WorldWideScience

Sample records for buffer layer deposited

  1. Advanced titania buffer layer architectures prepared by chemical solution deposition

    Science.gov (United States)

    Kunert, J.; Bäcker, M.; Brunkahl, O.; Wesolowski, D.; Edney, C.; Clem, P.; Thomas, N.; Liersch, A.

    2011-08-01

    Chemical solution deposition (CSD) was used to grow high-quality (100) oriented films of SrTiO3 (STO) on CSD CaTiO3 (CTO), Ba0.1Ca0.9TiO3 (BCT) and STO seed and template layers. These template films bridge the lattice misfit between STO and the nickel-tungsten (NiW) substrate, assisting in dense growth of textured STO. Additional niobium (Nb) doping of the STO buffer layer reduces oxygen diffusion which is necessary to avoid undesired oxidation of the NiW. The investigated templates offer suitable alternatives to established standard buffer systems like La2Zr2O7 (LZO) and CeO2 for coated conductors.

  2. Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition

    Science.gov (United States)

    Takahashi, Nobuaki; Nagashio, Kosuke

    2016-12-01

    The integration of a high-k oxide on graphene using atomic layer deposition requires an electrically reliable buffer layer. In this study, Y was selected as the buffer layer due to its highest oxidation ability among the rare-earth elements, and various oxidation methods (atmospheric, and high-pressure O2 and ozone annealing) were applied to the Y metal buffer layer. By optimizing the oxidation conditions of the top-gate insulator, we successfully improved the capacitance of the top gate Y2O3 insulator and demonstrated a large I on/I off ratio for bilayer graphene under an external electric field.

  3. Pulsed Laser Deposition of YBCO With Yttrium Oxide Buffer Layers (Postprint)

    Science.gov (United States)

    2012-02-01

    AFRL-RZ-WP-TP-2012-0092 PULSED LASER DEPOSITION OF YBCO WITH YTTRIUM OXIDE BUFFER LAYERS (POSTPRINT) Paul N. Barnes, Timothy J. Haugan...Paper Postprint 01 January 2002 – 01 January 2004 4. TITLE AND SUBTITLE PULSED LASER DEPOSITION OF YBCO WITH YTTRIUM OXIDE BUFFER LAYERS (POSTPRINT...Textured metallic substrate based HTS coated conductors with the YBCO /CeO2/YSZ/CeO2/Ni architecture have already been shown to exhibit high current

  4. Dependence of Magnetic Properties of Co/Pt Multilayers on Deposition Temperature of Pt Buffer Layers

    Science.gov (United States)

    Shiomi, Shigeru; Nishimura, Tomotaka; Kobayashi, Tadashi; Masuda, Morio

    1993-04-01

    A 15-nm-thick Pt buffer layer was deposited on a glass slide at temperature Ts(Ptbuf) ranging from 30 to 300°C by e-gun evaporation. Following the cooling in vacuum to ambient temperature, Co and Pt layers have been alternately deposited on it. Very large perpendicular anisotropy and coercivity have been obtained at Ts(Ptbuf) higher than 200°C. The (111) preferred orientation of the Co/Pt multilayer as well as the Pt buffer layer became more pronounced with elevating Ts(Ptbuf), to which the enhancement of perpendicular anisotropy with elevating Ts(Ptbuf) might be ascribable.

  5. New Approach to Depositing Yttria-Stabilized Zirconia Buffer Layers for Coated Conductors (Postprint)

    Science.gov (United States)

    2012-02-01

    YBa2Cu3O7− ( YBCO ) cannot be deposited directly onto the tapes due to tape oxidation and chemical interdiffu- sion issues,5 so buffer layers must be used... YBCO can be deposited. Control of the biaxial texture of the final YBCO superconducting layer is critical to the success of the YBCO -coated conductor...Misorientation at YBCO grain boundaries, both [100]-tilt and [100]-twist, have a significant impact on critical cur- rent density (Jc); nearly an

  6. Sol-gel deposition of buffer layers on biaxially textured metal substances

    Science.gov (United States)

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  7. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    Science.gov (United States)

    Bhattacharya, Raghu N.

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  8. Characterization of chemical bath deposited buffer layers for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, D.; Efstathiadis, H.; Haldar, P. [College of Nanoscale Science and Engineering, University at Albany - State University of New York, 257 Fuller Rd., Albany, NY 12203 (United States); Sun, R. [Angstrom Sun Technologies Inc., 33 Nagog Park, Acton, MA 01720 (United States)

    2010-10-15

    Cadmium sulfide (CdS), indium sulfide (In{sub 2}S{sub 3}) and zinc sulfide (ZnS) thin films have been deposited by chemical bath deposition (CBD) for buffer layer applications in Cu-chalcopyrite-based thin film solar cells. Films were characterized by scanning electron microscopy (SEM), UV-Vis transmission, X-ray photoelectron spectroscopy (XPS), grazing-incidence X-ray diffraction (GIXRD), and spectroscopic ellipsometry. Results indicate CdS can be deposited with low oxygen content and high light transmission over 245-1700 nm. CBD-ZnS and CBD-InS both exhibit 5-10% less light transmission than CdS in the same thickness range. In terms of light transmission and degree of impurities CdS appears to be a better buffer material than CBD-ZnS or CBD-InS. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Microstructural characterization of chemical bath deposited and sputtered Zn(O,S) buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Gautron, E., E-mail: eric.gautron@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Buffière, M. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44solar, 14 rue Kepler, 44240 La Chapelle sur Erdre (France); Harel, S.; Assmann, L.; Arzel, L.; Brohan, L. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Kessler, J. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44solar, 14 rue Kepler, 44240 La Chapelle sur Erdre (France); Barreau, N. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-05-01

    The present work aims at investigating the microstructure of Zn(O,S) buffer layers relative to their deposition route, namely either chemical bath deposition (CBD) or RF co-sputtering process (PVD) under pure Ar. The core of the study consists of cross-sectional transmission electron microscopy (TEM) characterization of the differently grown Zn(O,S) thin films on co-evaporated Cu(In,Ga)Se{sub 2} (CIGSe) absorbers. It shows that the morphology of Zn(O,S) layer deposited on CIGSe using CBD process is made of a thin layer of well oriented ZnS sphalerite-(111) and/or ZnS wurtzite-(0002) planes parallel to CIGSe chalcopyrite-(112) planes at the interface with CIGSe followed by misoriented nanometer-sized ZnS crystallites in an amorphous phase. As far as (PVD)Zn(O,S) is concerned, the TEM analyses reveal two different microstructures depending on the S-content in the films: for [S] / ([O] + [S]) = 0.6, the buffer layer is made of ZnO zincite and ZnS wurtzite crystallites grown nearly coherently to each other, with (0002) planes nearly parallel with CIGSe-(112) planes, while for [S] / ([O] + [S]) = 0.3, it is made of ZnO zincite type crystals with O atoms substituted by S atoms, with (0002) planes perfectly aligned with CIGSe-(112) planes. Such microstructural differences can explain why photovoltaic performances are dependent on the Zn(O,S) buffer layer deposition route. - Highlights: ► Zn(O,S) layers were grown by chemical bath (CBD) or physical vapor (PVD) deposition. ► For CBD, a 3 nm ZnS layer is followed by ZnS nano-crystallites in an amorphous phase. ► For PVD with [S] / ([O] + [S]) = 0.3, the layer has a Zn(O,S) zincite structure. ► For PVD with [S] / ([O] + [S]) = 0.6, ZnS wurtzite and ZnO zincite phases are mixed.

  10. Al-doped ZnO films deposited on a slightly reduced buffer layer by reactive dc unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kusayanagi, Minehide; Uchida, Azusa; Oka, Nobuto; Jia, Junjun [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Nakamura, Shin-ichi [Center for Instrumental Analysis, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-03-31

    Al-doped ZnO (AZO) films were deposited on a fused silica glass substrate by reactive dc unbalanced magnetron sputtering using a Zn–Al (Al: 3.6 at.%) alloy target with an impedance control system. A very thin slightly reduced AZO buffer layer was inserted between the glass substrate and AZO films. For the AZO films deposited at 200 °C, the lowest resistivity in the absence of the buffer layer was 8.0 × 10{sup −4} Ω cm, whereas this was reduced to 5.9 × 10{sup −4} Ω cm after introducing a 5-nm-thick buffer layer. The transmittance for all the films was above 80% in the visible region. The effects of the buffer layer were analysed and discussed in detail. It is found that the insertion of the buffer layer can improve the crystallinity of the AZO film. - Highlights: • Al-doped ZnO (AZO) films with AZO buffer layers were deposited. • Reactive dc unbalance magnetron sputtering with impedance control was used. • Insertion of a buffer layer can lead to a lower resistivity. • Insertion of a buffer layer improved the crystallinity of AZO films.

  11. Microstructures of YBa2Cu3Oy Layers Deposited on Conductive Layer-Buffered Metal Tapes

    Science.gov (United States)

    Ichinose, Ataru; Hashimoto, Masayuki; Horii, Shigeru; Doi, Toshiya

    REBa2Cu3Oy (REBCO; RE: rare-earth elements)-coated conductors (CCs) have high potential for use in superconducting devices. In particular, REBCO CCs are useful for superconducting devices working at relatively high temperatures near 77 K. The important issues in their applications are high performance, reliability and low cost. To date, sufficient performance for some applications has almost been achieved by considerable efforts. The establishment of the reliability of superconducting devices is under way at present. The issue of low cost must be resolved to realize the application of superconducting devices in the near future. Therefore, we have attempted several ways to reduce the cost of REBCO CCs. The coated conductors using a Nb-doped SrTiO3 buffer layer and Ni-plated Cu and stainless steel laminate metal tapes have recently been developed to eliminate the use of electric stabilization layers of Cu and Ag, which are expected to reduce the material cost. Good superconducting properties are obtained at 77 K. The critical current density (JC) at 77 K under a magnetic self-field is determined to be more than 2x106 A/cm2. The microstructures of the CCs are analyzed by transmission electron microscopy to obtain a much higher quality. By microscopic structure analysis, an overgrowth of the buffer layer is observed at a grain boundary of the metal substrate, which is one of the reasons for the high JC.

  12. Effect of Cu buffer layer on magnetic anisotropy of cobalt thin films deposited on MgO(001 substrate

    Directory of Open Access Journals (Sweden)

    Syed Sheraz Ahmad

    2016-11-01

    Full Text Available Cobalt thin films with 5 nm thickness were prepared on single-crystal MgO (001 substrates with different thickness Cu buffer (0 nm, 5 nm, 10 nm, 20 nm. The structure, magnetic properties and transport behaviors were investigated by employing low-energy-electron-diffraction (LEED, magneto-optical Kerr effect (MOKE and anisotropic magnetoresistance (AMR. By comparing the magnetic properties of the sample as-deposited (without Cu buffer layer one with those having the buffer Cu, we found that the magnetic anisotropy was extremely affected by the Cu buffer layer. The magnetic anisotropy of the as-deposited, without buffer layer, sample shows the uniaxial magnetic anisotropy (UMA. We found that the symmetry of the magnetic anisotropy is changed from UMA to four-fold when the thickness of the Cu buffer layer reaches to 20 nm. Meanwhile, the coercivity increased from 49 Oe (without buffer layer to 300 Oe (with 20 nm Cu buffer, in the easy axis direction, as the thickness of the buffer layer increases. Moreover, the magnitudes of various magnetic anisotropy constants were determined from torque curves on the basis of AMR results. These results support the phenomenon shown in the MOKE.

  13. Effect of Cu buffer layer on magnetic anisotropy of cobalt thin films deposited on MgO(001) substrate

    Science.gov (United States)

    Ahmad, Syed Sheraz; He, Wei; Zhang, Yong-Sheng; Tang, Jin; Gul, Qeemat; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2016-11-01

    Cobalt thin films with 5 nm thickness were prepared on single-crystal MgO (001) substrates with different thickness Cu buffer (0 nm, 5 nm, 10 nm, 20 nm). The structure, magnetic properties and transport behaviors were investigated by employing low-energy-electron-diffraction (LEED), magneto-optical Kerr effect (MOKE) and anisotropic magnetoresistance (AMR). By comparing the magnetic properties of the sample as-deposited (without Cu buffer layer) one with those having the buffer Cu, we found that the magnetic anisotropy was extremely affected by the Cu buffer layer. The magnetic anisotropy of the as-deposited, without buffer layer, sample shows the uniaxial magnetic anisotropy (UMA). We found that the symmetry of the magnetic anisotropy is changed from UMA to four-fold when the thickness of the Cu buffer layer reaches to 20 nm. Meanwhile, the coercivity increased from 49 Oe (without buffer layer) to 300 Oe (with 20 nm Cu buffer), in the easy axis direction, as the thickness of the buffer layer increases. Moreover, the magnitudes of various magnetic anisotropy constants were determined from torque curves on the basis of AMR results. These results support the phenomenon shown in the MOKE.

  14. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    Science.gov (United States)

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%.

  15. Pulsed Laser Deposition ZnS Buffer Layers for CIGS Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Pai-feng Luo; Guo-shun Jiang; Chang-fei Zhu

    2009-01-01

    Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suitable alternative to chemical bath deposited (CBD) CdS as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. X-ray diffraction studies indicate the films are polycrystalline with zinc-blends structure and they exhibit preferential orientation along the cubic phase β-ZnS (111) direction, which conflicts with the conclusion of wurtzite struc-ture by Murali that the ZnS films deposited by pulse plating technique was polycrystalline with wurtzite structure. The Raman spectra of grown films show A1 mode at approxi-mately 350 cm-1, generally observed in the cubic phase β-ZnS compounds. The planar and the cross-sectional morphology were observed by scanning electron microscopic. The dense, smooth, uniform grains are formed on the quartz glass substrates through PLD technique. The grain size of ZnS deposited by PLD is much smaller than that of CdS by conventional CBD method, which is analyzed as the main reason of detrimental cell performance. The composition of the ZnS films was also measured by X-ray fluorescence. The typical ZnS films obtained in this work are near stoichiometric and only a small amount of S-rich. The energy band gaps at different temperatures were obtained by absorption spectroscopy measurement, which increases from 3.2 eV to 3.7 eV with the increasing of the deposition temperature. ZnS has a wider energy band gap than CdS (2.4 eV), which can enhance the blue response of the photovoltaic cells. These results show the high-quality of these substitute buffer layer materials are prepared through an all-dry technology, which can be used in the manufacture of CIGS thin film solar cells.

  16. Cu(In,Ga)Se{sub 2} solar cells with double layered buffers grown by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.Q.; Shi, J.H.; Zhang, D.W.; Liu, Q.Q.; Sun, Z.; Chen, Y.W. [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062 (China); Yang, Z. [Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, S.M., E-mail: engp5591@yahoo.com [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062 (China)

    2011-10-31

    In based mixture In{sub x}(OH,S){sub y} buffer layers deposited by chemical bath deposition technique are a viable alternative to the traditional cadmium sulfide buffer layer in thin film solar cells. We report on the results of manipulating the absorber/buffer interface between the chalcopyrite Cu(In,Ga)Se{sub 2} (CIGS) absorber and CdS or ZnS buffer by addition of a thin In based mixture layer. It is shown that the presence of thin In{sub x}(OH,S){sub y} at the CIGS absorber/CdS or ZnS buffer interfaces greatly improve the solar cell performances. The performances of CIGS cells using dual buffer layers composed of In{sub x}(OH,S){sub y}/CdS or In{sub x}(OH,S){sub y}/ZnS increased by 22.4% and 51.6%, as compared to the single and standard CdS or ZnS buffered cells, respectively.

  17. Atmospheric spatial atomic layer deposition of Zn(O,S) buffer layer for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Frijters, C.H.; Poodt, P.; Illeberi, A.

    2016-01-01

    Zinc oxysulfide has been grown by spatial atomic layer deposition (S-ALD) and successfully applied as buffer layer in Cu(In, Ga)Se2 (CIGS) solar cells. S-ALD combines high deposition rates (up to nm/s) with the advantages of conventional ALD, i.e. excellent control of film composition and superior u

  18. Electrochemical preparation of MoO{sub 3} buffer layer deposited onto the anode in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gacitua, M.; Soto, G.; Valle, M.A. del [Pontificia Universidad Catolica de Chile, Facultad de Quimica, Laboratorio de Electroquimica de Polimeros (LEP), Santiago (Chile); Boutaleb, Y.; Rehamnia, R. [Laboratoire d' Electrochimie, Universite Badji Mokhtar, Annaba (Algeria); Cattin, L.; Louarn, G. [Universite de Nantes, Nantes Atlantique Universites, Institut des Materiaux Jean Rouxel (IMN)-CNRS, Faculte des Sciences et Techniques, Nantes (France); Abe, S.Y. [Laboratoire de Physique de la Matiere Condensee et de Technologie (LPMCT), Universite de Cocody (Ivory Coast); Lare, Y. [Laboratoire d' Energie Solaire, Universite de Lome, Lome (Togo); Morsli, M; Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, Nantes (France); Drici, A. [LEREC Departement de physique, Universite Badji Mokhtar, Annaba (Algeria)

    2010-08-15

    In this work the authors have studied the advantages of using electrochemically deposited molybdenum oxide as a buffer layer in an organic bilayer heterojunction solar cell arrangement. Furthermore, it has been probed that electrochemistry provides an alternative low cost, reproducible and less laborious method to prepare thin layered deposits. The precursor solution is composed by a concentrated molybdic acid solution in a sulphuric media in order to ensure the obtainment of low reduced molybdenum species. Therefore, by means of potentiostatic techniques, ITO/molybdenum oxide transparent anodes were tested for the photovoltaic device showing improved surface properties. XDR and AFM techniques were used to characterize the morphology of the deposits. The films with optimum thickness (5 nm) are amorphous. XPS analysis indicates that the best results in solar cell performance are in hand with a heterogeneous composition of the molybdenum oxide film presenting Mo{sup V} and Mo{sup VI} as predominant species. The MoO{sub 3} films deposited by cyclic voltammetry are not as homogeneous as those deposited by potentiostatic technique and only Mo{sup VI} species are present. These differences may justify the different behaviour of the solar cells using these different buffer layers. Only buffer layers deposited by potentiostatic technique allow improving the cells performances in the same way than those achieved by evaporation. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. Optical properties of PZT thin films deposited on a ZnO buffer layer

    OpenAIRE

    Schneider, T.; Leduc, D; Cardin, J.; LUPI, C; Barreau, N; Gundel, H.

    2007-01-01

    International audience; The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness of both layers from the m-lines spectra, we develop a numerical algorithm for the case of a two-layer system and show its robustness in the presence of noise. The sensitivity of the algorithm of the two-layer model allows us to relate the observed changes in the PZT refractive index to the ...

  20. Optical properties of PZT thin films deposited on a ZnO buffer layer

    OpenAIRE

    Schneider, T.; Leduc, D; Cardin, J.; LUPI, C; Barreau, N; Gundel, H.

    2015-01-01

    The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness of both layers from the m-lines spectra, we develop a numerical algorithm for the case of a two-layer system and show its robustness in the presence of noise. The sensitivity of the algorithm of the two-layer model allows us to relate the observed changes in the PZT refractive index to the PZT structural change du...

  1. ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lare, Y. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Godoy, A. [Facultad Ciencias de la Salud, Universidad Diego Portales, Ejercito 141, Santiago de Chile (Chile); Cattin, L. [Universite de Nantes, Nantes Atlantique Universites, IMN, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Jondo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Abachi, T. [Ecole Normale Superieure, Kouba, Alger (Algeria); Diaz, F.R. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Morsli, M. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Napo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); del Valle, M.A. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Bernede, J.C., E-mail: jean-christian.bernede@univ-nantes.fr [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France)

    2009-04-15

    ZnO thin films synthetized by chemical bath deposition are used as buffer layer between the anode and the organic electron donor in organic solar cells. Films deposited from zinc nitrate solutions are annealed in room air at 300 deg. C for half an hour. The X-ray diffraction and microanalysis studies show that ZnO polycrystalline thin films are obtained. The solar cells used are based on the couple copper phthalocyanine as electron donor and (N,N-diheptyl-3,4,9,10-perylenetetracarboxylicdiimide-PTCDI-C7) as electron acceptor. It is shown that the presence of the ZnO buffer layer improves the energy conversion efficiency of the cells. Such improvement could be attributed to a better energy level alignment at the anode/electron donor interface. The anode roughness induced by the ZnO buffer layer can also transform the planar interface organic electron donor/electron acceptor into roughen topography. This increases the interface area, where carrier separation takes place, which improves solar cells performances.

  2. Reel-to-reel deposition of epitaxial double-sided MgO buffer layers for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yan, E-mail: xueyanuestc@126.com [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Xiong, Jie, E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Yahui; Zhang, Fei; Zhao, Rui-Peng [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Hui, Wang; Wang, Quiling [Applied Research Laboratory of Superconduction and New Material, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Guo; Zhao, Xiao-Hui; Tao, Bo-Wan [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-06-15

    Highlights: • Growth of biaxially textured MgO films on flexible substrates. • Double-sided IBAD buffer template for the first time. • Studying the influence of ion energy and film thickness on the texture. • Demonstrating double-sided YBCO films with overall critical current of 300 A/cm. - Abstract: We have successfully employed a double-sided process to deposit MgO buffer layers on both sides of amorphous Y{sub 2}O{sub 3} surface for double-sided YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) coated conductors (CCs) for the first time, the structure of which is of great prospect to improve the performance and cut the production cost. The biaxial textures of MgO buffer layer are noticeably affected by the ion energy and film thickness, which is demonstrated by X-ray diffraction. The best biaxial texture of double-sided MgO films shows ω-scan of (002) MgO and Φ-scan of (220) MgO yield full width at half maximum values of 4° and 7.8° for one side, respectively, as well as 3.5° and 6.7° for the other side. The subsequent double-sided YBCO films are deposited on the as-prepared MgO template with entire critical current of over 300 A/cm for both sides.

  3. Effects of TiO{sub 2} buffer layer on the photoelectrochemical properties of TiO{sub 2} Nano rods grown by modified chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae-hyun; Ha, Jin-wook; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-08-15

    In this study, we grew TiO{sub 2} nano rods on TiO{sub 2}-film buffered FTO substrate using modified chemical bath deposition (M-CBD). The TiO{sub 2} buffer layer was grown by spin coating method with different RPM (revolutions per minute) values and deposition cycles. We investigated the effects of the RPM values and the deposition cycles on the morphological, structural and photoelectrochemical properties of TiO{sub 2} nano rods. In this work, we have also found that the morphological and structural properties of TiO{sub 2} nano rods affected the photoelectrochemical properties of TiO{sub 2} nano rods. And the maximum photocurrent density of 0.34 mA/cm{sup 2} at 0.6V (vs.SCE) was obtained from the buffer layer deposition process condition of 4,000 RPM and two-times buffer layer depositions.

  4. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers; Filmes finos de carbono depositados por meio da tecnica de magnetron sputtering usando cobalto, cobre e niquel como buffer-layers

    Energy Technology Data Exchange (ETDEWEB)

    Costa e Silva, Danilo Lopes

    2015-11-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  5. Physical properties and interface studies of YBa2Cu3O7 thin films deposited by laser ablation on S1 (111) with buffer layer

    NARCIS (Netherlands)

    Blank, D.H.A.; Aarnink, W.A.M.; Flokstra, J.; Rogalla, H.; Silfhout, van A.

    1990-01-01

    The physical properties of laser-deposited YBaCuO on Si using a single buffer layer of ZrO2 and a double layer of NiSi2 and ZrO2 have been studied. The influence of the deposition temperature has been investigated. Interface studies were performed by RBS and SAM. SEM pictures, resistivity and critic

  6. Preparation of SmBiO3 buffer layer on YSZ substrate by an improved chemical solution deposition route

    Science.gov (United States)

    Zhu, Xiaolei; Pu, Minghua; Zhao, Yong

    2016-12-01

    A quick route for chemical solution deposition (CSD) has been developed to prepare SmBiO3 (SBO) layers on yttria stabilized zirconia (YSZ) substrates rapidly by using of solid state decomposition (SSD) technique. The proper conditions for volatilization of lactic acid, which as solvent in precursor coated layer, and SBO growth are 115°C for 30 min and 794°C for 60 min in flowing Ar gas. The coated layers are amorphous structure of mixture oxides and quasi-crystal structure of SBO before and after growth, respectively. The total time by this quick CSD route for organic solvent volatilization, salts decomposed and layer growth is not up to 2 h, which are much less than that needed for traditional CSD of over 10 h. SBO layer is directly epitaxial growth on YSZ substrate without any lattice rotation. SBO layer prepared by this quick route as well as that by traditional route are suitable for the growth of YBCO. The superconducting transition temperature and critical current density of the coated YBCO layer on SBO/YSZ obtained by this quick route are up to 90 K and 1.66 MA/cm2. These results may be the usable reference for continuous preparation of SBO buffer layer on IBAD-YSZ/Ni-based alloy tapes.

  7. Reel-to-reel deposition of epitaxial double-sided MgO buffer layers for coated conductors

    Science.gov (United States)

    Xue, Yan; Xiong, Jie; Zhang, Yahui; Zhang, Fei; Zhao, Rui-Peng; Hui, Wang; Wang, Quiling; Cheng, Guo; Zhao, Xiao-Hui; Tao, Bo-Wan

    2016-06-01

    We have successfully employed a double-sided process to deposit MgO buffer layers on both sides of amorphous Y2O3 surface for double-sided YBa2Cu3O7-δ (YBCO) coated conductors (CCs) for the first time, the structure of which is of great prospect to improve the performance and cut the production cost. The biaxial textures of MgO buffer layer are noticeably affected by the ion energy and film thickness, which is demonstrated by X-ray diffraction. The best biaxial texture of double-sided MgO films shows ω-scan of (002) MgO and Φ-scan of (220) MgO yield full width at half maximum values of 4° and 7.8° for one side, respectively, as well as 3.5° and 6.7° for the other side. The subsequent double-sided YBCO films are deposited on the as-prepared MgO template with entire critical current of over 300 A/cm for both sides.

  8. Impact of thickness of GaN buffer layer on properties of AlN/GaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We studied the impact of the thickness of GaN buffer layer on the properties of distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition (MOCVD). The samples were characterized by using metallographic microscope, transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometer (XRD) and spectrophotometer. The results show that the thickness of the GaN buffer layer can significantly affect the properties of the DBR structure and there is an optimal thickness of the GaN buffer layer. This work would be helpful for the growth of high quality DBR structures.

  9. Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Isabel van Driessche

    2012-09-01

    Full Text Available In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO films and non-stoichiometric lanthanum zirconate (LZO buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD, starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7−x (YBCO superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5% W/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling.

  10. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.

    Science.gov (United States)

    Jeon, Dong-Hwan; Hwang, Dae-Kue; Kim, Dae-Hwan; Kang, Jin-Kyu; Lee, Chang-Seop

    2016-05-01

    We evaluated a ZnS buffer layer prepared using a chemical bath deposition (CBD) process for application in cadmium-free Cu(In,Ga)Se2 (CIGS) solar cells. The ZnS buffer layer showed good transmittance (above 90%) in the spectral range from 300 to 800 nm and was non-toxic compared with the CdS buffer layers normally used in CIGS solar cells. The CBD process was affected by several deposition conditions. The deposition rate was dependent on the ammonia concentration (complexing agent). When the ammonia concentration was either too high or low, a decrease in the deposition rate was observed. In addition, post heat treatments at high temperatures had detrimental influences on the ZnS buffer layers because portions of the ZnS thin films were transformed into ZnO. With optimized deposition conditions, a CIGS solar cell with a ZnS buffer layer showed an efficiency of 14.18% with a 0.23 cm2 active area under 100 mW/cm2 illumination.

  11. Influence of homo-buffer layers and post-deposition rapid thermal annealing upon atomic layer deposition grown ZnO at 100 °C with three-pulsed precursors per growth cycle

    Science.gov (United States)

    Cheng, Yung-Chen; Yuan, Kai-Yun; Chen, Miin-Jang

    2017-10-01

    ZnO main epilayers are deposited with three-pulsed precursors in every growth cycle at 100 °C on various thicknesses of 300 °C-grown homo-buffer layers by atomic layer deposition (ALD) on sapphire substrate. Samples are treated without and with post-deposition rapid thermal annealing (RTA). Two different annealing temperatures 300 and 1000 °C are utilized in the ambience of oxygen for 5 min. Extremely low background electron concentration 8.4 × 1014 cm-3, high electron mobility 62.1 cm2/V s, and pronounced enhancement of near bandgap edge photoluminescence (PL) are achieved for ZnO main epilayer with sufficient thickness of buffer layer (200 ALD cycles) and post-deposition RTA at 1000 °C. Effective block and remove of thermally unstable mobile defects and other crystal lattice imperfections are the agents of quality promotion of ZnO thin film.

  12. Low-Frequency Noise Properties of GaN Schottky Barriers Deposited on Intermediate Temperature Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    B.; H.; Leung; W.; K.; Fong; C.; Surya; L.; W.; Lu; W.; K.; Ge

    2003-01-01

    Flicker noise and deep level transient spectroscopy were used to characterize defect properties of GaN films with different buffer structures. Results indicate improved properties with the use of intermediate temperature buffer layers due to the relaxation of residue strain in the films.

  13. Microstructures of GaN Buffer Layers Grown on Si(111) Using Rapic Thermal Process Low-Pressure Metalorganic Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Peng; ZHENG You-Dou; JIANG Shu-Sheng; FENG Duan; Z. C. Huang; SHEN Bo; ZHU Jian-Min; CHEN Zhi-Zhong; ZHOU Yu-Gang; XIE Shi-Yong; ZHANG Rong; HAN Ping; GU Shu-Lin

    2000-01-01

    Microstructures of GaN buffer layers grown on Si (111) substrates using rapid thermal process low-pressure metalorganic chemical vapor deposition are investigated by an atomic force microscope (AFM) and a high resolution transmission electron microscope (HRTEM). AFM images show that the islands appear in the GaN buffer layer after annealing at high temperature. Cross-sectional HRTEM micrographs of the buffer region of these samples indicate that there are bunched steps on the surface of the Si substrate and a lot of domains in GaN misorienting each other with small angles. The boundaries of those dowains locate near the bunched steps,and the regions of the film on a terrace between steps have the same crystal orientation. An amorphous-like layer, about 3 nm thick, can also be observed between the GaN buffer layer and the Si substrate.

  14. Electrochemical deposition of zinc oxide on a thin nickel buffer layer on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, E.B., E-mail: eugene.chubenko@gmail.co [Department of Micro and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, P. Brovki str, 6, Minsk 220013 (Belarus); Klyshko, A.A.; Bondarenko, V.P. [Department of Micro and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, P. Brovki str, 6, Minsk 220013 (Belarus); Balucani, M. [Electronics Engineering Department, University of Rome ' La Sapienza' , Rome 00184 (Italy)

    2011-04-15

    Research highlights: {yields} Cyclic voltammograms of ZnO electrochemical deposition. {yields} Parameters of ZnO electrochemical deposition in potentio- and galvanostatic modes. {yields} Crystalline structure of electrochemically deposited continuous ZnO films. {yields} Photoluminescence properties of ZnO films deposition current density dependence. - Abstract: Electrochemical deposition of ZnO from aqueous nitrate solutions on nickel and platinum electrodes was investigated using the voltammetry technique to determine the optimal regimes in both potentiostatic and galvanostatic modes for acquiring polycrystalline ZnO films. Scanning electron microscopy, X-ray diffractometry, and X-ray microanalysis of the formed ZnO films are presented, showing a polycrystalline structure of the ZnO films with a preferable orientation in the (0 0 0 2) direction and an exact stoichiometric composition. The deposited ZnO films demonstrate a strong visible yellow-greenish photoluminescence at room temperature with a maximum at 600 nm that can be referred to crystal lattice oxygen defects. The maximum of the photoluminescence excitation spectrum at 370 nm corresponds to the band gap of ZnO (3.3-3.35 eV) confirming that band-to-band excitation mechanism takes place.

  15. Shallow chemical bath deposition of ZnS buffer layer for environmentally benign solar cell devices

    Science.gov (United States)

    Choubey, R. K.; Kumar, Sunil; Lan, C. W.

    2014-06-01

    Zinc sulfide (ZnS) thin film was grown by a shallow chemical bath deposition (SCBD) technique. In this technique a highly conducting hot plate was used to heat the substrate, while higher thermal gradient was achieved by a shallow bath of the ZnS solution. Consequently, homogeneous nucleation is reduced and quality of ZnS thin films can be improved by shaking. The main advantage of this technique over a traditional one is that the use of solution can be reduced greatly, which is crucial for cost reduction in practice. The effects of shaking on growth kinetics and film properties were investigated by characterizing the as-grown ZnS thin films by x-ray diffraction, transmittance and scanning electron microscopy (SEM).

  16. Influence of double AlN buffer layers on the qualities of GaN films prepared by metal-organic chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Lin Zhi-Yu; Hao Yue; Zhang Jin-Cheng; Zhou Hao; Li Xiao-Gang; Meng Fan-Na; Zhang Lin-Xia; Ai Shan; Xu Sheng-Rui; Zhao Yi

    2012-01-01

    In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double AlN buffer layers.The buffer layer consists of a low-temperature (LT) AlN layer and a high-temperature (HT) AlN layer that are grown at 600 ℃ and 1000 ℃,respectively.It is observed that the thickness of the LT-AlN layer drastically influences the quality of GaN thin film,and that the optimized 4.25-min-LT-AlN layer minimizes the dislocation density of GaN thin film.The reason for the improved properties is discussed in this paper.

  17. Effects of ZnO Buffer Layer Thickness on Properties of MgxZn1-xO Thin Films Deposited by MOCVD

    Institute of Scientific and Technical Information of China (English)

    DONG Xin; LIU Da-li; DU Guo-tong; ZHANG Yuan-tao; ZHU Hui-chao; YAN Xiao-long; GAO Zhong-min

    2005-01-01

    High-quality MgxZn1-xO thin films were grown on sapphire(0001) substrates with a ZnO buffer layer of different thicknesses by means of metal-organic chemical vapor deposition. Diethyl zinc, bis-cyclopentadienyl-Mg and oxygen were used as the precursor materials. The crystalline quality, surface morphologies and optical properties of the MgxZn1-xO films were investigated by X-ray diffraction, atomic force microscopy and photoluminescence spectrometry. It was shown that the quality of the MgxZn1-xO thin films depends on the thickness of the ZnO buffer layer and an MgxZn1-xO thin film with a ZnO buffer layer whose thickness was 20 nm exhibited the best crystal-quality, optical properties and a flat and dense surface.

  18. Effect of Buffer Layer on Epitaxial Growth of YSZ Deposited on Si Substrate by Slower Q-switched 266 nm YAG Laser

    Science.gov (United States)

    Kaneko, Satoru; Akiyama, Kensuke; Shimizu, Yoshitada; Ito, Takeshi; Yasaka, Shinji; Mitsuhashi, Masahiko; Ohya, Seishiro; Saito, Keisuke; Watanabe, Takayuki; Okamoto, Shoji; Funakubo, Hiroshi

    2004-04-01

    Yttria-stabilized zirconia (YSZ) was grown on Si(100) substrate by pulsed laser deposition (PLD). The laser used in this study was a 266 nm YAG laser with a second function generator modulating only the Q-switch while the primary generator modulated the flash lamp (slower Q-switch). Epitaxial growth was verified on YSZ film deposited without oxygen gas followed by primary deposition in oxygen atmosphere on Si substrate with a ˜0.4-nm-thin oxide layer. The crystallinity was strongly dependent on the thickness of the buffer layer deposited prior to the primary deposition of YSZ. The epitaxial growth was confirmed by φ scan, and ω scan (rocking curve) showed the full width at half maximum (FWHM) of 1.1 deg. The required oxygen pressure for epitaxial growth was quite high compared to that of excimer deposition.

  19. Development and application of a green-chemistry solution deposition technique for buffer layer coating on cube-textured metal substrates in view of further deposition of rare-earth based superconductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P

    , allowing the epitaxial growth of the superconducting layer. State-of-the-art coated conductor hetero structures are mainly based on CeO2 based buffer stacks that consist of a sequence of several different buffer layers. Buffer layers deposited by continuous chemical deposition techniques, which...... and hazardous chemicals such as 2-methoxyethanol, and trifluroacetic acid (TFA). Therefore, in our research the main focus was on the development of SrTiO3 single buffer layers based on environmentally safe chemicals, to reach the engineering requirements for continuous coating of long substrate tapes. A new......Superconductor based energy production has been thoroughly researched by many scientists all over the world, due to the advantage of zero electric resistance that will contribute to the energy saving capabilities. Recently successful developments have been reported in coated conductor architectures...

  20. Buffer layers on biaxially textured metal substrates

    Science.gov (United States)

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  1. Effect of a ZnO buffer layer on the properties of epitaxial ZnO:Ga films deposited on c-sapphire substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyun, E-mail: zhangzhiyun01@163.com [School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi Province 710054 (China); Bao, Chonggao [State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049 (China); Yi, Dawei [School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi Province 710054 (China); Yang, Bo [No. 95 Binhai Road, Jiaojiang, Taizhou, Zhejiang Province 318000 (China); Li, Qun; Hou, Shuzeng [State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049 (China); Han, Z.H. [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province 710068 (China)

    2014-09-01

    Highlights: • The lowest resistivity of 1.2 × 10{sup –4} Ω cm was obtained at a ZnO buffered substrate. • The characteristic of c-axis oriented texture grows up at different substrates. • Two kinds of stacking faults were observed at Fourier-filtered images. • Origin and consequences of stacking faults were discussed. • Lower defect density of film has a benefit effect on the resistivity. - Abstract: Bi-layer ZnO films with 2 wt.% Al (AZO; ZnO:Al) and 4 wt.% Ga-doped (GZO; ZnO:Ga) were deposited on the non-buffered and buffered c(0 0 0 1)-sapphire(Al{sub 2}O{sub 3}) substrates respectively by Pulsed Laser Deposition (PLD). The effect of a ZnO buffer layer on the crystallinity and electrical properties of the GZO thin films was investigated. X-ray Diffraction (XRD) peaks and High Resolution Transmission Electron Microscopy (HRTEM) studies showed that the GZO thin film on a buffered substrate was epitaxially grown with an orientation relationship of (0 0 0 1) [112{sup ¯}0]{sub GZO}||(0001)[112{sup ¯}0]{sub Al{sub 2O{sub 3}}}. However, GZO thin film on a non-buffered substrate was grown as a monocrystalline hexagonal wurtzite phase with c-axis preferred, out-of-plane orientation, and random in-plane orientation. The electrical resistivity of the GZO thin films was improved by introducing a ZnO buffer layer from 2.2 × 10{sup -4} Ω cm to 1.2 × 10{sup -4} Ω cm, respectively. In a word, it was found in the films that more preferred c-axis orientation texture and reduction of the defects such as stacking faults and dislocations, with introducing a ZnO buffer layer. It was seen that the ZnO buffer layer had a great influence on the orientation and defect density of GZO thin films from X-ray Diffraction (XRD) peaks and High Resolution Transmission Electron Microscopy (HRTEM) images.

  2. Electro deposited In{sub 2}S{sub 3} buffer layers for CuInS{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, T.; Carda, J.; Escribano, P. [Departamento de Quimica Inorganica y Organica, Universidad Jaime I, Campus Riu Sec, 12071Castellon de la Plana 12071 (Spain); Grimm, A.; Klaer, J.; Klenk, R. [Hahn-Meitner-Institut, Glienickerstr. 100, D14109 Berlin (Germany)

    2008-10-15

    We report the electro deposition of In{sub 2}S{sub 3} buffer layers for CuInS{sub 2} solar cells. All materials and deposition conditions were selected taking into account environmental, economic and technological aspects of a potential transfer to large volume industrial production. Different bath compositions and electro deposition parameters were studied. The obtained films exhibited complete substrate coverage, confirmed by SEM and XPS. In/S ratio close to 2/3 was obtained. XPS measurements detected the presence of indium hydroxide, transforming into oxide upon anneal at 200 C. Maximum photoelectric conversion efficiency of 7.1% was obtained, limited mainly by a low fill factor (51%). Further process optimization is expected to lead to efficiencies comparable to CdS buffers. So far, open-circuit voltages as high as 660 mV were demonstrated. (author)

  3. Growth of thick La{sub 2}Zr{sub 2}O{sub 7} buffer layers for coated conductors by polymer-assisted chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin, E-mail: xzhang@my.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Xia, Yudong [State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Chunsheng [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhang, Yong [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Han [Department of Physics, Peking University, Beijing 100871 (China)

    2015-06-15

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La{sub 2}Zr{sub 2}O{sub 7} (LZO) epitaxial films have been deposited on LaAlO{sub 3} (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm{sup 2} at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  4. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS sub 2 thin film solar cells

    CERN Document Server

    Kaufmann, C A

    2002-01-01

    different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS sub 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) sub x S sub y or In(OH,O) sub x S sub y. In the case of In(OH,O) sub x S sub y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell characteristics could be developed. A CulnS sub 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS sub 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering...

  5. Back contact buffer layer for thin-film solar cells

    Science.gov (United States)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  6. Back contact buffer layer for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  7. Fast chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Buffiere, M., E-mail: Marie.Buffiere@cnrs-imn.fr; Harel, S.; Arzel, L.; Deudon, C.; Barreau, N.; Kessler, J.

    2011-08-31

    In order to decrease the deposition time of chemical bath deposited (CBD) Zn(O,S) buffer layers in CIGSe solar cell, the alternative CBD route using H{sub 2}O{sub 2} as additional oxygen source has been investigated. The morphology and the optical properties of the Zn(O,S) thin films grown with and without additive have been compared through scanning electron microscopy (SEM) observations and UV-visible transmission T({lambda}) and reflectivity R({lambda}) measurements, respectively. It is observed that deposition time shorter than 5 min is sufficient to achieve films with similar properties to those deposited following the standard recipe in 15 min. The characteristics of CIGSe/Zn(O,S) structures for which the Zn(O,S) growth has been interrupted after different bath immersion durations have been investigated by XPS measurements. The evolution of the In3d and Zn2p{sub 3/2} signals reveals that after 2 min of deposition, the Zn(O,S) layer grown by the alternative process completely covers the CIGSe and suggests that the increase of the Zn(O,S) growth rate is most probably due to the acceleration of cluster mechanism growth. A comparative study of devices buffered with the so-called fast and standard Zn(O,S) shows similar efficiencies in either case after light soaking.

  8. Impact of NiOx Buffer Layers on the Dielectric Properties of BaTiO3 Thin Films on Nickel Substrates Fabricated by Polymer Assisted Deposition

    Directory of Open Access Journals (Sweden)

    Hui Du

    2015-01-01

    Full Text Available Structural health monitoring with piezoelectric thin films integrated on structural metals shows great advantages for potential applications. However, the integration of piezoelectric thin films on structure metals is still challenged. In this paper, we report the piezoelectric barium titanate [BaTiO3 (BTO] thin films deposited on polycrystalline Ni substrates by the polymer assisted deposition (PAD method using NiOx as the buffer layers. The NiOx buffer layers with different thicknesses were prepared by varying immersing time from 5 minutes to 4 hours in H2O2 solution. The dielectric and leakage current properties of the thin films have been studied by general test systems. The BTO/Ni heterostructure with 2-hour immersing time exhibits better dielectric properties with a dielectric constant over 1500 and a 34.8% decrease of the dielectric loss compared to that with 5-minute immersing time. The results show that the leakage current density is strongly affected by the thickness of the NiOx buffer layer. The conduction mechanisms of the BTO/Ni heterostructure have been discussed according to the J-V characteristic curves.

  9. The structural transition from epitaxial Fe/Pt multilayers to an ordered FePt film using low energy ion beam sputtering deposition with no buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chih-Hao, E-mail: chlee@mx.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yu-Sheng [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Liu, Li-Jung [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Huang, J.C.A. [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    An epitaxial L1{sub 0} FePt thin film grown from an [Fe(10 Å)/Pt(10 Å)]{sub 15} multilayer with the orientation of (001) was prepared by an ion beam sputtering deposition method without buffer layer. From the measurement data of X-ray diffraction and X-ray reflectivity, the multilayer structure was totally disappeared and a uniform FePt alloy thin film was formed at temperatures higher than 600 °C. For the as-deposited thin film grown at 100 °C, the multilayer already possesses an epitaxial structure. The epitaxial relation is FePt(001)[100]//MgO(001)[100] and this epitaxial relation persists after sequential high temperature annealing. An epitaxial L1{sub 0} ordered FePt(001) film with order parameter of 0.95 was obtained when the annealing temperature reached 650 °C. The ordered FePt(001) thin film has a perpendicular magnetic anisotropy with a squareness of 0.95 ± 0.03 on the magnetic hysteresis loop. This experiment demonstrates that the low energy ion beam sputtering deposition will preserve the epitaxial relation with no buffer layer between multilayer and substrate. - Highlights: • The Fe/Pt films using ion sputtering deposition with no buffer layer is epitaxial. • Multilayer structure was totally disappeared at temperatures higher than 600 °C. • Order parameter reach 0.95 after annealing at 650 °C. • Interfacial epitaxial FePt alloy already formed at 100 °C.

