industrial waste and local raw materials in the building's walls was considered through thermal simulation. The alternative materials are produced through a process developed to make productive utilization of fly-ash from oil shale and coal combustion. Material properties were analyzed using laboratory specimens, and it was established that high-quality building components could be produced using the developed technological procedure with standard manufacturing equipment. The consumption of both embodied and operational energy was analyzed over the building's useful life span, and this life-cycle analysis showed the clear advantage of integrating alternative materials in a building under environmental conditions in a desert environment. (Author)

  14. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  15. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  16. High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.

    2011-01-01

    This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned

  17. European national strategies to move towards very low energy buildings

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    , Denmark, Finland, France, Germany and United Kingdom (England and Wales). Even though the calculation methods are in accordance with the definitions in the EPBD and thus the relevant CEN standards, there are national deviations that make a cross-country comparison of the calculated energy performance...... difficult. One way of promoting very low energy buildings is by various direct or indirect actions that make these kinds of buildings more attractive. The most popular support for low energy buildings is e.g. loans with low interest rates to finance low energy buildings. This is done either by means...... high energy performance. It is important to stress the need for MS to introduce a national or regional definition of very low energy buildings in their building regulation and to develop a national strategy towards this level of energy performance to become the standard. This market transformation...

  18. Statistical models describing the energy signature of buildings

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Thavlov, Anders

    2010-01-01

    Approximately one third of the primary energy production in Denmark is used for heating in buildings. Therefore efforts to accurately describe and improve energy performance of the building mass are very important. For this purpose statistical models describing the energy signature of a building, i.......e. the heat dynamics of the building, have been developed. The models can be used to obtain rather detailed knowledge of the energy performance of the building and to optimize the control of the energy consumption for heating, which will be vital in conditions with increasing fluctuation of the energy supply...... or varying energy prices. The paper will give an overview of statistical methods and applied models based on experiments carried out in FlexHouse, which is an experimental building in SYSLAB, Risø DTU. The models are of different complexity and can provide estimates of physical quantities such as UA...

  19. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  20. Exergy analysis of air cooling systems in buildings in hot humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Alpuche, M.G. [UNAM, Temixco, Morelos (Mexico). Posgrado en Ingenieria; Heard, C. [Instituto Mexicano del Petroleo, Mexico DF (Mexico); Best, R.; Rojas, J. [UNAM, Temixco, Morelos (Mexico). Centro de Investigacion en Energia

    2005-03-01

    The purpose of this study is to analyze the influence of using air cooling desiccant systems on reaching thermal comfort conditions in the interior of a building, supposing this to be an open system. Exergy analysis has been carried out for the different design temperatures and relative humidity conditions within those established for ASHRAE summer thermal comfort conditions. The climatic conditions of a hot humid climate such as Villahermosa, Tabasco, Mexico, are used as an example. A novel reference state has been used for the exergy analysis, since this varies according to the fluctuation of the ambient temperature and humidity. (author)

  1. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  2. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  3. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  4. The comparison of the energy performance of hotel buildings using PROMETHEE decision-making method

    Directory of Open Access Journals (Sweden)

    Vujosevic Milica L.

    2016-01-01

    Full Text Available Annual energy performance of the atrium type hotel buildings in Belgrade climate conditions are analysed in this paper. The objective is to examine the impact of the atrium on the hotel building’s energy needs for space heating and cooling, thus establishing the best design among four proposed alternatives of the hotels with atrium. The energy performance results are obtained using EnergyPlus simulation engine, taking into account Belgrade climate data and thermal comfort parameters. The selected results are compared and the hotels are ranked according to certain criteria. Decision-making process that resulted in the ranking of the proposed alternatives is conducted using PROMETHEE method and Borda model. The methodological approach in this research includes the creation of a hypothetical model of an atrium type hotel building, numerical simulation of energy performances of four design alternatives of the hotel building with an atrium, comparative analysis of the obtained results and ranking of the proposed alternatives from the building’s energy performance perspective. The main task of the analysis is to examine the influence of the atrium, with both its shape and position, on the energy performance of the hotel building. Based on the results of the research it can be to determine the most energy efficient model of the hotel building with atrium for Belgrade climate condition areas. [Projekat Ministarstva nauke Republike Srbije: Spatial, Environmental, Energy and Social aspects of the Developing Settlements and Climate Change - Mutual Impacts

  5. Optimizing Existing Multistory Building Designs towards Net-Zero Energy

    Directory of Open Access Journals (Sweden)

    Mohammad Y. AbuGrain

    2017-03-01

    Full Text Available Recent global developments in awareness and concerns about environmental problems have led to reconsidering built environment approaches and construction techniques. One of the alternatives is the principle of low/zero-energy buildings. This study investigates the potentials of energy savings in an existing multi-story building in the Mediterranean region in order to achieve net-zero energy as a solution to increasing fossil fuel prices. The Colored building at the Faculty of Architecture, Eastern Mediterranean University, Cyprus was chosen as a target of this study to be investigated and analyzed in order to know how energy efficiency strategies could be applied to the building to reduce annual energy consumption. Since this research objective is to develop a strategy to achieve net-zero energy in existing buildings, case study and problem solving methodologies were applied in this research in order to evaluate the building design in a qualitative manner through observations, in addition to a quantitative method through an energy modeling simulation to achieve desirable results which address the problems. After optimizing the building energy performance, an alternative energy simulation was made of the building in order to make an energy comparison analysis, which leads to reliable conclusions. These methodologies and the strategies used in this research can be applied to similar buildings in order to achieve net-zero energy goals.

  6. Promoting renewable energy sources for heating and cooling in EU-27 countries

    Energy Technology Data Exchange (ETDEWEB)

    Cansino, Jose M., E-mail: jmcansino@us.es [Department of Economic Analysis and Political Economy, Seville University, Avda. Ramon y Cajal, no. 1, 41018 Seville (Spain); Pablo-Romero, Maria del P. [Department of Economic Analysis and Political Economy, Seville University, Avda. Ramon y Cajal, no. 1, 41018 Seville (Spain); Roman, Rocio, E-mail: rroman@us.es [Department of Economic Analysis and Political Economy, Seville University, Avda. Ramon y Cajal, no. 1, 41018 Seville (Spain); Yniguez, Rocio [Department of Economic Analysis and Political Economy, Seville University, Avda. Ramon y Cajal, no. 1, 41018 Seville (Spain)

