WorldWideScience

Sample records for build materials techniques

  1. New build: Materials, techniques, skills and innovation

    International Nuclear Information System (INIS)

    Glass, Jacqueline; Dainty, Andrew R.J.; Gibb, Alistair G.F.

    2008-01-01

    The transition to secure, sustainable, low-energy systems will have a significant effect on the way in which we design and construct new buildings. In turn, the new buildings that are constructed will play a critical role in delivering the better performance that would be expected from such a transition. Buildings account for about half of UK carbon dioxide (CO 2 ) production. So it is urgent to ensure that energy is used efficiently in existing buildings and that new building stock is better able to cope with whatever the future holds. Most energy used in buildings goes towards heating, lighting and cooling, but a growing percentage is consumed by domestic appliances, computers and other electrical equipment. Actual energy consumption is the product of a number of factors, including individual behaviours and expectations, the energy efficiency of appliances and the building envelope. This review focuses on the third of these, the building itself, and its design and construction. It discusses the issues faced by the construction industry today, suggesting that major changes are needed relating to materials, techniques, skills and innovation. It moves on to consider future advances to 2050 and beyond, including developments in ICT, novel materials, skills and automation, servitisation (the trend for manufacturers to offer lifetime services rather than simple products), performance measurement and reporting, and resilience. We present a vision of the new build construction industry in 2050 and recommendations for policy makers, industry organisations and construction companies

  2. Building Techniques and Materials in Ancient and Medieval Milan

    Directory of Open Access Journals (Sweden)

    Paola Greppi

    2015-06-01

    Full Text Available The city of Milan preserve an amazing historical and architectural heritage, consisting of a high number of ancient churches, in most cases built to the origins of Christianity and transformed into new form during the Romanesque. In the article are synthetically presented the results of the research work of the writer about construction techniques of the most important churches in the city (S. Ambrogio, S. Simpliciano, S. Giovanni alle Fonti, S. Nazaro Maggiore, ..., trying to highlight the main changes between Late Antiquity and Romanesque. A large amount of stone material were used in Roman architecture of Milan and Lombardy, thanks to the geological variety of the territory. The Alps supplied granites, diorites, gneisses and marbles; the Prealps supplied limestones, dolomites, sandstones (Mesozoic and conglomerates (Quaternary; the Padània alluvial plain supplied pebbles, gravels, sands and clays (Quaternary. Each stone had a local use reaching the nearest towns (Como, Pavia, Milan, Bergamo, Brescia through waterways; the towns of the plain (Piacenza, Cremona, Mantua employed bricks made of local clay. Milano, the capital, employed also stones coming from abroad (limestones from Venetia and Friuli. White marbles of Apuanian Alps and coloured marbles of Eastern mediterranean were also diffused in Milan and other Lombard sites despite the laborious supplying. The stones quarried by the Romans were continuously used in the following centuries.

  3. Experimental technique to measure thoron generation rate of building material samples using RAD7 detector

    International Nuclear Information System (INIS)

    Csige, I.; Szabó, Zs.; Szabó, Cs.

    2013-01-01

    Thoron ( 220 Rn) is the second most abundant radon isotope in our living environment. In some dwellings it is present in significant amount which calls for its identification and remediation. Indoor thoron originates mainly from building materials. In this work we have developed and tested an experimental technique to measure thoron generation rate in building material samples using RAD7 radon-thoron detector. The mathematical model of the measurement technique provides the thoron concentration response of RAD7 as a function of the sample thickness. For experimental validation of the technique an adobe building material sample was selected for measuring the thoron concentration at nineteen different sample thicknesses. Fitting the parameters of the model to the measurement results, both the generation rate and the diffusion length of thoron was estimated. We have also determined the optimal sample thickness for estimating the thoron generation rate from a single measurement. -- Highlights: • RAD7 is used for the determination of thoron generation rate (emanation). • The described model takes into account the thoron decay and attenuation. • The model describes well the experimental results. • A single point measurement method is offered at a determined sample thickness

  4. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    Science.gov (United States)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on Radioactivity in Building Materials (Leningrad: Research Institute for radiation Hygiene) 5. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, waste and by-products. Health Physics, 48, 87-95. 6. Uosif M.A.M. (2014). Estimation of Radiological Hazards of Some Egyptian Building Materials Due to Natural Radioactivity. International Journal of u- and e- Service, Science and Technology. Vol.7, No.2 (2014), pp.63-76

  5. Materials and building techniques in Mugello from the Late Middle Ages to the Early Modern Age

    Directory of Open Access Journals (Sweden)

    Andrea Arrighetti

    2017-01-01

    Full Text Available Mugello is a medium-high seismic risk area situated on the Italian Apennine mountain range, between Tuscany and Emilia Romagna. The territory is characterized by a large presence of long duration settlements characterized by well-preserved historic buildings, most of which are religious’ architectonical complexes. An area of Mugello, between 2010 and 2014, was characterized by the project “Archaeology of Buildings and seismic risk in Mugello”, a research focused on testing the potential information of the process of archaeological analysis of buildings as a form of knowledge, prevention and protection of medieval seismic risk settlements. Among the results that have emerged from the archaeoseismological investigation have played a central role the considerations pertaining to the supplying and use of building materials for the construction and modification of architectural structures, in a period between the late Middle Ages and the Modern Age.

  6. Quality improvement of granular secondary raw building materials by separation and cleansing techniques

    NARCIS (Netherlands)

    Xing, W.

    2004-01-01

    Contaminated granular wastes are potentially reusable because they have similar physical and chemical properties as primary raw building materials. From environmental aspects, the reuse must not result in polluting the soil, groundwater and surface water. Therefore the leaching values of inorganic

  7. Aircraft wing weight build-up methodology with modification for materials and construction techniques

    Science.gov (United States)

    York, P.; Labell, R. W.

    1980-01-01

    An aircraft wing weight estimating method based on a component buildup technique is described. A simplified analytically derived beam model, modified by a regression analysis, is used to estimate the wing box weight, utilizing a data base of 50 actual airplane wing weights. Factors representing materials and methods of construction were derived and incorporated into the basic wing box equations. Weight penalties to the wing box for fuel, engines, landing gear, stores and fold or pivot are also included. Methods for estimating the weight of additional items (secondary structure, control surfaces) have the option of using details available at the design stage (i.e., wing box area, flap area) or default values based on actual aircraft from the data base.

  8. Recent developments in building diagnosis techniques

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research on building diagnosis techniques related to construction pathology, hygrothermal behavior and durability, and diagnostic techniques. It highlights recent advances and new developments in the field of building physics, building anomalies in materials and components, new techniques for improved energy efficiency analysis, and diagnosis techniques such as infrared thermography. This book will be of interest to a wide readership of professionals, scientists, students, practitioners, and lecturers.

  9. Analysis Techniques, Materials, and Methods for Treatment of Thermal Bridges in Building Envelopes

    Science.gov (United States)

    2013-08-01

    Proceedings of the 3rd ASTM Symposium on Insulation Materials: Testing and Applications, 3d vol. American Society for Testing and Materials (ASTM) STP...ERDC TR-13-7 21 2.1.2.3 Details for passive houses: A catalogue of ecologically rated constructions This work, printed in German and English, is...insulation or blown-in cellulose insulation. When the insulation is introduced to a tem- perature difference that runs across the PCMs melting point, the

  10. Radioactivity in building materials

    International Nuclear Information System (INIS)

    1985-01-01

    The present report, drawn up at the request of the former Minister of Public Health and Environmental Affairs of the Netherlands, discusses the potential radiological consequences for the population of the Netherlands of using waste materials as building materials in housing construction. (Auth.)

  11. Trends in building materials

    CSIR Research Space (South Africa)

    Mapiravana, Joseph

    2012-07-01

    Full Text Available in the application of continuously reinforced thin concrete road pavement emplacement and testing and in the production and use of low cost modular concrete block building systems. 3.3 Bricks and blocks Rest of the world has used advanced characterisation... materials for bricks and concrete blocks occurs on a much smaller scale in South Africa than elsewhere. There have been greater advances made by rest of the world in the use of alternative concrete block production processes such as autoclaving...

  12. Radioactivity in building materials

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    The object of this brief report is to make the pollution inspectorate aware of the radiation hazards involved in new building materials, such as gypsum boards and alum slate based concrete blocks whose radium content is high. Experience in Swedish housebuilding has shown that a significant increase in the radiation dose to the occupants can occur. Improved insulation and elimination of draughts in fuel conservation accentuate the problem. Norwegian investigations are referred to and OECD and Scandinavian discussions aiming at recommendations and standards are mentioned. Suggested measures by the Norwegian authorities are given. (JIW)

  13. Mycotoxins in building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Frisvad, Jens Christian

    2011-01-01

    Today, indoor mold and moisture, and their associated health effects, are a society-wide problem. The economic consequences of indoor mold and moisture are enormous. Their global dimension has been emphasized in several recent international publications, stressing that the most important means...... as in future energy efficient buildings. It brings together different disciplinary points of view on indoor mold, ranging from physics and material science to microbiology and health sciences. The contents have been outlined according to three main issues: Fundamentals, particularly addressing the crucial...... roles of water and materials, Health, including a state-of-the-art description of the health-related effects of indoor molds, and Strategies, integrating remediation, prevention and policies....

  14. BUILDING MATERIALS RECLAMATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  15. Building Materials Reclamation Program

    International Nuclear Information System (INIS)

    Weggel, David C.; Chen, Shen-En; Hilger, Helene; Besnard, Fabien; Cavalline, Tara; Tempest, Brett; Alvey, Adam; Grimmer, Madeleine; Turner, Rebecca

    2011-01-01

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C and D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C and D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C and D materials. Table 1 summarizes the six subprojects, including the C and D material studied and the graduate student and the faculty advisor on each subproject.

  16. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic...

  17. The organic materials in the Five Northern Provinces' Assembly Hall: disclosing the painting technique of the Qing dynasty painters in civil buildings

    Science.gov (United States)

    Lluveras-Tenorio, A.; Bonaduce, I.; Sabatini, F.; Degano, I.; Blaensdorf, C.; Pouyet, E.; Cotte, M.; Ma, L.; Colombini, M. P.

    2015-11-01

    The beiwusheng huiguan (`Meeting hall of the Five Northern Dynasties') is a building complex from the Qing dynasty (1636-1912 ad) located in Wafangdian, near Ziyang, in the south of the Chinese Province of Shaanxi. Two of the preserved halls are richly decorated with wall paintings dated probably in 1848 ad and representing scenes of the `Romance of the Three Kingdoms' and Confucian moral tales. They are a rare example of well-preserved mural paintings of high artistic value inside civil buildings. The aims of this paper are the chemical characterization and localization of organic materials used as binders and colorants in the wall paintings. A multi-analytical approach, consisting in the combined use of gas chromatographic-mass spectrometric techniques (GC/MS and Py-GC/MS) and high-pressure liquid chromatography with diode array detector (HPLC-DAD), was chosen for these purposes. Proteinaceous materials (animal glue and egg), saccharide material (fruit tree gum) and a siccative oil were identified in different paint layers supplying invaluable information about the painting technique used. Moreover, the analyses of organic dyes allowed identifying indigo and gallic acid in more than one sample adding fundamental information about Chinese artists' techniques in mural paintings, missing from the previous studies. To shed light on the gilding technique, the distribution of the painting materials was achieved by means of synchrotron radiation Fourier transform infrared spectroscopy (SR micro-FTIR) and X-ray fluorescence (SR micro-XRF). The results obtained from the multi-analytical approach enabled us to determine the organic materials both binders and organic colorants used by Chinese artisans, highlighting the high technical level achieved in nineteenth century. The binding media and the organic colorants identified, as well as their distribution, allowed the discussion on the painting technique used by the artists of the Qing dynasty giving information for the

  18. Materials characterization techniques

    National Research Council Canada - National Science Library

    Zhang, Sam; Li, L; Kumar, Ashok

    2009-01-01

    "With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization...

  19. Material Efficiency of Building Construction

    Directory of Open Access Journals (Sweden)

    Antti Ruuska

    2014-07-01

    Full Text Available Better construction and use of buildings in the European Union would influence 42% of final energy consumption, about 35% of our greenhouse gas emissions and more than 50% of all extracted materials. It could also help to save up to 30% of water consumption. This paper outlines and draws conclusions about different aspects of the material efficiency of buildings and assesses the significance of different building materials on the material efficiency. The research uses an extensive literature study and a case-study in order to assess: should the depletion of materials be ignored in the environmental or sustainability assessment of buildings, are the related effects on land use, energy use and/or harmful emissions significant, should related indicators (such as GHGs be used to indicate the material efficiency of buildings, and what is the significance of scarce materials, compared to the use of other building materials. This research suggests that the material efficiency should focus on the significant global impacts of material efficiency; not on the individual factors of it. At present global warming and greenhouse gas emissions are among the biggest global problems on which material efficiency has a direct impact on. Therefore, this paper suggests that greenhouse gas emissions could be used as an indicator for material efficiency in building.

  20. Mould growth on building materials

    DEFF Research Database (Denmark)

    Fog Nielsen, K.

    Mould growth in buildings is associated with adverse health effects among the occupants of the building. However actual growth only occurs in damp and water-damaged materials, and is an increasing problem in Denmark, due to less robust constructions, inadequate maintenance, and too little...

  1. EFFECTIVE CHEMICALLY BONDED BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Сергей Николаевич Золотухин

    2017-11-01

    Full Text Available Physical and physical-and-chemical preconditions for creation of the production technology of chemically bonded building materials and products based on phosphogypsum are presented. The methodology and production technology of chemically bonded lime-and-sandy phosphogypsum material (LSPM with the use of modern computerized differential scanning calorimetry are developed and offered. The structure of LSPM is examined. The conceptions of making building composites on the basis of dispersed materials are proved and updated. It was found out that at the definite thickness of water film on the surface of disperse materials, in the thermodynamically unstable state, in the presence of external fields, heightened temperatures and definite pH, cheap water-resistant chemically bonded building composites on the basis of dispersed materials can be made. The results of the LSPM studies showed that such material is effective for forming of low- and middle-quality wall small-piece blocks, partition slabs and bulkheads.

  2. Study of the influence of porosity on the radon emanation coefficient in different building material samples by combining the SSNTD technique with Monte Carlo simulations

    CERN Document Server

    Misdaq, M A; Ktata, A

    1998-01-01

    Radon alpha-activities per unit volume have been measured inside and outside different building material samples by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD). Radon emanation coefficients of the studied building materials have been evaluated. The porosities of the building material samples studied have been determined by using a Monte Carlo calculational method adapted to the experimental conditions and compared with data obtained by the Archimedes's method. The influence of the building material porosity on the radon emanation coefficient has been investigated.

  3. Variation of radon exhalation on building materials

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Wang Chunhong; Pan Ziqiang; Zhang Yonggui; Ji Dong

    2009-01-01

    The 19 samples from different building material factories were collected for four kinds of building materials. The activity concentration and radon exhalation of building materials were measured. The radon exhalations of building materials are not obviously different if the component is same and the processes of building materials are similar. However, the radon exhalations of same kind of building material are greatly different if the components are different and the processes of building material are varied even if the activity concentrations of building material are similar. (authors)

  4. Synthetic building materials for transport buildings and structures

    Science.gov (United States)

    Gerasimova, Vera

    2017-10-01

    The most effective building materials account for the highest growth not only in construction of residential and public buildings, but also other capital projects including roadways, bridges, drainage, communications and other engineering projects. Advancement in the technology of more efficient and ecologically responsible insulation materials have been a priority for safety, minimal maintenance and longevity of finished construction projects. The practical use of modern building materials such as insulation, sound reduction and low energy consumption are a benefit in cost and application compared to the use of outdated heavier and labor-intensive materials. The most efficient way for maximizing insolation and sound proofing should be done during the design stages of the project according to existing codes and regulations that are required by Western Government. All methods and materials that are used need to be optimized in order to reach a high durability and low operational and maintenance cost exceeding more than 50 years of the life of the building, whether it is for public, industrial or residential use. Western construction techniques and technologies need to be applied and adapted by the Russian Federation to insure the most productive successful methods are being implemented. The issues of efficient insulation materials are outlined in this article.

  5. Preindustrial versus postindustrial Architecture and Building Techniques

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    2014-01-01

    house built around 1700 and the other a frontrunner suburban family house built year 2010. The aim is to show how preindustrial architecture can inspire sustainable thinking in postindustrial architectural design, how we can learn from the experience and how the nowadays social, economic......The paper will identify the sustainable parameters related to the change in society, building technique and comfort demands illustrated through 2 Danish building types, which are very different in time, but similar in function. The one representing evolution and experience based countryside farm...... out how living conditions, landscape and topology, how climate and the possibility to use local materials for construction and how actual building technology influences the design, the economy, the comfort and the energy use. Analysis involves architectural, technical and comfort matters...

  6. Frost resistance of building materials

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    materials, has been developed.The importance of the pore structure on the development of stresses in the material during freezing is emphasized. To verify the model, experimental investigations are made on various concretes without air-entrainment and brick tiles with different porosities......In this thesis it is shown that the critical degree of saturation is suitable as parameter for the frost resistance of porous building materials. A numerical model for prediction of critical degrees of saturation based on fracture mechanics and phase geometry of two-phase materials, e.g. porous...

  7. Daylight as a building material

    DEFF Research Database (Denmark)

    Thule Kristensen, Peter; Madsen, Merete

    2005-01-01

    The article draws on examples to chronologically trace the use of daylight as building material in architecture of the 20th and early 21st century. The essay covers works of Mies van der Rohe, Le Corbusier, Erik Bryggman, Rudolf Schwarz, Alvar Aalto, Aldo Rossi, Jørn Utzon, Daniel Libeskind, Peter...

  8. Wood: a construction material for tall buildings

    Science.gov (United States)

    Wimmers, Guido

    2017-12-01

    Wood has great potential as a building material, because it is strong and lightweight, environmentally friendly and can be used in prefabricated buildings. However, only changes in building codes will make wood competitive with steel and concrete.

  9. A storey of buildings and materials

    Science.gov (United States)

    2017-12-01

    Throughout history, the development of new materials and technologies has enabled more functional and aesthetically pleasing buildings. With the advent of sustainable architecture, the role of materials science in building innovation is becoming more prominent than ever.

  10. Radon exhalation studies in building materials using solid-state ...

    Indian Academy of Sciences (India)

    Building materials constitute the second most important source of radon in dwellings. The common building materials used in the construction of dwellings are studied for radon exhalation rate. The 'Can' technique using LR-115 type-II solid-state nuclear track detector has been used for these measurements. The radon ...

  11. Nondestructive spectroscopic characterization of building materials

    Science.gov (United States)

    Kassu, Aschalew; Walker, Lauren; Sanders, Rachel; Farley, Carlton; Mills, Jonathan; Sharma, Anup

    2017-04-01

    The purpose of this research project is to demonstrate the application of Raman spectroscopy technique for characterization and identification of the distinct Raman signatures of construction materials. The results reported include the spectroscopic characterization of building materials using compact Raman system with 785 nm wavelength laser. The construction materials studied include polyblend sanded grout, fire barrier sealant, acrylic latex caulk plus and white silicone. It is found that, both fire barrier sealant and acrylic latex caulk plus has a prominent Raman band at 1082 cm-1, and three minor Raman signatures located at 275, 706 and 1436 cm-1. On the other hand, sand grout has three major Raman bands at 1265, 1368 and 1455 cm-1, and four minor peaks at 1573, 1683, 1762, and 1868 cm-1. White silicone, which is a widely used sealant material in construction industry, has two major Raman bands at 482 and 703 cm-1, and minor Raman characteristic bands at 783 and 1409 cm-1.

  12. Materials characterization techniques

    National Research Council Canada - National Science Library

    Zhang, Sam; Li, L; Kumar, Ashok

    2009-01-01

    ... techniques for quality assurance, contamination control, and process improvement. The book reviews the most popular and powerful analysis and quality control tools, explaining the appropriate uses and related technical requirements...

  13. Preservation of adobe buildings. Study of materials

    Science.gov (United States)

    Velosa, A.; Rocha, F.; Costa, C.; Varum, H.

    2012-04-01

    Adobe buildings are common in the central region of Portugal due to the lack of natural stone in the surrounding area. This type of construction technique lasted until the 20th Century, at which time cementitious materials, with faster hardening and greater structural capacity substituted traditional materials and techniques. Currently, a significant percentage of these buildings is vacant and many are degraded and in need of conservation actions. Adobes from central Portugal are distinctive as they are lightly coloured and made from air lime and quarry sand. Although some adobes were manufactured locally, most were produced almost 'industrially' and sold to nearby regions. In order to preserve this heritage, conservation actions must be undertaken. So as to ensure the adequacy of these actions and compatibility between original materials and new ones, a thorough study of adobe compostion is mandatory. The current study is an initial step in the characterization of earth based construction materials from central Portugal. Adobe samples were collected from residential buildings in two different locations. The determination of the composition of adobe blocks encompassed the determination of the binder fraction and of their chemical composition and also the particle size analysis of the aggregate. For this purpose FRX analysis, acid dissolution and dry sieving were performed. Methylene blue test was also executed in order to determine the clay fraction. Additionally, the mineral composition of powder samples and oriented samples was performed using XRD analysis in order to determine the clay minerals present in the blocks. As adobe blocks are extremely prone to the action of water the Geelong test was undertaken in order to provide information in terms of durability. It was concluded that air lime was generally used in adobe compositions. However, the clay content varies in adobes from different regions, providing distinct durability characteristics to these materials.

  14. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  15. SYSTEM ORGANIZATION OF MATERIAL PROVIDING OF BUILDING

    Directory of Open Access Journals (Sweden)

    A. V. Rаdkеvich

    2014-04-01

    Full Text Available Purpose. Development of scientific-methodical bases to the design of rational management of material streams in the field of building providing taking into account intersystem connections with the enterprises of building industry. Methodology. The analysis of last few years of functioning of building industry in Ukraine allows distinguishing a number of problems that negatively influence the steady development of building, as the component of the state economics system. Therefore the research of existent organization methods of the system of building objects providing with material resources is extremely necessary. In connection with this the article justifies the use of method of hierarchies analysis (Saati method for finding the optimal task solution of fixing the enterprises of building industry after building objects. Findings. Results give an opportunity to guidance of building organization to estimate and choose advantageous suppliers - enterprises of building industry, to conduct their rating, estimation taking into account basic descriptions, such as: quality, price, reliability of deliveries, specialization, financial status etc. Originality. On the basis of Saati method the methodologies of organization are improved, planning and managements of the reliable system of providing of building necessary material resources that meet the technological requirements of implementation of building and installation works. Practical value. Contribution to the decisions of many intricate organizational problems that are accompanied by the problems of development of building, provided due to organization of the reliable system of purchase of material resources.

  16. Preindustrial versus postindustrial Architecture and Building Techniques

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    2014-01-01

    out how living conditions, landscape and topology, how climate and the possibility to use local materials for construction and how actual building technology influences the design, the economy, the comfort and the energy use. Analysis involves architectural, technical and comfort matters...... will characterize a future building stock and to which level buildings are expected to operate in relation to the actual demands of zero energy performance and better indoor living comfort. In that way we will be aware of the great evolution in our ways of managing the physical frame of our daily life....

  17. Wood as a sustainable building material

    Science.gov (United States)

    Robert H. Falk

    2010-01-01

    Few building materials possess the environmental benefits of wood. It is not only our most widely used building material but also one with characteristics that make it suitable for a wide range of applications. As described in the many chapters of this handbook, efficient, durable, and useful wood products produced from trees can range from a minimally processed log at...

  18. Building materials as sources of indoor exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Mustonen, R.

    1992-11-01

    The thesis deals with the radioactivity of Finnish building materials and of industrial wastes or residues which can be used as building materials or as mixing substances of such materials. The external and internal exposure to radiation from building materials is described. The study also discusses with the methods used for measuring concentrations of natural and artificial gamma emitters in different kinds of materials and the amount of radon exhaling from building materials. A computational method for assessing the gamma ray exposure inside dwellings is desribed, and the results are compared with those of other corresponding methods. The results of the simple method described here are in good agreement with those obtained with the more refined Monte Carlo technique

  19. Measurement of radon exhalation rate in various building materials ...

    Indian Academy of Sciences (India)

    and clay in varying proportions. 3. Materials and methods. For the measurement of radon exhalation rate in the soil and building material samples, Closed Can. Technique has been used. The soil samples are col- lected in clean, dry polyethylene bags from dif- ferent locations of Una and Hamirpur districts of. Himachal ...

  20. The radioactivity of house-building materials

    International Nuclear Information System (INIS)

    Sos, K.

    2007-01-01

    The paper compares the natural radioactivity and radon emission properties of different building materials like bricks, concretes, cements, sands, limes, marmors of different origin. A description of the radioactive model of apartments is also given. (TRA)

  1. Moisture Buffer Value of Building Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut; Time, Berit

    2007-01-01

    When building materials are in contact with indoor air they have some effect to moderate the variations of indoor humidity in occupied buildings. But so far there has been a lack of a standardized quantity to characterize the moisture buffering capability of materials. It has been the objective...... of a recent Nordic project to define such a quantity, and to declare it in the form of a NORDTEST method. The Moisture Buffer Value is the figure that has been developed in the project as a way to appraise the moisture buffer effect of materials, and the value is described in the paper. Also explained...... is a test protocol which expresses how materials should be tested for determination of their Moisture Buffer Value. Finally, the paper presents some of the results of a Round Robin Test on various typical building materials that has been carried out in the project....

  2. Natural Radioactivity of Some Mongolian Building Materials

    CERN Document Server

    Gerbish, S; Ganchimeg, G

    2000-01-01

    The natural radioactivity of some building materials used in cities of Darkhan, Ulaanbaatar and Erdenet in Mongolia was measured by gamma-ray spectrometry with HP-Ge-detector. The radium equivalent concentration and the gamma absorbed dose rate in air, were estimated as the external and internal hazard indices. The results indicate that these materials are not a major source of exposure.

  3. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    , in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...... and defined as a new and independent material parameter. It contains information about the moisture transport properties throughout the wide range of moisture contents from hygroscopic up to saturation. With this new and valuable coefficient, it is now possible to distinguish and select building materials...

  4. Natural radioactivity of building materials in Austria

    International Nuclear Information System (INIS)

    Sorantin, H.; Steger, F.

    1984-03-01

    About 120 samples of natural and manufactured building materials have been analyzed by gamma-spectrometry for their Thorium 232-, Radium 226- and Potassium 40 - content. Granites showed generally the greatest amounts of the above mentioned radionuclides, whereas other natural products like sand, gravels, marbles and gypsum contained only traces of radionuclides. As regards the manufactured building materials only some types of bricks and chemical gypsum showed relatively high concentrations of radionuclides, while the rest of the bricks, tiles, plaster and accessory materials fulfilled the criteria set up in the OECD-NEA report 1979. (Author)

  5. Sustainable materials for low carbon buildings

    OpenAIRE

    B.V. Venkatarama Reddy

    2009-01-01

    This paper focuses on certain issues pertaining to energy, carbon emissions and sustainability of building construction with particular reference to the Indian construction industry. Use of sustainable natural materials in the past, related durability issues, and the implications of currently used energy-intensive materials on carbon emissions and sustainability are discussed. Some statistics on the Indian construction sector regarding materials produced in bulk quantities and the energy impl...

  6. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  7. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  8. Geoinformation techniques for the 3D visualisation of historic buildings and representation of a building's pathology

    Science.gov (United States)

    Tsilimantou, Elisavet; Delegou, Ekaterini; Ioannidis, Charalabos; Moropoulou, Antonia

    2016-08-01

    In this paper, the documentation of an historic building registered as Cultural Heritage asset is presented. The aim of the survey is to create a 3D geometric representation of a historic building and in accordance with multidisciplinary study extract useful information regarding the extent of degradation, constructions' durability etc. For the implementation of the survey, a combination of different types of acquisition technologies is used. The project focuses on the study of Villa Klonaridi, in Athens, Greece. For the complete documentation of the building, conventional topography, photogrammetric and laser scanning techniques is combined. Close range photogrammetric techniques are used for the acquisition of the façades and architectural details. One of the main objectives is the development of an accurate 3D model, where the photorealistic representation of the building is achieved, along with the decay pathology, historical phases and architectural components. In order to achieve a suitable graphical representation for the study of the material and decay patterns beyond the 2D representation, 3D modelling and additional information modelling is performed for comparative analysis. The study provides various conclusions regarding the scale of deterioration obtained by the 2D and 3D analysis respectively. Considering the variation in material and decay patterns, comparative results are obtained regarding the degradation of the building. Overall, the paper describes a process performed on a Historic Building, where the 3D digital acquisition of the monuments' structure is realized with the combination of close range surveying and laser scanning methods.

  9. Natural radioactivity for some Egyptian building material

    International Nuclear Information System (INIS)

    Eissa, M. F.; Mostafa, R. M.; Shahin, F.; Hassan, K. F.; Saleh, Z. A.; Yahia, A.

    2007-01-01

    Study of the radiation hazards for the building materials is interested in most international countries. Measurements of natural radioactivity was verified for some egyptian building materials to assess any possible radiological hazard to man by the use of such materials. The measurements for the level of natural radioactivity in the materials was determined by γ-ray spectrum using HP Ge detector. A track detector Cr-39 was used to measure the radon exhalation rate from these materials. The radon exhalation rates were found to vary from 2.83±0.86 to 41.57 ± 8.38 mBqm -2 h -1 for egyptian alabaster. The absorbed dose rate in air is lower than the international recommended value (55 n Gy h -1 ) for all test samples

  10. Salinization effects on the water sorption of porous building materials

    NARCIS (Netherlands)

    Brocken, H.J.P.; Rook, W.; Adan, O.C.G.

    1999-01-01

    The interaction of salt transport and moisture transport plays a crucial role in some deterioration mechanisms of porous building materials. For this reason it has been an important research subject for mant' years. Yet most research was still complicated by the lack of experimental techniques

  11. Durability of building materials and components

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    Durability of Building Materials and Components provides a collection of recent research works to contribute to the systematization and dissemination of knowledge related to the long-term performance and durability of construction and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of durability, service life prediction methodologies, the durability approach for historical and old buildings, asset and maintenance management and on the durability of materials, systems and components. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  12. International conventions for measuring radioactivity of building materials

    International Nuclear Information System (INIS)

    Tan Chenglong

    2004-01-01

    In buildings, whether civil or industrial, natural radioactivity always occurs at different degrees in the materials (main building materials, decorative materials). Concerns on radioactivity from building materials is unavoidable for human living and developing. As a member of WTO, China's measuring method of radioactivity for building materials, including radionuclides limitation for building materials, hazard evaluation system etc, should keep accordance with the international rules and conventions. (author)

  13. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  14. Human exposure to emissions from building materials

    DEFF Research Database (Denmark)

    Kjærgaard, S.; Hauschildt, P.; Pejtersen, Jan

    1999-01-01

    Objectives. Reactions to emissions from building matrials were studied in a climate chamber as part of an intervention study in an office building. New and existing flooring materials were compared with regard to comfort and health.Methods. Twenty subjects were exposed four times for six hours...... effects by linoleum and carpet used and that changing to vinyl flooring may reduce these....... respectively to clean air, to emissions from linoleum, from carpet, and from an alternative new vinyl. Measurements of objective and subjective effects were made.Results. Tear film stability decreased after exposure to linoleum. The nasal volume decreased near-significantly for all exposures. No effects were...

  15. Human exposure to emissions from building materials

    DEFF Research Database (Denmark)

    Kjærgaard, S.; Hauschildt, P.; Pejtersen, Jan

    1999-01-01

    Objectives. Reactions to emissions from building matrials were studied in a climate chamber as part of an intervention study in an office building. New and existing flooring materials were compared with regard to comfort and health.Methods. Twenty subjects were exposed four times for six hours...... respectively to clean air, to emissions from linoleum, from carpet, and from an alternative new vinyl. Measurements of objective and subjective effects were made.Results. Tear film stability decreased after exposure to linoleum. The nasal volume decreased near-significantly for all exposures. No effects were...

  16. Drying kinetics of some building materials

    Directory of Open Access Journals (Sweden)

    A. Moropoulou

    2005-06-01

    Full Text Available Moisture is one of the most deteriorating factors of buildings. The deteriorating effect of moisture occurs mainly during the drying phase, and not in the wetting phase. Appropriate parameters of the drying kinetics are required for the building materials. Environmental factors, such as air temperature, air humidity, and air velocity affect drying. An experimental air dryer of controlled drying air conditions was used to investigate the drying performance of 4 stone materials, 2 bricks and 7 plasters. Drying kinetics was examined at 4 air temperatures, 6 air humidities, and 3 air velocities. A first-order kinetics model was obtained, in which the drying time constant was a function of the drying conditions, and the equilibrium material moisture content was described by the Oswin equation. The parameters of the proposed model were found to be affected strongly by the material and the drying air conditions. The results obtained are very useful in selecting the appropriate plaster to protect existing historic buildings.

  17. Radioisotopes present in building materials of workplaces

    Science.gov (United States)

    Del Claro, F.; Paschuk, S. A.; Corrêa, J. N.; Denyak, V.; Kappke, J.; Perna, A. F. N.; Martins, M. R.; Santos, T. O.; Rocha, Z.; Schelin, H. R.

    2017-11-01

    The isotope 222Rn is responsible for approximately half of the effective annual dose received by the world population. The decay products of 222Rn interacting with the cells of biological tissue of lungs have very high probability to induce cancer. The present survey was focused in the evaluation of activity concentration of 222Rn and other radioisotopes related to the building materials at workplaces at Curitiba - Paraná State. For this purpose, the instant radon detector AlphaGUARD (Saphymo GmbH) was used to measure the average concentrations of 222Rn in building materials, which were also submitted to gamma spectrometry analysis for qualitative and quantitative evaluation of the radionuclides present in samples of sand, mortar, blue crushed stone (Gneissic rock), red crushed stone (Granite), concrete and red bricks. The main radionuclides evaluated by gamma spectrometry in building material samples were 238U/226Ra, 232Th and 40K. These measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology - Paraná in collaboration with the Center of Nuclear Technology Development (CDTN - CNEN). The results of the survey present the concentration values of 222Rn related to construction materials in a range from 427±40.52 Bq/m³ to 2053±90.06 Bq/m³. The results of gamma spectroscopy analysis show that specific activity values for the mentioned isotopes are similar to the results indicated by the literature. Nevertheless, the present survey is showing the need of further studies and indicates that building materials can contribute significantly to indoor concentration of 222Rn.

  18. Assessing sustainability of building materials in developing countries: the sustainable building materials index (SBMI)

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2014-10-01

    Full Text Available Measuring sustainability of building materials is complex. Despite this a wide range of different methodologies and systems have been developed. Most of these focus on environmental issues and are based on Life Cycle Assessment (LCA), or similar...

  19. Photon activation analysis on building materials

    International Nuclear Information System (INIS)

    Schulze, D.; Heller, W.; Kupsch, H.

    1988-01-01

    With regard to the planned construction of a new microtron, first investigations on raw materials for the aerated concrete production have been done to clear up the possibilities of photon activation analysis (PAA). Irradiations have been partly carried out on linear accelerators with a self-developed moveable activation equipment. PAA results of qualitative and quantitative elemental analysis are described. The detection of chlorine is important for studying the oversalting processes in buildings. (author)

  20. ICAN Computer Code Adapted for Building Materials

    Science.gov (United States)

    Murthy, Pappu L. N.

    1997-01-01

    The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.

  1. Material Database for Additive Manufacturing Techniques

    Science.gov (United States)

    2017-12-01

    TECHNICAL REPORT RDMR-WD-17-64 MATERIAL DATABASE FOR ADDITIVE MANUFACTURING TECHNIQUES Janice C. Booth Weapons Development...Final 4. TITLE AND SUBTITLE Material Database for Additive Manufacturing Techniques 5. FUNDING NUMBERS 6. AUTHOR(S) Janice C...ABSTRACT (Maximum 200 Words) This report details material testing and results for a set of materials used in additive manufacturing for the

  2. Radioactivity measurements in some building materials in Khartoum state

    International Nuclear Information System (INIS)

    Ibnaouf, Khalid Hassan; Ibnaouf, Omer Abdelrahim

    1998-07-01

    The specific activities of 2 38U , 2 32T h, 1 37C s were measured for some building materials used in Khartoum state using gamma-ray spectrometry technique. The specific activates of 226 R a and 232 T h were compared with different countries and found to be in a lowest range, except for sand samples. the annual dose was calculated using the criteria formula and found to be less that 0.15 cGY. (Author)

  3. Environmental impacts of adobe as a building material: The north cyprus traditional building case

    Directory of Open Access Journals (Sweden)

    A.P. Olukoya Obafemi

    2016-06-01

    Summarily, this paper posits that the successful fusion of traditional building materials such as Adobe and modern design construct will not only give birth to earth conscious building, but will also be energy efficient. Moreover, it will be a substitute building material the building industry can adopt at as a contributing solution to the omniscient global warming malady.

  4. Longevity of borehole and shaft sealing materials: characterization of ancient cement based building materials

    International Nuclear Information System (INIS)

    Langton, C.A.; Roy, D.M.

    1983-01-01

    Durability and long-term stability of cements in plasters, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate nuclear waste within deep geological repositories. The present study consists of an examination of selected ancient building materials and provides insights into the durability of certain ancient structures. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehold environment. Analyses were conducted by petrographic, SEM, chemical, and x-ray diffraction techniques. 7 references, 5 figures, 2 tables

  5. Collage Technique in Art Education and Contribution to the Skill of Students to Build Composition

    Directory of Open Access Journals (Sweden)

    Evrim ÇAĞLAYAN

    2018-01-01

    Full Text Available Collage technique has been used since the beginning of the 20th century in art of painting. Among its leading names, Picasso and Braque's technique has made it possible to use different materials besides traditional painting materials. This new technique, which emerged in art, took place in the process of art education with time. The aim of this research is to search the contribution of collage technique to the skill of students to build composition. In this research, in which the qualitative research approach is interiorized, composition of the students that they make by using the collage technique are presented to oppinions of the experts. Analysis of the obtained data showed that collage technique contributes the skill of students to build composition. In the results of research; it can be said that the collage technique developed the skills of students to build composition.

  6. Integrating Sustainable Construction Materials to Achieve Green Building

    OpenAIRE

    Abdelmajeed H. Kasassbeh; Omar M. Al-Omari; Mahmoud A. Suboh

    2015-01-01

    Green buildings integrate building materials and methods that promote environmental quality, economic vitality and social benefits through the design, construction and operation of the built environment. This study demonstrates potential actions including material selection that can be implemented to achieve green building. Also, we discuss the importance and environmental impact of sustainable material, the selection criteria of these materials and the different types of sustainable material...

  7. Non-destructive decontamination of building materials

    Science.gov (United States)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  8. Environmental impacts of adobe as a building material: The north cyprus traditional building case

    OpenAIRE

    A.P. Olukoya Obafemi; Sevinç Kurt

    2016-01-01

    The urgency of global climate change has drawn significant attention to the building industry over the last few years. Today, the building sector is responsible for the emission of about 23–40% of the world greenhouse gases. This is plausible owing to the various non environmental friendly materials used by modern building industry and the palpable contemporary design construct. Unlike modern buildings, traditional building materials are proven to be earth conscious and have nearly zero carbo...

  9. Associations between Fungal Species and Water-Damaged Building Materials

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Frisvad, Jens Christian; Søndergaard, Ib

    2011-01-01

    Fungal growth in damp or water-damaged buildings worldwide is an increasing problem, which has adverse effects on both the occupants and the buildings. Air sampling alone in moldy buildings does not reveal the full diversity of fungal species growing on building materials. One aim of this study...

  10. Flammability tests for regulation of building and construction materials

    Science.gov (United States)

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  11. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  12. Natural radionuclide level of building materials in Zhejiang province

    International Nuclear Information System (INIS)

    Qian Yuyan; Shao Qingxiang; Ren Yucui

    1984-01-01

    This paper reports on the concentrations and the relative radioactivity of 226 Ra, 232 Th, 40 K in 132 building material samples collected in Zhejiang Province. And the results of 16 different types of finished building material product were compared. The range of concentrations of radium-equivalent was found to be between 0.5 pCi/g and 8.3 pCi/g in all finished building material products except coal cinder bricks. Besides, a few kinds of raw building materials with very high radioactivity, such as color glaze powder, phosphorgypsum, iron powder, and bauxite, were noticed. These materials seem to be the contributory factors for the higher radionuclide level of finished products; therefore, the materials to be used in building should be selected and controlled beforehand. Meanwhile, the annual additional dose-equivalent to human body caused by common building materials in Zhejiang was also estimated according to their radioactivity levels. (author)

  13. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  14. Chemical physics analysis for building materials of Bangunan Panggung Drama Jalan Bandar Kuala Lumpur Malaysia: a case study

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Zuliskandar Ramli; Asmah Hj Yahaya

    2004-01-01

    The paper discussed the studies carried-out using XRD, x-ray diffraction technique on the historical building materials i.e. mortars, paints, concretes - Panggung Drama - old theatre stage building located at Jalan Bandar, Kuala Lumpur, Malaysia

  15. 29 CFR 779.335 - Sales of building materials for residential or farm building construction.

    Science.gov (United States)

    2010-07-01

    ... materials for residential or farm building construction. Section 3(n) of the Act, as amended, excludes from... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for residential or farm building construction. 779.335 Section 779.335 Labor Regulations Relating to Labor (Continued) WAGE AND...

  16. Buildings and Health. Educational campaign for healthy buildings. Educational material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In recent years health and comfort problems associated with the indoor climate have come to constitute a problem in Sweden. To come to grips with this a nationwide educational campaign on Buildings and Health is being run. It is directed to those involved in planning, project design, construction and management of buildings. The objective is to convey a body of knowledge to the many occupational and professional groups in the construction sector on how to avoid indoor climate problems in homes, schools, offices and other workplaces. The campaign is being run by the Swedish National Board of Housing and Planning and the Swedish Council for Building Research, in co-operation with various organizations and companies in the construction industry, and with municipalities and authorities. The knowledge which is being disseminated through the campaign is summarized in this compendium. figs., tabs.

  17. Radioactivity of buildings materials available in Slovakia

    Science.gov (United States)

    Singovszka, E.; Estokova, A.; Mitterpach, J.

    2017-10-01

    In the last decades building materials, both of natural origin and containing industrial by-products, have been shown to significantly contribute to the exposure of the population to natural radioactivity. As a matter of fact, neither the absorbed dose rate in air due to gamma radiation nor the radon activity concentration are negligible in closed environments. The soil and rocks of the earth contains substances which are naturally radioactive and provide natural radiation exposures. The most important radioactive elements which occur in the soil and in rocks are the long lived primordial isotopes of potassium (40K), uranium (238U) and thorium (232Th). Therefore, additional exposures have to be measured and compared with respect to the natural radiation exposure. Further, it is important to estimate the potential risk from radiation from the environment. The paper presents the results of mass activities of 226Ra, 232Th a 40K radionuclides in cement mortars with addition of silica fume. The gamma index was calculated as well.

  18. Luminescence dosimetry using building materials and personal objects.

    Science.gov (United States)

    Göksu, H Y; Bailiff, I K

    2006-01-01

    There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed.