  10. Reduction of the deposition temperature of high quality EuO films on Yttria Stabilized Zirconia by incorporating an MgO buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Moder, Iris [Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Torre C3-222, 08193 Bellaterra (Spain); Garcia, Gemma, E-mail: gemma.garcia@uab.cat [Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Torre C3-222, 08193 Bellaterra (Spain); Santiso, José [Centre d' Investigació en Nanociència i Nanotecnologia, CIN2 (CSIC/ICN), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Moodera, Jagadeesh S.; Miao, Guoxing X. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lopeandía, Aitor F. [Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Torre C3-222, 08193 Bellaterra (Spain); Rodríguez-Viejo, Javier [Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Torre C3-222, 08193 Bellaterra (Spain); MATGAS Research Centre, Campus UAB, 08193 Bellaterra (Spain)

    2013-03-01

    High quality stoichiometric EuO ferromagnetic thin films have been grown by Molecular Beam Epitaxy (MBE) on MgO coated-Yttria Stabilized Zirconia (YSZ) (100) substrates. The proof is made that introducing an MgO buffer layer, that avoid oxygen transfer from YSZ to EuO, allows the preparation of high quality stoichiometric EuO films at reduced deposition temperature compared with films directly deposited onto YSZ, maintaining similar Eu flux and oxygen partial pressure. Structure and texture were characterized by X-ray diffraction showing out-of plane and in-plane ordering for films deposited onto MgO buffer layers. The crystallographic quality was corroborated by a Curie temperature around 69 K and a magnetization moment close or equal to 6.49 · 10{sup −23} J/T (7 μ{sub B}), corresponding to bulk EuO single crystal values. - Highlights: ► EuO films were epitaxially grown on MgO coated Yttria Stabilized Zirconia. ► Deposition temperature was reduced compared to bare Yttria Stabilized Zirconia. ► Epitaxial texture was confirmed by in-plane X-ray diffraction. ► Composition of the heterostructure was defined by X-ray Photoelectron Spectroscopy. ► Single crystal like EuO magnetic moment and coercive field were measured.

  11. Doped LZO buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  12. Improved performance of organic light-emitting diodes fabricated on Al-doped ZnO anodes incorporating a homogeneous Al-doped ZnO buffer layer grown by atomic layer deposition.

    Science.gov (United States)

    Choi, Yong-June; Gong, Su Cheol; Park, Chang-Sun; Lee, Hong-Sub; Jang, Ji Geun; Chang, Ho Jung; Yeom, Geun Young; Park, Hyung-Ho

    2013-05-01

    In this work, we investigated the use of a homogeneous Al-doped zinc oxide (AZO) buffer layer to improve the performance of an organic light-emitting diode (OLED) device fabricated on an AZO anode. For this, 10-nm-thick AZO buffer layers with Al doping concentrations of 3.1, 4.1, and 5.1 at % were grown on 140-nm-thick AZO anode films containing 2.1 at % Al by atomic layer deposition. The electrical resistivity of the AZO anode with a homogeneous AZO buffer layer decreased with an increase in Al doping concentration up to 4.1 at %; however, the resistivity increased at higher doping concentrations in the AZO buffer layer. On the other hand, the work functions of the AZO anode with the AZO buffer layer containing various Al doping concentrations gradually increased with an increase in Al doping concentration from 3.1 to 5.1 at %. Therefore, the best film properties were obtained for an AZO anode with an AZO buffer layer containing 4.1 at % Al, and the work function value for this film was 4.64 eV. The highest luminance and current efficiency values were optimized to be 20290 cd/m(2) and 13.4 cd/A, respectively, with the OLED device composed of a DNTPD/TAPC/Bebq2:10% doped RP-411/Bphen/LiF/Al structure on an AZO anode with an AZO buffer layer containing 4.1 at % Al.

  13. Effects of the AlN buffer layer thickness on the properties of ZnO films grown on c-sapphire substrate by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, H. [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Dai, J.N., E-mail: daijiangnan@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Hui, Xiong; Fang, Y.Y.; Tian, W.; Fu, D.X. [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, C.Q., E-mail: cqchen@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Mingkai; He, Yunbin [Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China)

    2013-03-25

    Highlights: ► High-quality c-plane ZnO films can be achieved by PLD. ► The rocking curve with FWHM of 0.09° by using 150 nm-thickness AlN/c-sapphire template. ► The properties of ZnO films were studied by AFM, XRD, PL and Raman measurements. ► We report on the fabrication of ZnO films with different thicknesses of AlN buffer layers. -- Abstract: In this work, ZnO films with high crystal quality were grown by pulsed laser deposition (PLD) on different c-plane AlN/c-sapphire template thereby the thicknesses of AlN buffer layers varied from 150 to 300 nm. The properties of ZnO thin films were studied by using high-resolution X-ray diffraction, atomic force microscopy, photoluminescence spectroscopy, and Raman measurement. The comparative investigation results show that inserting an AlN buffer layer is an effective way to improve the crystal quality of ZnO films. Furthermore, the thickness of the AlN buffer layer plays an important role on the quality of ZnO films. The result of (0 0 0 2) ω-rocking curve with the full width at half maximum (FWHM) of 0.09° indicates that high-quality c-plane ZnO films can be achieved by using a 150 nm-thickness AlN/c-sapphire template. In the best knowledge of the authors, this is the minimum value reported at present for ZnO films grown on AlN/c-sapphire templates by PLD.

  14. Zigzag and Helical AlN Layer Prepared by Glancing Angle Deposition and Its Application as a Buffer Layer in a GaN-Based Light-Emitting Diode

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2012-01-01

    Full Text Available This study investigates an aluminum nitride (AlN nanorod structure sputtered by glancing angle deposition (GLAD and its application as a buffer layer for GaN-based light-emitting diodes (LEDs that are fabricated on sapphire substrates. The ray tracing method is adopted with a three-dimensional model in TracePro software. Simulation results indicate that the zigzag AlN nanorod structure is an optimal buffer layer in a GaN-based LED. Furthermore, the light output power of a GaN-based LED with a zigzag AlN nanorod structure improves to as much as 28.6% at a forward current of 20 mA over that of the GaN-based LED with a normal AlN buffer layer.

  15. Effects of annealing in Be/W and Be/C bilayers deposited on Si(0 0 1) substrates with Fe buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Schinteie, G. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Greculeasa, S.G., E-mail: simona.greculeasa@infim.ro [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Bucharest University, Faculty of Physics, 077125 Bucharest-Magurele (Romania); Palade, P.; Lungu, G.A. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Porosnicu, C.; Jepu, I.; Lungu, C.P. [National Institute for Laser, Plasma and Radiation Physics, 77125 Bucharest-Magurele (Romania); Filoti, G.; Kuncser, V. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania)

    2015-02-15

    Highlights: • Be/W, Be/C layers deposited by TVA on Si substrate with thin sputtered Fe buffers. • Fe films were hydrogenated (300 °C); Be/W and Be/C were annealed in vacuum (600 °C). • Increase of oxidation near the surface; the hydrogenation reduces oxidation. • The annealing induces high interatomic diffusion all over the structure. • Mixed phases are formed by annealing: Fe–Be, Fe–C; no Fe–W phases are evidenced. - Abstract: Atomic intermixing processes in relation to structural aspects and phase formation in Be based thin films subjected to different annealing treatments simulating the case of re-deposited layered structures on plasma facing components in nuclear fusion devices are reported. Accordingly, bilayers of Be/W and Be/C have been deposited on Si(0 0 1) substrates with Fe buffer layers. The Fe films have been prepared by radiofrequency sputtering and further processed by annealing in hydrogen atmosphere at 300 °C, for 90 min, at a pressure of 10 bars of H{sub 2}. After the Be/W and Be/C bilayer deposition by means of thermionic vacuum arc method, annealing in vacuum at 600 °C, for 10 min has been applied to the complex structures. The influence of annealing on the phase composition and atomic intermixing processes in the complex structures has been studied by means of X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The layered structures present an oxidation gradient with oxide phases in the uppermost layers and non-oxidized phases in the lower layers, as observed from the XPS data. The CEMS results revealed that the as-deposited structures contain a main metallic Fe phase and secondary superparamagnetic Fe oxide phases at the Fe/Be interface, while annealed samples present a large contribution of Fe–Be and Fe–C mixtures. The annealing treatment induces considerable atomic interdiffusion, strongly dependent on the nature of the upper layer. In the case of Be/W system, the annealing

  16. Incorporation of La in epitaxial SrTiO3 thin films grown by atomic layer deposition on SrTiO3-buffered Si (001) substrates

    Science.gov (United States)

    McDaniel, Martin D.; Posadas, Agham; Ngo, Thong Q.; Karako, Christine M.; Bruley, John; Frank, Martin M.; Narayanan, Vijay; Demkov, Alexander A.; Ekerdt, John G.

    2014-06-01

    Strontium titanate, SrTiO3 (STO), thin films incorporated with lanthanum are grown on Si (001) substrates at a thickness range of 5-25 nm. Atomic layer deposition (ALD) is used to grow the LaxSr1-xTiO3 (La:STO) films after buffering the Si (001) substrate with four-unit-cells of STO deposited by molecular beam epitaxy. The crystalline structure and orientation of the La:STO films are confirmed via reflection high-energy electron diffraction, X-ray diffraction, and cross-sectional transmission electron microscopy. The low temperature ALD growth (˜225 °C) and post-deposition annealing at 550 °C for 5 min maintains an abrupt interface between Si (001) and the crystalline oxide. Higher annealing temperatures (650 °C) show more complete La activation with film resistivities of ˜2.0 × 10-2 Ω cm for 20-nm-thick La:STO (x ˜ 0.15); however, the STO-Si interface is slightly degraded due to the increased annealing temperature. To demonstrate the selective incorporation of lanthanum by ALD, a layered heterostructure is grown with an undoped STO layer sandwiched between two conductive La:STO layers. Based on this work, an epitaxial oxide stack centered on La:STO and BaTiO3 integrated with Si is envisioned as a material candidate for a ferroelectric field-effect transistor.

  17. Buffer layers for REBCO films for use in superconducting devices

    Science.gov (United States)

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  18. The Effect of Sintering Oxygen Partial Pressure on a SmBiO3 Buffer Layer for Coated Conductors via Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhu

    2016-10-01

    Full Text Available The application of high-temperature YBa2Cu3O7−δ (YBCO superconducting material is a considerable prospect for the growing energy shortages. Here, SmBiO3 (SBO films were deposited on (100-orientated yttrium-stabilized zirconia (YSZ simple crystal substrates via the chemical solution deposition (CSD approach for coated conductors, and the effects of sintering oxygen partial pressure on SBO films were studied. The crystalline structures and surface morphologies of SBO films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and atomic force microscope (AFM. The optimized growth temperature, the intensity ratios of the SBO (200 peak to the SBO (111 peak, and the crystallinities of SBO films increased with the sintering oxygen partial pressure. The SEM and AFM images displayed a smooth and well-distributed surface in the argon atmosphere. The subsequent YBCO films with superconducting transition temperatures (Tc = 89.5 K, 90.2 K, and 86.2 K and critical current densities (Jc = 0.88 MA/cm2, 1.69 MA/cm2, and 0.09 MA/cm2; 77 K, self-field were deposited to further check the qualities of the SBO layer. These results indicated that sintering oxygen partial pressure had an effect on the epitaxial growth of the SBO buffer layer and YBCO superconducting properties. The experimental results may be a usable reference for the epitaxial growth of YBCO-coated conductors and other oxides.

  19. Buffer layers and articles for electronic devices

    Science.gov (United States)

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  20. The effect of SiO{sub 2} buffer layer on the electrical and structural properties of Al-doped ZnO films deposited on soda lime glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ri, K.H., E-mail: gangxianli@yahoo.cn [Department of Electric Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Y.B.; Zhou, W.L.; Gao, J.X.; Wang, X.J. [Department of Electric Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, J., E-mail: jyu@mail.hust.edu.cn [Department of Electric Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-04-15

    In this paper, the influence of SiO{sub 2} buffer layer on electrical and structural properties of AZO films on soda lime glasses has been investigated. The results showed that the Hall mobility and carrier concentration of AZO films deposited on soda lime glasses at high temperature could be enhanced by introducing SiO{sub 2} layers. The optical absorption edges of AZO films with SiO{sub 2} buffer layer are blue shifted compared with that of buffer layer free due to the increase of carrier concentration. SiO{sub 2} layers prepared at 400 deg. C more effectively suppress the diffusion of Na atoms into AZO films compared with that prepared at room temperature. On the other hand, the in-plane stress dependence of optical band gap is linear for AZO films deposited on quartz glass substrates, but is deviated from linearity in the case of soda lime glass substrates.

  1. Methods for improved growth of group III nitride buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  2. Methods for improved growth of group III nitride buffer layers

    Science.gov (United States)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  3. Impact of the deposition conditions of buffer and windows layers on lowering the metastability effects in Cu(In,Ga)Se2/Zn(S,O)-based solar cell

    Science.gov (United States)

    Naghavi, Negar; Hildebrandt, Thibaud; Bouttemy, Muriel; Etcheberry, Arnaud; Lincot, Daniel

    2016-02-01

    The highest and most reproducible (Cu(In,Ga)Se2 (CIGSe) based solar-cell efficiencies are obtained by use of a very thin n-type CdS layer deposited by chemical bath deposition (CBD). However because of both Cadmium's adverse environmental impact and the narrow bandgap of CdS (2.4-2.5 eV) one of the major objectives in the field of CIGSe technology remains the development and implementation in the production line of Cd-free buffer layers. The CBDZn( S,O) remains one the most studied buffer layer for replacing the CdS in Cu(In,Ga)Se2-based solar cells and has already demonstrated its potential to lead to high-efficiency solar cells up to 22.3%. However one of the key issue to implement a CBD-Zn(S,O) process in a CIGSe production line is the cells stability, which depends both on the deposition conditions of CBD-Zn(S,O) and on a good band alignment between CIGSe/Zn(S,O)/windows layers. The most common window layers applied in CIGSe solar cells consist of two layers : a thin (50-100 nm) and highly resistive i-ZnO layer deposited by magnetron sputtering and a transparent conducting 300-500 nm ZnO:Al layer. In the case of CBD-Zn(S,O) buffer layer, the nature and deposition conditions of both Zn(S,O) and the undoped window layer can strongly influence the performance and stability of cells. The present contribution will be specially focused on the effect of condition growth of CBD-Zn(S,O) buffer layers and the impact of the composition and deposition conditions of the undoped window layers such as ZnxMgyO or ZnxSnyO on the stability and performance of these solar cells.

  4. Buffer layer for thin film structures

    Science.gov (United States)

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  5. Growth and characterization of epitaxial anatase TiO{sub 2}(001) on SrTiO{sub 3}-buffered Si(001) using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, M.D. [University of Texas at Austin, Department of Chemical Engineering, Austin, TX 78712 (United States); Posadas, A. [University of Texas at Austin, Department of Physics, Austin, TX 78712 (United States); Wang, T. [University of Texas at Austin, Department of Chemical Engineering, Austin, TX 78712 (United States); Demkov, A.A. [University of Texas at Austin, Department of Physics, Austin, TX 78712 (United States); Ekerdt, J.G., E-mail: ekerdt@che.utexas.edu [University of Texas at Austin, Department of Chemical Engineering, Austin, TX 78712 (United States)

    2012-08-31

    Epitaxial anatase titanium dioxide (TiO{sub 2}) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO{sub 2} was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225-250 Degree-Sign C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 Degree-Sign C in vacuum (10{sup -7} Pa) for 1-2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO{sub 2} by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO{sub 2} growth. X-ray diffraction revealed that the TiO{sub 2} films were anatase with only the (004) reflection present at 2{theta} = 38.2 Degree-Sign , indicating that the c-axis is slightly reduced from that of anatase powder (2{theta} = 37.9 Degree-Sign ). Anatase TiO{sub 2} films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates. - Highlights: Black-Right-Pointing-Pointer Epitaxial anatase films are grown by atomic layer deposition (ALD) on Si(001). Black-Right-Pointing-Pointer Four unit cells of SrTiO{sub 3} on silicon create a stable template for ALD. Black-Right-Pointing-Pointer TiO{sub 2} thin films have a compressed c-axis and an expanded a-axis. Black-Right-Pointing-Pointer Up to 100 nm thick TiO{sub 2} films remain highly ordered in the (001) direction.

  6. Buffer layers for high-Tc thin films on sapphire

    Science.gov (United States)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  7. Buffer layers for high-Tc thin films on sapphire

    Science.gov (United States)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  8. Characterization of GaN Buffer Layers and Its Epitaxial Layers Grown by MOCVD

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Low-pressure MOCVD has been used to investigate the properties of low-temperature buffer layer deposition conditions and their influence on the properties of high-temperature GaN epilayers grown subsequently. It is found that the surface morphology of the as-grown buffer layer after thermal annealing at 1030℃ and 1050℃ depends strongly on the thickness of the buffer layer. In particular when a thick buffer layer is used, large trapezoidal nuclei are formed after annealing.

  9. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  10. Aspects of the SrO-CuO-TiO2 Ternary System Related to the Deposition of SrTiO3 and Copper-Doped SrTiO3 Thin-Film Buffer Layers

    Energy Technology Data Exchange (ETDEWEB)

    A. Ayala

    2004-12-20

    YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) coated conductors are promising materials for large-scale superconductivity applications. One version of a YBCO coated conductor is based on ion beam assisted deposition (IBAD) of magnesium oxide (MgO) onto polycrystalline metal substrates. SrTiO{sub 3} (STO) is often deposited by physical vapor deposition (PVD) methods as a buffer layer between the YBCO and IBAD MgO due to its chemical stability and lattice mismatch of only {approx}1.5% with YBCO. In this work, some aspects of the stability of STO with respect to copper (Cu) and chemical solution deposition of STO on IBAD MgO templates were examined. Solubility limits of Cu in STO were established by processing Cu-doped STO powders by conventional bulk preparation techniques. The maximum solubility of Cu in STO was {approx}1% as determined by transmission electron microscopy (TEM) and Rietveld refinements of x-ray diffraction (XRD) data. XRD analysis, performed in collaboration with NIST, on powder compositions on the STO/SrCuO{sub 2} tie line did not identify any ternary phases. SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer layers were prepared by pulsed laser deposition (PLD) and CSD on IBAD MgO flexible metallic textured tapes. TEM analysis of a {approx}100 nm thick SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer layer deposited by PLD showed a smooth Cu-doped STO/MgO interface. A {approx}600 nm thick YBCO film, deposited onto the SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer by PLD, exhibited a T{sub c} of 87 K and critical current density (J{sub c}) of {approx}1 MA/cm{sup 2}. STO and Cu-doped STO thin films by CSD were {approx}30 nm thick. The in plane alignment (FWHM) after deposition of the STO improved by {approx}1{sup o} while it degraded by {approx}2{sup o} with the SrCu{sub 0.05}TiO{sub y} buffer. YBCO was deposited by PLD on the STO and SrCu{sub 0.05}TiO{sub y} buffers. The in plane alignment (FWHM) of the YBCO with the STO buffer layer slightly improved while that of the

  11. Spray-Pyrolyzed Three-Dimensional CuInS2 Solar Cells on Nanocrystalline-Titania Electrodes with Chemical-Bath-Deposited Inx(OH)ySz Buffer Layers

    Science.gov (United States)

    Nguyen, Duy-Cuong; Mikami, Yuki; Tsujimoto, Kazuki; Ryo, Toshihiro; Ito, Seigo

    2012-10-01

    Three-dimensional (3D) compound solar cells with the structure of TiO2/compact TiO2/florin-doped tin-oxide-coated glass plates> have been fabricated by spray pyrolysis deposition of CuInS2 and chemical-bath deposition of Inx(OH)ySz for the light absorber and buffer layer, respectively. The effect of deposition and annealing conditions of Inx(OH)ySz on the photovoltaic properties of 3D CuInS2 solar cells was investigated. Inx(OH)ySz annealed in air ambient showed a better cell performance than those annealed in nitrogen ambient and without annealing. The improvement of the performance of cells with Inx(OH)ySz buffer layers annealed in air ambient is due to the increase in oxide concentration in the buffer layers [confirmed by X-ray photoelectron spectroscopy (XPS) measurement]. Among cells with Inx(OH)ySz buffer layers deposited for 1, 1.5, 1.75, and 2 h, that with Inx(OH)ySz deposited for 1.75 h showed the best cell performance. The best cell performance was observed for Inx(OH)ySz deposited for 1.75 h with annealing at 300 °C for 30 min in air ambient, and cell parameters were 22 mA cm-2 short-circuit photocurrent density, 0.41 V open-circuit voltage, 0.35 fill factor, and 3.2% conversion efficiency.

  12. Preparation of second buffer layers on IBAD tapes by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Sutoh, Y.; Kakimoto, K.; Iijima, Y.; Ajimura, S.; Saitoh, T

    2004-10-01

    We have studied the crystalline texture improvement of the second buffer layers of Gd{sub 2}Zr{sub 2}O{sub 7} and CeO{sub 2} grown by pulsed laser deposition (PLD) on the first buffer layer of biaxially aligned Gd{sub 2}Zr{sub 2}O{sub 7} film, which formed by ion-beam-assisted deposition (IBAD) with {delta}phi of 10 deg. on metal tape. The {delta}phi for the second buffer layers rapidly decreased with the thickness, and reached 5 deg. at the thickness of 1.4 and 0.8 {mu}m, for Gd{sub 2}Zr{sub 2}O{sub 7} and CeO{sub 2}, respectively. TEM observations indicated that sharply textured second buffer layers had largely grown grains with the diameters near 1 {mu}m. Severe contrasts in TEM from dense defect structures were observed in the initial growth stage of PLD, which gradually relaxed with the growth thickness. J{sub C} of 2.9 MA/cm{sup 2} were obtained in a 10 cm long Y-123 film by using the sharply aligned CeO{sub 2} second buffer layer on IBAD-Gd{sub 2}Zr{sub 2}O{sub 7} template tape.

  13. Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates

    Science.gov (United States)

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2002-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  14. MgO buffer layers on rolled nickel or copper as superconductor substrates

    Science.gov (United States)

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2001-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  15. Buffer layers on rolled nickel or copper as superconductor substrates

    Science.gov (United States)

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  16. Studies on chemical bath deposited CdS buffer layers for CIGS thin film solar cells%CIGS薄膜太阳能电池缓冲层CdS薄膜的制备研究

    Institute of Scientific and Technical Information of China (English)

    何丽秋

    2016-01-01

    目前CdS材料的制备方法有很多种,但是最常用的是化学水浴法。本文研究了浓度、反应溶液pH值、温度、沉积时间对CdS缓冲层薄膜的影响,对CIGS薄膜太阳能电池缓冲层CdS薄膜的制备方法进行了论述。%At present,the preparation methods of CdS has many kinds,The chemical bath deposition(CBD)is the most commonly method.In this review,the effects of concentration,pH,temperature and deposition time on the CdS buffer layer were studied.The preparation methods of CIGS thin film for CdS thin film solar cells were discussed.

  17. CIGS薄膜太阳能电池无镉缓冲层制备方法的研究现状%Deposition Technologies of Cd-Free Buffer Layers in Solar Cells Made of Copper Indium Gallium Diselenide Films

    Institute of Scientific and Technical Information of China (English)

    霍晓旭; 莫晓亮; 陈国荣

    2012-01-01

    The latest progress in the development of deposition technology of the Cd-free buffer layers in the solar cells made of copper indium gallium diselenide(CIGS) films was tentatively reviewed.The discussions focused on three topics: first, the film growth techniques and related properties of the three alternative Cd-free buffer layer materials (In2S3,ZnS,and Zn1-xMgxO) ; next,the possible impacts of the three alternative films and their deposition techniques on the fabrication and performance of the solar cells; finally, the development trends of the Cd-free layers in fabricating the CIGS solar cells.The strengths and weaknesses of the techniques, including the chemical bath deposition(CBD) , atomic layer deposition (AID) and sputtering depositions, on industrial scale production were evaluated in a thought-provoking way. We suggest that the sputtering deposition be most feasible to large scale industrial production. The technical problems to be solved were also discussed.%回顾了近年来CIGS薄膜太阳能电池无镉缓冲层的研究进展;着重介绍了In2S3,ZnS,Zn1-xMgxO三种可替代CdS缓冲层材料的常用制备方法及相关特性,并且对应给出了每种材料和方法获得的电池组件效率.展望了无镉缓冲层的发展前景,分析了化学水浴、原子层沉积、溅射三种缓冲层沉积技术各自在大规模工业化应用中的优劣势.认为溅射沉积技术是现阶段最理想的工业化制备技术,同时指出了无镉缓冲层在大规模工业化应用中亟需解决的问题.

  18. Layer-by-layer growth of high-optical-quality ZnO film on atomically smooth and lattice relaxed ZnO buffer layer

    OpenAIRE

    2003-01-01

    The growth mode of ZnO thin films can be well regulated in a molecular layer-by-layer growth by employing a ZnO buffer layer deposited on a lattice-matched ScAlMgO4 substrate and annealed at high temperature. The annealed buffer layer has atomically flat surface and relaxed (strain-free) crystal structure. The intensity oscillation of reflection high-energy electron diffraction persisted for more than a 100-nm film deposition under optimized conditions on such a buffer layer. Thus prepared th...

  19. HV/CVD Grown Relaxed SiGe Buffer Layers for SiGe HMOSFETs

    Institute of Scientific and Technical Information of China (English)

    黄文韬; 罗广礼; 史进; 邓宁; 陈培毅; 钱佩信

    2003-01-01

    High-vacuum/chemical-vapor deposition (HV/CVD) system was used to grow relaxed SiGe buffer layers on Si substrates. Several methods were then used to analyze the quality of the SiGe films. X-ray diffraction and Raman spectroscopy showed that the upper layer was almost fully relaxed. Second ion mass spectroscopy showed that the Ge compositions were step-graded. Transmission electron microscopy showed that the misfit dislocations were restrained to the graded SiGe layers. Tests of the electrical properties of tensile-strained Si on relaxed SiGe buffer layers showed that their transconductances were higher than that of Si devices. These results verify the high quality of the relaxed SiGe buffer layer. The calculated critical layer thicknesses of the graded Si1-xGex layer on Si substrate and a Si layer on the relaxed SiGe buffer layer agree well with experimental results.

  20. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  1. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    Science.gov (United States)

    Thuy, T. T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G. G.; Cloet, V.; Van Driessche, I.

    2010-09-01

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO 2 layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 °C and 5-30 min at 1050 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO 2 films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained.

  2. Thin film photovoltaic devices with a minimally conductive buffer layer

    Science.gov (United States)

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  3. ZnO/CdS/CuInSe{sub 2} photovoltaic cells fabricated using chemical bath deposited CdS buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S.N.; Lam, W.W.; Qiu, C.X.; Shih, I. [Department of Electrical Engineering, McGill University, Montreal, PQ (Canada)

    1997-04-14

    CdS thin films have been prepared by using chemical bath deposition. The effects of bath temperature and concentration of NH{sub 4}OH were studied. Optimum deposition conditions were established. The resulted CdS thin films exhibit optical transmissions in excess of 90 over the majority of the solar spectrum. ZnO/CdS/CuInSe{sub 2} solar cells were fabricated on electrodeposited CuInSe{sub 2} thin films. A conversion efficiency of 6.3 was obtained with an active area of 7.8 mm{sup 2} (no AR coating)

  4. Effects of the ZnO buffer layer and Al proportion on AZO film properties

    Institute of Scientific and Technical Information of China (English)

    SUI Cheng-hua; LIU Bin; XU Tian-ning; YAN Bo; WEI Gao-yao

    2012-01-01

    To evaluate the influence of the ZnO buffer layer and AI proportion on the properties ofZnO:AI (AZO)/ZnO bi-layer films,a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporation.The X-ray diffraction measurement shows that the crystal quality of the films is improved with the increase of the film thickness.The electrical properties of the films are investigated.The carrier concentration and Hall mobility both increase with the increase of buffer layer thickness.However,the resistivity reaches the lowest at about 50 nm-thick buffer layer.The lowest resistivity and the maximum Hall mobility are both obtained at 1 wt% AI concentration.But the optical transmittance of all the films is greater than 80% regardless of the buffer layer thickness with AI concentration lower than 5 wt% in the visible region.

  5. Epitaxy of Fe3O4 on Si(001) by pulsed laser deposition using a TiN/MgO buffer layer

    OpenAIRE

    Reisinger, D; Schonecke, M.; Brenninger, T.; Opel, M.; Erb, A.; Alff, L.; Gross, R.

    2003-01-01

    Epitaxy of oxide materials on silicon (Si) substrates is of great interest for future functional devices using the large variety of physical properties of the oxides as ferroelectricity, ferromagnetism, or superconductivity. Recently, materials with high spin polarization of the charge carriers have become interesting for semiconductor-oxide hybrid devices in spin electronics. Here, we report on pulsed laser deposition of magnetite (Fe3O4) on Si(001) substrates cleaned by an in situ laser bea...

  6. Effect of magnetic structural processing on structure and texture of La2Zr2O7 buffer layers

    Science.gov (United States)

    Chibirova, F. Kh.; Kotina, G. V.; Bovina, E. A.; Tarasova, D. V.; Polisan, A. A.; Parkhomenko, Yu. N.

    2016-11-01

    Epitaxial CeO2 seed layer and La2Zr2O7 (LZO) buffer layers were deposited on biaxially-textured Ni-5 at.% W (NiW) tape substrate by liquid-phase polymer assisted nanoparticles deposition (PAND) method. LZO layers deposited by PAND have consistently shown tilting of the c-axis toward the direction of the sample’s surface normal. A new approach increasing the sharpening of the buffer texture by magnetic structural processing (MSP) of buffer layers was tested. The LZO layers, deposited on the seed and buffer layers after MSP, have dense and smooth surface structure, and more importantly, significantly improved out-of-plane texture, compared with the LZO layers that were deposited on a layer without MSP. Transmission electron microscopy study confirmed the c-axis tilting of CeO2 and LZO layers and revealed the absence of interfaces between LZO layers which have been grown on the layers after MSP. There are very small (2-4 nm) gated pores in the single-crystal structure of LZO layers that are not typical for structure of LZO layers obtained by liquid-phase methods. Thus the LZO buffer layers can serve as an effective metal-ion diffusion barrier.

  7. On buffer layers as non-reflecting computational boundaries

    Science.gov (United States)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  8. Strontium Titanate Buffer Layers on Cu/33%Ni Substrates using a Novel Solution Chemistry

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Hui, Tian;

    2013-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a buffer template which can be simply applied between a metal substrate tape and a superconducting layer in 2G high temperature superconducting (HTS) tapes. In this study, heteroepitaxial SrTiO3 thin films were deposited on t......, suggesting that they are promising templates for further deposition of YBCO superconducting layers....

  9. Swelling of the buffer of KBS-3V deposition hole

    Energy Technology Data Exchange (ETDEWEB)

    Lempinen, A. [Marintel Ky, Turku (Finland)

    2006-12-15

    At the time of the installation of spent nuclear fuel canister in the KBS-3V deposition hole, empty space is left around bentonite buffer for technical reasons. The gap between the buffer and the canister is about 10 mm, and the gap between the buffer and the rock is 30 to 35 mm. In this study, the swelling of the buffer to fill the gaps was simulated, when the gaps are initially filled with water and no external water is available. The model used here is a thermodynamical model for swelling clay, with parameters determined for bentonite. The simulations presented here were performed with Freefem++ software, which is a finite element application for partial differential equations. These equations come from the material model. The simulation results show that the swelling fills the outer gaps in few years, but no significant swelling pressure is generated. For swelling pressure, external water supply is required. (orig.)

  10. Buffer layers on metal alloy substrates for superconducting tapes

    Science.gov (United States)

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  11. Temperature buffer test. Installation of buffer, heaters and instruments in the deposition hole

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik; Sanden, Torbjoern; Aakesson, Mattias [Clay Technology AB, Lund (Sweden); Barcena, Ignacio; Garcia-Sineriz, Jose Luis [Aitemin, Madrid (Spain)

    2010-12-15

    During 2003 the Temperature Buffer Test was installed in Aespoe Hard Rock Laboratory. Temperature, water pressure, relative humidity, total pressure and displacements etc. are measured in numerous points in the test. Most of the cables from the transducers are led in the deposition hole through slots in the rock surface of the deposition hole in watertight tubes to the data collection system in a container placed in the tunnel close to the deposition hole. This report describes the work with the installations of the buffer, heaters, and instruments and yields a description of the final location of all instruments. The report also contains a description of the materials that were installed and the densities yielded after placement.

  12. Aspects of the SrO-CuO-TiO2 Ternary System Related to the Deposition of SrTiO3 and Copper-Doped SrTiO3 Thin-Film Buffer Layers

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Alicia [Univ. of New Mexico, Albuquerque, NM (United States)

    2004-12-20

    YBa2Cu3O27-δ (YBCO) coated conductors are promising materials for large-scale superconductivity applications. One version of a YBCO coated conductor is based on ion beam assisted deposition (IBAD) of magnesium oxide (MgO) onto polycrystalline metal substrates. SrTiO3 (STO) is often deposited by physical vapor deposition (PVD) methods as a buffer layer between the YBCO and IBAD MgO due to its chemical stability and lattice mismatch of only ~1.5% with YBCO. In this work, some aspects of the stability of STO with respect to copper (Cu) and chemical solution deposition of STO on IBAD MgO templates were examined. Solubility limits of Cu in STO were established by processing Cu-doped STO powders by conventional bulk preparation techniques. The maximum solubility of Cu in STO was ~1% as determined by transmission electron microscopy (TEM) and Rietveld refinements of x-ray diffraction (XRD) data. XRD analysis, performed in collaboration with NIST, on powder compositions on the STO/SrCuO2 tie line did not identify any ternary phases. SrCu0.10T0.90Oy buffer layers were prepared by pulsed laser deposition (PLD) and CSD on IBAD MgO flexible metallic textured tapes. TEM analysis of a ~100 nm thick SrCu0.10Ti0.90Oy buffer layer deposited by PLD showed a smooth Cu-doped STO/MgO interface. A ~600 nm thick YBCO film, deposited onto the SrCu0.10Ti0.90Oy buffer by PLD, exhibited a Tc of 87 K and critical current density (Jc) of ~1 MA/cm2. STO and Cu-doped STO thin films by CSD were ~30 nm thick. The in plane alignment (FWHM) after deposition of the STO improved by ~1° while it degraded by ~2° with the SrCu0.05TiOy buffer. YBCO was deposited by PLD on the STO and SrCu0.05TiOy buffers. The in plane alignment (FWHM) of the YBCO with the STO buffer layer

  13. 原子层沉积氧化锌应用于铜铟镓硒太阳能电池缓冲层的研究%Study on Application of Atomic Layer Depositing Zinc Oxide for Buffer Layer to Copper Indium Gallium Selenium Solar Battery

    Institute of Scientific and Technical Information of China (English)

    廖荣; 张海燕; 谢佳亮; 杨铁铮; 罗文中; 胡伟

    2013-01-01

    A zinc oxide thin-film was deposited on soda lime glass with the method of atomic layer deposition (ALD),and field emission scanning electron microscope and X-ray diffractometer were employed to analyze the surface appearance and phase of the sample.The results show that the nanoparticle of ZnO is hexangular wurtzite structure and the size of particle is 30-60 nm.The measured thickness of ZnO thin-film is only 50 nm,which can meet the requirement of buffer layer.Transmittance of the thin-film in visible light area is more than 90%.Using atomic layer deposited zinc oxide thin-film as buffer layer of copper indium gallium selenium (CIGS) solar battery,it can be found that the zinc oxide layer covers the CIGS layer tightly,and that the photoelectric conversion efficiency of battery is high,so it can fully replace the toxic CdS as buffer layer.%用原子层沉积法在钠钙玻璃上沉积氧化锌薄膜,利用场发射扫描电镜和X射线衍射(XRD)等对样品表面形貌和物相进行分析,结果表明得到的ZnO纳米颗粒为六角纤锌矿结构,颗粒的尺寸在30~60 nm之间;测得的ZnO薄膜厚度仅50 nm,符合缓冲层要求;薄膜在可见光区域透射率达90%以上;使用原子层沉积氧化锌薄膜作铜铟镓硒太阳能电池的缓冲层,TEM显示氧化锌层完好、致密地覆盖在CIGS层上,电池的光电转换效率较高,完全可以替代有毒的CdS作缓冲层.

  14. Investigation of CeO2 Buffer Layer Effects on the Voltage Response of YBCO Transition-Edge Bolometers

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Nazifi, Rana; Wulff, Anders Christian

    2016-01-01

    The effect on the thermal parameters of superconducting transition-edge bolometers produced on a single crystalline SrTiO3 (STO) substrate with and without a CeO2 buffer layer was investigated. Metal-organic deposition was used to deposit the 20-nm CeO2 buffer layer, whereas RF magnetron sputtering...... responses, and the results were compared with that of simulations conducted by applying a one-dimensional thermophysical model. It was observed that adding the buffer layer to the structure of the bolometer results in an increased response at higher modulation frequencies. Results from simulations made...

  15. Influence of growth pressure of a GaN buffer layer on the properties of MOCVD GaN

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jun(陈俊); ZHANG; Shuming(张书明); ZHANG; Baoshun(张宝顺); ZHU; Jianjun(朱建军); FENG; Gan(冯淦); DUAN; Lihong(段俐宏); WANG; Yutian(王玉田); YANG; Hui(杨辉); ZHENG; Wenchen(郑文琛)

    2003-01-01

    The influence of growth pressure of GaN buffer layer on the properties of MOCVD GaN on α-Al2O3 has been investigated with the aid of a home-made in situ laser reflectometry measurement system. The results obtained with in situ measurements and scanning electron microscope show that with the increase in deposition pressure of buffer layer, the nuclei increase in size, which roughens the surface, and delays the coalescence of GaN nuclei. The optical and crystalline quality of GaN epilayer was improved when buffer layer was deposited at high pressure.

  16. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    Science.gov (United States)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a

  17. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-30

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enabling R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.

  18. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  19. Role of the buffer layer in the active junction in amorphous-crystalline silicon heterojunction solar cells

    Science.gov (United States)

    Pallarès, J.; Schropp, R. E. I.

    2000-07-01

    We fabricated pn and pin a-SiC:H/c-Si heterojunction solar cells following two different processes. In the first approach, wafers were subjected to an extra atomic hydrogen (produced by hot wire chemical vapor deposition) prior to the deposition of the amorphous layer. A reduction in the open-circuit voltage was observed for the passivated cells due to their higher leakage current. In the second process, pin solar cells with two different quality intrinsic a-Si:H buffer layers were fabricated using plasma enhanced chemical vapor deposition. The cells with a device quality buffer layer (deposited at higher temperature) showed better performance than those with a buffer layer with high hydrogen content and higher defect density (deposited at lower temperatures).

  20. 具有SiC缓冲层的Si衬底上直接沉积碳原子生长石墨烯%Direct Graphene Growth by Depositing Carbon Atoms on Si Substrate Covered by SiC Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    唐军; 康朝阳; 李利民; 徐彭寿

    2011-01-01

    石墨烯是近年发现的一种新型多功能材料.在合适的衬底上制备石墨烯成为目前材料制备的一大挑战.本文利用分子束外延(MBE)设备,在Si 衬底上生长高质量的SiC 缓冲层,然后利用直接沉积C原子的方法生长石墨烯,并通过反射式高能电子衍射(RHEED)、拉曼(Raman)光谱和近边X 射线吸收精细结构谱(NEXAFS)等实验技术对不同衬底温度(800、900、1000、1100 °C)生长的薄膜进行结构表征.实验结果表明,在以上衬底温度下都能生长出具有乱层堆垛结构的石墨烯薄膜.当衬底温度升高时,碳原子的活性增强,其成键的能力也增大,从而使形成的石墨烯结晶质量提高.衬底温度为1000 °C时结晶质量最好.其原因可能是当衬底温度较低时,碳原子活性太低不足以形成有序的六方C-sp2环.但过高的衬底温度会使SiC 缓冲层的孔洞缺陷增加,衬底的Si 原子有可能获得足够的能量穿过SiC薄膜的孔洞扩散到衬底表面,与沉积的碳原子反应生成无序的SiC,这一方面会减弱石墨烯的生长,另一方面也会使石墨烯的结晶质量变差.%Graphene is a newly discovered material with many functions. The preparation of graphene on suitable substrates is a challenge in the material preparation field. In this paper, graphene thin films were grown on Si substrates covered with SiC buffer layers (SiC/Si) by the direct deposition of carbon atoms using molecular beam epitaxy (MBE) equipment. The structural properties of the samples produced at different substrate temperatures (800, 900, 1000, 1100 ° C) were investigated by reflection high energy electron diffraction (RHEED), Raman spectroscopy and near-edge X-ray absorption fine structure (NEXAFS). The results indicate that the thin films grown at all temperatures exhibit the characteristics of graphene with a turbostratic stacking structure. As the substrate temperature increases the crystalline quality of the graphene

  1. Study of buffer layer thickness on bulk heterojunction solar cell.

    Science.gov (United States)

    Noh, Seunguk; Suman, C K; Lee, Donggu; Kim, Seohee; Lee, Changhee

    2010-10-01

    We studied the effect of the buffer layer (molybdenum-oxide (MoO3)) thickness on the performance of organic solar cell based on blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester fullerene derivative (PCBM). The thickness of MoO3 was varied from 1 nm to 30 nm for optimization of device performance. The photocurrent-voltage and impedance spectroscopy were measured under dark and AM1.5G solar simulated illumination of 100 mW/cm2 for exploring the role of the buffer layer thickness on carrier collection at an anode. The MoO3 thickness of the optimized device (efficiency approximately 3.7%) was found to be in the range of 5 approximately 10 nm. The short-circuit current and the shunt resistance decrease gradually for thicker MoO3 layer over 5 nm. The device can be modeled as the combination of three RC parallel circuits (each one for the active layer, buffer layer and interface between the buffer layer and the active layer) in series with contact resistance (Rs approximately 60 ohm).

  2. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    Science.gov (United States)

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  3. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

    Science.gov (United States)

    Norman, Andrew

    2016-08-23

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

  4. Metal deposition using seed layers

    Science.gov (United States)

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  5. 采用低 F 工艺在低碳残留 La2Zr2O7/CeO2缓冲层上沉积 YBCO 膜%Fabrication of YBCO Film on the La 2 Zr 2 O 7/CeO 2 Buffer Layer with Little Residual Carbon by a Low F Content Deposition Process

    Institute of Scientific and Technical Information of China (English)

    贾佳林; 王辉; 李成山; 王耀; 金利华; 吕建凤; 许征兵

    2015-01-01

    In this paper, the La2 Zr2 O7 (LZO) / CeO2 buffer layer and superconducting layer with bi-layer membrane structure were fabricated on the NiW baseband of bi-axial texture by the chemical solution method. In the buffer layer deposition process, the carbon residue among them was reduced by mixing with CO2 in the annealing atmosphere, and the deposition of YB-CO superconducting layer was carried out by the Low F content deposition process. The texture and morphology of the prepared samples were characterized by X ray diffraction (XRD) and scanning electron microscopy (SEM), and the electrical properties of the samples were tested. The result indicates that mixing with a small amount of weakly oxidizing gases did not destroy the texture and morphology of the buffer layer while removing residual carbon in the buffer lay-er. However, the YBCO layer deposited on the flat surface of the buffer layer showed a sharp bi-axial texture and good superconductivity, and this process can be further transplanted into the process of long length baseband preparation.%采用化学溶液法在双轴织构的 NiW 基带上制备了双层膜结构的 La2 Zr2 O7(LZO)/ CeO2缓冲层和超导层,在缓冲层沉积过程中通过在退火气氛中混入 CO2降低其中的碳残留量,YBCO 超导层的沉积则是通过低 F 工艺进行的。利用 X 射线衍射(XRD)和扫描电镜(SEM)对所制得样品的织构和表面形貌进行了表征,并测试了样品的电性能。结果表明,少量弱氧化性气体的混入在除去缓冲层中残留碳的同时并没有破坏缓冲层的织构和形貌。而在平整的缓冲层表面沉积的 YBCO 层显示出了锐利的双轴织构和良好的超导电性,该工艺可以进一步移植到长带制备过程中。

  6. The growth of various buffer layer structures and their influence on the quality of (CdHg)Te epilayers

    CSIR Research Space (South Africa)

    Gouws, GJ

    1993-05-01

    Full Text Available to the formation of electrically active defects in the material. An intermediate ZnTe layer was used to select the (100) orientation and (100) CdTe layers were then deposited on this ZnTe layer. The quality of the resultant CdTe buffer was found to critically...

  7. Effect of buffer layer and external stress on magnetic properties of flexible FeGa films

    Science.gov (United States)

    Zhang, Xiaoshan; Zhan, Qingfeng; Dai, Guohong; Liu, Yiwei; Zuo, Zhenghu; Yang, Huali; Chen, Bin; Li, Run-Wei

    2013-05-01

    We systematically investigated the effect of a Ta buffer layer and external stress on the magnetic properties of magnetostrictive Fe81Ga19 films deposited on flexible polyethylene terephthalate (PET) substrates. The Ta buffer layers could effectively smoothen the rough surface of PET. As a result, the FeGa films grown on Ta buffer layers exhibit a weaker uniaxial magnetic anisotropy and lower coercivity, as compared to those films directly grown on PET substrates. By inward and outward bending the FeGa/Ta/PET samples, external in-plane compressive and tensile stresses were applied to the magnetic films. Due to the inverse magnetostrictive effect of FeGa, both the coercivity and squareness of hysteresis loops for FeGa/Ta films could be well tuned under various strains.