    2011-06-15

    In addition to public policies aimed at improving the energy efficiency of buildings, EU authorities have also promoted the use of Renewable Energy Sources for heating and cooling uses (RES H and C). This paper analyses the main policy measures implemented in EU-27 countries up to 2009: i.e. subsidies, tax incentives, financial support and feed-in tariffs. Twenty-three Member States (MSs) have developed some of these policy measures. The most widespread measure is the subsidy (22 MSs have implemented these) because from a political point of view, subsidies provide a straightforward approach to promote the use of RES H and C. Secondly, tax incentives have been used for reducing investment costs and making renewable energy profitable. Thirdly, financial incentives and feed-in tariffs have been used sparingly. While financial incentives might be used more extensively for promoting RES H and C if they are accompanied by other policy measures, feed-in tariffs are not likely to be implemented significantly in the future because this measure is not designed for household heat producers. - Highlights: > Main EU policies to reduce energy consumption are focused on buildings' efficiency. > Alternative incentives to promote the use of RES H and C in EU-27 are now studied. > Subsidies are the most widespread measure. > Tax incentives are used for reducing investment costs and making RES profitable. > Financial incentives and feed-in tariffs have been used sparingly.

  7. Operative temperature drifts and occupant satisfaction with thermal environment in three office buildings using radiant heating/ cooling system

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2015-01-01

    The objective of this study was to analyse operative temperature drifts and occupant satisfaction with thermal environment in office buildings utilizing embedded radiant heating/cooling systems. Three office buildings were investigated: Town Hall in Viborg, Denmark (floor area 19400 m2), IDOM...

  8. Providing for energy efficiency in homes and small buildings. Part I. Understanding and practicing energy conservation in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Parady, W. Harold; Turner, J. Howard

    1980-06-01

    This is a training program to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. A teacher guide and student workbook are available to supplement the basic guide, which contains three parts. Part I considers the following: understanding the importance of energy; developing a concern for conserving energy; understanding the use of energy in buildings; care and maintenance of energy-efficient buildings; and developing energy-saving habits. A bibliography is presented.

  9. Thermally activated building systems in context of increasing building energy efficiency

    Directory of Open Access Journals (Sweden)

    Stojanović Branislav V.

    2014-01-01

    Full Text Available One of the possible ways to provide heating to the building is to use thermally activated building systems. This type of heating, besides providing significant increase in building energy efficiency, allows using low-temperature heating sources. In this paper, special attention is given to opaque part of the building façade with integrated thermally activated building systems. Due to fact that this type of system strongly depends on temperature of this construction-thermal element and type and thickness of other materials of the façade, influence of these parameters on energy efficiency was analyzed in this paper. Since the simplest and most promising way of using geothermal energy is to use it directly, for our analysis this source of energy was selected. Building energy needs for heating were obtained for real residential multi-family building in Serbia by using EnergyPlus software. The building with all necessary input for simulation was modeled in Google SketchUp with aid of Open Studio Plug-in. Obtained results were compared with measured heating energy consumption. The results show that thermally activated building systems represent good way to increase building energy efficiency and that applying certain temperatures within this element, low-energy house standard can be achieved.

  10. Contribution of Renewable Cooling to the Renewable Energy Target of the EU. Policy report

    Energy Technology Data Exchange (ETDEWEB)

    Kenkmann, T.; Buerger, V. [The Oeko-Institut, Freiburg (Germany)

    2012-06-15

    Renewable cooling technologies do not play a major role in the climate protection discussion in the European Union today. At the same time the cooling demand is expected to increase significantly in the coming decades. Renewable cooling technologies could contribute to the EU renewable energy target if an appropriate political framework for a further spread of the technologies is created. This renewable cooling policy report intends to support the dissemination of renewable cooling technologies. It provides an overview of the situation, technologies and potential for cool-ing from renewable sources and identifies key areas in which further investigation is required. The report shows that there is a great need for the creation of a political framework supporting the market diffusion of renewable cooling technologies. Firstly the question of a commonly accepted definition on renewable cooling is being addressed. Secondly renewable cooling technologies are described and the today's role of cooling in European statistics and policies is analysed. In the next step existing studies are evaluated to compare the expected development of the cooling demand in Europe to the market potential of renewable cooling. At the end of the paper a long-term vision for renewable cooling is described and first steps towards a European roadmap for renewable cooling are given.

  11. Revisit of Energy Use and Technologies of High Performance Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng; Hong, Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  12. Quantification of Uncertainty in Predicting Building Energy Consumption

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per;

    2012-01-01

    for the dynamic thermal behaviour of buildings. However, for air flow and energy consumption it is found to be much more significant due to less “damping”. Probabilistic methods establish a new approach to the prediction of building energy consumption, enabling designers to include stochastic parameters like......Traditional building energy consumption calculation methods are characterised by rough approaches providing approximate figures with high and unknown levels of uncertainty. Lack of reliable energy resources and increasing concerns about climate change call for improved predictive tools. A new...... approach for the prediction of building energy consumption is presented. The approach quantifies the uncertainty of building energy consumption by means of stochastic differential equations. The approach is applied to a general heat balance for an arbitrary number of loads and zones in a building...

  13. Building application of solar energy. Study no. 4: Scenarios for the utilization of solar energy in southern California buildings, change 1

    Science.gov (United States)

    Davis, E. S.; French, R. L.; Hirshberg, A. S.

    1976-01-01

    Plausible future market scenarios for solar heating and cooling systems into buildings in the area served by the Southern California Edison Company. A range of plausible estimates for the number of solar systems which might be installed and the electrical energy which might be displaced by energy from these systems are provided. The effect on peak electrical load was not explicitly calculated but preliminary conclusions concerning peak load can be inferred from the estimates presented. Two markets are investigated: the single family market and the large power commercial market.

  14. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  15. Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2015-07-01

    Full Text Available A Net Zero Energy Building (NZEB considerably reduces the building energy load through high efficiency equipment and passive elements such as building orientation, high insulation, natural daylighting, and ventilation in order to achieve zero energy balance with on-site energy production from renewable energy systems applied to the building. For a Zero Energy Building (ZEB, the heating energy demand can be significantly reduced with high insulation and air tightness, while the cooling energy demand can be curtailed by applying shading device, cross ventilation, etc. As such, the electrical energy demand for a ZEB is relatively higher than its heat energy demand. Therefore, the application of a Renewable Energy System (RES to produce electricity is necessary for a ZEB. In particular, Building Integrated Photovoltaic (BIPV systems that generate electricity can play an important role for achieving zero energy balance in buildings; BIPVs are multi-functional and there are many ways to apply them into buildings. This study comprehensively analyzes photovoltaic (PV applications in ZEB cases through the International Energy Agency Solar Heating and Cooling Programme (IEA SHC/Energy in Buildings and Communities Programme (EBC Task 40/Annex 52 activities, which include PV installation methods, PV cell type, and electricity generation. The most widely applied RES is the PV system, corresponding to 29 out of a total of 30 cases. Among the roof type PV systems, 71% were non-integrated. In addition, 14 of the 27 cases in which PV systems were applied, satisfied over 100% of the electricity energy demand from the PV system and were found to generate surplus electrical power.