  19. Moisture measurements in building materials with microwaves; Rakennusmateriaalien kosteusmittauksia mikroaalloilla

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, H.; Rudolph, M.; Schaurich, D.; Wiggenhauser, H. [VTT Building Technology, Espoo (Finland). Construction and Facility Management

    1998-12-01

    In order to assess the condition and evaluate the reliability of buildings and structures, it is essential to establish the moisture condition of the floor and other structural elements of the building. NDT-methods are increasingly being used for such moisture measurements because they do not cause any damage to the building under investigation. Microwave transmission is one of the NDT-methods and has been in use for several years. In this report, the applicability of the microwave method for measuring moisture in different building materials was investigated. This method has been successfully used at BAM for repeated moisture measurements in brick and sandstone material. This project also included other materials, such as concrete, sand, gravel, insulation and wood. At the same time, information was gathered about in situ moisture determination of building materials with a microwave moisture measuring system. The equipment used in this research has been developed at BAM over the last few years. The method requires two parallel boreholes in the specimen in which two microwave antennae can be moved. The moisture content in the material can be calculated from the microwave intensity transmitted between the two boreholes. Moisture profiles along the boreholes can be obtained by moving the antennae in steps along the length of the boreholes and taking measurements at each step. Special care must be taken while drilling the holes for the antennae, as this process must not affect the moisture condition in the specimen, and the boreholes must be made as parallel to each other as possible. The microwave frequencies used in the laboratory measurements ranged from 8 to 16,5 GHz in steps of 0,5 GHz. The diameters of the antennae were between 7 and 9 mm, and of the boreholes between 8 and 12 mm. Except for the concrete specimen, all the specimens were measured using plastic tubes in the boreholes. The moisture content measured by the microwave technique was verified by the

  20. Integrated ultrasonic and petrographical characterization of carbonate building materials

    Science.gov (United States)

    Ligas, Paola; Fais, Silvana; Cuccuru, Francesco

    2014-05-01

    This paper presents the application of non-destructive ultrasonic techniques in evaluating the conservation state and quality of monumental carbonate building materials. Ultrasonic methods are very effective in detecting the elastic characteristics of the materials and thus their mechanical behaviour. They are non-destructive and effective both for site and laboratory tests, though it should be pointed out that ultrasonic data interpretation is extremely complex, since elastic wave velocity heavily depends on moisture, heterogeneity, porosity and other physical properties of the materials. In our study, considering both the nature of the building materials and the constructive types of the investigated monuments, the ultrasonic investigation was carried out in low frequency ultrasonic range (24 kHz - 54 kHz) with the aim of detecting damages and degradation zones and assessing the alterability of the investigated stones by studying the propagation of the longitudinal ultrasonic pulses. In fact alterations in the materials generally cause a decrease in longitudinal pulse velocity values. Therefore starting from longitudinal velocity values the elasto-mechanical behaviour of the stone materials can be deduced. To this aim empirical and effective relations between longitudinal velocity and mechanical properties of the rocks can be used, by transferring the fundamental concepts of the studies of reservoir rocks in the framework of hydrocarbon research to the diagnostic process on stone materials. The ultrasonic measurements were performed both in laboratory and in situ using the Portable Ultrasonic Non-Destructive Digital Indicating Tester (PUNDIT) by C.N.S. Electronics LTD. A number of experimental sessions were carried out choosing different modalities of data acquisition. On the basis of the results of the laboratory measurements, an in situ ultrasonic survey on significant monuments, have been carried out. The ultrasonic measurements were integrated by a

  1. Environmental testing techniques for electronics and materials

    CERN Document Server

    Dummer, Geoffrey W A; Fry, D W; Higinbotham, W

    2013-01-01

    Environmental Testing Techniques for Electronics and Materials reviews environmental testing techniques for evaluating the performance of electronic equipment, components, and materials. Environmental test planning, test methods, and instrumentation are described, along with the general environmental conditions under which equipment must operate. This book is comprised of 15 chapters and begins by explaining why environmental testing is necessary and describing the environment in which electronics must operate. The next chapter considers how an environmental test plan is designed; the methods

  2. Durability of Building Materials Vol 4

    DEFF Research Database (Denmark)

    Howard, Rob

    1999-01-01

    Facility management has become another business management discipline and the transfer of building data from design and construction into management has been neglected. The needs of building managers need to be specified and standardised to aallow designers to provide data in the form required....

  3. Superhydrophobic Materials Technology-PVC Bonding Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

    2013-05-03

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  4. Gamma spectrometric method for measuring natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Toth, A.; Feher, I.

    1976-11-01

    The natural 232 Th, 226 Ra and 40 K concentrations of building materials were determined by gamma spectrometry. Altogether 121 samples from all over Hungary, one from each factory producing building materials, were examined. The presented data had preliminary character. The results were compared to the relating ones from abroad. (Sz.N.Z.)

  5. Measurement of radon exhalation rate in various building materials ...

    Indian Academy of Sciences (India)

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpurdistricts of ...

  6. Exploring actinide materials through synchrotron radiation techniques.

    Science.gov (United States)

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Pathology of Building Materials in Historic Buildings. Relationship Between Laboratory Testing and Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Lerma, C.

    2014-03-01

    Full Text Available Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystalli-zation or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials’ physical and chemical characteristics. However, they are unfavorable regarding the building’s integrity, and they are sometimes difficult to implement. This paper presents a technique using infrared thermography to analyze the existing pathology and has the advantage of being able to diagnose inaccessible areas in buildings. The results obtained by this technique have been compared with those obtained in the laboratory, in order to validate this study and thus to extrapolate the methodology to other buildings and materials.El estudio de edificios históricos requiere un análisis de la patología de los materiales de construcción empleados para poder definir su estado de conservación. Habitualmente nos encontramos con humedades por capilaridad, cristalización de sales o diferencias de densidad por deterioro. En ocasiones esto se lleva a cabo mediante ensayos destructivos que nos determinan las características físicas y químicas de los materiales, pero que resultan desfavorables respecto a la integridad del edificio, y en ocasiones resulta complejo llevarlos a cabo. Este trabajo presenta una técnica para analizar la patología existente mediante el empleo de termografía infrarroja con la ventaja de poder diagnosticar zonas de difícil acceso en los edificios. Para validar este estudio se han comparado los resultados obtenidos mediante esta técnica con los alcanzados en el laboratorio. De esta forma podemos extrapolar la metodología empleada a otros edificios y materiales.

  8. Radon remedial techniques in buildings - analysis of French actual cases

    International Nuclear Information System (INIS)

    Dupuis, M.

    2004-01-01

    The IRSN has compiled a collection of solutions from data provided by the various decentralised government services in 31 French departments. Contributors were asked to provide a description of the building, as well as details of measured radon levels, the type of reduction technique adopted and the cost. Illustrative layouts, technical drawings and photographs were also requested, when available. Of the cases recorded, 85% are establishments open to the public (schools (70%), city halls (4%) and combined city halls and school houses (26%)), 11% are houses and 4% industrial buildings. IRSN obtained 27 real cases of remedial techniques used. The data were presented in the form of fact sheets. The primary aim of this exercise was to illustrate each of the radon reduction techniques that can be used in the different building types (with basement, ground bearing slab, crawl space). This investigation not only enabled us to show that combining passive and active techniques reduces the operating cost of the installation, but above all that it considerably improves the efficiency. The passive technique reduces the amount of radon in the building and thus reduces the necessary ventilation rate, which directly affects the cost of operating the installation. For the 27 cases recorded, we noted:(a) the application of 7 passive techniques: sealing of floors and semi-buried walls, together with improved aeration by installing ventilation openings or ventilation strips in the windows. Radon concentrations were reduced on average by a factor of 4.7. No measurement in excess of 400 Bq.m -3 (the limit recommended by the French public authorities) was obtained following completion of the works; (b) the application of 15 active techniques: depressurization of the underlying ground, crawl space or basement and/or pressurization of the building. Radon concentrations were reduced on average by a factor of 13.8. Radon concentrations of over 400 Bq.m -3 were measured in only 4 cases

  9. Techniques and methods in nuclear materials traceability

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1996-01-01

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials

  10. Research Progress of Building Materials Used in Construction Land

    Science.gov (United States)

    Niu, Yan

    2018-01-01

    Construction land preparation is an important aspect of land remediation project. The research of materials in the process of land improvement is the foundation and the core. Therefore, it is necessary to study the materials that may be involved in the process of building land preparation. In this paper, the research on the construction materials such as recycled concrete, geosynthetics, soil stabilizers, soil improvers, building insulation materials and inorganic fibrous insulation materials, which are commonly used in construction sites, is reviewed and discussed in this paper. Land remediation project involved in the construction of land materials to provide reference.

  11. Material Connections: Steuart Building, St. Albans School.

    Science.gov (United States)

    Stephens, Suzanne

    1980-01-01

    The addition to the St. Albans campus in Washington, D.C., relates both to the style and the siting of the older "collegiate gothic" school nearby. The mixed-use building contains five classrooms, art and music spaces, and a student lounge. (Author/MLF)

  12. Investigations of radioactivity of building raw and materials

    International Nuclear Information System (INIS)

    Zak, A.; Biernacka, M.; Jagielak, J.; Lipinski, P.

    1993-01-01

    In 1980, Ministry of Building and Building Materials Industry, the Central Laboratory for Radiological Protection (abbreviated as CLRP), Ministry of Health and Social Welfare have agreed to issue the compulsory regulation of performing the validation of investigations of building raw and materials. Methods of measurement, apparatus and method of evaluation of results of the investigations have been recommended for the whole country. The following two criteria of usefulness of a building material for housing and public building have been accepted, f 1 = 0.00027 S K + 0.0027 S Ra0 .0043 S Th ≤ 1 (this one limit exposition of the whole body to gamma radiation); f 2 = S Ra ≤ 185 Bq/kg (this one limits exposition of lung epithelium to progeny of radon 222 Rn exhaled from the building walls). The CLRP and Institute of Building Technology supervise over correctness (agreement with the regulations) of operation of laboratories in Departments of Building Industry and Energy, organize training of the personnel and collect results of the measurements. From 1980 till 1991, results of measurements of 6550 samples from 550 localities were collected in computer data base organized in CLRP. In this paper, results of examination of selected groups of building raw and materials have been presented. Annual average values of the qualification coefficients f 1 and f 2 have been also analyzed. (author). 7 refs, 13 figs, 2 tabs

  13. Evaluation of Building Projects Using Earned Value Technique ...

    African Journals Online (AJOL)

    This study evaluates building construction projects using the Earned Value Analysis technique, the Experimental Approach, and Value Concept Analysis. The aim was to compare the cost incurred for an identified amount of work done on a project with the cost budgeted for the same work. The results were used to calculate ...

  14. Sustainability of earth building materials - Environmental product declarations as an instrument of competition in building material industry

    Directory of Open Access Journals (Sweden)

    Horst Schroeder

    2015-12-01

    Full Text Available The evaluation of the building process in terms of their environmental impact in all life cycle phases of a building leads to the key principle of sustainable building: the analysis of the life cycle of the materials used in a building. The goal of this analysis is to reduce waste and keep the environmental impact as low as possible by “closing” the cycle. During an inventory, the entire life cycle is assessed. This includes the sourcing and extracting of the raw material, the use of the raw material to produce building products, elements and structures, the use in finished buildings including emission of pollutants, decay and maintenance, and, finally, the demolition of the building and the recycling of the demolition materials. Transportation between the individual phases as well as production-related material and energy flows are also included in this evaluation. Several European and national norms and regulations define core rules and a special instrument for the evaluation of the sustainable quality of a building product based on a quantitative analysis of the life cycle of the materials used in a building: the Environmental Product Declaration EPD. These documents are voluntary standards, commitments or guarantees for building products. They are provided by producers, organizations and quality assurance associations in order to establish the “environmental performance” of buildings in the form of a certificate. Such declarations must fully include all phases of the life cycle of a product by describing the environmental impact during production and use as well as possible health hazards for the users. Until now, EPDs for earth building products do not exist. This paper will give current information about a project for developing EPDs for earth mortars and earth blocks started by the German Dachverband Lehm e.V. (DVL.

  15. Sustainable materials in building and architecture

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2012-01-01

    Full Text Available of heavy and bulky materials and opened up the era of prefabricated elements and product catalogues. At the same time, new materials were invented. Notwithstanding this, timber and timber-derived products, masonry units of clay and cement, concrete, steel...

  16. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  17. Hyphenated analytical techniques for materials characterisation

    Science.gov (United States)

    Armstrong, Gordon; Kailas, Lekshmi

    2017-09-01

    This topical review will provide a survey of the current state of the art in ‘hyphenated’ techniques for characterisation of bulk materials, surface, and interfaces, whereby two or more analytical methods investigating different properties are applied simultaneously to the same sample to better characterise the sample than can be achieved by conducting separate analyses in series using different instruments. It is intended for final year undergraduates and recent graduates, who may have some background knowledge of standard analytical techniques, but are not familiar with ‘hyphenated’ techniques or hybrid instrumentation. The review will begin by defining ‘complementary’, ‘hybrid’ and ‘hyphenated’ techniques, as there is not a broad consensus among analytical scientists as to what each term means. The motivating factors driving increased development of hyphenated analytical methods will also be discussed. This introduction will conclude with a brief discussion of gas chromatography-mass spectroscopy and energy dispersive x-ray analysis in electron microscopy as two examples, in the context that combining complementary techniques for chemical analysis were among the earliest examples of hyphenated characterisation methods. The emphasis of the main review will be on techniques which are sufficiently well-established that the instrumentation is commercially available, to examine physical properties including physical, mechanical, electrical and thermal, in addition to variations in composition, rather than methods solely to identify and quantify chemical species. Therefore, the proposed topical review will address three broad categories of techniques that the reader may expect to encounter in a well-equipped materials characterisation laboratory: microscopy based techniques, scanning probe-based techniques, and thermal analysis based techniques. Examples drawn from recent literature, and a concluding case study, will be used to explain the

  18. Sustainability of earth building materials - Environmental product declarations as an instrument of competition in building material industry

    OpenAIRE

    Schroeder, Horst; Lemke, Manfred

    2015-01-01

    [EN] The evaluation of the building process in terms of their environmental impact in all life cycle phases of a building leads to the key principle of sustainable building: the analysis of the life cycle of the materials used in a building. The goal of this analysis is to reduce waste and keep the environmental impact as low as possible by “closing” the cycle. During an inventory, the entire life cycle is assessed. This includes the sourcing and extracting of the raw material, the use of the...

  19. Earth as Building Material – an overview of RILEM activities and recent Innovations in Geotechnics

    Directory of Open Access Journals (Sweden)

    Vyncke Johan

    2018-01-01

    Full Text Available This paper presents an overview of the different earth building techniques, the latest innovations and the normative aspects. The oldest man made earth constructions known to exist date back to 10 000 BC. Since then, earth has remained a popular building material throughout history. With time, different techniques evolved, starting from sundried adobe blocks to cob constructions, rammed earth walls and compressed earth bricks. Today these techniques are still being optimized and alternative binders, specifically adapted admixtures and surface treatments are being developed. Even though nearly one third of the world’s population lives in an earth construction, few specific building standards and testing methods exist. Many of the tests used today are based on tests for concrete and thus do not take into account the complex nature of earth constructions, such as their sensitivity to water. RILEM, the union of Laboratories and Experts in Construction Materials, Systems and Structures, set up a new Technical Committee in 2016: TC TCE (Testing and Characterisation of Earth-based building materials and elements. This committee, consisting of an international group of experts on the topic, aim to define testing procedures for earth as a building construction material. To end with, this paper also gives a short introduction to “Deep soil mixing”, an “earth” building technique dedicated to geotechnical engineering.

  20. Sensory ratings of emissions from nontraditional building materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Peuhkuri, Ruut

    2016-01-01

    Twenty-five subjects assessed the emissions from building materials: linoleum, cement mortar with and without fly ash, gypsum board and tiles with air cleaning properties and natural organic sheep wool. The ratings were made at different material loadings and in combinations with linoleum....... The results showed that except for natural organic product, increasing loading and combining materials with linoleum increased intensity of odor....

  1. Assessment of the material properties of a fire damaged building

    OpenAIRE

    Oladipupo OLOMO; Olufikayo ADERINLEWO; Moses TANIMOLA; Silvana CROOPE

    2012-01-01

    This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive) tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concr...

  2. Radiological evaluation of building materials used in Malumfashi ...

    African Journals Online (AJOL)

    ... in building materials (sand, cement, blocks, granite, and paints) used in the construction of buildings in Malumfashi local Government area of Katsina state, Nigeria were determined by means of a gamma-ray spectrometry system using Sodium Iodide thallium activated (NaI(Tl)) detector in a low background configuration.

  3. Assessment of the Effectiveness of Local Building Materials used for ...

    African Journals Online (AJOL)

    The study was carried out to assess the effectiveness of the use of Local building materials used for building construction in Meikunkele Local Government Area of Niger State. To achieve this, two research questions and two hypotheses were formulated to guide the study. A survey research design was used for the study.

  4. Building Investigation: Material or Structural Performance

    Directory of Open Access Journals (Sweden)

    Yusof M.Z.

    2014-03-01

    Full Text Available Structures such as roof trusses will not suddenly collapse without ample warning such as significant deflection, tilting etc. if the designer manages to avoid the cause of structural failure at the material level and the structural level. This paper outlines some principles and procedures of PDCA circle and QC tools which can show some clues of structural problems in terms of material or structural performance

  5. Material characterization models and test methods for historic building materials

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Peuhkuri, Ruut Hannele; Møller, Eva B.

    2017-01-01

    Predictions of long term hygrothermal performance can be assessed by dynamic hygrothermal simulations, in which material parameters are crucial input. Material parameters for especially historic materials are often unknown; therefore, there is a need to determine important parameters, and simple...... decisive parameters through simple testing of interrelated parameters that are easier to determine....

  6. Pozzolanic mortars based on waste building materials for the restoration of historical buildings

    Directory of Open Access Journals (Sweden)

    Pašalić Snežana

    2012-01-01

    Full Text Available The environmental aspects of waste building materials have been of great interest in recent years. For the sector of building materials this means increased recycling, reduction of energy consumption and natural resources preservation. This also presents an important contribution in the field of environmental protection. The work deals with the development of pozzolanic mortars made of waste building materials, ground red structure bricks and raw clay materials of inadequate characteristics for the production of ceramic materials. Based on the results of historical mortar characterizations, a group of mortars with specific characteristics (satisfied durability, good compatibility with a historical mortar was prepared. The potential of the waste materials and domestic clay materials application in the production of pozzolanic mortars was confirmed. In addition to the waste management, pozzolanic mortars were designed taking into account the existing conventions in the area of culture heritage.

  7. People, planet and profit: Unintended consequences of legacy building materials.

    Science.gov (United States)

    Zimmer, Anthony T; Ha, HakSoo

    2017-12-15

    Although an explosion of new building materials are being introduced into today's market, adequate up-front research into their chemical and physical properties as well as their potential health and environmental consequences is lacking. History has provided us with several examples where building materials were broadly deployed into society only to find that health and environmental problems resulted in unintended sustainability consequences. In the following paper, we use lead and asbestos as legacy building materials to show their similar historical trends and sustainability consequences. Our research findings show unintended consequences such as: increased remediation and litigation costs; adverse health effects; offshoring of related industries; and impediments to urban revitalization. As numerous new building materials enter today's market, another building material may have already been deployed, representing the next "asbestos." This paper also proposes an alternative methodology that can be applied in a cost-effective way into existing and upcoming building materials, to minimize and prevent potential unintended consequences and create a pathway for sustainable communities. For instance, our findings show that this proposed methodology could have prevented the unintended incurred sustainability costs of approximately $272-$359 billion by investing roughly $24 million in constant 2014 U.S. dollars on up-front research into lead and asbestos. Published by Elsevier Ltd.

  8. Radioactivity of natural and artificial building materials - a comparative study.

    Science.gov (United States)

    Szabó, Zs; Völgyesi, P; Nagy, H É; Szabó, Cs; Kis, Z; Csorba, O

    2013-04-01

    Building materials and their additives contain radioactive isotopes, which can increase both external and internal radioactive exposures of humans. In this study Hungarian natural (adobe) and artificial (brick, concrete, coal slag, coal slag concrete and gas silicate) building materials were examined. We qualified 40 samples based on their radium equivalent, activity concentration, external hazard and internal hazard indices and the determined threshold values of these parameters. Absorbed dose rate and annual effective dose for inhabitants living in buildings made of these building materials were also evaluated. The calculations are based on (226)Ra, (232)Th and (40)K activity concentrations determined by gamma-ray spectrometry. Measured radionuclide concentrations and hence, calculated indices and doses of artificial building materials show a rather disparate distribution compared to adobes. The studied coal slag samples among the artificial building materials have elevated (226)Ra content. Natural, i.e. adobe and also brick samples contain higher amount of (40)K compared to other artificial building materials. Correlation coefficients among radionuclide concentrations are consistent with the values in the literature and connected to the natural geochemical behavior of U, Th and K elements. Seven samples (coal slag and coal slag concrete) exceed any of the threshold values of the calculated hazard indices, however only three of them are considered to be risky to use according to the fact that the building material was used in bulk amount or in restricted usage. It is shown, that using different indices can lead to different conclusions; hence we recommend considering more of the indices at the same time when building materials are studied. Additionally, adding two times their statistical uncertainties to their values before comparing to thresholds should be considered for providing a more conservative qualification. We have defined radon hazard portion to point

  9. The analysis of radon diffusion through the buildings materials

    International Nuclear Information System (INIS)

    Grujic, S.; Radukin-Kosanovic, A.; Bikit, I.; Mrdja, D.; Forkapic, S.

    2009-01-01

    Since people most of the time spent indoors it is of great importance to analyse the radon diffusion through different types of materials, in order to prevent the increase of its concentration in the interior of buildings. The paper examined six different types of materials used in construction, mainly in the insulating purposes, in order to determine the material, or a combination of appropriate type and thickness of material which have a smaller value of diffusion coefficient of radon. (author) [sr

  10. BUILDING MATERIAL SUPPORT FOR TEACHING OF MATERIALS SCIENCE

    Directory of Open Access Journals (Sweden)

    Jesús García-Lira

    2015-07-01

    Full Text Available The present work shows a number of materials that have processor is presented to facilitate and enhance the learning process of the subject of materials science by students who are studying mechanical engineering, with the always present possibility of use in other common or related field. These materials can be accessible to students in the virtual field, as new more active and participatory teaching methodologies focused on learning are presented.

  11. Corrosion Detection of Reinforcement of Building Materials with Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Jia Peng

    2017-06-01

    Full Text Available The extensive use of reinforced materials in the construction industry has raised increased concerns about their safety and durability, while corrosion detection of steel materials is becoming increasingly important. For the scientific management, timely repair and health monitoring of construction materials, as well as to ensure construction safety and prevent accidents, this paper investigates corrosion detection on construction materials based on piezoelectric sensors. At present, the commonly used corrosion detection methods include physical and electrochemical methods, but there are shortcomings such as large equipment area, low detection frequency, and complex operation. In this study an improved piezoelectric ultrasonic sensor was designed, which could not only detect the internal defects of buildings while not causing structural damage, but also realize continuous detection and enable qualitative and quantitative assessment. Corrosion detection of reinforced building materials with piezoelectric sensors is quick and accurate, which can find hidden dangers and provide a reliable basis for the safety of the buildings.

  12. The use of portable equipment for the activity concentration index determination of building materials: method validation and survey of building materials on the Belgian market

    International Nuclear Information System (INIS)

    Stals, M.; Verhoeven, S.; Bruggeman, M.; Pellens, V.; Schroeyers, W.; Schreurs, S.

    2014-01-01

    The Euratom BSS requires that in the near future (2015) the building materials for application in dwellings or buildings such as offices or workshops are screened for NORM nuclides. The screening tool is the activity concentration index (ACI). Therefore it is expected that a large number of building materials will be screened for NORM and thus require ACI determination. Nowadays, the proposed standard for determination of building material ACI is a laboratory analyses technique with high purity germanium spectrometry and 21 days equilibrium delay. In this paper, the B-NORM method for determination of building material ACI is assessed as a faster method that can be performed on-site, alternative to the aforementioned standard method. The B-NORM method utilizes a LaBr 3 (Ce) scintillation probe to obtain the spectral data. Commercially available software was applied to comprehensively take into account the factors determining the counting efficiency. The ACI was determined by interpreting the gamma spectrum from 226 Ra and its progeny; 232 Th progeny and 40 K. In order to assess the accuracy of the B-NORM method, a large selection of samples was analyzed by a certified laboratory and the results were compared with the B-NORM results. The results obtained with the B-NORM method were in good correlation with the results obtained by the certified laboratory, indicating that the B-NORM method is an appropriate screening method to assess building material ACI. The B-NORM method was applied to analyze more than 120 building materials on the Belgian market. No building materials that exceed the proposed reference level of 1 mSv/year were encountered. -- Highlights: • Many building materials will have to be tested for NORM activity concentrations. • An on-site NORM analysis method has been developed and validated. • Over 120 building materials on the Belgian market have been analyzed with this method. • The Euratom BSS reference level of 1 mSv/year excess dose will

  13. Susceptibility of green and conventional building materials to microbial growth.

    Science.gov (United States)

    Mensah-Attipoe, J; Reponen, T; Salmela, A; Veijalainen, A-M; Pasanen, P

    2015-06-01

    Green building materials are becoming more popular. However, little is known about their ability to support or limit microbial growth. The growth of fungi was evaluated on five building materials. Two green, two conventional building materials and wood as a positive control were selected. The materials were inoculated with Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum, in the absence and presence of house dust. Microbial growth was assessed at four different time points by cultivation and determining fungal biomass using the N-acetylhexosaminidase (NAHA) enzyme assay. No clear differences were seen between green and conventional building materials in their susceptibility to support microbial growth. The presence of dust, an external source of nutrients, promoted growth of all the fungal species similarly on green and conventional materials. The results also showed a correlation coefficient ranging from 0.81 to 0.88 between NAHA activity and culturable counts. The results suggest that the growth of microbes on a material surface depends on the availability of organic matter rather than the classification of the material as green or conventional. NAHA activity and culturability correlated well indicating that the two methods used in the experiments gave similar trends for the growth of fungi on material surfaces. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  15. Glass-ceramics as building materials

    Directory of Open Access Journals (Sweden)

    Rincón, J. María

    1996-06-01

    Full Text Available Glass-ceramics are materials composed as any ceramic material by several crystalline phases embedded in an amorphous or vitreous matrix, but their manufacture process implies the controlled devitrification or nucleation and growth of phases from an original glass. The original shape of the original glass molded by conventional methods is carried out by using pressing and sintering followed by crystallization steps. By both processing routes are obtained transparent and/or opaque materials, with or without colours, which after adequate control and design of composition and microstructure have numerous domestic and architectonic applications. They can be used as pavements or wall coatings and in various decorative elements. In fact, their use is very extensive in east-European, American and Asian (Japan countries in constructions for covering large surfaces. The greater advantage of the glass-ceramic process is that due to the own process of vitrification allows the incorporation in their structure of a wide range of compositions from mining and industrial residues, such as red muds, ashes, fangos, scraps... which they can in this way not only be inertizated, but furthermore it be converted without risk for the environment into products useful in construction applications, offering to the architect and to the decorator a new range of "eco-materials" with multiple complementary possibilities of the already existing architectural materials in the market.

    Los productos o materiales vitrocerámicos se componen, como cualquier material de tipo cerámico, de una o varias fases cristalinas embebidas en una matriz amorfa o vítrea, pero cuyo proceso de fabricación implica la desvitrificación o nucleación y cristalización controlada de un vidrio original o de partida. En el proceso de obtención de estos materiales se puede conservar la forma original conferida al vidrio de partida por los métodos convencionales de moldeado de vidrios

  16. Mould growth on building materials under low water activities

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Holm, G.; Uttrup, L.P.

    2004-01-01

    The influence of relative humidity (RH) and temperature on growth and metabolism of eight microfungi on 21 different types of building material was investigated. The fungi were applied as a dry mixture to the materials, which were incubated at 5degreesC, 10degreesC, 20degreesC and 25degreesC at t...

  17. Com-scan techniques for material evaluation

    International Nuclear Information System (INIS)

    Jayakumar, T.K.; Naik, A.D.

    1996-01-01

    Presently a variety of products at various stages of production are being tested using NDT methods for ensuring their quality. The conventional NDT methods such as RT, UT, PT, MPT along with acoustic emission techniques are often employed for the purpose. However, the ever increasing demands for a comprehensive quality assurance of products necessitates newer avenues in testing methods to overcome certain inadequacies of conventional testing. This paper proposes Compton back-scatter technique as an additional alternative NDT tool for various measurements. When the radiation strikes material a small percentage of incident radiation scatters back with reduced energy. The back-scattered radiation is picked up by a digital backscatter gauge and analysed. The paper discusses experimental work carried out at the laboratory consisting of parameter evaluation, source detector geometry, back-scatter response for material, area effects, thickness and blockage measurements. The paper briefly discusses on-stream measurements carried out with the above experimental gauge. The paper deals with selection and comparison of measurements with those of ultrasonics. It also discusses the advantages of the radiation back-scatter testing. The paper recommends Com-scan back-scatter technique as a supplementary tool along with conventional testing. (author)

  18. Survey and specimen taking of building materials which are destined for house building in The Netherlands

    International Nuclear Information System (INIS)

    Boer, J.F. den

    1985-11-01

    This investigation deals with the following items: (a) Some building materials cause an increase of the natural radioactive radiation level indoors, especially building materials containing a certain kind of phosphogypsum. The radiation level depends among other things on the applied quantity of building materials and on the location in the building (walls, floors or roofs, etc.). The soil underneath dwellings can also be an important radiation source. The report gives a listing of the kind of building materials used for dwellings in The Netherlands, both present ones as well as possible future ones. A survey of the quantities applied and the location of application in dwellings is also given. The different types of soil underneath the dwellings are discussed. (b) Samples were collected from various factories, dealers and other sources (both present and future samples) of the most important building materials and components thereof. The samples were handed over to Division of Technology for Society TNO, Radiological Service TNO and Netherland Energy Research Foundation, in order to measure the activity concentrations and the radon exhalations. A listing of the samples is given. (Auth.)

  19. Material characterization models and test methods for historic building materials

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Peuhkuri, Ruut Hannele; Møller, Eva B.

    2017-01-01

    ways for estimation of these. A case study of a brick wall was used to create and validate a hygrothermal simulation model; a parameter study with five different parameters was performed on this model to determine decisive parameters. Furthermore, a clustering technique has been proposed to estimate...

  20. The cob building technique. Past, present and future

    Directory of Open Access Journals (Sweden)

    Watson, L.

    2011-09-01

    Full Text Available Cob, an ancient earth building technique has given rise to hundreds of thousand buildings across Europe for centuries. It has a very distinct appearance of substantial organic walls punctuated with small apertures whose windows and doors are set back to create deep reveals. Traditionally protected by thatched roofs, these vernacular buildings make an important contribution to local identity. Cob buildings still survive and continue to be occupied in many European countries including France, Italy, Germany, Belgium, Czech Republic and England (1. Following a description of the cob technique, this paper will present a brief overview of the history of cob in Devon, a county in South West England. Recent English cob buildings will be introduced with a discussion of the potential of this earth building technique for future architecture.

    A través de Europa, cientos de miles de edificios han sido construidos por un método de construcción antiguo, el uso del cob. Estos edificios tienen una apariencia característica de muros orgánicos salpicados con pequeñas aperturas cuyas puertas y ventanas se rehunden para crear profundos relieves. Tradicionalmente protegidos por techos de paja, en estos edificios vernáculos está una parte importante de la identidad local. En muchos países europeos todavía se encuentran edificios hechos de cob, como Francia, Italia, Alemania, Bélgica, República Checa, e Inglaterra (1. Después de una descripción sobre el uso de cob, este artículo presentará una historia breve del uso de cob en Devon, una región en el suroeste de Inglaterra. También introducirá ejemplos de edificios modernos de cob, con una discusión sobre el potencial de usar este método de construcción en proyectos arquitectónicos en el futuro.

  1. Natural radioactivity of granites used as building materials

    International Nuclear Information System (INIS)

    Pavlidou, S.; Koroneos, A.; Papastefanou, C.; Christofides, G.; Stoulos, S.; Vavelides, M.

    2006-01-01

    Sixteen kinds of different granites, used as building materials, imported to Greece mainly from Spain and Brazil, were sampled and their natural radioactivity was measured by gamma-ray spectrometry. The activity concentrations of 238 U, 226 Ra, 232 Th and 4 K of granites are presented and compared to those of other building materials as well as other granite types used all over the world. In order to assess the radiological impact from the granites investigated, the absorbed and the effective doses were determined. Although the annual effective dose is higher than the limit of 1 mSv y -1 for some studied granites, they could be used safely as building materials, considering that their contribution in most of the house constructions is very low. An attempt to correlate the relatively high level of natural radioactivity, shown by some of the granites, with their constituent radioactive minerals and their chemical composition, was also made

  2. Study of the factors affecting radon diffusion through building materials

    International Nuclear Information System (INIS)

    Chauhan, R.P.

    2011-01-01

    Radon appears mainly by diffusion processes from the point of origin following - decay of 226 Ra in underground soil and building materials used, in the construction of floors, walls, and ceilings. The diffusion of radon in dwellings is a process determined by the radon concentration gradient across the building material structure and can be a significant contributor to indoor radon inflow. Radon can originate from the deeply buried deposit beneath homes and can migrate to the surface of earth. Radon diffusion and transport through different media is a complex process and is affected by several factors. It is well known that for building construction materials the porosity, permeability and the diffusion coefficient are the parameters, which can quantify the materials capability to hinder the flow of radon soil gas. An increase in porosity will provide more air space within the material for radon to travel, thus reducing its resistance to radon transport. The permeability of material describes its ability to act as a barrier to gas movement when a pressure gradient exists across it and is closely related to the porosity of material. The radon diffusion coefficient of a material quantifies the ability of radon gas to move through it when a concentration gradient is the driving force. This parameter depends upon the porosity and permeability of the medium. As diffusion process is the major contributor to indoor levels, therefore, the factors affecting the diffusion process need to be kept in consideration. Keeping this in mind the experimental arrangements have been made for control study of radon diffusion through some building materials to observe the effects of different factors viz.; compaction, grain size, temperature, humidity and the mixing of these materials etc. For the present study alpha sensitive LR-115 type II solid-state nuclear track detectors (SSNTDs) have been used for the recording of alpha tracks caused by radon gas after its diffusion through the

  3. Updated database on natural radioactivity in building materials in Europe.

    Science.gov (United States)

    Trevisi, R; Leonardi, F; Risica, S; Nuccetelli, C

    2018-07-01

    The paper presents the latest collection of activity concentration data of natural radionuclides ( 226 Ra, 232 Th and 4  K) in building materials. This database contains about 24200 samples of both bulk materials and their constituents (bricks, concrete, cement, aggregates) and superficial materials used in most European Union Member States and some European countries. This collection also includes radiological information about some NORM residues and by-products (by-product gypsum, metallurgical slags, fly and bottom ashes and red mud) which can be of radiological concern if recycled in building materials as secondary raw materials. Moreover, radon emanation and radon exhalation rate data are reported for bricks and concrete. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. An Overview of the Use of Absolute Dating Techniques in Ancient Construction Materials

    Directory of Open Access Journals (Sweden)

    Jorge Sanjurjo-Sánchez

    2016-04-01

    Full Text Available The reconstruction of the chronology of historical buildings is a tricky issue, as usually there are not historical documents that allow the assessment of construction phases, and some materials are hardly reliable for the use of dating techniques (e.g., stone. However, in the last two decades, important advances on the use of absolute dating methods on building materials have increased the possibilities of reconstructing building chronologies, although some advances are still scarcely known among archaeologists and architects. Recent studies performed on several kinds of mortars, fired bricks, mud-bricks, and even stone surfaces have shown that it is possible to date them. Both radiocarbon and luminescence dating have been the most frequently used techniques but others such as archaeomagnetism can also be used in some cases. This paper intends to give an overview of the recent achievements on the use of absolute dating techniques for building materials.

  5. CONTRIBUTION TO THE POTENTIAL OF USING FRP MATERIALS IN THE REHABILITATION AND STABILIZATION OF TIMBERED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Tomáš Čejka

    2015-12-01

    Full Text Available Wooden log, timbered perimeter and interior walls ranked among the most common building constructions used from the Early Middle Ages. In most cases, the local natural resources, i.e. wood, clay, straw and stone, were used for building houses with wooden framing. This article outlines typical defects and failures of timbered houses, “classic” techniques for the rehabilitation of these defects and failures indicating the potential of using composite materials based on high- strength fibres and epoxy resin in the rehabilitation and strengthening of timbered buildings.

  6. Phase Change Humidity Control Material and its Application in Buildings

    DEFF Research Database (Denmark)

    Wu, Zhimin; Qin, Menghao; Chen, Zhi

    2017-01-01

    The synthesis of novel phase change humidity control material (PCHCM) was achieved by using composite microencapsulated phase change material (MPCM) and hygroscopic material. The PCHCM composite can moderate indoor hygrothermal fluctuations by absorbing or releasing both heat and moisture. The MPCM...... temperature and relative humidity, thus own a potential energy saving rate of 18% for the test building in research. The overall hygrothermal performance of PCHCM is better than the simple combination of two separate layers of PCM and hygroscopic materials. The PCHCM could be used as an innovative passive...

  7. 222Rn CONCENTRATION LEVEL MEASUREMENTS AND EXHALATION RATES IN DIFFERENT TYPES OF BUILDING MATERIALS USED IN PALESTINIAN BUILDINGS

    International Nuclear Information System (INIS)

    DABAYNEH, K.M.

    2008-01-01

    The values of concentration levels, surface and mass exhalation rates of radon for various types of building materials used in Palestinian buildings were measured by using the passive techniques. Twelve fabricated building materials samples have been selected randomly in this study, each of which have different masses (25, 50, 75 and l00 g) and prepared in plastic cups sealed to passive integrated dosimeters containing CR-39 detectors. The average concentration levels of 222Rn in these samples were found to range from 66 Bq/m3 for limestone to 246 Bq/m3 for granite samples. The surface exhalation rates in the selected samples were found to vary from 37 to 146 mBq/m2.hr while the mass exhalation rate values varied from 1.8 to 7.2 mBq/kg.hr, respectively. The radon exhalation rate from the building materials was found to be smaller than that of soil. These calculated exhalation rates were found to be consistent with the measured data obtained for other countries

  8. Proceedings of the workshop on cool building materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  9. Techniques for building timing-predictable embedded systems

    CERN Document Server

    Guan, Nan

    2016-01-01

    This book describes state-of-the-art techniques for designing real-time computer systems. The author shows how to estimate precisely the effect of cache architecture on the execution time of a program, how to dispatch workload on multicore processors to optimize resources, while meeting deadline constraints, and how to use closed-form mathematical approaches to characterize highly variable workloads and their interaction in a networked environment. Readers will learn how to deal with unpredictable timing behaviors of computer systems on different levels of system granularity and abstraction. Introduces promising techniques for dealing with challenges associated with deploying real-time systems on multicore platforms; Provides a complete picture of building timing-predictable computer systems, at the program level, component level and system level; Leverages different levels of abstraction to deal with the complexity of the analysis.

  10. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  11. Use of traditional material in farm buildings for a sustainable rural environment

    OpenAIRE

    Pietro Picuno

    2016-01-01

    The recent increase in the sensitivity about the concept of sustainable development is stimulating the valorisation of the locally available material for agricultural construction, both for housing purpose and for some single components. This traditional building technique has indeed interesting consequences on the rural landscape perception – since the color is similar to the countryside surroundings – as well as on the agricultural environment – this material being, at the end of its useful...

  12. Determination of Natural Radioactivity in Building Materials with Gamma Spectrometry

    International Nuclear Information System (INIS)

    Turki, Faten

    2010-01-01

    In the setting of this work, the natural radioactivity of building materials used in Tunisia has been measured by gamma spectrometry. These products have been ground and dried at 100 degree for 12 h. Then, they have been homogenized, weighed and finally conditioned during 23 days in order to reach the radioactive equilibrium. The measures' results proved that all building materials studied except bauxite and the ESC clay, possess doses lower than the acceptable limit (1 mSv.an-1). However, the possibility of reinforcement of the natural radioactivity in some industry of building can exist. To insure that the cement, the most used in the world, don't present any radiological risk on the workers' health, a survey has been made in the factory - les Ciments de Bizerte - about its manufacture's process. The results of this survey showed that this product can be considered like a healthy product.

  13. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  14. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  15. Determination of fungal spore release from wet building materials

    DEFF Research Database (Denmark)

    Kildesø, J.; Wurtz, H.; Nielsen, Kristian Fog

    2003-01-01

    The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species...

  16. Radon exhalation studies in building materials using solid-state ...

    Indian Academy of Sciences (India)

    Indoor radon has been recognized as one of the health hazards for mankind. Building materials constitute the second most ... attached to aerosols present in ambient air, causes significant radiological hazard to human lungs. Radon appears mainly by .... from the safety point of view. From table 1 it is evident that the radon ...

  17. Measurement of radon exhalation rate in various building materials ...

    Indian Academy of Sciences (India)

    In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq ...

  18. Contribution of fibre-cement building material to environmental ...

    African Journals Online (AJOL)

    In this work, the natural radionuclide contents of some fibre-cement building material widely used in Nigeria were measured by means of gamma-ray spectrometry using an HPGe detector. A total of 20 samples obtained from five batches of the product were analysed. The mean values of 226Ra, 232Th and 40K ...

  19. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  20. Growing and testing mycelium bricks as building insulation materials

    Science.gov (United States)

    Xing, Yangang; Brewer, Matthew; El-Gharabawy, Hoda; Griffith, Gareth; Jones, Phil

    2018-02-01

    In order to improve energy performance of buildings, insulation materials (such as mineral glass and rock wools, or fossil fuel-based plastic foams) are being used in increasing quantities, which may lead to potential problem with materials depletions and landfill disposal. One sustainable solution suggested is the use of bio-based, biodegradable materials. A number of attempts have been made to develop biomaterials, such as sheep wood, hemcrete or recycled papers. In this paper, a novel type of bio insulation materials - mycelium is examined. The aim is to produce mycelium materials that could be used as insulations. The bio-based material was required to have properties that matched existing alternatives, such as expanded polystyrene, in terms of physical and mechanical characteristics but with an enhanced level of biodegradability. The testing data showed mycelium bricks exhibited good thermal performance. Future work is planned to improve growing process and thermal performance of the mycelium bricks.

  1. Materials, used in historical buildings, analysis methods and solutions puroposals

    Directory of Open Access Journals (Sweden)

    Döndüren M.Sami

    2017-01-01

    Full Text Available Most of historical buildings are built with pressure principle and have the characteristics of masonry structures. Therefore, the structure components of buildings are constituted bearing walls, columns, buttresses, vaults and domes. Natural stone, cut stone, rubble stone brick or alternate materials were used in the bearing elements. Brick-dust and mortar with more binding feature were used as combination elements. In time, some problems were occurred in used materials and in structure as a result of various effects. Therefore, it is necessary to apply various applications in framework of repair and strengthening of buildings. In this study, restoration of historic buildings and the control of the adequacy of the bearing systems as one most important part of structure were examined. For this purpose, static analysis of Edirne-Merkez Demirtaş (Timurtaş mosque located in Edirne was tested. Testes could give suggestions and be applied if buildings needed be revealed. The structure was modelled with finite element model of sap2000 package program and the forces generated under various loads and stresses, the occurred deformation due to that, overflow of allowable stress of this deformation and stresses were investigated. As the results of this study can be note that the maximum compressive stress at the construction is calculated as 1.1 MPa.

  2. Materials, used in historical buildings, analysis methods and solutions puroposals

    Science.gov (United States)

    Döndüren, M. Sami; Sişik, Ozlem

    2017-10-01

    Most of historical buildings are built with pressure principle and have the characteristics of masonry structures. Therefore, the structure components of buildings are constituted bearing walls, columns, buttresses, vaults and domes. Natural stone, cut stone, rubble stone brick or alternate materials were used in the bearing elements. Brick-dust and mortar with more binding feature were used as combination elements. In time, some problems were occurred in used materials and in structure as a result of various effects. Therefore, it is necessary to apply various applications in framework of repair and strengthening of buildings. In this study, restoration of historic buildings and the control of the adequacy of the bearing systems as one most important part of structure were examined. For this purpose, static analysis of Edirne-Merkez Demirtaş (Timurtaş) mosque located in Edirne was tested. Testes could give suggestions and be applied if buildings needed be revealed. The structure was modelled with finite element model of sap2000 package program and the forces generated under various loads and stresses, the occurred deformation due to that, overflow of allowable stress of this deformation and stresses were investigated. As the results of this study can be note that the maximum compressive stress at the construction is calculated as 1.1 MPa.

  3. Use of moisture probes in building materials industry

    International Nuclear Information System (INIS)

    Hanke, L.

    A neutron probe to be built in the production line was developed for monitoring moisture content of bulk materials and suspensions of all types in the building material industry. The probe is dust- and external moisture-protected. The probe measuring capacity is about 100 l, the mean measurement error is +- 0.008 g water per 1 cm 3 , which for fine sand represents an error of +- 0.3%. The probe is connected via a cable to a measuring instrument showing an electrical value proportional to the measured material moisture content. (Z.M.)

  4. Assessment of the radiological impact of selected building materials

    International Nuclear Information System (INIS)

    Gwiazdowski, B.