  8. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    Science.gov (United States)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  9. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    Science.gov (United States)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  10. Effect of Polymer Inclusion in Preparation of Thick LZO Buffer Layers for YBCO Coated Conductors

    Institute of Scientific and Technical Information of China (English)

    Vyshnavi Narayanan; Isabel Van Driessche

    2013-01-01

    In this work,water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5%W substrates with an inclusion of polymeric polyvinyl pyrrolidone were developed.The effect of varying percentage of the polymer addition on the preparation of the deposited films with maximum crack-free thickness was investigated.This novel water-based chemical solution deposition method involving polymers in two different chelate-chemistry compositions revealed the possibility to grow single,crack-free layers with thicknesses ranging from 140 to 280 nm,with good crystallinity and epitaxial growth.The effect of increasing polymer concentrations on the morphology and the structure of the films was studied.The appropriate buffer layer action of the films in preventing Ni diffusion was studied by X-ray photoelectron spectroscopy.

  11. New methanofullerene as a buffer layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Biglova, Yulia N., E-mail: bn.yulya@mail.ru [Bashkir State University, Chemistry Department, Ufa (Russian Federation); Akbulatov, Azat F. [Bashkir State University, Chemistry Department, Ufa (Russian Federation); Torosyan, Seda A. [Institute of Organic Chemistry URC RAS, Ufa (Russian Federation); Susarova, Diana K. [Institute for Problems of Chemical Physics RAS, Chernogolovka (Russian Federation); Mustafin, Akhat G. [Bashkir State University, Chemistry Department, Ufa (Russian Federation); Miftakhov, Mansur S. [Institute of Organic Chemistry URC RAS, Ufa (Russian Federation)

    2015-02-01

    The influence of the first synthesized acryl-type methanofullerene C{sub 60} on the solar cell performance as a buffer layer and its forming methods on the substrate surface was investigated. The significant impact of small concentration on the basic photovoltaic characteristics of the fabricated devices with inverted configurations was shown in this work.

  12. Substrate-induced magnetism in epitaxial graphene buffer layers.

    Science.gov (United States)

    Ramasubramaniam, A; Medhekar, N V; Shenoy, V B

    2009-07-08

    Magnetism in graphene is of fundamental as well as technological interest, with potential applications in molecular magnets and spintronic devices. While defects and/or adsorbates in freestanding graphene nanoribbons and graphene sheets have been shown to cause itinerant magnetism, controlling the density and distribution of defects and adsorbates is in general difficult. We show from first principles calculations that graphene buffer layers on SiC(0001) can also show intrinsic magnetism. The formation of graphene-substrate chemical bonds disrupts the graphene pi-bonds and causes localization of graphene states near the Fermi level. Exchange interactions between these states lead to itinerant magnetism in the graphene buffer layer. We demonstrate the occurrence of magnetism in graphene buffer layers on both bulk-terminated as well as more realistic adatom-terminated SiC(0001) surfaces. Our calculations show that adatom density has a profound effect on the spin distribution in the graphene buffer layer, thereby providing a means of engineering magnetism in epitaxial graphene.

  13. Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film

    Science.gov (United States)

    Saravanan, K.; Jayalakshmi, G.; Krishnan, R.; Sundaravel, B.; Panigrahi, B. K.

    2016-09-01

    We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ˜8 nm in ZnO/C/Si and ˜22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influence of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K-300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.

  14. Pulsed laser deposition of YBCO films on ISD MgO buffered metal tapes

    CERN Document Server

    Ma, B; Koritala, R E; Fisher, B L; Markowitz, A R; Erck, R A; Baurceanu, R; Dorris, S E; Miller, D J; Balachandran, U

    2003-01-01

    Biaxially textured magnesium oxide (MgO) films deposited by inclined-substrate deposition (ISD) are desirable for rapid production of high-quality template layers for YBCO-coated conductors. High-quality YBCO films were grown on ISD MgO buffered metallic substrates by pulsed laser deposition (PLD). Columnar grains with a roof-tile surface structure were observed in the ISD MgO films. X-ray pole figure analysis revealed that the (002) planes of the ISD MgO films are tilted at an angle from the substrate normal. A small full-width at half maximum (FWHM) of approx 9deg was observed in the phi-scan for ISD MgO films deposited at an inclination angle of 55deg . In-plane texture in the ISD MgO films developed in the first approx 0.5 mu m from the substrate surface, and then stabilized with further increases in film thickness. Yttria-stabilized zirconia and ceria buffer layers were deposited on the ISD MgO grown on metallic substrates prior to the deposition of YBCO by PLD. YBCO films with the c-axis parallel to the...

  15. Field electron emission enhancement of amorphous carbon through a niobium carbide buffer layer

    Science.gov (United States)

    Xu, L.; Wang, C.; Hu, C. Q.; Zhao, Z. D.; Yu, W. X.; Zheng, W. T.

    2009-01-01

    We investigate the field electron emission for amorphous carbon (a-C) films deposited on Si (100) substrates through a niobium carbide buffer layer with different structures and find that the niobium carbide buffer layer can substantially improve the electron field emission properties of a-C films, which can be attributed to an increase in the enhancement factor β on the surface of a-C films after the insertion of the niobium carbide layer in between a-C film and substrate. Moreover, a phase transition for niobium carbide layer from hexagonal (Nb2C) to cubic (NbC) structure, revealed by x-ray diffraction, further enhances the electron field emission. The first-principles calculated results show that the work function of NbC is lower than that of Nb2C, which is the reason why the electron emission of a-C is further enhanced.

  16. Benzocyclobutene (BCB) Polymer as Amphibious Buffer Layer for Graphene Field-Effect Transistor.

    Science.gov (United States)

    Wu, Yun; Zou, Jianjun; Huo, Shuai; Lu, Haiyan; Kong, Yuecan; Chen, Tangshen; Wu, Wei; Xu, Jingxia

    2015-08-01

    Owing to the scattering and trapping effects, the interfaces of dielectric/graphene or substrate/graphene can tailor the performance of field-effect transistor (FET). In this letter, the polymer of benzocyclobutene (BCB) was used as an amphibious buffer layer and located at between the layers of substrate and graphene and between the layers of dielectric and graphene. Interestingly, with the help of nonpolar and hydrophobic BCB buffer layer, the large-scale top-gated, chemical vapor deposited (CVD) graphene transistors was prepared on Si/SiO2 substrate, its cutoff frequency (fT) and the maximum cutoff frequency (fmax) of the graphene field-effect transistor (GFET) can be reached at 12 GHz and 11 GHz, respectively.

  17. From front contact to back contact in cadmium telluride/cadmium sulfide solar cells: Buffer layer and interfacial layer

    Science.gov (United States)

    Roussillon, Yann

    Cadmium telluride (CdTe) polycrystalline thin film solar cells, with their near optimum direct band-gap of 1.4 eV matching almost perfectly the sun radiation spectrum, are a strong contender as a less expensive alternative, among photovoltaic materials, than the more commonly used silicon-based cells. Polycrystalline solar cells are usually deposited over large areas. Such devices often exhibit strong fluctuations (nonuniformities) in electronic properties, which originate from deposition and post-deposition processes, and are detrimental to the device performance. Therefore their effects need to be constrained. A new approach in this work was, when a CdS/CdTe solar cell is exposed to light and immersed in a proper electrolyte, fluctuations in surface potential can drive electrochemical reactions which result in a nonuniform interfacial layer that could balance the original nonuniformity. This approach improved the device efficiency for CdS/CdTe photovoltaic devices from 1--3% to 11--12%. Cadmium sulfide (CdS), used as a window layer and heterojunction partner to CdTe, is electrically inactive and absorb light energies above its band-gap of 2.4 eV. Therefore, to maximize the device efficiency, a thin US layer needs to be used. However, more defects, such as pinholes, are likely to be present in the film, leading to shunts. A resistive transparent layer, called buffer layer, is therefore deposited before CdS. A key observation was that the open-circuit voltage (Voc) for cells made using a buffer layer was high, around 800 mV, similar to cells without buffer layer after Cu doping. The standard p-n junction theory cannot explain this phenomena, therefore an alternative junction mechanism, similar to metal-insulator-semiconductor devices, was developed. Furthermore, alternative Cu-free back-contacts were used in conjunction with a buffer layer. The Voc of the devices was found to be dependent of the back contact used. This change occurs as the back-contact junction

  18. Interface properties of Cd-free buffer layers on on CIGSe thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, J.P.; Erfurth, F.; Weinhardt, L. [University of Wuerzburg (Germany). Experimental Physics VII; Duarte, R.; Baer, M. [Helmholtz Institut, Berlin (Germany); Niesen, T.; Palm, J. [Avancis GmbH, Muenchen (Germany); Barreau, N.; Couzinie-Devy, F.; Kessler, J. [Institut des Materiaux, Nantes (France); Reinert, F. [University of Wuerzburg (Germany). Experimental Physics VII; Forschungszentrum Karlsruhe GmbH (Germany). Gemeinschaftslabor fuer Nanoanalytik

    2010-07-01

    In order to replace the toxic Cadmium, the substitution of the CdS buffer layer in thin film solar cells based on Cu(In,Ga)(S,Se){sub 2} (CIGSSe) is of great interest. Alternative buffer layers like (In,Al){sub 2}S{sub 3}, In{sub 2}S{sub 3}, or (Zn{sub 1-x},Mg{sub x})O deposited by conventional sputter and chemical bath deposition techniques, have shown efficiencies close to or comparable to those of CdS containing solar cells. To understand the chemical and electronic properties of these buffer layers and its influence on the absorber, we studied the buffer-absorber interface using photoelectron spectroscopy (XPS, UPS) and inverse photoelectron spectroscopy (IPES). The combination of these non-destructive techniques provides detailed information about the chemical properties of the studied surface, as well as can be used for a direct determination of the conduction and valence band alignment at the heterojunction. Band-gap values at the surface as derived by UPS and IPES are also verified by electron energy loss spectroscopy (EELS). The results are discussed in conjunction with the respective cell parameters.

  19. Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Xin, Peipei

    Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction

  20. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.; Bhatnagar, A.K. [Univ. of Hyderabad (India); Pinto, R. [Solid State Electronics Group, Bombay (India)] [and others

    1994-12-31

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si<100>, Sapphire and LaAlO{sub 3} <100> substrates. The effect of substrate temperatures upto 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar structure with variation growth conditions. The buffer layers of YSZ and STO showed orientation. The tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa{sub 2}Cu{sub 9}O{sub 7-x} (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  1. Development of Co-evaporated In2S3 Buffer Layer for Cu2ZnSnSe4 Thin Film Solar Cells

    OpenAIRE

    Buffiere, Marie; Barreau, Nicolas; Brammertz, Guy; Sahayaraj, Sylvester; Meuris, Marc; Poortmans, Jef

    2015-01-01

    In this work, we focus on the replacement of the commonly used but toxic Cd-based buffer layer by In2S3 thin films deposited by co-evaporation for application in Cu2ZnSnSe4 (CZTSe) solar cells. The impact of the deposition conditions of the buffer layer on the electrical behavior of CZTSe/In2S3 devices is first investigated. The best solar cell efficiencies were obtained for relatively thick In2S3 buffer layers (similar to 100 nm) deposited at low temperature (

  2. Effects of bonding structure from niobium carbide buffer layer on the field electric emission properties of a-C films

    Science.gov (United States)

    Xu, L.; Wang, C.; Hu, C. Q.; Zhao, Z. D.; Yu, W. X.; Zheng, W. T.

    2009-04-01

    We investigate the field electron emission for amorphous carbon (a-C) films deposited on Si (100) substrates through a niobium carbide buffer layer at different flow rate ratios of CH4/(CH4+Ar) in a CH4/Ar mixture discharge, and find that the composition and chemical bonding of the buffer layer can substantially affect the electron field emission properties of a-C films. The high ratio of Nb-C/Nb-Nb bonds in the buffer layer promotes the electron emission of a-C film. The first-principles calculated results show that the work function of NbC is lower than that of Nb, which is the reason why the high ratio of Nb-C/Nb-Nb bonds in the buffer layer favors the field emission of a-C film.

  3. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Directory of Open Access Journals (Sweden)

    Wang Lan

    2016-01-01

    Full Text Available We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  4. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Science.gov (United States)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  5. Evaluation of methods for application of epitaxial layers of superconductor and buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, based on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process, an

  6. Structural and optical properties of ZnO nanorods grown chemically on sputtered GaN buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, R.; Joshi, Pranav [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Singh, Devendra; Mohanta, Pravanshu [Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Srinivasa, R.S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Major, S.S., E-mail: syed@iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2014-03-31

    ZnO nanorods were grown on 200 nm thick sputtered ZnO and GaN buffer layers on quartz substrates by chemical bath deposition. Field emission scanning electron microscopy and X-ray diffraction studies show that the ZnO nanorods on GaN buffer layer possess larger diameter and smaller lengths and are vertically misaligned, compared to those grown on ZnO buffer layer. These differences are attributed to lack of complete c-axis orientation of crystallites in GaN buffer layer, its lattice mismatch with that of ZnO and a hindered nucleation process of ZnO on GaN surface, owing to a finite nucleation barrier and limited surface diffusion. Photoluminescence spectrum of ZnO nanorods on GaN buffer layer, however, exhibits a much stronger near-band-edge luminescence and drastically suppressed defect luminescence compared to the luminescence spectrum of the nanorods grown on ZnO buffer layer. Deconvolution of the photoluminescence peaks and Raman studies indicate significant reduction of oxygen vacancies and gallium incorporation in the ZnO nanorods grown on GaN buffer layer. These observations suggest the possibility of exchange reaction mediated by the aqueous medium, particularly during the initial stages of growth. - Highlights: • ZnO nanorods were grown on sputtered GaN buffer layer deposited on quartz. • ZnO nanorods on polycrystalline GaN show limited vertical alignment of c-axis. • ZnO nanorods on GaN show high band edge and negligible defect luminescence. • Raman and photoluminescence studies indicate solution mediated interface reaction.

  7. Buffer layers on metal surfaces having biaxial texture as superconductor substrates

    Science.gov (United States)

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  8. Copper variation in Cu(In,Ga)Se{sub 2} solar cells with indium sulphide buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Spiering, S., E-mail: stefanie.spiering@zsw-bw.de [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Paetel, S.; Kessler, F. [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Igalson, M.; Abdel Maksoud, H. [Warsaw University of Technology (WUT), Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland)

    2015-05-01

    In the manufacturing of Cu(In,Ga)Se{sub 2} (CIGS) thin film solar cells the application of a buffer layer on top of the absorber is essential to obtain high efficiency devices. Regarding the roll-to-roll production of CIGS cells and modules a vacuum deposition process for the buffer is preferable to the conventional cadmium sulphide buffer deposited in a chemical bath. Promising results have already been achieved for the deposition of indium sulphide buffer by different vacuum techniques. The solar device performance is very sensitive to the conditions at the absorber-buffer heterojunction. In view of optimization we investigated the influence of the Cu content in the absorber on the current-voltage characteristics. In this work the integral copper content was varied between 19 and 23 at.% in CIGS on glass substrates. An improvement of the cell performance by enhanced open circuit voltage was observed for a reduction to ~ 21 at.% when thermally evaporated indium sulphide was applied as the buffer layer. The influence of stoichiometry deviations on the transport mechanism and secondary barriers in the device was studied using detailed dark and light current-voltage analysis and admittance spectroscopy and compared to the reference CdS-buffered cells. We conclude that the composition of the absorber in the interface region affects current transport in In{sub x}S{sub y}-buffered and CdS-buffered cells in different ways hence optimal Cu content in those two types of devices is different. - Highlights: • Influence of Cu-variation in CIGS cells with In{sub x}S{sub y} buffer layer on cell performance • Enhanced efficiency by slight reduction of Cu-content to 21 at.% • Contribution of tunnelling-enhanced interface recombination for higher Cu-content.

  9. Annealing temperature dependence of magnetic properties of CoFeB/MgO stacks on different buffer layers

    Science.gov (United States)

    Watanabe, Kyota; Fukami, Shunsuke; Sato, Hideo; Ikeda, Shoji; Matsukura, Fumihiro; Ohno, Hideo

    2017-08-01

    We investigate the annealing temperature dependence of the magnetic properties of CoFeB/MgO stacks with different buffer materials (Mo, Ta, and W). For Mo and W, bcc-crystalline and amorphous-like films are prepared by changing the deposition conditions. A relatively small saturation magnetization is maintained after annealing up to 400 °C for the samples with bcc-W, bcc-Mo, and amorphous-like Mo buffers. A small variation in magnetic dead layer thickness with annealing is observed for the samples with bcc-crystalline buffer layers. The interfacial anisotropy is found to mainly depend on the element of the buffer layer used regardless of its crystalline structure, and is larger for the samples with W and Mo buffers than those with Ta buffer. The sample with bcc-Mo buffer shows the highest robustness against annealing among the studied systems. We give a systematic picture based on the thermochemistry that can reasonably explain the observed buffer layer dependence of the variations in magnetic properties with annealing.

  10. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Yu-Kuang Liao

    2017-04-01

    Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  11. Magnetic and Structural Properties in Co/Cu/Co Sandwiches with Ni and Cr Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented polycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.

  12. films using atomic layer deposition

    Science.gov (United States)

    Chervinskii, Semen; Matikainen, Antti; Dergachev, Alexey; Lipovskii, Andrey A.; Honkanen, Seppo

    2014-08-01

    We fabricated self-assembled silver nanoisland films using a recently developed technique based on out-diffusion of silver from an ion-exchanged glass substrate in reducing atmosphere. We demonstrate that the position of the surface plasmon resonance of the films depends on the conditions of the film growth. The resonance can be gradually shifted up to 100 nm towards longer wavelengths by using atomic layer deposition of titania, from 3 to 100 nm in thickness, upon the film. Examination of the nanoisland films in surface-enhanced Raman spectrometry showed that, in spite of a drop of the surface-enhanced Raman spectroscopy (SERS) signal after the titania spacer deposition, the Raman signal can be observed with spacers up to 7 nm in thickness. Denser nanoisland films show slower decay of the SERS signal with the increase in spacer thickness.

  13. Effect of Al2O3 Buffer Layers on the Properties of Sputtered VO2 Thin Films

    Science.gov (United States)

    Zhang, Dainan; Wen, Tianlong; Xiong, Ying; Qiu, Donghong; Wen, Qiye

    2017-07-01

    VO2 thin films were grown on silicon substrates using Al2O3 thin films as the buffer layers. Compared with direct deposition on silicon, VO2 thin films deposited on Al2O3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al2O3/VO2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C- V measurement result indicates that the phase transformation of VO2 thin films can be induced by an electrical field.

  14. Improved Reliability of Small Molecule Organic Solar Cells by Double Anode Buffer Layers

    Directory of Open Access Journals (Sweden)

    Pao-Hsun Huang

    2014-01-01

    Full Text Available An optimized hybrid planar heterojunction (PHJ of small molecule organic solar cells (SM-OSCs based on copper phthalocyanine (CuPc as donor and fullerene (C60 as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO3 and pentacene as double anode buffer layers (ABL, also known as hole extraction layer (HEL. A series of the vacuum-deposited ABL, acting as an electron and exciton blocking layer, were examined for their characteristics in SM-OSCs. The performance and reliability were compared between conventional ITO/ABL/CuPc/C60/BCP/Ag cells and the new ITO/double ABL/CuPc/C60/BCP/Ag cells. The effect on the electrical properties of these materials was also investigated to obtain the optimal thickness of ABL. The comparison shows that the modified cell has an enhanced reliability compared to traditional cells. The improvement of lifetime was attributed to the idea of double layers to prevent humidity and oxygen from diffusing into the active layer. We demonstrated that the interfacial extraction layers are necessary to avoid degradation of device. That is to say, in normal temperature and pressure, a new avenue for the device within double buffer layers has exhibited the highest values of open circuit voltage (Voc, fill factor (FF, and lifetime in this work compared to monolayer of ABL.

  15. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.

    Science.gov (United States)

    Steirer, K Xerxes; Garris, Rebekah L; Li, Jian V; Dzara, Michael J; Ndione, Paul F; Ramanathan, Kannan; Repins, Ingrid; Teeter, Glenn; Perkins, Craig L

    2015-06-21

    A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV).

  16. Growth of Semi-Insulating GaN by Using Two-Step A1N Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-Tang; QUO Li-Wei; XING Zhi-Gang; DING Guo-Jian; ZHANG Jie; PENG Ming-Zeng; JIA Hai-Qiang; CHEN Hong; ZHOU Jun-Ming

    2007-01-01

    Semi-insulating GaN is grown by using a two-step A1N buffer layer by metalorganic chemical vapour deposition. The sheet resistance of as-grown semi-insulating GaN is dramatically increased to 1013 Ω/sq by using two-step A1N buffer instead of the traditional low-temperature GaN buffer. The high sheet resistance of as-grown GaN over 10 Ωfi/sq is due to inserting an insulating buffer layer (two-step A1N buffer) between the high-temperature GaN layer and a sapphire substrate which blocks diffusion of oxygen and overcomes the weakness of generating high density carrier near interface of GaN and sapphire when a low-temperature GaN buffer is used. The result suggests that the high conductive feature of unintentionally doped GaN is mainly contributed from the highly conductive channel near interface between GaN and the sapphire substrate, which is indirectly manifested by room-temperature photoluminescence excited by an incident laser beam radiating on growth surface and on the substrate. The functions of the two-step A1N buffer layer in reducing screw dislocation and improving crystal quality of GaN are also discussed.

  17. Effect of buffer-layered buttering on microstructure and mechanical properties of dissimilar metal weld joints for nuclear plant application

    Energy Technology Data Exchange (ETDEWEB)

    Rathod, Dinesh W., E-mail: dineshvrathod@gmail.com [Department of Mechanical Enggineering, Indian Institute of Technology Delhi, Hauz-khas, New Delhi 110016 (India); Singh, P.K. [Bhabha Atomic Research Centre, Mumbai 400085 (India); Pandey, Sunil; Aravindan, S. [Department of Mechanical Enggineering, Indian Institute of Technology Delhi, Hauz-khas, New Delhi 110016 (India)

    2016-06-01

    In this study, we present the metallurgical and mechanical investigation of four dissimilar welds between SA508Gr.3Cl.1 and SS304LN. The welding processes for buttering deposition and fill-pass welding were varied with ERNiCr-3/ENiCrFe-3 consumables. The Ni-Fe alloy buffer layer was introduced as intermediate layer in buttering and then the joints (with and without buffer layer in buttering) were fabricated. The effect of Ni-Fe buffer layered buttering and welding processes on the resulting weld joints properties has been addressed. Metallurgical and mechanical properties, fracture toughness were measured and various examinations were carried out for integrity assessment on all the weld joints. Addition of a Ni-Fe buttering layer leads to the development of more favourable properties than observed in welded joints made using the current practice without a buffer layer. Control of carbon migration and its subsequent effect on metallurgical, mechanical properties due to buffer layer has been justified in the study. Conventional procedure of DMW fabrication has been proven to be the least favourable against the new technique suggested. Modification in current integrity assessment procedure would be possible by considering the properties at interfacial regions, introduction of yield strength ratio mismatch and the plastic instability strength in the integrity assessment.

  18. Distributed Modeling of soil erosion and deposition affected by buffer strips

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    and dimension of buffer zones in the landscape can be optimized by means of spatially distributed erosion and deposition modeling. During the period from 1998 to 2000 field campaigns were done on a range of agricultural land in Denmark. On 21 slope units and adjacent buffer zones, rill erosion and deposition...

  19. Doped Y.sub.2O.sub.3 buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2007-08-21

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  20. Stability of nanocrystalline electrochemically deposited layers

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2009-01-01

    The technological demand for manufacturing components with complex geometries of micrometer or sub-micrometer dimensions and ambitions for ongoing miniaturization have attracted particular attention to electrochemical deposition methods. Thin layers of electrochemically deposited metals and alloys...

  1. Growth of highly textured SnS on mica using an SnSe buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.F.; Fong, W.K.; Wang, W.; Surya, C., E-mail: charles.surya@polyu.edu.hk

    2014-08-01

    We report the growth of SnS thin films on mica substrates by molecular beam epitaxy. Excellent 2D layered structure and strong (001) texture were observed with a record low rocking curve full width at half maximum of ∼ 0.101° for the SnS(004) diffraction. An interface model is used to investigate the nucleation of SnS on mica which indicates the co-existence of six pairs of lateral growth orientations and is in excellent agreement with the experimental Φ-scan measurements indicating 12 peaks separated by 30° from each other. To control the lateral growth of the SnS epilayers we investigate the utilization of a thin SnSe buffer layer deposited on the mica substrate prior to the growth of the SnS thin film. The excellent lattice match between SnSe and mica enhances the alignment of the nucleation of SnS and suppresses the minor lateral orientations along the mica[110] direction and its orthogonal axis. Detailed low-frequency noise measurement was performed to characterize the trap density in the films and our results clearly demonstrate substantial reduction in the density of the localized states in the SnS epilayer with the use of an SnSe buffer layer. - Highlights: • A record low rocking curve FWHM for deposited SnS on mica • Investigation of the nucleation of SnS on mica using the interface model • Investigation of nucleation mechanism by phi-scan measurement • Grain boundary formation from crystallites of various nucleation orientations • Suppression of nucleation orientations using an SnSe buffer layer.

  2. Superconducting NbN single-photon detectors on GaAs with an AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ekkehart; Merker, Michael; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2015-07-01

    GaAs is the material of choice for photonic integrated circuits. It allows the monolithic integration of single-photon sources like quantum dots, waveguide based optical circuits and detectors like superconducting nanowire single-photon detectors (SNSPDs) onto one chip. The growth of high quality NbN films on GaAs is challenging, due to natural occurring surface oxides and the large lattice mismatch of about 27%. In this work, we try to overcome these problems by the introduction of a 10 nm AlN buffer layer. Due to the buffer layer, the critical temperature of 6 nm thick NbN films was increased by about 1.5 K. Furthermore, the critical current density at 4.2 K of NbN flim deposited onto GaAs with AlN buffer is 50% higher than of NbN film deposited directly onto GaAs substrate. We successfully fabricated NbN SNSPDs on GaAs with a AlN buffer layer. SNSPDs were patterned using electron-beam lithography and reactive-ion etching techniques. Results on the study of detection efficiency and jitter of a NbN SNSPD on GaAs, with and without AlN buffer layer will be presented and discussed.

  3. Influence of SiO{sub 2} buffer layer on the crystalline quality and photoluminescence of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L H; Chen, Y L; Xu, F [College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing, 210044 (China); Li, X Y [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China); Hua, S, E-mail: congyu3256@sina.com [Institute of Electronic Engineering and Photoelectric Technology, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2011-02-01

    In this work, a SiO{sub 2} buffer layer was first grown on Si substrate by thermal oxidation, and then ZnO thin films were deposited on SiO{sub 2} buffer layer and Si substrate by electron beam evaporation and sol-gel method. The influence of SiO{sub 2} buffer layer on the crystalline quality and photoluminescence of the films was investigated. The analyses of X-ray diffraction (XRD) showed that all the ZnO thin films had a hexagonal wurtzite structure and were preferentially oriented along the c-axis perpendicular to the substrate surface. The SiO{sub 2} buffer layer improved the crystalline quality and decreased the stress in ZnO thin films. The surface morphology analyses of the samples indicated that ZnO thin films deposited on SiO{sub 2} buffer layers had densely packed grains which obviously increased compared with those grown on bare Si substrate. The photoluminescence spectra of the samples showed that the ZnO thin films deposited on SiO{sub 2} buffer layers had stronger ultraviolet emission performance. The results suggest that SiO{sub 2} buffer layer can improve the crystalline quality and ultraviolet emission of ZnO thin films.

  4. Performance improvement of MEH-PPV:PCBM solar cells using bathocuproine and bathophenanthroline as the buffer layers

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Dong; Xu Xu-Rong; Zhao Su-Ling; Xu Zheng; Zhang Fu-Jun; Zhang Tian-Hui; Gong Wei; Yan Guang; Kong Chao; Wang Yong-Sheng

    2011-01-01

    In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-l,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-nm BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in scries resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.

  5. Enhanced surface patterning of chalcogenide glass via imprinting process using a buffer layer

    Science.gov (United States)

    Jin, Byeong Kyou; Choi, Duk-Yong; Chung, Woon Jin; Choi, Yong Gyu

    2017-09-01

    In an effort to enhance transcriptability of quasi-three-dimensional patterns present in silicon stamp onto the surface of 'bulk' chalcogenide glass, a buffer layer was introduced during the replication process via imprinting. Dissimilar patterns with diverse depths along the surface normal direction were imprinted with or without the buffer layer, and the resulting patterns on the glass surface were compared with regard to the transcription quality in both the lateral and vertical directions. After assessing the processing conditions appropriate for imprinting bulk As2S3 glass especially in terms of temperature and duration, candidate materials suitable for the buffer layer were screened: Commercially available polydimethylsiloxane was then chosen, and impact of this buffer layer was elucidated. The imprinted patterns turned out to become more uniform over large surface areas when the buffer layer was inserted. This finding confirmed that the use of buffer layer conspicuously enhanced the transcriptability of imprinting process for bulk chalcogenide glass.

  6. Influence of Si buffer layer on the giant magnetoresistance effect in Co/Cu/Co sandwiches

    Institute of Scientific and Technical Information of China (English)

    李冠雄; 沈鸿烈; 沈勤我; 李铁; 邹世昌

    2000-01-01

    The Co/Cu/Co sandwiches with a semiconductor Si buffer layer were prepared by high vacuum electron-beam evaporation. The influence of the Si buffer layer with different thickness on the giant magnetoresistance (GMR) effect in the Co/Cu/Co sandwiches was investigated. It was found that the GMR showed an obvious anisotropy when the thickness of Si buffer layer was larger than or equal to 0.9 nm, and that the GMR was basically isotropic with an Si buffer layer thinner than 0.9 nm. The anisotropic behavior of GMR can be ascribed to the in-plane magnetic anisotropy in the sandwiches. Due to the interdiffusion at the Si buffer/Co interface, a Co2Si interface layer with a good (301) texture formed and induced the in-plane magnetic anisotropy in the sandwiches. The dependence of the crystalline texture of the sandwiches on the thickness of Si buffer layer was also studied.

  7. New buffer layer materials for CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz (Germany); Kieven, David [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2009-07-01

    The compound semiconductor CuIn{sub x}Ga{sub (1-x)}Se{sub 2} (CIGSE) are used as absorber material in thin-film photovoltaic cells. In conventional CIGSE based solar cells a thin CdS layer (buffer) significantly improves the photovoltaic performance and efficiencies up to 19.9% have been realized. Since Cd is a toxic heavy metal there is a demand for suitable substitute materials. The first requirements for these materials are an adequate band gap, a crystal structure compatible to that of CIGSE, and an n-type conductivity. An interesting class of materials are half-Heuslers, which are ternary compounds with a C1b MgAgAs structure. For many half-Heusler compounds the crystal structure matches well with the layer of the tetragonal CIGS unit cell. Using ab initio calculations based on B3LYP hybrid functionals, we have studied electronic properties of the most promising half-Heusler materials. Our results affirm the band gap rule for 8-electron half- Heuslers presented.

  8. Amorphous carbon buffer layers for separating free gallium nitride films

    Science.gov (United States)

    Altakhov, A. S.; Gorbunov, R. I.; Kasharina, L. A.; Latyshev, F. E.; Tarala, V. A.; Shreter, Yu. G.

    2016-11-01

    The possibility of using amorphous diamond-like carbon (DLC) films for self-separation of gallium nitride (GaN) layers grown by hydride vapor-phase epitaxy has been analyzed. DLC films have been synthesized by plasma-enhanced chemical vapor deposition under low pressure on sapphire (Al2O3) substrates with a (0001) crystallographic orientation. The samples have been studied by the methods of Raman scattering and X-ray diffraction analysis. It is shown that thin DLC films affect only slightly the processes of nucleation and growth of gallium nitride films. Notably, the strength of the "GaN film-Al2O3" substrate interface decreases, which facilitates separation of the GaN layers.

  9. Fabrication of (110)-one-axis-oriented perovskite-type oxide thin films and their application to buffer layer

    Science.gov (United States)

    Sato, Tomoya; Ichinose, Daichi; Kimura, Junichi; Inoue, Takaaki; Mimura, Takanori; Funakubo, Hiroshi; Uchiyama, Kiyoshi

    2016-10-01

    BaCe0.9Y0.1O3-δ (BCYO) and SrZr0.8Y0.2O3-δ (SZYO) thin films of perovskite-type oxides were deposited on (111)Pt/TiO x /SiO2/(100)Si substrates. X-ray diffraction patterns showed that the (110)-oriented BCYO and SZYO thin films were grown on (111)Pt/Si substrates directly without using any buffer layers. Thin films of SrRuO3 (SRO), a conductive perovskite-type oxide, were also deposited on those films and highly (110)-oriented SRO thin films were obtained. We believe that this (110)-oriented SRO works as a buffer layer to deposit (110)-oriented perovskite-type ferroelectric oxide thin films as well as a bottom electrode and can modify the ferroelectric properties of the oxide thin films by controlling their crystallographic orientations.

  10. Atomic layer deposition of nanoporous biomaterials

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2010-03-01

    Full Text Available Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  11. Preparation and Characterization of CeO2/YSZ/CeO2 Buffer Layers for YBCO Coated Conductors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CeO2 seed layer was deposited on rolling-assisted biaxially textured metal substrates by direct-current (DC) magnetron reactive sputtering. The effect of deposition temperature on epitaxial orientation of CeO2 thin films was examined. High quality CeO2 layers were achieved at deposition temperature from 750℃ to 850℃.Subsequently yttria-stabilized zirconia (YSZ) and CeO2 films were deposited to complete the buffer layer structure via the same process. The best samples exhibited a highly biaxial texture, as indicated by FWHM (full width half maximum) values in the range of 4°-5°, and 2°-4° for in-plane and out-of-plane orientations,respectively. Secondary ion mass spectrometer analysis confirmed the effective prevention of buffer layer against Ni and W metal interdiffusion. Atomic force microscope observations revealed a smooth, dense and crack-free surface morphology, which provided themselves as the good buffer structure to the YBa2Cu3O7-δ(YBCO) coated conductors.

  12. Uncovering the role of cathode buffer layer in organic solar cells

    Science.gov (United States)

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL.

  13. Preferential orientation growth of ITO thin film on quartz substrate with ZnO buffer layer by magnetron sputtering technique

    Science.gov (United States)

    Du, Wenhan; Yang, Jingjing; Xiong, Chao; Zhao, Yu; Zhu, Xifang

    2017-07-01

    In order to improve the photoelectric transformation efficiency of thin-film solar cells, one plausible method was to improve the transparent conductive oxides (TCO) material property. In-doped tin oxide (ITO) was an important TCO material which was used as a front contact layer in thin-film solar cell. Using magnetron sputtering deposition technique, we prepared preferential orientation ITO thin films on quartz substrate. XRD and SEM measurements were used to characterize the crystalline structure and morphology of ITO thin films. The key step was adding a ZnO thin film buffer layer before ITO deposition. ZnO thin film buffer layer increases the nucleation center numbers and results in the (222) preferential orientation growth of ITO thin films.

  14. X-ray Photoelectron Spectroscopy (XPS Depth Profiling for Evaluation of La2Zr2O7 Buffer Layer Capacity

    Directory of Open Access Journals (Sweden)

    Isabel van Driessche

    2012-02-01

    Full Text Available Lanthanum zirconate (LZO films from water-based precursors were deposited on Ni-5%W tape by chemical solution deposition. The buffer capacity of these layers includes the prevention of Ni oxidation of the substrate and Ni penetration towards the YBCO film which is detrimental for the superconducting properties. X-ray Photoelectron Spectroscopy depth profiling was used to study the barrier efficiency before and after an additional oxygen annealing step, which simulates the thermal treatment for YBCO thin film synthesis. Measurements revealed that the thermal treatment in presence of oxygen could severely increase Ni diffusion. Nonetheless it was shown that from the water-based precursors’ buffer layers with sufficient barrier capacity towards Ni penetration could be synthesized if the layers meet a certain critical thickness and density.

  15. Superconducting composite with multilayer patterns and multiple buffer layers

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  16. Optimization of CdS Buffer Layer for High Efficiency CIGS Solar Cells.

    Science.gov (United States)

    Kim, Donguk; Jang, Yong-Jun; Jung, Ho-Sung; Kim, Minha; Baek, Dohyun; Yi, Junsin; Lee, Jaehyeong; Choi, Youngkwan

    2016-05-01

    In present work, effects of the thickness on the structural and optical properties of chemically deposited CdS thin films were investigated. In addition, we fabricated Cu(In, Ga)Se2 solar cells with various thicknesses of CdS buffer layer and optimized the thickness for a high efficiency. When the CdS thin films were thicker, the crystallinity improved but the transmittance decreased. The short-circuit current density (J(sc)) and the fill factor are the major efficiency limiting factors for the CIGS solar cells. As the thickness of the CdS buffer layer, the open-circuit voltage (V(oc)) and the fill factor increased, whereas the J(sc) slightly decreased. The improvement of the fill factor and thus efficiency resulted from larger shunt resistance. For the solar cells without a high resistive intrinsic ZnO layer, the highest efficiency was acquired at the thickness of 89 nm. With further increasing the thickness, the J(sc) decreased significantly, resulting in poor efficiency.

  17. Dip Coating of Nano Hydroxyapatite on Titanium Alloy with Plasma Assisted γ-Alumina Buffer Layer: A Novel Coating Approach

    Institute of Scientific and Technical Information of China (English)

    M.Khalid; M.Mujahid; A.Nusair Khan; R.S.Rawat

    2013-01-01

    This paper reported a novel coating approach to deposit a thin,crack free and nano-structured hydroxyapatite (HA) film on Ti6Al4V alloy with Al2O3 buffer layer for biomedical implants.The Al2O3 buffer layer was deposited by plasma spraying while the HA top layer was applied by dip coating technique.The X-ray diffraction (XRD) and Raman reflections of alumina buffer layer showed α-to γ-Al2O3 phase transformation;and the fractographic analysis of the sample revealed the formation of columnar grains in well melted splats.The bonding strength between Al2O3 coating and Ti6Al4V substrate was estimated to be about 40 MPa.The presence of dip coated HA layer was confirmed using XRD,scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis.The SEM images exhibited that HA top layer enveloped homogenously the troughs and crests of the underneath rough (Ra =2.91 μm) Al2O3 surface.It is believed that the novel coating approach adopted might render the implant suitable for rapid cement-less fixation as well as biocompatible for longer periods.

  18. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    Science.gov (United States)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  19. Characteristics of GaN-based light emitting diodes with different thicknesses of buffer layer grown by HVPE and MOCVD

    Science.gov (United States)

    Tian, Pengfei; Edwards, Paul R.; Wallace, Michael J.; Martin, Robert W.; McKendry, Jonathan J. D.; Gu, Erdan; Dawson, Martin D.; Qiu, Zhi-Jun; Jia, Chuanyu; Chen, Zhizhong; Zhang, Guoyi; Zheng, Lirong; Liu, Ran

    2017-02-01

    GaN-based light emitting diodes (LEDs) have been fabricated on sapphire substrates with different thicknesses of GaN buffer layer grown by a combination of hydride vapor phase epitaxy and metalorganic chemical vapor deposition. We analyzed the LED efficiency and modulation characteristics with buffer thicknesses of 12 μm and 30 μm. With the buffer thickness increase, cathodoluminescence hyperspectral imaging shows that the dislocation density in the buffer layer decreases from  ∼1.3  ×  108 cm‑2 to  ∼1.0  ×  108 cm‑2, and Raman spectra suggest that the compressive stress in the quantum wells is partly relaxed, which leads to a large blue shift in the peak emission wavelength of the photoluminescence and electroluminescent spectra. The combined effects of the low dislocation density and stress relaxation lead to improvements in the efficiency of LEDs with the 30 μm GaN buffer, but the electrical-to-optical modulation bandwidth is higher for the LEDs with the 12 μm GaN buffer. A rate equation analysis suggests that defect-related nonradiative recombination can help increase the modulation bandwidth but reduce the LED efficiency at low currents, suggesting that a compromise should be made in the choice of defect density.

  20. Buffer layer investigations on MFIS capacitors consisting of ferroelectric poly[vinylidene fluoride trifluoroethylene

    Science.gov (United States)

    Henkel, K.; Seime, B.; Paloumpa, I.; Müller, K.; Schmeißer, D.

    2010-02-01

    In this paper we present capacitance-voltage (CV) measurements on metal-ferroelectric-insulator-semiconductor (MFIS) capacitors with poly[vinylidene fluoride trifluoroethylene] (P[VDF/TrFE] as ferroelectric layer and SiO2, Al2O3 and HfO2 as buffering insulator layer. In order to discuss our data in a quantitative manner we perform fits to the data based on a model proposed by Miller and McWorther. The improvement of the polarization values and subsequently its effect on the hysteresis of the CV curve by the successive shrinking of the buffer layer thickness and the following choice of a high-k buffer material is demonstrated. Our data underline that a saturated polarization of P[VDF/TrFE] cannot be controlled with a SiO2 buffer layer and the insertion of a high-k buffer layer is essential for further improvements of the characteristics of MFIS stacks.

  1. Effects of Controlling the AZO Thin Film's Optical Band Gap on AZO/MEH-PPV Devices with Buffer Layer

    Directory of Open Access Journals (Sweden)

    Jaehyoung Park

    2012-01-01

    Full Text Available Organic/inorganic hybrid solar cells were fabricated incorporating aluminum-doped zinc oxide (AZO thin films of varying optical band gap in AZO/poly(2-methoxy-5-(2′-ethyl-hexyloxy-p-phenylene vinylene structures. The band gaps were controlled by varying the flow rates of Ar and O2 used to deposit the AZO. Devices with CdS buffer layer were also fabricated for improved efficiency. The effects of AZO optical band gap were assessed by testing the I–V characteristics of devices with structures of glass/ITO/AZO/MEH-PPV/Ag under AM1.5 illumination (100 mW/cm2. Efficiency was improved about 30 times by decreasing the AZO optical band gap, except in devices deposited without oxygen. A power conversion efficiency of 0.102% was obtained with the incorporation of a CdS buffer layer.

  2. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    Science.gov (United States)

    Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu

    2016-02-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).

  3. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  4. Perovskite thin films via atomic layer deposition.

    Science.gov (United States)

    Sutherland, Brandon R; Hoogland, Sjoerd; Adachi, Michael M; Kanjanaboos, Pongsakorn; Wong, Chris T O; McDowell, Jeffrey J; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J; Sargent, Edward H

    2015-01-01

    A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

  5. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    OpenAIRE

    2012-01-01

    The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis o...

  6. Buffer Layer Effects on Tandem InGaAs TPV Devices

    Science.gov (United States)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of

  7. Band Gap Opening Induced by the Structural Periodicity in Epitaxial Graphene Buffer Layer.

    Science.gov (United States)

    N Nair, Maya; Palacio, Irene; Celis, Arlensiú; Zobelli, Alberto; Gloter, Alexandre; Kubsky, Stefan; Turmaud, Jean-Philippe; Conrad, Matthew; Berger, Claire; de Heer, Walter; Conrad, Edward H; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2017-04-12

    The epitaxial graphene buffer layer on the Si face of hexagonal SiC shows a promising band gap, of which the precise origin remains to be understood. In this work, we correlate the electronic to the atomic structure of the buffer layer by combining angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and high-resolution scanning transmission electron microscopy (HR-STEM). We show that the band structure in the buffer has an electronic periodicity related to the structural periodicity observed in STM images and published X-ray diffraction. Our HR-STEM measurements show the bonding of the buffer layer to the SiC at specific locations separated by 1.5 nm. This is consistent with the quasi 6 × 6 periodic corrugation observed in the STM images. The distance between buffer C and SiC is 1.9 Å in the bonded regions and up to 2.8 Å in the decoupled regions, corresponding to a 0.9 Å corrugation of the buffer layer. The decoupled regions are sp(2) hybridized. Density functional tight binding (DFTB) calculations demonstrate the presence of a gap at the Dirac point everywhere in the buffer layer, even in the decoupled regions where the buffer layer has an atomic structure close to that of graphene. The surface periodicity also promotes band in the superperiodic Brillouin zone edges as seen by photoemission and confirmed by our calculations.

  8. A Novel Buffer Layer of Alq3 in Organic Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Feng; DENG Zhen-Bo; LIANG Chun-Jun; LIN Peng; ZHANG Meng-Xin; XU Deng-Hui

    2004-01-01

    @@ Inserting the Alq3 layer in the ITO/NPB interface as the buffer layer can improve the organic electroluminescent devices. The current density efficiency and power efficiency of the device with the Alq3 buffer layer rises to 6.5 cd/A and 1.21 m/W at the current density of 120 mA/cm2, respectively. The improvement is mostly attributed to the balance of the hole and the electron injections.