  16. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...... in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water...

  17. Thermal comfort and ventilation criteria for low energy residential buildings in building codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim;

    2012-01-01

    Indoor environmental quality and energy performance of buildings are becoming more and more important in the design and construction of low energy, passive and zero energy buildings. At the same time, improved insulation and air tightness have the potential to resulting in a deterioration of the ...

  18. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM

    Directory of Open Access Journals (Sweden)

    Egwunatum Samuel

    2016-09-01

    Full Text Available Given the ability of a Building Information Model (BIM to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1 building energy consumption, (2 building energy performance and analysis, and (3 building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world’s first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise or its size.

  19. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM)

    Science.gov (United States)

    Egwunatum, Samuel; Joseph-Akwara, Esther; Akaigwe, Richard

    2016-09-01

    Given the ability of a Building Information Model (BIM) to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1) building energy consumption, (2) building energy performance and analysis, and (3) building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world's first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise) or its size.

  20. Energy models. Integrated heating and cooling in different sports fields and halls; Energiamalli. Urheilupaikkojen integroitu laemmitys ja jaeaehdytys (UPILAEJAE)

    Energy Technology Data Exchange (ETDEWEB)

    Aittomaeki, A.; Maekinen, A.

    2009-07-01

    The efficient use of energy is playing an increasing role in saving natural resources and in maintaining competitiveness. The system integration plays an essential role when efficiency is maximized. Expressed in thermodynamical terms the question is about minimizing the loss of energy. When planning the integration of heating and cooling the impacts of different coupling possibilities and measurements should be compared. In this report the modeling or simulation of energy balances studies in different systems is described. In the system integration of different sports buildings the modeling parts are the following: office space with heating systems, indoor ice-skating rink, skiing tunnel, indoor swimming pool, sports-field and sport center

  1. A sensitivity model for energy consumption in buildings. Part 1: Effect of exterior environment

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    A simple analytical model is developed for the simulation of seasonal heating and cooling loads of any class of buildings to complement available computerized techniques which make hourly, daily, and monthly calculations. An expression for the annual energy utilization index, which is a common measure of rating buildings having the same functional utilization, is derived to include about 30 parameters for both building interior and exterior environments. The sensitivity of a general class building to either controlled or uncontrolled weather parameters is examined. A hypothetical office type building, located at the Goldstone Space Communication Complex, Goldstone, California, is selected as an example for the numerical sensitivity evaluations. Several expressions of variations in local outside air temperature, pressure, solar radiation, and wind velocity are presented.

  2. Optimizing Existing Multistory Building Designs towards Net-Zero Energy

    OpenAIRE

    Mohammad Y. AbuGrain; Halil Z. Alibaba

    2017-01-01

    Recent global developments in awareness and concerns about environmental problems have led to reconsidering built environment approaches and construction techniques. One of the alternatives is the principle of low/zero-energy buildings. This study investigates the potentials of energy savings in an existing multi-story building in the Mediterranean region in order to achieve net-zero energy as a solution to increasing fossil fuel prices. The Colored building at the Faculty of Architecture, Ea...

  3. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  4. Analysis of the Chinese Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components

  5. Dynamic Free Cooling. Efficient and energy saving air conditioner for datahotels; Dynamic Free Cooling. Efficient en energeibesparend airconditioningsysteem voor datacenters

    Energy Technology Data Exchange (ETDEWEB)

    Havenaar, D.

    2009-01-15

    Servers in data centres produce a large amount of heat, which has to be removed by ventilation and air conditioning systems. These systems have a vast energy consumption. Increasing energy costs and limited resources of available electricity are forcing the data centre industry to the use of energy efficient technical equipment. Dynamic Free Cooling is a contrN concept for data centre's air conditioning systems combining Hybrid Indirect Free Cooling Precision Air Conditiening Units, Fan Speed Controlled Dry Coolers and Speed Controlled Central Pumps to highly efficient precision cooling system. All system components are centrally controlled to minimize overall energy consumption depending on the Ambient Temperature and the Room Load Status. [Dutch] Servers in datacenters produceren een grote hoeveelheid warmte die moet worden afgevoerd door middel van ventilatie- en airconditioningsystemen. Deze systemen gebruiken een forse hoeveelheid elektrische energie. Toenemende energiekosten en de beperkte beschikbaarheid van elektriciteit zorgen ervoor dat datacenters steeds meer overgaan op het installeren van energie-efficiente systemen. Dynamic Free Cooling is een regelconcept voor airconditioningsystemen in combinatie met hybride indirecte vrije koeling in precisie-airconditioningunits, ventilatorgeregetde droge koelers en toerengeregetde centrale pompsystemen. AI deze systeemcomponenten worden centraal geregeld om het totale energiegebruik, afhankelijk van de omgevingstemperatuur en de koellast te minimaliseren.

  6. 75 FR 54117 - Building Energy Standards Program: Preliminary Determination Regarding Energy Efficiency...

    Science.gov (United States)

    2010-09-03

    ... energy consumption of buildings built to Standard 90.1-2007, as compared with buildings built to Standard... building energy consumption. Additionally, DOE has preliminarily determined site energy savings are...] [FR Doc No: 2010-22060] DEPARTMENT OF ENERGY [Docket No. EERE-2006-BC-0132] RIN 1904-AC18......

  7. 1994 Building energy codes and standards workshops: Summary and documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, L.J.; Shankle, D.L.

    1994-09-01

    During the spring of 1994, Pacific Northwest Laboratory (PNL), on behalf of the U.S. Department of Energy (DOE) Office of Codes and Standards, conducted five two-day Regional Building Energy Codes and Standards workshops across the United States. Workshops were held in Chicago, Philadelphia, Atlanta, Dallas, and Denver. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing state building codes in their states. The workshops provided an opportunity for state and other officials to learn more about the Energy Policy Act of 1992 (EPAct) requirements for residential and commercial building energy codes, the Climate Change Action Plan, the role of the U.S. Department of Energy and the Building Energy Standards Program at Pacific Northwest Laboratory, the commercial and residential codes and standards, the Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. In addition to receiving information on the above topics, workshop participants were also encouraged to inform DOE of their needs, particularly with regard to implementing building energy codes, enhancing current implementation efforts, and building on training efforts already in place. This paper documents the workshop findings and workshop planning and follow-up processes.