    1983-02-01

    Naturally occurring radionuclides in building materials are a source of external and internal radiation exposure to essentially the entire Polish population. The programme of our studies met two main aspects on radioactivity of building materials: Gamma dose rate and radon or alpha potential energy concentration measurements in dwellings of various kinds of structure and materials in both industrial and rural districts of Poland. Gamma dose rate measurements were made in about 2200 dwellings and radon or alpha potential energy concentration measurements - in 750 dwellings. On the basis of these studies the annual effective dose equivalent to the Polish population due to gamma and alpha radiation indoors was estimated to be 0.39 mSv/a and 0.99 mSv/a, respectively. The contribution of external (from gamma) and internal (from alpha) radiation exposure due to naturally occurring radionuclides in building materials to the total radiation exposure of Polish population was assessed to be 3.6 per cent and 34.2 per cent, respectively. Measurements of about 1500 samples of various kinds of building materials and raw materials were made to determine radionuclide concentrations in them. The highest values were obtained in samples of phosphogypsum, fly ash and slag: potassium concentration ranges up to 36 pCi g -1 (a slag sample), radium - up to 17 pCi g -1 (a phosphogypsum sample) and thorium - up to 4 pCi g -1 (a phosphogypsum). On the basis of the results of our studies we came to the conclusion that it was necessary to work out a control system which could protect habitants against enhancement of indoor exposure to ionizing radiation

  5. Assessment of radioactivity in building material(granite) in Sudan

    International Nuclear Information System (INIS)

    Osman, Z. A; Salih, I; Albadwai, K. A; Salih, A. M; Salih, S. A.

    2016-01-01

    In the present work radioactivity in building materials (granite) central Sudan was evaluated. In general the building materials used in Sudan are derived either from rocks or soil. These contain trace amounts of naturally occurring radioactive materials(NORMs), so it contains radionuclides from uranium and thorium series and natural potassium. The levels of these radionuclides vary according to the geology of their site of origin. High levels increase the risk of radiation exposure in homes(especially exposure due to radon). Investigation of radioactivity in granite used of the building materials in Sudan is carried out, a total of 18 major samples of granite have been collected and measured using X- ray fluorescence system (30 mci). The activity concentrations have been determined for uranium ( 238 U), thorium ('2 32 Th) and potassium( 40 K) in each sample. The concentrations of uranium have been found to range from 14.81 Bq/kg to 24.572 Bq/kg, thorium between 10.02 Bq/kg and 10.020-84.79 Bq/kg and the potassium concentration varies between 13.33 Bq/kg to 82.13 Bq/kg. Limits of radioactivity in the granite are based on dose criteria for controls. This study can be used as a reference for more extensive studies of the same subject in future. (Author)

  6. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  7. Uranium concentration in building materials used in the central region of Egypt

    International Nuclear Information System (INIS)

    Higgy, R.H.; El-Tahawy, M.S.; Ghods, A.

    1997-01-01

    Within a radiological survey of the building materials used in the urban dwellings in the central region of Egypt, the uranium concentration in 80 representative samples of raw and fabricated building materials are determined using laser fluorimetry technique. For 40 samples from the studied raw building materials of sand, gravel, gypsum, lime-stone, granite and marble the determined uranium concentration values range between 0.3 and 3.6 ppm for all these samples except for one type of granite having the corresponding value of 7.8 ppm. For 37 samples from studied fabricated building materials of normal cement, clay brick, sand brick, tiles and ceramic plates the determined uranium concentration values range from 0.5 to 3.4 ppm. The corresponding values for three types of iron cement are 3.1, 6.1 and 9.3 ppm. The radium-226 content (of the uranium-238 series) in the same samples was determined using high resolution gamma-ray spectrometers based on HP Ge-detectors. The data obtained by the two techniques are in good agreement for the majority of the studied samples. (author)

  8. The ionizing radiation in dwellings related to the building materials

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1977-05-01

    Experimentally determined values were used to investigate the absorbed dose or concentration of radon and daughter products. The exposure rates, the concentrations of radon and daughter products and the ventilation rates have been determined in seven groups of houses built in the early 1970s in central Sweden. The activity concentrations in the building maerials used at the time for building the houses were measured earlier. The absorbed dose in the gonads was, as expected, found to be lower than the theoretical value, 1,5mGy/y. For the multi-family houses the values were about 1,0 mGy/y and for the single-family houses about half that value. The concentrations of radon in equilibrium with the daughter products normalized to one air change per hour and to the maximum concentration of radium-226 in the building material were found to be about 100Bq/m 3 , for the multi-family houses. No significant difference from this value was found for the single-family houses despite the fact that the amounts of stony building materials were less than in the multi-family houses. (author)

  9. Assessment of the material properties of a fire damaged building

    Directory of Open Access Journals (Sweden)

    Oladipupo OLOMO

    2012-12-01

    Full Text Available This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concrete samples, tensile strength test on the steel samples and chemical tests involving the assessment of the quantities of cement, sulphates and chloride concentrations in the samples. A redesign of the building elements was also carried out and the results were compared with the existing design. The non-destructive test results indicated compressive strengths as low as 9.9 N/mm2, the tensile strength test indicated a maximum strength of 397.48 N/mm2 and the chemical test indicated chloride contents as high as 0.534 g per gramme of concrete. These properties deviated significantly from standard requirements. Based on these results, it was concluded that the remains of the building should be demolished.

  10. Drying and wetting of building materials and components

    CERN Document Server

    2014-01-01

    This book, Drying and Wetting of Building Materials and Components, provides a collection of recent contributions in the field of drying and wetting in porous building materials. The main benefit of the book is that it discusses some of the most important topics related to the drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  11. Study on reactor building structure using ultrahigh strength materials, 1

    International Nuclear Information System (INIS)

    Ishimura, Kikuo; Odajima, Masahiro; Irino, Kazuo; Hashiba, Toshio.

    1991-01-01

    This study was promoted to be aimed at realization of the optimal nuclear reactor building structure of the future. As the first step, the study regarding ultrahigh strength reinforced concrete (abbr. RC) shear wall was selected. As the result of various tests, the application of ultrahigh strength RC shear walls was verified. The tests conducted were relevant to; ultrahigh strength concrete material tests; pure shear tests of RC flat panels; and bending shear tests and its simulation analysis of RC shear walls. (author)

  12. Oriented strand board: new material for building construction

    International Nuclear Information System (INIS)

    Paridah Md Tahir; Ong, L.L.

    2001-01-01

    The paper will attempt to show the suitability and competitiveness of oriented strand board (OSB) in building construction. One important factor underlining the success of this product is the availability of the wood raw material. Plantation timbers such as rubberwood, paraserianthes falcataria, acacia crassicarpa, A. auriculiformis and A. mangium have been identified as the major source of this industry. We will focus on the domestic market as well as export market especially on the Asia Pacific region

  13. Valorisation of phosphogypsum as building material: Radiological aspects

    Directory of Open Access Journals (Sweden)

    Tayibi, H.

    2011-12-01

    Full Text Available Nowadays, alternative uses of phosphogypsum (PG in the building industry are being considered in several countries; however, the natural radioactivity level in the PG could be a restriction for those uses. United States Environmental Protection Agency (US-EPA classified PG as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM. This drawback could be avoided controlling its percentage in the cement preparation and the radionuclides content in the other raw materials used in its production, and calculating the activity concentration index (I in the final by-products. The valorization of PG as a building material has been studied, from a radiological point of view, by developing a new stabilisation/solidification process. PG is incorporated within a polymeric sulphur matrix, obtaining a concrete-like material, which presents lower natural radioactive content than the initial PG. The 226Ra content of this material ranged between 26-27 Bq·kg-1 and it is quite similar to that of common Spanish building materials.

    Actualmente, en muchos países se está contemplando el uso alternativo del fosfoyeso (PG en la industria de la construcción, aunque su contenido en radionucleidos naturales puede presentar ciertas restricciones para dicha aplicación (material clasificado por la US-EPA como TENORM: “Technologically Enhanced Naturally Occurring Materials. No obstante, estos inconvenientes podrían paliarse controlando el porcentaje del PG y los niveles de radioactividad en las materias primas a incorporar al cemento y calculando el índice de concentración de actividad (I en los productos finales. La valorización del PG como material de construcción se ha estudiado en este trabajo desde el punto de vista radiológico, desarrollando un nuevo proceso de estabilización/solidificación, obteniéndose un material de características similares al cemento y que presenta menor contenido de radionucleidos naturales que el

  14. Radiological impact assessment of building materials on ordinary houses dwellers

    International Nuclear Information System (INIS)

    Campos, M.P. de.

    1994-01-01

    The radiological impact due to building materials on habitants living in the Santo Andre district of Sao Paulo state, Brazil, was assessed through the total effective dose equivalent rate determination, for external and internal irradiation. The effective dose equivalent rate for external irradiation was calculated by the gamma spectrometry determination of natural radionuclides specific activity in the dwelling materials. The effective dose equivalent rate due to 222 Rn inhalation was calculated through the radon indoor activity determination by using solid state nuclear track detectors. (author). 46 refs, 6 figs, 14 tabs

  15. Natural radioactivity measurements in building materials used in Samsun, Turkey.

    Science.gov (United States)

    Tufan, M Çagatay; Disci, Tugba

    2013-01-01

    In this study, radioactivity levels of 35 different samples of 11 commonly used building materials in Samsun were measured by using a gamma spectrometry system. The analysis carried out with the high purity Germanium gamma spectrometry system. Radioactivity concentrations of (226)Ra, (232)Th and (40)K range from 6 to 54 Bq kg(-1), 5 to 88 Bq kg(-1) and 6 to 1070 Bq kg(-1), respectively. From these results, radium equivalent activities, gamma indexes, absorbed dose rates and annual effective doses were calculated for all samples. Obtained results were compared with the available data, and it was concluded that all the investigated materials did not have radiological risk.

  16. Neutron activation of building materials used in the reactor shield

    International Nuclear Information System (INIS)

    Hernandez, A.T.; Perez, G.; D'Alessandro, K.

    1993-01-01

    Cuban concretes and their main components (mineral aggregates and cement) were investigated through long-lived activation products induced by neutrons from a reactor. The multielemental content in the materials studied was obtained by neutron activation analysis in an IBR-2 reactor and gamma activation analysis in an MT-25 microtron from Join Institute of Nuclear Research of Dubna. After irradiation of building materials for 30 years by a neutron flow of unitary density, induced radioactivity was calculated according to experimental data. The comparative evaluation of different concretes aggregates and two types of cement related to the activation properties is discussed

  17. Optimal thermographic procedures for moisture analysis in building materials

    Science.gov (United States)

    Rosina, Elisabetta; Ludwig, Nicola

    1999-09-01

    The presence of moisture in building materials causes damage second only to structural one. NDT are successfully applied to map moisture distribution, to localize the source of water and to determine microclimatic conditions. IR Thermography has the advantage of non-destructive testing while it allows to investigate large surfaces. The measures can be repeated in time to monitor the phenomenon of raising water. Nevertheless the investigation of moisture in walls is one of the less reliable application of Thermography IR applied to cultural heritage preservation. The temperature of the damp areas can be colder than dry ones, because of surface evaporation, or can be warmer, because of the higher thermal inertia of water content versus building materials. The apparent discrepancies between the two results are due to the different microclimatic conditions of the scanning. Aim of the paper is to describe optimal procedures to obtain reliable maps of moisture in building materials, at different environmental and microclimatic conditions. Another goal is the description of the related energetic phenomena, which cause temperature discontinuities, and that are detected by thermography. Active and passive procedures are presented and compared. Case studies show some examples of procedures application.

  18. Ozone reactions with indoor materials during building disinfection

    DEFF Research Database (Denmark)

    Poppendieck, D.; Hubbard, H.; Ward, M.

    2007-01-01

    There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000-1200ppm in the inlet...... streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively...... constant, and typically low, value after approximately I I h. The four materials with the highest sustained deposition velocities were ceiling tile, office partition, medium density fiberboard and gypsum wallboard backing. Analysis of ozone reaction probabilities indicated that throughout each experiment...

  19. Monitoring moisture movements in building materials using x-ray attenuation

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Scheffler, Gregor A.; Janssen, Hans

    2012-01-01

    X-ray attenuation measurements are commonly used as a non-destructive method to monitor internal concentration changes of moisture (i.e., moisture content) and other chemical compounds in porous building materials. The technique provides direct measurements of moisture content changes through...... analysis with a composite model consisting of a dry porous material and a thickness of water equivalent to the moisture content of the material. The current formulation of this composite model relies on certain assumptions, including a monochromatic x-ray photon beam source (i.e., x-ray photons of a single...

  20. Passive RF component technology materials, techniques, and applications

    CERN Document Server

    Wang, Guoan

    2012-01-01

    Focusing on novel materials and techniques, this pioneering volume provides you with a solid understanding of the design and fabrication of smart RF passive components. You find comprehensive details on LCP, metal materials, ferrite materials, nano materials, high aspect ratio enabled materials, green materials for RFID, and silicon micromachining techniques. Moreover, this practical book offers expert guidance on how to apply these materials and techniques to design a wide range of cutting-edge RF passive components, from MEMS switch based tunable passives and 3D passives, to metamaterial-bas

  1. Water sorption and solubility of core build-up materials.

    Science.gov (United States)

    Zankuli, M A; Devlin, H; Silikas, N

    2014-12-01

    To investigate the variation in water sorption and solubility across a range of different core build-up materials. Five materials were tested, four of which are resin-based materials (Grandio Core, Core.X Flow, Bright Flow Core, Speedee) and one resin-modified glass ionomer (Fuji II LC). All specimens (n=10) were immersed in 10ml distilled water in individual glass containers and weighed at one week, 14 and 28 days. After a total immersion time of 28 days, 7 specimens were dried to a constant mass, in a desiccator for 28 days. Three samples of each material were not dried, but were left in distilled water for 1 year, to determine the long-term water sorption properties. Specimens were weighed at monthly intervals until 6 months and then at the 9th and 12th months. Each specimen was measured using a digital electronic caliper (Mitutoyo Corporation, Japan). After 28 days immersion, the change in water sorption and solubility of the materials ranged from 12.9 to 67.1μg/mm(3) (PGrandio Core had the lowest water sorption and solubility among the tested materials. According to the ISO 4049 standards, all the tested materials showed acceptable water sorption and solubility, apart from the water sorption behavior of Fuji II LC. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Using ParaPost Tenax fiberglass and ParaCore build-up material to restore severely damaged teeth.

    Science.gov (United States)

    Caicedo, Ricardo; Castellon, Paulino

    2005-01-01

    This article describes a technique using ParaPost Tenax Fiber White, ParaPost Cement, and ParaPost ParaCore build-up material to restore a tooth with a significant loss of tooth structure. After successful root canal therapy, the posts were bonded in the canals and the core was built using ParaPost ParaCore build-up material. At that point, the tooth was prepared to receive a conventional porcelain-fused-to-metal crown.

  3. Hygrothermal Material Properties for Soils in Building Science

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing

  4. Advantages of using raw materials in low cost sustainable structural solutions for single-family buildings

    OpenAIRE

    Murta, A.; Teixeira, C.; Varum, H.; Bentes, I.; Pinto, J.

    2010-01-01

    In the last decades, the Portuguese housing building industry has been mainly fo-cused on the construction based on reinforced concrete framed structures and non-structural clay brick masonry for exterior and interior partition walls. Recently, this industry started to in-clude alternative structural materials, such as steel and timber. The earth based construction techniques and solutions still remains limited to individual cases, in which the owner and/or contractor have a particular concer...

  5. Non destructive assay techniques applied to nuclear materials

    International Nuclear Information System (INIS)

    Gavron, A.

    2001-01-01

    Nondestructive assay is a suite of techniques that has matured and become precise, easily implementable, and remotely usable. These techniques provide elaborate safeguards of nuclear material by providing the necessary information for materials accounting. NDA techniques are ubiquitous, reliable, essentially tamper proof, and simple to use. They make the world a safer place to live in, and they make nuclear energy viable. (author)

  6. Stone Dust Agglomeration for Utilizing as Building Material

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2017-12-01

    Full Text Available In the paper we discuss the possibility of using stone dust for utilizing as building material. The tested material was amphibolite, found in the Sudeten Mountains and the Tatra Mountains in Poland. The chemical composition of dust was determined by means of spectrometry methods. Moreover, the basic physical properties of the material were designated. Stone dust was mixed with starch or cement binder. The binder addition was from 5% to 20% by weight. The water content was adjusted to about 25% humidity. The mixture was then compressed in a hydraulic press at 50 MPa. The results of the mechanical toughness of agglomerates were shown. On the basis of the results, acceptable toughness of agglomerates was found, with the addition of cement in mass share 20% and seasoning for 48 hours. However, starch was not suitable as a binder for agglomeration of amphibolite.

  7. A solar water system acting as the building materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Li [School of Architecture, Tianjin Univ., TJ (China); Wang Yiping; Ren Jianbo [School of Chemical Engineering and Tech., Tianjin Univ., TJ (China); Kong Jianguo [Tianjin Cuipinghu Science Park, TJ (China)

    2008-07-01

    A new type of solar water system in the form of building material is designed, and applied to an office building in Meijiang eco-district located in Tianjin City, China. In this project, 60m{sup 2} wall type and 30m{sup 2} solar roof collectors are used to supply hot water directly and also to be an evaporator for an auxiliary heat pump with a power of 4.5kW. The energy rejected by the condenser contributes to load requirements through a refrigerant (R22)-to-water heat exchanger immersed in a 3m{sup 3} hot water storage tank. Experimental results show that, the daily-averaged collector efficiency ranged from 40 to 50% and form 60% to 70% in winter and summer, respectively. (orig.)

  8. Experimental Study on the Comparison of the Material Properties of Glass Wool Used as Building Materials

    Directory of Open Access Journals (Sweden)

    Kyoung-Woo KIM

    2014-04-01

    Full Text Available Artificial mineral fibers such as glass wool or stone wool are commonly used in building walls, ceilings and floors as a major insulation material for buildings. Among the material properties of building materials, thermal conductivity, the sound absorption coefficient, compressibility, and dynamic stiffness are regarded as important performance requirements since they directly affect the thermal and acoustic properties of the building. This study measured the changes of the thermal and acoustical performances of glass wool that was actually installed for a long time to the outer wall of a building as an insulation material through a comparison with recently produced glass wool. The results showed that the measured thermal conductivities of the old and the new specimens both rise with an increase of temperature, showing quite similar results in both specimens over temperature ranges of (0 – 20 ºC. The noise reduction coefficient decreased by 0.1 in the old specimen and the difference of the compressibilities in both specimens was shown to be 7.32 mm. The dynamic stiffness of the old specimen was found to be 1.28 MN/m3 higher than that of the new specimen.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3714

  9. Modeling gamma radiation dose in dwellings due to building materials.

    Science.gov (United States)

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  10. Estimation of the radon dose in buildings by measuring the exhalation rate from building materials

    International Nuclear Information System (INIS)

    Steiner, V.; Kovler, K.; Perevalov, A.; Kelm, H.

    2004-01-01

    We review the accumulator technique using active (CRM) and passive detectors (activated charcoal and electret). We describe the ERS2 detector, an electrostatic radon sampler followed by alpha spectrometry, with improved algorithm and adapted to measure the exhalation rate from walls. The technique produces accurate results over a broad range of materials: concrete, Pumice, ceramics, tiles, granite, etc. The measured exhalation rate is the same, within errors, as measured by the standard detectors

  11. Numerical Investigation of a Moisture Evaporation Model in Building Materials

    CERN Document Server

    Amirkhanov, I V; Pavlish, M; Puzynina, T P; Puzynin, I V; Sarhadov, I

    2005-01-01

    The properties of a model of moisture evaporation in a porous building material of a rectangular form proposed in [1] are investigated. Algorithms of solving a nonlinear diffusion equation with initial and boundary conditions simulating the dynamic distribution of moisture concentration, calculation of coefficients of a polynomial describing transport of moisture with usage of experimental measurement of moisture concentration in a sample are developed and investigated. Research on the properties of the model is carried out depending on the degree of the polynomial, a set of its coefficients, and the quantity of the used experimental data.

  12. CLASSIFICATION OF THE MGR CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    2001-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) carrier preparation building materials handling system structures, systems and components (SSCs) performed by the MGR Preclosure Safety and Systems Engineering Section. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 2000). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 2000)

  13. Processing of Building Binder Materials to Increase their Activation

    Science.gov (United States)

    Fediuk, R. S.; Garmashov, I. S.; Kuzmin, D. E.; Stoyushko, N. Yu; Gladkova, N. A.

    2018-01-01

    The paper deals modern physical methods of activation of building powder materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of Portland cement. Activated concrete has a number of features that are used as design characteristics of structures and are due to the structure of the activated binder and its contacts with concrete aggregates. These features also have a significant impact on the nature of the destruction of concrete under load, changing the boundaries of its microcracks and durability.

  14. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Norafatin Khalid; Amran Abdul Majid; Redzuwan Yahaya; Muhammad Samudi Yasir

    2013-01-01

    Full-text: Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80 % of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m -3 , 192 Bq m -3 , 176 Bq m -3 and 28 Bq m -3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m -3 for example higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y -1 , 4.85 mSv y -1 , 4.44 mSv y -1 and 0.72 mSv y -1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels for example 3 - 10 mSv y -1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively. (author)

  15. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2014-01-01

    Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m −3 , 192 Bq m −3 , 176 Bq m −3 and 28 Bq m −3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m −3 i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y −1 , 4.85 mSv y −1 , 4.44 mSv y −1 and 0.72 mSv y −1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y −1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively

  16. Assessment on urban soil pollution by biocides from building materials

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Vollertsen, Jes; Bester, Kai

    2015-01-01

    . Based on a monitoring study of stormwater runoff from a residential catchment as well as direct façade runoff analysis, the present study was assessing the pollution of urban soil to biocides from building material. The stormwater runoff of a residential catchment in Silkeborg (Denmark) was monitored...... from a freshly painted or rendered house, it is obvious that a huge part is actually draining directly to the soil and not to the sewer system. Consequently, the soil in urban areas is exposed to stormwater highly polluted by biocides which might affect the microbial community there....

  17. Materials and techniques for model construction

    Science.gov (United States)

    Wigley, D. A.

    1985-01-01

    The problems confronting the designer of models for cryogenic wind tunnel models are discussed with particular reference to the difficulties in obtaining appropriate data on the mechanical and physical properties of candidate materials and their fabrication technologies. The relationship between strength and toughness of alloys is discussed in the context of maximizing both and avoiding the problem of dimensional and microstructural instability. All major classes of materials used in model construction are considered in some detail and in the Appendix selected numerical data is given for the most relevant materials. The stepped-specimen program to investigate stress-induced dimensional changes in alloys is discussed in detail together with interpretation of the initial results. The methods used to bond model components are considered with particular reference to the selection of filler alloys and temperature cycles to avoid microstructural degradation and loss of mechanical properties.

  18. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  19. Building Blocks Incorporating Waste Materials Bound with Bitumen

    Directory of Open Access Journals (Sweden)

    Thanaya I.N.A.

    2010-01-01

    Full Text Available This paper described an investigation and evaluation which was carried out in the United Kingdom-UK, on the properties of masonry building block materials that incorporate waste materials, namely: steel slag, crushed glass, coal fly ash, rice husk ash (RHA, incinerator sewage sludge ash (ISSA, municipal solid waste incinerator bottom ash (MSWIBA or shortened as IBA, bound with bitumen or asphalt, named as Bitublock. The binder used was 50 pen bitumen. The properties of the blocks evaluated were: compressive strength, density, porosity, initial rate of suction (IRS, creep, and volume stability. It was found that the Bitublock performance can be improved by optimizing porosity and curing regime. Compaction level of 2 MPa and curing regime of 200°C for 24 hours gave satisfactory bitublock performances that at least comparable to concrete block found in the United Kingdom (UK. The Volume stability (expansion of the unit is affected by environment relative humidity.

  20. REQUIREMENTS FOR DRILLING CUTTINGS AND EARTH-BASED BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Chertes Konstantin L'vovich

    2017-08-01

    Full Text Available In this article, the problem of utilization of drilling cuttings by means of scavenging, is researched. The product received could be used for the restoration of lands disturbed during construction and economic activities. When assessing technogenic formations, the binary approach was used, as a system of two components. The purpose of the study is to assess the state and possibility of utilizing drilling cuttings as raw materials in order to produce technogenic building materials; to study the effect of the degree of homogeneity of initial mixtures based on drilling cuttings, on kinetics of their hardening which leads to obtaining final products for various applications . As a result of research, relations of hardening and subsequent strengthening of slurry-cement mixtures were obtained; the plan of the process area for treatment of drilling cuttings is presented on the spot of demolished drilling pit.

  1. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example...... be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament...... investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can...

  2. Techniques for the reduction of low frequency noise in buildings

    NARCIS (Netherlands)

    Zuada Coelho, B.A.; Koopman, A.

    2012-01-01

    Vibration isolation of buildings is often achieved by introducing spring systems at the foundation level. This can be an effective measure, especially against vibrations induced by noise, but it is also very costly. Due to the current usage of the cities space, where buildings and infrastructures

  3. Traditional boat-building and navigational techniques of southern Orissa

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    coastline extending from Subarnarekha river in the north to Sunapur in the south. The existing small-scale boat-building industry of coastal Orissa has been inherited. The people of the littoral districts have been building boats for coastal transportation...

  4. Building material characterization by using IR thermography for efficient heating systems

    Science.gov (United States)

    Bison, Paolo; Grinzato, Ermanno

    2008-03-01

    Thermography is excellent for a fast characterisation of building materials, both at laboratory or in situ. A great advantage is the possibility to analyse many samples at the same conditions and time. A technique has been applied for new materials, oriented to radiating floor systems, evaluating different approaches. Samples are submitted to a stepwise, uniform heating. Surface excess temperature is recorded by thermography evaluating thermal inertia. At first, thermal diffusivity has been measured using a modified version of the Flash Method, then applied on a single face, for in situ application. Heat capacity and thermal conductivity have been inferred for each samples by definitions and the independent measure of the volumic mass.

  5. Building stock dynamics and its impacts on materials and energy demand in China

    International Nuclear Information System (INIS)

    Hong, Lixuan; Zhou, Nan; Feng, Wei; Khanna, Nina; Fridley, David; Zhao, Yongqiang; Sandholt, Kaare

    2016-01-01

    China hosts a large amount of building stocks, which is nearly 50 billion square meters. Moreover, annual new construction is growing fast, representing half of the world's total. The trend is expected to continue through the year 2050. Impressive demand for new residential and commercial construction, relative shorter average building lifetime, and higher material intensities have driven massive domestic production of energy intensive building materials such as cement and steel. This paper developed a bottom-up building stock turnover model to project the growths, retrofits and retirements of China's residential and commercial building floor space from 2010 to 2050. It also applied typical material intensities and energy intensities to estimate building materials demand and energy consumed to produce these building materials. By conducting scenario analyses of building lifetime, it identified significant potentials of building materials and energy demand conservation. This study underscored the importance of addressing building material efficiency, improving building lifetime and quality, and promoting compact urban development to reduce energy and environment consequences in China. - Highlights: •Growths of China's building floorspace were projected from 2010 to 2050. •A building stock turnover model was built to reflect annual building stock dynamics. •Building related materials and energy demand were projected.

  6. Pressure integration technique for predicting wind-induced response in high-rise buildings

    Directory of Open Access Journals (Sweden)

    Aly Mousaad Aly

    2013-12-01

    Full Text Available This paper presents a procedure for response prediction in high-rise buildings under wind loads. The procedure is illustrated in an application example of a tall building exposed to both cross-wind and along-wind loads. The responses of the building in the lateral directions combined with torsion are estimated simultaneously. Results show good agreement with recent design standards; however, the proposed procedure has the advantages of accounting for complex mode shapes, non-uniform mass distribution, and interference effects from the surrounding. In addition, the technique allows for the contribution of higher modes. For accurate estimation of the acceleration response, it is important to consider not only the first two lateral vibrational modes, but also higher modes. Ignoring the contribution of higher modes may lead to underestimation of the acceleration response; on the other hand, it could result in overestimation of the displacement response. Furthermore, the procedure presented in this study can help decision makers, involved in a tall building design/retrofit to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, damping enhancement, and/or materials change, with an objective to improve the resiliency and the serviceability under extreme wind actions.

  7. Technological characteristics of compressed earth blocks for its use as a building material

    Science.gov (United States)

    Gomez-Villalba, Luz Stella; Camacho-Perez, Nancy; Alvarez de Buergo, Monica; Becerra-Becerra, Javier; Esmeralda Corredor-Pulido, Dery; Fort, Rafael

    2013-04-01

    We present here an innovative building technique, which uses ecological, inexpensive and environmentally friendly materials. These compressed earth blocks seem to be very good for building purposes and that is why we have characterized three types of compressed earth blocks (CEB, named by their color as yellow, grey and red) mineralogically by means of X ray diffraction XRD and scanning electron microscopy SEM (both blocks and raw materials), petrographically by polarizing optical light microscopy POLM, and SEM, and, mainly, petrophysically: their hydric, physical and physico-mechanical properties by means of determining their capillary water absorption, porosity (open or accessible to water, pore size distribution and micro/macroporosity), and densities, color and ultrasound velocity (together with anisotropy). The particularities of these analyzed materials show that some varieties are more durable than others, and that all of them can be used as building materials with some restrictions related to their appropriate placing in the structures and the exposure to water. Acknowledgements: This work is supported by the GEOMATERIALES (S2009/MAT-1629) and CONSOLIDER-TCP (CSD2007-0058) programmes. Thanks also to the UCM (Complutense University of Madrid) Research Group "Alteración y conservación de los materiales pétreos del patrimonio" / Alteration and conservation of heritage stone materials (ref. 921349).

  8. Decreased bio-inhibition of building materials due to transport of biocides

    NARCIS (Netherlands)

    Erich, S.J.F.; Mendoza, S.M.; Floor, W.; Hermanns, S.P.M.; Homan, W.J.; Adan, O.C.G.

    2011-01-01

    Bio-inhibition of buildings and structures is an important issue. In many cases building materials have biocides added to prevent growth of micro-organisms. Growth of microorganisms on building materials has several negative effects; (1) Aesthetic damage, e.g. fungi, algae grow on the material,

  9. Comparative Thermal Analysis of Different Cool Roof Materials for Minimizing Building Energy Consumption

    Directory of Open Access Journals (Sweden)

    Y. Anand

    2014-01-01

    Full Text Available The roof and walls in the urban areas contribute to major share in the absorption of solar radiations and also retard the outflow of the absorbed radiation from the building envelope, thereby increasing the global warming by inducing the heat island effect. The impact of using cool roof technologies on the thermal comfort of the office buildings has been estimated. Cool roofs reduce electricity consumption for maintaining the temperature of the air-conditioned buildings in the comfort level and also increase comfort in buildings merely not relying completely on cooling equipment. The cool roofs and cool pavements, however, can mitigate summer urban heat islands by improving indoor air quality and comfort. The thermal analysis of different materials has been carried out to analyze the impact of the rate of heat transfer on the building envelope and the results obtained indicate that different cool roof techniques are beneficial in maintaining the comfort level of the building which purely depends on the ambient temperature conditions.

  10. Characterization of historic mortars and earthen building materials in Abu Dhabi Emirate, UAE

    Science.gov (United States)

    Marcus, Benjamin L.

    2012-07-01

    The Abu Dhabi Authority for Culture and Heritage (ADACH) is responsible for the conservation and management of historic buildings and archaeological sites in the Emirate. Laboratory analysis has been critical for understanding the composition of historic materials and establishing appropriate conservation treatments across a wide variety of building types, ranging from Iron Age earthen archaeological sites to late-Islamic stone buildings. Analysis was carried out on historic sites in Al Ain, Delma Island and Liwa Oasis using techniques such as micro-x-ray fluorescence (MXRF), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDX), polarized light microscopy (PLM), and x-ray diffraction (XRD). Testing was conducted through consultant laboratories and in collaboration with local universities. The initial aim of the analysis was to understand historic earthen materials and to confirm the suitability of locally sourced clays for the production of mud bricks and plasters. Another important goal was to characterize materials used in historic stone buildings in order to develop repair mortars, renders and grouts.

  11. The role of absorbent building materials in moderating changes of relative humidity

    DEFF Research Database (Denmark)

    Padfield, Tim

    The problem studied in this work is, how porous, absorbent materials surroundning or placed in a room influence the relative humidity of the room. This is of interest in designing precautions and machinery to monitor the indoor climate in museums and dwelling rooms. - A novel technique for the in......The problem studied in this work is, how porous, absorbent materials surroundning or placed in a room influence the relative humidity of the room. This is of interest in designing precautions and machinery to monitor the indoor climate in museums and dwelling rooms. - A novel technique...... for the investigation of the moisture buffering capacity of building materials is introduced, measuring the resulting flux in the system instead of the resulting relative humidity....

  12. Microbes on building materials — Evaluation of DNA extraction protocols as common basis for molecular analysis

    International Nuclear Information System (INIS)

    Ettenauer, Jörg D.; Piñar, Guadalupe; Lopandic, Ksenija; Spangl, Bernhard; Ellersdorfer, Günther; Voitl, Christian; Sterflinger, Katja

    2012-01-01

    The study of microbial life in building materials is an emerging topic concerning biodeterioration of materials as well as health risks in houses and at working places. Biodegradation and potential health implications associated with microbial growth in our residues claim for more precise methods for quantification and identification. To date, cultivation experiments are commonly used to gain insight into the microbial diversity. Nowadays, molecular techniques for the identification of microorganisms provide efficient methods that can be applied in this field. The efficiency of DNA extraction is decisive in order to perform a reliable and reproducible quantification of the microorganisms by qPCR or to characterize the structure of the microbial community. In this study we tested thirteen DNA extraction methods and evaluated their efficiency for identifying (1) the quantity of DNA, (2) the quality and purity of DNA and (3) the ability of the DNA to be amplified in a PCR reaction using three universal primer sets for the ITS region of fungi as well as one primer pair targeting the 16S rRNA of bacteria with three typical building materials — common plaster, red brick and gypsum cardboard. DNA concentration measurements showed strong variations among the tested methods and materials. Measurement of the DNA yield showed up to three orders of magnitude variation from the same samples, whereas A260/A280 ratios often prognosticated biases in the PCR amplifications. Visualization of the crude DNA extracts and the comparison of DGGE fingerprints showed additional drawbacks of some methods. The FastDNA Spin kit for soil showed to be the best DNA extraction method and could provide positive results for all tests with the three building materials. Therefore, we suggest this method as a gold standard for quantification of indoor fungi and bacteria in building materials. -- Highlights: ► Up to thirteen extraction methods were evaluated with three building materials.

  13. Microbes on building materials - Evaluation of DNA extraction protocols as common basis for molecular analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ettenauer, Joerg D., E-mail: joerg.ettenauer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Pinar, Guadalupe, E-mail: Guadalupe.Pinar@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Lopandic, Ksenija, E-mail: Ksenija.Lopandic@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Spangl, Bernhard, E-mail: Bernhard.Spangl@boku.ac.at [University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Science, Institute of Applied Statistics and Computing (IASC), Gregor Mendel-Str. 33, A-1180 Vienna (Austria); Ellersdorfer, Guenther, E-mail: Guenther.Ellersdorfer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Voitl, Christian, E-mail: Christian.Voitl@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Sterflinger, Katja, E-mail: Katja.Sterflinger@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria)

    2012-11-15

    The study of microbial life in building materials is an emerging topic concerning biodeterioration of materials as well as health risks in houses and at working places. Biodegradation and potential health implications associated with microbial growth in our residues claim for more precise methods for quantification and identification. To date, cultivation experiments are commonly used to gain insight into the microbial diversity. Nowadays, molecular techniques for the identification of microorganisms provide efficient methods that can be applied in this field. The efficiency of DNA extraction is decisive in order to perform a reliable and reproducible quantification of the microorganisms by qPCR or to characterize the structure of the microbial community. In this study we tested thirteen DNA extraction methods and evaluated their efficiency for identifying (1) the quantity of DNA, (2) the quality and purity of DNA and (3) the ability of the DNA to be amplified in a PCR reaction using three universal primer sets for the ITS region of fungi as well as one primer pair targeting the 16S rRNA of bacteria with three typical building materials - common plaster, red brick and gypsum cardboard. DNA concentration measurements showed strong variations among the tested methods and materials. Measurement of the DNA yield showed up to three orders of magnitude variation from the same samples, whereas A260/A280 ratios often prognosticated biases in the PCR amplifications. Visualization of the crude DNA extracts and the comparison of DGGE fingerprints showed additional drawbacks of some methods. The FastDNA Spin kit for soil showed to be the best DNA extraction method and could provide positive results for all tests with the three building materials. Therefore, we suggest this method as a gold standard for quantification of indoor fungi and bacteria in building materials. -- Highlights: Black-Right-Pointing-Pointer Up to thirteen extraction methods were evaluated with three

  14. A plastic micropump constructed with conventional techniques and materials

    NARCIS (Netherlands)

    Bohm, S.; Olthuis, Wouter; Bergveld, Piet

    1999-01-01

    A plastic micropump which can be produced using conventional production techniques and materials is presented. By applying well-known techniques and materials, economic fabrication of micropumps for various applications is feasible even at low production volumes. The micropump is capable of pumping

  15. Development on seismic isolation technique for the reactor buildings

    International Nuclear Information System (INIS)

    Yamauchi, Hiroyuki; Okawa, Izuru

    2000-01-01

    In recent earthquake, a large acceleration was observed not only at horizontal movement but also at vertical one, it is essential to grasp performance of limit state and seismic isolation mechanism at its state for actualizing a seismic isolation building. This study aims at experimentally and analytically investigating the behavior required for applying a seismic isolation construction method to a nuclear relating facility under its limit state, and at verifying seismic performance of whole of the reactor building due to seismic observation using a model building. In 1998 fiscal year, investigation on recovery force performance of high dumping laminated rubber at vertical (axial) direction, investigation on effect on behavior of basic performance and upper structure forming at seismic isolation structure on earthquake, experimental plan on grasping basic performance of seismic isolation apparatus, and seismic observation of seismic isolation building for a whole model, were carried out. (G.K.)

  16. CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.F. Loros

    2000-06-28

    The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installing the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The

  17. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  18. Exploring new techniques for displaying complex building energy consumption data

    Energy Technology Data Exchange (ETDEWEB)

    Haberl, J. [Energy Systems Lab., Texas Engineering Experiment Station, Texas A and M Univ. System, College Station, TX (United States); Sparks, R. [Energy Systems Lab., Texas Engineering Experiment Station, Texas A and M Univ. System, College Station, TX (United States); Culp, C. [Emerson Electric Advanced Development Center, Copeland Corp., Sydney, OH (United States)

    1996-12-01

    This paper explores advanced data displays which may help building operators better understand complex energy data by enhancing the display of the data with animation (or time-sequencing). Animated displays such as the ones developed in this paper enhance the usefulness of static graphic displays because time and temperature dependent trends can be immediately seen. This is particularly useful for buildings because many of the energy consuming loads are schedule and temperature dependent. There is an increasing need for new display paradigms that can help building operators visually diagnose complex problems that may otherwise not be detected by efficient energy management and control system (EMCS) algorithms. This need becomes even more important during times of a shrinking labor pool as building operators are being asked to perform more complex control and monitoring tasks. In this paper animated displays have been developed specifically for use in viewing building energy data. Several examples are provided from a large engineering center in central Texas where the animated displays make a faulty flow meter easier to diagnose and allow the operator to visually detect simultaneous heating and cooling. (orig.)

  19. Acquisition System Verification for Energy Efficiency Analysis of Building Materials

    Directory of Open Access Journals (Sweden)

    Natalia Cid

    2017-08-01

    Full Text Available Climate change and fossil fuel depletion foster interest in improving energy efficiency in buildings. There are different methods to achieve improved efficiency; one of them is the use of additives, such as phase change materials (PCMs. To prove this method’s effectiveness, a building’s behaviour should be monitored and analysed. This paper describes an acquisition system developed for monitoring buildings based on Supervisory Control and Data Acquisition (SCADA and with a 1-wire bus network as the communication system. The system is empirically tested to prove that it works properly. With this purpose, two experimental cubicles are made of self-compacting concrete panels, one of which has a PCM as an additive to improve its energy storage properties. Both cubicles have the same dimensions and orientation, and they are separated by six feet to avoid shadows. The behaviour of the PCM was observed with the acquisition system, achieving results that illustrate the differences between the cubicles directly related to the PCM’s characteristics. Data collection devices included in the system were temperature sensors, some of which were embedded in the walls, as well as humidity sensors, heat flux density sensors, a weather station and energy counters. The analysis of the results shows agreement with previous studies of PCM addition; therefore, the acquisition system is suitable for this application.

  20. Activity measurement and effective dose modelling of natural radionuclides in building material

    International Nuclear Information System (INIS)

    Maringer, F.J.; Baumgartner, A.; Rechberger, F.; Seidel, C.; Stietka, M.

    2013-01-01

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. - Highlights: • Dose models for indoor radiation exposure due to natural radionuclides in building materials. • Strategies and methods in radionuclide metrology, activity measurement and dose modelling. • Selection of appropriate parameters in radiation protection standards for building materials. • Scientific-based limitations of indoor exposure due to natural radionuclides in building materials

  1. Natural Radioactivity in Clay and Building Materials Used in Latvia

    Directory of Open Access Journals (Sweden)

    Riekstina D.

    2015-06-01

    Full Text Available This paper presents the results of natural radionuclide concentration and activity index study in materials used for construction in Latvia. Special attention is given to clay and clay ceramics. Concentrations of K-40 and Th- 232, U-238 radioactivity were determined using gamma-spectrometry method. In some building ware, maximal concentration of K-40 was 1440 Bq/kg, and of U-238 - 175 Bq/kg. In granite, the determined maximum concentration of Th-232 was 210 Bq/kg. It was found that radionuclide content in different period clay deposits can differ by more than two times, and up to five times in different clay ceramics. The results obtained are compared with analogous data from the other Baltic and North European countries.

  2. DOCUMENTING FOR POSTERITY: ADVOCATING THE USE OF ADVANCED RECORDING TECHNIQUES FOR DOCUMENTATION IN THE FIELD OF BUILDING ARCHAEOLOGY

    Directory of Open Access Journals (Sweden)

    P. J. De Vos

    2017-08-01

    Full Text Available Since the new millennium, living in historic cities has become extremely popular in the Netherlands. As a consequence, historic environments are being adapted to meet modern living standards. Houses are constantly subjected to development, restoration and renovation. Although most projects are carried out with great care and strive to preserve and respect as much historic material as possible, nevertheless a significant amount of historical fabric disappears. This puts enormous pressure on building archaeologists that struggle to rapidly and accurately capture in situ authentic material and historical evidence in the midst of construction works. In Leiden, a medieval city that flourished during the seventeenth century and that today counts over 3,000 listed monuments, a solution to the problem has been found with the implementation of advanced recording techniques. Since 2014, building archaeologists of the city council have experienced first-hand that new recording techniques, such as laser scanning and photogrammetry, have dramatically decreased time spent on site with documentation. Time they now use to uncover, analyse and interpret the recovered historical data. Nevertheless, within building archaeology education, a strong case is made for hand drawing as a method for understanding a building, emphasising the importance of close observation and physical contact with the subject. In this paper, the use of advanced recording techniques in building archaeology is being advocated, confronting traditional educational theory with practise, and research tradition with the rapid rise of new recording technologies.

  3. Documenting for Posterity: Advocating the Use of Advanced Recording Techniques for Documentation in the Field of Building Archaeology

    Science.gov (United States)

    De Vos, P. J.

    2017-08-01

    Since the new millennium, living in historic cities has become extremely popular in the Netherlands. As a consequence, historic environments are being adapted to meet modern living standards. Houses are constantly subjected to development, restoration and renovation. Although most projects are carried out with great care and strive to preserve and respect as much historic material as possible, nevertheless a significant amount of historical fabric disappears. This puts enormous pressure on building archaeologists that struggle to rapidly and accurately capture in situ authentic material and historical evidence in the midst of construction works. In Leiden, a medieval city that flourished during the seventeenth century and that today counts over 3,000 listed monuments, a solution to the problem has been found with the implementation of advanced recording techniques. Since 2014, building archaeologists of the city council have experienced first-hand that new recording techniques, such as laser scanning and photogrammetry, have dramatically decreased time spent on site with documentation. Time they now use to uncover, analyse and interpret the recovered historical data. Nevertheless, within building archaeology education, a strong case is made for hand drawing as a method for understanding a building, emphasising the importance of close observation and physical contact with the subject. In this paper, the use of advanced recording techniques in building archaeology is being advocated, confronting traditional educational theory with practise, and research tradition with the rapid rise of new recording technologies.

  4. Generating consistent buildings: A semantic approach for integrating procedural techniques

    NARCIS (Netherlands)

    Tutenel, T.; Smelik, R.M.; Lopes, R.; Kraker, K.J. de; Bidarra, R.

    2011-01-01

    Computer games often take place in extensive virtual worlds, attractive for roaming and exploring. Unfortunately, current virtual cities can strongly hinder this kind of gameplay, since the buildings they feature typically have replicated interiors, or no interiors at all. Procedural content

  5. Question Sets and Profiles: A Technique for Evaluating Building Design.

    Science.gov (United States)

    Scoffham, Stephen

    1982-01-01

    A questionnaire (survey sheet) has been developed focusing on some of the factors an architect has to consider in designing a house (site, appearance, suitability, and building maintenance). The use of the questionnaire by students and "spin off" activities are discussed. (Author/JN)

  6. New applications of photographic materials in science and technique

    International Nuclear Information System (INIS)

    Buschmann, H.T.; Deml, R.; Duville, R.; Philippaerts, H.; Bollen, R.; Ranz, E.