  9. High Quality GaAs Epilayers Grown on Si Substrate Using 100 nm Ge Buffer Layer

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Kuo

    2016-01-01

    Full Text Available We present high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers. The thin Ge buffer layers were modulated by hydrogen flow rate from 60 to 90 sccm to improve crystal quality by electron cyclotron resonance chemical vapor deposition (ECR-CVD at low growth temperature (180°C. The GaAs and Ge epilayers quality was verified by X-ray diffraction (XRD and spectroscopy ellipsometry (SE. The full width at half maximum (FWHM of the Ge and GaAs epilayers in XRD is 406 arcsec and 220 arcsec, respectively. In addition, the GaAs/Ge/Si interface is observed by transmission electron microscopy (TEM to demonstrate the epitaxial growth. The defects at GaAs/Ge interface are localized within a few nanometers. It is clearly showed that the dislocation is well suppressed. The quality of the Ge buffer layer is the key of III–V/Si tandem cell. Therefore, the high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers is suitable to develop the low cost and high efficiency III–V/Si tandem solar cells.

  10. An Introduction to Atomic Layer Deposition

    Science.gov (United States)

    Dwivedi, Vivek H.

    2017-01-01

    Atomic Layer Deposition has been instrumental in providing a deposition method for multiple space flight applications. It is well known that ALD is a cost effective nanoadditive-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases, thin films can be deposited on a myriad of substrates from flat surfaces to those with significant topography. By providing atomic layer control, where single layers of atoms can be deposited, the fabrication of metal transparent films, precise nano-laminates, and coatings of nano-channels, pores and particles is achievable. The feasibility of this technology for NASA line of business applications range from thermal systems, optics, sensors, to environmental protection. An overview of this technology will be presented.

  11. Compact hematite buffer layer as a promoter of nanorod photoanode performances

    Science.gov (United States)

    Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.

    2016-10-01

    The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.

  12. GZO/MgO IBAD-buffer layers for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, S. [Fujikura Ltd., 1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan)], E-mail: s_hanyu@fujikura.co.jp; Miura, T.; Iijima, Y.; Igarashi, M.; Hanada, Y.; Fuji, H.; Kakimoto, K. [Fujikura Ltd., 1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan); Kato, T.; Hirayama, T. [Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan); Saitoh, T. [Fujikura Ltd., 1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan)

    2008-09-15

    Long-length and low-cost coated conductors are necessary for practical use such as motor, generator, transformer, fault current limiter, SMES and so on. For fabricating low-cost coated conductors, production speeds at each process should be faster. The structure of coated conductor we adopted, is GdBa{sub 2}Cu{sub 3}O{sub y}(GdBCO)/CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} (GZO)/metal. To make processes faster without changing such beneficial structures, we adopted another buffer layer under GZO film. At the IBAD (ion-beam-assisted deposition) process, MgO is known as one of the suitable materials to achieve high alignment with thin film thickness. We fabricated IBAD-MgO film with changing deposition rates and ion-current densities, and got two types of IBAD-MgO film. One is the film with its crystal orientation aligned to the MgO(1 1 1) parallel to the tape surface, and the other is with MgO(1 0 0). And each film has in-plane texture such that 3-fold symmetry, and 4-fold symmetry respectively in the pole figure of MgO<1 1 0>. We performed IBAD-GZO on the 3-fold IBAD-MgO film, and got 4-fold IBAD-GZO film. In-plane textures of GZO were not so different from the ordinary IBAD-GZO film, but the thickness of the films became from 1.2 {mu}m to 0.3 {mu}m (1/4). And a critical current of the GdBCO film on the buffer layer was over 210 A/cm (J{sub c} > 1.5 MA/cm{sup 2}) at 77 K.

  13. Effects of Anodic Buffer Layer in Top-Illuminated Organic Solar Cell with Silver Electrodes

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2013-01-01

    Full Text Available An efficient ITO-free top-illuminated organic photovoltaic (TOPV based on small molecular planar heterojunction was achieved by spinning a buffer layer of poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS, on the Ag-AgOx anode. The PEDOT:PSS thin film separates the active layer far from the Ag anode to prevent metal quenching and redistributes the strong internal optical field toward dissociated interface. The thickness and morphology of this anodic buffer layer are the key factors in determining device performances. The uniform buffer layer contributes a large short-circuit current and open-circuit voltage, benefiting the final power conversion efficiency (PCE. The TOPV device with an optimal PEDOT:PSS thickness of about 30 nm on Ag-AgOx anode exhibits the maximum PCE of 1.49%. It appreciates a 1.37-fold enhancement in PCE over that of TOPV device without buffer layer.

  14. Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates

    Science.gov (United States)

    Bogumilowicz, Y.; Hartmann, J. M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.-Y.; Sanchez, E.

    2016-11-01

    We have grown GaAs epitaxial layers on Ge buffers, themselves on Si (001) substrates, using an Applied Materials 300 mm metal organic chemical vapor deposition tool. We varied the Ge buffer thickness between 0.36 and 1.38 μm and studied the properties of a 0.27 μm thick GaAs layer on top. We found that increasing the Ge buffer thickness yielded smoother GaAs films with an rms surface roughness as low as 0.5 nm obtained on a 5×5 μm2 area. The bow of the substrate increased following a linear law with the epitaxial stack thickness up to 240 μm for a 1.65 μm stack. We have also characterized the threading dislocations present in the GaAs layers using X-ray diffraction and cathodoluminescence. Increasing the Ge buffer thickness resulted in lower threading dislocation densities, enabling us to obtain anti-phase boundary - free GaAs films with a threading dislocation density as low as 3×107 cm-2. In addition, atomic force microscopy surface topology measurements showed the presence of pits in the GaAs layers whose density agreed well with other threading dislocation density assessments. It thus seems that threading dislocations can in certain cases induce some growth rate variations, making them visible in as-grown GaAs films. Using thicker Ge buffers results in smoother films with less threading dislocations, with the side effect of increasing the bow on the wafer. If bow is not an issue, this is a practical approach to improve the GaAs (on Ge buffer) on silicon quality.

  15. Effects of Varied Cleaning Methods on Ni-5% W Substrate for Dip-Coating of Water-based Buffer Layers: An X-ray Photoelectron Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Isabel Van Driessche

    2012-08-01

    Full Text Available This work describes various combinations of cleaning methods involved in the preparation of Ni-5% W substrates for the deposition of buffer layers using water-based solvents. The substrate has been studied for its surface properties using X-ray photoelectron spectroscopy (XPS. The contaminants in the substrates have been quantified and the appropriate cleaning method was chosen in terms of contaminants level and showing good surface crystallinity to further consider them for depositing chemical solution-based buffer layers for Y1Ba2Cu3Oy (YBCO coated conductors.

  16. Dopamine-melanin film deposition depends on the used oxidant and buffer solution.

    Science.gov (United States)

    Bernsmann, Falk; Ball, Vincent; Addiego, Frédéric; Ponche, Arnaud; Michel, Marc; Gracio, José Joaquin de Almeida; Toniazzo, Valérie; Ruch, David

    2011-03-15

    The deposition of "polydopamine" films, from an aqueous solution containing dopamine or other catecholamines, constitutes a new and versatile way to functionalize solid-liquid interfaces. Indeed such films can be deposited on almost all kinds of materials. Their deposition kinetics does not depend markedly on the surface chemistry of the substrate, and the films can reach thickness of a few tens of nanometers in a single reaction step. Up to now, even if a lot is known about the oxidation mechanism of dopamine in solution, only little information is available to describe the deposition mechanism on surfaces either by oxidation in solution or by electrodeposition. The deposition kinetics of melanin was only investigated from dopamine solutions using oxygen or ammonium persulfate as an oxidant and from a tris(hydroxymethyl) aminomethane (Tris) containing buffer solutions at pH 8.5. Many other oxidants could be used, and the buffer agent containing a primary amine group may influence the deposition process. Herein we show that the deposition kinetics of melanin from dopamine containing buffers at pH 8.5 can be markedly modified using Cu(2+) instead of O2 as an oxidant: the deposition kinetics remains linear up to thicknesses of more than 70 nm, whereas the film growth stops at 45 ± 5 nm in the presence of 02. In addition, the films prepared from Cu(2+) containing solutions display an absorption spectrum with defined peaks at 320 and 370 nm, which are absent in the spectra of films prepared in oxygenated solutions. The replacement of Tris buffer by phosphate buffer also has a marked effect on the melanin deposition kinetics.

  17. The effect of buffer layer on the thermochromic properties of undoped radio frequency sputtered VO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulou, M., E-mail: marpanag@mail.ntua.gr [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR 157 80, Zografou Campus, Athens (Greece); Gagaoudakis, E. [Physics Department, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology — FORTH-Hellas, P.O. Box 1385, Heraklion 70013, Crete (Greece); Aperathitis, E.; Michail, I. [Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology — FORTH-Hellas, P.O. Box 1385, Heraklion 70013, Crete (Greece); Kiriakidis, G. [Physics Department, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology — FORTH-Hellas, P.O. Box 1385, Heraklion 70013, Crete (Greece); Tsoukalas, D.; Raptis, Y.S. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR 157 80, Zografou Campus, Athens (Greece)

    2015-11-02

    Thermochromic (TC) coatings can find use in a wide range of applications. Vanadium dioxide (VO{sub 2}) specifically, can be potentially used as a smart window coating, as it presents a metal-to-semiconductor transition close to the room temperature (T{sub c} = 68 °C). This results in low transmission in the infrared (thermal) part of the spectrum, while preserving its transmittance in the visible. In the present work, vanadium dioxide (VO{sub 2}) thin films with a thickness of ~ 85 nm were prepared by radio frequency sputtering, to investigate the influence of the buffer layer and deposition properties employed, on their thermochromic behavior. The substrates used were uncoated glass and pre-coated glasses with SnO{sub 2} or ZnON as buffer layer. The lowest growth temperature applied was 300 °C, yielding TC-VO{sub 2}, without the necessity of any post-growth treatment. The structure of the VO{sub 2} films was studied by X-ray diffraction and temperature-dependent micro Raman techniques, and the transition temperatures were determined through transmittance measurements. - Highlights: • RF-sputtered thermochromic VO{sub 2}, was grown at 300 °C and 400 °C. • Buffer layers of SnO{sub 2} or ZnON are used over glass. • Low Tc, without post-treatment, for both buffer-layers and T-growth • Thermochromicity of glass/VO{sub 2}, at low T-growth, is improved by ZnON buffer layer.

  18. IBAD-MgO buffer layers for coated conductors in the large-scale system

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, S., E-mail: s_hanyu@fujikura.co.j [Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba 285-8550 (Japan); Tashita, C.; Hanada, Y.; Hayashida, T.; Kutami, H.; Igarashi, M.; Fuji, H.; Kakimoto, K.; Iijima, Y.; Saitoh, T. [Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba 285-8550 (Japan)

    2009-10-15

    For practical applications of high-temperature superconductor tape, the high production rate of tapes is needed to reduce its cost. Recently, the long-length coated conductor with high performance has been fabricated by an ion beam assisted deposition/pulsed laser deposition (IBAD/PLD) method in Fujikura. In IBAD process, we adopted IBAD-Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) film. The process speed of IBAD-GZO film was increased up to 5 m/h using a polished metal substrate tape. To fabricate biaxially-textured buffer layers at a higher rate, we have started to develop another structures such as (a) IBAD-GZO/IBAD-MgO (3-fold symmetry) and (b) IBAD-MgO (4-fold symmetry). In the case (a), we fabricated GdBCO/CeO{sub 2}/IBAD-GZO/IBAD-MgO tape and the critical current was I{sub c} = 550 A/cm (2.46 MA/cm{sup 2}) and throughput of IBAD processes were 20 m/h. In the case (b), IBAD-MgO short samples with DELTAPHI of 9 deg. - 11 deg. were obtained at 500 m/h. The 500 m/h (10 mm width) is extremely high rate in IBAD process in the world. As long-length IBAD layer 10 m, 50 m and 100 m IBAD-MgO films were fabricated at the speed of 100 m/h. After CeO{sub 2} deposition, in-plane textures of these samples were DELTAPHI of 3.7 deg.-3.7 deg., 4.1 deg.-4.9 deg. and 4.2 deg.-4.8 deg. Using some of these buffer layers, we have obtained GdBCO film with I{sub c} = 400 A/cm (2 MA/cm{sup 2}, 10 m) and I{sub c} = 550 A/cm (2.7 MA/cm{sup 2}, short sample).

  19. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    Science.gov (United States)

    Ahn, Kwangseok; Kim, Jong Beom; Kim, Hyo Jung; Lee, Hyun Hwi; Lee, Dong Ryeol

    2015-01-01

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 -2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  20. Hydrogen release from deposited beryllium layers

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, V.P.; Klepikov, A.Kh.; Chikhray, Y.V.; Tazhibaeva, I.L. [NIIETF of Al Farabi Kazakh State Univ., Almaty (Kazakhstan)

    2000-04-01

    The analysis of hydrogen retained in deposited beryllium layers deposited by magnetron sputtering was carried out by means of thermodesorption (TDS) technique. Two hydrogen release peaks were clearly seen on the thermodesorption curves at the temperatures 760-800 K and 920-970 K. Hydrogen concentrations in the deposited beryllium layers were calculated from the gas release curves corresponding to the number of Be atoms in the beryllium layer of 100% theoretical density. Average hydrogen concentration in the beryllium samples loaded in the process of magnetron sputtering was equal to 3800{+-}200 appm. The experiments with beryllium layers, enriched with carbon, revealed the increase of retained hydrogen concentration up to 9600{+-}200 appm. Assuming that gas release can be described within the framework of model of diffusion from layer system BeO-Be-BeO, hydrogen diffusion coefficient in BeO and the trapping and detrapping constants for the traps appearing in beryllium in the process of deposition were evaluated. (orig.)

  1. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO₃ and ZnO Charge Transport Buffer Layers.

    Science.gov (United States)

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-11-08

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO₃) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO₃ by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  2. Morphology and wettability of ZnO nanostructures prepared by hydrothermal method on various buffer layers

    Science.gov (United States)

    Li, Bao-jia; Huang, Li-jing; Zhou, Ming; Ren, Nai-fei

    2013-12-01

    Zinc oxide (ZnO) nanostructures were prepared by hydrothermal method on glass substrates with various buffer layers: Ag, Al, aluminum-doped zinc oxide (AZO) and tin-doped indium oxide (ITO). The structure, morphology and wettability of the ZnO nanostructured surfaces were investigated by using X-ray diffraction, scanning electron microscopy and water contact angle (WCA) analysis methods, respectively. All the nanostructures grown on glass with various buffer layers exhibited strong growth orientation along the (1 0 1) plane. The nature of the buffer layer was found to have remarkable effect on the morphology and wettability of the ZnO nanostructures. Whether the buffer layers were hydrophilic or low hydrophobic, all the ZnO nanostructures grown on the various buffer layers showed high hydrophobic property, and that grown on the AZO buffer layer even exhibited superhydrophobicity with a WCA of 151.1°. This work may provide a scientific basis for self-cleaning ZnO-based optoelectronic device applications.

  3. Effect of por-SiC buffer layer on the parameters of thin Er2O3 layers on silicon carbide substrates

    Science.gov (United States)

    Bacherikov, Yu Yu; Konakova, R. V.; Okhrimenko, O. B.; Berezovska, N. I.; Kapitanchuk, L. M.; Svetlichnyi, A. M.; Svetlichnaya, L. A.

    2015-04-01

    Using optical absorption and Auger spectrometry techniques, we studied the effect of rapid thermal annealing (RTA) on the properties of erbium oxide films deposited onto a porous silicon carbide buffer layer formed on 4H-SiC substrates. An analysis of atomic composition of the films under investigation as a function of RTA duration was performed. It is shown that phase composition of erbium oxide films on silicon carbide substrates with a porous SiC layer can be changed by varying RTA duration.

  4. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction

    Science.gov (United States)

    El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.

    2016-11-01

    Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.

  5. Atomic layer deposition of nanoporous biomaterials.

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  6. High quality Ge epilayer on Si (1 0 0) with an ultrathin Si1-x Ge x /Si buffer layer by RPCVD

    Science.gov (United States)

    Chen, Da; Guo, Qinglei; Zhang, Nan; Xu, Anli; Wang, Bei; Li, Ya; Wang, Gang

    2017-07-01

    The authors report a method to grow high quality strain-relaxed Ge epilayer on a combination of low temperature Ge seed layer and Si1-x Ge x /Si superlattice buffer layer by reduced pressure chemical vapor deposition system without any subsequent annealing treatment. Prior to the growth of high quality Ge epilayer, an ultrathin Si1-x Ge x /Si superlattice buffer layer with the thickness of 50 nm and a 460 nm Ge seed layer were deposited successively at low temperature. Then an 840 nm Ge epilayer was grown at high deposition rate with the surface root-mean-square roughness of 0.707 nm and threading dislocation density of 2.5  ×  106 cm-2, respectively. Detailed investigations of the influence of ultrathin low-temperature Si1-x Ge x /Si superlattice buffer layer on the quality of Ge epilayer were performed, which indicates that the crystalline quality of Ge epilayer can be significantly improved by enhancing the Ge concentration of Si1-x Ge x /Si superlattice buffer layer.

  7. Matrix effects in SIMS depth profiles of SiGe relaxed buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Almazan, F.; Napolitani, E.; Carnera, A.; Drigo, A.V.; Isella, G.; Kaenel, H. von; Berti, M

    2004-06-15

    The combined use of Rutherford backscattering spectrometry and secondary ion mass spectroscopy allowed a complete characterization of a set of SiGe relaxed buffer layers grown by low-energy plasma-enhanced chemical vapor deposition. The Ge contents for the top SiGe constant composition layers have been obtained by RBS. Matrix effects have been studied by using monoatomic and biatomic ions as well as low and high energy O{sub 2}{sup +} and Cs{sup +} primary beam ions. We show that matrix effects are suppressed when an O{sub 2}{sup +} primary beam ion source is used at 3 keV, and when detecting with {sup 30}Si{sup +} and {sup 70}Ge{sup +} secondary ions for Ge contents <0.47. For higher Ge contents a better compromise is achieved with Cs{sup +} bombardment at 14.5 keV when detecting with {sup 74}Ge{sup 76}Ge{sup -} secondary ions. The procedure allows to extract the Ge concentration profiles with good accuracy even at very high depths and at very low Ge concentrations.

  8. Graphene as a Buffer Layer for Silicon Carbide-on-Insulator Structures

    Directory of Open Access Journals (Sweden)

    Kanji Yasui

    2012-11-01

    Full Text Available We report an innovative technique for growing the silicon carbide-on-insulator (SiCOI structure by utilizing polycrystalline single layer graphene (SLG as a buffer layer. The epitaxial growth was carried out using a hot-mesh chemical vapor deposition (HM-CVD technique. Cubic SiC (3C-SiC thin film in (111 domain was realized at relatively low substrate temperature of 750 °C. 3C-SiC energy bandgap of 2.2 eV was confirmed. The Si-O absorption band observed in the grown film can be caused by the out-diffusion of the oxygen atom from SiO2 substrate or oxygen doping during the cleaning process. Further experimental works by optimizing the cleaning process, growth parameters of the present growth method, or by using other growth methods, as well, are expected to realize a high quality SiCOI structure, thereby opening up the way for a breakthrough in the development of advanced ULSIs with multifunctionalities.

  9. Perpendicular magnetization of CoFeB on top of an amorphous buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongseok; Jung, K.Y. [Department of Display and Semiconductor Physics, Korea University, Sejong 339-700 (Korea, Republic of); Joo, Sungjung [Department of Display and Semiconductor Physics, Korea University, Sejong 339-700 (Korea, Republic of); Center for Electricity and Magnetism, Korea Research Institute of Standard and Science, Daejeon 305-340 (Korea, Republic of); Jang, Youngjae; Hong, Jinki [Department of Display and Semiconductor Physics, Korea University, Sejong 339-700 (Korea, Republic of); Lee, B.C.; You, C.Y.; Cho, J.H. [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of); Kim, M.Y. [Department of Nano Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Rhie, K., E-mail: krhie@korea.ac.kr [Department of Display and Semiconductor Physics, Korea University, Sejong 339-700 (Korea, Republic of)

    2015-01-15

    Perpendicular magnetic anisotropy was observed in sputtered FeZr/CoFeB/MgO multilayers. A thin paramagnetic amorphous FeZr layer was used as a buffer layer and perpendicular anisotropy was obtained by annealing the samples without an external magnetic field. The critical CoFeB thickness for perpendicular anisotropy was 1.8 nm; the anisotropy changes from out-of-plane to in-plane as the CoFeB thickness increases beyond this point. Perpendicular anisotropy was also enhanced when a Ta layer was capped on top of the MgO layer. The amorphous buffer provided better perpendicular anisotropy than previously reported Ta buffer, and it may be applied to perpendicular magnetization MRAM devices where good uniformity of tunnel junctions is required. - Highlights: • Perpendicular magnetic anisotropy (PMA) of buffer/CoFeB/MgO was investigated. • The PMA was enhanced by using an amorphous buffer. • The PMA of the CoFeB layer was maintained up to 1.8 nm. • Ta capping layer further improved the PMA by 40%.

  10. Efficient red-emission InGaN/GaN multilayered structure on Si with surface-nitrified HfO{sub 2} film as buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Zhang, Xuehua; Hu, Fangren [Nanjing University of Posts and Telecommunications, School of Optoelectronic Engineering, Nanjing (China); Nanjing University of Posts and Telecommunications, Peter Grunberg Research Center, Nanjing (China); Wang, Yongjin [Nanjing University of Posts and Telecommunications, Peter Grunberg Research Center, Nanjing (China); Hane, K. [Tohoku University, Department of Nanomechanics, Sendai (Japan)

    2016-03-15

    A four-period InGaN/GaN (8 nm/48 nm) layered structure was deposited on a Si substrate with a surface-nitrified HfO{sub 2} film as a buffer layer (5 nm). A high In concentration of In{sub 0.36}Ga{sub 0.64}N was obtained in the InGaN layers. Red photoluminescence of 648 nm was observed from the layered structure. The internal quantum efficiency of the red emission from the InGaN layers on the surface-nitrified HfO{sub 2}/Si was 52 %, which was more than 18 times larger than that on the Si substrate without HfO{sub 2}. The surface-nitrified HfO{sub 2} provides another effective buffer layer to grow the InGaN/GaN layered structure on the Si substrate. (orig.)

  11. Perpendicular magnetization of CoFeB on top of an amorphous buffer layer

    Science.gov (United States)

    Kim, Dongseok; Jung, K. Y.; Joo, Sungjung; Jang, Youngjae; Hong, Jinki; Lee, B. C.; You, C. Y.; Cho, J. H.; Kim, M. Y.; Rhie, K.

    2015-01-01

    Perpendicular magnetic anisotropy was observed in sputtered FeZr/CoFeB/MgO multilayers. A thin paramagnetic amorphous FeZr layer was used as a buffer layer and perpendicular anisotropy was obtained by annealing the samples without an external magnetic field. The critical CoFeB thickness for perpendicular anisotropy was 1.8 nm; the anisotropy changes from out-of-plane to in-plane as the CoFeB thickness increases beyond this point. Perpendicular anisotropy was also enhanced when a Ta layer was capped on top of the MgO layer. The amorphous buffer provided better perpendicular anisotropy than previously reported Ta buffer, and it may be applied to perpendicular magnetization MRAM devices where good uniformity of tunnel junctions is required.

  12. Atomic Layer Deposition from Dissolved Precursors.

    Science.gov (United States)

    Wu, Yanlin; Döhler, Dirk; Barr, Maïssa; Oks, Elina; Wolf, Marc; Santinacci, Lionel; Bachmann, Julien

    2015-10-14

    We establish a novel thin film deposition technique by transferring the principles of atomic layer deposition (ALD) known with gaseous precursors toward precursors dissolved in a liquid. An established ALD reaction behaves similarly when performed from solutions. "Solution ALD" (sALD) can coat deep pores in a conformal manner. sALD offers novel opportunities by overcoming the need for volatile and thermally robust precursors. We establish a MgO sALD procedure based on the hydrolysis of a Grignard reagent.

  13. Effect of maleic anhydride-aniline derivative buffer layer on the properties of flexible substrate heterostructures: Indium tin oxide/nucleic acid base/metal

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, A., E-mail: sanca@infim.ro [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125, Bucharest-Magurele (Romania); Socol, M. [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125, Bucharest-Magurele (Romania); Socol, G.; Mihailescu, I.N. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, 077125, Bucharest-Magurele (Romania); Girtan, M. [Laboratoire de Photonique d' Angers, Universite d' Angers, 2, Bd. Lavoisier, 49045, Angers (France); Preda, N. [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125, Bucharest-Magurele (Romania); Albu, A.-M. [Department of Polymer Science, University ' Politehnica' of Bucharest, Bucharest (Romania); Stanculescu, F. [University of Bucharest, Faculty of Physics, Str. Atomistilor nr.405, P.O. Box MG-11, Bucharest-Magurele, 077125 (Romania)

    2011-12-01

    This paper presents some investigations on the properties of guanine (G) and cytosine (C) based heterostructures deposited on flexible substrates. The effects of two types of maleic anhydride-aniline derivatives (maleic anhydride-cyano aniline or maleic anhydride-2,4 dinitroaniline) buffer layer, deposited between indium tin oxide and (G) or (C) layer, on the optical and electrical properties of the heterostructures have been identified. The heterostructures containing a film of maleic anhydride-2,4 dinitroaniline have shown a good transparency and low photoluminescence in visible range. This buffer layer has determined an increase in the conductance only in the heterostructures based on (G) and (C) deposited on biaxially-oriented polyethylene terephthalate substrate.

  14. Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer

    Science.gov (United States)

    Tsai, Meng-Yen; Cheng, Wen-Hui; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-06-01

    In this study, a low-temperature solution-processed zinc tin oxide (ZTO) films are successfully utilized as the cathode buffer layer in the inverted organic P3HT:PCBM bulk heterojunction solar cells. ZTO film cathode buffer layer with an appropriate Sn-doping concentration outperforms the zinc oxide (ZnO) film with an improved power conversion efficiency (1.96% (ZTO film) vs. 1.56% (ZnO film)). Furthermore, ZTO nanoparticles (NPs) are also synthesized via low-temperature solution route and the device with ZTO NPs buffer layer exhibits a significant improvement in device performance to reach a PCE of 2.60%. The crystallinity of the cathode buffer layer plays an influential factor in the performance. From impedance spectroscopy analysis, a correlation between short circuit current (Jsc), carrier life time (τavg) and, thus, PCE is observed. The interplay between composition and crystallinity of the cathode buffer layers is discussed to find their influences on the solar cell performance.

  15. Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.W.G.; Cameron, D.C.; Dickey, E.; George, S.M.; Kuznetsov, V.; Parsons, G.N.; Roozeboom, F.; Sundaram, G.; Vermeer, A.

    2012-01-01

    Atomic layer deposition (ALD) is a technique capable of producing ultrathin conformal films with atomic level control over thickness. A major drawback of ALD is its low deposition rate, making ALD less attractive for applications that require high throughput processing. An approach to overcome this

  16. A Comparison of GaN Epilayers with Multiple Buffer Layers and with a Single Buffer Layer Grown on Si(111) Studied by HRXRD and RBS/Channeling

    Institute of Scientific and Technical Information of China (English)

    DING Zhi-Bo; WANG Kun; YAO Shu-De

    2008-01-01

    @@ Two hexagonal GaN epilayers (samples A and B) with multiple buffer layers and single buffer layer are grown on Si (111) by metal-organic vapour phase epitaxy (MOVPE).From the results of Rutherford backscattering (RBS)/channeling and high resolution x-ray diffraction (HRXRD),we obtain the lattice constant (a and c) of two GaN epilayers (aA = 0.3190 nm,cA = 0.5184 nm and aB = 0.3192 nm,cB = 0.5179 nm),the crystal quality of two GaN epilayers ( XminA = 4.87%,XminB=7.35% along axis) and the tetragonal distortion eT of the two samples along depth (sample A is nearly fully relaxed,sample B is not relaxed enough).

  17. Atomic layer deposition of nanostructured materials

    CERN Document Server

    Pinna, Nicola

    2012-01-01

    Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (du

  18. Defect Reduction in Epitaxial Growth Using Superlattice Buffer Layers

    Science.gov (United States)

    1988-07-01

    Katsuyama, Y. J. Yang and S. M. Bedair, Electron Dev. Lett., vol. 8, p. 240, 1987. 0 -15 -" Journal of (ryOstal (io iih 77 (108(,) ,xQ 9i4 S9 North-I...layer facilitat the csea of Gaosu 3 (5% in H2) + 500 sccm of H , and ed cross-sectional thickness measurements. trimethylgallium (TMG) + 500 sccm of H

  19. Complex Materials by Atomic Layer Deposition.

    Science.gov (United States)

    Schwartzberg, Adam M; Olynick, Deirdre

    2015-10-14

    Complex materials are defined as nanostructured materials with combinations of structure and/or composition that lead to performance surpassing the sum of their individual components. There are many methods that can create complex materials; however, atomic layer deposition (ALD) is uniquely suited to control composition and structural parameters at the atomic level. The use of ALD for creating complex insulators, semiconductors, and conductors is discussed, along with its use in novel structural applications.

  20. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  1. Hafnium nitride buffer layers for growth of GaN on silicon

    Science.gov (United States)

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  2. Silver hollow optical fibers with acrylic silicone resin coating as buffer layer for sturdy structure

    Science.gov (United States)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2016-03-01

    For sturdy silver hollow optical fibers, acrylic silicone resin is newly used as a buffer layer between an inner silver layer and a silica capillary. This acrylic silicone resin film prevents the glass surface from chemical and mechanical micro damages during silver plating process, which deteriorate mechanical strength of the hollow fibers. In addition, it keeps high adhesion of the silver layer with the glass surface. We discuss improvement of mechanical strength of the hollow glass fibers without deterioration of optical properties.

  3. Cube Texture Formation of Cu-33at.%Ni Alloy Substrates and CeO2 Buffer Layer for YBCO Coated Conductors

    DEFF Research Database (Denmark)

    Tian, Hui; Li, Suo Hong; Ru, Liang Ya

    2014-01-01

    Cube texture formation of Cu-33 at.%Ni alloy substartes and CeO2 buffer layer prepared by chemical solution deposition on the textured substrate were investigated by electron back scattered diffraction (EBSD) and XRD technics systematically. The results shown that a strong cube textured Cu-33at.%...... of epitaxially grown CeO2 buffer layer was 95 % (omega-scan being 6.98° and 5.92°, respectively........%Ni alloy substrate with the cube texture fraction of 99.8 % (omega-scan in this substrate were 7.31° and 5.51°, respectively. Furthermore, the cube texture fraction...

  4. High efficiency CIGS and CIS cells with CVD ZnO buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, L.C.; Lei, W.; Addis, F.W. [Washington State Univ./Tri-Cities, Richland, WA (United States); Shafarman, W.N. [Univ. of Delaware, Newark, DE (United States). Inst. of Energy Conversion; Contreras, M.A.; Ramanathan, K. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper describes investigations of CIS and CIGS solar cells with ZnO buffer layers. These studies are a result of a team effort between investigators at Washington State University (WSU), the Institute of Energy Conversion (IEC) and the National Renewable Energy Laboratory (NREL). Cells with ZnO buffer layers were fabricated with both Siemens CIS and NREL CIGS substrates. An active area efficiency of 13.95% was achieved for a ZnO/CIGS cell. ZnO buffer layers are grown by reacting a zinc adduct with tetrahydrofuran using a two-step approach: growth of approximately 100 {angstrom} of ZnO at 250 C; and then growth of 500 to 700 {angstrom} of ZnO at 100 C. The high temperature step is necessary to achieve good cell performance. It appears that exposure of CIGS to hydrogen at 250 C may remove contaminants and/or passivate recombination centers on the surface and subsurface regions.

  5. Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    PAN Feng; QIAN Xian-Rui; HUANG Li-Zhen; WANG Hai-Bo; YAN Dong-Hang

    2011-01-01

    High-mobility vanadyl phthalocyanine (VOPc)/5,5″′-bis(4-fluorophenyl)-2,2′:5′,2″:5″,2″′-quaterthiophene (F2-P4T) thin-film transistors are demonstrated by employing a copper hexadecafluorophthalocyanine (F16 CuPc)/copper phthalocyanine (CuPc) heterojunction unit,which are fabricated at different substrate temperatures,as a buffer layer. The highest mobility of 4.08cm2/Vs is achieved using a F16CuPc/CuPc organic heterojunction buffer layer fabricated at high substrate temperature.Compared with the random small grain-like morphology of the room-temperature buffer layer,the high-temperature organic heterojunction presents a large-sized fiber-like film morphology,resulting in an enhanced conductivity.Thus the contact resistance of the transistor is significantly reduced and an obvious improvement in device mobility is obtained.

  6. Buffer layer between a planar optical concentrator and a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Manuel E. [Departamento de Ingeniería Matemática and CI" 2 MA, Universidad de Concepción, Concepción, Casilla 160-C (Chile); Barber, Greg D. [Penn State Institute of Energy and the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Faryad, Muhammad [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Monk, Peter B. [Department of Mathematical Sciences, University of Delaware, Newark, DE 19716 (United States); Mallouk, Thomas E. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  7. Epitaxial Growth of Hard Ferrimagnetic Mn3Ge Film on Rhodium Buffer Layer

    Directory of Open Access Journals (Sweden)

    Atsushi Sugihara

    2015-06-01

    Full Text Available Mn\\(_3\\Ge has a tetragonal Heusler-like D0\\(_{22}\\ crystal structure, exhibiting a large uniaxial magnetic anisotropy and small saturation magnetization due to its ferrimagnetic spin structure; thus, it is a hard ferrimagnet. In this report, epitaxial growth of a Mn\\(_3\\Ge film on a Rh buffer layer was investigated for comparison with that of a film on a Cr buffer layer in terms of the lattice mismatch between Mn\\(_3\\Ge and the buffer layer. The film grown on Rh had much better crystalline quality than that grown on Cr, which can be attributed to the small lattice mismatch. Epitaxial films of Mn\\(_3\\Ge on Rh show somewhat small coercivity (\\(H_{\\rm c}\\ = 12.6 kOe and a large perpendicular magnetic anisotropy (\\(K_{\\rm u}\\ = 11.6 Merg/cm\\(^3\\, comparable to that of the film grown on Cr.

  8. Properties of Ultra-Thin Hafnium Oxide and Interfacial Layer Deposited by Atomic Layer Deposition

    Institute of Scientific and Technical Information of China (English)

    Taeho Lee; Young-Bae Kim; Kyung-Il Hong; Duck-Kyun Choi; Jinho Ahn

    2004-01-01

    Ultra-thin hafnium-oxide gate dielectric films deposited by atomic layer deposition technique using HfCl4 and H2O precursor on a hydrogen-terminated Si substrate were investigated. X-ray photoelectron spectroscopy indicates that the interface layer is Hf-silicate rather than phase separated Hf-silicide and silicon oxide structure. The Hf-silicate interfacial layer partially changes into SiOx after high temperature annealing, resulting in a complex HfO2-silicate-SiOx dielectric structure. Electrical measurements confirms that HfO2 on Si is stable up to 700 ℃ for 30 s under N2 ambient.

  9. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  10. Investigation of CdZnS Buffer Layers on the Performance of CuInGaSe2 and CuGaSe2 Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.; Li, S. S.; Chen, L.; Noufi, R.; Anderson, T. J.; Crisalle, O. D.

    2006-01-01

    Cu(In,Ga)Se{sub 2} (CIGS) and CuGaSe{sub 2} (CGS) solar cells were fabricated using Cd{sub 1-x}Zn{sub x}S (CdZnS) buffer layers prepared by chemical bath deposition (CBD) with relative Zn compositions in the CBD bath values of X{sub bath} = 0 (i.e., pure CdS), 0.1, 0.2, 0.3, 0.4, and 0.5. The cell performance parameters of CIGS and CGS films treated with a KCN solution were investigated and compared to cells without KCN treatment. It was found that absorber films treated with KCN etching prior to the buffer CBD step show an improved cell performance for both the CIGS and CGS cells deposited with either CdS or CdZnS buffer layer. A CIGS cell with CdZnS buffer layer of X{sub bath} = 0.2 produced a 13% AM1.5G conversion efficiency with higher V{sub oc}, J{sub sc}, and FF values as compared to the CdZnS/CIGS cells with different Zn contents. Results of photo- J-V and quantum efficiency (QE) measurements reveal that the CGS cell with CdZnS buffer layer of X{sub bath} = 0.3 performed better than the CGS cell deposited with a pure CdS buffer layer. This result is suggested as a result of an increased photocurrent at shorter wavelengths and a more favorable conduction band-offset at the CdZnS/CGS junction.

  11. Strain compensation in a semiconducting device structure using an intentionally mismatched uniform buffer layer

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2016-12-01

    The extent of strain relaxation in semiconducting device heterostructures has important implications in the design of high electron mobility transistors, light-emitting diodes, and laser diodes, in which the residual strain affects the device characteristics. In this work, we develop the theoretical framework for understanding strain compensation in a semiconductor device layer using a uniform buffer layer which can be intentionally mismatched to the material above. Specifically, we determined the critical condition for complete strain compensation in the device layer by intentionally introducing a compositional mismatch at the device-buffer interface. We present minimum energy calculations and show that for a given device layer with fixed mismatch and layer thickness, the buffer layer may be designed with the appropriate combination of thickness and mismatch such that the device layer will have zero residual strain in equilibrium. Such a structure can be referred to as a completely strain-compensated design. In the more general case, there may be partial strain compensation, and we give a simple physics-based Gaussian-type function describing the residual strain in the device layer. We have applied this general framework to In x Ga1-x As/GaAs (001) heterostructures for the purpose of illustration, but the work is applicable to any diamond or zinc blende (001) heteroepitaxial material system.

  12. OPTIMISATION OF BUFFER SIZE FOR ENHANCING QOS OF VIDEO TRAFFIC USING CROSS LAYERED HYBRID TRANSPORT LAYER PROTOCOL APPROACH

    Directory of Open Access Journals (Sweden)

    S. Matilda

    2011-03-01

    Full Text Available Video streaming is gaining importance, with the wide popularity of multimedia rich applications in the Internet. Video streams are delay sensitive and require seamless flow for continuous visualization. Properly designed buffers offer a solution to queuing delay. The diagonally opposite QoS metrics associated with video traffic poses an optimization problem, in the design of buffers. This paper is a continuation of our previous work [1] and deals with the design of buffers. It aims at finding the optimum buffer size for enhancing QoS offered to video traffic. Network-centric QoS provisioning approach, along with hybrid transport layer protocol approach is adopted, to arrive at an optimum size which is independent of RTT. In this combinational approach, buffers of routers and end devices are designed to satisfy the various QoS parameters at the transport layer. OPNET Modeler is used to simulate environments for testing the design. Based on the results of simulation it is evident that the hybrid transport layer protocol approach is best suited for transmitting video traffic as it supports the economical design.

  13. Effects of CdS Buffer Layers on Photoluminescence Properties of Cu2ZnSnS4 Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Le Donne

    2015-01-01

    Full Text Available Cu2ZnSnS4 (CZTS absorber layers grown by sputtering were investigated by photoluminescence before and after the chemical bath deposition of CdS in order to evaluate the possible passivation of point defects by Cd atoms at the absorber/buffer layer interface. According to the literature, a broad emission around 1.21 eV was observed at low temperature under above bandgap excitation of the as-grown CZTS samples. Broad bands at 1.075 eV and 0.85 eV were detected for the first time under below bandgap excitation of the as-grown CZTS samples at low temperature, which were explained in terms of radiative transitions involving point defect-related levels determined in the literature by first-principles calculations. The emissions observed in the as-grown samples were monitored by both above and below bandgap excitations also in standard CZTS solar cells produced on the same layers. The obtained results suggest that, as in the case of Cu(In, GaSe2, Cd atoms passivate point defects at the absorber/buffer layer interface also in CZTS.

  14. RTP-Packets' Loss Recovery Scheme Based on Layered Buffer-Routers

    Institute of Scientific and Technical Information of China (English)

    XU Xian-bin; YU Wei; CHEN Xin-meng

    2004-01-01

    This paper introduces an RTP-packets' loss recovery scheme in MPEG-4 playback type multicast application model, which is based on retransmission scheme. Through the auxiliary and coordinated buffer playing scheme of layered "buffer-routers", the RTP-packets' loss recovery in limited time is made possible. We consider in the scheme to handle retransmission request with buffer waiting when network congestion occurs. Thus, neither the degree of congestion will be worsened nor the retransmission request will be lost when sending the request to higher-level buffer router. The RTP-packets' loss recovery scheme suggested by us is not only applied to MPEG-4 multicast application in LAN, but also can be extended to more spacious WAN (wide area network) when user groups comparatively centralize in certain number of local areas.

  15. Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    Liu Bo; Zhang Sen; Yin Jia-Yun; Zhang Xiong-Wen; Dun Shao-Bo; Feng Zhi-Hong; Cai Shu-Jun

    2013-01-01

    The effect of an initially grown high-temperature AlN buffer (HT-AlN) layer's thickness on the quality of an AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition (MOCVD) in a two-step growth process is investigated.The characteristics of AIN epilayers are analyzed by using triple-axis crystal X-ray diffraction (XRD) and atomic force microscopy (AFM).It is shown that the crystal quality of the AlN epilayer is closely related to its correlation length.The correlation length is determined by the thickness of the initially grown HT-AIN buffer layer.We find that the optimal HT-AlN buffer thickness for obtaining a high-quality AlN epilayer grown on sapphire substrate is about 20 nm.

  16. Oxygen-free atomic layer deposition of indium sulfide.

    Science.gov (United States)

    McCarthy, Robert F; Weimer, Matthew S; Emery, Jonathan D; Hock, Adam S; Martinson, Alex B F

    2014-08-13

    Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching In2S3 via ALD at temperatures up to 225 °C may allow high quality thin films to be leveraged in optoelectronic devices including photovoltaic absorbers, buffer layers, and intermediate band materials.

  17. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H. [KAIST, Daejeon (Korea, Republic of)

    2007-03-15

    Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis.

  18. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    Science.gov (United States)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  19. Realization of high quality epitaxial current- perpendicular-to-plane giant magnetoresistive pseudo spin-valves on Si(001 wafer using NiAl buffer layer

    Directory of Open Access Journals (Sweden)

    Jiamin Chen

    2016-05-01

    Full Text Available In this letter, we report a NiAl buffer layer as a template for the integration of epitaxial current-perpendicular-plane-giant magnetoresistive (CPP-GMR devices on a Si(001 single crystalline substrate. By depositing NiAl on a Si wafer at an elevated temperature of 500 °C, a smooth and epitaxial B2-type NiAl(001 layer was obtained. The surface roughness was further improved by depositing Ag on the NiAl layer and applying subsequent annealing process. The epitaxial CPP-GMR devices grown on the buffered Si(001 substrate present a large magnetoresistive output comparable with that of the devices grown on an MgO(001 substrate, demonstrating the possibility of epitaxial spintronic devices with a NiAl templated Si wafer for practical applications.

  20. A strategic buffer layer of polythiophene enhances the efficiency of bulk heterojunction solar cells.

    Science.gov (United States)

    Wei, Hung-Yu; Huang, Jen-Hsien; Ho, Kuo-Chuan; Chu, Chih-Wei

    2010-05-01

    We have developed polymer solar cells featuring a buffer layer of polythiophene (PT) sandwiched between the active layer and the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer. We attribute the improvement in power conversion efficiency of these polymer solar cells, relative to that of those based on poly(3-hexylthiophene):[6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM), to a reduction in the degree of carrier recombination at the junction interface. Because the conductivity and the energy level of PT can be tuned simply by applying a bias to it in an electrolytic solution, we also investigated the effect of the energy level on the devices' performances. The power conversion efficiency of a solar cell containing a PT buffer layer reached 4.18% under AM 1.5 G irradiation (100 mW/cm(2)).

  1. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund;

    2016-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used in ...

  2. Effects of Buffer Salt Concentration on the Dominated Deposition Mechanism and Optical Characteristics of Chemically Deposited Cadmium Sulfide Thin Films

    Science.gov (United States)

    Kakhaki, Z. Makhdoumi; Youzbashi, A.; Sangpour, P.; Kazemzadeh, A.; Naderi, N.; Bazargan, A. M.

    2016-02-01

    Effects of buffer salt concentration on the rate of deposition, dominated deposition mechanism and subsequently the structural, morphological, and optical properties of cadmium sulfide (CdS) thin films deposited by chemical bath deposition (CBD) on glass substrate were investigated. The precursors were chosen to be cadmium chloride (CdCl2) as the cadmium source, thiourea (CS(NH2)2) as the sulfur source, ammonium nitrate (NH4NO3) as the buffer salt and ammonia as the complexing agent and the pH controller. The influence of the NH4NO3 concentration on the structure, morphology, film uniformity, stoichiometry and optical properties of CdS thin films was also studied by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX) spectroscope, uv-visible and photoluminescence (PL) spectroscopes. The XRD studies revealed that all the deposited films exhibited a (002)h/(111)c preferred orientation. The crystallite size was increased from 20nm to 30nm by the increase of concentration of NH4NO3 from 0.5M to 2.5M. The morphology of CdS thin films were agglomerated spherical particles consisted of smaller particles. The surface of thin films deposited at the NH4NO3 concentration of 0.5M was compact and smooth. The increase of the concentration of NH4NO3 decreased the packing density of the films. The optical band gap was in the range of 2.25-2.4eV, which was decreased by the decrement of packing density. The PL spectra showed two peaks centered at 400nm and 500nm which are attributed to violet and band-to-band emissions, respectively.