  8. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  9. The impact of clerestory lights on energy efficiency of buildings

    Directory of Open Access Journals (Sweden)

    Đenadić Dalibor M.

    2015-01-01

    Full Text Available The buildings are among major energy consumers, whose energy efficiency is rather low. Clerestory windows are responsible for a large portion of energy losses from the buildings. The energy efficiency of buildings can greatly be improved by upgrading clerestory and other windows. This paper focuses on the theoretical and experimental investigations on how this can be performed in an old school building in the town of Bor in eastern part of Serbia. For that purpose a modern measuring technique has been applied to identify the existing status, and to compare theoretical and actual conditions.

  10. Energy performance modelling and heat recovery unit efficiency assessment of an office building

    Directory of Open Access Journals (Sweden)

    Harmati Norbert L.

    2015-01-01

    Full Text Available This paper investigates and analyzes a typical multi-zone office building’s annual energy performance for the location and climate data of central Belgrade. The aim is to evaluate the HVAC system’s and HR unit’s performance in order to conduct the most preferable heating and cooling solution for the typical climate of Belgrade city. The energy performance of four HVAC system types (heat pump - air to air, gas-electricity, electrical and fan coil system was analyzed, compared and evaluated on a virtual office building model in order to assess the total annual energy performance and to determine the efficiency of the HR unit’s application. Further, the parameters of an energy efficient building envelope, HVAC system, internal loads, building operation schedules and occupancy intervals were implemented into the multi-zone analysis model. The investigation was conducted in EnergyPlus simulation engine using system thermodynamic algorithms and surface/air heat balance modules. The comparison and evaluation of the obtained results was achieved through the conversion of the calculated total energy demand into primary energy. The goal is conduct the most preferable heating and cooling solution (Best Case Scenario for the climate of Belgrade city and outline major criteria in qualitative enhancement.

  11. Automated Comparison of Building Energy Simulation Engines (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Horowitz, S.; Booten, B.; Kruis, N.; Christensen, C.

    2012-08-01

    This presentation describes the BEopt comparative test suite, which is a tool that facilitates the automated comparison of building energy simulation engines. It also demonstrates how the test suite is improving the accuracy of building energy simulation programs. Building energy simulation programs inform energy efficient design for new homes and energy efficient upgrades for existing homes. Stakeholders rely on accurate predictions from simulation programs. Previous research indicates that software tends to over-predict energy usage for poorly-insulated leaky homes. NREL is identifying, investigating, and resolving software inaccuracy issues. Comparative software testing is one method of many that NREL uses to identify potential software issues.

  12. Zero Energy Buildings: A Critical Look at the Definition; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, P.; Pless, S.; Deru, M.; Crawley, D.

    2006-06-01

    A net zero-energy building (ZEB) is a residential or commercial building with greatly reduced energy needs through efficiency gains such that the balance of energy needs can be supplied with renewable technologies. Despite the excitement over the phrase ''zero energy'', we lack a common definition, or even a common understanding, of what it means. In this paper, we use a sample of current generation low-energy buildings to explore the concept of zero energy: what it means, why a clear and measurable definition is needed, and how we have progressed toward the ZEB goal.

  13. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    CERN Document Server

    Jiang, Shui-Dong; Mei, Jia-Bin; Yang, Bin; Yang, Chun-Sheng

    2012-01-01

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the ME...

  14. 4th international conference in sustainability in energy and buildings

    CERN Document Server

    Höjer, Mattias; Howlett, Robert; Jain, Lakhmi

    2013-01-01

    This volume contains the proceedings of the Fourth International Conference on Sustainability in Energy and Buildings, SEB12, held in Stockholm, Sweden, and is organised by KTH Royal Institute of Technology, Stockholm, Sweden in partnership with KES International. The International Conference on Sustainability in Energy and Buildings focuses on a broad range of topics relating to sustainability in buildings but also encompassing energy sustainability more widely. Following the success of earlier events in the series, the 2012 conference includes the themes Sustainability, Energy, and Buildings and Information and Communication Technology, ICT. The SEB’12 proceedings includes invited participation and paper submissions across a broad range of renewable energy and sustainability-related topics relevant to the main theme of Sustainability in Energy and Buildings. Applicable areas include technology for renewable energy and sustainability in the built environment, optimisation and modeling techniques, informati...

  15. CFD Simulation and Optimisation of a Low Energy Ventilation and Cooling System

    Directory of Open Access Journals (Sweden)

    John Kaiser Calautit

    2015-04-01

    Full Text Available Mechanical Heating Ventilation and Air-Conditioning (HVAC systems account for 60% of the total energy consumption of buildings. As a sector, buildings contributes about 40% of the total global energy demand. By using passive technology coupled with natural ventilation from wind towers, significant amounts of energy can be saved, reducing the emissions of greenhouse gases. In this study, the development of Computational Fluid Dynamics (CFD analysis in aiding the development of wind towers was explored. Initial concepts of simple wind tower mechanics to detailed design of wind towers which integrate modifications specifically to improve the efficiency of wind towers were detailed. From this, using CFD analysis, heat transfer devices were integrated into a wind tower to provide cooling for incoming air, thus negating the reliance on mechanical HVAC systems. A commercial CFD code Fluent was used in this study to simulate the airflow inside the wind tower model with the heat transfer devices. Scaled wind tunnel testing was used to validate the computational model. The airflow supply velocity was measured and compared with the numerical results and good correlation was observed. Additionally, the spacing between the heat transfer devices was varied to optimise the performance. The technology presented here is subject to a patent application (PCT/GB2014/052263.

  16. North European Understanding of Zero Energy/Emission Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Nieminen, Jyri;

    2010-01-01

    The worldwide CO2 emission mitigation efforts, the growing energy resource shortage and the fact that buildings are responsible for a large share of the world’s primary energy use drives research towards new building concepts, in particular Zero Energy/Emission Buildings (ZEBs). Unfortunately...... may observe a correlation between the zero energy/emission building approach adopted by a country and this particular country’s utility grid characteristics. Moreover, it is to be noted that the ZEB concept is not well defined at the national level in northern Europe and that all of the participating...... countries are still to adopt a national definition for these types of buildings. This results often in more than one understanding of ZEBs in each country. This study provides a concise source of information on the north European understanding of zero energy/emission buildings. It puts forward a number...