    1976-01-01

    In spite of some disatvantages photographic materials based on silver halides possess the outstanding feature of high sensitivity. So again and again special photographic materials have been developed for new techniques including information storage. This contribution reports on some special photographic materials and it briefly discusses some applications. Materials are discussed in detail for holography, carrier-frequency photography, producing masks for integrated circuits, recording equidensities, bubble chamber photography, and for neutron-radiography. (orig.) [de

  7. Industrial heating principles, techniques, materials, applications, and design

    CERN Document Server

    Deshmukh, Yeshvant V

    2005-01-01

    Industry relies on heating for a wide variety of processes involving a broad range of materials. Each process and material requires heating methods suitable to its properties and the desired outcome. Despite this, the literature lacks a general reference on design techniques for heating, especially for small- and medium-sized applications. Industrial Heating: Principles, Techniques, Materials, Applications, and Design fills this gap, presenting design information for both traditional and modern heating processes and auxiliary techniques.The author leverages more than 40 years of experience int

  8. Emissions of volatile organic compounds from building materials and consumer products

    Science.gov (United States)

    Wallace, Lance A.; Pellizzari, Edo; Leaderer, Brian; Zelon, Harvey; Sheldon, Linda

    EPA's TEAM Study of personal exposure to volatile organic compounds (VOC) in air and drinking water of 650 residents of seven U.S. cities resulted in the identification of a number of possible sources encountered in peoples' normal daily activities and in their homes. A follow-up EPA study of publicaccess buildings implicated other potential sources of exposure. To learn more about these potential sources, 15 building materials and common consumer products were analyzed using a headspace technique to detect organic emissions and to compare relative amounts. About 10-100 organic compounds were detected offgassing from each material. Four mixtures of materials were then chosen for detailed study: paint on sheetrock; carpet and carpet glue; wallpaper and adhesives; cleansers and a spray pesticide. The materials were applied as normally used, allowed to age 1 week (except for the cleansers and pesticides, which were used normally during the monitoring period), and placed in an environmentally controlled chamber. Organic vapors were collected on Tenax-GC over a 4-h period and analyzed by GC-MS techniques. Emission rates and chamber concentrations were calculated for 17 target chemicals chosen for their toxic, carcinogenic or mutagenic properties. Thirteen of the 17 chemicals were emitted by one or more of the materials. Elevated concentrations of chloroform, carbon tetrachloride, 1,1,1-trichloroethane, n-decane, n-undecane, p-dichlorobenzene, 1,2-dichloroethane and styrene were produced by the four mixtures of materials tested. For some chemicals, these amounts were sufficient to account for a significant fraction of the elevated concentrations observed in previous indoor air studies. We conclude that common materials found in nearly every home and place of business may cause elevated exposures to toxic chemicals.

  9. Applications of mass spectrometry techniques to autoclave curing of materials

    Science.gov (United States)

    Smith, A. C.

    1983-01-01

    Mass spectrometer analysis of gases evolved from polymer materials during a cure cycle can provide a wealth of information useful for studying cure properties and procedures. In this paper data is presented for two materials to support the feasibility of using mass spectrometer gas analysis techniques to enhance the knowledge of autoclave curing of composite materials and provide additional information for process control evaluation. It is expected that this technique will also be useful in working out the details involved in determining the proper cure cycle for new or experimental materials.

  10. A numerical study of external building walls containing phase change materials (PCM)

    International Nuclear Information System (INIS)

    Izquierdo-Barrientos, M.A.; Belmonte, J.F.; Rodríguez-Sánchez, D.; Molina, A.E.; Almendros-Ibáñez, J.A.

    2012-01-01

    Phase Change Materials (PCMs) have been receiving increased attention, due to their capacity to store large amounts of thermal energy in narrow temperature ranges. This property makes them ideal for passive heat storage in the envelopes of buildings. To study the influence of PCMs in external building walls, a one-dimensional transient heat transfer model has been developed and solved numerically using a finite difference technique. Different external building wall configurations were analyzed for a typical building wall by varying the location of the PCM layer, the orientation of the wall, the ambient conditions and the phase transition temperature of the PCM. The integration of a PCM layer into a building wall diminished the amplitude of the instantaneous heat flux through the wall when the melting temperature of the PCM was properly selected according to the season and wall orientation. Conversely, the results of the work show that there is no significant reduction in the total heat lost during winter regardless of the wall orientation or PCM transition temperature. Higher differences were observed in the heat gained during the summer period, due to the elevated solar radiation fluxes. The high thermal inertia of the wall implies that the inclusion of a PCM layer increases the thermal load during the day while decreasing the thermal load during the night. - Highlights: ► A comparative simulation of a building wall with and without PCMs has been conducted. ► PCM is selected according with the season, the wall orientation and the melting temperature. ► PCM in a building wall help to diminish the internal air temperature swings and to regulate the heat transfer.

  11. Thermal Characteristics of New Building Materials and their Effect upon the Energy Efficiency

    Science.gov (United States)

    Ekmanis, J.; Zebergs, V.; Zeltins, N.; Vrublevski, V.

    2008-09-01

    The paper formulates the role of thermal inertia of the building materials in the energy supply of buildings and in solution of the energy efficiency problems. The evolution of construction entails the application of new building materials as well as of glazed surfaces in the envelopes of buildings. An analysis is made of the influence of the thermal resistance of building materials and their heat capacity on the thermal inertia indicators of buildings. An inertia scale of buildings has been developed for the choice of the heat supply capacities of buildings at low outdoor temperatures under extreme conditions of the Latvian climate. The ratio of the ventilation capacities has been analysed in the total heating balance at a low thermal inertia of buildings. The significance of innovative ventilation technologies for raising the energy efficiency has been considered.

  12. Development of New Dielectric NDE Techniques for Spaceflight Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — Dielectric Spectroscopy is a relatively new technique for nondestructively measuring material properties. The goal for this project is to extend the use of...

  13. Infrared Emissivity Measurements for Mineral Materials and Materials Used for Infrastructure Building

    Science.gov (United States)

    Monchau, Jean-Pierre; Ibos, Laurent; Marchetti, Mario; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves; Ausset, Patrick

    2013-04-01

    The knowledge of the infrared emissivity of materials used in buildings, civil engineering structures and soils studies is useful for two specific approaches. Firstly, quantitative diagnosis of buildings or civil engineering infrastructures using infrared thermography requires the emissivity value of materials in the spectral bandwidth of the camera. For instance emissivity in the band III domain is required when using cameras with uncooled detectors like micro-bolometers arrays. The knowledge of emissivity is in that case needed for computation of surface temperature fields. Secondly, accurate thermal balance requires the emissivity value in a large wavelength domain. This is for instance the case for computing roads surface temperature to predict ice forming. A measurement of emissivity just after construction and a regular survey of its variations due to ageing or soiling of surfaces could be useful in many situations like thermal mapping of roads or building insulation diagnosis. For mineral materials, a lot of studies exist, but often in situ value of emissivity could be different. Mineral materials are not pure, and could be soiled. Real value obtained with a field device is required. The use of portable emissivity measurement devices is required for that purpose. Thus, two devices using the indirect measurement method were developed. The emissivity value is deduced from the measurement of the reflectivity of the material under study after calibration with a highly reflective surface. The first device uses a slow modulation frequency well adapted to laboratory measurements whereas the second one is a portable system using a faster modulation frequency authorizing outdoor measurements. Both devices allow measurements in broad band (1 to 40μm) and band III (8 to 14μm). Experiments were performed on a large number of materials commonly used in buildings and civil engineering structures. For instance at that time 180 samples of different pavement wearing course

  14. Wood and Other Materials Used to Construct Nonresidential Buildings - Canada

    Science.gov (United States)

    David B. McKeever; Joe Elling

    2014-01-01

    Low-rise nonresidential building construction is an important market in Canada for lumber, engineered wood products, structural wood panels, and nonstructural wood panels. This report examines wood products consumption in 2012 for construction of selected low-rise nonresidential buildings types that have six or fewer stories. Buildings with more than six stories are...

  15. X-ray Computed Microtomography technique applied for cementitious materials: A review.

    Science.gov (United States)

    da Silva, Ítalo Batista

    2018-04-01

    The main objective of this article is to present a bibliographical review about the use of the X-ray microtomography method in 3D images processing of cementitious materials microstructure, analyzing the pores microstructure and connectivity network, enabling tthe possibility of building a relationship between permeability and porosity. The use of this technique enables the understanding of physical, chemical and mechanical properties of cementitious materials by publishing good results, considering that the quality and quantity of accessible information were significant and may contribute to the study of cementitious materials development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. QUALITY MONITORING OF LARGE STEEL BUILDINGS USING TERRESTRIAL LIDAR TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2012-07-01

    Full Text Available Terrestrial LIDAR Technology is used for quality monitoring in construction of large-scale steel buildings to solve the problem of quick and precise inspecting for large steel structure. Point Cloud is acquired fast and of high accuracy with tie-control points that set in different blocks. Feature points are extracted from scan data and compared with its reference points designed to analyze its variation of position and size, which has active guidance meaning for engineering construction. Finally three applications are given to prove the effectiveness of the method proposed.

  17. Heat transfer characteristics of building walls using phase change material

    Science.gov (United States)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  18. Building regional early flood warning systems by AI techniques

    Science.gov (United States)

    Chang, F. J.; Chang, L. C.; Amin, M. Z. B. M.

    2017-12-01

    Building early flood warning system is essential for the protection of the residents against flood hazards and make actions to mitigate the losses. This study implements AI technology for forecasting multi-step-ahead regional flood inundation maps during storm events. The methodology includes three major schemes: (1) configuring the self-organizing map (SOM) to categorize a large number of regional inundation maps into a meaningful topology; (2) building dynamic neural networks to forecast multi-step-ahead average inundated depths (AID); and (3) adjusting the weights of the selected neuron in the constructed SOM based on the forecasted AID to obtain real-time regional inundation maps. The proposed models are trained, and tested based on a large number of inundation data sets collected in regions with the most frequent and serious flooding in the river basin. The results appear that the SOM topological relationships between individual neurons and their neighbouring neurons are visible and clearly distinguishable, and the hybrid model can continuously provide multistep-ahead visible regional inundation maps with high resolution during storm events, which have relatively small RMSE values and high R2 as compared with numerical simulation data sets. The computing time is only few seconds, and thereby leads to real-time regional flood inundation forecasting and make early flood inundation warning system. We demonstrate that the proposed hybrid ANN-based model has a robust and reliable predictive ability and can be used for early warning to mitigate flood disasters.

  19. Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.

    Science.gov (United States)

    Zhu, Yujie; Gao, Tao; Fan, Xiulin; Han, Fudong; Wang, Chunsheng

    2017-04-18

    Understanding of the thermodynamic and kinetic properties of electrode materials is of great importance to develop new materials for high performance rechargeable batteries. Compared with computational understanding of physical and chemical properties of electrode materials, experimental methods provide direct and convenient evaluation of these properties. Often, the information gained from experimental work can not only offer feedback for the computational methods but also provide useful insights for improving the performance of materials. However, accurate experimental quantification of some properties can still be challenging. Among them, chemical diffusion coefficient is one representative example. It is one of the most crucial parameters determining the kinetics of intercalation compounds, which are by far the dominant electrode type used in rechargeable batteries. Therefore, it is of significance to quantitatively evaluate this parameter. For this purpose, various electrochemical techniques have been invented, for example, galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). One salient advantage of these electrochemical techniques over other characterization techniques is that some implicit thermodynamic and kinetic quantities can be linked with the readily measurable electrical signals, current, and voltage, with very high precision. Nevertheless, proper application of these techniques requires not just an understanding of the structure and chemistry of the studied materials but sufficient knowledge of the physical model for ion transport within solid host materials and the analysis method to solve for chemical diffusion coefficient. Our group has been focusing on using various electrochemical techniques to investigate battery materials, as well as developing models for studying some emerging materials. In this Account, the

  20. Application of computer technique in the reconstruction of Chinese ancient buildings

    Science.gov (United States)

    Li, Deren; Yang, Jie; Zhu, Yixuan

    2003-01-01

    This paper offers an introduction of computer assemble and simulation of ancient building. A pioneer research work was carried out by investigators of surveying and mapping describing ancient Chinese timber buildings by 3D frame graphs with computers. But users can know the structural layers and the assembly process of these buildings if the frame graphs are processed further with computer. This can be implemented by computer simulation technique. This technique display the raw data on the screen of a computer and interactively manage them by combining technologies from computer graphics and image processing, multi-media technology, artificial intelligence, highly parallel real-time computation technique and human behavior science. This paper presents the implement procedure of simulation for large-sized wooden buildings as well as 3D dynamic assembly of these buildings under the 3DS MAX environment. The results of computer simulation are also shown in the paper.

  1. Analysis of the Constituent Materials of Historical Building in Jeddah, Saudi Arabia

    Science.gov (United States)

    Aloufi, Fahed; El-Turke, Adel; Scott, Tom

    2017-04-01

    Increasing levels of atmospheric pollution is observed to accentuate and accelerate the degradation of historical sites. This paper investigates the chemical and mineralogical characteristic of the building materials used to construct the declared UNESCO world heritage site located in Jeddah, Saudi Arabia., and provide an initial assessment of the primary mechanisms for their environmental degradation. Stone and plaster samples were collected from six historic houses as well as the quarry from which the stone was originally produced. The main objective of this work was to identify the composition and alteration of the stone, plaster and quarry materials and to provide information about the decay mechanisms, thereby better enabling conservators to identify the correct methods and materials for onwards conservation and restoration works. X-ray Diffraction (XRD), Laser Raman spectroscopy (LRS) and Scanning Electron Microscopy combined with energy-dispersion X-ray spectroscopy (FEGSEM-EDS) were utilized as analytical techniques to conjointly to determine the chemical composition of the corresponding materials. The results revealed that the stone used throughout the historic buildings comprises a mixture of calcareous limestone and corallite stones. The associated binding plaster is lime based, made with non-hydraulic lime and local sand, whilst the decorative plaster is made of gypsum (CaSO4). On degraded surfaces it was possible to detect the deposition of sea salt, sulphur and phosphorus as the main atmospheric pollutants and significant contributors to the observed environmental degradation.

  2. Determining Radium-226 concentration from Radon-222 emanation in building materials: a theoretical model

    International Nuclear Information System (INIS)

    Barreto, Rafael C.; Perna, Allan F.N.; Narloch, Danielle C.; Del Claro, Flavia; Correa, Janine N.; Paschuk, Sergei A.

    2017-01-01

    It was developed an improved theoretical model capable to estimate the radium concentration in building materials solely measuring the radon-222 concentration in a con ned atmosphere. This non-destructive technique is not limited by the size of the samples, and it intrinsically includes back diffusion. The resulting equation provides the exact solution for the concentration of radon-222 as a function of time and distance in one dimension. The effective concentration of radium-226 is a fit parameter of this equation. In order to reduce its complexity, this equation was simplified considering two cases: low diffusion in the building material compared to the air, and a building material initially saturated with radon-222. These simplified versions of the exact one dimension solution were used to t experimental data. Radon-222 concentration was continuously measured for twelve days with an AlphaGUARD TM detector, located at the Laboratory of Applied Nuclear Physics at Universidade Tecnologica Federal do Parana (UTFPR). This model was applied to two different materials: cement mortar and concrete, which results were respectively (15:7 ±8:3) Bq=kg and (10:5±2:4) Bq=kg for the radium-226 effective concentration. This estimation was confronted with the direct measurements of radium in the same materials (same sources) using gamma-ray spectrometry, fulfilled at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), which results were respectively (13:81±0:23) Bq=kg and (12:61±0:22) Bq=kg. (author)

  3. Determining Radium-226 concentration from Radon-222 emanation in building materials: a theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Rafael C.; Perna, Allan F.N.; Narloch, Danielle C.; Del Claro, Flavia; Correa, Janine N.; Paschuk, Sergei A., E-mail: baarreth@gmail.com, E-mail: allan_perna@hotmail.com, E-mail: daninarloch@hotmail.com, E-mail: aviadelclaro@gmail.com, E-mail: janine_nicolosi@hotmail.com, E-mail: spaschuk@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Departamento Academico de Fisica e Departamento Academico de Construcao Civil

    2017-07-01

    It was developed an improved theoretical model capable to estimate the radium concentration in building materials solely measuring the radon-222 concentration in a con ned atmosphere. This non-destructive technique is not limited by the size of the samples, and it intrinsically includes back diffusion. The resulting equation provides the exact solution for the concentration of radon-222 as a function of time and distance in one dimension. The effective concentration of radium-226 is a fit parameter of this equation. In order to reduce its complexity, this equation was simplified considering two cases: low diffusion in the building material compared to the air, and a building material initially saturated with radon-222. These simplified versions of the exact one dimension solution were used to t experimental data. Radon-222 concentration was continuously measured for twelve days with an AlphaGUARD{sup TM} detector, located at the Laboratory of Applied Nuclear Physics at Universidade Tecnologica Federal do Parana (UTFPR). This model was applied to two different materials: cement mortar and concrete, which results were respectively (15:7 ±8:3) Bq=kg and (10:5±2:4) Bq=kg for the radium-226 effective concentration. This estimation was confronted with the direct measurements of radium in the same materials (same sources) using gamma-ray spectrometry, fulfilled at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), which results were respectively (13:81±0:23) Bq=kg and (12:61±0:22) Bq=kg. (author)

  4. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2015-02-01

    Full Text Available In this research, we focused on the development of composite phase-change materials (CPCMs by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS. The composite PCMs were characterized using environmental scanning electron microscopy (ESEM, Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade.

  5. Regression Commonality Analysis: A Technique for Quantitative Theory Building

    Science.gov (United States)

    Nimon, Kim; Reio, Thomas G., Jr.

    2011-01-01

    When it comes to multiple linear regression analysis (MLR), it is common for social and behavioral science researchers to rely predominately on beta weights when evaluating how predictors contribute to a regression model. Presenting an underutilized statistical technique, this article describes how organizational researchers can use commonality…

  6. Fire Safety Aspects of Polymeric Materials. Volume 7. Buildings

    Science.gov (United States)

    1979-01-01

    Custodial Buildings 136 4.5.5 Retail Stores, Malls, etc. 138 l’ 4.5.6 Restaurants and Nightclubs 4.5.7 Public Assembly Occupancies - Auditoria , Theaters... auditoria , theaters, exhibition halls, arenas, transportation terminals; educational buildings and indus- trial buildings. Many of the fire safety...usage are developed. 4.5.7 Public Assembly Occupancies - Auditoria , Theaters, Exhibition Halls, Arenas, Transportation Terminals, Etc. The factors

  7. Studies of some IAEA candidate reference materials for microanalytical techniques

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Qian Yine; Li Deyi; Wang Yinsong; Tan Mingguang; Wang Xuepeng; Gu Yingmei; Zhu Jieqing

    2002-01-01

    In order to develop new reference materials for microanalytical nuclear techniques, the Scanning Proton Microprobe (SPM) technique was used to determine homogeneity level within 100x200 μm 2 micro-area on the small pieces of IAEA Urban Dust reference materials. In part 1 of this paper, the experimental methods are described in detail. The results show that IAEA-396A/M Vienna Urban Dust is homogeneous enough for small sample analysis. As a task we prepared the IAEA-386 bovine liver as a new candidate reference material to meet this purpose. In part 2, the preparation process including material collection, dried, pulverize, sieve, homogenization and preliminary test is described in detail. The more effective grinding methods were established to achieve the median particle size of 22 μm. Also in part.3 we performed the qualitative determinations of some candidate reference materials by NAA and AFS. (author)

  8. Advanced applications of diagnostics techniques to fusion reactor materials

    International Nuclear Information System (INIS)

    Albertini, G.; Rustichelli, F.

    1993-01-01

    Development of the future fusion reactors requires structural materials capable to withstand extreme operation conditions, including the exposure to 14 MeV neutrons and intense thermomechanical stresses. Furthermore, material technologies such as welding and joining, tiling, production of components having unusual size and shape must also be developed. Therefore the microstructural effects produced in such materials by irradiation or thermomechanical tests must also be studied by suitable 'diagnostic' techniques. In this work, after an introduction recalling the most critical material problems in fusion technology, several results are reviewed concerning the characterization of fusion-relevant materials by using radiation-based techniques such as neutron and X-ray scattering, positron annihilation and some other more common ones. (orig.)

  9. Second law analysis and simulation techniques for the energy optimization of buildings

    OpenAIRE

    Terlizzese, Tiziano

    2010-01-01

    The research activity described in this thesis is focused mainly on the study of finite-element techniques applied to thermo-fluid dynamic problems of plant components and on the study of dynamic simulation techniques applied to integrated building design in order to enhance the energy performance of the building. The first part of this doctorate thesis is a broad dissertation on second law analysis of thermodynamic processes with the purpose of including the issue of the energy efficiency of...

  10. Building houses with local materials: means to drastically reduce the environmental impact of construction

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J.C.; Mesbah, A. [ENTPE-Dept. Genie Civil et Batiment (DGCB), Vaux-en-Velin, 69 (France); Oggero, M. [SCI Terroir, Nice (France); Walker, P. [Bath Univ., Dept. of Architecture and Civil Engineering, Bath (United Kingdom)

    2001-12-01

    This paper describes the process of materials selection, design and construction used for a series of small residential buildings in Southern France. Whenever possible, materials were resourced in situ in order to minimise the environmental impact of the new buildings. In particular, the process of materials selection, stone masonry with stabilised in situ soil mortar, and the form of construction are outlined. Guidance for a more generalised adoption of the design process is also provided. The energy consumed in the building of one house is compared to a typical concrete house. By adopting local materials the amount of energy used in building decreased by up to 215% and the impact of transportation by 453%. However, adoption of local materials in developed countries can be hindered by the loss of traditional building crafts and a lack of appropriate building standards. These problems are also discussed in this paper. (Author)

  11. The verification tests of residual radioactivity measurement and assessment techniques for buildings and soils

    International Nuclear Information System (INIS)

    Onozawa, T.; Ishikura, T.; Yoshimura, Yukio; Nakazawa, M.; Makino, S.; Urayama, K.; Kawasaki, S.

    1996-01-01

    According to the standard procedure for decommissioning a commercial nuclear power plant (CNPP) in Japan, controlled areas will be released for unrestricted use before the dismantling of a reactor building. If manual survey and sampling techniques were applied to measurement for unrestricted release on and in the extensive surface of the building, much time and much specialized labor would be required to assess the appropriateness of the releasing. Therefore the authors selected the following three techniques for demonstrating reliability and applicability of the techniques for CNPPs: (1) technique of assessing radioactive concentration distribution on the surface of buildings (ADB); (2) technique of assessing radioactive permeation distribution in the concrete structure of buildings (APB); (3) technique of assessing radioactive concentration distribution in soil (ADS). These tests include the techniques of measuring and assessing very low radioactive concentration distribution on the extensive surfaces of buildings and the soil surrounding of a plant with automatic devices. Technical investigation and preliminary study of the verification tests were started in 1990. In the study, preconditions were clarified for each technique and the performance requirements were set up. Moreover, simulation models have been constructed for several feasible measurement method to assess their performance in terms of both measurement test and simulation analysis. Fundamental tests have been under way using small-scale apparatuses since 1994

  12. Digital Learning Material for Model Building in Molecular Biology

    Science.gov (United States)

    Aegerter-Wilmsen, Tinri; Janssen, Fred; Hartog, Rob; Bisseling, Ton

    2005-01-01

    Building models to describe processes forms an essential part of molecular biology research. However, in molecular biology curricula little attention is generally being paid to the development of this skill. In order to provide students the opportunity to improve their model building skills, we decided to develop a number of digital cases about…

  13. VOC sink behaviour on building materials--model evaluation

    Science.gov (United States)

    The event of 11 September 2001 underscored the need to study the vulnerability of buildings to weapons of mass destruction (WMD), including chemical, biological, physical, and radiological agents. Should these agents be released inside a building, they would interact with interio...

  14. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    International Nuclear Information System (INIS)

    Reynolds, T.D.; Easterling, S.D.

    2010-01-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  15. Application of headspace for research volatile organic compounds emitted from building materials

    Directory of Open Access Journals (Sweden)

    Kultys Beata

    2018-01-01

    Full Text Available Headspace technique and gas chromatography method with mas detector has been used for the determination of volatile organic compounds (VOC emitted from various building and finishing materials, such as sealing foams, mounting strips, paints, varnishes, floor coverings. The tests were carried out for different temperatures (in the temperature range of 60 to 180 °C and the time of heated vials with tested materials inside. These tests were conducted to verify the possibility of use this method of determination the VOC emission. Interpretation of chromatograms and mass spectra allowed to identify the type of compounds emitted from the tested materials and the optimum time and temperature for each type of material was determined. The increase in heating temperature of the samples resulted in increase the type and number of identified compounds: for four materials the increase was in the whole temperature range, for others it was from 90 °C. On the other hand, emission from mineral wool was low in whole temperature range. 30-minutes heating of the samples was sufficient to identify emitted compounds for most of tested materials. Applying a longer time, i.e. 24 hours, significantly increased the sensitivity of the method.

  16. The influence of rainwater composition on the conservation state of cementitious building materials

    Energy Technology Data Exchange (ETDEWEB)

    Morillas, Héctor, E-mail: hector.morillas@ehu.es [Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Marcaida, Iker [Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Maguregui, Maite [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country (Spain); Carrero, Jose Antonio; Madariaga, Juan Manuel [Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country (Spain)

    2016-01-15

    Rainwater is one of the main pollution tracers around the world. There are many reasons that can explain the presence of high concentrations of certain hazardous elements (HEs) in the rainwater (traffic, marine port activities, industry, etc.). In this work, rainwater samples were collected at six different locations in the Metropolitan Bilbao (Basque Country, north of Spain) during November 2014. HE concentrations were determined by means of inductively coupled plasma mass spectrometry (ICP-MS) and anions by ion chromatography. The pH and redox potential values on these samples were also assessed. According to the obtained results, different trends along the estuary of Bilbao have been observed. To corroborate some hypothesis, thermodynamic simulations and correlation analyses were also carried out using quantitative data. These trends are closely related to the surrounding pollution and marine influence. Finally, in order to ascertain the influence of the Metropolitan Bilbao rainwater on buildings materials, a recent construction was characterized. Using techniques such as Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM–EDS) and Raman Spectroscopy, different types of sulfates and nitrates were observed. - Highlights: • Rainwater from six sampling points along Nervion River (Bilbao, Spain) were analyzed. • Ion chromatography, ICP-MS and chemometrics were used for the rainwater analyses. • The interaction between wet depositions and building materials was studied. • Cementitious materials were analyzed using µ-Raman spectroscopy and SEM–EDS.

  17. Radon diffusion studies in some building materials using solid state nuclear track detectors

    CERN Document Server

    Singh, S; Singh, B; Singh, J

    1999-01-01

    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  18. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated

  19. Joining dissimilar materials using Friction Stir scribe technique

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep; Fifield, Leonard S.

    2016-10-03

    The ability to effectively join materials with vastly different melting points like Aluminum-Steel, Polymer composites - metals has been one of the road blocks in realizing multi-material components for light weighting efforts. Friction stir scribe (FSS) technique is a promising method that produces continuous overlap joint between materials with vastly different melting regimes and high temperature flow characteristics. FSS uses an offset cutting tool at the tip of the FSW pin to create an insitu mechanical interlock between material interfaces. With investments from Vehicle Technology office, US DOE and several automotive manufacturers and suppliers PNNL is developing the FSS process and has demonstrated viability of joining several material combinations. Details of welding trails, unique challenges and mitigation strategies in different material combinations will be discussed. Joint characterization including mechanical tests and joint performances will also be presented.

  20. Innovative Materials and Techniques in Concrete Construction : ACES Workshop

    CERN Document Server

    2012-01-01

    Recent years have seen enormous advances in the technology of concrete as a material, through which its strength, compactness and ductility can reach levels never dreamed of before. Thanks to these improved material properties, the strength and durability of concrete structures is greatly improved, their weight and dimensions reduced, the scope of concrete as a structural material is widened and – despite the higher material costs – overall economy is possible, with positive impacts on sustainability as well. Similar advances are underway in reinforcing materials, notably high strength steel and fibre-reinforced polymers, and in the way they are combined with concrete into high performance structures. Developments in materials and equipment, as well as new concepts, have lead to innovative construction techniques, reducing cost and construction time and making possible the application of concrete under extreme conditions of construction or environment. All these advances will be highlighted in the book by...

  1. Alternative SEM techniques for observing pyritised fossil material.

    Science.gov (United States)

    Poole; Lloyd

    2000-11-01

    Two scanning electron microscopy (SEM) electron-specimen interactions that provide images based on sample crystal structure, electron channelling and electron backscattered diffraction, are described. The SEM operating conditions and sample preparation are presented, followed by an example application of these techniques to the study of pyritised plant material. The two approaches provide an opportunity to examine simultaneously, at higher magnifications normally available optically, detailed specimen anatomy and preservation state. Our investigation suggests that whereas both techniques have their advantages, the electron channelling approach is generally more readily available to most SEM users. However, electron backscattered diffraction does afford the opportunity of automated examination and characterisation of pyritised fossil material.

  2. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  3. Controlled Light Cross-Linking Technique to Prepare Healable Materials

    Directory of Open Access Journals (Sweden)

    Soliman Abdalla

    2017-06-01

    Full Text Available Detection of defects, damages and cracks in structural polymers is very difficult, and even if they are detected, they will be very hard to be repaired. This is because different kinds of stress can reduce the mechanical efficiency of structural and functional thermosetting composite materials and they can damage the polymer matrix, thus reducing the purposed properties. General healing processes use thermal energy “alone” to heal these materials, thus impairing the intended properties of the materials. Therefore, we present a thermal healing ability that can be switched-on and/or -off at desire using illumination by photon energy (visible and ultra violet. By this technique, one can control local heal while keeping the efficiency of the material nearly unchanged. Furan-based cross-linker chemically reacts (forward- and reverse-reaction with short-chains of maleimide-substituted poly(lauryl methacrylate to form robust chemical bonds. This permits us to perform local control over thermally induced de- and/or re-cross-linking techniques. One can extend and apply this technique to cover micro-devices, coating-techniques, fine lithography, micro- and nano-fabrication processes, etc. Therefore, the present work developed a suitable technology with structural polymeric material, which has the ability to self-heal cracks (and damages and recover structural function.

  4. Ice crystallization in porous building materials: assessing damage using real-time 3D monitoring

    Science.gov (United States)

    Deprez, Maxim; De Kock, Tim; De Schutter, Geert; Cnudde, Veerle

    2017-04-01

    Frost action is one of the main causes of deterioration of porous building materials in regions at middle to high latitudes. Damage will occur when the internal stresses due to ice formation become larger than the strength of the material. Hence, the sensitivity of the material to frost damage is partly defined by the structure of the solid body. On the other hand, the size, shape and interconnection of pores manages the water distribution in the building material and, therefore, the characteristics of the pore space control potential to form ice crystals (Ruedrich et al., 2011). In order to assess the damage to building materials by ice crystallization, lot of effort was put into identifying the mechanisms behind the stress build up. First of all, volumetric expansion of 9% (Hirschwald, 1908) during the transition of water to ice should be mentioned. Under natural circumstances, however, water saturation degrees within natural rocks or concrete cannot reach a damaging value. Therefore, linear growth pressure (Scherer, 1999), as well as several mechanisms triggered by water redistribution during freezing (Powers and Helmuth, 1953; Everett, 1961) are more likely responsible for damage due to freezing. Nevertheless, these theories are based on indirect observations and models and, thus, direct evidence that reveals the exact damage mechanism under certain conditions is still lacking. To obtain this proof, in-situ information needs to be acquired while a freezing process is performed. X-ray computed tomography has proven to be of great value in material research. Recent advances at the Ghent University Centre for Tomography (UGCT) have already allowed to dynamically 3D image crack growth in natural rock during freeze-thaw cycles (De Kock et al., 2015). A great potential to evaluate the different stress build-up mechanisms can be found in this imaging technique consequently. It is required to cover a range of materials with different petrophysical properties to achieve

  5. Contribution to energy conservation of opaque building materials exposed to solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dilmac, S.; Akman, M.S.

    1990-12-01

    In the study, effects of opaque building materials on the heating of buildings by the passive solar energy system have been investigated. The quantity of solar energy absorbed by surfaces and its transfer indoors have been the main subjects of the research. Relevant surface properties and structures of opaque building skin materials have been determined experimentally and theoretically according to the meteorological, geographical and atmospheric characteristics of the regions. A laminar composite building element made of light and heavy materials has been suggested to obtain an efficient solution.

  6. The use of luminescence techniques with ceramic materials for retrospective dosimetry

    International Nuclear Information System (INIS)

    Bailiff, I.K.

    1996-01-01

    Luminescence techniques are being used with ceramic materials to provide evaluations of integrated external gamma dose for dose reconstruction in populated areas contaminated by Chernobyl fallout. A range of suitable ceramics can be found associated with buildings: on the exterior surfaces (tiles), within walls (bricks) and within the interiors (porcelain fittings and tiles). Dose evaluations obtained using such samples provide information concerning the time-averaged incident gamma radiation field, average shielding factors and, with the aid of computational modelling techniques, dose estimates at external reference positions

  7. Guidelines for Assessment and Abatement of Asbestos-Containing Materials in Buildings.

    Science.gov (United States)

    Pielert, James H.; Mathey, Robert G.

    This report presents guidelines, based on available information, for the assessment and abatement of asbestos-containing materials in buildings. Section 1 provides background information on the history and use of asbestos-containing products in buildings, the characteristics of asbestos fibers, products and materials containing asbestos, and…

  8. The global warming potential of building materials : An application of life cycle analysis in Nepal

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Zanetti, Michela; Pierobon, Francesca; Gatto, Paola; Maskey, Ramesh Kumar; Cavalli, Raffaele

    2017-01-01

    This paper analyzes the global-warming potential of materials used to construct the walls of 3 building types - traditional, semimodern, and modern - in Sagarmatha National Park and Buffer Zone in Nepal, using the life-cycle assessment approach. Traditional buildings use local materials, mainly wood

  9. Literature review on use of nonwood plant fibers for building materials and panels

    Science.gov (United States)

    John A. Youngquist; Brent E. English; Roger C. Scharmer; Poo Chow; Steven R. Shook

    1994-01-01

    The research studies included in this review focus on the use of nonwood plant fibers for building materials and panels. Studies address (1) methods for efficiently producing building materials and panels from nonwood plant fibers; (2) treatment of fibers prior to board production; (3) process variables, such as press time and temperature, press pressure, and type of...

  10. Calculation of radiation dose rate arisen from radionuclide contained in building materials

    International Nuclear Information System (INIS)

    Lai Tien Thinh; Nguyen Hao Quang

    2008-01-01

    This paper presents some results that we used MCNP5 program to calculate radiation dose rate arisen from radionuclide in building materials. Since then, the limits of radionuclide content in building materials are discussed. The calculation results by MCNP are compared with those calculated by analytical method. (author)

  11. Building materials. VOC emissions, diffusion behaviour and implications from their use

    International Nuclear Information System (INIS)

    Katsoyiannis, Athanasios; Leva, Paolo; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2012-01-01

    Five cement- and five lime-based building materials were examined in an environmental chamber for their emissions of Volatile Organic Compounds (VOCs). Typical VOCs were below detection limits, whereas not routinely analysed VOCs, like neopentyl glycol (NPG), dominated the cement-based products emissions, where, after 72 h, it was found to occur, in levels as high as 1400 μg m −3 , accounting for up to 93% of total VOCs. The concentrations of NPG were not considerably changed between the 24 and 72 h of sampling. The permeability of building materials was assessed through experiments with a dual environmental chamber; it was shown that building materials facilitate the diffusion of chemicals through their pores, reaching equilibrium relatively fast (6 h). - Highlights: ► Neopentyl glycol is reported in emissions from building materials for the first time. ► Neopentyl glycol dominates the VOC emissions from cement-based building materials. ► A dual chamber was developed to control diffusion through building materials. ► Building materials facilitate diffusion of indoor air pollutants through their pores. - Neopentyl glycol was detected in high concentrations in emissions from building materials.

  12. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION...

  13. Characterization of the environmental performance of the insulating materials in the enveloping of the building.

    OpenAIRE

    Carabaño Rodriguez, Rocio; Bedoya Frutos, Cesar

    2012-01-01

    Insulating materials in buildings are one of the main factors that should be taken into account when talking about sustainability since with a correct application it could imply important savings for the citizens. In the course of its life, a building requires a series of supplies to perform the duties it has been built for, generating an impact on the environment. The selection of one material or another will establish partly the global environmental impact of the building. Choosing the righ...

  14. A REVIEW ON HEAT DISSIPATING PASSIVE COOLING TECHNIQUES FOR RESIDENTIAL BUILDINGS AT TROPICAL REGION

    Directory of Open Access Journals (Sweden)

    D. PRAKASH

    2017-08-01

    Full Text Available Thermal comfort is very essential for the occupants in a residential building without air-conditioning system especially in tropical region. Passive cooling is the only solution to achieve the required thermal comfort without sacrificing occupant’s health with zero energy consumption. All passive cooling techniques are broadly categorized under (i solar and heat protection, (ii heat modulation and (iii heat dissipation techniques. This paper reviews various techniques and advancements in passive cooling of buildings through heat dissipation approach. In the heat dissipation approach, the heat generated from various sources are reduced by natural ventilation and natural cooling.

  15. Terrain and building effects on the transport of radioactive material at a nuclear site

    International Nuclear Information System (INIS)

    Jeong, Hyojoon; Park, Misun; Jeong, Haesun; Hwang, Wontae; Kim, Eunhan; Han, Moonhee

    2014-01-01

    Highlights: • This study is to quantify the building and terrain effects on the atmospheric dispersion. • Statistical methods with AERMOD-PRIME and CFD were used. • To assess the risk in nuclear power plants, terrain and building effects have to be considered. - Abstract: This study identified the terrain and building effects on the atmospheric dispersion of radioactive materials at the Wolsong Nuclear Site. To analyze the atmospheric dispersion of radioactive materials, the AERMOD-PRIME model, CFD model and meteorological data from 2010 were used. The terrain and building effects on the atmospheric dispersion of radioactive materials within a 1 km radius of the site were statistically significant. The maximum concentration of the radioactive material increased by 7 times compared to the concentration when the terrain and building effects were not considered. It was found that the terrain and building influenced the decrease in the concentration of radioactive material in a concentric circle with a 914 m radius from the center of the site. The concentration of radioactive material in a concentric circle with a 350 m radius was two-times higher than the concentration estimated at the backside of the building, which is the downwind side, without any consideration of the terrain and building effects. In consideration of the Korean situation, in which multiple nuclear reactors are built on the same nuclear site, it is necessary to evaluate the risk that may affect workers and nearby residents by reflecting the terrain and building effects

  16. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    Science.gov (United States)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  17. Infrared thermographic assessment of materials and techniques for the protection of cultural heritage

    Science.gov (United States)

    Moropoulou, Antonia; Avdelidis, Nicolas P.; Koui, Maria; Delegou, Ekaterini T.; Tsiourva, Theodora

    2001-09-01

    In this work, infrared thermography was applied and investigated as a non-destructive tool in the assessment of materials and techniques for the protection of cultural heritage. Diagnostic studies on monuments and historic buildings, situated in Greece, were performed. Long wave infrared thermography was used on restoration and traditional - historic materials concerning architectural surfaces and historic structures for research purposes such as: the assessment of moisture impact to porous stone masonries and the evaluation of conservation interventions (materials and techniques) regarding, consolidation interventions on porous stone masonries, restoration of masonries by repair mortars, and cleaning of facades. The results of this work indicate that thermography can be considered as a powerful diagnostic nondestructive tool for the preservation and protection of cultural heritage.

  18. Building materials Degradation state of the chella historic site

    International Nuclear Information System (INIS)

    Baghdad, B.; Inigo, A.C.; Bounakhla, M.; Naimi, A.; Taleb, A.

    2008-01-01

    The chella Necropolis merinid is located upstream from the mouth on Wadi Bou Regreg left bank, 2 km northeast of downtown Rabat. The site climate is wet oceanic influence with average annual rainfall 400 to 500 mm / year and 16C average annual temperature. The construction material of this historical monument type stone size up the very large door with its original architecture and forming a coating, however close behind which the wall is made of coarse rubble, and likely mostly calcarenite, sand limestone, crystalline limestone and coquina. The stone, paving, and walls are being degraded. To surface rocks natural aging phenomenal we adds air pollution action suffered by the city in recent decades, particularly due to urban development and a concurrent increase in road Traffic which represents about 95% of the pollution source. This accelerates the coatings decomposation and the stone erosion. Opposite the site, at Chella door the concentration measured of certain gaseous pollutants (SO2, NO2 ...) exceeds the standard (190 ug / Nm 3 ). The rainwater analysis collected in this site shows a concentration of 14 mg / l average sulphate. The Chella historic site deterioration is linked to the aging of its concentrations, air pollution, and assault by salt spray and water, algae development, lichens and other vegetation types and the burrowing animals action, insects, birds and other creatures. All these phenomena are added to the natural process of the rock surface weathering and contribute to the monument deterioration. This study aims to inventory the various aspects of these monuments deterioration and the explanation of construction materials evolution. The alteration work is mainly related to the interaction of many external factors: exposure conditions the ambient atmosphere first composition, climate and weather conditions, position in the construction, architectural features. The most important parameters are those that control water flow to the surface blocks

  19. Improved Suction Technique for the Characterization of Construction Materials

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hansen, Kurt Kielsgaard

    2007-01-01

    The suction technique is a method from soil science that is used for the study of moisture storage capacity in porous construction materials at high relative humidity levels (above approximately 93%). The samples to be studied are placed in a pressurized container (an extractor) on a water...

  20. Ion backscattering techniques applied in materials science research

    International Nuclear Information System (INIS)

    Sood, D.K.

    1978-01-01

    The applications of Ion Backscattering Technique (IBT) to material analysis have expanded rapidly during the last decade. It is now regarded as an analysis tool indispensable for a versatile materials research program. The technique consists of simply shooting a beam of monoenergetic ions (usually 4 He + ions at about 2 MeV) onto a target, and measuring their energy distribution after backscattering at a fixed angle. Simple Rutherford scattering analysis of the backscattered ion spectrum yields information on the mass, the absolute amount and the depth profile of elements present upto a few microns of the target surface. The technique is nondestructive, quick, quantitative and the only known method of analysis which gives quantitative results without recourse to calibration standards. Its major limitations are the inability to separate elements of similar mass and a complete absence of chemical-binding information. A typical experimental set up and spectrum analysis have been described. Examples, some of them based on the work at the Bhabha Atomic Research Centre, Bombay, have been given to illustrate the applications of this technique to semiconductor technology, thin film materials science and nuclear energy materials. Limitations of IBT have been illustrated and a few remedies to partly overcome these limitations are presented. (auth.)

  1. A pilot survey of impression materials and techniques used by ...

    African Journals Online (AJOL)

    Objective: To assess the choice of impression material and impression technique used by Nigerian dentists for the fabrication of cast restoration. Method: A self administered questionnaire was distributed to dentists present at two national dental meeting held at Abuja and Lagos in 2011. The questionnaire assessed their ...

  2. Revisiting traumatic pulpal exposure: materials, management principles, and techniques.

    Science.gov (United States)

    Bakland, Leif K

    2009-10-01

    This article presents current concepts of managing teeth with traumatic pulp exposures. The article includes a description of the traumatology of crown fractures, discussion of treatment considerations, a summary of materials for vital pulp therapy, and an outline of techniques for treating pulp exposures.

  3. Techniques and materials for skin closure in caesarean section

    DEFF Research Database (Denmark)

    Mackeen, A Dhanya; Berghella, Vincenzo; Larsen, Mie-Louise

    2012-01-01

    Caesarean section is a common operation with no agreed upon standard regarding certain operative techniques or materials to use. With regard to skin closure, the skin incision can be re-approximated by a subcuticular suture immediately below the skin layer, by an interrupted suture, or by staples...

  4. A new basaltic glass microanalytical reference material for multiple techniques

    Science.gov (United States)

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only

  5. Plasticity models of material variability based on uncertainty quantification techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Reese E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Rizzi, Francesco [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Templeton, Jeremy Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    The advent of fabrication techniques like additive manufacturing has focused attention on the considerable variability of material response due to defects and other micro-structural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. Lastly, we demonstrate that the new method provides predictive realizations that are superior to more traditional ones, and how these UQ techniques can be used in model selection and assessing the quality of calibrated physical parameters.