  3. Synthesis and characterization of (Cd,Zn)S buffer layer for Cu2ZnSnSe4 solar cells

    Science.gov (United States)

    Ben Messaoud, Khaled; Buffière, Marie; Brammertz, Guy; Lenaers, Nick; Boyen, Hans-Gerd; Sahayaraj, Sylvester; Meuris, Marc; Amlouk, Mosbah; Poortmans, Jef

    2017-07-01

    In order to improve the electrical performances of Cu2ZnSnSe4 (CZTSe) based solar cells, the standard CdS buffer layer was replaced by (Cd,Zn)S processed by chemical bath deposition. The morphology and composition of the (Cd,Zn)S thin films were studied as a function of [Zn]/([Zn]  +  [Cd]) ratio in the chemical bath (80, 85 and 90%). The CZTSe/(Cd,Zn)S solar cells with and without Cd partial electrolyte (Cd PE) treatment were compared to CZTSe/CdS reference devices using current-voltage and external quantum efficiency measurements. The (Cd,Zn)S thin films show a non-homogeneity of Zn distribution and phase formation, with a shift from Zn(O,OH) x to ZnS phase when increasing the deposition time and a decrease of the layers thicknesses when increasing the Zn concentration in chemical bath. A model for the growth of (Cd,Zn)S thin films is proposed. The resulting CZTSe/(Cd,Zn)S devices show an important reduction of the barrier at the hetero-interface, which is attributed to the lower density of O contamination in (Cd,Zn)S compared to CdS, inducing a lower density of deep p-type recombination centers. Despite the reduced compensation of the buffer layer, CZTSe/(Cd,Zn)S devices show a deterioration of the open circuit voltage and the fill factor with the increase of Zn content in (Cd,Zn)S. These electrical losses were avoided by Cd PE treatment prior to the deposition of (Cd,Zn)S.

  4. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al 2 O 3 Buffer Layer

    KAUST Repository

    Guarnera, Simone

    2015-02-05

    © 2015 American Chemical Society. Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode\\'s metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous "buffer layer" comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation. (Graph Presented).

  5. Layer-based buffer aware rate adaptation design for SHVC video streaming

    Science.gov (United States)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  6. Studies on the Properties of Organic Photovoltaic Cells Using TiOx and DMDCNQI as Double Buffer Layers.

    Science.gov (United States)

    Kim, Gyu Min; Han, Seong Hun; Oh, Se Young

    2015-02-01

    Various types of n-type buffer layers have been used in organic electronic devices. These buffer layers turned out to expedite carrier injection and reduce series resistance, leading to good performance of organic electronic devices. In our current work, we have fabricated organic photovoltaic (OPV) cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/TiOx/DMDCNQI/AI which were fabricated in the presence of air. To incorporate the individual advantages of each n-type buffer layer, a DMDCNQI and TiOx layers were inserted to act as n-type double buffer layers. This leads to an increase of short-circuit current (JSC) and fill factor (FF) with good stability, in comparison to P3HT:PCBM based conventional cells. The results imply that the structures of double buffer layers can provide possible alternative to achieving high performance and air durability.

  7. Textured strontium titanate layers on platinum by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, T., E-mail: tom.blomberg@asm.com [ASM Microchemistry Ltd., Vaeinoe Auerin katu 12 A, 00560 Helsinki (Finland); Anttila, J.; Haukka, S.; Tuominen, M. [ASM Microchemistry Ltd., Vaeinoe Auerin katu 12 A, 00560 Helsinki (Finland); Lukosius, M.; Wenger, Ch. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Saukkonen, T. [Aalto University, Puumiehenkuja 3, 02150 Espoo (Finland)

    2012-08-31

    Formation of textured strontium titanate (STO) layers with large lateral grain size (0.2-1 {mu}m) and low X-ray reflectivity roughness ({approx} 1.36 nm) on Pt electrodes by industry proven atomic layer deposition (ALD) method is demonstrated. Sr(t-Bu{sub 3}Cp){sub 2}, Ti(OMe){sub 4} and O{sub 3} precursors at 250 Degree-Sign C were used to deposit Sr rich STO on Pt/Ti/SiO{sub 2}/Si Empty-Set 200 mm substrates. After crystallization post deposition annealing at 600 Degree-Sign C in air, most of the STO grains showed a preferential orientation of the {l_brace}001{r_brace} plane parallel to the substrate surface, although other orientations were also present. Cross sectional and plan view transmission electron microscopy and electron diffraction analysis revealed more than an order of magnitude larger lateral grain sizes for the STO compared to the underlying multicrystalline {l_brace}111{r_brace} oriented platinum electrode. The combination of platinum bottom electrodes with ALD STO(O{sub 3}) shows a promising path towards the formation of single oriented STO film. - Highlights: Black-Right-Pointing-Pointer Amorphous strontium titanate (STO) on platinum formed a textured film after annealing. Black-Right-Pointing-Pointer Single crystal domains in 60 nm STO film were 0.2-1 {mu}m wide. Black-Right-Pointing-Pointer Most STO grains were {l_brace}001{r_brace} oriented.

  8. Tailoring the magnetic anisotropy of CoFeB/MgO stacks onto W with a Ta buffer layer

    Science.gov (United States)

    Kaidatzis, Andreas; Bran, Cristina; Psycharis, Vasilios; Vázquez, Manuel; García-Martín, José Miguel; Niarchos, Dimitrios

    2015-06-01

    The emergence of perpendicular magnetic anisotropy (PMA) in CoFeB/MgO stacks deposited on W using a Ta buffer layer is studied as a function of Ta and CoFeB layer thickness and annealing temperature. It is shown that very thin Ta "dusting" layers (thickness between 0.3 and 1 nm) enhance PMA of CoFeB layers grown on top of W. We find that Ta thickness is a crucial factor affecting magnetic anisotropy and it needs to be scaled proportionally to CoFeB thickness for obtaining PMA. Stacks without Ta have in-plane anisotropy, verifying the "PMA-enhancing" role of Ta. The maximum effective PMA energy ( 3.6 ×106 erg/cm3) is obtained for a stack with 1.4 nm of CoFeB and 1 nm of Ta and after annealing at 350 °C . Besides, PMA can be obtained even at the as-deposited state for certain thicknesses. This W-based CoFeB/MgO system could enable the development of low power consumption, high density, and non-volatile magnetic memories.

  9. Thermally induced strain relaxation in SiGe/Si heterostructures with low-temperature buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.I.; Mil' vidskii, M.G. [Institute for Chemical Problems of Microelectronics, 119017 Moscow (Russian Federation); Yugova, T.G. [Institute of Rare Metals ' Giredmet' , 119017 Moscow (Russian Federation); Rzaev, M.M. [Lebedev Physical Institute, RAS, 119991 Moscow (Russian Federation); Schaeffler, F. [Institut fuer Halbleiter- und Festkoerperphysik, 4040 Linz (Austria)

    2005-04-01

    Processes of misfit dislocation (MD) nucleation and multiplication in SiGe/Si strained-layer heterostructures under thermal annealing were studied. Specific subjects include the kinetics of dislocation network formation in heterostructures with low-temperature (LT) buffer layers and mechanisms of dislocation nucleation. Samples with LT-Si (400 C) and LT-SiGe (250 C) buffer layers were grown by MBE. In general, the processes of MD generation occur similarly in the heterostructures studied independently of the alloy composition (Ge content: 0.15, 0.30) and kind of buffer layer. Intrinsic point defects related to the LT epitaxial growth influence mainly the rate of MD nucleation. We suggest a new mechanism of MD generation which includes a nucleation of incipient dislocation loops at heterogeneous sources within SiGe epitaxial layer and formation of spiral sources at threading V-shaped dislocation half-loops. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Improvement of luminescence properties of GaN buffer layer for fast nitride scintillator structures

    Science.gov (United States)

    Hubáček, T.; Hospodková, A.; Oswald, J.; Kuldová, K.; Pangrác, J.

    2017-04-01

    We have optimized technology of GaN buffer layer growth with respect to the application in fast scintillation structures. The deep defect luminescence so called yellow band (YB) with decay time up to tens of microseconds is undesired for these applications and should be suppressed or at least the ratio of intensities of excitonic to YB maximum has to be considerably increased. The required photoluminescence properties were achieved by optimization of growth parameters of nucleation and coalescence layer on sapphire substrate. We have shown that decrease of NH3 flow, decrease of coalescence temperature, increase of nucleation time and nucleation pressure lead to improvement of the structure and luminescence properties of the buffer layer. Results indicate a significant increased ratio of excitonic/YB luminescence intensity.

  11. Epitaxial growth of cadmium telluride films on silicon with a buffer silicon carbide layer

    Science.gov (United States)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.

    2017-02-01

    An epitaxial 1-3-μm-thick cadmium telluride film has been grown on silicon with a buffer silicon carbide layer using the method of open thermal evaporation and condensation in vacuum for the first time. The optimum substrate temperature was 500°C at an evaporator temperature of 580°C, and the growth time was 4 s. In order to provide more qualitative growth of cadmium telluride, a high-quality 100-nm-thick buffer silicon carbide layer was previously synthesized on the silicon surface using the method of topochemical substitution of atoms. The ellipsometric, Raman, X-ray diffraction, and electron-diffraction analyses showed a high structural perfection of the CdTe layer in the absence of a polycrystalline phase.

  12. Efficient small-molecule organic solar cells incorporating a doped buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dei-Wei [Department of aviation and Communication Electronics, Air Force Institute of Technology, Kaohsiung 820, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung 831, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Nanzih, Kaohsiung 811, Taiwan (China); Tsao, Yao-Jen [Department of Applied Physics, National University of Kaohsiung, Nanzih, Kaohsiung 811, Taiwan (China); Chen, Wen-Ray; Meen, Teen-Hang [Department of Electronic Engineering, National Formosa University, Hu-Wei, Yunlin 632, Taiwan (China)

    2013-06-01

    Small-molecule organic solar cells (OSCs) with an optimized structure of indium tin oxide/poly (3,4-ethylenedioxythioxythiophene):poly(styrenesulfonate)/copper phthalocyanine (CuPc) (10 nm)/CuPc: fullerene (C{sub 60}) mixed (20 nm)/C{sub 60} (20 nm)/4,7-diphenyl-1,10-phenanthroline (BPhen) (5 nm)/Ag were fabricated. In this study, the cesium carbonate-doped BPhen (Cs{sub 2}CO{sub 3}:BPhen) was adopted as the buffer layer to enhance the efficiency of the OSCs. The photovoltaic parameters of the OSCs, such as the short-circuit current density and fill factor, depend on the doping concentration of Cs{sub 2}CO{sub 3} in the BPhen layer. The cell with a Cs{sub 2}CO{sub 3}:BPhen (1:4) cathode buffer layer exhibits a power conversion efficiency (PCE) of 3.51%, compared to 3.37% for the device with the pristine BPhen layer. The enhancement of PCE was attributed to the energy-level alignment between the C{sub 60} layer and the Cs{sub 2}CO{sub 3}:BPhen layer. In addition, the characterization measured using atomic force microscopy shows that the Cs{sub 2}CO{sub 3}:BPhen layers have smoother surfaces. - Highlight: • Cs2CO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) cathode buffer layer. • Cs2CO3:BPhen layer with different ratios affects organic solar cells performance. • Cell with 1:4 (Cs2CO3:BPhen) ratio shows 3.51% power conversion efficiency.

  13. Diamond Deposition on WC/Co Alloy with a Molybdenum Intermediate Layer

    Science.gov (United States)

    Liu, Sha; Yu, Zhi-Ming; Yi, Dan-Qing

    It is known that in the condition of chemical vapor deposition (CVD) diamond process, molybdenum is capable of forming carbide known as the "glue" which promotes growth of the CVD diamond, and aids its adhesion by (partial) relief of stresses at the interface. Furthermore, the WC grains are reaction bonded to the Mo2C phase. Therefore, molybdenum is a good candidate material for the intermediate layer between WC-Co substrates and diamond coatings. A molybdenum intermediate layer of 1-3 μm thickness was magnetron sputter-deposited on WC/Co alloy prior to the deposition of diamond coatings. Diamond films were deposited by hot filament chemical vapor deposition (HFCVD). The chemical quality, morphology, and crystal structure of the molybdenum intermediate layer and the diamond coatings were characterized by means of SEM, EDX, XRD and Raman spectroscopy. It was found that the continuous Mo intermediate layer emerged in spherical shapes and had grain sizes of 0.5-1.5 μm after 30 min sputter deposition. The diamond grain growth rate was slightly slower as compared with that of uncoated Mo layer on the WC-Co substrate. The morphologies of the diamond films on the WC-Co substrate varied with the amount of Mo and Co on the substrate. The Mo intermediate layer was effective to act as a buffer layer for both Co diffusion and diamond growth.

  14. Conduction band offset engineering in wide-bandgap Ag(In,Ga)Se2 solar cells by hybrid buffer layer

    Science.gov (United States)

    Umehara, Takeshi; Zulkifly, Faris Akira Bin Mohd; Nakada, Kazuyoshi; Yamada, Akira

    2017-08-01

    Ag(In,Ga)Se2 (AIGS) is one of the promising candidates for the top cell absorber in the tandem structure. However, the conversion efficiency of AIGS solar cells is still lower than that required for the top cell. In this study, to improve the conversion efficiency of AIGS solar cells, we controlled the conduction band offset (CBO) at the buffer layer/ZnO and buffer layer/AIGS interfaces. The reduction in interface recombination at the CdS buffer layer/AIGS interface was achieved by introducing a ZnS(O,OH) buffer layer instead of a CdS buffer layer, although the fill factor (FF) decreased markedly because the CBO at the ZnS(O,OH)/ZnO interface prevented the electron flow under a forward bias. We found that the introduction of a CdS/ZnS(O,OH) hybrid buffer layer is efficient in controlling the CBO at both the buffer layer/AIGS and buffer layer/ZnO interfaces and improving the solar cell conversion efficiency.

  15. Transmission-mode GaN photocathode based on graded AlxGa1-xN buffer layer

    Institute of Scientific and Technical Information of China (English)

    Xiaoqing Du; Benkang Chang; Yunsheng Qian; Pin Gao

    2011-01-01

    @@ We create a GaN photocathode based on graded AlxGa1-xN buffer layers to overcome the influence of buffer-emission layer interface on the photoemission of transmission-mode GaN photocathodes. A gateshaped spectral response with a 260-nm starting wavelength and a 375-nm cut-off wavelength is obtained.Average quantum efficiency is 15% and short wavelength responses are almost equivalent to long wavelength ones. The fitted interface recombination velocity is 5×104 cm/s, with negligible magnitude, proving that the design of the graded buffer layers is efficient in obtaining good interface quality between the buffer and the emission layer.%We create a GaN photocathode based on graded AlxGa1-xN buffer layers to overcome the influence of buffer-emission layer interface on the photoemission of transmission-mode GaN photocathodes. A gateshaped spectral response with a 260-nm starting wavelength and a 375-nm cut-off wavelength is obtained. Average quantum efficiency is 15% and short wavelength responses are almost equivalent to long wavelength ones. The fitted interface recombination velocity is 5× 104 cm/s, with negligible magnitude, proving that the design of the graded buffer layers is efficient in obtaining good interface quality between the buffer and the emission layer.

  16. Ultraviolet-ozone-treated PEDOT:PSS as anode buffer layer for organic solar cells.

    Science.gov (United States)

    Su, Zisheng; Wang, Lidan; Li, Yantao; Zhao, Haifeng; Chu, Bei; Li, Wenlian

    2012-08-17

    Ultraviolet-ozone-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)was used as the anode buffer layer in copper phthalocyanine (CuPc)/fullerene-based solar cells. The power conversion efficiency of the cells with appropriated UV-ozone treatment was found to increase about 20% compared to the reference cell. The improved performance is attributed to the increased work function of the PEDOT:PSS layer, which improves the contact condition between PEDOT:PSS and CuPc, hence increasing the extraction efficiency of the photogenerated holes and decreasing the recombination probability of holes and electrons in the active organic layers.

  17. Surface Roughness and Dislocation Distribution in Compositionally Graded Relaxed SiGe Buffer Layer with Inserted Strained Si Layers

    Science.gov (United States)

    Yoon, Tae-Sik

    2005-03-01

    We report the experimental investigation of surface roughness and dislocation distribution of 1 μm-thick, compositionally graded, relaxed SiGe buffer layer with a final Ge surface content of 30%. Tensile-strained Si layers are inserted at various locations in the graded buffer during SiGe epitaxial growths. Slight reduction in surface roughness from about 10.3 nm to about 7.8 nm by inserting two 20 nm thick tensile-strained Si layers followed by SiGe growths. It turns out that majority of the residual surface roughness is developed during the SiGe growths on top of the topmost strain Si layer. The surface immediately after the growth of tensile strained Si is very flat with about 1.1 nm RMS roughness and without crosshatch morphology. Cross-sectional TEM shows clear signs of increased interaction between dislocation half-loops at the top surface of the strained Si layers. Our observation shows that although thin Si layers under tensile-strain are effective in reducing cross-hatch, they could in the meantime impede dislocation propagation leading to higher threading dislocation density. Considerations for an optimized scheme exploiting the flattening function of tensile-strained layers will be discussed.

  18. Pyroelectric and dielectric properties of ferroelectric films with interposed dielectric buffer layers

    Science.gov (United States)

    Espinal, Y.; Kesim, M. T.; Misirlioglu, I. B.; Trolier-McKinstry, S.; Mantese, J. V.; Alpay, S. P.

    2014-12-01

    The dielectric and pyroelectric properties of c-domain ferroelectric films with linear dielectric buffer layers were investigated theoretically. Computations were carried out for multilayers consisting of PbZr0.2Ti0.8O3 with Al2O3, SiO2, Si3N4, HfO2, and TiO2 buffers on metalized Si. It is shown that the dielectric and pyroelectric properties of such multilayers can be increased by the presence of the buffer compared to ferroelectric monolayers. Calculations for PbZr0.2Ti0.8O3 films with 1% Al2O3 interposed between electrodes on Si show that the dielectric and pyroelectric coefficients are 310 and 0.070 μC cm-2 °C-1, respectively. Both values are higher than the intrinsic response of PbZr0.2Ti0.8O3 monolayer on Si.

  19. Buffer layer selection for CuIn1 - x Ga x Se2 based thin film solar cells

    Science.gov (United States)

    Kumari, Sarita; Singh Verma, Ajay

    2014-03-01

    In this work, device modeling and simulation studies have been carried out with a variety of buffer layers over CIGS absorption layer. The band diagram, electric field variation and I/V curves are analyzed and device performance parameters i.e. efficiency, open circuit voltage, short circuit current, quantum efficiency are calculated. The efficiency of CIGS solar cell with ZnSe buffer layer is found comparable with that of CdS layer. The highest short circuit current is found for solar cell with ZnSe buffer layer, whereas the ZnS/CIGS heterojunction provides the highest quantum efficiency in the structures considered. The device physics is discussed and the effect of thickness of buffer layers and absorption layer is studied in order to find a more efficient and stable solar cell.

  20. Effect of an organic buffer layer on the stability of zinc oxide thin-film transistors.

    Science.gov (United States)

    Lee, H W; Hyung, G W; Koo, J R; Cho, E S; Kwon, S J; Park, J H; Kim, Y K

    2014-07-01

    Compared with other materials, zinc oxide (ZnO) exhibits stability in air, high-electron mobility, transparency and low light sensitivity. We investigated these properties in ZnO thin-film transistors (TFTs) containing a cross-linked poly(vinyl alcohol) (C-PVA) (1:3) buffer layer stacked between the semiconductor and gate dielectric. We measured the impact of this C-PVA layer on gate bias stress. We measured the transfer characteristics of the saturation region to determine the threshold voltage and the field-effect mobility of the transistors. We recorded a threshold voltage of 11.53 V in the ZnO TFTs with the C-PVA buffer layer, the field-effect mobility was 0.2 cm2/Vs. There was a positive shift in the threshold voltage of deltaV(TH) approximately 10 V in response to the application of a gate bias stress of 20 V. The positive shift in the threshold voltage was lower than that in pristine ZnO TFTs. This finding suggests that the shift in threshold voltage was due to reduced charge trapping at the semiconductor-gate dielectric interface. Our report indicates that the organic buffer layer enhanced the stability of ZnO TFTs.

  1. Thirty-Day-Long Data Retention in Ferroelectric-Gate Field-Effect Transistors with HfO2 Buffer Layers

    Science.gov (United States)

    Takahashi, Kazuhiro; Aizawa, Koji; Park, Byung-Eun; Ishiwara, Hiroshi

    2005-08-01

    Metal-ferroelectric-insulator-semiconductor (MFIS) diodes and p-channel MFIS field-effect transistors (FETs) were fabricated and their electrical properties were characterized. These MFIS structures were formed using HfO2 as an insulating buffer layer, and SrBi2Ta2O9 (SBT) and (Bi,La)4Ti3O12 (BLT) as ferroelectric films. HfO2 buffer layers of about 8 nm physical thickness were deposited by ultrahigh-vacuum (UHV) electron-beam evaporation, then ferroelectric films of about 400 nm thickness were deposited by sol-gel spin coating. The fabricated p-channel MFIS-FETs with the SBT/HfO2 gate structure exhibited a drain current on/off ratio larger than 103 even after 30 days had elapsed. It was also found that the degradation of ferroelectricity was not pronounced even after applying 2.2× 1011 bipolar pulses.

  2. Exploring Cd-Zn-O-S alloys for optimal buffer layers in thin-film photovoltaics

    Science.gov (United States)

    Varley, J.; He, X.; Mackie, N.; Rockett, A.; Lordi, V.

    2015-03-01

    The development of thin-film photovoltaics has largely focused on alternative absorber materials, while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the USDoE by LLNL under Contract DE-AC52-07NA27344 and funded by the DoE EERE through the SunShot BRIDGE program.

  3. Characterisation of CuInSe2-based solar cells with different buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Werth, Anton; Ohland, Joerg; Riedel, Ingo; Parisi, Juergen [Abteilung EHF, Institiut fuer Physik, Carl von Ossietzky Universitaet, Oldenburg (Germany); Rechid, Juan [CIS Solartechnik GmbH and Co. KG, c/o Aurubis AG, Hamburg (Germany)

    2010-07-01

    The optoelectronic properties of the buffer layer in chalcopyrite solar cells may present strong efficiency limitation due to parasitic absorption, interface states and band discontinuities in respect of the light absorber. In this work we investigated CuInSe{sub 2}-based (CIS) solar cells processed on flexible steel substrates with In{sub 2}S{sub 3} and CdS buffer layers by means of temperature dependent current-voltage (J-V) measurements at varying illumination intensity and external quantum efficiency (EQE) measurements. Under illumination the J-V curves of both cell types exhibit distinct ''s''-shape non-ideality (roll over) at temperatures below 260 K. The occurrence of the ''s''-shape in the 4th and/or 1st quadrant is explained by an heuristic model which relates the band discontinuity being present at the buffer CIS interface to limitation of the minority carrier extraction and injection. Further, we employed the suns-V{sub oc} method to extract the diode parameters saturation current and diode ideality from the J-V characteristics under illumination (small effect of series resistance) in order to identify clues on dominant surface or bulk recombination. We conclude that interface recombination is less dominant in the investigated samples independent of the used buffer material.

  4. Environmental Modeling, The Buffer Priority layers for Phosphorus / Sediment) Removal identify priority forest/grass buffer opportunities by subwatershed. Land use, hydrology, soil, and landscape characteristics were analyzed to rank buffer opportunities with high P/sed removal., Published in 2014, Smaller than 1:100000 scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Environmental Modeling dataset current as of 2014. The Buffer Priority layers for Phosphorus / Sediment) Removal identify priority forest/grass buffer opportunities...

  5. Environmental Modeling, The Natural Filter Buffer Targeting layers identify riparian forest and grass buffer opportunities by county. Land use and hydrology characteristics were used to identify potential riparian buffer locations., Published in 2014, Smaller than 1:100000 scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Environmental Modeling dataset current as of 2014. The Natural Filter Buffer Targeting layers identify riparian forest and grass buffer opportunities by county. Land...

  6. Fabrication of NiO Buffer Layer for YBCO Coated Conductors by Combining Sputtering and SOE Method

    Institute of Scientific and Technical Information of China (English)

    Liu Huizhong; Yang Jian; Yang Haitao; Wang Xiaohua; Gu Hongwei; Yuan Guansen

    2004-01-01

    In research of YBCO coated conductors, the development of a oxide template for epitaxial growth of YBCO is very important. Matsumoto et al have demonstrated the potential of the surface oxidation epitaxial (SOE) route for formation a cube textured NiO layer on nickel tapes. The epitaxial NiO functions as a buffer layer of chemical reaction between YBCO and nickel, and as a template for the epitaxial growth of YBCO. However, the surface quality of NiO is difficult to control and defects such as crack, spall and deep grooves exist in SOE NiO layer. A new approach combining sputtering and SOE method to obtain crack-free and cube textured NiO layer were reported. Ni tapes prepared by the combination of rolling and recrystallization were used for this work. A coating of Ni was first deposited on the tapes via magnetron sputtering. Then on the coating tapes, continuous and textured NiO layer were achieved by SOE technology.

  7. All solution processable organic photovoltaic cells using DMDCNQI as an organic N-type buffer layer.

    Science.gov (United States)

    Yang, Eui Yeol; So, Byoung Min; Chung, Chan Moon; Oh, Se Young

    2012-01-01

    Organic photovoltaic cells consisting of ITO/PEDOT-PSS/P3HT:PCBM/TiO(x)/DMDCNQI/Al have been fabricated by using dip-coated DMDCNQI layer as a cathode buffer material. We have investigated the physical effects of charge transfer complex and wettability of DMDCNQI between TiO(x)/P3HT:PCBM layer and Al cathode electrode on the performance of organic photovoltaic cell. The photovoltaic cell fabricated with a dip-coated DMDCNQI layer exhibited almost similar performance compared to the device using conventional evaporated DMDCNQI layer. Especially, the power conversion efficiency of the prepared organic photovoltaic cell using TiO(x)/DMDCNQI layer was improved to 3.1%, which is mainly due to the decrease in the low contact resistance of organic-metal interface.

  8. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer.

    Science.gov (United States)

    Ambade, Swapnil B; Ambade, Rohan B; Kim, Seojin; Park, Hanok; Yoo, Dong Jin; Leel, Soo-Hyoung

    2014-11-01

    Polymer solar cells (PSCs) have attracted increasing attention in recent years. The rapid progress and mounting interest suggest the feasibility of PSC commercialization. However, critical issues such as stability and the weak nature of their interfaces posses quite a challenge. In the context of improving stability, PSCs with inverted geometry consising of inorganic oxide layer acting as an n-buffer offer quite the panacea. Zinc oxide (ZnO) is one of the most preferred semiconducting wide band gap oxides as an efficient cathode layer that effectively extracts and transports photoelectrons from the acceptor to the conducting indium-doped tin oxide (ITO) due to its high conductivity and transparency. However, the existence of a back charge transfer from metal oxides to electron-donating conjugated polymer and poor contact with the bulk heterojunction (BHJ) active layer results in serious interfacial recombination and leads to relatively low photovoltaic performance. One approach to improving the performance and charge selectivity of these types of inverted devices consists of modifying the interface between the inorganic metal oxide (e.g., ZnO) and organic active layer using a sub-monolayer of interfacial materials (e.g., functional dyes). In this work, we demonstrate that the photovoltaic parameters of inverted solar cells comprising a thin overlayer of functional dyes over ZnO nanoparticle as an n-buffer layer are highly influenced by the anchoring groups they possess. While an inverted PSC containing an n-buffer of only ZnO exhibited an overall power conversion efficiency (PCE) of 2.87%, the devices with an interlayer of dyes containing functional cyano-carboxylic, cyano-cyano, and carboxylic groups exhibited PCE of 3.52%, 3.39%, and 3.21%, respectively, due to increased forward charge collection resulting from enhanced electronic coupling between the ZnO and BHJ active layers.

  9. Non-Toxic Buffer Layers in Flexible Cu(In,GaSe2 Photovoltaic Cell Applications with Optimized Absorber Thickness

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2017-01-01

    Full Text Available Absorber layer thickness gradient in Cu(In1−xGaxSe2 (CIGS based solar cells and several substitutes for typical cadmium sulfide (CdS buffer layers, such as ZnS, ZnO, ZnS(O,OH, Zn1−xSnxOy (ZTO, ZnSe, and In2S3, have been analyzed by a device emulation program and tool (ADEPT 2.1 to determine optimum efficiency. As a reference type, the CIGS cell with CdS buffer provides a theoretical efficiency of 23.23% when the optimum absorber layer thickness was determined as 1.6 μm. It is also observed that this highly efficient CIGS cell would have an absorber layer thickness between 1 μm and 2 μm whereas the optimum buffer layer thickness would be within the range of 0.04–0.06 μm. Among all the cells with various buffer layers, the best energy conversion efficiency of 24.62% has been achieved for the ZnO buffer layer based cell. The simulation results with ZnS and ZnO based buffer layer materials instead of using CdS indicate that the cell performance would be better than that of the CdS buffer layer based cell. Although the cells with ZnS(O,OH, ZTO, ZnSe, and In2S3 buffer layers provide slightly lower efficiencies than that of the CdS buffer based cell, the use of these materials would not be deleterious for the environment because of their non-carcinogenic and non-toxic nature.

  10. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  11. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of); Han, Dong-Soo; Kim, June-Seo, E-mail: spin2mtj@gmail.com; Swagten, Henk J. M. [Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2015-10-05

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlO{sub x} and Ta/Pt/Co/AlO{sub x} structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy are significantly improved due to the better interface between heavy metal and ferromagnetic layer. From the frequency shift between Stokes- and anti-Stokes spin-waves, we successively obtain considerably larger iDM energy densities (D{sub max} = 1.65 ± 0.13 mJ/m{sup 2} at t{sub Co} = 1.35 nm) upon adding the Ta buffer layer, despite the nominally identical interface materials. Moreover, the energy density shows an inverse proportionality with the Co layer thickness, which is the critical clue that the observed iDMI is indeed originating from the interface between the Pt and Co layers.

  12. EXAMINATION OF DISLOCATIONS IN LATTICE-MISMATCHED GaInAs/BUFFER LAYER/GaAs FOR III-V PHOTOVOLTAICS

    Energy Technology Data Exchange (ETDEWEB)

    Levander, A.; Geisz, J.

    2007-01-01

    Dislocations act as sites for nonradiative electron/hole pair recombination, which reduces the effi ciency of photovoltaics. Lattice-matched materials can be grown on top of one another without forming a high density of dislocations. However, when the growth of lattice-mismatched (LMM) materials is attempted, many dislocations result from the relaxation of strain in the crystal structure. In an attempt to reduce the number of dislocations that propagate into a solar device when using LMM materials, a compositionally step-graded buffer is placed between the two LMM materials. In order to confi ne the dislocations to the buffer layer and therefore increase material quality and device effi ciency, the growth temperature and thickness of the buffer layer were varied. A GaInP compositionally graded buffer and GaInAs p-n junction were grown on a GaAs substrate in a metal-organic chemical vapor deposition (MOCVD) system. A multibeam optical stress sensor (MOSS) and X-ray diffraction (XRD) were used to characterize the strain in the epilayers. Electrical and optoelectronic properties were measured using a probe station and multimeter setup, solar simulator, and a quantum effi ciency instrument. It was determined that device functionality was highly dependent on the growth temperature of the graded buffer. As growth temperature increased, so did the dislocation density in the device despite an increase in the dislocation velocity, which should have increased the dislocation annihilation rate and the diffusion of dislocations to the edge of the crystal. The thickness of the graded buffer also affected device effi ciency with thinner samples performing poorly. The thinner graded buffer layers had high internal resistances from reduced carrier concentrations. In terms of effi ciency, the empirically derived recipe developed by the scientists at the National Renewable Energy Laboratory (NREL) produced the highest quality cells.

  13. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    Science.gov (United States)

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  14. Stress Analysis of ZnO Film with a GaN Buffer Layer on Sapphire Substrate

    Institute of Scientific and Technical Information of China (English)

    CUI Jun-Peng; WANG Xiao-Feng; DUAN Yao; HE Jin-Xiao; ZENG Yi-Ping

    2008-01-01

    A 5.35-μm-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) w-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction θ - 2θ scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.

  15. The growth of AgGaTe{sub 2} layers on glass substrates with Ag{sub 2}Te buffer layer by closed space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Uruno, Aya; Usui, Ayaka; Takeda, Yuji; Inoue, Tomohiro [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2015-06-15

    The AgGaTe{sub 2} layer growth was performed by the closed space sublimation method on the Mo/glass substrate. The Ag{sub 2}Te buffer layer was inserted between AgGaTe{sub 2} and Mo layers, to improve the quality of grown layers. Crystallographic properties were analyzed by x-ray diffraction (XRD), and the surface morphologies were analyzed by scanning electron microscopy (SEM). The Ag{sub 2}Te layer grown on the Mo/glass exhibited a membrane filter structure from the SEM observation. XRD spectra of layers grown with and without the buffer layer were compared. The AgGaTe{sub 2} layer with the Ag{sub 2}Te buffer layer exhibited peaks originating from AgGaTe{sub 2}, and a very strong diffraction peak of 112 was observed. On the other hand, it was cleared that the layer grown without the buffer layer exhibited no strong peaks associated with AgGaTe{sub 2}, but Ga-Te compounds. From this, crystallographic properties of the AgGaTe{sub 2} layer were drastically improved by the insertion of the Ag{sub 2}Te buffer layer. Moreover, the surface morphology exhibited a smooth surface when the Ag{sub 2}Te buffer layer was inserted. The nucleation site density of AgGaTe{sub 2} was probably increased since the membrane filter structure exhibited numbers of kinks at the edge. Chemical reaction between Ga and Mo was also eliminated. It was cleared that the insertion of the buffer layer and its surface morphology were an important parameter to grow high quality AgGaTe{sub 2} layers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. The properties of CdTe solar cells with ZnTe/ZnTe: Cu buffer layers

    Institute of Scientific and Technical Information of China (English)

    Song Huijin; Zheng Jiagui; Feng Lianghuan; Yan Qiang; Lei Zhi; Wu Lili; Zhang Jingquan; Li Wei; Li Bing

    2008-01-01

    CdS/CdTe solar cells with ZnTe/ZnTe:Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe:Cu buffer layers affect the solar cell conversion efficiency and its fill factor.

  17. Characterization of hafnium oxide resistive memory layers deposited on copper by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.D.; Bishop, S.M. [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States); Leedy, K.D. [Air Force Research Laboratory, 2241 Avionics Circle, Wright Patterson Air Force Base, Dayton, OH 45433 (United States); Cady, N.C., E-mail: ncady@albany.edu [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States)

    2014-07-01

    Hafnium oxide-based resistive memory devices have been fabricated on copper bottom electrodes. The HfO{sub x} active layers in these devices were deposited by atomic layer deposition (ALD) at 250 °C with tetrakis(dimethylamido)hafnium(IV) as the metal precursor and an O{sub 2} plasma as the reactant. Depth profiles of the HfO{sub x} by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a copper concentration on the order of five atomic percent throughout the HfO{sub x} film. In addition to the Cu doped HfO{sub x}, a thin layer (20 nm) of Cu{sub x}O is present at the surface. This surface layer is believed to have formed during the ALD process, and greatly complicates the analysis of the switching mechanism. The resistive memory structures fabricated from the ALD HfO{sub x} exhibited non-polar resistive switching, independent of the top metal electrode (Ni, Pt, Al, Au). Resistive switching current voltage (I–V) curves were analyzed using Schottky emission and ionic hopping models to gain insight into the physical mechanisms underpinning the device behavior. During the forming process it was determined that, at voltages in excess of 2.5 V, an ionic hopping model is in good agreement with the I–V data. The extracted ion hopping distance ∼ 4 Å was within the range of interatomic spacing of HfO{sub 2} during the forming process consistent with ionic motion of Cu{sup 2+} ions. Lastly the on state I–V data was dominated at larger voltages by Schottky emission with an estimated barrier height of ∼ 0.5 eV and a refractive index of 2.59. The consequence of the Schottky emission analysis indicates the on state resistance to be a product of a Pt/Cu{sub 2}O/Cu filament(s)/Cu{sub 2}O/Cu structure. - Highlights: • HfO{sub 2} was grown via atomic layer deposition at 250 and 100 °C on Cu substrates. • A Cu{sub 2}O surface layer and Cu doping were observed in post-deposition of HfO{sub 2}. • Resistive memory devices were fabricated and

  18. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cerio, Frank

    2013-09-14

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance

  19. Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin cerium fluoride buffer layer

    Science.gov (United States)

    Lu, Hsin-Wei; Kao, Po-Ching; Chu, Sheng-Yuan

    2016-09-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3 film as an ultra-thin buffer layer between the ITO and NPB hole transport layer, with the structure configuration ITO/CeF3 (1 nm)/NPB (40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The work function increased from 4.8 eV (standard ITO electrode) to 5.2 eV (1-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The turn-on voltage decreased from 4.2 V to 4.0 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 10820 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.5 cd/A when the 1-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  20. Imposed layer by layer growth by pulsed laser interval deposition

    NARCIS (Netherlands)

    Koster, Gertjan; Rijnders, Guus J.H.M.; Blank, Dave H.A.; Rogalla, Horst

    1999-01-01

    Pulsed laser deposition has become an important technique to fabricate novel materials. Although there is the general impression that, due to the pulsed deposition, the growth mechanism differs partially from continuous physical and chemical deposition techniques, it has hardly been used. Here, we w

  1. A Review of Atomic Layer Deposition for Nanoscale Devices

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-12-01

    Full Text Available Atomic layer deposition (ALD is a thin film growth technique that utilizes alternating, self-saturation chemical reactions between gaseous precursors to achieve a deposited nanoscale layers. It has recently become a subject of great interest for ultrathin film deposition in many various applications such as microelectronics, photovoltaic, dynamic random access memory (DRAM, and microelectromechanic system (MEMS. By using ALD, the conformability and extreme uniformity of layers can be achieved in low temperature process. It facilitates to be deposited onto the surface in many variety substrates that have low melting temperature. Eventually it has advantages on the contribution to the wider nanodevices.

  2. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  3. Characteristics of layered tin disulfide deposited by atomic layer deposition with H2S annealing

    Science.gov (United States)

    Lee, Seungjin; Shin, Seokyoon; Ham, Giyul; Lee, Juhyun; Choi, Hyeongsu; Park, Hyunwoo; Jeon, Hyeongtag

    2017-04-01

    Tin disulfide (SnS2) has attracted much attention as a two-dimensional (2D) material. A high-quality, low-temperature process for producing 2D materials is required for future electronic devices. Here, we investigate tin disulfide (SnS2) layers deposited via atomic layer deposition (ALD) using tetrakis(dimethylamino)tin (TDMASn) as a Sn precursor and H2S gas as a sulfur source at low temperature (150° C). The crystallinity of SnS2 was improved by H2S gas annealing. We carried out H2S gas annealing at various conditions (250° C, 300° C, 350° C, and using a three-step method). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) results revealed the valence state corresponding to Sn4+ and S2- in the SnS2 annealed with H2S gas. The SnS2 annealed with H2S gas had a hexagonal structure, as measured via X-ray diffraction (XRD) and the clearly out-of-plane (A1g) mode in Raman spectroscopy. The crystallinity of SnS2 was improved after H2S annealing and was confirmed using the XRD full-width at half-maximum (FWHM). In addition, high-resolution transmission electron microscopy (HR-TEM) images indicated a clear layered structure.

  4. Characteristics of layered tin disulfide deposited by atomic layer deposition with H2S annealing

    Directory of Open Access Journals (Sweden)

    Seungjin Lee

    2017-04-01

    Full Text Available Tin disulfide (SnS2 has attracted much attention as a two-dimensional (2D material. A high-quality, low-temperature process for producing 2D materials is required for future electronic devices. Here, we investigate tin disulfide (SnS2 layers deposited via atomic layer deposition (ALD using tetrakis(dimethylaminotin (TDMASn as a Sn precursor and H2S gas as a sulfur source at low temperature (150° C. The crystallinity of SnS2 was improved by H2S gas annealing. We carried out H2S gas annealing at various conditions (250° C, 300° C, 350° C, and using a three-step method. Angle-resolved X-ray photoelectron spectroscopy (ARXPS results revealed the valence state corresponding to Sn4+ and S2- in the SnS2 annealed with H2S gas. The SnS2 annealed with H2S gas had a hexagonal structure, as measured via X-ray diffraction (XRD and the clearly out-of-plane (A1g mode in Raman spectroscopy. The crystallinity of SnS2 was improved after H2S annealing and was confirmed using the XRD full-width at half-maximum (FWHM. In addition, high-resolution transmission electron microscopy (HR-TEM images indicated a clear layered structure.

  5. ZnO buffer layer for metal films on silicon substrates

    Science.gov (United States)

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  6. Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Shiino, Tatsuya; Shiba, Shoichi; Sakai, Nami; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamakura, Tetsuya [Institute of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ten-nodai, Tsukuba, Ibaraki 305-8577 (Japan); Jiang, Ling [College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu (China); Uzawa, Yoshinori [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Maezawa, Hiroyuki, E-mail: shiino@taurus.phys.s.u-tokyo.ac.j [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8602 (Japan)

    2010-04-15

    Thin superconducting NbTiN and NbN films with a few nm thickness are used in various device applications including in hot electron bolometer mixers. Such thin films have lower critical temperature (T{sub c}) and higher resistivity than corresponding bulk materials. In an effort to improve them, we have investigated an effect of the AlN buffer layer between the film and the substrate (quartz or soda lime glass). The AlN film is deposited by DC magnetron sputtering, and the process condition is optimized so that the x-ray diffraction intensity from the 002 surface of wurtzite AlN becomes the highest. By use of this well-characterized buffer layer, T{sub c} and the resistivity of the NbTiN film with a few nm thickness are remarkably increased and decreased, respectively, in comparison with those without the buffer layer. More importantly, the AlN buffer layer is found to be effective for NbN. With the AlN buffer layer, T{sub c} is increased from 7.3 to 10.5 K for the 8 nm NbN film. The improvement of T{sub c} and the resistivity originates from the good lattice matching between the 002 surface of AlN and the 111 surface of NbTiN or NbN, which results in better crystallization of the NbTiN or NbN film. This is further confirmed by the x-ray diffraction measurement.

  7. Spatial atomic layer deposition of zinc oxide thin films

    NARCIS (Netherlands)

    Illiberi, A.; Roozeboom, F.; Poodt, P.W.G.

    2012-01-01

    Zinc oxide thin films have been deposited at high growth rates (up to ~1 nm/s) by spatial atomic layer deposition technique at atmospheric pressure. Water has been used as oxidant for diethylzinc (DEZ) at deposition temperatures between 75 and 250 °C. The electrical, structural (crystallinity and mo

  8. The Influence of Surface Morphology of Buffer Layer on the Critical Current Density in YBCO Coated Conductors

    Directory of Open Access Journals (Sweden)

    Jie Xiong

    2013-01-01

    Full Text Available 1 μm-thick YBa2Cu3O7-δ (YBCO films were grown on the Y2O3/yttria stabilized zirconia (YSZ/CeO2 buffer layers with different surface morphologies using direct-current sputtering. The critical current density (Jc value of YBCO was 1.1 MA/cm2 when the root mean square surface roughness (Rrms of the buffer layer was 2.5 nm. As the Rrms of the buffer layer increased to 15 nm, the Jc decreased to 0.3 MA/cm2. X-ray diffraction and scanning electron microscopy showed the strong relevance of the evolution of the structure and surface morphologies of YBCO films with the buffer layer of different Rrms. A model was proposed to explain the influence of surface morphology on the superconducting properties of YBCO films.

  9. The microstructure and magnetic properties of electrodeposited Co-Pt thin films on Ru buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, G.H. [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)], E-mail: skk94@skku.edu; Lee, C.H.; Jang, J.H. [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, N.J. [Department of Materials Science and Engineering, Kumoh National University of Technology, Kumi 730-701 (Korea, Republic of); Suh, S.J. [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Advanced Materials and Process Research Center for IT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2008-11-15

    For high-density magnetic recording media, this study examined the crystal structure and the texture of electrodeposited cobalt-platinum (Co-Pt) films on Ru buffer layer. A 15-nm-thick Co-Pt film exhibited very high out-of-plane coercivity and squareness, which were 6248 Oe and 0.89, respectively. The coercivity, H{sub c}, of Co-Pt films grown on Ru buffer layer decreased significantly with increasing thickness, possibly due to the lattice misfit of 5.4% between Co-Pt and Ru, leading to the decrease of perpendicular magnetic anisotropy (PMA) of Co-Pt films as indicated by the observed hexagonal-closed-packed (HCP) (1 1-bar 0 1) plane of Co-Pt films. According to nano beam diffraction pattern (NBDP), however, Co-Pt film grown on Ru layer of HCP exhibited mixed HCP and FCC phases. Also, cross-sectional TEM image suggests that the high PMA may result from the columnar structure of physically isolated Co-Pt grains with the c-axis perpendicular to the film plane.