  17. Energy saving of fresh air free cooling%新风免费冷却节能研究

    Institute of Scientific and Technical Information of China (English)

    陈晨; 王小芝; 盛安风; 杨国荣

    2012-01-01

    Taking the dry-bulb temperature and specific enthalpy of outdoor air to judge whether using an air-side economizer, by analysing the energy saving status of fresh air free cooling, puts forward an energy saving evaluation index for fresh air free cooling—energy saving rate for fresh air free cooling. Adopting the index, analyses the energy saving status of fresh air free cooling applied to three types of buildings in six typical cities with different climate conditions. The result shows that the energy saving rate is higher in the northern severe cold and cold areas, followed by the hot summer and cold winter and hot summer and warm winter areas, and the lowest in the warm area. The rate for hotel buildings is lower than that for office buildings and shopping buildings.%采用室外空气干球温度与比焓作为风侧经济器使用与否的判定条件,对新风免费冷却节能状况进行分析,提出了新风免费冷却节能效果评价指标——新风免费冷却节能率.应用该指标分析了我国不同气候条件下6个典型城市的3种不同类型建筑新风免费冷却节能效果,结果表明,北方严寒及寒冷地区节能率较高,夏热冬冷及夏热冬暖地区次之,温和地区节能率较低.宾馆建筑全年新风免费冷却节能率低于同一地区办公建筑和商场建筑.

  18. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    Science.gov (United States)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  19. Training program for energy conservation in new-building construction. Volume II. Energy conservation technology: for the building inspector

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    A Model Code for Energy Conservation in New Building Construction has been developed by those national organizations primarily concerned with the development and promulgation of model codes. The technical provisions are based on ASHRAE Standard 90-75 and are intended for use by state and local officials. This training manual contains the basic information necessary to acquaint the field building inspector with the concepts of energy conservation in buildings and instructs him in the basic techniques of field inspection of energy compliance.

  20. Building Green: The Adoption Process of LEED- and Energy Star-Rated Office Buildings

    Science.gov (United States)

    Malkani, Arvin P.

    2012-01-01

    There are opportunities for green building technology in office buildings to produce energy savings and cost efficiencies that can produce a positive economic and environmental impact. In order for these opportunities to be realized, however, decision makers must appreciate the value of green building technology. The objective of this research is…

  1. Mitigating the cooling need and improvement of indoor conditions in Mediterranean educational buildings, by means of green roofs. Results of a case study

    Science.gov (United States)

    Ascione, F.; Bianco, N.; De Masi, R. F.; de Rossi, F.; Vanoli, G. P.

    2015-11-01

    Indoor overheating risk and increased energy demand for cooling are becoming more and more frequent in the building sector of the Mediterranean area. In detail, for the reduction of the energy consumption of educational buildings, characterized by high endogenous gains, the particular boundary conditions affecting their use should be taken in consideration, and thus schedules of occupancy, wide necessity of air-changes for air quality. This paper, with reference to a case study, proposes deep investigations aimed at optimizing the annual energy performance of an educational building of the University of Sannio, located in the Southern Italy. A numerical model of the building has been designed and validated according to monitored data. Starting from the present scenario, after a complete refurbishment of the building envelope, the potentialities of several typologies of green roofs - by considering also the implementation of the adaptive approach in the comfort standard - have been tested. The scope is the optimization of the energy demand for the annual microclimatic control, by avoiding an energy-intensive operation of the air-conditioning devices during the warm season.

  2. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Marini, Kyle; Ghatikar, Girish; Diamond, Richard

    2011-02-01

    Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building?s energy information system. An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a ?dashboard? as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are

  3. Energy Saving Homes and Buildings, Continuum Magazine, Spring 2014 / Issue 6 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2014-03-01

    This issue of Continuum focuses on NREL's research to improve the energy efficiency of residential and commercial buildings. Heating, cooling, and lighting our homes and commercial structures account for more than 70% of all electricity used in the United States. That costs homeowners, businesses, and government agencies more than $400 billion annually, about 40% of our nation's total energy costs. Producing that energy contributes almost 40% of our nation's carbon dioxide emissions.By 2030, an estimated 900 billion square feet of new and rebuilt construction will be developed worldwide, providing an unprecedented opportunity to create efficient, sustainable buildings. Increasing the energy performance of our homes alone could potentially eliminate up to 160 million tons of greenhouse gas emissions and lower residential energy bills by $21 billion annually by the end of the decade.

  4. Intelligent Controls for Net-Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

  5. Estimating energy impacts of residential and commercial building development. A manual for the Pacific Northwest and Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-22

    This energy-impact manual presents information on energy implications of new building design and operation, providing a reasonably accurate means of assessing the total energy impact of new construction in the commercial and residential sectors. While developed specifically for the states of Alaska, Idaho, Oregon, and Washington, much of the data used are national averages; the procedures described are applicable to other regions of the nation, with appropriate adjustments for climatic differences. The manual is organized into three parts, each covering one aspect of the energy impacts of building development. Part I addresses the energy impact of erecting the building(s). This includes the energy cost of grading and excavating and other site preparation. It also takes into account the energy embodied in the fabrication of materials used in building construction, as well as the energy cost of transporting materials to the site and assembling them. Part II focuses on the end use of energy during normal building operation, i.e., the energy consumed for space heating, cooling, lighting, water heating, etc. A simplified calculation sequence is provided which allows the user to estimate the consumption of most combinations of building orientation, characteristics, and operating conditions. Part III examines the relationship of land use to energy consumption, principally the transportation energy impact of various land-development patterns, the embodied energy impacts of infrastructure requirements, and the impacts of various orientation and siting schemes. (MCW)

  6. Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches

    Directory of Open Access Journals (Sweden)

    Mojtaba Valinejad Shoubi

    2015-03-01

    Full Text Available A sustainable building is constructed of materials that could decrease environmental impacts, such as energy usage, during the lifecycle of the building. Building Information Modeling (BIM has been identified as an effective tool for building performance analysis virtually in the design stage. The main aims of this study were to assess various combinations of materials using BIM and identify alternative, sustainable solutions to reduce operational energy consumption. The amount of energy consumed by a double story bungalow house in Johor, Malaysia, and assessments of alternative material configurations to determine the best energy performance were evaluated by using Revit Architecture 2012 and Autodesk Ecotect Analysis software to show which of the materials helped in reducing the operational energy use of the building to the greatest extent throughout its annual life cycle. At the end, some alternative, sustainable designs in terms of energy savings have been suggested.