  6. Reference materials for micro-analytical nuclear techniques

    International Nuclear Information System (INIS)

    Valkovic, V.; Zeisler, R.; Bernasconi, G.; Danesi, P.R.

    1994-01-01

    Direct application of many existing reference materials in micro-analytical procedures such as energy dispersive x-ray fluorescence (EDXRF), particle induced x-ray emission spectroscopy (PIXE) and ion probe techniques for the determination of trace elements is often impossible or difficult because: 1) other constituents present in large amounts interfere with the determination; 2) trace components are not sufficiently homogeneously distributed in the sample. Therefore specific natural-matrix reference materials containing very low levels of trace elements and having high degree of homogeneity are required for many micro-analytical procedures. In this report, selection of the types of environmental and biological materials which are suitable for micro-analytical techniques will be discussed. (author)

  7. Mechanical characterization of composite materials by optical techniques: A review

    Science.gov (United States)

    Bruno, Luigi

    2018-05-01

    The present review provides an overview of work published in recent years dealing with the mechanical characterization of composite materials performed by optical techniques. The paper emphasizes the strengths derived from the employment of full-field methods when the strain field of an anisotropic material must be evaluated. This is framed in contrast to the use of conventional measurement techniques, which provide single values of the measured quantities unable to offer thorough descriptions of deformation distribution. The review outlines the intensity and articulation of work in this research field to date and its ongoing importance not only in the academy, but also in industrial sectors where composite materials represent a strategic resource for development.

  8. Complex Permittivity of Planar Building Materials Measured With an Ultra-Wideband Free-Field Antenna Measurement System.

    Science.gov (United States)

    Davis, Ben; Grosvenor, Chriss; Johnk, Robert; Novotny, David; Baker-Jarvis, James; Janezic, Michael

    2007-01-01

    Building materials are often incorporated into complex, multilayer macrostructures that are simply not amenable to measurements using coax or waveguide sample holders. In response to this, we developed an ultra-wideband (UWB) free-field measurement system. This measurement system uses a ground-plane-based system and two TEM half-horn antennas to transmit and receive the RF signal. The material samples are placed between the antennas, and reflection and transmission measurements made. Digital signal processing techniques are then applied to minimize environmental and systematic effects. The processed data are compared to a plane-wave model to extract the material properties with optimization software based on genetic algorithms.

  9. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications.

    Science.gov (United States)

    Giro-Paloma, Jessica; Al-Shannaq, Refat; Fernández, Ana Inés; Farid, Mohammed M

    2015-12-26

    A method for preparing and characterizing microencapsulated phase change materials (MPCM) was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample) and Micronal ® DS 5008 X (BASF) samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS). Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES) capacities were 111.73 J·g -1 and 99.3 J·g -1 for M-2 and Micronal ® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus ( E ), load at maximum displacement ( P m ), and displacement at maximum load ( h m ), concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC's). This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC's emission after 10 min of heating, however peaks intensity of VOC's generated from M-2 microcapsules showed a lower concentration than Micronal ® DS 5008 X.

  10. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications

    Directory of Open Access Journals (Sweden)

    Jessica Giro-Paloma

    2015-12-01

    Full Text Available A method for preparing and characterizing microencapsulated phase change materials (MPCM was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample and Micronal® DS 5008 X (BASF samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS. Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES capacities were 111.73 J·g−1 and 99.3 J·g−1 for M-2 and Micronal® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus (E, load at maximum displacement (Pm, and displacement at maximum load (hm, concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC’s. This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC’s emission after 10 min of heating, however peaks intensity of VOC’s generated from M-2 microcapsules showed a lower concentration than Micronal® DS 5008 X.

  11. Untargeted Metabolomics Approach in Halophiles: Understanding the Biodeterioration Process of Building Materials

    Directory of Open Access Journals (Sweden)

    Justyna Adamiak

    2017-12-01

    Full Text Available The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS. As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels, MgSO4, Mg(NO32, were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity.

  12. Comparison of salt solution and air drying methods for moisture fixation in highly porous building materials

    DEFF Research Database (Denmark)

    Antonov, Yovko Ivanov; Jensen, Rasmus Lund; Møldrup, Per

    2017-01-01

    In recent years, research has identified some bio-based, porous building materials as good or excellent regulators of moisture in buildings. The ability of a material to absorb, release and store moisture is described by vapour sorption isotherms. It is necessary input to simulations of indoor...... building materials by a standardized testing method, using saturated salt solutions. Furthermore, results from the standard method are compared to values of moisture content for the same materials, obtained by air-drying at different relative humidity. This is done with the aim to compare the findings from...... volume method discretization. Indoor air relative humidity and moisture content distribution in the construction are compared for the experimented materials and conventional building materials. Results show better agreement between isotherms obtained by standard method and air-drying for low density...

  13. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  14. Building control for nuclear materials R and D facility

    International Nuclear Information System (INIS)

    Hart, O.

    1979-01-01

    The new plutonium research and development facility at LASL was the first facility to be completed in the United States under the new environmental requirements. To insure that these new requirements are met, a redundant computer system is used to monitor and control the building. This paper describes the supervisory control and data acquisition system that was implemented to perform that function

  15. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-04-24

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  16. Neutron diffraction technique as a method for material studies

    International Nuclear Information System (INIS)

    Belhorma, B.; Labrim, H.; Gandou, Z.

    2010-01-01

    The Morocco's first Nuclear Research has been constructed in CNESTEN. The reactor divergence has been tested, and the nominal power of 2MW was successfully achieved. The reactor has 4 beam ports two of them are projected for neutron scattering. Such technique allows studying the crystallographic and magnetic structures of materials using the thermal neutrons produced in the reactor. the powder diffractometer has been designed. Component reception and installation procedures are in progress. The second experiment consists on small angle neutron scattering that allows the study of soft matter and polymers in the range of 1-50 nm. The third technique that can complete the two previous is the 4-circle neutron spectrometry which is designed mainly to study structural properties of the mono-crystalline material and texture.This technique is complementary to the X-ray diffraction already available in CNESTEN. Some applications of this technique are: --to determine the crystallographic and magnetic structure of polycrystalline materials.-- to study the texture in metals and alloys.-- to perform holography measurement

  17. Simulation Study of Active Ceilings with Phase Change Material in Office Buildings for Different National Building Regulations

    DEFF Research Database (Denmark)

    Farhan, Hajan; Stefansen, Casper; Bourdakis, Eleftherios

    2018-01-01

    The aim of this study was to examine the performance of phase change material (PCM) in active ceilings for an office room under different Danish building regulations for both heating and cooling purposes. A model of a two-person office room was simulated with the only heating and cooling source...

  18. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  19. Study of radon diffusion coefficient for technologically enhanced building construction materials

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Chauhan, R.P.; Chakarvarti, S.K.

    2012-01-01

    Most building materials of natural origin contain small amounts of Naturally Occurring Radioactive Materials (NORMs), mainly radionuclides from the 226 Ra and 232 Th decay chains and 40 K. The origin of these materials is the earths crust, but they find their way into building materials, air, water, food and the human body itself. The worldwide average indoor effective dose due to gamma rays from building materials is estimated to be about 0.4 mSv per year. In many parts of the world, building materials containing radioactive materials have been used for generations. As individuals spend more than 80% of their time indoors, the internal and external radiation exposure from building materials creates prolonged exposure situations. The internal (inhalation) radiation exposure is due to 222 Rn and their short lived decay products exhaled from building materials into the room air. The average activity concentrations of 226 Ra, 232 Th and 40 K in the earths crust are 35, 30 and 400 Bq/kg respectively. However, elevated levels of natural radionuclides causing annual doses of several mSv were identified in some regions around the world. Recycled industrial by-products containing Technologically Phosphogypsum, a by-product in the production of phosphate fertilizers is used as building material, and red mud, a waste from primary aluminum production, is used in bricks, ceramics and tiles. The increased tendency of the building material industry to use industrial wastes as substitutes for natural products having relatively high activity concentration of NORMs and the increased exposure caused by them were the driving forces for undertaking the present investigation. (author)

  20. Assessment of thermal load reduction due to the application of simple passive techniques in a house office building at the south of Libya

    International Nuclear Information System (INIS)

    Domanski, Roman; Azzain, Gassem

    2006-01-01

    The assessment of possible reduction of heating and cooling requirements of 300 m 2 house-office building has been presented in this paper, when simple Thermal Passive Techniques (TPT) have been applied to building's construction in Sebha city at the Libyan south. The known software for dynamic simulation (TRNSYS) has been used as an environment of digital experimentation for this study. A prototype represents the building has been constructed with the help of the available model of single thermal zone of TRNSYS (Type 19). The built-in ASHREA Transfer Function Method within this model has been used to calculate the heat flux through building's materials. Primarily, the thermal load on building's construction without TPTs has been evaluated under weather conditions of a Typical Meteorological Year (TMY) of Sebha city. Then, the building has been equipped with simple TPTs (such as the control of building materials, insulation, shading, infiltration and ventilation with windows resizing). This building was subjected to the same weather conditions and again the thermal load has been evaluated in order to report the percentage of reduction of thermal load. The simulation has been conducted successfully, where good assessment of reduction of annual heating and cooling demands in the building has been obtained. It is proved that, about (46%) of annual heating load and (48%) of annual cooling load can be reduced if suitable simple TPTs were incorporated in buildings.(Author)

  1. Providing for energy efficiency in homes and small buildings. Part III. Determining which practices are most effective and installing materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The training program is designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. A teacher guide and student workbook are available to supplement the basic manual. Subjects covered in Part III are: determining which practices are most efficient and economical; installing energy-saving materials; and improving efficiency of equipment.

  2. Study on the Application Mode and Legal Protection of Green Materials in Medical-Nursing Combined Building

    Science.gov (United States)

    Zhiyong, Xian

    2017-09-01

    In the context of green development, green materials are the future trend of Medical-Nursing Combined building. This paper summarizes the concept and types of green building materials. Then, on the basis of existing research, it constructs the green material system framework of Medical-Nursing Combined building, puts forward the application mode of green building materials, and studies the policy and legal protection of green material application.

  3. Advances in dental veneers: materials, applications, and techniques.

    Science.gov (United States)

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers.

  4. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  5. The MS WORD Based Two Phase Technique for Building Report from Information Systems

    Directory of Open Access Journals (Sweden)

    S. A. Bol'shakov

    2015-01-01

    documents formation because even for complicated algorithms, when splitting process into parts, considerable simplification of debugging process and its decreasing duration and labor input are observed. We also note that such approach can be also a basis for the office systems realization based on universal word processors. Then a DB can save document text content with a template type and name of document.The article considers ways to build the elementary type of the output documents, i.e. reports. The presented material, algorithms and debugged procedures enable a reader to repeat independently this process or even to create the own report using MS Word. We note that this technique can be used as well for tabular and for matrix reports. Algorithms for building such documents are more difficult and have their features. We have intention to consider them in our further articles in the field concerned.

  6. Low-Cost Phase Change Material for Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Abhari, Ramin [Renewable Energy Group

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCM thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.

  7. Removing Hazardous Materials from Buildings: A Training Curriculum

    Science.gov (United States)

    2016-03-01

    Existing practices, existing knowledge levels, gaps in knowledge or skills , and information necessary to fill those gaps were identified. It was...Includes structural demolition, gut rehab, and architectural demolition (e.g., soft -strip or salvage). – Also applies to building remodeling and...silicosis to provide guidance to “reduce and eliminate the workplace incidence of silicosis from exposure to crystalline silica.” In addition, OSHA

  8. Assessment of thermal insulation materials and systems for building applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The primary goal of the study was to provide a proper foundation for decision making by the federal government, industry, and consumer. The report may be used to identify areas where new test methods and standards are needed to establish new programs for improving thermal performance of buildings, and as a basis for setting new or improved standards after the recommended test programs have been completed.

  9. Metabolites of Trichoderma species isolated from damp building materials.

    Science.gov (United States)

    McMullin, David R; Renaud, Justin B; Barasubiye, Tharcisse; Sumarah, Mark W; Miller, J David

    2017-07-01

    Buildings that have been flooded often have high concentrations of Trichoderma spores in the air while drying. Inhaled spores and spore and mycelial fragments contain large amounts of fungal glucan and natural products that contribute to the symptoms associated with indoor mould exposures. In this study, we considered both small molecules and peptaibol profiles of T. atroviride, T. koningiopsis, T. citrinoviride, and T. harzianum strains obtained from damp buildings in eastern Canada. Twenty-residue peptaibols and sorbicillin-derived metabolites (1-6) including a new structure, (R)-vertinolide (1), were characterized from T. citrinoviride. Trichoderma koningiopsis produced several koninginins (7-10), trikoningin KA V, and the 11-residue lipopeptaibols trikoningin KB I and trikoningin KB II. Trichoderma atroviride biosynthesized a mixture of 19-residue trichorzianine-like peptaibols, whereas T. harzianum produced 18-residue trichokindin-like peptaibols and the 11-residue harzianin HB I that was subsequently identified from the studied T. citrinoviride strain. Two α-pyrones, 6-pentyl-pyran-2-one (11) and an oxidized analog (12), were produced by both T. atroviride and T. harzianum. Aside from exposure to low molecular weight natural products, inhalation of Trichoderma spores and mycelial fragments may result in exposure to membrane-disrupting peptaibols. This investigation contributes to a more comprehensive understanding of the biologically active natural products produced by fungi commonly found in damp buildings.

  10. The application of statistical techniques to nuclear materials accountancy

    International Nuclear Information System (INIS)

    Annibal, P.S.; Roberts, P.D.

    1990-02-01

    Over the past decade much theoretical research has been carried out on the development of statistical methods for nuclear materials accountancy. In practice plant operation may differ substantially from the idealized models often cited. This paper demonstrates the importance of taking account of plant operation in applying the statistical techniques, to improve the accuracy of the estimates and the knowledge of the errors. The benefits are quantified either by theoretical calculation or by simulation. Two different aspects are considered; firstly, the use of redundant measurements to reduce the error on the estimate of the mass of heavy metal in an accountancy tank is investigated. Secondly, a means of improving the knowledge of the 'Material Unaccounted For' (the difference between the inventory calculated from input/output data, and the measured inventory), using information about the plant measurement system, is developed and compared with existing general techniques. (author)

  11. Displacement technique for calibration for special nuclear material tankage volumes

    International Nuclear Information System (INIS)

    Shuler, L.E.; Doher, L.W.; Morrow, L.H.

    1976-01-01

    A liquid volume calibration instrument using a nonconventional technique was needed for the sophisticated plutonium processing facility nearing completion at the Rocky Flats Plant of Rockwell International. It features displacement pistons standardized by dimensional inspection and uses automatic microprocessor control to provide validity checks and a complete data record. The instrument calibrates remote Special Nuclear Material (SNM) tankage of special design under program control but retains alternate operation modes and the ability to operate in general environments. Calibration data produced on punched paper tape is directly entered into an associated data base which provides analytical treatment in accordance with ANSI N15.19-1975, ''Volume Calibration Techniques for Nuclear Material Control.'' Design considerations, operation, and the results of experiments are discussed. Some error sources are evaluated and composite advantages in the calibration of process tankage are given with emphasis on tank volume reliability for SNM measurements

  12. Establishment of Low Energy Building materials and Equipment Database Based on Property Information

    Science.gov (United States)

    Kim, Yumin; Shin, Hyery; eon Lee, Seung

    2018-03-01

    The purpose of this study is to provide reliable service of materials information portal through the establishment of public big data by collecting and integrating scattered low energy building materials and equipment data. There were few cases of low energy building materials database in Korea have provided material properties as factors influencing material pricing. The framework of the database was defined referred with Korea On-line E-procurement system. More than 45,000 data were gathered by the specification of entities and with the gathered data, price prediction models for chillers were suggested. To improve the usability of the prediction model, detailed properties should be analysed for each item.

  13. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials

    OpenAIRE

    Hendrik C. Swart

    2017-01-01

    The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES), X-ray photo electron spectroscopy (XPS), time of flight scanning ion mass spectrometry (TOF-SIMS) and High resolution transmission electron microscopy (HRTEM) for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and al...

  14. Low-level radiations exposure from building materials of crushing zone in Shivalik foothills

    International Nuclear Information System (INIS)

    Kamboj, Sunil; Bansal, Vakul; Pundir, Anil; Chauhan, R.P.

    2011-01-01

    The main sources of low-level radiation exposure from radon and its progeny are the ground underneath the building, the building materials, the water supply, the gas supply and the air outside. Building materials are the main source of radon inside buildings and most popular among them are soil bricks, different type of stones, core sand, stone dust, crushed stones and cement etc. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to study the samples collected from the Crushing zone of Shivalik foot hills. The materials like stones, crushed stones, stone dust and core sand etc. from crushing zone are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are some core sand and stone dust samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  15. Performance-based methodology for the fire safe design of insulation materials in energy efficient buildings

    OpenAIRE

    Hidalgo-Medina, Juan Patricio

    2015-01-01

    This thesis presents a methodology to determine failure criteria of building insulation materials in the event of a fire that is specific to each typology of insulation material used. This methodology is based on material characterisation and assessment of fire performance of the most common insulation materials used in construction. Current methodologies give a single failure criterion independent of the nature of the material – this can lead to uneven requirements when addres...

  16. New materials for sample preparation techniques in bioanalysis.

    Science.gov (United States)

    Nazario, Carlos Eduardo Domingues; Fumes, Bruno Henrique; da Silva, Meire Ribeiro; Lanças, Fernando Mauro

    2017-02-01

    The analysis of biological samples is a complex and difficult task owing to two basic and complementary issues: the high complexity of most biological matrices and the need to determine minute quantities of active substances and contaminants in such complex sample. To succeed in this endeavor samples are usually subject to three steps of a comprehensive analytical methodological approach: sample preparation, analytes isolation (usually utilizing a chromatographic technique) and qualitative/quantitative analysis (usually with the aid of mass spectrometric tools). Owing to the complex nature of bio-samples, and the very low concentration of the target analytes to be determined, selective sample preparation techniques is mandatory in order to overcome the difficulties imposed by these two constraints. During the last decade new chemical synthesis approaches has been developed and optimized, such as sol-gel and molecularly imprinting technologies, allowing the preparation of novel materials for sample preparation including graphene and derivatives, magnetic materials, ionic liquids, molecularly imprinted polymers, and much more. In this contribution we will review these novel techniques and materials, as well as their application to the bioanalysis niche. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Material saving by means of CWR technology using optimization techniques

    Science.gov (United States)

    Pérez, Iñaki; Ambrosio, Cristina

    2017-10-01

    Material saving is currently a must for the forging companies, as material costs sum up to 50% for parts made of steel and up to 90% in other materials like titanium. For long products, cross wedge rolling (CWR) technology can be used to obtain forging preforms with a suitable distribution of the material along its own axis. However, defining the correct preform dimensions is not an easy task and it could need an intensive trial-and-error campaign. To speed up the preform definition, it is necessary to apply optimization techniques on Finite Element Models (FEM) able to reproduce the material behaviour when being rolled. Meta-models Assisted Evolution Strategies (MAES), that combine evolutionary algorithms with Kriging meta-models, are implemented in FORGE® software and they allow reducing optimization computation costs in a relevant way. The paper shows the application of these optimization techniques to the definition of the right preform for a shaft from a vehicle of the agricultural sector. First, the current forging process, based on obtaining the forging preform by means of an open die forging operation, is showed. Then, the CWR preform optimization is developed by using the above mentioned optimization techniques. The objective is to reduce, as much as possible, the initial billet weight, so that a calculation of flash weight reduction due to the use of the proposed preform is stated. Finally, a simulation of CWR process for the defined preform is carried out to check that most common failures (necking, spirals,..) in CWR do not appear in this case.

  18. Suture materials and suture techniques used in tendon repair.

    Science.gov (United States)

    Ketchum, L D

    1985-02-01

    Immediately after a tendon repair, the tendon contributes nothing to the strength of repair. During that time, the suture itself and suture technique are the sole contributors to the strength of repair. Although stainless steel is the strongest material that can be used at the time of repair, it has serious disadvantages. It is difficult to work with and makes a bulky knot. Conversely, all absorbable sutures become too weak too soon to be of value. At this time, nonabsorbable, synthetic fibers that are relatively strong, such as Supramid or prolene, are the most desirable materials available. Regarding suture techniques, the lateral trap and end-weave techniques produce the strongest repairs; however, the end-weave technique can only be used with tendon grafts and the lateral trap, though it can be used for end-to-end primary repairs. It is too bulky for use in the fingers and hand but is ideal for the forearm and wrist. In the hand and fingers, the strongest repair techniques available are the Bunnell, Kessler, and Mason-Allen; however, the Bunnell stitch is more strangulating to the microcirculation of the tendon than the latter two stitches; thus, it contributes to tendomalacia and gap formation. The simplest and least traumatic suture technique, though weakest at first, will allow tendon healing to proceed more rapidly. If such a repair is protected from tension by splinting the wrist and metacarpophalangeal joints in flexion during healing (while allowing controlled passive motion of the finger joints), there will be a rapid increase in tensile strength of the tendon juncture with minimal gap formation, as the repaired hand is progressively stressed up until about 90 days postrepair. At that point, strength plateaus and maximum stress can be applied to the repaired tendon. Somewhere between three and six weeks post-tendon repair, the suture material and technique become secondary to tendon healing as the primary provider of tensile strength to the tendon wound

  19. Proposal for the use of new materials in the TOKAMAK building cover

    International Nuclear Information System (INIS)

    Chiva, L.

    2011-01-01

    It was considered relevant and innovative to apply new structural materials to the construction of the roof of the building that lodged the TOKAMAK reactor, with the aim of achieving a severe reduction of the weight of the roof structure that result in greater ease of mounting, minor charges on the walls and foundations of the building and a reduced impact on the distribution of masses of the building scheme.

  20. Elevated radon and thoron concentrations from natural radioactivity in building materials

    International Nuclear Information System (INIS)

    Smith, D.; Vivyurka, A.

    1980-01-01

    Radon levels in excess of 20 mWL were observed in an apartment building under construction in Elliot Lake. Tracer studies showed ventilation periods as long as 29 hours since the ventilation system of the building was not yet working. It was concluded that, once the contribution from thoron daughters was taken into account, the natural radioactivity of the concrete and other building materials was sufficient to produce the observed levels of radioactivity

  1. Magnetization of Steel Building Materials and Structures in the Natural Geomagnetic Field

    Directory of Open Access Journals (Sweden)

    E. Čermáková

    2005-01-01

    Full Text Available This paper presents the physical basis of the magnetic properties of ferromagnetic materials and shows their relationships with external geomagnetic field. It graphically processes the experimental data detected by an HMR magnetometer. Taking into account the natural geomagnetic field under the effects of steel U profiles, variations of the natural geomagnetic field in a steel structure building are indicated and the potential existence of Sick Building Syndrome (SBS in these types of buildings is pointed out. 

  2. Elaboration of building materials from industrial waste from solid granular diatomaceous earth

    International Nuclear Information System (INIS)

    Del Angel S, A.

    2015-01-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  3. Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials

    Science.gov (United States)

    Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.

    2009-01-01

    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

  4. Variability in energy and carbon dioxide balances of wood and concrete building materials

    International Nuclear Information System (INIS)

    Gustavsson, Leif; Sathre, Roger

    2006-01-01

    A variety of factors affect the energy and CO 2 balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO 2 emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO 2 balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO 2 balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO 2 balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO 2 emission to the atmosphere. (author)

  5. Towards successful SPP treatment of local materials for road building

    CSIR Research Space (South Africa)

    Paige-Green, P

    2009-06-17

    Full Text Available of the increasing need for improvement of the rural road network and of roads associated with the Reconstruction and Development Program (RDP). Recommendations for testing materials for compatibility with SPPs are provided. In addition, a detailed construction...

  6. Spectral Signatures of Surface Materials in Pig Buildings

    DEFF Research Database (Denmark)

    Zhang, GuoQiang; Strøm, Jan; Blanke, Mogens

    2006-01-01

    Manual cleaning of pig production buildings based on high-pressure water cleaners is unappealing to workers, because it is tedious and health threatening. To replace manual cleaning, a few cleaning robots have been commercialised. With no cleanliness sensor available, the operation of these robots...... is to follow a cleaning procedure initially defined by the operator. Experience shows that the performance of such robots is poor regarding effectiveness of cleaning and utilisation of water. The development of an intelligent cleanliness sensor for robotic cleaning is thus crucial in order to optimise...

  7. 84 The Third World Option in a Globalized Building Materials Market ...

    African Journals Online (AJOL)

    Choice-Academy

    production and use of building materials is not only relevant in housing (and other buildings) development and management, but to the economic, social, cultural and environmental sustainability of these nations. The second casualty resulting from the colonial experience is that the colonised could not grapple with the.

  8. State of the art on historic building insulation materials and retrofit strategies

    DEFF Research Database (Denmark)

    Blumberga, Andra; Kass, Kristaps; Kamendere, Edite

    2016-01-01

    This report provides an analysis and evaluation of a state-of-the-art of internal insulation materials and methods for application in historic buildings, and review on methods, tools and guidelines used as decision making tools for implementation of internal insulation in historic buildings...

  9. An experimental setup for measuring generation and transport of radon in building materials

    NARCIS (Netherlands)

    van der Pal, M.; Hendriks, N.A.; de Meijer, R.J.; van der Graaf, E.R.; de Wit, M.H.

    2001-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  10. building material preferences in warm-humid and hot-dry climates

    African Journals Online (AJOL)

    User

    2Department of Building Technology, College of Architecture and Planning, KNUST, Kumasi,. Ghana. ABSTRACT. This paper explores building materials preferences in the warm-humid and hot-dry climates in. Ghana. Using a combination of closed and open-ended questionnaires, a total of 1281 partici- pants (473 adults ...

  11. Exploring the Importance of Employing Bio and Nano-Materials for Energy Efficient Buildings Construction

    Directory of Open Access Journals (Sweden)

    Mona Naguib

    2017-03-01

    Full Text Available The continued and increasing use of ordinary building materials to house the ever-growing world population ensures growing contributions of carbon (C to the active carbon cycle through carbon dioxide (C02 emissions from combustion and chemical reactions in the raw material to the atmosphere. To minimize this, materials should be conserved, reduce their unnecessary use, produce them more benignly and make them last longer, recycle and reuse materials. Thus, paper will focus on exploring alternative building materials and systems that can be developed in order to balance atmospheric carbon dioxide.  It also presents the Bio-inspired architecture approach that embraces the eco-friendly practices of using Biomaterials and Nano-materials for sustainable dwelling construction through a number of examples that shows how a building can be strongly related to its site.

  12. Non-isothermal Diffusion of Water Vapour in Porous Building Materials

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2002-01-01

    Full Text Available Non-isothermal diffusion is analysed using Fick's laws. The exact relations for non-isothermal diffusion flux and partial pressure profiles in porous building materials are derived and discussed.

  13. Measurement of Ra-226 in building materials, with a Na I (Tl) scintillation counter

    International Nuclear Information System (INIS)

    Vallejo, L.R.; Fuenteseca, J.W.; Rivera, C.A.; Aros, F.H.

    1992-01-01

    Ra-226 concentration in building materials is determined using gamma-ray spectrometry. Ra-226 contained in sundry materials employed in the construction of dwelling houses and public buildings in Antofagasta city is determined by counting the Pb-214 peaks at 295 KeV and 352 keV, and the Bi-214 peak at 609 keV recorded by means of a 7.5-cm Nal (TI) scintillation counter. (author)

  14. Power plant wastes capitalization as geopolymeric building materials

    Science.gov (United States)

    Ciobanu, Gabriela; Litu, Loredana; Harja, Maria

    2017-11-01

    In this innovative study, we are present an investigation over the properties of geopolymeric materials prepared using ash supplied by power plant Iasi, Romania and sodium hydroxide solutions/pellets. Having as objective a minimum consumption of energy and materials was developed a class of advanced eco-materials. New synthesized materials can be used as a binder for cement replacement or for the removal/immobilization of pollutants from waste waters or soils. It offers an advanced and low cost-effective solution too many problems, where waste must be capitalized. The geopolymer formation, by hydrothermal method, is influenced by: temperature (20-600°C), alkali concentration (2M-6M), solid /liquid ratio (1-2), ash composition, time of heating (2-48 h), etc. The behaviour of the FTIR peak of 6M sample indicated upper quantity of geopolymer formation at the first stage of the reaction. XRD spectra indicated phases like sodalite, faujasite, Na-Y, which are known phases of geopolymer/zeolite. Advanced destroyed of ash particles due to geopolymerisation reaction were observed when the temperature was higher. At the constant temperature the percentage of geopolymer increases with increasing of curing time, from 4-48 h. Geopolymer materials are environmentally friendly, for its obtaining energy consumption, and CO2 emission is reduced compared to cement binder.

  15. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  16. Building materials in eco-energy houses from Iraq and Iran

    Directory of Open Access Journals (Sweden)

    Amjad Almusaed

    2015-06-01

    Full Text Available Builders from the Western part of Asia are trained to make buildings that can fulfil certain required functions while giving full consideration to all sites and environmental conditions. The research covers the zone between Iraq and Iran. The first investigated region is the “Mesopotamian Marshes” or Iraqi-Iran Marshes, a wetland zone situated in southern Iraq and partially in southwestern Iran. The other region is a desert district, which includes a prominent part of the southern and western parts of Iraq and part of Iran. The last is the centre city of Basra. The building materials were the most important building element that affected the conformation of vernacular habitats from the western part of Asia in general and the Iraq–Iran area in particular. In this study, we needed to focus on the effects of ecological and energy-efficiency processes in creating vernacular habitats and the selection of optimal building systems and materials in this part of the world, which can be an essential point for sustainable environmental building processes in the future. Reeds, clay, straw, bricks, and wood were the most popular building materials used by builders from this region. The impact of building material on the environment embodies the essential method implicitly significant in this research to effectively determine traditional building materials in the environment, in addition to comparative analysis. This presents an essential factor of our analysis, in addition to the impact of environments on building systems. The main target of this study is to benefit designers and building engineers in their pursuit to find optimal and competent solutions suitable for specific local microclimates using traditional methods in the design process that are sustainable and ecological.

  17. BUILDING MATERIALS WITH INSULATING PROPERTIES BASED ON RICE HUSK)

    OpenAIRE

    Salas, J., Veras, J.

    2014-01-01

    [EN]This work within the research projeci "Material, Technologies and Low Cosí Housing Prototypes" has the purpose lo obiain a bu i Id i ng material based on cemení and treated rice husk, for iis use as ihermal insulator The performance of different dosages was analyzed and according to the results two dosages were choosen to make standard panels ofóO X 90 X 6cm which were testedfor bending, and the thermal conductiviiy valúes were determined, valué of\\ which fluciuaie...

  18. Methods for measuring diffusion coefficients of radon in building materials

    NARCIS (Netherlands)

    Cozmuta, [No Value; van der Graaf, ER

    2001-01-01

    Two methods for determining the Rn-222 diffusion coefficient in concrete are presented. Experimentally, the flush and adsorption technique to measure radon release rates underlines both methods. Theoretically, the first method was developed fur samples of cubical geometry. The radon diffusion

  19. High Strength Phosphogypsum and Its Use as a Building Material

    Science.gov (United States)

    Kanno, Wellington Massayuki; Rossetto, Hebert Luis; de Souza, Milton Ferreira; Máduar, Marcelo Francis; de Campos, Marcia Pires; Mazzilli, Barbara Paci

    2008-08-01

    A new process (patent applied) that works equally well with both plaster of mineral gypsum and phosphogypsum for the preparation of gypsum components, UCOS, has been developed. The process consists of the following steps: humidification of plaster by fine water droplets, uni-axial compression, hydration reaction and drying. Strong hydrogen bonds develop among the crystals together with adhesion provided by confined water that accounts for nearly 70% of the adhesion forces. By reducing the plaster to water ratio to close the minimum necessary, new features are generated. An experimental house has been constructed, in which walls and ceilings have been built of gypsum and phosphogypsum. Since phosphogypsum potentially contain radioactive elements, the application of an activity concentration index to the phosphogypsum employed in the building was carried out.

  20. Strengthening Techniques of RC Columns Using Fibre Reinforced Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Ciprian Cozmanciuc

    2009-01-01

    Full Text Available Fibre reinforced composite materials are becoming more frequently used in civil engineering structures. One of the most practical applications of these new materials concerns the strengthening of reinforced concrete columns by means of confinement with fibre composite sheets. In the literature, various theoretical models have been proposed to describe the behaviour of confined concrete columns. The principal advantages of this technique are the high strength-to-weight ratio, good fatigue properties, non-corroding characteristics of the fibre reinforced polymers (FRP, and the facility of its application. The maximum efficiency of confining systems using FRP materials is reached in case of columns with circular cross-section and is explained by the fact that the entire section of the column is involved into the confinement effect. Rectangular confining reinforcement is less efficient as the confinement action is mostly located at the corners This paper reveals the most utilized techniques of performing composite confining systems for reinforced concrete columns, with their advantages and also disadvantages.

  1. Development of laser materials processing and laser metrology techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Chung, Chin Man; Kim, Jeong Mook; Kim, Min Suk; Kim, Kwang Suk; Baik, Sung Hoon; Kim, Seong Ouk; Park, Seung Kyu

    1997-09-01

    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designed and fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs

  2. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  3. Building construction materials effect in tropical wet and cold climates: A case study of office buildings in Cameroon

    Directory of Open Access Journals (Sweden)

    Modeste Kameni Nematchoua

    2016-03-01

    Full Text Available This paper presents the results of an experimental study that was conducted in 15 office buildings in the humid and cold tropics during the working hours of the dry and rainy seasons in Cameroon. This was with the aim to study the effects that local and imported materials had on indoor air quality. To achieve this objective, the adaptive model approach has been selected. In accordance with the conditions of this model, all workers were kept in natural ventilation and, in accordance with the general procedure, a questionnaire was distributed to them, while variables, like air temperature, wind speed, and relative humidity were sampled. The results showed a clear agreement between expected behaviour, in accordance with the characteristics of building construction, and its real indoor ambience once they were statistically analysed. On the other hand, old buildings showed a higher percentage of relative humidity and a lower degree of indoor air temperature. Despite this, local thermal comfort indices and questionnaires showed adequate indoor ambience in each group of buildings, except when marble was used for external tiling. The effect of marble as an external coating helps to improve indoor ambience during the dry season. This is due to more indoor air and relative humidity being accumulated. At the same time, these ambiences are degraded when relative humidity is higher. Finally, these results should be taken cognisance of by architects and building designers in order to improve indoor environment, and overcome thermal discomfort in the Saharan area.

  4. Penta-fibrillar assembly: A Building block collagen based materials

    Indian Academy of Sciences (India)

    There is a smartness in the way the penta-fibrils behave in collagen based biomaterials. It is one of the intriguing nano material with a size of about 4 nano meter diagonal size. There are several intermolecular forces that participate in the penta fibrillar assembly, which derive importance in smart behavior of collagen.

  5. Environmental impact of steel and concrete as building materials

    OpenAIRE

    BUJNAK, Jan

    2011-01-01

    Energy consumption, harmful air emission and natural resource depletion as three environmental concerns are investigated on the prestressed concrete and to equal extend on steel- concrete composite highway bridges. The main results presented in the paper validate clearly advantage of steel as structural material particularly from the point of view of sustainable development.

  6. [METHODS OF MODELING TEMPERATURE REGIMES IN TESTS OF POLYMER CONTAINING BUILDING MATERIALS AND FURNITURE FOR HOMES AND PUBLIC BUILDINGS].

    Science.gov (United States)

    Dubova, G P; Chubirko, M I; Obolonskiy, M F; Khrapov, R Yu; Kamenev, V I

    2015-01-01

    This article is devoted to the modeling of temperature conditions in performance of research of polymer containing building materials and furniture. The authors draw attention to the different conditions of modeling used in the existing guidance documents, and provide a unified approach to this problem, namely in the performance of the study to use the temperature regime, which corresponds to the maximum value of the optimum temperature range for residential and industrial premises.

  7. A Materials Life Cycle Assessment of a Net-Zero Energy Building

    Directory of Open Access Journals (Sweden)

    Laura A. Schaefer

    2013-02-01

    Full Text Available This study analyzed the environmental impacts of the materials phase of a net-zero energy building. The Center for Sustainable Landscapes (CSL is a three-story, 24,350 square foot educational, research, and administrative office in Pittsburgh, PA, USA. This net-zero energy building is designed to meet Living Building Challenge criteria. The largest environmental impacts from the production of building materials is from concrete, structural steel, photovoltaic (PV panels, inverters, and gravel. Comparing the LCA results of the CSL to standard commercial structures reveals a 10% larger global warming potential and a nearly equal embodied energy per square feet, largely due to the CSL’s PV system. As a net-zero energy building, the environmental impacts associated with the use phase are expected to be very low relative to standard structures. Future studies will incorporate the construction and use phases of the CSL for a more comprehensive life cycle perspective.

  8. Analytical techniques for thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1988-01-01

    Treatise on Materials Science and Technology, Volume 27: Analytical Techniques for Thin Films covers a set of analytical techniques developed for thin films and interfaces, all based on scattering and excitation phenomena and theories. The book discusses photon beam and X-ray techniques; electron beam techniques; and ion beam techniques. Materials scientists, materials engineers, chemical engineers, and physicists will find the book invaluable.

  9. A New Class of Phantom Materials for Poroelastography Imaging Techniques.

    Science.gov (United States)

    Chaudhry, Anuj; Yazdi, Iman K; Kongari, Rohit; Tasciotti, Ennio; Righetti, Raffaella

    2016-05-01

    Poroelastography is an elastographic technique used to image the temporal mechanical behavior of tissues. One of the major challenges in determining experimental potentials and limitations of this technique has been the lack of complex and realistic controlled phantoms that could be used to corroborate the limited number of theoretical and simulation studies available in the literature as well as to predict its performance in complex experimental situations and in a variety of conditions. In the study described here, we propose and analyze a new class of phantom materials for temporal elastography imaging. The results indicate that, by using polyacrylamide, we can generate inhomogeneous elastographic phantoms with controlled fluid content and fluid flow properties, while maintaining mechanical and ultrasonic properties similar to those of soft tissues. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  11. Characterization techniques for graphene-based materials in catalysis

    Directory of Open Access Journals (Sweden)

    Maocong Hu

    2017-06-01

    Full Text Available Graphene-based materials have been studied in a wide range of applications including catalysis due to the outstanding electronic, thermal, and mechanical properties. The unprecedented features of graphene-based catalysts, which are believed to be responsible for their superior performance, have been characterized by many techniques. In this article, we comprehensively summarized the characterization methods covering bulk and surface structure analysis, chemisorption ability determination, and reaction mechanism investigation. We reviewed the advantages/disadvantages of different techniques including Raman spectroscopy, X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FTIR and Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS, X-Ray diffraction (XRD, X-ray absorption near edge structure (XANES and X-ray absorption fine structure (XAFS, atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, ultraviolet-visible spectroscopy (UV-vis, X-ray fluorescence (XRF, inductively coupled plasma mass spectrometry (ICP, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET, and scanning tunneling microscopy (STM. The application of temperature-programmed reduction (TPR, CO chemisorption, and NH3/CO2-temperature-programmed desorption (TPD was also briefly introduced. Finally, we discussed the challenges and provided possible suggestions on choosing characterization techniques. This review provides key information to catalysis community to adopt suitable characterization techniques for their research.

  12. Use of non-standardised micro-destructive techniques in the characterization of traditional construction materials

    Science.gov (United States)

    Ioannou, Ioannis; Theodoridou, Magdalini; Modestou, Sevasti; Fournari, Revecca; Dagrain, Fabrice

    2013-04-01

    therefore follows that both micro-destructive techniques may prove useful in the physico-mechanical characterization of materials which demand in-situ measurements or allow very limited sampling. Moreover, both techniques have been used, for the first time, to map the distribution of salts in building stone in the laboratory; micro-drilling was also applied in the same context in-situ. The results of the laboratory tests performed on limestone impregnated with sodium and magnesium sulfate confirm that both the scratch tool and the DRMS may successfully detect the location of the salt front, as they respond to pore clogging by salt crystals by providing increased scratching/drilling resistance values. Drilling and scratching of duplicate samples treated with a hydrophobic product show the sensitivity of both techniques as they clearly detect changes to the salt front location (i.e. cryptoflorescence) caused by surface treatments. Both techniques were also successful in highlighting the difference in the crystallisation location and pattern of magnesium sulphate and sodium chloride. In-situ application of the micro-drilling test demonstrated its potential for use in the assessment of masonry salt weathering; the results suggest that this technique may, in fact, be useful as a preventive measure against salt damage. Last but not least, both aforementioned novel micro-destructive techniques have been used to assess the effectiveness of commercially available consolidants. The results of the scratch tool have also been utilised to develop a tomography image of the samples under test. Scratching tomography may potentially be combined with in-situ micro-drilling tests to evaluate the effectiveness of consolidation treatments applied on monuments and historic buildings.

  13. Floating houses “lanting” in Sintang: Assessment on sustainable building materials

    Science.gov (United States)

    Susanto, D.; Lubis, M. S.

    2018-03-01

    One important element in the concept of sustainable building is the use of materials. The higher the use of sustainable material in building, the more sustained the building. Lanting is one type of floating construction, usually made from wood, that can be found in settlement along the river, such as in the city of Sintang, West Kalimantan. Lanting is still survive today because it is still used by community whose lives are tied to the river, and also because of its flexible nature that is able to function as a ‘water building’ as well as ‘land building’, and it is also movable, in addition for land limitation in some places. However, the existence of lanting settlements in the city of Sintang faces insistence because it is considered slum, polluting the environment, the scarcity of wooden materials, disturbing the beauty of the city, and threatened by the concretized river banks by local government. This paper discussed the sustainability of waterfront buildings in the city of Sintang in terms of material uses, through the assessment of ‘green-features’ of the main materials used. Assessment results show that wood is the most green building material and lanting is considered at the highest sustainability level for its use of wooden materials.

  14. Estimation technique on thermal properties data of reactor materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1998-01-01

    This study aims at rapid measurement of thermal properties (thermal conductivity, thermal diffusivity, specific heat capacity, and emissivity) with the highest precision and till ultra high temperature in the world under identifying high temperature materials expected at reactor engineering in future such as plasma facing materials of nuclear fusion reactor. It was conducted by setting some sub-theme such as highly precise measurement and characterization of thermal properties, estimation technique of their data. Thus, precise measurement on specific heat capacity of meso-phase graphite was conducted. Between those at 1000degC and 3000degC a difference of about 5% was observed. As a result, it was found that it was required for highly precise estimation of thermal property data to consider value of the specific heat capacity. (G.K.)

  15. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials.

    Science.gov (United States)

    Swart, Hendrik C

    2017-08-04

    The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES), X-ray photo electron spectroscopy (XPS), time of flight scanning ion mass spectrometry (TOF-SIMS) and High resolution transmission electron microscopy (HRTEM) for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and also to determine the elemental composition of the surfaces of the materials, while XPS and TOF-SIMS are used for determining the surface chemical composition and valence state of the dopants. The role of XPS to determine the presence of defects in the phosphor matrix is also stated with the different examples. The role of HRTEM in combination with Energy dispersive spectroscopy (EDS) for nanoparticle characterization is also pointed out.

  16. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials

    Directory of Open Access Journals (Sweden)

    Hendrik C. Swart

    2017-08-01

    Full Text Available The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES, X-ray photo electron spectroscopy (XPS, time of flight scanning ion mass spectrometry (TOF-SIMS and High resolution transmission electron microscopy (HRTEM for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and also to determine the elemental composition of the surfaces of the materials, while XPS and TOF-SIMS are used for determining the surface chemical composition and valence state of the dopants. The role of XPS to determine the presence of defects in the phosphor matrix is also stated with the different examples. The role of HRTEM in combination with Energy dispersive spectroscopy (EDS for nanoparticle characterization is also pointed out.

  17. Biomedical materials, devices and drug delivery systems by radiation techniques

    International Nuclear Information System (INIS)

    Kaetsu, Isao.

    1996-01-01

    The study of radiation polymerization in a super-cooled state started in 1966 and has been applied to the immobilization of biofunctional materials since 1973. In the last twenty years, application has been concentrated on the immobilization of drugs and hormones for the purpose of drug delivery systems. Very recently, the author has proposed a concept of environmental signal responsive chemical delivery system, as a new generation of controlled release and delivery systems. The study and development of materials, devices and systems is described. The signal responsive delivery system consists of a sensor part and a controlled delivery part. Therefore, the use of immobilization techniques for the biochip sensor and the hydrogel actuator has been investigated. As a future goal, systems for brain research are to be designed and studied. (author)

  18. Importance of ultrasonic holography as imaging technique of material faults

    International Nuclear Information System (INIS)

    Schmitz, V.