  10. Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Si [The Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Chen, Jiangtao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Mid. Road, Lanzhou 730000 (China); Liu, Jianlin [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 (United States); Qi, Jing, E-mail: qijing@lzu.edu.cn [The Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Yuhua, E-mail: wyh@lzu.edu.cn [Department of Material Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2016-11-30

    Highlights: • We obtained ZnO nanowire arrays grown on ZnO seed layer on Si with MgO buffer. • FE properties of ZnO nanowire arrays grown on ZnO seed layer on Si with MgO buffer is better than that without MgO buffer. • With MgO buffer, the ZnO seed layer shows lower top-bottom resistance and better electron transport. • The enhanced field emission properties can be attributed to good electron transport in seed layer, good nanowire alignment because of MgO buffer. - Abstract: Field emitters based on ZnO nanowires and other nanomaterials are promising high-brightness electron sources for field emission display, microscopy and other applications. The performance of a ZnO nanowire field emitter is linked to the quality, conductivity and alignment of the nanowires on a substrate, therefore requiring ways to improve these parameters. Here, ZnO nanowire arrays were grown on ZnO seed layer on silicon substrate with MgO buffer between the seed layer and Si. The turn-on field and enhancement factor of these nanowire arrays are 3.79 V/μm and 3754, respectively. These properties are improved greatly compared to those of ZnO nanowire arrays grown on ZnO seed layer without MgO buffer, which are 5.06 V/μm and 1697, respectively. The enhanced field emission properties can be attributed to better electron transport in seed layer, and better nanowire alignment because of MgO buffer.

  11. Effect of growth interruption and strain buffer layer on PL performance of AlGaAs/GaAs/InGaAs quantum well for 1065 nm wavelength lasers

    Institute of Scientific and Technical Information of China (English)

    PAN Jiaoqing; HUANG Baibiao; ZHANG Xiaoyang; YUE Jinshun; YU Yongqin; WEI Jiyong

    2004-01-01

    Strained InGaAs/GaAs quantum well (QW) was grown by low-pressure metallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer were introduced to improve the photoluminescence (PL) performance of the InGaAs/GaAs quantum well. Good PL results were obtained under condition of growth an interruption of 10 s combined with a moderate strain buffer layer. Wavelength lasers of 1064 nm using the QW were grown and processed into devices. Broad area lasers (1130 μm × 500 μm) show very low threshold current densities (43 A/cm2) and high slop efficiency (0.34 W/A, per facet).

  12. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Directory of Open Access Journals (Sweden)

    Tetsuro Hori

    2010-11-01

    Full Text Available Organic thin-film solar cells with a conducting polymer (CP/fullerene (C60 interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene (PAT6/Au have been improved by the insertion of molybdenum trioxide (VI (MoO3 and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  13. Fabrication of Ni-5 at. %W Long Tapes with CeO2 Buffer Layer by Reel-to-Reel Method

    DEFF Research Database (Denmark)

    Ma, Lin; Tian, Hui; Yue, Zhao

    2015-01-01

    A 10-m-long homemade textured Ni-5at.%W (Ni5W) long tape with a CeO2 buffer layer has been prepared successfully by means of rolling-assisted biaxially textured substrate (RABiTS) route followed by a chemical solution deposition method in a reel-to-reel manner. Globally, the Ni5W substrate and CeO2...... film exhibit high homogeneity in terms of biaxial texture over the tape. The average values of full width at half maximum of in-plane and out-of-plane texture are 7.2° and 6.1° in Ni5W substrate, 7.6° and 6.1° in CeO2 buffer layer, respectively, all of those with a small standard deviation...

  14. Effect of bathocuproine buffer layer in small molecule organic solar cells with inverted structure

    Science.gov (United States)

    Hao, Xia; Wang, Shenghao; Sakurai, Takeaki; Akimoto, Katsuhiro

    2015-04-01

    Inverted organic solar cells (OSCs) based on boron subphthalocynine chloride (SubPc) and fullerene (C60) were fabricated and the device structure was optimized by inserting a bathocuproine (C26H20N2) buffer layer. The power conversion efficiency was greatly improved from 0.8 to 1.6%. The roles of bathocuproine in this inverted device were investigated by photoluminescence and transient photovoltage/photocurrent measurements. The results show that the bathocuproine in the device not only blocks the exciton quenching, but also prohibits the build-up of charge trapping and suppresses the trap-assisted recombination.

  15. Investigation of top-emitting OLEDs using molybdenum oxide as anode buffer layer

    Institute of Scientific and Technical Information of China (English)

    LIN Hui; YU Jun-sheng; ZHANG Wei

    2012-01-01

    A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs).In this paper,Ag-based top-emitting OLEDs are investigated.Ag has the highest reflectivity for visible light among all metals,yet its hole-injection properties are not ideal for anodes of top-emitting OLED.The performance of the devices is significantly improved using the molybdenum oxide as anode buffer layer at the surface of Ag.By introducing the molybdenum oxide,the hole injection from Ag anodes into top-emitting OLED is largely enhanced with rather high reflectivity retained.

  16. Flexible Substrates with Polyimide Buffer Layers for Organic Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    常春; 王立铎; 李扬; 段炼; 邱勇

    2004-01-01

    We report a new method to enhance the properties of the polyethyleneterephthalate (PET) substrates for flexible organic light-emitting diodes (OLEDs). By spin-coating a polyimide (PI) film between the PET and the indiumtin-oxide anode, the flexible substrate with a smooth surface, high transmission over the visible spectrum and good adhesion are achieved. We also compare the flexible OLEDs on different substrates. The diodes on the substrates with polyimide buffer layers exhibit a brightness of 7280cd/m2 at 15 V and the maximum efficiency of 2.64 cd/A.

  17. Surface plasmon enhanced organic solar cells with a MoO3 buffer layer.

    Science.gov (United States)

    Su, Zisheng; Wang, Lidan; Li, Yantao; Zhang, Guang; Zhao, Haifeng; Yang, Haigui; Ma, Yuejia; Chu, Bei; Li, Wenlian

    2013-12-26

    High-efficiency surface plasmon enhanced 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane:C70 small molecular bulk heterojunction organic solar cells with a MoO3 anode buffer layer have been demonstrated. The optimized device based on thermal evaporated Ag nanoparticles (NPs) shows a power conversion efficiency of 5.42%, which is 17% higher than the reference device. The improvement is attributed to both the enhanced conductivity and increased absorption due to the near-field enhancement of the localized surface plasmon resonance of Ag NPs.

  18. A pyridine-functionalized pyrazolinofullerene used as a buffer layer in polymer solar cells.

    Science.gov (United States)

    Yang, Pingao; Chen, Shan; Liu, Yu; Xiao, Zuo; Ding, Liming

    2013-10-28

    A pyridine-functionalized pyrazolinofullerene (1) was synthesized in 42% yield via an improved one-pot reaction of C60, 3,6-di(2-pyridyl)-1,2,4,5-tetrazine, and water. The structure of 1 was unambiguously determined by X-ray diffraction of its single crystal. Due to the coordination capability of the functional groups on fullerene, compound 1 was used as a buffer layer to modify ZnO in inverted polymer solar cells. The power conversion efficiency was improved from 3.65% to 4.18% for inverted P3HT:PC61BM solar cells.

  19. a Novel pt and Npt Mixed Igbt Having a New n-BUFFER Layer

    Science.gov (United States)

    Zhang, Fei; Luo, Shuhua; Zhang, Liang; Wang, Wei; Yu, Wen; Li, Chengfang; Sun, Xiaowei

    For the first time, a novel mixed insulated gate bipolar transistor (MIGBT) is proposed and verified by two-dimensional (2D) mixed device-circuit simulations. The structure of the proposed device is almost identical with that of the conventional IGBT, except for the buffer layer which is formed by employing the n+/n- structure, so that the trade-off relation between the conduction and switching losses is greatly improved and efficiently decoupled. Furthermore, the proposed device exhibits larger forward blocking voltage and positive temperature coefficient of the forward voltage drop, facilitating parallel integration.

  20. Heterointegration of III-V on silicon using a crystalline oxide buffer layer

    Science.gov (United States)

    Bhatnagar, K.; Rojas-Ramirez, J. S.; Contreras-Guerrero, R.; Caro, M.; Droopad, R.

    2015-09-01

    The integration of III-V compound semiconductors with Si can combine the cost advantage and maturity of Si technology with the superior performance of III-V materials. We have achieved the heteroepitaxial growth of III-V compound semiconductors on a crystalline SrTiO3 buffer layer grown on Si(0 0 1) substrates. A two-step growth process utilizing a high temperature nucleation layer of GaAs, followed by a low-temperature GaAs layer at a higher growth rate was employed to achieve highly crystalline thick GaAs layers on the SrTiO3/Si substrates with low surface roughness as seen by AFM. The effect of the GaAs nucleation layer on different surface terminations for the SrTiO3 layer was studied for both on axis and miscut wafers, which led to the conclusion that the Sr terminated surface on miscut substrates provides the best GaAs films. Using GaAs/STO/Si as virtual substrates, we have optimized the growth of high quality GaSb using the interfacial misfit (IMF) dislocation array technique. This work can lead to the possibility of realizing infrared detectors and next-generation high mobility III-V CMOS within the existing Si substrate infrastructure.

  1. Structural characterisation of BaTiO{sub 3} thin films deposited on SrRuO{sub 3}/YSZ buffered silicon substrates and silicon microcantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Colder, H.; Jorel, C., E-mail: corentin.jorel@unicaen.fr; Méchin, L. [GREYC, UMR 6072, CNRS, ENSICAEN, UCBN, 6 bd du Maréchal Juin, 14050 Caen Cedex (France); Domengès, B. [LAMIPS, CRISMAT-NXP Semiconductors-Presto Engineering laboratory, CNRS-UMR 6508, ENSICAEN, UCBN, 2 rue de la Girafe, 14 000 Caen (France); Marie, P.; Boisserie, M. [CIMAP, UMR 6252, CNRS, ENSICAEN, UCBN, CEA, 6 bd du Maréchal Juin, 14050 Caen Cedex (France); Guillon, S.; Nicu, L. [LAAS, CNRS, Univ de Toulouse, 7 avenue du Colonel Roche, 31400 Toulouse (France); Galdi, A. [GREYC, UMR 6072, CNRS, ENSICAEN, UCBN, 6 bd du Maréchal Juin, 14050 Caen Cedex (France); Department of Industrial Engineering, CNR-SPIN Salerno, Università di Salerno, 84084 Fisciano, Salerno (Italy)

    2014-02-07

    We report on the progress towards an all epitaxial oxide layer technology on silicon substrates for epitaxial piezoelectric microelectromechanical systems. (101)-oriented epitaxial tetragonal BaTiO{sub 3} (BTO) thin films were deposited at two different oxygen pressures, 5.10{sup −2} mbar and 5.10{sup −3} mbar, on SrRuO{sub 3}/Yttria-stabilized zirconia (YSZ) buffered silicon substrates by pulsed laser deposition. The YSZ layer full (001) orientation allowed the further growth of a fully (110)-oriented conductive SrRuO{sub 3} electrode as shown by X-ray diffraction. The tetragonal structure of the BTO films, which is a prerequisite for the piezoelectric effect, was identified by Raman spectroscopy. In the BTO film deposited at 5.10{sup −2} mbar strain was mostly localized inside the BTO grains whereas at 5.10{sup −3} mbar, it was localized at the grain boundaries. The BTO/SRO/YSZ layers were finally deposited on Si microcantilevers at an O{sub 2} pressure of 5.10{sup −3} mbar. The strain level was low enough to evaluate the BTO Young modulus. Transmission electron microscopy (TEM) was used to investigate the epitaxial quality of the layers and their epitaxial relationship on plain silicon wafers as well as on released microcantilevers, thanks to Focused-Ion-Beam TEM lamella preparation.

  2. Nanostructure templating using low temperature atomic layer deposition

    Science.gov (United States)

    Grubbs, Robert K.; Bogart, Gregory R.; Rogers, John A.

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  3. Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Cheol Hyoun; Kim, Hyoungsub; Cho, Hyung Koun, E-mail: chohk@skku.ed

    2010-11-01

    AlZnO thin films with various Al/Zn composition ratios were deposited by atomic layer deposition (ALD) at 200 {sup o}C. The effect of the composition of the AlZnO films on their electrical and optical characteristics was investigated. The AlZnO films with an Al content of up to 10 at.% showed high conductivity, while further increasing in the Al content resulted in the abrupt formation of an insulating oxide film. The lowest electrical resistivity of the ALD-deposited AlZnO film was 6.5 x 10{sup -4} [{Omega} cm] at 5 at.% Al. The AlZnO films with up to 5 at.% Al exhibited crystalline phases and a near-band-edge emission. With increasing Al content, the optical band edge showed a blue shift, and a sudden shift associated with an insulating bandgap was observed in the AlZnO films containing 20 at.% Al.

  4. Underpotential deposition-mediated layer-by-layer growth of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  5. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.

    Science.gov (United States)

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-09-02

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

  6. Electrochemical atomic layer deposition of copper nanofilms on ruthenium

    Science.gov (United States)

    Gebregziabiher, Daniel K.; Kim, Youn-Geun; Thambidurai, Chandru; Ivanova, Valentina; Haumesser, Paul-Henri; Stickney, John L.

    2010-04-01

    As ULSI scales to smaller and smaller dimensions, it has become necessary to form layers of materials only a few nm thick. In addition, trenches are now being incorporated in ULSI formation which require conformal coating and will not be amenable to CMP. Atomic layer deposition (ALD) is being developed to address such issues. ALD is the formation of materials layer by layer using self-limiting reactions. This article describes the formation of Cu seed layers (for the Cu damascene process) on a Ru barrier layer. The deposit was formed by the electrochemical analog of ALD, using electrochemical self-limiting reactions which are referred to as underpotential deposition (UPD). Monolayer restricted galvanic displacement was used to form atomic layers of Cu. First Pb UPD was deposited, forming a sacrificial layer, and then a Cu +2 solution was flushed into the cell and Pb was exchanged for Cu. A linear dependence was shown for Cu growth over 8 ALD cycles, and STM showed a conformal deposition, as expected for an ALD process. Relative Cu coverages were determined using Auger electron spectroscopy, while absolute Cu coverages were obtained from coulometry during oxidative stripping of the deposits. Use of a Cl - containing electrolyte results in Cu deposits covered with an atomic layer of Cl atoms, which have been shown to protect the surfaced from oxidation during various stages of the deposition process. The 10 nm thick Ru substrates were formed on Si(1 0 0) wafers, and were partially oxidized upon receipt. Electrochemical reduction, prior to Cu deposition, removed the oxygen and some traces of carbon, the result of transport. Ion bombardment proved to clean all oxygen and carbon traces from the surface.

  7. Stability of optimal streaks in the buffer layer of a turbulent channel flow with variable viscosity

    Science.gov (United States)

    Patel, Ashish; Rinaldi, Enrico; Pecnik, Rene; Schlatter, Philipp; Bagheri, Shervin

    2016-11-01

    Direct Numerical Simulations (DNS) of turbulent channel flows with variable viscosity (Patel et al., 2015, PoF) show that low speed streaks in the buffer layer strengthen and are stabilized for increasing viscosity away from the wall, as they do not lift and tilt as intensely as in a constant property flow. The opposite holds for cases where viscosity decreases away from the wall. In this work, we investigate the above observation by studying the linear stability of the mean turbulent velocity profile obtained from DNS of variable viscosity flows. Examples of such studies for constant property turbulent flows include work of del Alamo & Jiménez, 2006, JFM and Pujals et al., 2009, PoF. The calculated optimal buffer layer streaks show larger transient energy growth for a case where the viscosity increases away from the wall. We further study the stability of the saturated optimal streaks by imposing a secondary sinuous perturbation and by following the nonlinear evolution of the structures in time. The present investigation will improve the understanding of the near-wall turbulence cycle for wall-bounded turbulent flows with viscosity gradients.

  8. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    Science.gov (United States)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  9. Experimental and theoretical investigations of special type coil heat exchanger with the nanofluid buffer layer

    Directory of Open Access Journals (Sweden)

    Smusz Robert

    2017-01-01

    Full Text Available The paper presents the results of experimental and theoretical investigations of special type of coil heat exchanger. The tested device is equipped with three vertical coils and the temperature stratification system. Water is a heating medium in two coils. The refrigerant transferring the waste heat from air conditioning system is the heating medium in the third coil. The finned pipe of this coil has a double wall in which the annular buffer layer with nanofluid is mounted. Thermophysical properties of the applied water based Cu nanofluid cause the enhancement of heat transfer through the buffer layer. The paper presents thermal characteristics of the exchanger received on the basis of measurements performed on the industrial test stand. Measurements were conducted during the operation of the coil with refrigerant. Heat loss to the surroundings, distributions of water temperature in the storage tank, changes of water temperature in time and thermal power of the coil heat exchanger were obtained. The measurement results were compared with those received on the basis of theoretical analysis of the exchanger.

  10. Study on CexLa1-xO2 Buffer Layer used in Coated Conductors by Chemical Solution Method

    DEFF Research Database (Denmark)

    Zhao, Yue; Suo, Hongli; Grivel, Jean-Claude

    2009-01-01

    Developing multi-functional single buffer layer is one of the most important challenges for simplification of coated conductors configuration. Ladoped CeO2 films were prepared by chemical solution method. And surface morphology and texture quality of the La-doped CeO2 films were investigated...... method. It suggects that Ce0.9La0.1O2 film prepared by chemical solution route have a promising prospect for the simplification of coated conductors configuration....... in details. The results show that the as-obtained pore-free Ce0.9La0.1O2 film are epitaxially deposited on the textured NiW substrate. The 120nm thickness Ce0.9La0.1O2 film is obtained though multi-coating route. The YBCO film with Tco=90.5K, which is deposited on Ce0.9La0.1O2/NiW metallic template by PLD...

  11. Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer

    Science.gov (United States)

    Alaskar, Yazeed; Arafin, Shamsul; Lin, Qiyin; Wickramaratne, Darshana; McKay, Jeff; Norman, Andrew G.; Zhang, Zhi; Yao, Luchi; Ding, Feng; Zou, Jin; Goorsky, Mark S.; Lake, Roger K.; Zurbuchen, Mark A.; Wang, Kang L.

    2015-09-01

    A novel heteroepitaxial growth technique, quasi-van der Waals epitaxy, promises the ability to deposit three-dimensional GaAs materials on silicon using two-dimensional graphene as a buffer layer by overcoming the lattice and thermal expansion mismatch. In this study, density functional theory (DFT) simulations were performed to understand the interactions at the GaAs/graphene hetero-interface as well as the growth orientations of GaAs on graphene. To develop a better understanding of the molecular beam epitaxy-grown GaAs films on graphene, samples were characterized by x-ray diffraction (θ-2θ scan, ω-scan, grazing incidence XRD and pole figure measurement) and transmission electron microscopy. The realizations of smooth GaAs films with a strong (111) oriented fiber-texture on graphene/silicon using this deposition technique are a milestone towards an eventual demonstration of the epitaxial growth of GaAs on silicon, which is necessary for integrated photonics application.

  12. Evaluation of methods for application of epitaxial buffer and superconductor layers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-30

    The recent achievements of critical currents exceeding million amperes per square centimeter at 77K in YBCO deposited over suitably textured substrate have stimulated interest in the potential applications of coated conductors at high temperatures and in high magnetic fields. Currently, ion-beam assisted deposition (IBAD), and rolling assisted bi-axially textured substrate (RABiTS), represent two available options for obtaining textured substrates. For applying suitable coatings of buffer and high temperature superconductor (HTS) material over textured substrates, several options are available which include sputtering, electron-beam evaporation, laser ablation, electrophoresis, chemical vapor deposition (including metal organics chemical vapor deposition), sol-gel, metal organics decomposition, electrodeposition and aerosol/spray pyrolysis. A commercial continuous long-length wire/tape manufacturing scheme developed out of any suitable combination of the above techniques would consist of operations involving preparation of the substrate and application of buffer, HTS and passivation/insulation materials and special treatment steps such as post-annealing. These operations can be effected by various process parameters that can be classified into chemistry, materials, engineering and environmental related parameters. Under the DOE-sponsored program, to carry out an engineering evaluation, first, the process flow schemes were developed for various candidate options identifying the major operating steps, process conditions, and process streams. Next, to evaluate quantifiable parameters such as process severity (e.g. temperature and pressure), coating thickness and deposition rate for HTS material, achieved maximum J{sub c} value (for films >1{micro}m thick) and cost of chemical and material utilization efficiency, the multi-attribute method was used to determine attributes/merits for various parameters and candidate options. To determine similar attribute values for the

  13. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  14. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Science.gov (United States)

    Fang, J. S.; Sun, S. L.; Cheng, Y. L.; Chen, G. S.; Chin, T. S.

    2016-02-01

    The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO4. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  15. MIS and MFIS Devices: DyScO3 as a gate-oxide and buffer-layer

    Science.gov (United States)

    Melgarejo, R.; Karan, N. K.; Saavedra-Arias, J.; Pradhan, D. K.; Thomas, R.; Katiyar, R. S.

    2008-03-01

    Metal-Ferroelectric-Insulator-Semiconductor (MFIS) structure is of importance in nonvolatile memories, as insulating buffer layer that prevents interdiffusion between the ferroelectric (FE) and the Si substrate. However, insulating layer has some disadvantages viz. generation of depolarization field in FE film and increase of operation voltage. To overcome this, it is important to find a FE with low ɛr (compared to normal FE) and an insulating buffer layer with high ɛr (compared to ɛr = 3.9 of SiO2). High-k materials viz. LaAlO3, SiN, HfO2, HfAlO etc. have been studied as buffer layers in the MFIS structures and as gate-oxide in metal-insulator-silicon (MIS). Recently, a novel gate dielectric material, DyScO3 was considered and studies indicate that crystallization temperature significantly increased and the film on Si remained amorphous even at 1000 C annealing. Considering the requirements on crystallization temperature, ɛr, electrical stability for high-k buffer layers, DyScO3 seems to be very promising for future MFIS device applications. Therefore, the evaluations of MOCVD grown DyScO3 as gate-oxide for MIS and the buffer layers for Bi3.25La0.75Ti3O12 based MFIS structures are presented.

  16. Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer.

    Science.gov (United States)

    Cemin, F; Bim, L T; Leidens, L M; Morales, M; Baumvol, I J R; Alvarez, F; Figueroa, C A

    2015-07-29

    Amorphous carbon (a-C) and several related materials (DLCs) may have ultralow friction coefficients that can be used for saving-energy applications. However, poor chemical bonding of a-C/DLC films on metallic alloys is expected, due to the stability of carbon-carbon bonds. Silicon-based intermediate layers are employed to enhance the adherence of a-C:H films on ferrous alloys, although the role of such buffer layers is not yet fully understood in chemical terms. The chemical bonding of a-C:H thin films on ferrous alloy intermediated by a nanometric SiCx:H buffer layer was analyzed by X-ray photoelectron spectroscopy (XPS). The chemical profile was inspected by glow discharge optical emission spectroscopy (GDOES), and the chemical structure was evaluated by Raman and Fourier transform infrared spectroscopy techniques. The nature of adhesion is discussed by analyzing the chemical bonding at the interfaces of the a-C:H/SiCx:H/ferrous alloy sandwich structure. The adhesion phenomenon is ascribed to specifically chemical bonding character at the buffer layer. Whereas carbon-carbon (C-C) and carbon-silicon (C-Si) bonds are formed at the outermost interface, the innermost interface is constituted mainly by silicon-iron (Si-Fe) bonds. The oxygen presence degrades the adhesion up to totally delaminate the a-C:H thin films. The SiCx:H deposition temperature determines the type of chemical bonding and the amount of oxygen contained in the buffer layer.

  17. Effect of Initial Surface Quality on Final Roughness and Texture of Annealed Ni-5at.%W Tapes Coated with a Gd2Zr2O7 Buffer Layer

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Yue, Zhao; Mishin, Oleg;

    2012-01-01

    Surface roughness of Ni-5at.%W tapes in coldrolled and annealed conditions after subsequent deposition of a Gd2Zr2O7 buffer layer has been studied as a function of the polishing grade, taking grain boundary grooving into account. It is found that annealing decreases the initial mean surface rough...

  18. Advanced optical modelling of dynamically deposited silicon nitride layers

    Science.gov (United States)

    Borojevic, N.; Hameiri, Z.; Winderbaum, S.

    2016-07-01

    Dynamic deposition of silicon nitrides using in-line plasma enhanced chemical vapor deposition systems results in non-uniform structure of the dielectric layer. Appropriate analysis of such layers requires the optical characterization to be performed as a function of the layer's depth. This work presents a method to characterize dynamically deposited silicon nitride layers. The method is based on the fitting of experimental spectroscopic ellipsometry data via grading of Tauc-Lorentz optical parameters through the depth of the layer. When compared with the standard Tauc-Lorentz fitting procedure, used in previous studies, the improved method is demonstrating better quality fits to the experimental data and revealing more accurate optical properties of the dielectric layers. The most significant advantage of the method is the ability to extract the depth profile of the optical properties along the direction of the layer normal. This is enabling a better understanding of layers deposited using dynamic plasma enhanced chemical vapor deposition systems frequently used in the photovoltaic industry.

  19. Atomic and molecular layer deposition for surface modification

    Science.gov (United States)

    Vähä-Nissi, Mika; Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas-solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin - even non-uniform - atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid.

  20. Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process

    Science.gov (United States)

    Shim, Do-Sik; Baek, Gyeong-Yun; Seo, Jin-Seon; Shin, Gwang-Yong; Kim, Kee-Poong; Lee, Ki-Yong

    2016-12-01

    Direct energy deposition is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In laser-assisted metal deposition, the mechanical and metallurgical properties achieved are influenced by many factors. This paper addresses methods for selecting an appropriate layer thickness setting, which is an important parameter in layer-by-layer deposition manufacturing. A new procedure is proposed for determining the layer thickness setting for use in slicing of a part based on the single-layer height for a given depositing condition. This procedure was compared with a conventional method that uses an empirically determined layer thickness and with a feedback control method. The micro-hardness distribution, location of the melting pool, and microstructures of the deposited layers after deposition of a simple target shape were investigated for each procedure. The experimental results show that even though the feedback control method is the most effective method for obtaining the desired geometry, the deposited region was characterized by inhomogeneity of micro-hardness due to the time-variable depositing conditions involved. The largest dimensional error was associated with the conventional deposition procedure, which produced a rise in the melting zone due to over-deposition with respect to the slicing thickness, especially at the high laser power level considered. In contrast, the proposed procedure produced a stable melting zone position during deposition, which resulted in the deposited part having reasonable dimensional accuracy and uniform micro-hardness throughout the deposited region.

  1. Optimal Cu buffer layer thickness for growing epitaxial Co overlayers on Si(111)7 x 7

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu. P.; Zotov, A. V. [School of Natural Science, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Institute of Automation and Control Processes, 690041 Vladivostok (Russian Federation); Ilin, A. I.; Davydenko, A. V. [School of Natural Science, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2011-10-15

    Using scanning tunneling microscopy, reflection high energy diffraction and magnetic optical Kerr effect measurements, growth mode and the magnetic properties of epitaxial Co films on Si(111) with epitaxial Cu(111) buffer layers of various thicknesses have been studied. The strained 3.5-monolayer-thick Cu/Si(111) film has been found to be an optimal buffer, in which case an almost ideal layer-by-layer like growth of Co is observed up to six Co monolayers, due to a negligible lattice mismatch. The coercivity of Co films grown in this layer-by-layer like fashion has been determined to be about 10 Oe, testifying to the high quality of the formed Co film and Co/Cu interface. Changeover of the Co film growth mode from layer-by-layer like to multilayer has been found to result in the transition of the film magnetic properties from isotropic to markedly uniaxially anisotropic.

  2. Improved Performance of Organic Light-Emitting Diodes with MgF2 as the Anode Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    XIE Jing; ZHANG De-Qiang; WANG Li-Duo; DUAN Lian; QIAO Juan; QIU Yong

    2006-01-01

    @@ Organic light-emitting diodes (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) and tris (8-hydroxyquinoline) aluminium (Alq3) are improved by using a thin MgF2 buffer layer sandwiched between the indium tin oxide (ITO) anode and hole transporting layer (HTL) of NPB.

  3. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  4. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates.

    Science.gov (United States)

    Liu, Yi; Wang, Nanyi; Pan, Jia Hong; Steinbach, Frank; Caro, Jürgen

    2014-10-15

    We develop here a urea hydrolysis method to in situ prepare asymmetric ZnAl-CO3 layered double hydroxide (LDH) buffer layers with various stable equilibrium morphology on porous Al2O3 substrates. In particular it is found that well-intergrown ZIF-8 membranes can be directly synthesized on the ZnAl-CO3 LDH buffer layer-modified substrates, owing to the specific metal-imidazole interaction between ZnAl-CO3 LDHs and ZIF-8. Other Zn-based MOF membranes, like ZIF-7 and ZIF-90, can also be synthesized with this method. Our finding demonstrates that LDH buffer layer represents a new concept for substrate modification.

  5. Roughness of laser deposited metal / metal oxide layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Liese, Tobias; Meschede, Andreas; Roeder, Johanna; Krebs, Hans-Ulrich [Institut fuer Materialphysik, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2007-07-01

    The roughness of laser deposited Ti/MgO and Ag/ZrO{sub 2} layered thin films were investigated by atomic force microscopy (AFM) and X-ray reflectivity (XRR), which are sensitive on the surface and interface roughness, respectively. When depositing the metals, nucleation and island growth occur which first roughen the surfaces with increasing layer thickness. Then, coalescence and island zipping processes reduce the roughness again. Minimal roughness is reached, when the metal layers are just closed. In both systems, the deposition of the metal oxide leads to layer smoothing. The underlying growth processes for single and double layers as well as the reduction of roughness in multilayers are discussed.

  6. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges

    NARCIS (Netherlands)

    Profijt, H. B.; Potts, S. E.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A angstrom-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in processi

  7. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges

    NARCIS (Netherlands)

    Profijt, H. B.; Potts, S. E.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A angstrom-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in

  8. Spatial atmospheric atomic layer deposition of alxzn1-xo

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Wu, Y.; Roozeboom, F.; Poodt, P.

    2013-01-01

    The possibility of growing multicomponent oxides by spatial atmospheric atomic layer deposition has been investigated. To this end, Al xZn1-xO films have been deposited using diethyl zinc (DEZ), trimethyl aluminum (TMA), and water as Zn, Al, and O precursors, respectively. When the metal precursors

  9. Polarization recovery in lead zirconate titanate thin films deposited on nanosheets-buffered Si (001

    Directory of Open Access Journals (Sweden)

    Anuj Chopra

    2016-12-01

    Full Text Available Fatigue behavior of Pb(Zr,TiO3 (PZT films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the fatigue behavior of preferentially oriented PZT films deposited on nanosheets-buffered Si substrates using LaNiO3 bottom and top electrodes. The films show fatigue of up to 10% at 100 kHz, whereas no fatigue has been observed at 1 MHz. This frequency dependence of the fatigue behavior is found to be in accordance with Dawber–Scott fatigue model that explains the origin of the fatigue as migration of oxygen vacancies. Interestingly, a partial recovery of remnant polarization up to ∼97% of the maximum value is observed after 4×109 cycles which can be further extended to full recovery by increasing the applied electric field. This full recovery is qualitatively explained using kinetic approach as a manifestation of depinning of domains walls. The understanding of the fatigue behavior and polarization recovery that is explained in this paper can be highly useful in developing more reliable PZT devices.

  10. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  11. Organic molecular beam deposition system and initial studies of organic layer growth

    Energy Technology Data Exchange (ETDEWEB)

    Andreasson, M [Applied Semiconductor Physics, Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Ilver, L [Department of Experimental Physics, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Kanski, J [Department of Experimental Physics, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Andersson, T G [Applied Semiconductor Physics, Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Goeteborg (Sweden)

    2006-09-01

    This work describes an organic molecular beam deposition system with substrate entry/exit chamber, buffer chamber and with the possibility to transfer substrate from a III-V molecular beam deposition system. Flux calibrations of organic molecules and the initial growth of organic layers are described. For this purpose, the molecules 3,4,9,10 perylene tetra carboxylic dianhydride and copper phtalocyanine were used. Layers were grown on oxidized and hydrogen passivated Si(100), Indium tin oxide and glass respectively. The growth was investigated with atomic force microscopy, reflection high energy electron diffraction and ultraviolet photoemission spectroscopy. An investigation with x-ray photoelectron and Raman spectroscopy on the effect of atmospheric exposure is also included, showing little effect of surface pollution when the samples were handled carefully. The initial formation (monolayers) of copper phtalocyanine thin films was studied by ultraviolet photoemission spectroscopy.

  12. Atomic layer deposited TiO{sub 2} for implantable brain-chip interfacing devices

    Energy Technology Data Exchange (ETDEWEB)

    Cianci, E., E-mail: elena.cianci@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (MB) (Italy); Lattanzio, S. [Istituto di Fisiologia, Dipartimento di Anatomia Umana e Fisiologia, Universita di Padova, 35131 Padova (Italy); Dipartimento di Ingegneria dell' Informazione, Universita di Padova, 35131 Padova (Italy); Seguini, G. [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (Italy); Vassanelli, S. [Istituto di Fisiologia, Dipartimento di Anatomia Umana e Fisiologia, Universita di Padova, 35131 Padova (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano-Bicocca, 20126 Milano (Italy)

    2012-05-01

    In this paper we investigated atomic layer deposition (ALD) TiO{sub 2} thin films deposited on implantable neuro-chips based on electrolyte-oxide-semiconductor (EOS) junctions, implementing both efficient capacitive neuron-silicon coupling and biocompatibility for long-term implantable functionality. The ALD process was performed at 295 Degree-Sign C using titanium tetraisopropoxide and ozone as precursors on needle-shaped silicon substrates. Engineering of the capacitance of the EOS junctions introducing a thin Al{sub 2}O{sub 3} buffer layer between TiO{sub 2} and silicon resulted in a further increase of the specific capacitance. Biocompatibility for long-term implantable neuroprosthetic systems was checked upon in-vitro treatment.

  13. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  14. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    OpenAIRE

    Tetsuro Hori; Hiroki Moritou; Naoki Fukuoka; Junki Sakamoto; Akihiko Fujii; Masanori Ozaki

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced p...

  15. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    OpenAIRE

    Tetsuro Hori; Hiroki Moritou; Naoki Fukuoka; Junki Sakamoto; Akihiko Fujii; Masanori Ozaki

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced p...

  16. Iridium wire grid polarizer fabricated using atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Knez Mato

    2011-01-01

    Full Text Available Abstract In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved.

  17. Optimization of n/i and i/p buffer layers in n-i-p hydrogenated microcrystalline silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    Yuan Yujie; Hou Guofu; Zhang Jianjun; Xue Junming; Cao Liran; Zhao Ying; Geng Xinhua

    2009-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells with n-i-p configuration were prepared by plasma enhanced chemical vapor deposition (PECVD). The influence of n/i and i/p buffer layerson the μc-Si:H cell performance was studied in detail. The experimental results demonstrated that the efficiency is much improved when there is a higher crystallinity at n/i interface and an optimized a-Si:H buffer layer at i/p interface. By combining the above methods, the performance ofμc-Si:H single-junction and a-Si:H/μc-Si:H tandemsolar ceils has been significantly improved.

  18. Buffer layers for growth of the YBa sub 2 Cu sub 3 O sub 7 sub - sub x films on silicon

    CERN Document Server

    Razumov, S V

    2001-01-01

    The results of the studies on the structural characteristics of the SrTiO sub 3 , NdGaO sub 3 and CeO sub 2 buffer layers, obtained through the ion-plasma spraying on the silicon substrates, are presented. It is shown that the phase composition and internal stresses in the films are strongly dependent on the deposition temperature. The technological conditions of growth of primarily oriented SrTiO sub 3 , NdGaO sub 3 and CeO sub 2 films are dortmund. The structural quality of the obtained buffer films is sufficient for further growth of the YBa sub 2 Cu sub 3 O sub 7 sub - sub x high-quality films on the silicon substrates

  19. Caracterisation of Titanium Nitride Layers Deposited by Reactive Plasma Spraying

    Science.gov (United States)

    Roşu, Radu Alexandru; Şerban, Viorel-Aurel; Bucur, Alexandra Ioana; Popescu, Mihaela; Uţu, Dragoş

    2011-01-01

    Forming and cutting tools are subjected to the intense wear solicitations. Usually, they are either subject to superficial heat treatments or are covered with various materials with high mechanical properties. In recent years, thermal spraying is used increasingly in engineering area because of the large range of materials that can be used for the coatings. Titanium nitride is a ceramic material with high hardness which is used to cover the cutting tools increasing their lifetime. The paper presents the results obtained after deposition of titanium nitride layers by reactive plasma spraying (RPS). As deposition material was used titanium powder and as substratum was used titanium alloy (Ti6Al4V). Macroscopic and microscopic (scanning electron microscopy) images of the deposited layers and the X ray diffraction of the coatings are presented. Demonstration program with layers deposited with thickness between 68,5 and 81,4 μm has been achieved and presented.

  20. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hsin-Wei [Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan (China); Tsai, Cheng-Che [Department of Electronics Engineering and Computer Science, Tung Fang Design Institute, Kaohsiung, 82941, Taiwan (China); Hong, Cheng-Shong [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung, 824, Taiwan (China); Kao, Po-Ching [Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan (China); Juang, Yung-Der [Department of Materials Science, National University of Tainan, Tainan, 70005, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, 70101, Taiwan (China)

    2016-11-01

    Highlights: • OLEDs were enhanced efficiency by depositing CeF{sub 3} buffer layer. • The surface roughness was smoother of the CeF{sub 3} buffer layer. • The surface energy and polarity were increased of the CeF{sub 3} buffer layer. • Admittance spectroscopy showed that increased capacitance. • The carrier injection was enhanced in the space charge region. - Abstract: In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF{sub 3}film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF{sub 3} (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq{sub 3}) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF{sub 3} film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF{sub 3} film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF{sub 3} film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF{sub 3} film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm{sup 2}, the luminance increased from 7588 cd/m{sup 2} to 24760 cd/m{sup 2}, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF{sub 3} film was inserted into the OLEDs.

  1. Method of depositing a high-emissivity layer

    Science.gov (United States)

    Wickersham, Charles E.; Foster, Ellis L.

    1983-01-01

    A method of depositing a high-emissivity layer on a substrate comprising RF sputter deposition of a carbide-containing target in an atmosphere of a hydrocarbon gas and a noble gas. As the carbide is deposited on the substrate the hydrocarbon gas decomposes to hydrogen and carbon. The carbon deposits on the target and substrate causing a carbide/carbon composition gradient to form on the substrate. At a sufficiently high partial pressure of hydrocarbon gas, a film of high-emissivity pure carbon will eventually form over the substrate.

  2. Graphene ultrathin film electrodes modified with bismuth nanoparticles and polyaniline porous layers for detection of lead and cadmium ions in acetate buffer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaomeng; Li, Lin; Liu, Erjia, E-mail: mejliu@ntu.edu.sg

    2013-10-01

    Graphene ultrathin films were synthesized by means of solid-state carbon diffusion from amorphous carbon (a-C) thin layers deposited on silicon substrates, which was catalyzed by nickel layers coated on the top of the a-C layers. The graphene films were used as working electrodes that were modified by a polyaniline (PANI) porous layer together with in-situ deposited bismuth (Bi) nanoparticles for the detection of trace heavy metal ions (Pb{sup 2+} and Cd{sup 2+}) in acetate buffer solutions (pH 5.3) with square wave anodic stripping voltammetry. The graphene electrodes modified with PANI porous layers and Bi nanoparticles had excellent repeatability, ultrahigh sensitivity (as low as 0.33 nM) and good resistance to passivation caused by the surface active species adsorbed on the electrode surfaces. - Highlights: • Graphene fabricated by nickel-catalyzed carbon diffusion in solid state • Graphene electrodes modified by bismuth nanoparticles and polyaniline layers • High resistance of modified graphene electrodes to passivation in acetate solutions • Ultra-low detection limits of lead and cadmium ions by modified graphene electrodes.

  3. Beryllium flux distribution and layer deposition in the ITER divertor

    Science.gov (United States)

    Schmid, K.

    2008-10-01

    The deposition of Be eroded from the main chamber wall on the W surfaces in the ITER divertor could result in the formation of Be rich Be/W mixed layers with a low melting temperature compared with pure W. To predict whether or not these layers form the Be flux distribution in the ITER divertor is required. This paper presents the results of a combination of plasma transport with erosion/deposition simulations that allow one to calculate both the Be flux distribution and the Be layer deposition in the ITER divertor. This model includes the Be source due to Be erosion in the main chamber and the deposition, re-erosion and re-deposition of Be in the ITER divertor. The calculations show that the fraction of Be in the incident particle flux in the divertor ranges from ≈10-3 to ≈5% with a pronounced inner-outer divertor asymmetry. The flux fractions in the inner divertor are on average ten times higher than in the outer divertor. Thick Be layers only form at the inner strike point and the dome baffles. The highest Be layer growth rate is found to be 1.0 nm s-1. Despite the Be deposition the formation of Be rich Be/W mixed layers is not to be expected in ITER. The expected surface temperature at these locations during steady-state operation is too low as to result in Be diffusion into W and thus Be/W mixed layers cannot form. The paper also discusses the influence of off normal events such as ELMs or VDEs on the formation of Be/W mixed layers.

  4. Solution-dispersed CuO nanoparticles anode buffer layer: Effect of ultrasonic agitation duration on photovoltaic performance

    Science.gov (United States)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat; Jumali, Mohammad Hafizuddin Haji

    2016-11-01

    The performance of inverted type hybrid organic solar cell based on poly(3-hexyltheopene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) can be improved by adding an anode buffer layer of copper oxide (CuO). CuO that serves as an electron blocking layer which could effectively reduce the charge recombination at the photoactive layer (P3HT:PCBM)/silver (Ag) interfaces. At the same time, Cuo anode buffer layer could accelerate the holes collection from the photoactive layer to the top electrode. In this study we investigated the effects of ultrasonic agitation duration in preparation of solution-dispersed CuO anode buffer layer on the performance of the devices with a configuration of fluorine tin oxide (FTO)/zinc oxide (ZnO) nanorod arrays/P3HT:PCBM/ CuO/Ag. Different durations of ultrasonic agitation (0, 5, 15 and 25 min) were used for CuO nanoparticles solution dispersion to obtain the optimum particle size distribution of CuO. It was found that the smallest average particle size of CuO was obtained by applying the ultrasonic agitation for longest duration of 25 min. The highest power conversion efficiency of 1.22% was recorded from the device incorporating with CuO anode buffer layer with the smallest average particle size. It is believed that CuO anode buffer layer with the smallest average particle size had the least agglomerates, thus leading to better film formation and contact surface area.

  5. Planarization and Processing of Metamorphic Buffer Layers Grown by Hydride Vapor-Phase Epitaxy

    Science.gov (United States)

    Zutter, Brian T.; Schulte, Kevin L.; Kim, Tae Wan; Mawst, Luke J.; Kuech, T. F.; Foran, Brendan; Sin, Yongkun

    2014-04-01

    Hydride vapor-phase epitaxy (HVPE) is a high-growth-rate, cost-effective means to grow epitaxial semiconductor material. Thick HVPE-based metamorphic buffer layers (MBLs) can serve as "pseudosubstrates" with controllable lattice parameter. In our structures, the indium content in In x Ga1- x As is gradually increased from zero to the final composition corresponding to the desired lattice constant, and then a thick (˜10 μm) constant-composition capping layer is grown. This thick capping layer promotes maximum strain relaxation while permitting use of polishing procedures to achieve surface planarity. Lattice-mismatched growth of MBLs invariably results in rough, cross-hatched surface morphology exhibiting up to 200 nm peak-to-valley roughness. This roughness can be eliminated by chemical mechanical planarization, thus creating a suitable surface for subsequent regrowth. Polishing of In x Ga1- x As is complicated by the sensitivity of the surface layer to the polishing parameters, particularly the applied pressure. Polishing at high applied pressure (12 psi) results in the formation of circular asperities hundreds of nanometers high and tens of microns in diameter. When lower applied pressure (4 psi) was used, the cross-hatching height of MBLs was lowered from 200 nm to <10 nm over a 350 μm lateral scale. The successfully planarized In0.20Ga0.80As MBLs were used as a substrate for a superlattice (SL) structure such as that used in quantum cascade lasers. Use of planarization before regrowth of the SL resulted in a reduction of the high-resolution x-ray diffraction peak full-width at half-maximum from 389″ to 159″.