  7. An analysis of buildings-related energy use in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  8. Energy Analysis for New Hotel Buildings in Egypt

    Directory of Open Access Journals (Sweden)

    Dr. George B. Hanna

    2014-12-01

    Full Text Available This paper summarizes the results of energy simulation analysis to determine the effectiveness of building characteristics in reducing electrical energy consumption for hotel buildings in Egypt. Specifically, the impact on building envelope performance is investigated for different strategies such as window size, glazing type and building construction for two geographical locations in Egypt (Cairo and Alexandria. This paper also studies the energy savings in hotel buildings with 200 rooms for different Lighting Power Densities (LPD, Energy Input Ratios (EIR, Set point Temperatures (SPT and HVAC systems. The study shows certain findings of practical significance, e.g. that a Window-to-Wall Ratio of 0.20 and reasonably shaded windows lower the total annual electricity use for hotel buildings by more than 20% in the two Egyptian locations.

  9. Integration of solar energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Mennola, T.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.; Rasinkoski, A.; Spiers, D.; Eenilae, P. [Neste Advanced Power Systems (Finland)

    1998-12-31

    New photovoltaic building elements were developed and the uses of various solar technologies in buildings were optimised with computational design tools. The novel amorphous silicon photovoltaic elements allow for economic integration of photovoltaics in large facades. The cost of grid-connected systems may be reduced by approximately 20 % through the advanced design approaches developed. (orig.)

  10. Investigation of building energy autonomy in the sahelian environment

    Science.gov (United States)

    Coulibaly, O.; Ouedraogo, A.; Kuznik, F.; Baillis, D.; Koulidiati, J.

    2012-02-01

    In this study, the energy generation of a set of photovoltaic panels is compared with the energy load of a building in order to analyse its autonomy in the sahelian environment when taking into account, the orientation, the insulation and the energy transfer optimisation of its windows. The Type 56 TRNSYS multizone building model is utilized for the energy load simulation and the Type 94 model of the same code enables the coupling of photovoltaic (PV) panels with the building. Without insulation, the PV energy generation represents 73.52 and 111.79% of the building electric energy load, respectively for poly-crystalline and mono-crystalline panels. For the same PV characteristics and when we insulate the roof and the floor, the energy generation increases to represent successively 121.09 and 184.13%. In the meantime, for building without insulation and with insulate the roof, the floor and 2 cm insulated walls, the energy consumption ratios decrease respectively from 201.13 to 105.20 kWh/m2/year. The investigations finally show that it is even possible to generate excess energy (positive energy building) and reduce the number and incident surface area of the PV panels if we conjugate the previous model with building passive architectural design mode (orientation, solar protection ...).

  11. Tenant guidelines for energy-efficient renovation of buildings at the Presidio of San Francisco

    Energy Technology Data Exchange (ETDEWEB)

    Warner, J.L.; Sartor, D.; Diamond, R.

    1997-06-01

    These Guidelines are intended to help current and future tenants of the Presidio work with designers and contractors to incorporate energy efficiency and sustainable practices into the renovations of the buildings. This guide is designed to complement the detailed Guidelines for Rehabilitating Buildings at the Presidio of San Francisco, available from the National Park Service. Energy efficiency yields benefits far beyond energy savings. Daylighting and efficient electric lighting, natural ventilation and cooling, and other conservation strategies improve tenant health, comfort, and productivity, while preserving the historical heritage of Presidio buildings. This guide examines the use of energy and resources and opportunities for efficiency in Presidio buildings on the basis of individual components and systems. The authors begin with recommended and discouraged practices for roofs, walls, and foundations, then move to windows and other opening. Next they address efficiency issues in building interiors--lighting, office equipment, and spacing planning. The authors follow with recommendations for mechanical and plumbing systems and conclude with insights on miscellaneous outdoor energy and resource concerns. A concise listing of sources of more detailed information is provided at the end of the document. The authors expect this guide to help tenants begin the process of using energy-efficient and sustainable practices throughout the Presidio of San Francisco.

  12. Analysis of the Russian Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.; Roshchanka, Volha

    2012-12-01

    This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

  13. 76 FR 56413 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-09-13

    ... analysis using an appropriate building energy estimation tool. DOE intends to use the EnergyPlus \\3...-revision codes, two prototype buildings would be analyzed--one that exactly complies with the pre-revision... in the following sections. \\4\\ ``Exactly complies'' means that the prototype complies with...

  14. Reducing Building HVAC Costs with Site-Recovery Energy

    Science.gov (United States)

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  15. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL; Edwards, Richard [ORNL; Parker, Lynne Edwards [ORNL

    2014-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.

  16. Energy use and environmental impact of new residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Adalberth, Karin

    2000-01-01

    The objective of this thesis is to investigate the energy use and environmental impact of residential buildings. Seven authentic buildings built in the 1990s in Sweden are investigated. They are analysed according to energy use and environmental impact during their life cycle: manufacture of building materials, transport of building materials and components to the building site, erection to a building, occupancy, maintenance and renovation, and finally demolition and removal of debris. Results show that approx. 85 % of the total estimated energy use during the life cycle is used during the occupation phase. The energy used to manufacture building and installation materials constitutes approx. 15 % of the total energy use. 70-90 % of the total environmental impact arises during the occupation phase, while the manufacture of construction and installation materials constitutes 10-20 %. In conclusion, the energy use and environmental impact during the occupation phase make up a majority of the total. At the end of the thesis, a tool is presented which helps designers and clients predict the energy use during the occupation phase for a future multi-family building before any constructional or installation drawings are made. In this way, different thermal properties may be elaborated in order to receive an energy-efficient and environmentally adapted dwelling.

  17. Draught risk index tool for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Nielsen, Peter V.

    2014-01-01

    Flow elements combined with a building energy simulation tool can be used to indicate areas and periods when there is a risk of draught in a room. The study tests this concept by making a tool for post-processing of data from building energy simulations. The objective is to show indications...

  18. Low-energy buildings on mainstream market terms

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Elle, Morten; Hoffmann, Birgitte

    2008-01-01

    This paper looks into the challenge of actually implementing energy efficient technologies and concepts in mainstream new build. The aim of the paper is to point out some of the provisos of promoting low-energy buildings on mainstream market terms, emphasising the need to understand forces working...

  19. Analysis of Different Methods for Computing Source Energy in the Context of Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David; Pless, Shanti

    2016-08-26

    Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from site energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.