    1978-01-01

    In ultra-sound testing of thick-wall components the reconstruction of shape and position of material faults stands in the foreground. Ultra-sound holography allows imaging of this kind. The principle of this technique is to completely measure the amount and phase of a sound field arising from the fault location on the surface of the material-piece. The quantity is measured as a complex quantity. To accomplish this, ultra-sound holography works with monochromatic burst-signals. The recording of phase and amplitude formation can be made optically by means of a film carrier as well as numerically in a computer. Corresponding to this fact the reconstruction takes place by means of a laser beam or by means of mathematical formalisms in the computer. Both the methods are realized today and are applied in destruction-free testing. (orig./DG) [de

  19. Application of positron annihilation technique to reverse osmosis membrane materials

    International Nuclear Information System (INIS)

    Shimazu, A.; Ikeda, K.; Miyazaki, T.; Ito, Y.

    2000-01-01

    Positron annihilation lifetime spectroscopy has been adopted as a new approach for studying vacancies of reverse osmosis membrane materials composed of cellulose acetate films and aromatic polyamide resins. The intensity of the ortho-positronium (o-Ps) lifetime increased with the amount of vacancies determined using N 2 isotherm at -195 deg. C. Changes of vacancy profiles induced by heat treatment in the cellulose acetate films were detected using o-Ps. It was found that the positron annihilation technique is applicable to the study of vacancy profiles associated with salt selectivity in typical reverse osmosis membranes.

  20. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    Science.gov (United States)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  1. Novel organosilicone materials and patterning techniques for nanoimprint lithography

    Science.gov (United States)

    Pina, Carlos Alberto

    Nanoimprint Lithography (NIL) is a high-throughput patterning technique that allows the fabrication of nanostructures with great precision. It has been listed on the International Technology Roadmap for Semiconductors (ITRS) as a candidate technology for future generation Si chip manufacturing. In nanoimprint Lithography a resist material, e.g. a thermoplastic polymer, is placed in contact with a mold and then mechanically deformed under an applied load to transfer the nano-features on the mold surface into the resist. The success of NIL relies heavily in the capability of fabricating nanostructures on different types of materials. Thus, a key factor for NIL implementation in industrial settings is the development of advanced materials suitable as the nanoimprint resist. This dissertation focuses on the engineering of new polymer materials suitable as NIL resist. A variety of silicone-based polymer precursors were synthesized and formulated for NIL applications. High throughput and high yield nanopatterning was successfully achieved. Furthermore, additional capabilities of the developed materials were explored for a range of NIL applications such as their use as flexible, UV-transparent stamps and silicon compatible etching layers. Finally, new strategies were investigated to expand the NIL potentiality. High throughput, non-residual layer imprinting was achieved with the newly developed resist materials. In addition, several strategies were designed for the precise control of nanoscale size patterned structures with multifunctional resist systems by post-imprinting modification of the pattern size. These developments provide NIL with a new set of tools for a variety of additional important applications.

  2. Effect of Material Variability and Mechanical Eccentricity on the Seismic Vulnerability Assessment of Reinforced Concrete Buildings

    Directory of Open Access Journals (Sweden)

    Mario Lucio Puppio

    2017-07-01

    Full Text Available The present paper deals with the influence of material variability on the seismic vulnerability assessment of reinforced concrete buildings. Existing r.c. buildings are affected by a strong dispersion of material strengths of both the base materials. This influences the seismic response in linear and nonlinear static analysis. For this reason, it is useful to define a geometrical parameter called “material eccentricity”. As a reference model, an analysis of a two storey building is presented with a symmetrical plan but asymmetrical material distribution. Furthermore, an analysis of two real buildings with a similar issue is performed. Experimental data generate random material distributions to carry out a probabilistic analysis. By rotating the vector that defines the position of the center of strength it is possible to describe a strength domain that is characterized by equipotential lines in terms of the Risk Index. Material eccentricity is related to the Ultimate Shear of non-linear static analyses. This relevant uncertainty, referred to as the variation of the center of strength, is not considered in the current European and Italian Standards. The “material eccentricity” therefore reveals itself to be a relevant parameter to considering how material variability affects such a variation.

  3. Composite smart materials using high-volume microelectronics fabrication techniques

    Science.gov (United States)

    Winzer, Stephen R.; Shankar, Natarajan; Caldwell, Paul J.; May, Russell G.

    1995-05-01

    Smart materials, containing sensors, actuators and processing electronics, are of great potential use in defense and commercial applications from acoustic stealth to medial imaging. While 1:3 composites using PZT rods are now available commercially in limited quantities, composites with individually addressable actuator and sensor arrays are not, nor have conditioning and processing electronics been embedded in the same material. There are several technical and cost reasons for this, including the complexity of interconnections, capacitance of individual elements, thermal dissipation, and the expense of fabricating the material. We have been developing composite materials comprising arrays of miniature actuators fabricated using surface mount capacitor technology, and amenable to automated fabrication using `pick and place' techniques. Miniature actuators with up to 0.1% strain, and operating at 30 V bias and ac swing of +/- 30 V have been fabricated, and placed in 10-by- 10 actuator arrays on Kapton sheets on which circuits have been printed. The arrays were then `potted' in RTV liquid rubbers. Individual actuator motion and multiple actuator influence functions were measured as a function of applied voltage and adjacent actuator motion. These results, along with in-water performance (source level and directivity), are presented.

  4. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    Science.gov (United States)

    Joseph, C. H.; Sardi, G. M.; Tuca, S. S.; Gramse, G.; Lucibello, A.; Proietti, E.; Kienberger, F.; Marcelli, R.

    2016-12-01

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S11 are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S11 with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  5. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, C.H., E-mail: hadlee.joseph@artov.imm.cnr.it [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Electronics Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome (Italy); Sardi, G.M. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Tuca, S.S.; Gramse, G. [Johannes Kepler University, Institute for Biophysics, Gruberstrasse 40, A-4020 Linz (Austria); Lucibello, A.; Proietti, E. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Kienberger, F. [Keysight Technologies Austria GmbH, Keysight Laboratories, Gruberstrasse 40, A-4020 Linz (Austria); Marcelli, R. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-12-15

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S{sub 11} are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S{sub 11} with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  6. Determination of the radioactive material and plutonium holdup in ducts and piping in the 327 Building

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, D.L.; Brackenbush, L.W.

    1995-09-01

    The 327 Building Post Irradiation Testing Laboratory is used for temporary storage and for destructive and nondestructive examination of irradiated reactor fuels and structural materials. The facility contains 12 shielded hot cells, two water-filled basins, and dry storage. This report describes the measurements performed to determine the radionuclide content and mass of Pu in ducts, filters, and piping in the basement of the 327 Building at the Hanford Site in Washington State. This information is needed to characterize facility radiation levels, to verify compliance with criticality safety specifications, and to allow more accurate nuclear material control using nondestructive assay (NDA) methods. Gamma assay techniques typically employed for NDA analysis were used to determine the gamma-emitting isotopes in the ducts, filters, and piping. Passive neutron counting was selected to estimate the Pu content because high gamma levels from fission and activation products effectively mask any gamma emissions from Pu. A high-purity gamma-ray detector was used to measure the mixed fission and activation radionuclides. A slab neutron detector containing five {sup 3}He proportional counters was used to determine the neutron emission rates and estimate the mass of Pu present. Estimated Pu mass in the basement ductwork and filters is 7.2 grams. The radioactive liquid waste system line has 4.2 grams and Special Environmental Radiometallurgy Facility cell recirculating system contains 8.7 grams in the lower filter housing and associated piping. Total Pu mass holdup estimates range from 20.1 grams, assuming that the Pu is weapons-grade Pu, to a best estimate of 11.0 grams Pu, assuming 11% {sup 240}Pu.

  7. A matrix in life cycle perspective for selecting sustainable materials for buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Abeysundara, U.G. Yasantha [Ministry of Education, Isurupaya, Battaramulla (Sri Lanka); Babel, Sandhya [Environmental Technology Program, School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathumthani 12121 (Thailand); Gheewala, Shabbir [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand)

    2009-05-15

    This paper presents a matrix to select sustainable materials for buildings in Sri Lanka, taking into consideration environmental, economic and social assessments of materials in a life cycle perspective. Five building elements, viz., foundations, roofs, ceilings, doors and windows, and floors are analyzed based on materials used for these elements. Environmental burdens associated with these elements are analyzed in terms of embodied energy and environmental impacts such as global warming, acidification and nutrient enrichment. Economic analysis is based on market prices and affordability of materials. Social factors that are taken into account are thermal comfort, interior (aesthetics), ability to construct quickly, strength and durability. By compiling the results of analyses, two building types with minimum and maximum impacts are identified. These two cases along with existing buildings are compared in a matrix of environmental, economic and social scores. Analysis of the results also indicates need for higher consideration of environmental parameters in decision-making over social and economic factors, as social and economic scores do not vary much between cases. Hence, this matrix helps decision-makers to select sustainable materials for buildings, meaningfully, and thus helps to move towards a more sustainable buildings and construction sector. (author)

  8. Development of phase change materials based microencapsulated technology for buildings: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  9. Recognition of materials and damage on historical buildings using digital image classification

    Directory of Open Access Journals (Sweden)

    Jose E. Merono

    2015-01-01

    Full Text Available Nowadays, techniques in digital image processing make it possible to detect damage, such as moisture or biological changes, on the surfaces of historical buildings. Digital classification techniques can be used to identify damages in construction materials in a non-destructive way. In this study, we evaluate the application of the object-oriented classification technique using photographs taken with a Fujifilm IS-Pro digital single lens reflex camera and the integration of the classified images in a three-dimensional model obtained through terrestrial laser scanning data in order to detect and locate damage affecting biocalcarenite stone employed in the construction of the Santa Marina Church (Córdoba, Spain. The Fujifilm IS-Pro camera captures spectral information in an extra-visible range, generating a wide spectral image with wavelengths ranging from ultraviolet to infrared. Techniques of object-oriented classification were applied, taking into account the shapes, textures, background information and spectral information in the image. This type of classification requires prior segmentation, defined as the search for homogeneous regions in an image. The second step is the classification process of these regions based on examples. The output data were classified according to the kind of damage that affects the biocalcarenite stone, reaching an overall classification accuracy of 92% and an excellent kappa statistic (85.7%. We have shown that multispectral classification with visible and near-infrared bands increased the degree of recognition among different damages. Post-analysis of these data integrated in a three-dimensional model allows us to obtain thematic maps with the size and position of the damage.

  10. Radioactivity in building materials : a first overview of the European scenario

    International Nuclear Information System (INIS)

    Trevisi, Rosabianca; D'Alessandro, Marco; Nuccetelli, Cristina; Risica, Serena

    2008-01-01

    With a wide research into the national and international literature an inventory was created of building materials in Europe, characterised on the basis of activity concentration of the main natural radionuclides ( 226 Ra, 232 Th and 40 K). Materials of natural origin and containing industrial by-products were both accounted for. The inventory allowed to calculate the activity concentration index I - suggested by a European technical guidance document - for many building materials in Europe. A first identification of materials was thus made, which could be subject to controls or restrictions as for movement and/or use if the index were to be adopted by the European legislation. The analysis presented in this paper is a first attempt to discuss the data of our inventory and only five materials have been analysed. In a near future a more complete discussion will be published, also considering natural stones and superficial materials. As regards natural stones a tentative grouping will be made, classifying stones by their geological origin. Moreover, if enough data were available, we will also assess the radiation protection consequences of the potential use of by-products of industrial origin in building materials. Finally, the activity concentration of 232 Th, often higher than that of 226 Ra, in building materials shows the need of improving research into the health effects of the 232 Th chain, in particular of thoron concentration indoors. (author)

  11. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Hoefman, S.; De Vos, P.; Boeckx, P.; Boon, N.

    2014-01-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (similar to 20 % (v/v)) and low (similar to 100 ppmv) methane

  12. Application of earth building materials for low-income housing in the ...

    African Journals Online (AJOL)

    The characteristics, properties, problems and other factors associated with earth materials for building houses, especially in the tropical regions of the world are identified. The inter-relationships among these factors which inhibit the adoption of earth materials and the recommendations for overcoming the problems in a ...

  13. Factors influencing a building-material company brand

    Directory of Open Access Journals (Sweden)

    Allin R. Dangers

    2011-11-01

    Full Text Available A brand represents the essence of the value proposition an organisation extends to the market. It is crucial that brands are nurtured with the goal of trying to establish the brand in a top-of-mind awareness position among consumers. By means of a qualitative case study employing 25 interviews which were analysed by using Grounded Theory coding techniques, the most pertinent factors influencing the Corobrik brand were identified. The greatest challenge facing Corobrik is the growing residential sector. The study highlights how Corobrik has grappled and come to terms with the changing nature of its market, and how it has combined all functional areas, from production to distribution, marketing and finance, in promoting its brand.

  14. Determination of natural radioactivity in building materials used in Tunisian dwellings by gamma ray spectrometry.

    Science.gov (United States)

    Hizem, N; Ben Fredj, A; Ghedira, L

    2005-01-01

    The radioisotopic content of 17 samples of natural and manufactured building materials collected in Tunisia have been analysed by using gamma spectrometry. From the measured gamma ray spectra, activity concentrations are determined for (232)Th, (226)Ra, (235)U and (40)K. The total effective dose and the activity concentration index are calculated applying the dose criteria recommended by the European Union for building materials. The results of (226)Ra, (232)Th and (40)K found in Tunisian building materials indicate that radium and thorium concentrations do not exceed 40 Bq kg(-1), but potassium concentration varies between 50 and 1215 Bq kg(-1). The total effective dose rates per person indoors are determined to be between 0.07 and 0.86 mSv y(-1). Only two materials exceed the reference level of 0.3 mSv y(-1). The activity concentration index is <1.

  15. Nuclear material safeguards surveillance and accountancy by isotope correlation techniques

    International Nuclear Information System (INIS)

    Persiani, P.J.; Goleb, J.A.; Kroc, T.K.

    1981-11-01

    The purpose of this study is to investigate the applicability of isotope correlation techniques (ICT) to the Light Water Reactor (LWR) and the Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles for nuclear material accountancy and safeguards surveillance. The isotopic measurement of the inventory input to the reprocessing phase of the fuel cycle is the primary direct determination that an anomaly may exist in the fuel management of nuclear material. The nuclear materials accountancy gap which exists between the fabrication plant output and the input to the reprocessing plant can be minimized by using ICT at the dissolver stage of the reprocessing plant. The ICT allows a level of verification of the fabricator's fuel content specifications, the irradiation history, the fuel and blanket assemblies management and scheduling within the reactor, and the subsequent spent fuel assembly flows to the reprocessing plant. The investigation indicates that there exist relationships between isotopic concentration which have predictable, functional behavior over a range of burnup. Several cross-correlations serve to establish the initial core assembly-averaged composition. The selection of the more effective functionals will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors on the correlation functions and respective sensitivities to isotopic compositional changes have been examined and found to be consistent with current measurement methods

  16. The influence of surface treatment on mass transfer between air and building material

    DEFF Research Database (Denmark)

    Kwiatkowski, Jerzy; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    The processes of mass transfer between air and building structure and in the material influence not only the conditions within the material but also inside the connected air spaces. The material which absorbs and desorbs water vapour can be used to moderate the amplitude of indoor relative humidity...... and therefore to participate in the improvement of the indoor air quality and energy saving. Many parameters influence water vapour exchange between indoor air and building material. The aim of this work is to present the change of mass transfer under different climatic and material conditions. The measurements...... for the experiments: gypsum board and calcium silicate. The wallpaper and paint were used as finishing materials. Impact of the following parameters for changes of RH was studied: coating, temperature and air movement. The measurements showed that acryl paint (diffusion open) can significantly decrease mass uptake...

  17. Effects of various event building techniques on data acquisition system architectures

    International Nuclear Information System (INIS)

    Barsotti, E.; Booth, A.; Bowden, M.

    1990-04-01

    The preliminary specifications for various new detectors throughout the world including those at the Superconducting Super Collider (SSC) already make it clear that existing event building techniques will be inadequate for the high trigger and data rates anticipated for these detectors. In the world of high-energy physics many approaches have been taken to solving the problem of reading out data from a whole detector and presenting a complete event to the physicist, while simultaneously keeping deadtime to a minimum. This paper includes a review of multiprocessor and telecommunications interconnection networks and how these networks relate to event building in general, illustrating advantages of the various approaches. It presents a more detailed study of recent research into new event building techniques which incorporate much greater parallelism to better accommodate high data rates. The future in areas such as front-end electronics architectures, high speed data links, event building and online processor arrays is also examined. Finally, details of a scalable parallel data acquisition system architecture being developed at Fermilab are given. 35 refs., 31 figs., 1 tab

  18. Dynamic Characteristic Identification of Seismic-Excited Multi-Story Buildings through Response-Only Technique

    Directory of Open Access Journals (Sweden)

    Agung Budipriyanto

    2014-08-01

    Full Text Available Identifying dynamic characteristics of civil engineering structures is still a challenging task. It intends to assess behavior of the structures under time-dependent loads. This paper discusses a methodology suitable for identifying the characteristics of multi-story buildings using only their measured response under earthquake ground excitations. Appropriateness of technique used for structural identification was corroborated through coherence of the structure’s responses. The methodology was applied for identifying the characteristics of 14-story and 20-story office buildings located in a high seismic region. Responses of these two buildings recorded during three different seismic ground motions were investigated. The buildings’ response spectral densities and singular values were computed and utilized to identify their dynamic characteristics, viz. modal frequencies, damping factors, and mode types such as bending or torsion mode. Results of this study were validated through comparisons with the results reported using different structural identification techniques. It indicated that the methodology implemented in this study was capable of identifying the dynamic characteristics of multi-story buildings using responses under seismic ground motions. 

  19. Microstructure and microanalysis of some ancient building materials

    International Nuclear Information System (INIS)

    Majumdar, A.J.; Rayment, D.L.; Pettifer, K.

    1988-12-01

    In order to assess the very long term of durability of modern Portland cements for encapsulating certain types of radioactive waste, the microstructure and microanalysis of concretes of various ages made from such cements are compared with those from similar materials of ancient origins with ages upto 2500 years used in early Greek, Roman and British Construction. Most of the historical 'concretes' examined were heavily carbonated and at best showed only traces of the calcium silicate hydrate (C-S-H) phase, the heart of modern Portland Cement concretes. The notable exception was the 1700 years old concrete from Hadrian's Wall - the mortar in this was rich in C-S-H. The modern concrete samples, from 10 to 140 years old, showed little carbonation and their compositions of the C-S-H phase were very similar to those found from Hadrian's Wall. From all the evidence examined, it is concluded that the C-S-H phase is capable of surviving intact for several thousands of years in the absence of external chemical attack. (author)

  20. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  1. A New European COST Network 'NORM4Building' (TU1301) for the Reuse of NORM Containing Residues in Building Materials

    International Nuclear Information System (INIS)

    Schroeyers, W.; Schreurs, S.

    2014-01-01

    The new COST action was initiated on the 1st of January 2014 and runs for four years. COST is supported by the EU RTD Framework Program. In the presentation more information on how to participate in the network will be provided. In the presentation the new approach and new initiatives of the NORM4BUILDING network, that has its first meeting here in the DEAD SEA Hotel on the 12-13/02/2014, will be introduced. The NORM4Building materials network will be an open network of researchers. An Advisory Board consisting mainly from NORM processing and construction industries and relevant associations and regulators are invited to work in collaboration with the scientists that will populate the various working groups and the management committee of the new COST action

  2. Relation of historical quarrying, material utilization and performance on buildings in Eastern Finland

    Science.gov (United States)

    Luodes, Nike M.; Pirinen, Heikki

    2016-04-01

    Finland might seem to have lower stone heritage compared to other southern European countries, but it has been the main exporter of dimension stone to the majestic buildings that made St.Petersburg a recognized cultural heritage. In Finland, though, the stone seems undervalued. The only dramatic and predominant stone buildings are those of agencies and administrations located in the towns, where the stone has been used to impress and symbolize value. Romantic style used massive bossy stone in building's full height and created fine traditional carvings. Otherwise the communities have mainly built settlements in contact with the nature, with materials easily available and of low cost, following architectonical trends of the periods and producing interesting stone details. During the past years, research has been conducted on historical buildings interconnecting scientific and artistic approach to evaluate material durability and cultural relevance of the artifacts. Generally until mid 20th century the stone has been traditionally used massive for basements and walls. The materials still present good mechanical characteristics and most often the weathering level after hundreds of years of exposure had reached only the first millimeters from the curst. Instead the old methodology for deposit exploitation has left visible signs on the buildings. Some examples are visible from Kuopio. The exploitation of small, easy-to-reach surface deposits, even if planned by local experts, has affected quality and appearance of historical buildings. As an example the excavation of shallow quarries where also weathered crop was kept as a product has characterized the basement of the Niirala school that presents change in colors due to original material more than to weathering on site. Fissuring is also visible on a couple of blocks while marks on the rocks depict the old excavation method. Most often the deposits had been in the vicinities, frequently hidden by further construction

  3. Study on application of concrete sandwich insulation material in library building insulation

    Science.gov (United States)

    Yang, Zengzhang

    2017-06-01

    Energy shortage is the short slab that restricts the development of social economy, and the rational and effective use of energy is the principle of sustainable development. Building energy consumption accounts for about 30% of total social energy consumption, and this ratio has continued to rise, so the energy saving potential is great in the construction sector. In view of the building energy consumption problem, we produce green insulation building materials with the crop straw, and improve the construction of hot and humid environment. In this paper, we take concrete sandwich straw blocks in library building as the research object, through the experiment to test its winter heat consumption and summer power consumption indicators, carry out experimental study on thermal insulation performance, and explore the overall thermal and energy saving performance of concrete sandwich straw blocks in library building.

  4. Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.

    Science.gov (United States)

    Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa

    2008-01-01

    This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.

  5. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality.

    Science.gov (United States)

    Park, Seonghyun; Seo, Janghoo

    2016-04-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.

  6. Building

    Directory of Open Access Journals (Sweden)

    Ashwani kumar

    2015-08-01

    This paper discusses existing development scenario and issues to accommodate future development in hill towns located in Indian Himalayan region, also highlights the state of existing building regulations through an in-depth study of building regulations in major hill towns, and briefly discuses possible approaches to change existing building regulations for achieving contextually appropriate development.

  7. Innovative Development of Building Materials Industry of the Region Based on the Cluster Approach

    Directory of Open Access Journals (Sweden)

    Mottaeva Asiiat

    2016-01-01

    Full Text Available The article discusses issues of innovative development of building materials industry of the region based on the cluster approach. Determined the significance of regional cluster development of the industry of construction materials as the effective implementation of the innovative breakthrough of the region as an important part of strategies for strengthening innovation activities may be to support the formation and development of cluster structures. Analyses the current situation with innovation in the building materials industry of the region based on the cluster approach. In the course of the study revealed a direct correlation between involvement in innovative activities on a cluster basis, and the level of development of industry of construction materials. The conducted research allowed identifying the factors that determine the innovation process, systematization and classification which determine the sustainable functioning of the building materials industry in the period of active innovation. The proposed grouping of innovations for the construction industry taking into account industry-specific characteristics that reflect modern trends of scientific and technological progress in construction. Significance of the study lies in the fact that the proposals and practical recommendations can be used in the formation mechanism of innovative development of building materials industry and the overall regional construction complex of Russian regions by creating clusters of construction.

  8. Gamma spectroscopic analysis and associated radiation hazards of building materials used in Egypt.

    Science.gov (United States)

    El-Taher, A

    2010-02-01

    Radiation exposure of the population can be increased appreciably by the use of building materials containing above-normal levels of naturally occurring radionuclides of terrestrial origin. Using gamma-ray spectrometry, the natural radioactivity levels of 55 samples of natural and manufactured Egyptian building materials have been investigated. The samples were collected from local market and construction sites. From the measured gamma-ray spectra, activity concentrations were determined. The activities were in the ranges 11.7-35.6, 12.4-55.2 and 60-350 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The activities are compared with available reported data from other countries and with the world average value for soils. The radium equivalent activity Ra(eq), the external hazard index H(ex) and the absorbed dose rate in air D in each sample was evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. All building materials have shown Ra(eq) (range from 37.76 to 116.87 Bq kg(-1)) lower than the limit of 370 Bq kg(-1) adopted by the Organization for Economic Cooperation and Development (OECD). The absorbed dose rate in indoor air is lower than the international recommended value of 55 nGy h(-1) for all test samples. All the materials examined are acceptable for use as building materials as defined by the OECD criterion.

  9. The Effect of Anisotropy of Building Materials on the Moisture Transfer

    Directory of Open Access Journals (Sweden)

    J. Drchalová

    2000-01-01

    Full Text Available The effect of anisotropy of building materials on the moisture transfer in the design of envelope parts of building structures is studied. Two typical fibre containing plate building materials produced in the Czech Republic, Dekalux and Dekalit P, are chosen for the demonstration of this effect. Experimental results show that while for lighter Dekalit P, an order of magnitude difference in the moisture diffusivities k for the two basic orientations, i.e. along and across the plate, is observed, for the heavier Dekalux the differences in k are within the errorbar of the experimental method. As follows from the experimental results, compacting of surface layers of the plates of light fibred materials is very favorable from the point of view of moisture penetration but one should keep in mind that any local damage of the surface layer can result in a considerably faster moisture transfer in the direction along the plate.

  10. Nondestructive NMR technique for moisture determination in radioactive materials.

    Energy Technology Data Exchange (ETDEWEB)

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-12-04

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

  11. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    International Nuclear Information System (INIS)

    Shrestha, Som S.; Biswas, Kaushik; Desjarlais, Andre O.

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined

  12. An Investigation into Energy Requirements and Conservation Techniques for Sustainable Buildings

    Science.gov (United States)

    Robitaille, Jad

    (such as Thermal Building Envelopes) and Passive Systems and that rating systems may wish to incorporate such criteria more thoroughly and explicitly within their evaluation scheme of metrics. Hence, this paper will also aim at evaluating the inclusion of energy conservation techniques into the different rating schemes.

  13. Selection and Assessment of Passive Cooling Techniques for Residential Buildings in Oman Using a Bioclimatic Approach

    Directory of Open Access Journals (Sweden)

    N Al-Azri

    2013-12-01

    Full Text Available Passive cooling is an ancient technique used in air reconditioning and ventilation. Despite its historical use, its relevance in building design has never ceased. To be sure, with the increasing interest in saving energy and preserving the environment, passive cooling stands out as a sustainable possibility. However, this is not always a viable option, and its practicality is determined mainly by the system's functionality, the type of activities involved in the space to be cooled, and the surrounding area's bioclimatic variables (i.e. temperature, humidity, and diurnal temperature differences. In areas under consideration for passive cooling systems, bioclimatic charts are helpful. Comprehensive charts, in which yearlong hourly meteorological data are projected on a psychrometric chart, help to determine the fits required by a particular location. In this paper, psychrometric charts were developed for eight locations in Oman, and a systematic procedure on the selection and viability of using passive cooling techniques is provided through meteorological data. Givoni's passive cooling zones are used and the applicability of each technique is quantified. The eight study locations are widely scattered around and Oman, and possess great geographical diversity. The presented results can help delineate the applicability of each passive cooling technique for residential buildings at each of the study locations and their proximities.

  14. The influence of rainwater composition on the conservation state of cementitious building materials.

    Science.gov (United States)

    Morillas, Héctor; Marcaida, Iker; Maguregui, Maite; Carrero, Jose Antonio; Madariaga, Juan Manuel

    2016-01-15

    Rainwater is one of the main pollution tracers around the world. There are many reasons that can explain the presence of high concentrations of certain hazardous elements (HEs) in the rainwater (traffic, marine port activities, industry, etc.). In this work, rainwater samples were collected at six different locations in the Metropolitan Bilbao (Basque Country, north of Spain) during November 2014. HE concentrations were determined by means of inductively coupled plasma mass spectrometry (ICP-MS) and anions by ion chromatography. The pH and redox potential values on these samples were also assessed. According to the obtained results, different trends along the estuary of Bilbao have been observed. To corroborate some hypothesis, thermodynamic simulations and correlation analyses were also carried out using quantitative data. These trends are closely related to the surrounding pollution and marine influence. Finally, in order to ascertain the influence of the Metropolitan Bilbao rainwater on buildings materials, a recent construction was characterized. Using techniques such as Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM–EDS) and Raman Spectroscopy, different types of sulfates and nitrates were observed.

  15. Determination of the radioactive material and plutonium holdup in ducts and piping in the 324 Building

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, D.L.; Brackenbush, L.W.; Tanner, J.E.

    1996-01-01

    This report describes the measurements Performed to determine the radionuclide content and mass of plutonium in exposed ducts, filters, and piping in the 324 Building at the US Department of Energy Hanford Site in Washington State. This information is needed to characterize facility radiation levels, to verify compliance with criticality safety specifications, and to allow more accurate nuclear material control using nondestructive assay (NDA) methods. Gamma assay techniques typically employed for NDA analysis were used to determine the gamma-emitting isotopes in the ducts, filters, and piping. Passive neutron counting was selected to estimate -the plutonium content because high gamma levels from fission and activation products effectively mask any gamma emissions from plutonium. A high-purity gamma-ray detector Was used to measure the mixed fission and activation radionuclides. A neutron slab detector containing five {sup 3}He proportional counters was used to determine the neutron emission rates and estimate the mass of plutonium present. Both measurement systems followed the methods and procedures routinely used for nuclear waste assay and safeguards measurements.

  16. Integrated technique of planning the capital repair of residential buildings and objects of transport infrastructure

    Science.gov (United States)

    Dement'eva, Marina

    2017-10-01

    The paper presents the results of a comparative analysis of two fundamentally different methods for planning capital repairs of objects of transport infrastructure and residential development. The first method was based on perspective long-term plans. Normative service life were the basis for planning the periodicity of repairs. The second method was based on the performance of repairs in fact of the onset of the malfunction. Problems of financing repair work, of the uneven aging of constructs and engineering systems, different wear mechanism in different conditions of exploitation, absence of methods of planning repairs of administrative and production buildings (depots, stations, etc.) justify the need to optimize methods of planning the repair and the relevance of this paper. The aim of the study was to develop the main provisions of an integrated technique for planning the capital repair of buildings of any functional purpose, which combines the advantages of each of the discussed planning methods. For this purpose, the consequences of technical and economic risk were analyzed of the buildings, including stations, depots, transport transfer hubs, administrative buildings, etc when choosing different planning methods. One of the significant results of the study is the possibility of justifying the optimal period of capital repairs on the basis of the proposed technical and economic criteria. The adjustment of the planned repair schedule is carried out taking into account the reliability and cost-effectiveness of the exploitation process.

  17. AN IMAGE-BASED TECHNIQUE FOR 3D BUILDING RECONSTRUCTION USING MULTI-VIEW UAV IMAGES

    Directory of Open Access Journals (Sweden)

    F. Alidoost

    2015-12-01

    Full Text Available Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.

  18. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-01-01

    Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.

  19. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanfeng, E-mail: lyfxjd@163.com; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.

  20. An application of luminiscence dating to building archaeology: The study of ceramic building materials in early medieval churches in north-western France and south-eastern England

    Directory of Open Access Journals (Sweden)

    Blain, Sophie

    2010-12-01

    Full Text Available The research reported in this thesis concerns the re-evaluation of an archaeological assumption surrounding the origin of Ceramic Building Materials (CBM used from the 9th to the 11th century in religious buildings of north-western France and south-eastern England. Are the bricks used in the masonry structures Roman spolia or a novo productions? Amongst the dating methods that can contribute to building archaeology, it is the technique of stimulated luminescence applied to CBM that is the focus of this study. Results from thermoluminescence (TL and optically stimulated luminescence (OSL dating performed on 52 CBM samples from 11 churches showed that the practice of reusing Roman brick was commonplace in small parish churches, but also that brick-making was not a totally unknown skill of the early medieval craftsmen as it has long been supposed. Most importantly, by identifying that the building material is contemporary to the church, a defined chronology emerges resulting in a new and extremely useful reference point in the history of early medieval architecture.La investigación presentada en esta tesis se ocupa de la reevaluación de un supuesto arqueológico entorno al origen del material cerámico constructivo (CBM empleado entre los siglos IX y XI en los edificios religiosos del Noroeste de Francia y el Sudeste de Inglaterra. ¿Son los ladrillos empleados en las estructuras de fábrica spolia romana o producciones a novo? Entre los métodos de datación que pueden contribuir a la arqueología del edificio, la técnica de luminiscencia estimulada aplicada al CBM es el centro de este estudio. Los resultados de la termoluminiscencia (TL y de la luminiscencia estimulada ópticamente (OSL, aplicadas en 52 muestras de CBM tomadas en 11 iglesias, evidencian que la práctica de reutilizar ladrillos romanos era común en pequeñas iglesias parroquiales, pero que también la técnica de elaboración de ladrillos no era totalmente desconocida para los

  1. Application of Soil Nailing Technique for Protection and Preservation Historical Buildings

    Science.gov (United States)

    Kulczykowski, Marek; Przewłócki, Jarosław; Konarzewska, Bogusława

    2017-10-01

    Soil nailing is one of the recent in situ techniques used for soil improvement and in stabilizing slopes. The process of soil nailing consists of reinforcing the natural ground with relatively small steel bars or metal rods, grouted in the pre-drilled holes. This method has a wide range of applications for stabilizing deep excavations and steep slopes. Soil nailing has recently become a very common method of slope stabilisation especially where situated beneath or adjacent to historical buildings. Stabilisation by nails drilled into existing masonry structures such as failing retaining walls abutments, provide long term stability without demolition and rebuilding costs. Two cases of soil nailing technology aimed at stabilising slopes beneath old buildings in Poland are presented in this paper. The first concerns application of this technology to repair a retaining wall supporting the base of the dam at the historic hydroelectric power plant in Rutki. The second regards a concept of improving the slope of the Castle Hill in Sandomierz. An analysis of the slope stability for the latter case, using stabilisation technique with the piling system and soil nailing was performed. Some advantages of soil nailing especially for protection of historical buildings, are also underlined. And, the main results of an economic comparison analysis are additionally presented.

  2. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    International Nuclear Information System (INIS)

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-01-01

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured

  3. Expanded polystyrene as the bearing building material of low energy construction

    Science.gov (United States)

    Mesaros, P.; Spisakova, M.; Kyjakova, L.; Mandicak, T.

    2015-01-01

    Sustainability of buildings is a really important issue for the construction industry. Sustainable buildings are characterized by the lower construction costs for energy consumption and operations, they are environmentally friendly, able to save natural resources and they are comfortable and healthy for their users. The European Union supports this trend through its Strategy 2020, respectively with document Energy Roadmap 2020. The strategy 2020 sets greenhouse gas emissions 20% lower than 1990, 20% of energy from renewable and 20% increase in energy efficiency. It manifests itself in introduction of modern technologies of house building. One potential for the energy saving is construction of low-energy buildings using modern materials. This paper focuses on the analysis of the low-energy buildings made by expanded polystyrene as the bearing building material. The paper analyzes their design and describes the benefits of this modern but unusual type of construction technology for houses. The examples from abroad clearly indicate that this technology has potential in modern architecture. The success and exploration of this technology potential in the conditions of Slovak construction sector is closely related to interest of investors and users of further sustainable houses which are design according the Strategy 2020 conditions.

  4. Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT Analysis

    Directory of Open Access Journals (Sweden)

    Ilaria Vigna

    2018-01-01

    Full Text Available Building envelopes can play a crucial role in building improvement efficiency, and the adoption of Phase Change Materials (PCMs, coupled with transparent elements, may: (i allow a better control of the heat flows from/to the outdoor environment, (ii increase the exploitation of solar energy at a building scale and (iii modulate light transmission in order to prevent glare effects. Starting from a literature review, focused on experimental works, this research identifies the main possible integrations of PCMs in transparent/translucent building envelope components (in glazing, in shutters and in multilayer façade system in order to draw a global picture of the potential and limitations of these technologies. Transparent envelopes with PCMs have been classified from the simplest “zero” technology, which integrates the PCM in a double glass unit (DGU, to more complex solutions—with a different number of glass cavities (triple glazed unit TGU, different positions of the PCM layer (internal/external shutter, and in combination with other materials (TIM, aerogel, prismatic solar reflector, PCM curtain controlled by an electric pump. The results of the analysis have been summarised in a Strengths, Weakness, Opportunities and Threats (SWOT analysis table to underline the strengths and weaknesses of transparent building envelope components with PCMs, and to indicate opportunities and threats for future research and building applications.

  5. Energy and economic analysis of a building enclosure outfitted with a phase change material board (PCMB)

    International Nuclear Information System (INIS)

    Sun, Xiaoqin; Zhang, Quan; Medina, Mario A.; Lee, Kyoung Ok

    2014-01-01

    Highlights: • Phase change material boards (PCMBs) were simulated in building enclosures. • Energy and economic savings for these buildings were estimated. • The buildings were located in five cities with different climatic conditions. • The energy savings ratio was 100% when a cold energy source was used. • A mean electricity savings ratio of 13.1% was obtained. - Abstract: This paper presents energy and economic analyses related to the application of phase change materials boards (PCMBs) in building enclosures during the cooling season. A heat transfer model was developed, which was implemented via a computer program. Simulations were carried out using weather data files from five cities located in five different climate regions in China. Energy savings from using a natural cold source (e.g., outdoor air) and electricity savings from a reduction in electricity by air conditioning systems were evaluated. The energy savings ratio (ESR) and simple payback period (SPP) were used to assess the application of PCMBs in building enclosures. The selection of optimum phase transition temperatures for the PCMs for the various climates was made using indoor and outdoor air temperatures, as well as SPP. For space cooling purposes, it was suggested that phase transition temperatures should be at least 3 °C higher than the mean outdoor air temperature. Simple payback period suggested the possibility of the cost effective use of PCMBs in occupied buildings for moderate temperature climates

  6. Coding Techniques to Reduce Material Saturation in Holographic Data Storage

    Science.gov (United States)

    Phillips, Seth William

    Holographic data storage (HDS) is an emerging data storage technology that has received attention due to a high theoretical data capacity, fast readout times, and a potentially long lifetime of the recording materials. The work presented in this thesis was undertaken to solve one of the technical impediments preventing the widespread use of HDS, the occurrence of large concentrations of power in recorded holograms. Such peak values of optical power cause the medium to saturate during the recording process. As a result, the most significant portions of the hologram are not recorded accurately, and on readout, saturated recordings are not reconstructed correctly. In the implementation of HDS considered in this thesis, data is organized into an array of pixels using hybrid ternary modulation that contains an OFF-pixel and two different ON-pixels that are differentiated by their phase terms. The Fourier transform of this data array is created optically and the image of the Fourier transform is recorded holographically. This thesis presents a two-step coding technique that decreases the likelihood and severity of peaks in encoded holograms. In the first step, sparsity, the proportion of OFF-pixels in the array, is increased, which decreases the total power in the encoded array. In the second step, phase masks are used to alter the phase of ON-pixels to decrease periodic content in the data array. This reduces the likelihood of an encoded array containing large peak values at any point in the Fourier domain. Analysis is presented for the sparsity encoding which demonstrates the worst-case sparsity for certain system parameters. The performance of both the sparsity encoding and phase masking procedure are tested with numerical simulations. The results of these simulations indicate that these encoding techniques effectively inhibit the occurrence of large intensity peaks the holograms of encoded arrays.

  7. Building materials as a source of a possible radiation exposure of the population

    International Nuclear Information System (INIS)

    Pensko, J.; Burkart, W.

    1986-12-01

    Two main pathways of exposure contribute to the human radiation exposure indoors: external whole body irradiation from gamma-rays originating from the walls, and exposure of lung tissue by alpha-rays emitted by radon daughters present in the inhaled air. Natural radioactive elements present in building materials produce both kinds of radioactive exposure. Uranium, thorium and potassium are sources of gamma radiations. Materials containing radium can create an alpha-radiation hazard for the human respiratory system through the exhalation of radon from room surfaces. Measurements of the natural radioactivity of building materials made in several European countries are reviewed. A preliminary assessment of the radioactivity content of potentially hazardous materials on the Swiss market shows elevated levels in imported phosphogypsum and tuff. (author)

  8. Experimental study of dynamic effects in moisture transfer in building materials

    DEFF Research Database (Denmark)

    Janssen, Hans; Scheffler, Gregor Albrecht; Plagge, Rudolf

    2016-01-01

    of the moisture transfer processes involved. The available evidence primarily stems from imbibition and drainage experiments on soils however, and compared to many other porous media, these tests consider rather permeable materials with relatively dominant liquid transport at comparatively large (de...... in building materials. Drying and ad-/desorption tests are executed on two building materials, in which moisture contents and moisture potentials are measured simultaneously. These are translated into dynamic retention relations and dynamic storage coefficients, which both distinctly demonstrate that moisture......In relation to moisture storage in porous materials, it is often assumed that the process dynamics do not affect the moisture retention. There is mounting evidence though that this notion is incorrect: various studies demonstrate that the moisture retention is influenced by the (de)saturation rates...

  9. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    Science.gov (United States)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  10. Development of New Dielectric NDE Techniques for Spaceflight Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — Dielectric spectrometry will be performed on select spacecraft materials (i.e. heat shield materials, structural materials and insulating foams) to examine their...

  11. The phase field technique for modeling multiphase materials

    Science.gov (United States)

    Singer-Loginova, I.; Singer, H. M.

    2008-10-01

    This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.

  12. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    International Nuclear Information System (INIS)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D.

    2008-01-01

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years

  13. Experimental evaluation of passive cooling using phase change materials (PCM) for reducing overheating in public building

    Science.gov (United States)

    Ahmed, Abdullahi; Mateo-Garcia, Monica; McGough, Danny; Caratella, Kassim; Ure, Zafer

    2018-02-01

    Indoor Environmental Quality (IEQ) is essential for the health and productivity of building users. The risk of overheating in buildings is increasing due to increased density of occupancy of people and heat emitting equipment, increase in ambient temperature due to manifestation of climate change or changes in urban micro-climate. One of the solutions to building overheating is to inject some exposed thermal mass into the interior of the building. There are many different types of thermal storage materials which typically includes sensible heat storage materials such as concrete, bricks, rocks etc. It is very difficult to increase the thermal mass of existing buildings using these sensible heat storage materials. Alternative to these, there are latent heat storage materials called Phase Change Materials (PCM), which have high thermal storage capacity per unit volume of materials making them easy to implement within retrofit project. The use of Passive Cooling Thermal Energy Storage (TES) systems in the form of PCM PlusICE Solutions has been investigated in occupied spaces to improve indoor environmental quality. The work has been carried out using experimental set-up in existing spaces and monitored through the summer the months. The rooms have been monitored using wireless temperature and humidity sensors. There appears to be significant improvement in indoor temperature of up to 5°K in the room with the PCM compared to the monitored control spaces. The success of PCM for passive cooling is strongly dependent on the ventilation strategy employed in the spaces. The use of night time cooling to purge the stored thermal energy is essential for improved efficacy of the systems to reduce overheating in the spaces. The investigation is carried within the EU funded RESEEPEE project.

  14. Critical Review of the Material Criteria of Building Sustainability Assessment Tools

    Directory of Open Access Journals (Sweden)

    Jiyoung Park

    2017-01-01

    Full Text Available Comparative analysis of the material criteria embedded in building sustainability assessment tools was performed. The material-related issues were identified, classified, and summarized. A framework, the triple bottom line of sustainability (environment, economy, and society, was used to examine the material assessment criteria, evaluation parameters, and descriptions. The material criteria were evaluated to identify the current features and weaknesses as balanced material assessments for sustainable development. The criteria showed significant differences in their scopes in covering the social and economic aspects beyond the environmental aspect. For comprehensive sustainability assessment purposes, it is essential that adequate attention be paid to all three dimensions. Finally, this paper proposes the indicators of the sustainable material assessment from an analysis of all the material-related items.

  15. Material and welding development of anchor plates to build nuclear power plant by blue arc process

    International Nuclear Information System (INIS)

    Gibelli, C.E.

    1986-01-01

    To build nuclear power plants, anchor plates are plenty used. These anchor plates serve as a system with the purpose to fix many heavy components or a simple stair. Considering the necessity of element fabrication fastly, with reasonable economy and quality, the arc study welding process (blue arc) was used. A special development of the material concept as well as a welding procedure and a subsuppliers qualification of the raw material was necessary. (Author) [pt

  16. The future resources for eco-building materials: II. Fly ash and coal waste

    Energy Technology Data Exchange (ETDEWEB)

    Hui Li; Delong Xu [Xi' an University of Architecture & Technology, Xi' an (China). China State key Laboratory of Western Architecture & Technology

    2009-08-15

    To use fly ash and coal waste effectively, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as utilizing fly ash as the component of fly ash cement and low heat cement after the processes of separation, removal of carbon remains and fine comminution, calcining coal waste into kaolin and meta-kaolin with suspension technology, and preparing clinkerless alkali-activated geopolymer materials with fly ash and meta-kaolin.