  6. Effects of buffer layer and thermal annealing on the performance of hybrid Cu2S/PVK electrically bistable devices

    Science.gov (United States)

    Li, Xu; Lu, Yue; Guan, Li; Li, Jiantao; Wang, Yichao; Dong, Guoyi; Tang, Aiwei; Teng, Feng

    2016-09-01

    Hybrid organic/inorganic electrically bistable devices (EBDs) based on Cu2S/PVK nanocomposites have been fabricated by using a simple spin-coating method. An obvious electrical bistability is observed in the current-voltage (I-V) characteristics of the devices, and the presence of the buffer layer and the annealing process have an important effect on the enhancement of the ON/OFF current ratios. Different electrical conduction mechanisms are responsible for the charge switching of the devices in the presence and absence of the buffer layer.

  7. Metalorganic vapor phase epitaxy of GaAs on Si using II a-flouride buffer layers

    Science.gov (United States)

    Tiwari, A. N.; Freundlich, A.; Beaumont, B.; Blunier, S.; Zogg, H.; Teodoropol, S.; Vèrié, C.

    1992-11-01

    Metalorganic vapor phase epitaxy has been used for the first time to grow epitaxial GaAs layers on (111) and (100) oriented Si either using CaF 2 or stacked (Ca,Sr)F 2/CaF 2 as a buffer. The GaAs layers show sharp and well resolved electron channeling patterns. The Rutherford backscattering (RBS) ion channeling minimum yield is 5% for (111) orientation and 6% for (100) orientation. The GaAs(111) layers are untwinned. The strain in the GaAs layer has been measured with RBS and X-ray diffraction and it is found that the thermal mismatch-induced strain in the GaAs layer is considerably lower than in similar GaAs films grown without flouride buffer.

  8. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer

    Science.gov (United States)

    Huang, Jun; Niu, Mu Tong; Zhang, Ji Cai; Wang, Wei; wang, Jian Feng; Xu, Ke

    2017-02-01

    Crystalline qualities of three AlN films grown by cold-wall high temperature hydride vapor phase epitaxy (CW-HT-HVPE) on c-plane sapphire substrates, with different AlN buffer layers (BLs) deposited either by CW-HT-HVPE or by hot-wall low temperature hydride vapor phase epitaxy (HW-LT-HVPE), have been studied. The best film quality was obtained on a 500-nm-thick AlN BL grown by HW-LT-HVPE at 1000 ℃. In this case,the AlN epilayer has the lowest full-width at half-maximum (FWHM) values of the (0002) and (10-12) x-ray rocking curve peaks of 295 and 306 arcsec, respectively, corresponding to the screw and edge threading dislocation (TD) densities of 1.9×108 cm-2 and 5.2×108 cm-2. This improvement in crystal quality of the AlN film can be attributed to the high compressive-stress of BL grown by HW-LT-HVPE,which facilitate the inclination and annihilation of TDs.

  9. Atomic Layer Deposition of SnO2 on MXene for Li-Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2017-02-24

    In this report, we show that oxide battery anodes can be grown on two-dimensional titanium carbide sheets (MXenes) by atomic layer deposition. Using this approach, we have fabricated a composite SnO2/MXene anode for Li-ion battery applications. The SnO2/MXene anode exploits the high Li-ion capacity offered by SnO2, while maintaining the structural and mechanical integrity by the conductive MXene platform. The atomic layer deposition (ALD) conditions used to deposit SnO2 on MXene terminated with oxygen, fluorine, and hydroxyl-groups were found to be critical for preventing MXene degradation during ALD. We demonstrate that SnO2/MXene electrodes exhibit excellent electrochemical performance as Li-ion battery anodes, where conductive MXene sheets act to buffer the volume changes associated with lithiation and delithiation of SnO2. The cyclic performance of the anodes is further improved by depositing a very thin passivation layer of HfO2, in the same ALD reactor, on the SnO2/MXene anode. This is shown by high-resolution transmission electron microscopy to also improve the structural integrity of SnO2 anode during cycling. The HfO2 coated SnO2/MXene electrodes demonstrate a stable specific capacity of 843 mAh/g when used as Li-ion battery anodes.

  10. Enhancing electrochemical performance by control of transport properties in buffer layers--solid oxide fuel/electrolyser cells.

    Science.gov (United States)

    Ramasamy, Devaraj; Nasani, Narendar; Brandão, Ana D; Pérez Coll, Domingo; Fagg, Duncan P

    2015-05-01

    The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in the electrochemical performance of the oxygen electrode. Half cells of Ce0.8R0.2O2-δ + 2 mol% Co buffer layers (where R = Gd, Pr) with Nd2NiO4+δ electrodes were fabricated by spin coating on dense YSZ electrolyte supports. Dramatic decreases in polarization resistance, Rp, of up to an order of magnitude, could be achieved in the order, Pr ≪ Gd layer. The current article shows how this improvement can be related to increased levels of ambipolar conductivity in the mixed conducting buffer layer, which provides an additional parallel path for electrochemical reaction. This is an important breakthrough as it shows how electrode polarization resistance can be substantially improved, in otherwise identical electrochemical cells, solely by tailoring the transport properties of thin intermediate buffer layers.

  11. Improved Efficiency of Flexible Organic Light-Emitting Diodes by Insertion of Ultrathin SiO2 Buffer Layers

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2013-01-01

    Full Text Available An ultrathin hole-injection buffer layer (HBL using silicon dioxide (SiO2 by electron beam evaporation in flexible organic light-emitting diode (FOLED has been fabricated. While the current of the device at constant driving voltage decreases as increasing SiO2 thickness. Compared to the different thicknesses of the buffer layer, the FOLED with the buffer layer of 4 nm showed the highest luminous efficiency. The atomic force microscopy (AFM investigation of indium tin oxide (ITO/SiO2 topography reveals changes at the interface between SiO2 and N,N′-bis-(1-naphthl-diphenyl-1,1′-bipheny-4,4′-diamine (NPB, resulting in ultrathin SiO2 layers being a clear advantage for a FOLED. However, the SiO2 can be expected to be a good buffer layer material and thus enhance the emission performance of the FOLED.

  12. Assembly and organization of poly(3-hexylthiophene) brushes and their potential use as novel anode buffer layers for organic photovoltaics.

    Science.gov (United States)

    Alonzo, José; Kochemba, W Michael; Pickel, Deanna L; Ramanathan, Muruganathan; Sun, Zhenzhong; Li, Dawen; Chen, Jihua; Sumpter, Bobby G; Heller, William T; Kilbey, S Michael

    2013-10-01

    Buffer layers that control electrochemical reactions and physical interactions at electrode/film interfaces are key components of an organic photovoltaic cell. Here the structure and properties of layers of semi-rigid poly(3-hexylthiophene) (P3HT) chains tethered at a surface are investigated, and these functional systems are applied in an organic photovoltaic device. Areal density of P3HT chains is readily tuned through the choice of polymer molecular weight and annealing conditions, and insights from optical absorption spectroscopy and semiempirical quantum calculation methods suggest that tethering causes intrachain defects that affect co-facial π-stacking of brush chains. Because of their ability to modify oxide surfaces, P3HT brushes are utilized as an anode buffer layer in a P3HT-PCBM (phenyl-C₆₁-butyric acid methyl ester) bulk heterojunction device. Current-voltage characterization shows a significant enhancement in short circuit current, suggesting the potential of these novel nanostructured buffer layers to replace the PEDOT:PSS buffer layer typically applied in traditional P3HT-PCBM solar cells.

  13. Effects of the buffer layer inserted between the transparent conductive oxide anode and the organic electron donor

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, A.; Kouskoussa, B.; Benchouk, K.; Khelil, A. [Facultad Ciencias de la Salud, Universidad Diego Portales, Ejercito 141, Santiago de Chile (Chile); Cattin, L.; Soto, G.M. [Universite de Nantes, Nantes Atlantique Universites, Institut des Materiaux Jean Rouxel (IMN)-CNRS, Faculte des Sciences et Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Toumi, L. [LPCM2E, Universite d' Oran Es-Senia, LPCM2E (Algeria); Diaz, F.R.; del Valle, M.A. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Morsli, M.; Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, Faculte des Sciences et Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France)

    2010-04-15

    In optoelectronic devices, the work function of the transparent conductive oxide, which is used as anode, does not match well the highest occupied molecular orbital of the organic material, which induces the formation of a barrier opposed to hole exchange at this interface. Therefore a thin buffer layer is often used to achieve good matching of the band structure at the interface. From experimental results it can be deduced that the main effects of the buffer layer consist in a better matching of the band structure at the interface anode/organic material and in a more homogeneous organic layer growth. We show that, whatever the nature of the buffer layer-metal, oxide, organic material - the classical Schottky-Mott model allows to anticipate, at least roughly, the behaviour of the contact, even if some dipole effect are often present. A good correlation between the ''metal/buffer layer'' work function and the barrier {phi}{sub b} for hole exchange at anode/organic electron donor interfaces is obtained, as expected by the model. (author)

  14. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping 58183 (Sweden); Bergsten, J.; Rorsman, N. [Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg 41296 (Sweden)

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  15. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    Science.gov (United States)

    Li, X.; Bergsten, J.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Rorsman, N.; Janzén, E.; Forsberg, U.

    2015-12-01

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 1018 cm-3) epitaxial layer closest to the substrate and a lower doped layer (3 × 1016 cm-3) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 1018 cm-3) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  16. Superconducting YBa2Cu3O(7-delta) thin films on GaAs with conducting indium-tin-oxide buffer layers

    Science.gov (United States)

    Kellett, B. J.; Gauzzi, A.; James, J. H.; Dwir, B.; Pavuna, D.

    1990-12-01

    Superconducting YBa2Cu3O(7-delta) (YBCO) thin films have been grown in situ on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 milliohm cm.

  17. Simple solution-processed CuO{sub X} as anode buffer layer for efficient organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Yang, Chunpeng [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Sun, Liang; Wang, Ning [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Tang, Jianguo [Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Yang, Renqiang, E-mail: yangrq@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China)

    2015-10-15

    Graphical abstract: - Highlights: • Simple solution-processed CuO{sub X} hole transport layer for efficient organic solar cell. • Good photovoltaic performances as hole transport layer in OSCs with P3HT and PBDTTT-C as donor materials. • The device with CuO{sub X} as hole transport layer shows great improved stability compared with that of device with PEDOT:PSS as hole transport layer. - Abstract: A simple, solution-processed ultrathin CuO{sub X} anode buffer layer was fabricated for high performance organic solar cells (OSCs). XPS measurement demonstrated that the CuO{sub X} was the composite of CuO and Cu{sub 2}O. The CuO{sub X} modified ITO glass exhibit a better surface contact with the active layer. The photovoltaic performance of the devices with CuO{sub X} layer was optimized by varying the thickness of CuO{sub X} films through changing solution concentration. With P3HT:PC{sub 61}BM as the active layer, we demonstrated an enhanced PCE of 4.14% with CuO{sub X} anode buffer layer, compared with that of PEDOT:PSS layer. The CuO{sub X} layer also exhibits efficient photovoltaic performance in devices with PBDTTT-C:PC{sub 71}BM as the active layer. The long-term stability of CuO{sub X} device is better than that of PEDOT:PSS device. The results indicate that the easy solution-processed CuO{sub X} film can act as an efficient anode buffer layer for high-efficiency OSCs.

  18. Highly Efficient Simplified Organic Light-Emitting Diodes Utilizing F4-TCNQ as an Anode Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    DONG Mu-Sen; WU Xiao-Ming; HUA Yu-Lin; QI Qing-Jin; YIN Shou-Gen

    2010-01-01

    @@ We demonstrate that the electroluminescent performances of organic light-emitting diodes(OLEDs)are significantly improved by evaporating a thin F4-TCNQ film as an anode buffer layer on the ITO anode.The optimum Alq3-based OLEDs with F4-TCNQ buffer layer exhibit a lower turn-on voltage of 2.6 V,a higher brightness of39820cd/m2 at 13 V,and a higher current efficiency of 5.96cd/A at 6 V,which are obviously superior to those of the conventional device(turn-on voltage of 4.1 V,brightness of 18230cd/m2 at 13 V,and maximum current efficiency of 2.74 cd/A at 10 V).Furthermore,the buffered devices with F4-TCNQ as the buffer layer could not only increase the efficiency but also simplify the fabrication process compared with the p-doped devices in which F4-TCNQ is doped into/3-NPB as p-HTL(3.11 cd/A at 7 V).The reason why the current efficiency of the p-doped devices is lower than that of the buffered devices is analyzed based on the concept of doping,the measurement of absorption and photoluminescence spectra of the organic materials,and the current density-voltage characteristics of the corresponding hole-only devices.

  19. Photocurrent generation in organic photodetectors with tailor-made active layers fabricated by layer-by-layer deposition.

    Science.gov (United States)

    Vonhoeren, Benjamin; Dalgleish, Simon; Hu, Laigui; Matsushita, Michio M; Awaga, Kunio; Ravoo, Bart Jan

    2015-04-08

    Photodetectors supply an electric response when illuminated. The detectors in this study consist of an active layer and a polyvinylidene fluoride (PVDF) blocking layer, which are sandwiched by an aluminum and an indium tin oxide (ITO) electrode. The active layer was prepared of Zn porphyrins and assembled by covalent layer-by-layer (LbL) deposition. Layer growth was monitored by UV-vis absorbance, ellipsometry, and X-ray photoelectron spectroscopy. Upon exposure to chopped light, the detectors show an alternating transient photocurrent, which is limited by the accumulation of space charges at the blocking layer/active layer interface. We could show that the number of photoactive layers has a significant impact on device performance. The fastest response was achieved with fewer layers. The highest photocurrents were measured for detectors with an intermediate number of layers, beyond which, more layers did not lead to an increase in the photocurrent despite containing more active material.

  20. Passivation effects of atomic-layer-deposited aluminum oxide

    Directory of Open Access Journals (Sweden)

    Kotipalli R.

    2013-09-01

    Full Text Available Atomic-layer-deposited (ALD aluminum oxide (Al2O3 has recently demonstrated an excellent surface passivation for both n- and p-type c-Si solar cells thanks to the presence of high negative fixed charges (Qf ~ 1012−1013 cm-2 in combination with a low density of interface states (Dit. This paper investigates the passivation quality of thin (15 nm Al2O3 films deposited by two different techniques: plasma-enhanced atomic layer deposition (PE-ALD and Thermal atomic layer deposition (T-ALD. Other dielectric materials taken into account for comparison include: thermally-grown silicon dioxide (SiO2 (20 nm, SiO2 (20 nm deposited by plasma-enhanced chemical vapour deposition (PECVD and hydrogenated amorphous silicon nitride (a-SiNx:H (20 nm also deposited by PECVD. With the above-mentioned dielectric layers, Metal Insulator Semiconductor (MIS capacitors were fabricated for Qf and Dit extraction through Capacitance-Voltage-Conductance (C-V-G measurements. In addition, lifetime measurements were carried out to evaluate the effective surface recombination velocity (SRV. The influence of extracted C-V-G parameters (Qf,Dit on the injection dependent lifetime measurements τ(Δn, and the dominant passivation mechanism involved have been discussed. Furthermore we have also studied the influence of the SiO2 interfacial layer thickness between the Al2O3 and silicon surface on the field-effect passivation mechanism. It is shown that the field effect passivation in accumulation mode is more predominant when compared to surface defect passivation.

  1. Passivation effects of atomic-layer-deposited aluminum oxide

    Science.gov (United States)

    Kotipalli, R.; Delamare, R.; Poncelet, O.; Tang, X.; Francis, L. A.; Flandre, D.

    2013-09-01

    Atomic-layer-deposited (ALD) aluminum oxide (Al2O3) has recently demonstrated an excellent surface passivation for both n- and p-type c-Si solar cells thanks to the presence of high negative fixed charges (Qf ~ 1012-1013 cm-2) in combination with a low density of interface states (Dit). This paper investigates the passivation quality of thin (15 nm) Al2O3 films deposited by two different techniques: plasma-enhanced atomic layer deposition (PE-ALD) and Thermal atomic layer deposition (T-ALD). Other dielectric materials taken into account for comparison include: thermally-grown silicon dioxide (SiO2) (20 nm), SiO2 (20 nm) deposited by plasma-enhanced chemical vapour deposition (PECVD) and hydrogenated amorphous silicon nitride (a-SiNx:H) (20 nm) also deposited by PECVD. With the above-mentioned dielectric layers, Metal Insulator Semiconductor (MIS) capacitors were fabricated for Qf and Dit extraction through Capacitance-Voltage-Conductance (C-V-G) measurements. In addition, lifetime measurements were carried out to evaluate the effective surface recombination velocity (SRV). The influence of extracted C-V-G parameters (Qf,Dit) on the injection dependent lifetime measurements τ(Δn), and the dominant passivation mechanism involved have been discussed. Furthermore we have also studied the influence of the SiO2 interfacial layer thickness between the Al2O3 and silicon surface on the field-effect passivation mechanism. It is shown that the field effect passivation in accumulation mode is more predominant when compared to surface defect passivation.

  2. The influence of impurity on the critical thickness of the CeO2 buffer layer for coated conductors

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The lattice parameters, band structure, density of state and elastic constant of RE-doped CeO2 (RE=Sm, Gd, Dy), the buffer material for coated HTS conductors, are calculated using the plane-wave method with pseudopotentials based on the density functional theory (DFT) of first-principle. The rule and mechanism of the effect of rare earth impurity on the critical thickness of the CeO2 buffer layer are investigated. It is found that, in the range of the calculation, the changes of the lattice volume V and elastic constant E of CeO2 with the impurity are mainly determined by the increased electrons ne of the system. The relationship of the elastic constant E and increased electrons ne is established. It is indicated that the critical thickness of the CeO2 single buffer layer doped with Sm, Gd, and Dy may be enhanced by 22%, 43% and 33%, respectively.

  3. An Introduction to Atomic Layer Deposition with Thermal Applications

    Science.gov (United States)

    Dwivedi, Vivek H.

    2015-01-01

    Atomic Layer Deposition (ALD) is a cost effective nano-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases thin films can be deposited on a myriad of substrates ranging from glass, polymers, aerogels, and metals to high aspect ratio geometries. This talk will focus on the utilization of ALD for engineering applications.

  4. Role of the buffer solution in the chemical deposition of CdS films for CIGS solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sooho; Kim, Donguk; Baek, Dohyun; Hong, Byoungyou; Yi, Junsin; Lee, Jaehyeong [Sungkyunkwan University, Suwon (Korea, Republic of); Park, Yongseob [Chosun College of Science and and Technology, Gwangju (Korea, Republic of); Choi, Wonseok [Hanbat National University, Daejeon (Korea, Republic of)

    2014-05-15

    In this work, the effects of NH{sub 4}Ac on the structural and the electro-optical properties of CdS films were investigated. CdS thin films were deposited on soda-lime glass and indium-tin-oxide (ITO) coated glass from a chemical bath containing 0.025 M cadmium acetate, 0 M ∼ 0.2 M ammonium acetate, 0.5 M thiourea, and ammonia. Cadmium acetate was the cadmium source, ammonium acetate served as a buffer, ammonia was the complexing agent, and thiourea was the source of sulfur. A commonly- available chemical bath deposition system was successfully modified to obtain precise control over the pH of the solution at 75 .deg. C during the deposition. Chemically deposited CdS films were studied by using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), optical transmittance, and electrical resistivity measurements.

  5. A Feasibility Study of Applying SS 307Si Buffer Layer for Mitigating the Hot Cracking of Ni-Based Weld Overlay

    Science.gov (United States)

    Tsai, Kun-Chao; Jeng, Sheng-Long

    2017-07-01

    The hot cracking behavior of Ni-based Alloy 52M weld overlay with respective SS 307Si and SS 308L buffer layers was investigated. The dilution level of SS 307Si buffer layer is a little higher than that of SS 308L. However, the hot crack length of overlay with SS 307Si buffer layer is shorter and the SS 307Si layer has higher mechanical properties than that of SS 308L layer. As observed by SEM and EBSD, ferrites precipitated in SS 307Si buffer layer are in vermicular skeletons dotted with lathy precipitates, which have a little higher local stain than that of SS 308L weld. However, Alloy 52M weld around SS 307Si fusion boundary has a lower degree of local distortion. The results generalize that the SS 307Si buffer layer is marginally better for reducing hot cracking susceptibility, owing to its lower local stain and slightly higher mechanical strength.

  6. Thin-film organic photonics molecular layer deposition and applications

    CERN Document Server

    Yoshimura, Tetsuzo

    2011-01-01

    Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics. Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves ""three-dimensional growth"". MLD facilitates dot-by-dot--o

  7. The Influence of an EPS Concrete Buffer Layer Thickness on Debris Dams Impacted by Massive Stones in the Debris Flow

    Directory of Open Access Journals (Sweden)

    Xianbin Yu

    2015-01-01

    Full Text Available The failure of debris dams impacted by the massive stones in a debris flow represents a difficult design problem. Reasonable materials selection and structural design can effectively improve the resistance impact performance of debris dams. Based on the cushioning properties of expanded polystyrene (EPS concrete, EPS concrete as a buffer layer poured on the surface of a rigid debris dam was proposed. A three-dimensional numerical calculation model of an EPS concrete buffer layer/rigid debris dam was established. The single-factor theory revealed change rules for the thickness of the buffer layer concerning the maximal impact force of the rigid debris dam surface through numerical simulation. Moreover, the impact force-time/history curves under different calculation conditions for the rigid debris dam surface were compared. Simulation results showed that the EPS concrete buffer layer can not only effectively extend the impact time of massive stones affecting the debris dam but also reduce the impact force of the rigid debris dam caused by massive stones in the debris flow. The research results provide theoretical guidance for transferring the energy of the massive stone impact, creating a structural design and optimizing debris dams.

  8. Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Stephen, E-mail: Stephen.Weeks@intermolecular.com; Nowling, Greg; Fuchigami, Nobi; Bowes, Michael; Littau, Karl [Intermolecular, 3011 North 1st Street, San Jose, California 95134 (United States)

    2016-01-15

    Progress in transistor scaling has increased the demands on the material properties of silicon nitride (SiN{sub x}) thin films used in device fabrication and at the same time placed stringent restrictions on the deposition conditions employed. Recently, low temperature plasma enhanced atomic layer deposition has emerged as a viable technique for depositing these films with a thermal budget compatible with semiconductor processing at sub-32 nm technology nodes. For these depositions, it is desirable to use precursors that are free from carbon and halogens that can incorporate into the film. Beyond this, it is necessary to develop processing schemes that minimize the wet etch rate of the film as it will be subjected to wet chemical processing in subsequent fabrication steps. In this work, the authors introduce low temperature deposition of SiN{sub x} using neopentasilane [NPS, (SiH{sub 3}){sub 4}Si] in a plasma enhanced atomic layer deposition process with a direct N{sub 2} plasma. The growth with NPS is compared to a more common precursor, trisilylamine [TSA, (SiH{sub 3}){sub 3 }N] at identical process conditions. The wet etch rates of the films deposited with NPS are characterized at different plasma conditions and the impact of ion energy is discussed.

  9. Enhanced electrical and magnetic properties in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films deposited on CaTiO{sub 3}-buffered silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, C. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Méchin, L.; Guillet, B.; Wu, S.; Routoure, J.-M. [Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, (GREYC-UMR 6072), CNRS-ENSICAEN—Université de Caen Basse-Normandie, 6 Boulevard Maréchal Juin, 14050 Caen Cedex (France); Heeg, T. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501 (United States); Katz, M.; Pan, X. Q. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Mercone, S. [Laboratoire de Sciences des Procédés et des Matériaux, UPR3407, CNRS, Institut Galilee, Universite Paris-Nord, Villetaneuse (France); Schubert, J.; Zander, W. [Peter Grünberg Institute (PGI9-IT), JARA-Fundamentals of Future Information Technology, Research Centre Jülich, Jülich D-52425 (Germany); Misra, R. [Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Schiffer, P. [Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); and others

    2015-06-01

    We investigate the suitability of an epitaxial CaTiO{sub 3} buffer layer deposited onto (100) Si by reactive molecular-beam epitaxy (MBE) for the epitaxial integration of the colossal magnetoresistive material La{sub 0.7}Sr{sub 0.3}MnO{sub 3} with silicon. The magnetic and electrical properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films deposited by MBE on CaTiO{sub 3}-buffered silicon (CaTiO{sub 3}/Si) are compared with those deposited on SrTiO{sub 3}-buffered silicon (SrTiO{sub 3}/Si). In addition to possessing a higher Curie temperature and a higher metal-to-insulator transition temperature, the electrical resistivity and 1/f noise level at 300 K are reduced by a factor of two in the heterostructure with the CaTiO{sub 3} buffer layer. These results are relevant to device applications of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films on silicon substrates.

  10. Enhanced electrical and magnetic properties in La0.7Sr0.3MnO3 thin films deposited on CaTiO3-buffered silicon substrates

    Directory of Open Access Journals (Sweden)

    C. Adamo

    2015-06-01

    Full Text Available We investigate the suitability of an epitaxial CaTiO3 buffer layer deposited onto (100 Si by reactive molecular-beam epitaxy (MBE for the epitaxial integration of the colossal magnetoresistive material La0.7Sr0.3MnO3 with silicon. The magnetic and electrical properties of La0.7Sr0.3MnO3 films deposited by MBE on CaTiO3-buffered silicon (CaTiO3/Si are compared with those deposited on SrTiO3-buffered silicon (SrTiO3/Si. In addition to possessing a higher Curie temperature and a higher metal-to-insulator transition temperature, the electrical resistivity and 1/f noise level at 300 K are reduced by a factor of two in the heterostructure with the CaTiO3 buffer layer. These results are relevant to device applications of La0.7Sr0.3MnO3 thin films on silicon substrates.

  11. New sulphide precursors for Zn(O,S) buffer layers in Cu(In,Ga)Se2 solar cells for faster reaction kinetics

    Science.gov (United States)

    Löckinger, Johannes; Nishiwaki, Shiro; Fuchs, Peter; Buecheler, Stephan; Romanyuk, Yaroslav E.; Tiwari, Ayodhya N.

    2016-08-01

    The development of a novel chemistry for the chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se2 (CIGS) solar cells is desired for a higher growth rate, hence reduced deposition time, while reducing simultaneously the required concentration of reactants. State-of-the-art recipes are based on thiourea as sulphide precursor requiring a high molarity of reactants and relatively long deposition times due to the slow decomposition rate of thiourea. In this contribution thioamide based sulphide precursors were investigated for their decomposition and growth behaviour. A co-solvent approach in an ethanolic/aqueous ammonia medium was evaluated omitting the need for additional complexants. By replacing thiourea with the investigated thioamides, homogeneous dense layers of around 30 nm were grown with a greatly decreased deposition time of 8 min compared to 25 min for thiourea. Likewise, the concentration of the sulphide precursor was 40-fold reduced. The photovoltaic performance as characterized by external quantum efficiency and current-voltage measurements, showed conversion efficiencies of 15% comparable to the thiourea based process.

  12. Cd-Zn-O-S alloys for optimal buffer layers in thin-film photovoltaics (Presentation Recording)

    Science.gov (United States)

    Varley, Joel B.; He, Xiaoqing; Mackie, Neil; Rockett, Angus A.; Lordi, Vincenzo

    2015-09-01

    Advances in thin-film photovoltaics have largely focused on modifying the absorber layer(s), while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid density functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into device model simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Department of Energy office of Energy Efficiency and Renewable Energy (EERE) through the SunShot Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program.

  13. Study of low-frequency excess noise transport in Ga-face and N-face GaN thin films grown on intermediate-temperature buffer layer by RF-MBE

    Energy Technology Data Exchange (ETDEWEB)

    Fong, W.K.; Leung, B.H.; Xie, J.Q.; Surya, C. [Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2002-08-16

    We report detailed investigations of low-frequency excess noise in both Ga-faced and N-faced GaN thin films grown by RF-plasma molecular beam epitaxy. The GaN epilayers were grown on double buffer layers, and consisted of a thick intermediate-temperature buffer layer (ITBL) deposited at 690 C and a conventional thin buffer layer. Deposition of the thin buffer layer is used to control the polarity of the GaN epilayer. Low-frequency excess noise was studied in detail to examine the effects on the ITBL on the noise. The low-frequency noise is attributed to the correlated fluctuations in number and mobility of carriers, arising from the capture and emission by localized states. Our experimental results show that the polarity of the GaN epilayer and the utilization of ITBL have strong influence on the defect density of the GaN material. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  14. Fabricating Buffer Layers for YBa2Cu3Oy Coated Conductor by Surface Oxidation Epitaxy

    Institute of Scientific and Technical Information of China (English)

    Yang Jian; Liu Huizhou; Gu Hongwei; Qu Fei; Fan Hongyan

    2005-01-01

    NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. It is found that the texture of NiO could be affected directly by the orientation and surface of substrate. X-ray diffraction (XRD) 2-2θ scan, φ-scan, and pole figure were employed to characterize the in-plane alignment and cube texture. X-ray φ-scan shows that NiO film is formed on Ni tape with high cube texture and a typical value at the full width at half maximum (FWHM) is ≤7.5°. Scanning electron microscopy was used to study the surface morphology of NiO films. No crack is found and the films appear dense. Such technique is simple and of low cost with perfect reproducibility, promising for developing long tapes.

  15. Inverted Organic Solar Cells with Improved Performance using Varied Cathode Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang Guan; Jun-sheng Yu; Yue Zang; Xing-xin Zeng

    2012-01-01

    Organic solar cells with inverted planar heterojunction structure based on subphthalocyanine and C60 were fabricated using several kinds of materials as cathode buffer layer (CBL),including tris-8-hydroxy-quinolinato aluminum (Alq3),bathophenanthroline (Bphen),bathocuproine,2,3,8,9,14,15-hexakis-dodecyl-sulfanyl-5,6,11,12,17,18-hexaazatrinaphthylene (HATNA),and an inorganic compound of Cs2CO3.The influence of the lowest unoccupied molecular orbital level and the electron mobility of organic CBL on the solar cells performance was compared.The results showed that Alq3,Bphen,and HATNA could significantly improve the device performance.The highest efficiency was obtained from device with annealed HATNA as CBL and increased for more than 7 times compared with device without CBL.Furthermore,the simulation results with space charge-limited current theory indicated that the Schottky barrier at the organic/electrode interface in inverted OSC structure was reduced for 27% by inserting HATNA CBL.

  16. Enhancement in electrical properties of ITO/PEDOT:PSS/PTCDA/Ag by using calcium buffer layer

    Science.gov (United States)

    Tahir, Muhammad; Hassan Sayyad, Muhammad; Wahab, Fazal; Aziz, Fakhra; Ullah, Irfan; Khan, Gulzar

    2015-06-01

    This paper reports on electrical characterization of ITO/PEDOT:PSS/PTCDA/Ca/Ag device based on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) and calcium (Ca) buffer layer with improved junction properties. The I-V characteristics have been utilized to extract various electrical parameters such as ideality factor (n), barrier height (ϕB) and series resistance Rs, which are found to be 1.9, 0.79 eV and 2.5 kΩ, respectively. The device shows good rectifying behavior, with a rectification ratio of 528, and also field-lowering mechanism with a linear dependence of log I on V1/2. The device reported in the present work shows 50% improvement in the rectification ratio and ideality factor as compared to our previously fabricated device. It appears from the experimental data that the transport mechanism in the PTCDA thin film is dominated by the Poole-Frenkel model of thermionic emission, which may be associated with high density of structural defects or traps present in the film.

  17. Enhancement in electrical properties of ITO/PEDOT:PSS/PTCDA/Ag by using calcium buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology Topi, KPK 23640 (Pakistan); Department of Physics, Abdul Wali Khan University Mardan, 23200 KPK (Pakistan); Hassan Sayyad, Muhammad [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology Topi, KPK 23640 (Pakistan); Wahab, Fazal [Department of Physics, Abdul Wali Khan University Mardan, 23200 KPK (Pakistan); Aziz, Fakhra, E-mail: fakhra69@yahoo.com [Department of Electronics, Jinnah College for Women, University of Peshawar, Peshawar 25120 (Pakistan); Ullah, Irfan; Khan, Gulzar [Department of Physics, Abdul Wali Khan University Mardan, 23200 KPK (Pakistan)

    2015-06-15

    This paper reports on electrical characterization of ITO/PEDOT:PSS/PTCDA/Ca/Ag device based on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) and calcium (Ca) buffer layer with improved junction properties. The I–V characteristics have been utilized to extract various electrical parameters such as ideality factor (n), barrier height (ϕ{sub B}) and series resistance R{sub s}, which are found to be 1.9, 0.79 eV and 2.5 kΩ, respectively. The device shows good rectifying behavior, with a rectification ratio of 528, and also field-lowering mechanism with a linear dependence of log I on V{sup 1/2}. The device reported in the present work shows 50% improvement in the rectification ratio and ideality factor as compared to our previously fabricated device. It appears from the experimental data that the transport mechanism in the PTCDA thin film is dominated by the Poole–Frenkel model of thermionic emission, which may be associated with high density of structural defects or traps present in the film.

  18. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lupina, L.; Zoellner, M. H.; Dietrich, B.; Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); Niermann, T.; Lehmann, M. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Thapa, S. B.; Haeberlen, M.; Storck, P. [SILTRONIC AG, Hanns-Seidel-Platz 4, 81737 München (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); BTU Cottbus, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  19. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.

    Science.gov (United States)

    Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao

    2016-01-13

    The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated.

  20. Spatial Atomic Layer Deposition of transparent conductive oxides

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Poodt, P.; Roozeboom, F.

    2013-01-01

    Undoped and indium doped ZnO films have been grown by Spatial Atomic Layer Deposition at atmospheric pressure. The electrical properties of ZnO films are controlled by varying the indium content in the range from 0 to 15 %. A minimum resistivity value of 3 mΩ•cm is measured in 180 nm thick films for

  1. Deposited Micro Porous Layer as Lubricant Carrier in Metal Forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2008-01-01

    A new porous coating for carrying lubricant in metal forming processes is developed. The coating is established by simultaneous electrochemical deposition of two pure metals. One of them is subsequently etched away leaving a porous surface layer. Lubricant can be trapped in the pores acting as lu...

  2. Method and system for continuous atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Yanguas-Gil, Angel; Libera, Joseph A.

    2017-03-21

    A system and method for continuous atomic layer deposition. The system and method includes a housing, a moving bed which passes through the housing, a plurality of precursor gases and associated input ports and the amount of precursor gases, position of the input ports, and relative velocity of the moving bed and carrier gases enabling exhaustion of the precursor gases at available reaction sites.

  3. Atomic layer deposition for nanostructured Li-ion batteries

    NARCIS (Netherlands)

    Knoops, H. C. M.; Donders, M. E.; M. C. M. van de Sanden,; Notten, P. H. L.; Kessels, W. M. M.

    2012-01-01

    Nanostructuring is targeted as a solution to achieve the improvements required for implementing Li-ion batteries in a wide range of applications. These applications range in size from electrical vehicles down to microsystems. Atomic layer deposition (ALD) could be an enabling technology for

  4. Cost-Effective Systems for Atomic Layer Deposition

    Science.gov (United States)

    Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.

    2014-01-01

    Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…

  5. The first step in layer-by-layer deposition: Electrostatics and/or non-electrostatics?

    NARCIS (Netherlands)

    Lyklema, J.; Deschênes, L.

    2011-01-01

    A critical discussion is presented on the properties and prerequisites of adsorbed polyelectrolytes that have to function as substrates for further layer-by-layer deposition. The central theme is discriminating between the roles of electrostatic and non-electrostatic interactions. In order to emphas

  6. Underpotential deposition-mediated layer-by-layer growth of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia Xu; Adzic, Radoslav R.

    2017-06-27

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves electrochemically exchanging a mediating element on a substrate with a noble metal film by alternatingly sweeping potential in forward and reverse directions for a predetermined number of times in an electrochemical cell. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis.

  7. Influence of Fe Buffer Layer on Co-Doped BaFe2As2 Superconducting Thin Films

    Directory of Open Access Journals (Sweden)

    C. Bonavolontà

    2015-01-01

    Full Text Available A systematic characterization of Co-doped BaFe2As2 (Ba-122 thin films has been carried out. Two samples were available, one grown on CaF2 substrate and the other on MgO with an Fe buffer layer. The goal was to investigate films’ magnetic and superconducting properties, their reciprocal interplay, and the role played by the Fe buffer layer in modifying them. Morphological characterization and Energy Dispersive X-ray analyses on the Fe-buffered sample demonstrate the presence of diffused Fe close to the Co-doped Ba-122 outer surface as well as irregular holes in the overlying superconducting film. These results account for hysteresis loops obtained with magneto-optic Kerr effect measurements and observed at both room and low temperatures. The magnetic pattern was visualized by magneto-optical imaging with an indicator film. Moreover, we investigated the onset of superconductivity through a measure of the superconducting energy gap. The latter is strictly related to the decay time of the excitation produced by an ultrashort laser pulse and has been determined in a pump-probe transient reflectivity experiment. A comparison of results relative to Co-doped Ba-122 thin films with and without Fe buffer layer is finally reported.

  8. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  9. Blistering during the atomic layer deposition of iridium

    Energy Technology Data Exchange (ETDEWEB)

    Genevée, Pascal, E-mail: pascal-genevee@chimie-paristech.fr, E-mail: a.szeghalmi@uni-jena.de; Ahiavi, Ernest; Janunts, Norik; Pertsch, Thomas; Kley, Ernst-Bernhard; Szeghalmi, Adriana, E-mail: pascal-genevee@chimie-paristech.fr, E-mail: a.szeghalmi@uni-jena.de [Institut für Angewandte Physik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Oliva, Maria [Fraunhofer IOF, Albert-Einstein-Strasse 7, 07743 Jena (Germany)

    2016-01-15

    The authors report on the formation of blisters during the atomic layer deposition of iridium using iridium acetylacetonate and oxygen precursors. Films deposited on fused silica substrates led to sparsely distributed large blisters while in the case of silicon with native oxide additional small blisters with a high density was observed. It is found that the formation of blisters is favored by a higher deposition temperature and a larger layer thickness. Postdeposition annealing did not have a significant effect on the formation of blisters. Finally, changing purge duration during the film growth allowed us to avoid blistering and evidenced that impurities released from the film in gas phase were responsible for the formation of blisters.

  10. Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers

    Science.gov (United States)

    Li, Changli; Hisatomi, Takashi; Watanabe, Osamu; Nakabayashi, Mamiko; Shibata, Naoya; Domen, Kazunari; Delaunay, Jean-Jacques

    2016-07-01

    Coating n-type buffer and protective layers on Cu2O may be an effective means to improve the photoelectrochemical (PEC) water-splitting performance of Cu2O-based photocathodes. In this letter, the functions of the buffer layer and protective layer on Cu2O are examined. It is found that a Ga2O3 buffer layer can form a buried junction with Cu2O, which inhibits Cu2O self-reduction as well as increases the photovoltage through a small conduction band offset between the two semiconductors. The introduction of a TiO2 thin protective layer not only improves the stability of the photocathode but also enhances the electron transfer from the photocathode surface into the electrolyte, thus resulting in an increase in photocurrent at positive potentials. These results show that the selection of overlayers with appropriate conduction band positions provides an effective strategy for obtaining a high photovoltage and high photocurrent in PEC systems.

  11. Dark Current Reduction of P3HT-Based Organic Photodiode Using a Ytterbium Fluoride Buffer Layer in Electron Transport

    CERN Document Server

    Lim, Seong Bin; Kim, Ki Tae; Oh, Se Young

    2016-01-01

    Photodiodes are widely used to convert lights into electrical signals. The conventional silicon (Si) based photodiodes boast high photoelectric conversion efficiency and detectivity. However, in general, inorganic-based photodiodes have low visible wavelength sensitivity due to their infrared wavelength absorption. Recently, electrical conducting polymer-based photodiodes have received significant attention due to their flexibility, low cost of production and high sensitivity of visible wavelength ranges. In the present work, we fabricated an organic photodiode (OPD) consisting of ITO/ NiOx/ P3HT:PC60BM/ YbF3/ Al. In the OPD, a yitterbium fluoride (YbF3) buffer layer was used as the electron transport layer. The OPD was analyzed for its optical-electrical measurements, including J-V characteristics, detectivity and dynamic characteristics. We have investigated the physical effects of the YbF3 buffer layer on the performance of OPD such as its carrier extraction, leakage current and ohmic characteristics.

  12. Preparation of highly c-axis oriented AlN thin films on Hastelloy tapes with Y2O3 buffer layer for flexible SAW sensor applications

    Science.gov (United States)

    Peng, Bin; Jiang, Jianying; Chen, Guo; Shu, Lin; Feng, Jie; Zhang, Wanli; Liu, Xinzhao

    2016-02-01

    Highly c-axis oriented aluminum nitrade (AlN) films were successfully deposited on flexible Hastelloy tapes by middle-frequency magnetron sputtering. The microstructure and piezoelectric properties of the AlN films were investigated. The results show that the AlN films deposited directly on the bare Hastelloy substrate have rough surface with root mean square (RMS) roughness of 32.43nm and its full width at half maximum (FWHM) of the AlN (0002) peak is 12.5∘. However, the AlN films deposited on the Hastelloy substrate with Y2O3 buffer layer show smooth surface with RMS roughness of 5.46nm and its FWHM of the AlN (0002) peak is only 3.7∘. The piezoelectric coefficient d33 of the AlN films deposited on the Y2O3/Hastelloy substrate is larger than three times that of the AlN films deposited on the bare Hastelloy substrate. The prepared highly c-axis oriented AlN films can be used to develop high-temperature flexible SAW sensors.

  13. Ab initio determination of kinetics for atomic layer deposition modeling

    Science.gov (United States)

    Remmers, Elizabeth M.

    A first principles model is developed to describe the kinetics of atomic layer deposition (ALD) systems. This model requires no fitting parameters, as it is based on the reaction pathways, structures, and energetics obtained from quantum-chemical studies. Using transition state theory and partition functions from statistical mechanics, equilibrium constants and reaction rates can be calculated. Several tools were created in Python to aid in the calculation of these quantities, and this procedure was applied to two systems- zinc oxide deposition from diethyl zinc (DEZ) and water, and alumina deposition from trimethyl aluminum (TMA) and water. A Gauss-Jordan factorization is used to decompose the system dynamics, and the resulting systems of equations are solved numerically to obtain the temporal concentration profiles of these two deposition systems.

  14. Properties of Pb(0.92)La(0.08)Zr(0.52)Ti(0.48)O(3) thin films grown on SrRuO(3) buffered nickel and silicon substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, M.; Ma, B.; Tong, S.; Koritala, R.; Balachandran, U. (Energy Systems); ( MSD)

    2012-01-01

    Ferroelectric film-on-foil capacitors are suitable to replace discrete passive components in the quest to develop electronic devices that show superior performance and are smaller in size. The film-on-foil approach is the most practical method to fabricate such components. Films of Pb{sub 0.92}La{sub 0.08}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} (PLZT) were deposited on SrRuO{sub 3} (SRO) buffer films over nickel and silicon substrates. High-quality polycrystalline SRO thin-film electrodes were first deposited by chemical solution deposition. A phase pure, dense, uniform microstructure with grain size <100 nm was obtained in films crystallized at 700 C. The room-temperature resistivity of the SRO films crystallized at 700 C was {approx}800-900 {mu}{Omega}-cm. The dielectric properties of sol-gel derived PLZT capacitors on SRO-buffered nickel were evaluated as a function of temperature, bias field, and frequency, and the results were compared to those of the same films on silicon substrates. The comparison demonstrated the integrity of the buffer layer and its compatibility with nickel substrates. Device-quality dielectric properties were measured on PLZT films deposited on SRO-buffered nickel foils and found to be superior to those for PLZT on SRO-buffered silicon and expensive platinized silicon. These results suggest that SRO films can act as an effective barrier layer on nickel substrates suitable for embedded capacitor applications.

  15. Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer

    Science.gov (United States)

    Wong, Man Hoi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2016-12-01

    The electron mobility in depletion-mode lateral β-Ga2O3(010) metal-oxide-semiconductor field-effect transistors (MOSFETs) with an n-channel formed by Si-ion (Si+) implantation doping was extracted using low-field electrical measurements on FET structures. An undoped Ga2O3 buffer layer protected the channel against charge compensation by suppressing outdiffusion of deep Fe acceptors from the semi-insulating substrate. The molecular beam epitaxy growth temperature was identified as a key process parameter for eliminating parasitic conduction at the buffer/substrate growth interface. Devices with a resistive buffer showed room temperature channel mobilities of 90-100 cm2 V-1 s-1 at carrier concentrations of low- to mid-1017 cm-3, with small in-plane mobility anisotropy of 10-15% ascribable to anisotropic carrier scattering.

  16. Reduced dislocation density in GaxIn1-xP compositionally graded buffer layers through engineered glide plane switch

    Science.gov (United States)

    Schulte, K. L.; France, R. M.; McMahon, W. E.; Norman, A. G.; Guthrey, H. L.; Geisz, J. F.

    2017-04-01

    In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter η decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.

  17. Reduced Dislocation Density in GaxIn1-xP Compositionally Graded Buffer Layers through Engineered Glide Plane Switch

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; Norman, Andrew G.; Guthrey, Harvey L.; Geisz, John F.