  20. EPA's Energy Star Buildings Provides a Road Map to Energy Efficiency.

    Science.gov (United States)

    Guarneiri, Michele

    1997-01-01

    Several colleges and universities participate in the Environmental Protection Agency (EPA) Energy Star Buildings program, in which institutions commit to improving their buildings' energy efficiency and reducing energy costs. All participants must also be a Green Lights Program participant or agree to specific building-wide lighting upgrades. The…

  1. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  2. Building Energy Audit Report, for Hickam AFB, HI

    Energy Technology Data Exchange (ETDEWEB)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.; Dixon, Douglas R.

    2010-09-30

    A building energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Hickam AFB, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This documents reports the results of that assessment.

  3. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  4. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    -energy district heating concept for low-energy buildings. The annual energy performance is evaluated as well as the socio-economy of a demonstrative network based on realistic energy loads that derived from a human behaviour model. Finally the presentation comments on the reasonable lower limit for the heat......Building design must evolve from today's practice – where the individual building parts are optimized separately – into a future where the whole building, including all installed systems, is optimized by integrating innovative technologies that will furthermore make the building itself an active...... part of the total energy system. Integrated design is a design process informed by multidisciplinary knowledge, where different software plays an important role in the designing process. Numerous simulation programs from different kinds of engineering fields (indoor climate, energy balance, district...

  5. Solar Energy Windows and Smart IR Switchable Building Technologies

    Energy Technology Data Exchange (ETDEWEB)

    McCarny, James; Kornish, Brian

    2011-09-30

    The three building envelope functions with the largest impact on the energy usage are illumination, energy flux and energy production. In general, these three functions are addressed separately in the building design. A step change toward a zero-energy building can be achieved with a glazing system that combines these three functions and their control into a single unit. In particular, significant value could be realized if illumination into the building is dynamically controlled such that it occurs during periods of low load on the grid (e.g., morning) to augment illumination supplied by interior lights and then to have that same light diverted to PV energy production and the thermal energy rejected during periods of high load on the grid. The objective of this project is to investigate the feasibility of a glazing unit design that integrates these three key functions (illumination and energy flux control, and power production) into a single module.

  6. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  7. Statistical simulation of user behaviour in low-energy office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Pfafferott, J.; Herkel, S. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, D-79110 Freiburg (Germany)

    2007-05-15

    A large number of design guidelines and tools are available for the design of passive cooling systems. Using the underlying thermodynamic models, a certain input (e.g. air change rate, internal heat gains or sun control) results in a certain output (i.e. room temperature). However, in real buildings the room temperature at a given outdoor temperature is a distribution rather than a single value. Therefore, the building engineer should take uncertainties into account, since the actual use of the building, the building physical properties or the user behaviour are statistically distributed. One promising approach to include these uncertainties in the design procedure is the use of statistical models: the design parameter is defined by a mean value and its deviation. From a control theoretical point of view, the deterministic controlled system responds to random disturbance variables by a statistically distributed response function. Considering the institute building of Fraunhofer ISE as example, this study shows how statistical simulations can be applied to the design process of passive cooling in low-energy office buildings. (author)

  8. Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengpeng, E-mail: xupp.cn@gmail.com [Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong (Hong Kong); Chan, Edwin Hon-Wan; Queena Kun Qian [Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong (Hong Kong)

    2011-11-15

    Hotel building is a type of high-energy-consuming building and most existing hotel buildings need energy efficiency improvement in China. Energy performance contracting (EPC) is considered a win-win mechanism to organize building energy efficiency retrofit (BEER) project. However, EPC mechanism has been introduced into China relatively recently and many EPCs have not been successful in building energy efficiency retrofit projects. This research aims to develop a set of critical success factors (CSFs) of EPC for sustainable energy efficiency retrofit (BEER) of hotel buildings in China. Semi-structured interviews and a questionnaire survey with practitioners and other professionals were conducted. The findings reveal the relative importance of the 21 number of identified success factors. In order to explore the underlying relationship among the identified critical success factors (CSFs), factor analysis method was adopted for further investigation, which leads to grouping the 21 identified CSFs into six clusters. These are (1) project organization process, (2) EPC project financing for hotel retrofit, (3) knowledge and innovation of EPC, sustainable development (SD), and M and V, (4) implementation of sustainable development strategy, (5) contractual arrangement, and (6) external economic environment. Finally, several relevant policies were proposed to implement EPC successfully in sustainable BEER in hotel buildings. - Highlights: > EPC is a win-win mechanism to organize building energy efficiency retrofit project. > CSFs of EPC mechanism for sustainable BEER of hotel building in China are examined. > Six clusters are extracted from 21 identified CSFs based on factor analysis.

  9. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  10. Integrated Thermal-Energy Analysis of Innovative Translucent White Marble for Building Envelope Application

    Directory of Open Access Journals (Sweden)

    Federica Rosso

    2014-08-01

    Full Text Available Marble is a natural material, used in the construction field since antiquity. It has always been used to communicate monumentality and solidity. Nowadays new technologies permit marble to express new languages: particularly, translucent marble technology overturns the concept of solidity. The main issue to address is the lack of thermal-energy performance of such a thin stone layer as the only facade component. Conversely, Bianco Carrara and Statuario marbles, for instance, have intrinsic benefits as natural cool materials, due to their high solar reflectance and thermal emissivity. Thus, this paper analyzes the thermal-energy and environmental behavior of marble facade for a new designed building in New York City. An integrated analysis of the energy performance of the marble skin is performed through a preliminary experimental characterization, carried out for two different types of naturally white marble, for comparative purposes. Then, a dynamic simulation model of the building is developed to evaluate year-round benefits and drawbacks of the translucent marble envelope in terms of indoor thermal comfort and air-conditioning requirement. The analysis showed how the proposed marble facade is able to decrease the energy requirement for cooling up to 6%, demonstrating possible relevant perspectives for marble-based facades, even in energy-efficient buildings.

  11. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    Science.gov (United States)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  12. Life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia

    Science.gov (United States)

    Surahman, U.; Kubota, T.; Wijaya, A.

    2016-04-01

    In order to develop low energy and low carbon residential buildings, it is important to understand their detailed energy profiles. This study provides the results of life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia. A survey was conducted in the city in 2012 to obtain both material inventory and household energy consumption data within the selected residential buildings (n=300), which are classified into three categories, namely simple, medium and luxurious houses. The results showed that the average embodied energy of simple, medium and luxurious houses was 58.5, 201.0, and 559.5 GJ, respectively. It was found that total embodied energy of each house can be explained by its total floor area alone with high accuracy in respective house categories. Meanwhile, it was seen that operational energy usage patterns varied largely among house categories as well as households especially in the simple and medium houses. The energy consumption for cooling was found to be the most significant factor of the increase in operational energy from simple to luxurious houses. Further, in the life cycle energy, the operational energy accounted for much larger proportions of about 86-92% than embodied energy regardless of the house categories. The life cycle CO2 emissions for medium and luxurious houses were larger than that of simple houses by 2 and 6 times on average. In the simple houses, cooking was the largest contributor to the CO2 emissions (25%), while the emissions caused by cooling increased largely with the house category and became the largest contributors in the medium (26%) and luxurious houses (41%).