  17. Surface dispersive energy determined with IGC-ID in anti-graffiti-coated building materials

    OpenAIRE

    Carmona-Quiroga, Paula María; Rubio, J.; Sánchez, M. Jesús; Martínez-Ramírez, S.; Blanco-Varela, María Teresa

    2011-01-01

    Coating building materials with anti-graffiti treatments hinders or prevents spray paint adherence by generating low energy surfaces. This paper describes the effect of coating cement paste, lime mortar, granite, limestone and brick with two anti-graffiti agents (a water-base fluoroalkylsiloxane, “Protectosil Antigraffiti®”, and a Zr ormosil) on the dispersive component of the surface energy of these five construction materials. The agents were rediluted in their respective solvents at concen...

  18. Dose and radon measurements inside houses containing ash as building material

    International Nuclear Information System (INIS)

    Bodnar, R.; Lendvai, Z.; Somlai, J.; Nemeth, C.

    1996-01-01

    Radon concentration and external dose have been measured in dwellings that contain by-products of coal burning for building materials. The concentrations of 40 K, 232 Th, 238 U and 226 Ra have been determined in the materials. The date are analyzed according to indices frequently used for decision of utilizing the by-products. The observed daily fluctuation of the radon concentration in dwellings might exceed a factor of 5. (author)

  19. Relationship between geochemical and geomechanical properties of magnesia building material. Final report

    International Nuclear Information System (INIS)

    Freyer, Daniela

    2015-06-01

    Long-term isolation of radioactive wastes from the biosphere imposes particular demands an potential building materials for engineered barrier systems (EBS). Due to its proposed longterm stability in salt formations MgO-based (''Sorel'') mortar or concrete is the preferred material option for construction of dam or shaft seals based and more than 100 years practical experiences. Fundamental investigations concerning geochemical and geomechanical properties of the Sorel-building material were performed in the framework of an interdisciplinary research project of the IfAC (Institut fuer Anorganische Chemie) and the IfBUS (Institut fuer Bergbau und Spezialtiefbau) both of University TU Bergakademie Freiberg in cooperation with the IfG Leipzig (Institut fuer Gebirgsmechanik GmbH). The sophisticated investigation approach consisting of a step-by-step procedure, which delivers a comprehensive understanding of the strongly interrelated aspects and processes. This facilitates development of tailored building material mixtures for all technical purposes, e.g. for shotcrete or site concrete applications. Chemical phase formation and stability of sorel binder phases of the magnesia building material were investigated focusing and the solubility equilibria in the basic system Mg(OH) 2 - MgCI 2 - H 2 O and Mg(OH) 2 - MgSO 4 - H 2 .Two building material mixtures were developed. Both mixtures are optimized under consideration of their flow and solidification behavior and the rheology of the binder suspension, which was modified by adding filler materials. In particular, the used magnesium oxide reactivity was found to be the prime factor for the temporary binder phase formation and heat supply, e.g. too reactive MgO leads to earlier and higher setting temperatures correlating to earlier hardening which affects the material workability. The reliability of results was proven by comparisons with measured properties during large in situ-tests. Time

  20. THE MODEL CONSTRUCTIONS OF PRICE FORMING OF BUILDING MATERIALS MANUFACTURE IN BASHKORTOSTAN

    Directory of Open Access Journals (Sweden)

    H.N. Gizatullin

    2007-06-01

    Full Text Available In this work attempt has been done analyze the influence of the environmental factors, as outward, as inside to choice of the strategy and the pricing of the industry of the building materials of Bashkortostan. This article examines the competitive surroundings of enterprises and branches in a aspect of the regional market of the building industry’s production. The evaluation of the compatibility is given of the price and competitive strategy. As a result of the research and pricing majority of industry’s enterprises had no official document stating their per pose in a pricing area. In reason of analysis the general situation of the industry building materials the enterprises of Bashkortostan, the conception of pricing is determined on functional level.

  1. Genetic programming system for building block analysis to enhance data analysis and data mining techniques

    Science.gov (United States)

    Eick, Christoph F.; Sanz, Walter D.; Zhang, Ruijian

    1999-02-01

    Recently, many computerized data mining tools and environments have been proposed for finding interesting patterns in large data collections. These tools employ techniques that originate from research in various areas, such as machine learning, statistical data analysis, and visualization. Each of these techniques makes assumptions concerning the composition of the data collection to be analyzed. If the particular data collection does not meet these assumptions well, the technique usually performs poorly. For example, decision tree tools, such as C4.5, rely on rectangular approximations, which do not perform well if the boundaries between different classes have other shapes, such as a 45 degree line or elliptical shapes. However, if we could find a transformation f that transforms the original attribute space, in which class boundaries are more, better rectangular approximations could be obtained. In this paper, we address the problem of finding such transformations f. We describe the features of the tool, WOLS, whose goal is the discovery of ingredients for such transformation functions f, which we call building blocks. The tool employs genetic programming and symbolic regression for this purpose. We also present and discuss the results of case studies, using the building block analysis tool, in the areas of decision tree learning and regression analysis.

  2. Sources of mineral raw materials for the production of building materials of the Republic of Sakha (Yakutia)

    Science.gov (United States)

    Burenina, O. N.; Savvinova, M. E.

    2017-12-01

    The paper outlines that in Yakutia, despite the availability of its own mineral resource base and a steady demand for concretes for various purposes, there are constraints to the development of industry, namely, the use of obsolete energy-intensive equipment and energy-consuming technologies, uneven dislocation of production capacities for the production of building materials on the territory of the republic, which significantly increases the cost of construction due to high tariffs of freight services.

  3. Disintegration of sedimentary rocks used as building material: evaluation and quantification in 4D

    Science.gov (United States)

    Dewanckele, J.; Boone, M. A.; de Kock, T.; Cnudde, V.; Boone, M. N.; de Witte, Y.; Pieters, K.; van Loo, D.; van Hoorebeke, L.; Jacobs, P.

    2009-04-01

    Many natural building stones are subject to weathering processes that may lead to their disintegration. When rocks are exposed to extreme exogenous factors such as a combination of water and freeze-thaw cycles, they can deteriorate and cause problems concerning the maintenance of the structure. Some rock types are more susceptible to weathering processes than others, in which fluctuating environmental factors as well as the position of the stone in the building and the endogenous or geological parameters of the stone itself play an important role. In order to determine the influencing geological parameters (pore structure and interconnectivity, mineralogy, cementation…) several techniques are available. One of the techniques mainly focused on in this study is X-ray computed tomography (CT). This rapid and easy-to-use method enables to visualize internal rock structures in a non-destructive way and without any sample preparation. The obtained and afterwards processed digital information enables a better understanding in the 3D geometric rock properties. To obtain a CT-scan of the stone, the sample rotates 360˚ while digital radiographs are taken. In this study 800 radiographs were reconstructed (using the Octopus software package) to create virtual cross-sections through the object. Although X-ray CT is a very valuable technique for 3D reconstruction, the single radiographs also contain a lot of information. They can e.g. be used to measure the contact angle of a drop of water and thus be compared to traditional optical contact angle measurement systems. As the sample stays fixed on the rotational stage of the CT-scanner, a drop of water is released onto the stone's surface. Capillary processes change the drop shape changes during time. After the subtraction of the initial dry state from the wet state, the contact angle of the water drop can be calculated. The advantage of this approach is that also the impregnation depth of the water inside the stone can

  4. Building Materials, Ionizing Radiation and HBIM: A Case Study from Pompei (Italy

    Directory of Open Access Journals (Sweden)

    Pasquale Argenziano

    2018-01-01

    Full Text Available This paper presents a different point of view on the conservation of the built heritage, adding ionizing radiation to the most well-known digital documentation dataset. Igneous building materials characterize most of the built heritage in the Campania region, and in a large part of southern Italy. The ionizing radiations proceeding from these materials can produce stochastic biological effects on the exposed living beings. The research team designed and tested a technical-scientific protocol to survey and analyse this natural phenomenon in association with the use of geological material for building purposes. Geographical Information Systems (GISs, City Information Modelling (CIM, and Building Information Modelling (BIM are the digital tools used to manage the construction entities and their characteristics, and then to represent the thematic data as false-colour images. The emission spectra of fair-faced or plastered materials as a fingerprint of their nature is proposed as a non-invasive method. Due to both the huge presence of historical buildings and an intense touristic flow, the main square of Pompei has been selected as a study area.

  5. Data for moisture measurements during vertical absorption in building porous materials such as brick and limestone.

    Science.gov (United States)

    Evangelides, Chris; Arampatzis, George

    2018-04-01

    This article contains the datasets obtained from experiments in laboratory related to moisture propagation in building porous materials. The datasets contain moisture measurements and corresponding time measurements during vertical infiltration experiment in brick and limestone samples. Moisture measurements were carried out using a γ-ray device and water volume absorption was recorded by a computer controlled digital scale.

  6. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    1999-01-01

    rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete,autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 m Bq h"-"1 kg "-"1. Under consideration...

  7. Interlaboratory comparison of three methods for the determination of the radon exhalation rate of building materials

    NARCIS (Netherlands)

    de Jong, P; van Dijk, W.; de Vries, W; van der Graaf, ER; Roelofs, LMM

    In this study three methods for the determination of the radon (Rn-222) exhalation rate of building materials are compared. All three are so-called purge-and-trap methods in which the sample is enclosed in a container from which the exhaled radon is continuously purged by a constant flow of nitrogen

  8. The additional exposure due to the use of uncommon building materials in Romania

    International Nuclear Information System (INIS)

    Raluca Gheorghe; Milu, C.; Modoran, G.; Dobrescu, E.; Dan Gheorghe

    1996-01-01

    Beginning with 1981, the district ionizing radiation hygiene laboratories, charged by the Ministry of Health with the surveillance of the work places and the environment, have signaled the attempt of the industry to introduce new highly radioactive materials in the building products. Phosphogypsum, by products of the phosphate fertilizer industry, and slag and ash, wastes of the coal-fired power plants, are the most important of them. In order to establish radioactivity levels and limits for the building materials and the exposure due to their use, some studies have been elaborated by the specialized laboratories of the Ministry of Health. As a result, admissible limits for the building material radioactivity have been chosen,the maximum values obtained for the building materials commonly used, are presented in a table, The additional exposure and fly ashes have been assessed by two ways: 1) The measurements of the potential alpha energy concentrations, PAEC (mWL) and equilibrium equivalent concentrations (Bq/m 3 ) for radon level were carried out in a flat with internal walls of phosphogypsum. The measurement results were compared both with those obtained for the flat without internal walls and those obtained for the houses from Romania (50% of the country). 2) For the same flat of the experimental house, annual effective dose were calculated. (author)

  9. Cost-benefit analysis of decreased ventilation rates and radon exhalation from building materials

    International Nuclear Information System (INIS)

    Ericson, S.O.

    1984-01-01

    Decreased ventilation, achieved by weather stripping and other tightening measures, is the most cost effective way to energy conservation. A very low investment can result in a considerable decrease in ventilation rate. For a typical detached house in Sweden this can be equivalent to a decrease in oil consumption of 0.5 m 3 . At present price this corresponds to a saving of SEK 1200, 150 US dollars per annum. The contribution of the building materials to the concentration of radon in indoor air is approximately the inverse to air exchange rate. For a small change in ventilation rate and cost, in SEK/man Sv or US dollar/man Sv, is a function of ventilation rate, exhalation from building materials, the ratio between surface of walls, floor and ceiling to the volume of air. Thus, it is possible to find the specific ventilation rate where the marginal cost for a small increase in ventilation rate and the marginal reduction in radon concentration will give a specific amount of money for each man Sv. Examples are given. Conclusions are that for most building materials in a climate like the Swedish, there are other factors than exhalation of radon from building materials that sets the lower limit of recommendable ventilation rate. (Author)

  10. Laboratory study of the PCB transport from primary sources to building materials

    Science.gov (United States)

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  11. Measurements of radon exhalation from building materials under model climate conditions

    International Nuclear Information System (INIS)

    Jann, O.; Schneider, U.; Koeppke, J.; Lehmann, R.

    2003-01-01

    The inhalation of 222 Rn (radon) is the most important reason for lung cancer as a result of smoking. The cause for enhanced radon concentration in the air of buildings is mostly the building ground. But also building products can lead to increased radon concentrations in indoor air when the products contain raw materials or residues with higher contents of 226 Ra (radium), especially in combination with low air exchange rates. For a realistic estimation of radon concentrations it is helpful to perform emission tests on the basis of emission test chambers. Emissions test chambers are already used successfully for the measurement of volatile organic compounds (VOC) emitted from different materials and products. The analysis of radon in air was performed with a test device based on the principle of ionisation chamber (ATMOS 12 D). It could be show that radon concentrations emitted from building materials can be determined reliably if certain boundary conditions such as temperature, relative humidity and especially area specific air flow rate are met. It was also shown that reduced area specific air flow rates or reduced air exchange rates lead to higher radon concentrations. It is remarkable that no conclusion can be drawn from the activity concentration of radium to the radon concentration in the air. Therefore in some cases much higher radon concentrations in air were determined that had been expected. Obviously diffusion within the material plays an important role. (orig.)

  12. Asbestos-Containing Materials in School Buildings: A Guidance Document. Part 1.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Toxic Substances.

    The Environmental Protection Agency (EPA) has worked with the states to develop a program for accurate information and guidance to deal with the problem of school buildings constructed with asbestos-containing materials. This is the first of two guidance manuals that are a major part of this program and are being mailed to all public school…

  13. Asbestos-Containing Materials in School Buildings: A Guidance Document. Part 2.

    Science.gov (United States)

    Sawyer, Robert N.; Spooner, Charles M.

    Part 2 of the Environmental Protection Agency (EPA) guidance manuals consists of more detailed information on asbestos identification and control methods. Available information on sprayed asbestos-containing materials in buildings is summarized. Guidelines are presented for the detection and monitoring, removal or encapsulation, and disposal of…

  14. Calculation of coal power plant cost on agricultural and material building impact of emission

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Wiku Lulus Widodo

    2016-01-01

    Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)

  15. Using the Analytic Hierarchy Process to Prioritize and Select Phase Change Materials for Comfort Application in Buildings

    Directory of Open Access Journals (Sweden)

    Socaciu Lavinia Gabriela

    2014-03-01

    Full Text Available Phase change materials (PCMs selection and prioritization for comfort application in buildings have a significant contribution to the improvement of latent heat storage systems. PCMs have a relatively large thermal energy storage capacity in a temperature range close to their switch point. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. Thermal energy storage systems using PCMs as storage medium offer advantages such as: high heat storage capacity and store/release thermal energy at a nearly constant temperature, relative low weight, small unit size and isothermal behaviour during charging and discharging when compared to the sensible thermal energy storage. PCMs are valuable only in the range of temperature close to their phase change point, since their main thermal energy storage capacity depend on their mass and on their latent heat of fusion. Selection of the proper PCMs is a challenging task because there are lots of different materials with different characteristics. In this research paper the principles and techniques of the Analytic Hierarchy Process (AHP are presented, discussed and applied in order to prioritize and select the proper PCMs for comfort application in buildings. The AHP method is used for solving complex decisional problems and allows the decision maker to take the most suitable decisions for the problem studied. The results obtained reveal that the AHP method can be successfully applied when we want to choose a PCM for comfort application in buildings.

  16. Enhancement of global flood damage assessments using building material based vulnerability curves

    Science.gov (United States)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  17. Annual mean effective dose of Slovak population due to natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Cabanekova, H.

    2006-01-01

    Natural radiation is the main source of exposure to humans. The basic raw materials, generally used in the construction industry, contain natural radionuclides which reflects their natural origin and the geological conditions at the site of production. In the last time, most building materials are manufactured from secondary raw materials with higher concentration of natural radionuclides. The estimation of the 226 Ra content as well as the 232 Th and 40 K concentration in building materials and products is essential for the evaluation of the external x-ray contribution to the exposure. The building materials with high value of 226 Ra coupled with pronounced porosity of the final products make them potential indoor Rn sources. It means that external exposure and part of inhalation dose from radon and its progeny inside of building is caused to the radiation from the primordial radionuclides pres ent in building materials and products and can increase the indoor natural radiation exposure. For keeping the population exposure as low as reasonably achievable is in the Slovak legislation the radioactive content of primordial radionuclides in building materials and products regulated and the maximum of specific activity is 370 Bq.kg-1 of radium equivalent activity and 120 Bq.kg-1 of 226 Ra. The Health ministry and Slovak metrological institute nominated the department of Radiation Hygiene of Slovak medical university to investigate regularly the content of natural radionuclides and also the radon emanation in samples of raw and secondary building materials and products used in Slovak building industry. In the framework of the screening of building materials and products there were analyzed over 3 000 samples. The natural radionuclides are assessed through their progeny photo peaks. The specific activity of nuclides is determined as weighted average of their photo peaks. The obtained results are corrected to the background distribution and to the self absorption in the

  18. Reliability of system identification technique in super high-rise building

    Directory of Open Access Journals (Sweden)

    Ayumi eIkeda

    2015-07-01

    Full Text Available A smart physical-parameter based system identification method has been proposed in the previous paper. This method deals with time-variant nonparametric identification of natural frequencies and modal damping ratios using ARX (Auto-Regressive eXogenous models and has been applied to high-rise buildings during the 2011 off the Pacific coast of Tohoku earthquake. In this perspective article, the current state of knowledge in this class of system identification methods is explained briefly and the reliability of this smart method is discussed through the comparison with the result by a more confident technique.

  19. RESRAD-BUILD: A computer model for analyzing the radiological doses resulting from the remediation and occupancy of buildings contaminated with radioactive material

    International Nuclear Information System (INIS)

    Yu, C.; LePoire, D.J.; Jones, L.G.

    1994-11-01

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material. The transport of radioactive material inside the building from one compartment to another is calculated with an indoor air quality model. The air quality model considers the transport of radioactive dust particulates and radon progeny due to air exchange, deposition and resuspension, and radioactive decay and ingrowth. A single run of the RESRAD-BUILD code can model a building with up to: three compartments, 10 distinct source geometries, and 10 receptor locations. A shielding material can be specified between each source-receptor pair for external gamma dose calculations. Six exposure pathways are considered in the RESRAD-BUILD code: (1) external exposure directly from the source; (2) external exposure to materials deposited on the floor; (3) external exposure due to air submersion; (4) inhalation of airborne radioactive particulates; (5) inhalation of aerosol indoor radon progeny; and (6) inadvertent ingestion of radioactive material, either directly from the sources or from materials deposited on the surfaces of the building compartments

  20. Bio-susceptibility of materials and thermal insulation systems used for historical buildings

    Science.gov (United States)

    Sterflinger, Katja; Ettenauer, Joerg; Pinar, Guadalupe

    2013-04-01

    In historical buildings of Northern countries high levels of energy are necessary to reach comfortable temperatures especially during the cold season. For this reason historical buildings are now also included in country specific regulations and ordinances to enhance the "energy - efficiency". Since an exterior insulation - as it is commonly used for modern architecture - is incompatible with monument protection, several indoor insulation systems based on historical and ecological materials, are on the market that should improve the thermic performance of a historical building. However, using organic materials as cellulose, loam, weed or wood, bears the risk of fungal growth and thus may lead to health problems in indoor environments. For this reason 5 different ecological indoor insulations systems were tested for their bio-susceptibility against various fungi both under natural conditions - after 2 years of installation in an historical building - and under laboratory conditions with high levels of relative humidity. Fungal growth was evaluated by classical isolation and cultivation as well as by molecular methods. The materials turned out to have a quite different susceptibility towards fungal contamination. Whereas insulations made of bloated Perlite (plaster and board) did not show any fungal growth after 2 years of exposition, the historical insulation made of loam and weed had high cell counts of various fungi. In laboratory experiments wooden softboard represented the best environment for fungal growth. As a result from this study, plaster and board made of bloated Perlite are presented as being the most appropriate materials for thermal insulation at least from the microbiological and hygienic point of view. For future investigations and for the monitoring of fungi in insulation and other building materials we suggest a molecular biology approach with a common protocol for quantitative DNA-extraction and amplification.

  1. Modeling volatile organic compounds sorption on dry building materials using double-exponential model

    International Nuclear Information System (INIS)

    Deng, Baoqing; Ge, Di; Li, Jiajia; Guo, Yuan; Kim, Chang Nyung

    2013-01-01

    A double-exponential surface sink model for VOCs sorption on building materials is presented. Here, the diffusion of VOCs in the material is neglected and the material is viewed as a surface sink. The VOCs concentration in the air adjacent to the material surface is introduced and assumed to always maintain equilibrium with the material-phase concentration. It is assumed that the sorption can be described by mass transfer between the room air and the air adjacent to the material surface. The mass transfer coefficient is evaluated from the empirical correlation, and the equilibrium constant can be obtained by linear fitting to the experimental data. The present model is validated through experiments in small and large test chambers. The predicted results accord well with the experimental data in both the adsorption stage and desorption stage. The model avoids the ambiguity of model constants found in other surface sink models and is easy to scale up

  2. Characterization of cement-based ancient building materials in support of repository seal materials studies

    International Nuclear Information System (INIS)

    Roy, D.M.; Langton, C.A.

    1983-12-01

    Ancient mortars and plasters collected from Greek and Cypriot structures dating to about 5500 BC have been investigated because of their remarkable durability. The characteristics and performance of these and other ancient cementitious materials have been considered in the light of providing information on longevity of concrete materials for sealing nuclear waste geological repositories. The matrices of these composite materials have been characterized and classified into four categories: (1) gypsum cements; (2) hydraulic hydrated lime and hydrated-lime cements; (3) hydraulic aluminous and ferruginous hydrated-lime cements (+- siliceous components); and (4) pozzolana/hydrated-lime cements. Most of the materials investigated, including linings of ore-washing basins and cisterns used to hold water, are in categories (2) and (3). The aggregates used included carbonates, sandstones, shales, schists, volcanic and pyroclastic rocks, and ore minerals, many of which represent host rock types of stratigraphic components of a salt repository. Numerous methods were used to characterize the materials chemically, mineralogically, and microstructurally and to elucidate aspects of both the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical (mineralogical) and microstructural factors. Durability was found to be affected by matrix mineralogy, particle size and porosity, and aggregate type, grading, and proportioning, as well as method of placement and exposure conditions. Similar factors govern the potential for durability of modern portland cement-containing materials, which are candidates for repository sealing. 29 references, 29 figures, 6 tables

  3. Investigation of natural radioactivity in building materials commonly used in Sudan

    International Nuclear Information System (INIS)

    Mohamed, S. E. A.

    2010-12-01

    Investigation of radioactivity content of commonly used building materials in Khartoum State is carried out during the year 2010. A total of 25 samples of natural and manufactured materials from different types of building materials have been collected and measured using gamma spectrometry system. The activity concentrations have been determined for radium (2''2''6''Ra), thorium (''2'3''2Th) and potassium (''4''0K) in each sample. The concentrations of radium (represents activity of uranium and its decay series) have been found to rang from 2.8 Bq/kg in (gravel) to 108.2 Bq/kg (porcelain), thorium between 48 and 302 Bq/kg and the potassium concentration varies between 82.3 Bq/kg in (gravel) to 1413.3 Bq/kg in (marble). The activity index has also been calculated and found that it is less than 1 (mean value of 0.77 range between 0.33 and 1.97), and less than 6 for surface materials. The results have been compared with European previous studies. It is concluded that the measured radioactivity of building materials are within acceptable levels and dose not poses any risk from radiation protection point of view. (Author)

  4. Study of building materials impregnation processes by quasi-real-time neutron radiography

    Science.gov (United States)

    Nemec, T.; Rant, J.; Apih, V.; Glumac, B.

    1999-11-01

    Neutron radiography (NR) is a useful non-destructive method for determination of hydrogen content in various building and technical materials. Monitoring of transport processes of moisture and hydrogenous liquids in porous building materials is enabled by fast, quasi-real-time NR methods based on novel imaging plate neutron detectors (IP-NDs). Hydrogen content in the samples is determined by quantitative analysis of measured profiles of neutron attenuation in the samples. Detailed description of quantitative NR method is presented by the authors in another accompanying contribution at this conference. Deterioration of building materials is originated by different processes that all require presence of water therefore it is essential to limit or prevent the transport of water through the porous material. In this presentation, results of a study of clay brick impregnation by silicone based hydrophobic agents will be presented. Quantitative results obtained by NR imaging successfully explained the processes that occur during the impregnation of porous materials. Efficiency of hydrophobic treatment was quantitatively evaluated.

  5. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  6. Ultrahigh frequency characterization of complex materials using transient grating techniques

    Science.gov (United States)

    Crimmins, Timothy Francis

    In a first set of experiments, a transient grating technique is used to detect picosecond acoustic pulses in supported metal films. Crossed femtosecond laser pulses generate acoustic responses with longitudinal components propagating normal to the film plane and surface acoustic wave components propagating in the film plane. Surface ``ripple'' associated with both components is detected through the diffraction of a probe beam. The measurements yield enhanced information content for characterization of film thickness and mechanical properties. In a second set of experiments, phonon-polariton dispersion is characterized in ferroelectric lithium tantalate and lithium niobate through femtosecond time- resolved impulsive stimulated Raman scattering (ISRS). An improvement in the ISRS setup permits optical heterodyne detection of the signals. In addition to substantially increasing the sensitivity and accuracy of the measurements, the phase sensitivity of heterodyne detection makes it possible to fully characterize the polariton wave after it has propagated outside of the excitation region. The detection of propagating responses with heterodyned ISRS is explored theoretically and experimentally. Discrepancies in earlier results reported for these materials are resolved. In a third set of preliminary experiments, a simple terahertz spectrometer is demonstrated. Two, crossed femtosecond pulses drive a tunable, terahertz frequency, polariton response in a ferroelectric crystal. The polariton is detected in a second crystal following propagation through a liquid sample layer. Finally, heterodyne ISRS is used to study phonon- polariton responses in thin lithium tantalate crystals. Multiple polariton response frequencies are observed across a range of wavevectors as the polariton wavelength approaches the crystal thickness. These beating patterns are tentatively assigned to waveguide effects. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139

  7. Indoor Pollution Emissions from Building Materials; Case of Study: Gypsum Boards Indoor Pollution Emissions from Building Materials; Case of Study: Gypsum Boards

    Directory of Open Access Journals (Sweden)

    Silverio Hernández Moreno

    2012-02-01

    Full Text Available Este reporte presenta una evaluación de las emisiones de materiales de construcción, al interior de los edificios que pueden causar daño a la salud de los usuarios durante la ocupación, pues emiten sustancias tóxicas al interior de los edificios. Este reporte presenta un caso de studio que evalúa a los tableros de yeso, frecuentemente usados en la construcción de muros divisorios y falsos plafones. La parte experimental se basa en un espacio tridimensional el cual simula un cuarto de cualquier tipo de edificación; por ejemplo: un salón de clases u oficina. Las condiciones ambientales al interior, tales como: ventilación, temperatura y humedad, afectan directamente las emisiones de sustancias químicas por los materiales de construcción. La metodología se basa en la comparación de materiales convencionales y materiales alternativos con distinta composición y similares características, en donde usamos métodos de prueba, condiciones ambientales, instrumentos y herramientas similares. Este es un estudio muy importante para entender los problemas relacionadoscon la contaminación ambiental, específicamente del aire y sus efectos en el interior de los edificios, y que se relaciona directamente con la salud pública e indirectamente con los sistemas constructivos y la selección de materiales en los edificios. Las pruebas concluyen que los materiales alternativos (de contenido reciclado son mejores que los tradicionales, porque reducen la contaminación del aire al interior de los edificios. This report presents an evaluation of emissions from indoor building materials that may cause health damage to the people who occupy the building, since these materials emit toxic chemicals into the air and indoor surfaces. This report presents a case study which evaluates Gypsum Boards, frequently used in the construction of dividing walls and ceilings. The experimental part of this report is based on a three-dimensional space that simulates a

  8. Influence of Building Materials with Directional Textures on the Visual Perceptions of Elderly with Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Yao Rong Hwang

    2014-09-01

    Conclusion: Data about these building materials should be made available for the reference of caregivers and building managers, in order to prevent the demented elderly from having behavior problems due to environmental design. Lastly, further study is required to confirm if the building materials’ influence on visual perceptions in the demented elderly correlates to the variables of age, sex, and severity of disease.

  9. An outline of reference materials for analysis techniques in China

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Qian Yine; Zhang Yongping; Tong Yongpeng

    1994-01-01

    This paper provides background information on the development in the field of reference materials in China. The major considerations in development of reference materials include homogeneity, stability, handling procedures and certification. Further it discusses the plans for development in the near future specific natural-matrix reference materials containing low levels of trace elements and having high degree of homogeneity

  10. Assessment of suitability of some chosen functions for describing of sorption isotherms in building materials

    Science.gov (United States)

    Stolarska, Agata; Garbalińska, Halina

    2017-05-01

    This paper presents results of tests and studies conducted on six common building materials, used for constructing and finishing of external walls. These included: ceramic brick, silicate brick, autoclaved aerated concrete, cement mortar, cement-lime mortar and cement mortar modified with polypropylene fibers. Each of these materials is distinguished by the other structure of porousness, affecting both the course of sorption processes and the isotherms obtained. At first, measurements of moisture sorption kinetics at temperatures of 5, 20 and 35 °C were performed, each time at six levels of relative humidity. Then, when the sorption processes expired, equilibrium moisture sorption values were determined for the materials in 18 individual temperature and humidity conditions. The experimental data were used to determine the sorption isotherm courses for each material at the three temperatures. Then, theoretical analysis was performed in order to determine, which of the models available in the literature described the sorption isotherms of the concerned building materials the best. For each material and each of the three temperature values, twenty-four equations were tested. In each case, those of them were identified which ensured the best matching between the theoretical courses and the experimental data. The obtained results indicate that the Chen's model proved to be the most versatile. It ensured a detailed description of the sorption isotherms for each material and temperature tested.

  11. Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings

    International Nuclear Information System (INIS)

    Granderson, Jessica; Touzani, Samir; Custodio, Claudine; Sohn, Michael D.; Jump, David; Fernandes, Samuel

    2016-01-01

    Highlights: • A testing procedure and metrics to asses the performance of whole-building M&V methods is presented. • The accuracy of ten baseline models is evaluated on measured data from 537 commercial buildings. • The impact of reducing the training period from 12-months to shorter time horizon is examined. - Abstract: Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as “M&V 2.0”, are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs. This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V 2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure

  12. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    Science.gov (United States)

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Degradation of building materials over a lifespan of 30-100 years

    International Nuclear Information System (INIS)

    Lewis, G.H.

    1985-01-01

    Following preliminary visits to four Magnox Nuclear Power Stations, a study was made of existing Central Electricity Generating Board (CEGB) reports on the condition of buildings at eight Power Stations. Sampling of building materials, non-destructive testing and inspections were carried out at Transfynydd, Oldbury and Dungeness ''A'' Magnox Power Stations, and the samples were subsequently laboratory tested. From the results of this work it can be concluded that little major deterioration is likely to occur in the reactor buildings at Transfynydd and Oldbury over the next 50 years and at Dungeness ''A'' for at least 25 years, assuming reasonable maintenance and the continuation of suitable internal temperatures and relative humidities. Because of the limitations on taking samples from, and tests on, the reactor biological shields and prestressed concrete vessel, no sensible forecast can be made of their potential life in the 75-100 year range

  14. Adaptive and Parallel Computational Techniques in Materials Science

    National Research Council Canada - National Science Library

    Flaherty, Joseph

    1998-01-01

    This Augmentation Award for Science and Engineering Research Training (AASERT) supported research students to work 0 adaptive and parallel computational techniques associated with crystal growth processing...

  15. Study of noise absorption characteristics for current building materials applied in industrial and office rooms

    Directory of Open Access Journals (Sweden)

    Mohsen Aliabadi

    2016-12-01

    Full Text Available Introduction: In Iran country, there is a lack of reliable data on acoustic characteristics of building materials applied in the offices and industrial rooms. This study aimed to investigate noise absorption characteristics for current building and acoustics materials and provided the acoustic database. Method:  In this cross sectional study, the minimum of 60 building and acoustic materials were tested in the acoustics laboratory located in the school of health. Measuring the absorption coefficient was performed using the Impedance Tube (SW60, BSWA along with 1/4’’ Microphone (MPA416 and power amplifier (PA50 in frequency range from 125 to 6300 Hz according to ISO10534-2. The data was analyzed using Excel 2013 software. Results: The results of the sound absorption coefficients for different types of materials were presented based on octave band. The results showed that the increase of sound absorptions by rising the thickness of the chemical foams. The highest absorptions were observed in the medium and high frequencies. However, the impact of materials density on the increase of sound absorption is inconsiderable compared with materials thickness. In view point of sound absorption, the polyurethane foams have better performance than the polyethylene foams. Conclusion: Based on the obtained acoustics database, acoustics professionals can conducted more reliable evaluation about acoustic condition of residential, industrial and office rooms in the design and operation phases. The results confirmed that, material thickness is one of the main features affecting sound absorption especially for high efficiency absorbents like chemical foam. 

  16. Thermal characterization of a new effective building material based on clay and olive waste

    Directory of Open Access Journals (Sweden)

    Mohamed Lamrani

    2018-01-01

    Full Text Available The influence of thermophysical properties of wall materials on energy performance and comfort in traditional building was investigated. The clay is the most commonly used sustainable building material. The study looked at the effects of the addition of pomace olive on the thermophysical properties of clay bricks to improve the energy efficiency of this ecological material. An experimental measurement of thermal properties of clay mixed with pomace olive was carried out by using the transient and steady state hot-plate and flash methods. The experimental methods are applied to measure the thermal properties of the composite material. The estimation of these thermal characteristics is based on a one dimensional model and the experimental errors are found less than 3%. The composite samples were prepared with different granular classes and mass fractions of the pomace olive in the mixture. The results show that the density of the new material was not substantially influenced by the size of the pomace olive. However, the thermal conductivity and diffusivity decrease from 0.65 W.m-1.K-1 and 4.21×10-7 m2.s-1 to 0.29 W.m-1.K-1 and 2.47×10-7m2.s-1, respectively, according to the variation of the volume fraction of pomace olive from 0 (pure clay to 71% showing that the olive pomace can be used as effective secondary raw materials in the making of clay bricks.

  17. Bulk Building Material Characterization and Decontamination Using a Concrete Floor and Wall Contamination Profiling Technology

    International Nuclear Information System (INIS)

    Aggarwal, S.; Charters, G.; Blauvelt, D.

    2002-01-01

    The concrete profiling technology, RadPro(trademark) has four major components: a drill with a specialized cutting and sampling head, drill bits, a sample collection unit and a vacuum pump. The equipment in conjunction with portable radiometric instrumentation produces a profile of radiological or chemical contamination through the material being studied. The drill head is used under hammer action to penetrate hard surfaces. This causes the bulk material to be pulverized as the drill travels through the radioactive media efficiently transmitting to the sampling unit a representative sample of powdered bulk material. The profiling equipment is designed to sequentially collect all material from the hole. The bulk material samples are continuously retrieved by use of a specially designed vacuumed sample retrieval unit that prevents cross contamination of the clean retrieved samples. No circulation medium is required with this profiling process; therefore, the only by-product from drilling is the sample. The data quality, quantity, and representativeness may be used to produce an activity profile from the hot spot surface into the bulk building material. The activity data obtained during the profiling process is reduced and transferred to building drawings as part of a detailed report of the radiological problem. This activity profile may then be expanded to ultimately characterize the facility and expedite waste segregation and facility closure at a reduced cost and risk

  18. Towards the development of performance based guidelines for using Phase Change Materials in lightweight buildings

    Science.gov (United States)

    Poudel, Niraj

    Incorporating Phase Change Materials (PCMs) in construction materials can increase the thermal mass of a building. With this increase in thermal mass, PCMs are known to reduce the heating and cooling loads of a building significantly. During the past 10 years, studies have estimated potential reduction of energy consumption of buildings between 10 and 30 percent. This wide range is due to the large number of parameters that effect energy consumption and make the process of selecting the optimal type and amount of PCM challenging. In fact, extensive engineering studies are generally necessary to determine the practicality of PCM in any specific case. As a result, architects and engineers are reluctant to use PCM because of the lack of such a comprehensive study. In the United States, eight climate zones are identified on the basis of annual degree heating and degree cooling days. For a given building in a given climate, there exists an optimal melting temperature and enthalpy that can reduce the energy consumption and the payback period. In this research, the optimal properties of PCM boards are determined for all 15 representative cities. Additional topics discussed in this research are the sensitivity of the optimal properties of PCM and the effect of the average cost of energy on the selection of PCM. The effect of six independent variables on the performance of PCM boards is presented in detail and the climate types where PCM boards perform optimally are narrowed down. In addition, a new procedure is presented to study the temporal and directional melting and solidifying trend of the PCM placed in buildings. The energy consumption and hourly data for the PCM enhanced buildings are determined numerically using the Department of Energy software EnergyPlus, which calculates the energy consumption for heating and cooling a building under any climate and operation schedule. The software is run on a computer cluster for a wide range of properties from which the

  19. Processing and analysis techniques involving in-vessel material generation

    Science.gov (United States)

    Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.

    2011-01-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  20. Infrared Emissivity Measurements of Building and Civil Engineering Materials: A New Device for Measuring Emissivity

    Science.gov (United States)

    Monchau, Jean-Pierre; Marchetti, Mario; Ibos, Laurent; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves

    2014-10-01

    The knowledge of the infrared emissivity of materials used in buildings and civil engineering structures is useful for two specific approaches. First, quantitative diagnosis of buildings or civil engineering infrastructures by infrared thermography requires emissivity values in the spectral bandwidth of the camera used for measurements, in order to obtain accurate surface temperatures; for instance, emissivity in the band III domain is required when using cameras with uncooled detectors (such as micro-bolometer arrays). Second, setting up accurate thermal balances by numerical modeling requires the total emissivity value for a large wavelength domain; this is, for instance, the case for computing the road surface temperature to predict ice occurrence. Furthermore, periodical surveys of emissivity variations due to aging or soiling of surfaces could be useful in many situations such as thermal mapping of roads or building insulation diagnosis. The use of portable emissivity measurement devices is required for that purpose. A device using an indirect measurement method was previously developed in our lab; the method uses measurement of the reflectivity from a modulated IR source and requires calibration with a highly reflective surface. However, that device uses a low-frequency, thermal modulation well adapted to laboratory measurements but unfit for fast and in situ measurements. Therefore, a new, portable system which retains the principle of an indirect measurement but uses a faster-frequency, mechanical modulation more appropriate to outdoor measurements was developed. Both devices allow measurements in the broad m to m) and narrow m to m) bands. Experiments were performed on a large number of materials commonly used in buildings and civil engineering structures. The final objective of this work is to build a database of emissivity of these materials. A comparison of laboratory and on-site measurements of emissivity values obtained in both spectral bands will be

  1. Improving building energy modelling by applying advanced 3D surveying techniques on agri-food facilities

    Directory of Open Access Journals (Sweden)

    Francesco Barreca

    2017-09-01

    advanced surveying techniques, such as a terrestrial laser scanner and an infrared camera, it is possible to create a three-dimensional parametric model, while, thanks to the heat flow meter measurement method, it is also possible to obtain a thermophysical model. This model allows assessing the energy performance of agri-food buildings in order to improve the indoor microclimate control and the conditions of food processing and conservation.

  2. 34 CFR 429.1 - What is the Bilingual Vocational Materials, Methods, and Techniques Program?

    Science.gov (United States)

    2010-07-01

    ... techniques for bilingual vocational training for individuals with limited English proficiency. (Authority..., and Techniques Program? 429.1 Section 429.1 Education Regulations of the Offices of the Department of... MATERIALS, METHODS, AND TECHNIQUES PROGRAM General § 429.1 What is the Bilingual Vocational Materials...

  3. Concentration of radionuclides in building materials and soils in The Netherlands

    International Nuclear Information System (INIS)

    Ackers, J.G.

    1985-11-01

    About 150 samples of building materials used in the Netherlands have been analysed by gamma spectrometry for their Ra-226, Th-232 and K-40 concentrations. From 26 samples of soils the radioactivity concentration was measured. Calibration was performed by the use of a large volume standard source made as a mixture of monazite, pitchblende and silica. The results are reported in Bq.kg -1 ; the statistical error is within 5% (standard deviation) and for most of the results the systematic error is smaller than 15%. Most of the building materials and all soil samples revealed activity concentrations smaller than 100 Bq.kg -1 for Ra-226 and Th-232 and smaller than 1000 Bq.kg -1 for K-40. Part of the results is compared with data published elsewhere. (Auth.)

  4. Detrimental effect of Air pollution, Corrosion on Building Materials and Historical Structures

    OpenAIRE

    N. Venkat Rao; M. Rajasekhar; Dr. G. Chinna Rao

    2016-01-01

    The economy of any country would be drastically changed if there were no corrosion. The annual cost of corrosion world wise is over 3 % of the worlds GDP. As pet the sources available, India losses $ 45 billion every year on account of corrosion of infrastructure, Industrial machinery and other historical heritage. Keeping this critical and alarming situation in view, this paper focuses on how all these forms of corrosion affect building materials and historical structures. It als...

  5. Life Cycle Assessment of bamboo (guadua angustifolia stems) as building material for structural applications

    OpenAIRE

    Ruiz, Diego; San Miguel Alfaro, Guillermo; Corona Bellostas, Blanca; González, Isaac

    2015-01-01

    Bamboo products have been proven to be a good altemative to hardwoods in the production of building materials, thus reducing the risk of deforestation primarily in tropical areas. Furthermore, bamboo also benefits from a very fast growing capacity when cultivated under adequate conditions, the ability to grow in non-productive land (e.g. eroded slopes) and the capacity to resprout from its stump due to its resilient root structure. Furthennore, its extensive root network promotes carbon seque...

  6. Carbon air pollution reflected in deposits on chosen building materials of Prague Castle

    Czech Academy of Sciences Publication Activity Database

    Sýkorová, Ivana; Havelcová, Martina; Zeman, Antonín; Trejtnarová, Hana

    2011-01-01

    Roč. 409, č. 21 (2011), s. 4606-4611 ISSN 0048-9697 R&D Projects: GA AV ČR IAA300460804 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z20710524 Keywords : historical building materials * air pollution * carbonaceous matter Subject RIV: DD - Geochemistry Impact factor: 3.286, year: 2011 http://www.sciencedirect.com/science/article/pii/S0048969711007431

  7. Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements

    International Nuclear Information System (INIS)

    Kumar, Amit; Chauhan, R.P.; Joshi, Manish; Sahoo, B.K.

    2014-01-01

    Building materials are the second major source of indoor radon after soil. The contribution of building materials towards indoor radon depends upon the radium content and exhalation rates and can be used as a primary index for radon levels in the dwellings. The radon flux data from the building materials was used for calculation of the indoor radon concentrations and doses by many researchers using one and two dimensional model suggested by various researchers. In addition to radium content, the radon wall flux from a surface strongly depends upon the radon diffusion length (L) and thickness of the wall (2d). In the present work the indoor radon concentrations from the measured radon exhalation rate of building materials calculated using different models available in literature and validation of models was made through measurement. The variation in the predicted radon flux from different models was compared with d/L value for wall and roofs of different dwellings. The results showed that the radon concentrations predicted by models agree with experimental value. The applicability of different model with d/L ratio was discussed. The work aims to select a more appropriate and general model among available models in literature for the prediction of indoor radon. -- Highlights: • The measurement of indoor radon concentration was carried out by pin hole based dosimeter. • The indoor radon concentration was calculated from different model available in the literature. • A comparison of wall flux from two different approaches was carried out for different d/L ratio. • A more appropriate model for prediction of indoor radon concentration was validated

  8. DETERMINATION OF THERMAL RESPONSE OF CARRARA AND SNEZNIKOVSKY MARBLE USED AS A BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Veronika Petráňová

    2016-02-01

    Full Text Available Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i.e. texture.

  9. CASTOR OIL-BASED BUILDING MATERIALS REINFORCED WITH FLY ASH, CLAY, EXPANDED PERLITE AND PUMICE POWDER

    Directory of Open Access Journals (Sweden)

    Figen Balo

    2011-09-01

    Full Text Available This paper reports the results of a study conducted to evaluate the influence of class C fly ash (FA, clay (C, expanded perlite (EP, pumice powder (PP and epoxidized castor oil (ECO on the density, thermal conductivity, compressive strength, tensile strength, abrasion loss and water absorption of building material. Density, thermal conductivity, compressive strength and tensile strength decreased with the increase of ECO and FA as replacement for building material. These properties also decreased with increasing process temperature. The addition of clay in the building material had an increasing effect on these properties. The addition of clay decreased abrasion loss and water absorption as a function of replacement percent. The minimum thermal conductivity and maximum water absorption observed for the sample made with minimum clay and maximum FA-ECO ratios processed at the highest process temperature. The maximum compression-tensile strengths and minimum abrasion loss observed for the sample with maximum clay and minimum FA-ECO ratios processed at the lowest process temperature.

  10. Long-term environmental impacts of building composites containing waste materials: Evaluation of the leaching protocols.

    Science.gov (United States)

    Drinčić, Ana; Nikolić, Irena; Zuliani, Tea; Milačič, Radmila; Ščančar, Janez

    2017-01-01

    The NEN 7375 test has been proposed for evaluating the long-term environmental impacts caused by the release of contaminants from monolithic building and waste materials. Over a period of 64days, at specific points in time, the leaching solution (demineralised water) is replenished. By applying the NEN 7375 test, leaching of contaminants that is based mainly on diffusion is followed. In the present work, the results from modified leaching protocols were evaluated against those obtained by NEN 7375 test. In modified protocols, synthetic sea, surface and MilliQ water were used for the leaching of selected elements and chromate, molybdate and vanadate from compact and ground building composites (98% mixture of fly ash (80%) and cement (20%), and 2% of electric arc furnace (EAF) dust) over 6months. The leaching solutions were not replenished, imitating both the diffusion and the dissolution of contaminants. The data revealed larger extent of leaching when the leaching solution was not replenished. More extensive was also leaching from ground composites, which simulated the disintegration of the material over time. The composition of the leaching solution influenced the release of the matrix constituents from the composites and, consequently, the amount of elements and their chemical species. Synthetic sea and surface water used as leaching solutions, without replenishing, were found to be suitable to simulate the conditions when the building material is immersed in stagnant environmental waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Volatile metabolites from microorganisms grown on humid building materials and synthetic media.

    Science.gov (United States)

    Claeson, Anna-Sara; Levin, Jan-Olof; Blomquist, Göran; Sunesson, Anna-Lena

    2002-10-01

    Growth of different microorganisms is often related to dampness in buildings. Both fungi and bacteria produce complicated mixtures of volatile organic compounds that include hydrocarbons, alcohols, ketones, sulfur- and nitrogen-containing compounds etc. Microbially produced substances are one possible explanation of odour problems and negative health effects in buildings affected by microbial growth. A mixture of five fungi, Aspergillus versicolor, Fusarium culmorum, Penicillium chrysogenum, Ulocladium botrytis and Wallemia sebi were grown on three different humid building materials (pinewood, particle board and gypsum board) and on one synthetic medium. Six different sampling methods were used, to be able to collect both non-reactive volatile organic compounds and reactive compounds such as volatile amines, aldehydes and carboxylic acids. Analysis was performed using gas chromatography, high-performance liquid chromatography and ion chromatography, mass spectrometry was used for identification of compounds. The main microbially produced metabolites found on pinewood were ketones (e.g. 2-heptanone) and alcohols (e.g. 2-methyl-1-propanol). Some of these compounds were also found on particle board, gypsum board and the synthetic medium, but there were more differences than similarities between the materials. For example, dimethoxymethane and 1,3,5-trioxepane and some nitrogen containing compounds were found only on particle board. The metabolite production on gypsum board was very low, although some terpenes (e.g. 3-carene) could be identified as fungal metabolites. On all materials, except gypsum board, the emission of aldehydes decreased during microbial growth. No low molecular weight carboxylic acids were identified.

  12. Phase Change Materials as a solution to improve energy efficiency in Portuguese residential buildings

    Science.gov (United States)

    Araújo, C.; Pinheiro, A.; Castro, M. F.; Bragança, L.

    2017-10-01

    The buildings sector contributes to 30% of annual greenhouse gas emissions and consumes about 40% of energy. However, this consumption can be reduced by between 30% and 80% through commercially available technologies. The consumption of energy in the dwellings is mostly associated with the heating and cooling of the interior environment. One solution to reduce these consumptions is the implementation of technologies and Phase Change Materials (PCMs) for Thermal Energy Storage (TES). So, the aim of this work is to analyse the advantages, in terms of decreasing energy consumption, associated with the application of PCMs in Portuguese residential buildings. For this, eight PCMs with different melting ranges were analysed. These materials were analysed through a dynamic simulation performed with EnergyPlus software. The results achieved, showed that the materials studied allow to reduce up to 13% of the heating needs and up to 92% of the cooling needs of a building located in the North of Portugal, at an altitude higher than 100m.

  13. Radionuclide content in some building materials and gamma dose rate in dwellings in Cuba

    International Nuclear Information System (INIS)

    Brigido, Oslvaldo; Montalvan, Adelmo; Rosa, Ramon; Hernandez, Alberto

    2008-01-01

    Naturally occurring radionuclides in building materials are one of the sources of radiation exposure of the population. This study was undertaken with the purpose of determining radioactivity in some Cuban building materials and for assessing the annual effective dose to Cuban population due external gamma exposure in dwellings for typical Cuban room model. Forty four samples of raw materials and building products were collected in some Cuban provinces. The activity concentrations of natural radionuclides were determined by gamma ray spectrometry using a p-type coaxial high purity germanium detector and their mean values are in the ranges: 9 to 857 Bq.kg -1 for 40 K; 6 to 57 Bq.kg -1 for 226 Ra; and 1.2 to 22 Bq.kg -1 for 232 Th. The radium equivalent activity in the 44 samples varied from 4 Bq.kg -1 (wood) to 272 Bq.kg -1 (brick). A high pressure ionisation chamber was used for measuring of the indoor absorbed dose rate in 543 dwellings and workplaces in five Cuban provinces. The average absorbed dose rates in air ranged from 43 n Gy.h -1 (Holguin) to 73 n Gy.h -1 (Camaguey) and the corresponding population-weighted annual effective dose due to terrestrial gamma radiation was estimated to be 145 ± 40 μSv. This dose value is 16% higher than the calculated value for typical room geometry of Cuban house. (author)

  14. JOINING DISSIMILAR MATERIALS USING FRICTION STIR SCRIBE TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep; Fifield, Leonard S.

    2016-09-01

    Development of robust and cost effective method of joining dissimilar materials can provide a critical pathway to enable widespread use of multi-material design and components in mainstream industrial applications. The use of multi-material components such as Steel-Aluminum, Aluminum-Polymer allows design engineers to optimize material utilization based on service requirements and often lead weight and cost reductions. However producing an effective joint between materials with vastly different thermal, microstructural and deformation response is highly problematic using conventional joining and /or fastening methods. This is especially challenging in cost sensitive high volume markets that largely rely on low–cost joining solutions. Friction Stir Scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like Magnesium and Aluminum to high temperature materials like Steels and Titanium. Additionally viable joints between polymer composites and metal can also be made using this method. This paper will present state of the art, progress made and challenges associated with this innovative derivative of Friction Stir welding in reference to joining dissimilar metals and polymer/metal combinations.

  15. Joining Dissimilar Materials Using Friction Stir Scribe Technique

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Piyush [Pacific Northwest National Laboratory, Richland 99352, WA e-mail: piyush.upadhyay@pnnl.gov; Hovanski, Yuri [Pacific Northwest National Laboratory, Richland 99352, WA; Jana, Saumyadeep [Pacific Northwest National Laboratory, Richland 99352, WA; Fifield, Leonard S. [Pacific Northwest National Laboratory, Richland 99352, WA

    2016-10-03

    Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multi-material designs and components in mainstream industrial applications. The use of multi-material components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low cost joining solutions. Friction stir scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding in reference to joining dissimilar metals and polymer/metal combinations.

  16. Commercial mitigation techniques used in remediating a 2200 pCi/L public building

    International Nuclear Information System (INIS)

    Davidson, J.G.

    1990-01-01

    This paper reports on commercial mitigation techniques used in remediating a 2200 pCi/L public building. In March of 1989 EPA and Pa. DER officials were amazed to discover a school in Pennsylvania with levels in its library of 2200 pCi/L. The library was a 30 year old, three story slab-on-grade structure more like a commercial building than a typical school structure. It had three separate and complex HVAC systems. Initial diagnostics indicated radon levels under the slab at over 80,000 pCi/L. Further investigations revealed major entry routes and a HVAC system terribly out of balance. Remediation consisted of installing a complex sub-slab depressurization system with an exterior commercial fan unit, major entry route sealing, and working closely with a mechanical contractor to bring the HVAC systems back into balance. Initial post remediation testing showed a 99% drop in radon levels. Refinements to the system are still in progress

  17. How accelerated biological aging can affect solar reflective polymeric based building materials

    Science.gov (United States)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  18. Revisiting Existing Classification Approaches for Building Materials Based on Hyperspectral Data

    Science.gov (United States)

    Ilehag, R.; Weinmann, M.; Schenk, A.; Keller, S.; Jutzi, B.; Hinz, S.

    2017-10-01

    Classification of materials found in urban areas using remote sensing, in particular with hyperspectral data, has in recent times increased in importance. This study is conducting classification of materials found on building using hyperspectral data, by using an existing spectral library and collected data acquired with a spectrometer. Two commonly used classification algorithms, Support Vector Machine and Random Forest, were used to classify the materials. In addition, dimensionality reduction and band selection were performed to determine if selected parts of the full spectral domain, such as the Short Wave Infra-Red domain, are sufficient to classify the different materials. We achieved the best classification results for the two datasets using dimensionality reduction based on a Principal Component Analysis in combination with a Random Forest classification. Classification using the full domain achieved the best results, followed by the Short Wave Infra-Red domain.

  19. Surface modification and preparation techniques for textile materials

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-01-01

    Full Text Available as it improves various properties – such as softness, dyeability, absorbance and wettability. In this chapter, the most commonly used surface modification techniques, ranging from plasma treatment to nanocoatings, for both natural and synthetic fibres have been...

  20. 'Hybrid' non-destructive imaging techniques for engineering materials applications

    OpenAIRE

    2014-01-01

    The combination of X-ray imaging and diffraction techniques provides a unique tool for structural and mechanical analysis of engineering components. A variety of modes can be employed in terms of the spatial resolution (length-scale), time resolution (frequency), and the nature of the physical quantity being interrogated. This thesis describes my contributions towards the development of novel X-ray “rich” imaging experimental techniques and data interpretation. The experiment...

  1. The application of the statistical classifying models for signal evaluation of the gas sensors analyzing mold contamination of the building materials

    Science.gov (United States)

    Majerek, Dariusz; Guz, Łukasz; Suchorab, Zbigniew; Łagód, Grzegorz; Sobczuk, Henryk

    2017-07-01

    Mold that develops on moistened building barriers is a major cause of the Sick Building Syndrome (SBS). Fungal contamination is normally evaluated using standard biological methods which are time-consuming and require a lot of manual labor. Fungi emit Volatile Organic Compounds (VOC) that can be detected in the indoor air using several techniques of detection e.g. chromatography. VOCs can be also detected using gas sensors arrays. All array sensors generate particular voltage signals that ought to be analyzed using properly selected statistical methods of interpretation. This work is focused on the attempt to apply statistical classifying models in evaluation of signals from gas sensors matrix to analyze the air sampled from the headspace of various types of the building materials at different level of contamination but also clean reference materials.

  2. Nuclear material safeguards surveillance and accountancy by isotope correlation techniques

    International Nuclear Information System (INIS)

    Persiani, P.J.; Goleb, J.A.

    1981-01-01

    This paper presents the initial phase of the US study program and involves the computation of isotopic correlations for the LMFBR fuel cycle. The LWR fuel cycle phase of the study is currently in progress. The selection of the more safeguards effective functionals will depend not only on the level of reliability of isotope correlation technique (ICT) for verification, but also on the capability and difficulty of developing measurement methods. Performance characteristics of existing and proposed isotopic measurement techniques cover the general areas including assay and isotopic wet chemistry and NDA: (1) simultaneous multicomponent analysis techniques, (2) mass spectrometry, (3) x-ray fluorescence or densitometry with high flux monochromatic x-ray sources and high dispersion spectrometers, (4) passive and active neutron interrogation, (5) high level gamma-ray spectroscopy, (6) coulometry, and (7) potentiometry. The measurement capabilities and inherent limitations of these systems are to be evaluated in terms of total systems, operational mode, sample preparation requirements and consequent effect on dissolver solution representation, accuracy and precision estimates (if available), development status of the technique, and development requirements. The isotopic correlation technique shows considerable promise for use in verifying the initial isotopic composition and burnup of discharged assemblies based on the measured ratios of several key isotopes, obtained probably at the dissolver stage in reprocessing. This technique should, for example, easily be capable of indicating the exchange of a blanket assembly for a fuel assembly

  3. Prioritized rule based load management technique for residential building powered by PV/battery system

    Directory of Open Access Journals (Sweden)

    T.R. Ayodele

    2017-06-01

    Full Text Available In recent years, Solar Photovoltaic (PV system has presented itself as one of the main solutions to the electricity poverty plaguing the majority of buildings in rural communities with solar energy potential. However, the stochasticity associated with solar PV power output owing to vagaries in weather conditions is a major challenge in the deployment of the systems. This study investigates approach for maximizing the benefits of a Stand-Alone Photovoltaic-Battery (SAPVB system via techniques that provide for optimum energy gleaning and management. A rule-based load management scheme is developed and tested for a residential building. The approach allows load prioritizing and shifting based on certain rules. To achieve this, the residential loads are classified into Critical Loads (CLs and Uncritical Loads (ULs. The CLs are given higher priority and therefore are allowed to operate at their scheduled time while the ULs are of less priority, hence can be shifted to a time where there is enough electric power generation from the PV arrays rather than the loads being operated at the time period set by the user. Four scenarios were created to give insight into the applicability of the proposed rule based load management scheme. The result revealed that when the load management technique is not utilized as in the case of scenario 1 (Base case, the percentage satisfaction of the critical and uncritical loads by the PV system are 49.8% and 23.7%. However with the implementation of the load management scheme in scenarios 2, 3 and 4, the percentage satisfaction of the loads (CLs, ULs are (93.8%, 74.2%, (90.9%, 70.1% and (87.2%, 65.4% for scenarios 2, 3 and 4, respectively.

  4. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  5. Study of radon exhalation and radium content in different types of building materials in and around Tumkur, Karnataka, India

    International Nuclear Information System (INIS)

    Jayasheelan, A.; Manjunatha, S.; Sannappa, J.; Umeshareddy, K.

    2012-01-01

    Radon, the immediate daughter radium is a gas, which enters human body through breathing which may affect the health. In the present study, can technique is used to measure radon and radium activity concentrations in the building materials such as soil, marble, glazed tiles, white granite, pink granite, clay brick, cement brick, fly ash bricks, sand and mosaic samples collected from different locations of Tumkur district. The alpha tracks recorded were counted by a spark counter and the track densities were converted into radon and radium concentration. The radium content in glazed tiles samples is found be the lowest value 7.59 Bqkg -1 and highest for pink granite 17.77 Bqkg -1 . The radon concentration, mass and surface exhalation rates for glazed tiles were 463.8 Bqm -3 , 6.29 mBqkg -1 h -1 and 163.3 mBqm -2 h -1 for pink granites 1085.4 Bqm -3 , 14.72 mBqkg -1 h -1 and 382.1 mBqm -2 h -1 respectively. The radon concentration and exhalation rates for soil, sand, mosaic and pink granite with grain sizes were found to be -0.82, -0.85, -0.84 and -0.96 respectively. The concentration level of radon and radium in building materials in Tumkur is found to be low in comparison with data available in Indian and global average. (author)

  6. Chemical exposures in recently renovated low-income housing: Influence of building materials and occupant activities.

    Science.gov (United States)

    Dodson, Robin E; Udesky, Julia O; Colton, Meryl D; McCauley, Martha; Camann, David E; Yau, Alice Y; Adamkiewicz, Gary; Rudel, Ruthann A

    2017-12-01

    Health disparities in low-income communities may be linked to residential exposures to chemicals infiltrating from the outdoors and characteristics of and sources in the home. Indoor sources comprise those introduced by the occupant as well as releases from building materials. To examine the impact of renovation on indoor pollutants levels and to classify chemicals by predominant indoor sources, we collected indoor air and surface wipes from newly renovated "green" low-income housing units in Boston before and after occupancy. We targeted nearly 100 semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs), including phthalates, flame retardants, fragrance chemicals, pesticides, antimicrobials, petroleum chemicals, chlorinated solvents, and formaldehyde, as well as particulate matter. All homes had indoor air concentrations that exceeded available risk-based screening levels for at least one chemical. We categorized chemicals as primarily influenced by the occupant or as having building-related sources. While building-related chemicals observed in this study may be specific to the particular housing development, occupant-related findings might be generalizable to similar communities. Among 58 detected chemicals, we distinguished 25 as primarily occupant-related, including fragrance chemicals 6-acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran (HHCB). The pre- to post-occupancy patterns of the remaining chemicals suggested important contributions from building materials for some, including dibutyl phthalate and xylene, whereas others, such as diethyl phthalate and formaldehyde, appeared to have both building and occupant sources. Chemical classification by source informs multi-level exposure reduction strategies in low-income housing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The Buffer and Backfill Handbook. Part 2: Materials and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2001-12-01

    Improved technology and prospection yielding more pure and homogeneous raw materials for preparing buffers and backfills will ultimately outdate the clays and ballast materials described in the present part of the Handbook. It describes experimentally investigated materials of potential use in repositories but other, more suitable materials will replace them in the future. The Handbook will hence have to be reviewed regularly, making room for superior materials in future, upgraded Handbook versions. Buffer is the term for dense clay used for embedment of canisters with highly radioactive waste, while backfill is soil used for filling tunnels and shafts in repositories. Examples of soil materials of potential use as buffers and backfills in repositories of KBS-3 type are described in this part of the Handbook. They are: smectitic clay materials intended for preparation of buffers (canister-embedding clay) and used as clay component in artificially prepared tunnel and shaft backfills consisting of mixtures of clay and ballast. Ballast materials intended for backfilling of tunnels and shafts and used as components of artificially prepared backfills. Smectitic natural clay soils intended for use as buffers and backfills. Very fine-grained smectite clay used as grout for sealing rock fractures. In this part of the Handbook for Buffers and Backfills, description of various candidate materials will be made with respect to their mineral composition and physical properties, with respect to the groundwater chemistry that can be expected in a deep repository in Swedish bedrock. Chapter 3 deals with smectitic clay materials intended for embedment of heat-producing canisters with highly radioactive waste. Focus is on the nature of the buffer constituents, i. e. the smectite content, the non-expanding clay minerals colloidal and the accessory non-clay minerals as well as amorphous matter and organic substances. The dominant part of the chapter describes the occurrence and origin

  8. The Buffer and Backfill Handbook. Part 2: Materials and techniques

    International Nuclear Information System (INIS)

    Pusch, Roland

    2001-12-01

    Improved technology and prospection yielding more pure and homogeneous raw materials for preparing buffers and backfills will ultimately outdate the clays and ballast materials described in the present part of the Handbook. It describes experimentally investigated materials of potential use in repositories but other, more suitable materials will replace them in the future. The Handbook will hence have to be reviewed regularly, making room for superior materials in future, upgraded Handbook versions. Buffer is the term for dense clay used for embedment of canisters with highly radioactive waste, while backfill is soil used for filling tunnels and shafts in repositories. Examples of soil materials of potential use as buffers and backfills in repositories of KBS-3 type are described in this part of the Handbook. They are: smectitic clay materials intended for preparation of buffers (canister-embedding clay) and used as clay component in artificially prepared tunnel and shaft backfills consisting of mixtures of clay and ballast. Ballast materials intended for backfilling of tunnels and shafts and used as components of artificially prepared backfills. Smectitic natural clay soils intended for use as buffers and backfills. Very fine-grained smectite clay used as grout for sealing rock fractures. In this part of the Handbook for Buffers and Backfills, description of various candidate materials will be made with respect to their mineral composition and physical properties, with respect to the groundwater chemistry that can be expected in a deep repository in Swedish bedrock. Chapter 3 deals with smectitic clay materials intended for embedment of heat-producing canisters with highly radioactive waste. Focus is on the nature of the buffer constituents, i. e. the smectite content, the non-expanding clay minerals colloidal and the accessory non-clay minerals as well as amorphous matter and organic substances. The dominant part of the chapter describes the occurrence and origin

  9. Annual energy analysis of concrete containing phase change materials for building envelopes

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Jamet, Astrid; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Adding PCM to concrete walls can significantly reduce the cooling needs of buildings. • Climate, season, and wall orientation strongly affect energy and cost savings. • The PCM melting temperature should be near the desired indoor temperature. • Benefits are maximum for outdoor temperature oscillating around set indoor temperature. • Adding PCM had little effect on heating energy needs and associated cost savings. - Abstract: This paper examines the annual energy and cost savings potential of adding microencapsulated phase change material to the exterior concrete walls of an average-sized single family home in California climate zones 3 (San Francisco, CA) and 9 (Los Angeles, CA). The annual energy and cost savings were larger for South- and West-facing walls than for other walls. They were also the largest when the phase change temperature was near the desired indoor temperature. The addition of microencapsulated phase change material to the building walls reduced the cooling load in summer substantially more than the heating load in winter. This was attributed to the cold winter temperatures resulting in nearly unidirectional heat flux on many days. The annual cooling load reduction in an average-sized single family home in San Francisco and in Los Angeles ranged from 85% to 100% and from 53% to 82%, respectively, for phase change material volume fraction ranging from 0.1 to 0.3. The corresponding annual electricity cost savings ranged from $36 to $42 in San Francisco and from $94 to $143 in Los Angeles. From an energy standpoint, the best climate for using building materials containing uniformly distributed microencapsulated phase change material would have outdoor temperature oscillations centered around the desired indoor temperature for the entire year

  10. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  11. Radioactivity assessment of some building materials from Little Poland Region; Analiza promieniotworczosci niektorych materialow budowlanych z obszaru Malopolski

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, J.; Cywicka-Jakiel, T.; Mazur, J.; Loskiewicz, J.; Swakon, J.; Tracz, G. [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-31

    In the paper are presented the results of building materials analysis connected with radiation protection. The concentration of natural radioactive elements (K, U, Th), and the values of f{sup 1} and f{sup 2} coefficients are measured for these materials. The values for ceramic building materials and for cellular concretes are composed. The utility of f{sup 2} parameter is unformally discussed. (author). 9 refs, 12 figs, 3 tabs.

  12. Development of Processing Techniques for Advanced Thermal Protection Materials

    Science.gov (United States)

    Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar

    1997-01-01

    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.

  13. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available community. The construction industry is a significantly consumer of materials, using 50 per cent of all products produced globally. Building materials is any material which is used for a construction purpose. Many of these materials are sources from natural...

  14. Digital neutron moisture meter for moisture determination in the cokes and building materials

    International Nuclear Information System (INIS)

    Chibovski, R.; Igel'ski, A.; Kiyanya, K.; Kiyanya, S.; Mnikh, Eh.; Sledzevski, R.; Verba, V.

    1979-01-01

    Description is given of the digital neutron moisture gage for measuring water content in coke or in dry building materials. The device can work independently with indication of the results to personnel carrying out control operation and adjustment of the process or as a part of an automated control system with supplying the results of measurements in a form of analogous signals or electric pulses in the preselected code. The moisture gage described consists of two units: measuring probes with containers and the desk with power supply and the system for digital processing of a radiometric signal. The measuring probe consists of the asotopic fast neutrons source; helium proportional counter of slow neutrons and a pulse amplifier. The probe is mounted in the bunker with the material measured and is located inside the protective tube made of the weare-resistant material. To obtain high accuracy of measurements and to obtain the measuring instrument's reading immediately in the units of moisture measurement, the digizal converter circuit for radiometric signals processing is used. The The digital converter circuit cited, can be applied to any calibration dependence of linear type with initial value. The block diagram of the device is given. The device described permits to measure the moisture content in the metallurgy coks and in the building materials in one minute and with the error not more than 0.5% [ru

  15. Radiometric characterisation of more representative natural building materials in the province of Rome

    International Nuclear Information System (INIS)

    Trevisi, R.; Bruno, M.; Orlando, C.; Ocone, R.; Paolelli, C.; Amici, M.; Altieri, A.; Antonelli, B.

    2005-01-01

    Natural building materials, characterised by middle-low-activity concentrations of primordial radionuclides ( 40 K, 232 Th and 238 U series) are widely used in Italy. Since natural materials reflect the geological variability of their sites of origin, a systematic study was carried out in the province of Rome and the results are reported in this paper. In the present work, in order to evaluate average, minimum and maximum contents of primordial radionuclides, more representative lithologies outcropping on the territory of the province of Rome were identified and around 150 samples were collected. Also, these lithologies were characterised from a radioprotection point of view, by means of the evaluation of the index, I, when they are used as building materials. The results confirm the high-primordial radionuclide content within some materials used in Latium (central Italy). Although the study was carried out in a limited area, the results confirm considerable variation in the primordial radionuclide content depending on the sites of origin. (authors)

  16. Measurement techniques for the verification of excess weapons materials

    International Nuclear Information System (INIS)

    Tape, J.W.; Eccleston, G.W.; Yates, M.A.

    1998-01-01

    The end of the superpower arms race has resulted in an unprecedented reduction in stockpiles of deployed nuclear weapons. Numerous proposals have been put forward and actions have been taken to ensure the irreversibility of nuclear arms reductions, including unilateral initiatives such as those made by President Clinton in September 1993 to place fissile materials no longer needed for a deterrent under international inspection, and bilateral and multilateral measures currently being negotiated. For the technologist, there is a unique opportunity to develop the technical means to monitor nuclear materials that have been declared excess to nuclear weapons programs, to provide confidence that reductions are taking place and that the released materials are not being used again for nuclear explosive programs. However, because of the sensitive nature of these materials, a fundamental conflict exists between the desire to know that the bulk materials or weapon components in fact represent evidence of warhead reductions, and treaty commitments and national laws that require the protection of weapons design information. This conflict presents a unique challenge to technologists. The flow of excess weapons materials, from deployed warheads through storage, disassembly, component storage, conversion to bulk forms, and disposition, will be described in general terms. Measurement approaches based on the detection of passive or induced radiation will be discussed along with the requirement to protect sensitive information from release to unauthorized parties. Possible uses of measurement methods to assist in the verification of arms reductions will be described. The concept of measuring attributes of items rather than quantitative mass-based inventory verification will be discussed along with associated information-barrier concepts required to protect sensitive information

  17. Assessment of natural radioactivity and the associated radiation hazards in some Cameroonian building materials

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.

    2005-09-01

    The concentration of 238 U, 232 Th, 40 K in natural and fabricated building materials used in Cameroon was investigated by a high-resolution γ-ray spectrometry system with a co-axial HPGe detector. Fourteen kinds of building materials were collected from factories and in the field. Each sample was therefore kept in a 500 ml plastic Marinelli beakers and measured in a very low-background laboratory. The measured activity concentrations range from 1.76 to 49.84 Bq kg -1 , from 0.32 to 147.2 Bq kg -1 and from 18.16 to 1226.29 Bq kg -1 for 238 U, 232 Th and 40 K respectively. The highest mean value of 238 U concentration was found in red compressed soil-brick type I (49.57±0.33 Bq kg -1 ) produced by MIPROMALO whereas the highest average concentration of 232 Th (138.89±12.51 Bq kg -1 ) and 40 K (1161.46±107.57 Bq kg -1 ) was found in gravel collected from an exploitation site in LOGBADJECK. The activity concentrations obtained were compared with available data from other investigations and with the world average value for soils. The radium equivalent activity Ra eq , the external hazard index H ex as well as the indoor absorbed dose rate D radical in air and the annual effective dose equivalent H radical E were evaluated to assess the radiation hazards for people living in dwellings made of studied materials. All building materials have shown Ra eq activity (range from 10.15 to 312.57 Bq kg -1 ) lower than the limit of 370 Bq kg -1 set in the Organization for Economic Cooperation and Development (OECD, 1979) report, and which is equivalent to a γ-dose of 1.5 mSv yr -1 All the examined materials are acceptable for use as building materials in accord with the OECD criterion. (author)

  18. Review of the use of phase change materials (PCMs in buildings with reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Pons, O.

    2014-09-01

    Full Text Available Phase change materials are capable of storing and releasing energy in the form of heat in determined temperature ranges, so to increase a building’s thermal inertia, stabilize its indoor temperatures and reduce its energetic demand. Therefore, if we used these materials we could have more energetically efficient buildings. Nevertheless, are these materials most appropriate to be used in buildings? Could the incorporation of phase change materials in buildings with concrete structures be generalized? This article aims to carry out a review of these phase change materials from construction professionals’ points of view, study their applications for buildings with reinforced concrete structures and the key points for these applications, draw conclusions and provide recommendations useful for all professionals within the sector who are considering the application of these materials.Los materiales de cambio de fase son capaces de almacenar y liberar energía en forma de calor en un determinando rango de temperaturas, y así aumentar la inercia térmica de un edificio, estabilizar las temperaturas en el interior y reducir la demanda energética. En consecuencia, si utilizáramos estos materiales podríamos tener un parque de edificios más eficientes energéticamente. No obstante, ¿estos materiales son apropiados para usarse en edificios? ¿Se podría generalizar la incorporación de materiales de cambio de fase en edificios con estructuras de hormigón? Este artículo tiene como objetivos hacer una revisión del estado del arte de estos materiales de cambio de fase desde el punto de vista de los profesionales de la construcción, estudiar las aplicaciones en edificios con estructuras de hormigón armado y los puntos clave para estas aplicaciones, extraer conclusiones y recomendaciones útiles para los profesionales del sector que se planteen la utilización de estos materiales.

  19. Novel Techniques using FEM for Material Production and Processing

    CERN Document Server

    Al-Shammaa, A I; Shaw, A; Stuart, R A; Wright, C C; Houghton, M

    2005-01-01

    The objectives of this European project are to use high frequency microwave technology to develop focussed energy sources for industrial applications. The microwaves, generated in the 10GHz to 20GHz frequency range by using a table top FEM has been used to investigate novel solutions for material processing and material production, including microwave heating of substrates, microwave chemistry for increasing the speed of thermal reactions, microwave plasma chemistry for aiding gaseous reactions in the reduction of combustion pollutants and the production of UV/ozone for germicidal activities. In this paper we report unique results and analysis in using tuneable FEM system compared with the conventional magnetron 2.45 GHz system.

  20. Green Sharing: The Proposed Criteria in Green Building Standards to Promote the Usage of Natural Handicrafts in Building Materials

    Directory of Open Access Journals (Sweden)

    Krasae-In Aracha

    2016-01-01

    Full Text Available Sustainable development has been a great challenge to the building and construction industry for decades. There have been many initiatives and attempts to create sustainability for the industry through the concept of the Green Building certificate in order to reduce the impact to environment and society while promoting better living conditions of the people involved in the project. This paper aims to examine all three aspects of sustainability; economy, environment and society, in the building and construction industry by proposing new criteria for the green building certificate. This will create opportunities for the community based handicraft building products to be specified and purchased to be used in the modern building and construction industry and share the economic value to the community.

  1. Microbial growth in building material samples and occupants' health in severely moisture-damaged homes.

    Science.gov (United States)

    Järvi, K; Hyvärinen, A; Täubel, M; Karvonen, A M; Turunen, M; Jalkanen, K; Patovirta, R; Syrjänen, T; Pirinen, J; Salonen, H; Nevalainen, A; Pekkanen, J

    2018-03-01

    There is no commonly approved approach to detect and quantify the health-relevant microbial exposure in moisture-damaged buildings. In 39 single-family homes with severe moisture damage, we studied whether concentrations of viable microbes in building material samples are associated with health among 71 adults and 68 children, and assessed with symptoms questionnaires, exhaled NO, and peak expiratory flow (PEF) variability. Symptoms were grouped into three scores: upper respiratory symptoms, lower respiratory symptoms, and general symptoms. The homes were divided into three groups based on viable counts of fungi, actinomycetes, and total bacteria cultivated from building material samples. Highest group of actinomycete counts was associated with more general symptoms, worse perceived health, and higher daily PEF variability (aOR 12.51; 1.10-141.90 as compared to the lowest group) among adults, and with an increase in lower respiratory symptoms in children, but the confidence intervals were wide. We observed significant associations of fungal counts and total microbial score with worse perceived health in adults. No associations with exhaled NO were observed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fly ash, a multi-purpose resource for the production of cost effective building materials

    Energy Technology Data Exchange (ETDEWEB)

    Mahadew, D. [Hoogovens Technical Services Energy and Environment BV, IJmuiden (Netherlands)

    1994-12-31

    Fly ash is successfully being used as a feedstock for the production of artificial gravel which can be used as a substitute for natural gravel. Herewith an environmental problem is solved and the winning of primary raw materials can be limited. When using the cold bounded Aardelite technology for producing fly ash light-weight gravel an internal recycling stream is generated which due to its physical and chemical properties can also be used as an excellent substitute for sand and as a partial substitute for cement in the production of concrete and concrete products. This paper deals with an integrated technology for the production of building products (blocks, bricks, etc.) with up to 94% fly ash. The amount of cement required is very low and the building products meet the physical requirements. This technology opens possibilities for a large scale production of low cost housing building materials based on an effective utilization of useful properties of fly ash. 5 refs., 23 figs., 4 tabs.

  3. Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources

    Science.gov (United States)

    Wang, Yao

    2018-01-01

    The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.

  4. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Charley [Argonne National Lab. (ANL), Argonne, IL (United States); Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Cheng [Argonne National Lab. (ANL), Argonne, IL (United States); Cheng, Jing-Jy [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  5. The role of clearance in Germany - release of materials, buildings and sites

    International Nuclear Information System (INIS)

    Thierfeldt, S.

    2005-01-01

    Clearance in Germany is far advanced. A complex regulatory framework exists in the Radiation Protection Ordinance (RPO/Strahlenschutzverordnung, StrlSchV) since 2001 which has replaced previous recommendations on clearance issued by the German Radiation Protection Commission (Strahlenschutzkommission, SSK). A number of options exist both for unconditional clearance (e.g. of all kinds of materials with no restrictions on the destination or future use) and for clearance for a specific purpose (e.g. recycling of metal scrap). For each clearance option there is a set of nuclide specific clearance levels which have been derived on the basis of the 10 Sv/a individual dose criterion using complex radiological models which are tailored to the respective material cycles (metal scrap, buildings, building rubble, waste for disposal, sites). The clearance levels have been thoroughly reviewed by the SSK. An extensive comparison to sets of clearance levels used in other countries or issued as guidance by international bodies revealed that the correspondence between values is between good and acceptable taking into account country-specific approaches and special assumptions which would not necessarily pertain to German situations. Clearance is a major factor in the material management, especially of nuclear installations undergoing decommissioning. The variety of clearance options leaves the operator of a nuclear installation sufficient flexibility for optimisation of the material management. Clearance is of particular importance in a country like Germany where the estimated costs for a future repository are very high and the interim storage facilities for radioactive material are limited and costly. While the licensee is responsible for his material management, the issuance of a clearance permit is done by the regulatory body upon application. The regulators may choose to use the clearance levels and regulations as stipulated by the RPO, or to impose site-specific regulations on

  6. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  8. Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate.

    Science.gov (United States)

    Campos, M P; Costa, L J P; Nisti, M B; Mazzilli, B P

    2017-06-01

    Phosphogypsum can be classified as a Naturally Occurring Radioactive Material (NORM) residue of the phosphate fertilizer industry. One of the main environmental concerns of its use as building material is the radon exhalation. The aim of this study is to measure the radon exhalation rate from plates and bricks manufactured with phosphogypsum from three installations of the main Brazilian producer, Vale Fertilizantes, in order to evaluate the additional health risk to dwellers. A simple and reliable accumulator method involving a PVC pipe sealed with a PVC pipe cover commercially available with CR-39 radon detector into a diffusion chamber was used for measuring radon exhalation rate from phosphogypsum made plates and bricks. The radon exhalation rate from plates varied from 0.19 ± 0.06 Bq m -2 h -1 , for phosphogypsum from Bunge Fertilizers, from 1.3 ± 0.3 Bq m -2 h -1 , for phosphogypsum from Ultrafertil. As for the bricks, the results ranged from 0.11 ± 0.01 Bq m -2 h -1 , for phosphogypsum from Bunge Fertilizers, to 1.2 ± 0.3 Bq m -2 h -1 , for phosphogypsum from Ultrafertil. The results obtained in this study for the radon exhalation rate from phosphogypsum plates and bricks are of the same order of magnitude than those from ordinary building materials. So, it can be concluded that the recycling of phosphogypsum as building material is a safe practice, since no additional health risk is expected from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Monitoring of Water Content in Building Materials Using a Wireless Passive Sensor

    Directory of Open Access Journals (Sweden)

    Goran Stojanović

    2010-04-01

    Full Text Available This paper describes an innovative design of a wireless, passive LC sensor and its application for monitoring of water content in building materials. The sensor was embedded in test material samples so that the internal water content of the samples could be measured with an antenna by tracking the changes in the sensor’s resonant frequency. Since the dielectric constant of water was much higher compared with that of the test samples, the presence of water in the samples increased the capacitance of the LC circuit, thus decreasing the sensor’s resonant frequency. The sensor is made up of a printed circuit board in one metal layer and water content has been determined for clay brick and autoclaved aerated concrete block, both widely used construction materials. Measurements were conducted at room temperature using a HP-4194A Impedance/Gain-Phase Analyzer instrument.

  10. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...... and that the moisture storage characteristic is process dependent with varying significance for the numerical simulation. On the basis of different building materials, a comprehensive instantaneous profile measurement study has been accomplished. Profiles of water content and relative humidity were obtained during...... a series of adsorption and desorption processes. The data provides clear evidence that the water content – water potential relationship is not only dependent on the process history, but also on the process dynamics. The higher moisture potential gradients were induced, the larger was the deviation between...

  11. Gas chromatographic study of degradation phenomena concerning building and cultural heritage materials.

    Science.gov (United States)

    Metaxa, E; Agelakopoulou, T; Bassiotis, I; Karagianni, Ch; Roubani-Kalantzopoulou, F

    2009-05-30

    Air pollution influences all aspects of social and economical life nowadays. In order to investigate the impact of air pollution on materials of works of art, the method of Reversed Flow-Inverse Gas Chromatography has been selected. The presence of various atmospheric pollutants is studied on marbles, oxides--building materials and samples of authentic statues from the Greek Archaeological Museums of Kavala and of Philippi. The method leads to the determination of several physicochemical quantities and the characterization of the heterogeneous surfaces of these solids. Moreover, the influence of a second pollutant (synergistic effect) is examined. The structure, the properties and the behavior of the materials are examined by X-Ray Diffraction, Scanning Electron Microscopy and Raman Spectroscopy. Therefore, the precise measurement of the above mentioned quantities form the scientific basis for elucidation of the mechanism of the whole phenomenon of the degradation, thus providing a scientific platform to conservation procedures.

  12. Gas chromatographic study of degradation phenomena concerning building and cultural heritage materials

    International Nuclear Information System (INIS)

    Metaxa, E.; Agelakopoulou, T.; Bassiotis, I.; Karagianni, Ch.; Roubani-Kalantzopoulou, F.

    2009-01-01

    Air pollution influences all aspects of social and economical life nowadays. In order to investigate the impact of air pollution on materials of works of art, the method of Reversed Flow-Inverse Gas Chromatography has been selected. The presence of various atmospheric pollutants is studied on marbles, oxides-building materials and samples of authentic statues from the Greek Archaeological Museums of Kavala and of Philippi. The method leads to the determination of several physicochemical quantities and the characterization of the heterogeneous surfaces of these solids. Moreover, the influence of a second pollutant (synergistic effect) is examined. The structure, the properties and the behavior of the materials are examined by X-Ray Diffraction, Scanning Electron Microscopy and Raman Spectroscopy. Therefore, the precise measurement of the above mentioned quantities form the scientific basis for elucidation of the mechanism of the whole phenomenon of the degradation, thus providing a scientific platform to conservation procedures.

  13. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahim, Faszly; Hanifah, Sharina Abu [School of Environmental Scieces and Natural Resources Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2015-09-25

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  14. Elaboration of building materials from industrial waste from solid granular diatomaceous earth; Elaboracion de material de construccion a partir de residuos industriales solidos granulares procedentes de tierras diatomaceas

    Energy Technology Data Exchange (ETDEWEB)

    Del Angel S, A.

    2015-07-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  15. Decontamination and decommissioning of a luminous dial painting facility: radiological characterization, segregation and disposal of building materials

    International Nuclear Information System (INIS)

    Ed, D.; Chu, L.; Chepulis, P.; Hamel, M.

    1986-01-01

    The State of Illinois, Department of Nuclear Safety, has decontaminated and decommissioned the defunct Luminous Processes, Inc. facility located in Ottawa, Illinois. The state's overall experience throughout the project is generally described, with particular emphasis given to the radiological characterization (Ra-226+progeny and H-3) and subsequent segregation and disposal of building materials as either radioactive or non-radioactive. Experiences involving direct application of health physics principles (criteria selection, sampling schemes, analytical techniques, data reduction, quality assurance) are discussed. Experiences involving other health physics regimens (personnel protection and dosimetry, environmental monitoring) as well as social sciences and economic considerations (public perception, media relations, political involvement, contractor interactions, fiscal management) are discussed only insofar as they affect the radiological characterization, segregation and disposal processes

  16. Reuse of materials from recyclable-waste collection for road building

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.; Ticali, D.

    2006-01-01

    A right policy of waste management should look to nature: in fact in nature nothing of produced is lost; everything could be considered food to energy resource for another subject. A diffusion of right policy of waste reuse is the leit motive of this study. Heavy problem of pollution and the protection of the natural environment, is the one of the most important problem of this society, and so to think waste to reuse for civil engineering research has a double aim: a) to reduce quantity to send to dump; b) to reuse good materials for civil engineering building, as substitute of natural aggregate. It look very innovative and actual to think to possibility of reuse glass from recyclable-waste collection for road building, and so we could consider road as a valid substitute to dump. The aim is to consider waste as an element with high energetic power and value added [it

  17. Interim recommendations concerning the risks to the Dutch population resulting from the use of radioactive wastes in building materials

    International Nuclear Information System (INIS)

    1985-01-01

    The present report, drawn up at the request of the former Minister of Public Health and Environmental Affairs, discusses the potential radiological consequences for the population of the Netherlands of using waste materials as building materials in housing construction. In his request the Minister points to the growing need to use various waste products as building materials. The highest increase of the effective dose equivalent for the foreseeable use of waste products in building construction implies that the annual exposure, averaged over the entire population, could eventually be increased by a maximum of 0.05 mSv per caput. (Auth.)

  18. Advanced neutron diffraction techniques for strain measurements in polycrystalline materials

    OpenAIRE

    Mikula , P.; LukÁs , P.; VrÁna , M.; Klimanek , P.; Kschidock , T.; Macek , K.; Janovec , J.; Osborn , J.; Swallowe , G.

    1993-01-01

    Three unique high resolution experimental arrangements for nondestructive strain measurements which are based on neutron Bragg diffraction optics with cylindrically bent perfect crystals are reviewed. Using focusing in momentum and real space these techniques yield Δd/d (d-lattice spacing) resolution of 10-4 - 10-3 and considerably higher luminosity in comparison with the current dedicated instruments. They permit measurements not only macrostrain components resulting in angular shifts of dif...

  19. Techniques and materials for internal water curing of concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Lura, Pietro

    2006-01-01

    This paper gives an overview of different techniques for incorporation of internal curing water in concrete. Internal water curing can be used to mitigate self-desiccation and selfdesiccation shrinkage. Some concretes may need 50 kg/m3 of internal curing water for this purpose. The price...... of the internal curing water is in the approximate range 0.1–1 e/kg....

  20. Image Analysis Technique for Material Behavior Evaluation in Civil Structures

    Science.gov (United States)

    Moretti, Michele; Rossi, Gianluca

    2017-01-01

    The article presents a hybrid monitoring technique for the measurement of the deformation field. The goal is to obtain information about crack propagation in existing structures, for the purpose of monitoring their state of health. The measurement technique is based on the capture and analysis of a digital image set. Special markers were used on the surface of the structures that can be removed without damaging existing structures as the historical masonry. The digital image analysis was done using software specifically designed in Matlab to follow the tracking of the markers and determine the evolution of the deformation state. The method can be used in any type of structure but is particularly suitable when it is necessary not to damage the surface of structures. A series of experiments carried out on masonry walls of the Oliverian Museum (Pesaro, Italy) and Palazzo Silvi (Perugia, Italy) have allowed the validation of the procedure elaborated by comparing the results with those derived from traditional measuring techniques. PMID:28773129