  13. Energy conservation in developing countries using green building idea

    Science.gov (United States)

    Rashid, Akram; Mansoor Qureshi, Ijaz

    2013-06-01

    Green buildings uses processes that are environmentally responsible and resource-efficient throughout a building's life-cycle. In these buildings Certain energy conservative and environment friendly steps are considered and implemented from design, construction, operation, maintenance and renovation. In present era no doubt new technologies are constantly constructed and used in creating greener structures, energy efficient buildings. The common objective is to reduce the overall impact of the built environment on human health using available energy efficiently. To increase the efficiency of the System or the building, Onsite generation of renewable energy through solar power, wind power, hydro power, or biomasscan significantly reduce the environmental impact of the building. Power generation is generally the most expensive feature to add to a building. Any how power generation using renewable sources that is Solar system may further enhance energy conservation ideas. Power Factor improvement can also be another source of efficient tool for efficient use of Electrical Energy in green buildings. In developing countries a significant amount of Electrical Energy can be conserved and System efficiency as a whole can be increased by Power Factor correction. The reverse flow of power can be locally engaged instead of creating extra stress and opposition to the existing grid lines.

  14. Building Energy Modeling: A Data-Driven Approach

    Science.gov (United States)

    Cui, Can

    Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive simulation problems. Motivated by the conclusion that no model outperforms others if amortized over diverse problems, a meta-learning based recommendation system for data-driven simulation modeling is proposed. To test the feasibility of the proposed framework on the building energy system, an extended application of the recommendation system for short-term building energy forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion technique is incorporated into the building recommendation system for on-line energy forecasting. Data fusion enables model calibration to update the state estimation in real-time, which filters out the noise and renders more accurate energy forecast. The framework is composed of two modules: off-line model recommendation module and on-line model calibration module. Specifically, the off-line model recommendation module includes 6 widely used data-driven simulation models, which are ranked by meta-learning recommendation system for off-line energy modeling on a given building scenario. Only a selective set of building physical and operational characteristic features is needed to complete the recommendation task. The on-line calibration module effectively addresses system uncertainties, where data fusion on

  15. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  16. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  17. Worldwide status of energy standards for buildings: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Janda, K.B.; Busch, J.F.

    1993-02-01

    This informal survey was designed to gain information about the worldwide status of energy efficiency standards for buildings, particularly non-residential buildings such as offices, schools, and hotels. The project has three goals: 1. To understand and learn from the experience of countries with existing building energy standards; 2. To locate areas where these lessons might be applied and energy standards might be effectively proposed and developed; and 3. To share the information gathered with all participating countries. These appendices include the survey cover letter, the survey, and the details of selected energy standards in 35 countries, thus providing supporting material for the authors` article of the same title.

  18. Energy efficiency of buildings with phase-change materials

    Directory of Open Access Journals (Sweden)

    Lukić Predrag

    2012-01-01

    Full Text Available The construction of energy efficient buildings using innovative building materials such as phase change materials, in addition to improving indoor comfort, energy savings and costs, can be achieved by increasing their market value. Because of its ability to absorb and release energy at predictable temperatures, phase change materials are effective in controlling and maintaining the thermal environment in the building. The use of phase changing materials, materials stored latent energy storage is an effective form of heat. [Projekat Ministarstva nauke Republike Srbije, br. TR36016: Experimental and theoretical investigation of frames and plates with semi-rigid connections from the view of the second order theory and stability analysis

  19. Improved energy efficiency and optimization of microclimate in buildings

    Directory of Open Access Journals (Sweden)

    Trifunovič Dragišić Vesna

    2016-01-01

    Full Text Available Nowadays it is possible to reduce energy consumption without losing comfort as a result of using efficient energy saving technologies and advanced environment control methods for buildings. One of the measures to improve energy performance of buildings can be installation of decentralized air intake and exhaust mechanical ventilation systems with plate heat exchangers in apartments making it possible to «return» up to 85% of thermal energy. The article deals with the decentralized system controlled ventilation with heat recovery and alternative solutions heating supply air in residential buildings.

  20. New ideas for energy utilisation in combined heat and power with cooling: Pt. 1. Principles

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M. [Universita di Pavoda, VIcenza (Italy). Istituto di Ingegneria; Gasparella, A. [Universita di Pavoda, Vicenza (Italy). Dottorato di Ricerca in Energetica

    1997-04-01

    New ideas are needed to reduce installed cooling capacities and growing ventilation costs and to improve control in the various zones of CHP plants with cooling. Above all the thermal energy available in summer from electricity cogeneration must be exploited. Unconventional cooling systems, such as evaporative or chemical dehumidification, allow one to achieve some of the objectives. Chemical dehumidification, both by adsorption and absorption, particularly permits new plant lay-outs, leading to the complete elimination of traditional cooling equipment with direct air treatment and very high potential energy savings. (author)

  1. Environmentally suitable building materials. Grey energy and sustainability of buildings; Umweltgerechte Baustoffe. Graue Energie und Nachhaltigkeit von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Pueschel, Danny; Teller, Matthias (eds.)

    2013-02-01

    The editors of the book under consideration present a compilation of contributions on environmentally suitable building materials from different perspectives. It provides an overview of 'Grey Energy' and a total energy balance of buildings. The most contributions are based on lectures of a symposium in April, 2011, in the Knobelsdorff School in Berlin-Spandau (Federal Republic of Germany).

  2. Building thermography as a tool in energy audits and building commissioning procedure

    Science.gov (United States)

    Kauppinen, Timo

    2007-04-01

    A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. This procedure will confirm the precise documentation of client's goals, definition of planning goals and the performance of the building. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper the results of one pilot building (a school) will be presented. In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential. The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.

  3. Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds

    Science.gov (United States)

    Cheng, Tian

    Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A

  4. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions.

  5. Building Design Guidelines for Solar Energy Technologies

    Science.gov (United States)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  6. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    Buildings consume approximately 40% of the world's primary energy use. Considering the total energy consumption throughout the whole life cycle of a building, the energy performance and supply is an important issue in the context of climate change, scarcity of energy resources and reduction of global energy consumption. An energy consuming as well as producing building, labelled as the