    2016-11-17

    In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.

  18. Palladium Electrodeposition onto Pt(100): Two-Layer Underpotential Deposition.

    Science.gov (United States)

    Previdello, Bruno A F; Sibert, Eric; Maret, Mireille; Soldo-Olivier, Yvonne

    2017-03-07

    Electrodeposition of the first Pd layers onto Pt(100) was investigated using cyclic voltammetry at a low scan rate (0.1 mV·s(-1)). Ultrathin films were characterized by cyclic voltammetry in 0.1 M H2SO4 solution and with ex situ AFM (atomic force microscopy). For the first time, we evidenced the underpotential character of the deposition of the first two Pd layers, characterized by a two-step mechanism, each step corresponding to the deposition of a complete Pd atomic layer. For thicker deposits, especially above 10 monolayers as equivalent thickness, the electrochemical characterization displays a strong irreversibility and a broadening of the adsorption/desorption peaks, associated with a reduction of long-range ordered flat areas. Ex situ AFM images are in agreement with this description. They show rough thick deposits and the growth of (100)-oriented rectangular shaped islands with their sides aligned with the two [011] and [0-11] perpendicular directions of the (100) Pt surface.

  19. Simulating characteristics of Si/Ge tandem monolithic solar cell with Si1-xGex buffer layer

    Directory of Open Access Journals (Sweden)

    Gnilenko A. B.

    2015-12-01

    Full Text Available In spite of many efforts to propose new semiconductor materials and sophisticated constructions of solar cells, crystalline silicone remains the main photovoltaic material widely used up to now. There are various methods to enhance the efficiency of silicone solar cells. One of them is to combine silicone with an additional semiconductor material with the different bandgap to form a tandem construction. For example, the germanium sub-cell used as the bottom cascade for the silicone sub-cell in the tandem monolithic solar cell makes it possible to utilize the "red" sub-band of solar spectra increasing overall solar cell efficiency. The problem of the 4.2% mismatch in lattice constant between Si and Ge can be resolved in such a case by the use of SiGe buffer layer. In the paper the results of the computer simulation for Si/Ge tandem monolithic solar cell with Si1-xGex buffer layer are presented. In the solar cell under consideration, the step graded Si1-xGex buffer layer is located between the top silicone and the bottom germanium cascades to reduce the threading dislocation density in mismatched materials. The cascades are commutated by the use of the germanium tunnel diode between the bottom sub-cell and the buffer layer. For the solar cell modeling, the physically-based device simulator ATLAS of Silvaco TCAD software is employed to predict the electrical behavior of the semiconductor structure and to provide a deep insight into the internal physical processes. The voltage-current characteristic, photovoltaic parameters and the distribution of basic physical values are obtained for the investigated tandem solar cell. The influence of layer thicknesses on the photovoltaic parameters is studied. The calculated efficiency of the tandem solar cell reaches 13% which is a quarter more than the efficiency of a simple silicone solar cell with the same constructive parameters and under the same illumination conditions.

  20. Atomic layer deposition of alternative glass microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    O' Mahony, Aileen, E-mail: aom@incomusa.com; Craven, Christopher A.; Minot, Michael J.; Popecki, Mark A.; Renaud, Joseph M.; Bennis, Daniel C.; Bond, Justin L.; Stochaj, Michael E.; Foley, Michael R.; Adams, Bernhard W. [Incom, Inc., 294 Southbridge Road, Charlton, Massachusetts 01507 (United States); Mane, Anil U.; Elam, Jeffrey W. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Ertley, Camden; Siegmund, Oswald H. W. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, California 94720 (United States)

    2016-01-15

    The technique of atomic layer deposition (ALD) has enabled the development of alternative glass microchannel plates (MCPs) with independently tunable resistive and emissive layers, resulting in excellent thickness uniformity across the large area (20 × 20 cm), high aspect ratio (60:1 L/d) glass substrates. Furthermore, the use of ALD to deposit functional layers allows the optimal substrate material to be selected, such as borosilicate glass, which has many benefits compared to the lead-oxide glass used in conventional MCPs, including increased stability and lifetime, low background noise, mechanical robustness, and larger area (at present up to 400 cm{sup 2}). Resistively stable, high gain MCPs are demonstrated due to the deposition of uniform ALD resistive and emissive layers on alternative glass microcapillary substrates. The MCP performance characteristics reported include increased stability and lifetime, low background noise (0.04 events cm{sup −2} s{sup −1}), and low gain variation (±5%)

  1. High Quality SiGe Layer Deposited by a New Ultrahigh Vacuum Chemical Vapor Deposition System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An ultrahigh vacuum chemical vapor deposition (UHV/CVD) system is developed and the details of its construction and operation are reported. Using high purity SiH4 and GeH4 reactant gases,the Si0.82Ge0.18 layer is deposited at 550℃. With the measurements by double crystal X-ray diffraction (DCXRD), transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS) techniques, it is shown that the crystalline quality of the SiGe layer is good,and the underlying SiGe/Si heterointerface is sharply defined.

  2. Properties of N-rich Silicon Nitride Film Deposited by Plasma-Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Jhang, Pei-Ci; Lu, Chi-Pin; Shieh, Jung-Yu; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    An N-rich silicon nitride film, with a lower refractive index (RI) than the stoichiometric silicon nitride (RI = 2.01), was deposited by alternating the exposure of dichlorosilane (DCS, SiH2Cl2) and that of ammonia (NH3) in a plasma-enhanced atomic layer deposition (PEALD) process. In this process, the plasma ammonia was easily decomposed to reactive radicals by RF power activating so that the N-rich silicon nitride was easily formed by excited ammonia radicals. The growth kinetics of N-rich silicon nitride were examined at various deposition temperatures ranging from 400 °C to 630 °C; the activation energy (Ea) decreased as the deposition temperature decreased below 550 °C. N-rich silicon nitride film with a wide range of values of refractive index (RI) (RI = 1.86-2.00) was obtained by regulating the deposition temperature. At the optimal deposition temperature, the effects of RF power, NH3 flow rate and NH3 flow time were on the characteristics of the N-rich silicon nitride film were evaluated. The results thus reveal that the properties of the N-rich silicon nitride film that was formed by under plasma-enhanced atomic layer deposition (PEALD) are dominated by deposition temperature. In charge trap flash (CTF) study, an N-rich silicon nitride film was applied to MAONOS device as a charge-trapping layer. The films exhibit excellent electron trapping ability and favor a fresh cell data retention performance as the deposition temperature decreased.

  3. Epitaxial SrRuO3 thin films deposited on SrO buffered-Si(001) substrates for ferroelectric Pb(Zr0.2Ti0.8)O3 thin films

    Science.gov (United States)

    Xian, Cheng-Ji; Seong, Nak-Jin; Yoon, Soon-Gil

    2009-02-01

    SrRuO3 thin film electrodes are epitaxially grown on SrO buffered-Si(001) substrates by pulsed laser deposition. The optimum conditions of the SrO buffer layers for epitaxial SrRuO3 films are a deposition temperature of 700 °C, deposition pressure of 1 × 10-6 Torr, and thickness of 6 nm. The 100 nm thick-SrRuO3 bottom electrodes deposited above 650 °C on SrO buffered-Si (001) substrates have a rms (root mean square) roughness of approximately 5.0 Å and a resistivity of 1700 µω-cm, exhibiting an epitaxial relationship. The 100 nm thick-Pb(Zr0.2Ti0.8)O3 thin films deposited at 575 °C have a (00l) preferred orientation and exhibit 2Pr of 40 µC/cm2, Ec of 100 kV/cm, and leakage current of about 1 × 10-7 A/cm2 at 1 V. The silicon oxide phase which presents within PZT and SrRuO3 films, influences the crystallinity of the PZT films and the resistivity of the SrRuO3 electrodes.

  4. Properties of CdTe layers deposited by a novel method -Pulsed Plasma Deposition

    OpenAIRE

    Ancora, C.; Nozar, P.; Mittica, G.; Prescimone, F.; A. Neri; Contaldi, S.; Milita, S.; Albonetti, C.; Corticelli, F.; Brillante, A.; Bilotti, I.; Tedeschi, G.; Taliani, C.

    2011-01-01

    CdTe and CdS are emerging as the most promising materials for thin film photovoltaics in the quest of the achievement of grid parity. The major challenge for the advancement of grid parity is the achievement of high quality at the same time as low fabrication cost. The present paper reports the results of the new deposition technique, Pulsed Plasma Deposition (PPD), for the growth of the CdTe layers on CdS/ZnO/quartz and quartz substrates. The PPD method allows to deposit at low temperature. ...

  5. Oxide-based materials by atomic layer deposition

    Science.gov (United States)

    Godlewski, Marek; Pietruszka, Rafał; Kaszewski, Jarosław; Witkowski, Bartłomiej S.; Gierałtowska, Sylwia; Wachnicki, Łukasz; Godlewski, Michał M.; Slonska, Anna; Gajewski, Zdzisław

    2017-02-01

    Thin films of wide band-gap oxides grown by Atomic Layer Deposition (ALD) are suitable for a range of applications. Some of these applications will be presented. First of all, ALD-grown high-k HfO2 is used as a gate oxide in the electronic devices. Moreover, ALD-grown oxides can be used in memory devices, in transparent transistors, or as elements of solar cells. Regarding photovoltaics (PV), ALD-grown thin films of Al2O3 are already used as anti-reflection layers. In addition, thin films of ZnO are tested as replacement of ITO in PV devices. New applications in organic photovoltaics, electronics and optoelectronics are also demonstrated Considering new applications, the same layers, as used in electronics, can also find applications in biology, medicine and in a food industry. This is because layers of high-k oxides show antibacterial activity, as discussed in this work.

  6. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Pomeroy, J.; Kuball, M. [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2014-02-14

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate.

  7. Effect of process temperature on structure and magnetic properties of perpendicularly magnetized D022-Mn3Ge thin films on a Cr buffer layer

    Science.gov (United States)

    Sugihara, Atsushi; Suzuki, Kazuya; Miyazaki, Terunobu; Mizukami, Shigemi

    2015-08-01

    We investigated the effect of post-annealing on the perpendicular magnetic anisotropy constant (Ku) and surface roughness (Ra) of Mn3Ge thin films grown at comparatively low temperatures (room temperature, 150, 200, and 250 °C) on Cr buffer layers. The films grown at ≥200 °C exhibit a D022-ordered crystal structure in an as-deposited state. The post-annealing process demonstrates differences in trends between the 200-°C-grown film and the 250-°C-grown film. The 200-°C-grown film displays significant degradation of Ku and an increase in Ra upon annealing at >300 °C because of its poor thermal durability, while the 250-°C-grown film is still intact even at 500 °C. The 250-°C-grown film post-annealed at 300 °C displays relatively high Ku while Ra remains low. It may be possible to grow D022-Mn3Ge with higher Ku and low Ra using a buffer-layer material with a lattice-matched crystal structure with D022-Mn3Ge and higher thermal durability than Cr.

  8. Prominent electric properties of BiFeO₃ shells sputtered on ZnO-nanorod cores with LaNiO₃ buffer layers.

    Science.gov (United States)

    Chiu, Kuan-Chang; Yang, Tung-Han; Wu, Jenn-Ming

    2013-06-07

    In this work, template-assisted methods were adopted to grow BiFeO3 (BFO)-nanorod arrays on substrates. Well-aligned ZnO-nanorod arrays (ZNAs) grown hydrothermally were chosen as positive templates. It was found that perovskite BFO could not be radio frequency (RF)-magnetron sputtered directly on a ZNA at elevated temperatures. Only amorphous BFO was obtained. However, polycrystalline BFO shells could be fabricated by RF-magnetron sputtering on ZNA templates by the introduction of LaNiO3 (LNO) buffer layers. The LNO buffer layer deposited on the ZNA by RF-magnetron sputtering was demonstrated to improve the adhesion and crystallization of the sequentially sputtered BFO shells. The electrical properties were evaluated by conductive atomic force microscopy and piezoresponse force microscopy. Bulk-limited Poole-Frenkel emission dominates the conduction of BFO shells at positive bias, while barrier-limited Schottky emission accounts for the conduction at negative bias due to the interface between the Pt/Ir-coated tip and the BFO. The piezoelectric coefficient (d33) was estimated to be ∼32.93 pm V(-1) and a polarization of 133 μC cm(-2) was derived. These values are higher than those reported previously for BFO films.

  9. Thermally robust perpendicular Co/Pd-based synthetic antiferromagnetic coupling enabled by a W capping or buffer layer.

    Science.gov (United States)

    Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo

    2016-02-18

    Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained.

  10. The influence of epitaxial Ti buffer layers for fabricating as-grown MgB{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Oba, T. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)]. E-mail: t3806005@iwate-u.ac.jp; Sun, P. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Harada, Y. [JST Satellite Iwate, 3-35-2 Iioka-shinden, Morioka, Iwate 020-0852 (Japan); Takahashi, T. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Iriuda, H. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Seki, M. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Nakanishi, Y. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Noguchi, S. [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); JST-CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishida, T. [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); JST-CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); JST Satellite Iwate, 3-35-2 Iioka-shinden, Morioka, Iwate 020-0852 (Japan)

    2007-03-15

    We have measured the magnetic field dependence of the resistivity using a 35T pulsed magnet for the as-grown MgB{sub 2} films fabricated on the epitaxial Ti buffer layer grown on c-plane ZnO and Al{sub 2}O{sub 3} substrates by molecular beam epitaxy (MBE). We will report the upper critical fields (H{sub c2}) along H||c-axis and H||ab-plane. The anisotropy ratio were obtained from these H{sub c2} values. The effects of Ti buffer layer on the H{sub c2} and the anisotropy of MgB{sub 2} film were discussed.

  11. Investigations into alterntive substrate, absorber, and buffer layer processing for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, J.R.; Berens, T.A.; Keane, J. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    High-performance Cu(In,Ga)Se{sub 2}(CIGS)-based solar cells are presently fabricated within a narrow range of processing options. In this contribution, alternative substrate, absorber, and buffer layer processing is considered. Cell performance varies considerably when alternative substrates are employed. These variations are narrowed with the addition of Na via a Na{sub 2}S compound. Sputtered and electrodeposited CIGS precursors and completed absorbers show promise as alternatives to evaporation. A recrystallization process is required to improve their quality. (In,Ga){sub y}Se buffer layers contribute to cell performance above 10. Further improvements in these alternatives will lead to combined cell performance greater than 10% in the near term.

  12. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    Science.gov (United States)

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  13. Effects of Buffer Layer on Hetero-Epi-Growth of SiCGe on 6H-SiC

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Growth of SiCGe ternary alloy on 6H-SiC in a conventional hot-wall CVD system was initially studied. SiH4, GeH4 and C3H8 were employed as silicon, germanium and carbon source, respectively, while H2 was employed as the carrier gas. To reduce the heavy lattice mismatch between the film and the substrate, a 3C-SiC buffer layer was inserted between them in a CVD process. Optimizing the growth conditions was discussed. The samples were measured by means of SEM, SAXRD (Small Angle X-Ray Diffraction). It is shown that use of the 3C-SiC buffer layer is an effective way to improve the quality of the ternary alloy.

  14. Comparative Study of Zn(O,S) Buffer Layers and CIGS Solar Cells Fabricated by CBD, ALD, and Sputtering: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, K.; Mann, J.; Glynn, S.; Christensen, S.; Pankow, J.; Li, J.; Scharf, J.; Mansfield, L. M.; Contreras, M. A.; Noufi, R.

    2012-06-01

    Zn(O,S) thin films were deposited by chemical bath deposition (CBD), atomic layer deposition, and sputtering. Composition of the films and band gap were measured and found to follow the trends described in the literature. CBD Zn(O,S) parameters were optimized and resulted in an 18.5% efficiency cell that did not require post annealing, light soaking, or an undoped ZnO layer. Promising results were obtained with sputtering. A 13% efficiency cell was obtained for a Zn(O,S) emitter layer deposited with 0.5%O2. With further optimization of process parameters and an analysis of the loss mechanisms, it should be possible to increase the efficiency.

  15. Organometallic tris(8-hydroxyquinoline)aluminum complexes as buffer layers and dopants in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tolkki, Antti, E-mail: antti.tolkki@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Kaunisto, Kimmo [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Heiskanen, Juha P. [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Omar, Walaa A.E. [Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Chemistry Branch, Department of Science and Mathematics, Suez Canal University, Suez 43721 (Egypt); Huttunen, Kirsi; Lehtimaeki, Suvi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Hormi, Osmo E.O. [Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Lemmetyinen, Helge [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland)

    2012-04-30

    Tris(8-hydroxyquinoline)aluminum (Alq{sub 3}) is a frequently used material for organic light emitting diodes. The electronic properties and solubility can be tuned by chemical tailoring of the quinoline part, which makes it an interesting candidate for organic solar cells. Steady-state absorption and fluorescence, as well as time-resolved fluorescence properties of the parent Alq{sub 3} and a series of complexes consisting of derivatives, such as 4-substituted pyrazol, methylpyrazol, arylvinyl, and pyridinoanthrene moieties, of the quinoline ligand, were studied in solutions and in thin films. Suitability of the complexes as anodic buffer layers or dopants in inverted organic solar cells based on the well known bulk heterojunction of poly(3-hexylthiophene) (P3HT) and phenyl-C{sub 61}-butyric acid methyl ester (PCBM) was tested. The devices equipped with the derivatives showed higher power conversion efficiency ({eta}) compared to the photocells containing the parent Alq{sub 3}. Open circuit voltage (V{sub oc}) was increased when the derivatives were utilized as the anodic buffer layer. Doping of the P3HT:PCBM with a small amount of Alq{sub 3} or its derivative improved short circuit current density, V{sub oc}, fill factor, and {eta}, while the series resistance decreased. In addition, the devices were stable in air over several weeks without encapsulation. Possible mechanisms leading to the improvements in the photovoltaic performance by using the parent Alq{sub 3} or its derivative as buffer layer or dopant are discussed. - Highlights: Black-Right-Pointing-Pointer Tris(8-hydroxyquinoline)aluminum (Alq{sub 3}) complexes in inverted organic solar cells. Black-Right-Pointing-Pointer The Alq{sub 3} complexes were used as an anodic buffer layer and as a dopant. Black-Right-Pointing-Pointer Efficiency increased and the derivatives revealed varying open circuit voltage. Black-Right-Pointing-Pointer Photovoltaic performance was stable after storage in a dark ambient

  16. Effect of polyethylene glycol on electrochemically deposited trivalent chromium layers

    Institute of Scientific and Technical Information of China (English)

    Joo-Yul LEE; Man KIM; Sik-Chol KWON

    2009-01-01

    The structural characteristics of the trivalent chromium deposits and their interfacial behavior in the plating solution with and without polyethylene glycol molecules were observed by using various electrochemical methods such as cyclic voltammetry, open circuit potential transition, electrochemical impedance spectroscopy, scanning electron microscopy and X-ray photoelectron spectrometry. It is shown that the polyethylene glycol molecules make the reductive current density lower in the trivalent chromium plating system and promote a hydrogen evolution reaction through their adsorption on the electrode surface. And the trivalent chromium layer formed from the polyethylene glycol-containing solution has somewhat higher density of cracks on its surface and results in a lower film resistance, lower polarization resistance, and higher capacitance in a corrosive atmosphere. It is also revealed that the formation of chromium carbide layer is facilitated in the presence of polyethylene glycol, which means easier electrochemical codeposition of chromium and carbon, not single chromium deposition.

  17. Observations of Flaking of Co-deposited Layers in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    C.A. Gentile; C.H. Skinner; K.M. Young

    1999-11-01

    Flaking of co-deposited layers in the Tokamak Fusion Test Reactor (TFTR) has been observed after the termination of plasma operations. This unexpected flaking affects approximately 15% of the tiles and appears on isotropic graphite tiles but not on carbon fiber composite tiles. Samples of tiles, flakes and dust were recently collected from the inside of the vacuum vessel and will be analyzed to better characterize the behavior of tritium on plasma facing components in DT fusion devices.

  18. Atomically flat Ge buffer layers and alternating shutter growth of CaGe2 for large area germanane

    Science.gov (United States)

    Xu, Jinsong; Katoch, Jyoti; Ahmed, Adam; Pinchuk, Igor; Williams, Robert; McComb, David; Kawakami, Roland

    Germanane (GeH), which is converted from CaGe2 by soaking in HCl acid, has recently attracted interest because of its novel properties, such as large band gap (1.56eV), spin orbit coupling and predictions of high mobility (18000 cm2/Vs). Previously CaGe2 was successfully grown on Ge(111) substrates by molecular beam epitaxy (MBE) growth. But there were cracks between µm-sized islands, which is not desirable for scientific study and application, and limits the material quality. By growing atomically flat Ge buffer layers and using alternating shutter MBE growth, we are able to grow crack-free, large area films of CaGe2 films. Reflection high energy electron diffraction (RHEED) patterns of Ge buffer layer and CaGe2 indicates high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform Ge buffer layer and CaGe2. The appearance of Laue oscillation in X-ray diffraction (XRD) and Kiessig fringes in X-ray reflectivity (XRR) proves the uniformity of CaGe2 film and the smoothness of the interface. The high quality of CaGe2 film makes it promising to explore novel properties of GeH. Funded by NSF MRSEC DMR-1420451.

  19. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-06-01

    Full Text Available We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100 substrates with a TiN buffer layer. A 50-nm-thick (200-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large IcRN product of 3.8 mV, a sharp quasiparticle current rise with a ΔVg of 0.4 mV, and a small subgap leakage current. The junction quality factor Rsg/RN was about 23 for the junction with a Jc of 47 A/cm2 and was about 6 for the junction with a Jc of 3.0 kA/cm2. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200-orientated TiN buffer layer and had a highly crystalline structure with the (200 orientation.

  20. Buffer architecture for biaxially textured structures and method of fabricating same

    Science.gov (United States)

    Norton, David P.; Park, Chan; Goyal, Amit

    2004-04-06

    The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO.sub.2 and/or HfO.sub.2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO.sub.2 and HfO.sub.2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1.times.10.sup.-5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  1. Protective silicon coating for nanodiamonds using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Wang, Y.H. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zang, J.B. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China) and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)]. E-mail: diamondzjb@163.com; Li, Y.N. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)

    2007-01-30

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH{sub 4}). The coating was performed by sequential reaction of SiH{sub 4} saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability.

  2. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2008-01-01

    Full Text Available Core/shell capsules composed of calcium carbonate whisker core (rod-like shape and chitosan/chitosansulfate shell were prepared by the layer-by-layer deposition technique. Two chitosan samples of different molecular weights (Mw=9.7×104 and 1.09×106g·mol-1 were used as original materials. Hollow capsules were also obtained by dissolution of the core in hydrochloric acid. Electron microscopy revealed that the surface of the shell is rather ragged associated with some agglomerates. The shell thickness l obeys a linear relation with respect to the number of deposited layers m as l=md+a(a>0. The values of d (thickness per layer were 4.0 and 1.0 nm for the higher and lower Mw chitosan materials, respectively, both of which are greater than the thickness of the monolayer. The results suggest that the feature of the deposition does not obey an ideal homogeneous monolayer-by-monolayer deposition mechanism. Shell crosslinked capsules were also prepared via photodimerization reaction of cinnamoyl groups after a deposition of cinnamoyl chitosan to the calcium carbonate whisker core. The degree of crosslink was not enough to stabilize the shell structure, and hollow capsule was not obtained.

  3. Ferroelectric and ferromagnetic properties of epitaxial BiFeO{sub 3}-BiMnO{sub 3} films on ion-beam-assisted deposited TiN buffered flexible Hastelloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, J., E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos, New Mexico 87545 (United States); Matias, V.; Jia, Q. X. [Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos, New Mexico 87545 (United States); Tao, B. W.; Li, Y. R. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-05-07

    Growth of multifunctional thin films on flexible substrates is of great technological significance since such a platform is needed for flexible electronics. In this study, we report the growth of biaxially aligned (BiFeO{sub 3}){sub 0.5}:(BiMnO{sub 3}){sub 0.5} [BFO-BMO] films on polycrystalline Hastelloy by using a biaxially aligned TiN as a seed layer deposited by ion-beam-assisted deposited and a La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) as a buffer layer deposited by pulsed laser deposition. The LSMO is used not only as a buffer layer but also as the bottom electrode of the BFO-BMO films. X-ray diffraction showed that the BFO-BMO films are biaxially oriented along both in-plane and out-of-plane directions. The BFO-BMO films on flexible metal substrates showed a polarization of 22.9 μC/cm{sup 2}. The magnetization of the BFO-BMO/LSMO is 62 emu/cc at room temperature.

  4. Characterization of dielectric layers grown at low temperature by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gieraltowska, Sylwia, E-mail: sgieral@ifpan.edu.pl [Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Wachnicki, Lukasz; Witkowski, Bartlomiej S. [Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Mroczynski, Robert [Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Dluzewski, Piotr [Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Godlewski, Marek [Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal S. Wyszyński University, Dewajtis 5, 01-815 Warsaw (Poland)

    2015-02-27

    Dielectric films, such as hafnium dioxide (HfO{sub 2}), aluminum oxide (Al{sub 2}O{sub 3}), zirconium dioxide (ZrO{sub 2}), titanium dioxide (TiO{sub 2}) and their composite layers are deposited on polycrystalline and amorphous substrates by the atomic layer deposition (ALD) method. We demonstrate that the use of this technology guarantees a uniform and controlled surface coverage in the nanometer scale at low temperatures (in our case, below 100 °C). Modification of the composition of oxide layers allows the deposition of materials with quite different absorption coefficients, refractive indexes and dielectric constants. In particular, we demonstrate structural, electrical and optical properties of dielectric layers and test metal-oxide-semiconductor structures with these oxide materials. Our good quality dielectric layers, obtained at low-temperature ALD, are characterized by a high dielectric constant (above 10), very smooth surface, wide energy gap (above 3 eV), low leakage current (in the range of 10{sup −8} A/cm{sup 2} at 1 V), high dielectric strength (even 6 MV/cm) and high refractive indexes (above 1.5 in the visible spectral range). - Highlights: • We demonstrate the use of atomic layer deposition (ALD) at low temperatures (LT). • LT ALD guarantees a uniform and controlled surface coverage of dielectrics. • In our case, the dielectric films were deposited at very LT, below 100 °C. • Dielectrics (HfO{sub 2}, Al{sub 2}O{sub 3}, ZrO{sub 2}, TiO{sub 2} and composite layers) are obtained by ALD. • Our results also indicate high-quality dielectric films.

  5. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    Science.gov (United States)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  6. Electrophoretic deposition of siderite thin layers: Influence of electrode potential and deposition time

    Energy Technology Data Exchange (ETDEWEB)

    Ithurbide, A., E-mail: aurelie.ithurbide@cea.f [CEA Saclay/DEN/DPC/SECR, Laboratoire de Mesures et Modelisation de la Migration des Radionucleides, 91191 Gif-sur-Yvette (France); Peulon, S., E-mail: sophie.peulon@univ-evry.f [CNRS-Universite d' Evry-CEA, Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement, UMR 8587, Boulevard Francois Mitterrand, 91025 Evry (France); Miserque, F. [CEA Saclay/DEN/DPC/SCP, Laboratoire de Reactivite des Surfaces et des Interfaces, 91191 Gif-sur-Yvette (France); Beaucaire, C. [CEA Saclay/DEN/DPC/SECR, Laboratoire de Mesures et Modelisation de la Migration des Radionucleides, 91191 Gif-sur-Yvette (France); Chausse, A. [CNRS-Universite d' Evry-CEA, Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement, UMR 8587, Boulevard Francois Mitterrand, 91025 Evry (France); Poinssot, Ch. [CNRS-Universite d' Evry-CEA, Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement, UMR 8587, Boulevard Francois Mitterrand, 91025 Evry (France); CEA Marcoule Saclay/DEN, Departement RadioChimie et Procedes, BP 17171 30207 Bagnols-sur-Ceze (France)

    2010-03-01

    Siderite thin layers have been obtained by electrophoretic deposition on an inert substrate (gold). Scanning electron microscopy image exhibits a compact and homogeneous film composed of round grains which diameter is about 1-2 {mu}m. The influence of two parameters, namely the electrode potential and the deposition time, on its thickness and its microstructure was investigated. The thickness was shown to be slightly dependent of the electrode potential (1.2 {mu}m for - 0.70 V and 1.7 {mu}m for - 0.95 V after 17 h). The crystallite size, estimated by X-ray diffraction patterns, was about 5 nm, depending on both electrode potential and deposition time. Despite its high sensitivity to oxygen, X-ray photoelectron spectroscopy spectra prove that the siderite surface has been kept out from oxidation. These siderite thin layers could be used as modified electrodes for further interaction studies.

  7. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Lukas, E-mail: lhoffmann@uni-wuppertal.de; Theirich, Detlef; Hasselmann, Tim; Räupke, André; Schlamm, Daniel; Riedl, Thomas, E-mail: t.riedl@uni-wuppertal.de [Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal (Germany)

    2016-01-15

    This paper reports on aluminum oxide (Al{sub 2}O{sub 3}) thin film gas permeation barriers fabricated by atmospheric pressure atomic layer deposition (APPALD) using trimethylaluminum and an Ar/O{sub 2} plasma at moderate temperatures of 80 °C in a flow reactor. The authors demonstrate the ALD growth characteristics of Al{sub 2}O{sub 3} films on silicon and indium tin oxide coated polyethylene terephthalate. The properties of the APPALD-grown layers (refractive index, density, etc.) are compared to that deposited by conventional thermal ALD at low pressures. The films films deposited at atmospheric pressure show water vapor transmission rates as low as 5 × 10{sup −5} gm{sup −2}d{sup −1}.

  8. Deposition of Cu seed layer film by supercritical fluid deposition for advanced interconnects

    Institute of Scientific and Technical Information of China (English)

    Zhao Bin; Zhao Ming-Tao; Zhang Yan-Fei; Yang Jun-He

    2013-01-01

    The deposition of a Cu seed layer film is investigated by supercritical fluid deposition (SCFD) using H2 as a reducing agent for Bis(2,2,6,6-tetramethyl-3,5-heptanedionato) copper in supercritical CO2 (scCO2).The effects of deposition temperature,precursor,and H2 concentration are investigated to optimize Cu deposition.Continuous metallic Cu films are deposited on Ru substrates at 190 ℃ when a 0.002 mol/L Cu precursor is introduced with 0.75 mol/L H2.A Cu precursor concentration higher than 0.002 mol/L is found to have negative effects on the surface qualities of Cu films.For a H2concentration above 0.56 mol/L,the root-mean-square (RMS) roughness of a Cu film decreases as the H2 concentration increases.Finally,a 20-nm thick Cu film with a smooth surface,which is required as a seed layer in advanced interconnects,is successfully deposited at a high H2 concentration (0.75 mol/L).

  9. MOCVD growth of GaAs on Si using (Al,In) GaAs/GaAs buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K.; Shiba, Y.; Asai, K. (Advanced Tech. Research Labs., Sumitomo Metal Industries, Ltd., Hyogo (Japan))

    1991-01-01

    GaAs was grown on Si using an (Al,In)GaAs/GaAs buffer layer. The etch pit density (EPD) revealed by molten KOH could be reduced by adding Al{sub x}Ga{sub 1-x}As or In{sub x}Ga{sub 1-x}As to the GaAs buffer layer, depending on the composition (x); the lowest EPD, 4x10{sup 6} cm{sup -2} was obtained when x was 0.3 in Al{sub x}Ga{sub 1-x}As. To understand the results, the initial growth stage of GaAs on Si was investigated by scanning electron microscopy. GaAs growth using an Al{sub 0.3}Ga{sub 0.7}As layer produced small islands at a sufficiently high density that the islands coalesced, unlike those without the layer. The dependence of EPD and island density on the composition (x) were almost the same. This result indicates that improvement of the quality of the GaAs layer is related to the coalescence of the GaAs island at an early stage of the growth of GaAs on Si. (orig.).

  10. Enhancement of perpendicular magnetic anisotropy and coercivity in ultrathin Ru/Co/Ru films through the buffer layer engineering

    Science.gov (United States)

    Kolesnikov, Alexander G.; Stebliy, Maxim E.; Ognev, Alexey V.; Samardak, Alexander S.; Fedorets, Aleksandr N.; Plotnikov, Vladimir S.; Han, Xiufeng; Chebotkevich, Ludmila A.

    2016-10-01

    We present results on a study of the interplay between microstructure and the magnetic properties of ultrathin Ru/Co/Ru films with perpendicular magnetic anisotropy (PMA). To induce PMA in the Co layer, we experimentally determined thicknesses of the buffer and capping layers of Ru. The maximum value of PMA was observed for the Co thickness of 0.9 nm with the 3 nm thick capping layer. The effective anisotropy field (H eff) and coercive force (H c) of the Co layer are very sensitive to the Ru buffer layer thickness (t b). The values of H eff and H c increase approximately by two and ten times, correspondingly, when t b changes from 6 to 20 nm, owing to an increase in volume fraction of the crystalline phase as a result of the grains’ growth. PMA is found to be mainly enhanced by elastic strains induced by the lattice mismatch on the Ru/Co and Co/Ru interfaces, leading to the deformation of the Co lattice. The surface impact is determined to be less than 10% of the magneto-elastic contribution to the effective anisotropy. Observation of the magnetic domain structure by means of polar Kerr microscopy reveals that out-of-plane magnetization reversal occurs through the nucleation, growth, and annihilation of domains, where the average size drastically rises with the increasing t b.

  11. ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide

    Energy Technology Data Exchange (ETDEWEB)

    Godlewski, M., E-mail: godlew@ifpan.edu.p [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Guziewicz, E.; Luka, G.; Krajewski, T. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Lukasiewicz, M.; Wachnicki, L.; Wachnicka, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Kopalko, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Sarem, A.; Dalati, B. [Department of Physics, Faculty of Science, Tishreen University, Latakia (Syrian Arab Republic)

    2009-12-15

    We demonstrate possibility of a control (by selection of zinc precursors and variation of a growth temperature) of electrical properties of ZnO films grown by Atomic Layer Deposition (ALD). ZnO films grown by ALD are used in test photovoltaic devices (solar cells) as transparent conductive oxides for upper, transparent layer in inorganic and organic solar cells, and as n-type partners of p-type CdTe.

  12. Nanostructured europium oxide thin films deposited by pulsed laser ablation of a metallic target in a He buffer atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Luna, H.; Franceschini, D. F.; Prioli, R.; Guimaraes, R. B.; Sanchez, C. M.; Canal, G. P.; Barbosa, M. D. L.; Galvao, R. M. O. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22453-970, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Departamento de Fisica Nuclear, Universidade de Sao Paulo, Caixa Postal 66328, 05315-970, Sao Paulo, SP (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 deg. C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu{sub 2}O{sub 3}, with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots.

  13. High rate buffer layer for IBAD MgO coated conductors

    Science.gov (United States)

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  14. Deposits of the Peruvian Pisco Formation compared to layered deposits on Mars

    Science.gov (United States)

    Sowe, M.; Bishop, J. L.; Gross, C.; Walter, S.

    2013-09-01

    Deposits of the Peruvian Pisco Formation are morphologically similar to the mounds of Juventae Chasma at the equatorial region on Mars (Fig. 1). By analyzing these deposits, we hope to gain information about the environmental conditions that prevailed during sediment deposition and erosion, hence conditions that might be applicable to the Martian layered and hydrated deposits. Mariner 9 data of the Martian mid-latitudes have already shown evidence of the wind-sculptured landforms that display the powerful prevailing eolian regime [1]. In addition, [2] reported on similarities between Martian erosional landforms and those of the rainless coastal desert of central Peru from the Paracas peninsula to the Rio Ica. As indicated by similar erosional patterns, hyper-arid conditions and unidirectional winds must have dominated at least after deposition of the sediments, which are intermixed volcaniclastic materials and evaporate minerals at both locations. Likewise, variations in composition are displayed by alternating layers of different competence. The Pisco formation bears yardangs on siltstones, sandstones and clays with volcaniclastic admixtures [3] whereas the presence of sulphate minerals and the omnipresent mafic mineralogy has been reported for the layered mounds of Juventae Chasma equally [4]. Likewise, a volcanic airfall deposition and lacustrine formation have been proposed for the sulphate-rich deposits of Juventae Chasma [5,6]. In order to find out about potential spectral similarities, we performed a detailed spectral analysis of the surface by using LANDSAT and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) VNIR/ SWIR data (visible to near-infrared and shortwave infrared region).

  15. Photocurrent Property of GaN on the Si Photodetector with a Nearly Polycrystalline α-Al2O3 Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    江若琏; 王军转; 陈鹏; 赵作明; 梅永丰; 沈波; 张荣; 吴兴龙; 郑有料

    2002-01-01

    Using nearly polycrystalline α-Al2O3 as the buffer layer, GaN epilayers were grown on Si(111) substrates by low-pressure metal-oragnic chemical vapour deposition. The nearly polycrystalline α-Al2O3 was formed by anodicporous alumina annealed at high temperature. Prototype photoconductive detectors were fabricated with thesematerials. The spectral response of these detectors exhibits a relatively sharp cut-off near the wavelength of360nm and a peak at 340nm with a shoulder near 360nm. Under 5 V bias, the responsivities at 340nm and360nm were measured to be 3.3 A/W and 2.4A/W, respectively. The relationship between the responsivity andthe bias voltage shows that the responsivity is saturated when the bias voltage reaches 5 V.

  16. Structural and electrical properties of metal ferroelectric insulator semiconductor structure of Al/SrBi2Ta2O9/HfO2/Si using HfO2 as buffer layer

    Science.gov (United States)

    Roy, A.; Dhar, A.; Bhattacharya, D.; Ray, S. K.

    2008-05-01

    Ferroelectric SrBi2Ta2O9 (SBT) thin films have been deposited by the radio-frequency magnetron sputtering technique on bare p-Si as well as on HfO2 insulating buffer p-Si. XRD patterns revealed the formation of a well-crystallized SBT perovskite thin film on the HfO2 buffer layer. The electrical properties of the metal-ferroelectric-insulator-semiconductor (MFIS) structure were characterized by varying thicknesses of the HfO2 layer. The MFIS structure exhibits a maximum clockwise C-V memory window of 1.60 V when the thickness of the HfO2 layer was 12 nm with a lower leakage current density of 6.20 × 10-7 A cm-2 at a positive applied voltage of 7 V. However, the memory window reaches a maximum value of 0.7 V at a bias voltage of ±5 and then decreases due to charge injection in the case of the insulating buffer layer thickness of 3 nm. The density of oxide trapped charges at/near the buffer layer-ferroelectric interface is studied by the voltage stress method. Capacitance-voltage (C-V) and leakage current density (J-V) characteristics of the Al/SBT/HfO2/Si(1 0 0) capacitor indicate that the introduction of the HfO2 buffer layer prevents interfacial diffusion between the SBT thin film and the Si substrate effectively and improves the interface quality. Furthermore, the Al/SBT/HfO2/Si structures exhibit excellent retention characteristics, the high and low capacitance values clearly distinguishable for over 1 h and 30 min. This shows that the proposed Al/SrBi2Ta2O9/HfO2/Si structure is ideally suitable for high performance ferroelectric memories.

  17. Superconducting YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on GaAs with conducting indium-tin-oxide buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.J.; Gauzzi, A.; James, J.H.; Dwir, B.; Pavuna, D.; Reinhart, F.K. (Institut de Micro et Optoelectronique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (CH))

    1990-12-10

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) thin films have been grown {ital in} {ital situ} on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 m{Omega} cm.

  18. Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3

    Science.gov (United States)

    Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.

    2012-05-01

    The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.

  19. Formation of conductive spontaneous via holes in AlN buffer layer on n+Si substrate by filling the vias with n-AlGaN by metal organic chemical vapor deposition and application to vertical deep ultraviolet photo-sensor

    Directory of Open Access Journals (Sweden)

    N. Kurose

    2014-12-01

    Full Text Available We have grown conductive aluminum nitride (AlN layers using the spontaneous via holes formation technique on an n+-Si substrate for vertical-type device fabrication. The size and density of the via holes are controlled through the crystal growth conditions used for the layer, and this enables the conductance of the layer to be controlled. Using this technique, we demonstrate the fabrication of a vertical-type deep ultraviolet (DUV photo-sensor. This technique opens up the possibility of fabrication of monolithically integrated on-chip DUV sensors and DUV light-emitting devices (LEDs, including amplifiers, controllers and other necessary functional circuits, on a Si substrate.

  20. The influence of impurity on the critical thickness of the CeO2 buffer layer for coated conductors

    Institute of Scientific and Technical Information of China (English)

    PAN Min; HUANG Zheng; MA HuanFeng; QIANG WeiRong; WEI LianFu; WANG Long; ZHAO Yong

    2009-01-01

    The lattice parameters, band structure, density of state and elastic constant of RE-doped CeO2 (RE=Sm, Gd, Dy), the buffer material for coated HTS conductors, are calculated using the plane-wave method with paeudopotentials based on the density functional theory (DFT) of first-principle. The rule and mechanism of the effect of rare earth impurity on the critical thickness of the CeO2 buffer layer are in-vestigated. It is found that, in the range of the calculation, the changes of the lattice volume Ⅴ and elastic constant E* of CeO2 with the impurity are mainly determined by the increased electrons △ne of the system. The relationship of the elastic constant E* and increased electrons △ne is established. It is indicated that the critical thickness of the CeO2 single buffer layer doped with Sm, Gd, and Dy may be enhanced by 22%, 43% and 33%, respectively.

  1. Polar-axis-oriented crystal growth of tetragonal PZT films on stainless steel substrate using pseudo-perovskite nanosheet buffer layer

    Directory of Open Access Journals (Sweden)

    Yoshiki Minemura

    2015-07-01

    Full Text Available Lead zirconate titanate (PZT film with polar axis orientation was grown on a SUS 316L stainless steel substrate with the help of a Ca2Nb3O10 nanosheet (ns-CN layer that had a pseudo-perovskite-type crystal structure. The ns-CN buffer layer was supported on a platinized SUS 316L (Pt/SUS substrate, followed by chemical solution deposition (CSD of the PZT films with tetragonal symmetry (Zr/Ti =40/60. The PZT films consisting of c-domain, with [001]-axis orientation of the perovskite unit cell, were deposited on the ns-CN/Pt/SUS substrate owing to (i epitaxial lattice matching between the unit cell of PZT and substrate surface and (ii in-plane thermal stress applied to the PZT film during cooling-down step of CSD procedure. The c-domain-oriented PZT film on ns-CN/Pt/SUS substrate exhibited enhanced remanent polarization of approximately 52 μC/cm2 and lowered dielectric permittivity of approximately 230, which are superior to those of conventional PZT films with random crystal orientation and comparable to those of epitaxial PZT films grown on (100SrRuO3//(100SrTiO3 substrates.

  2. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    Science.gov (United States)

    Lubers, Alia Marie

    Demand for energy continues to increase, and without alternatives to fossil fuel combustion the effects on our environment will become increasingly severe. Fuel cells offer a promising improvement on current methods of energy generation; they are able to convert hydrogen fuel into electricity with a theoretical efficiency of up to 83% and interface smoothly with renewable hydrogen production. Fuel cells can replace internal combustion engines in vehicles and are used in stationary applications to power homes and businesses. The efficiency of a fuel cell is maximized by its catalyst, which is often composed of platinum nanoparticles supported on carbon. Economical production of fuel cell catalysts will promote adoption of this technology. Atomic layer deposition (ALD) is a possible method for producing catalysts at a large scale when employed in a fluidized bed. ALD relies on sequential dosing of gas-phase precursors to grow a material layer by layer. We have synthesized platinum nanoparticles on a carbon particle support (Pt/C) by ALD for use in proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pumps. Platinum nanoparticles with different characteristics were deposited by changing two chemistries: the carbon substrate through functionalization; and the deposition process by use of either oxygen or hydrogen as ligand removing reactants. The metal depositing reactant was trimethyl(methylcyclopentadienyl)platinum(IV). Functionalizing the carbon substrate increased nucleation during deposition resulting in smaller and more dispersed nanoparticles. Use of hydrogen produced smaller nanoparticles than oxygen, due to a gentler hydrogenation reaction compared to using oxygen's destructive combustion reaction. Synthesized Pt/C materials were used as catalysts in an electrochemical hydrogen pump, a device used to separate hydrogen fuel from contaminants. Catalysts deposited by ALD on functionalized carbon using a hydrogen chemistry were the most

  3. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-07

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  4. Nanostructured solid-state hybrid photovoltaic cells fabricated by electrostatic layer-by-layer deposition

    Science.gov (United States)

    Kniprath, Rolf; McLeskey, James T.; Rabe, Jürgen P.; Kirstein, Stefan

    2009-06-01

    We report on the fabrication of hybrid organic/inorganic photovoltaic cells utilizing layer-by-layer deposition of water-soluble polyions and nanocrystals. A bulk heterojunction structure was created consisting of alternating layers of the p-conductive polythiophene derivative poly[2-(3-thienyl)-ethoxy-4-butylsulfonate] and n-conductive TiO2 nanoparticles. We fabricated working devices with the heterostructure sandwiched between suitable charge carrier blocking layers and conducting oxide and metal electrodes, respectively. We analyzed the influence of the thickness and nanostructure of the active layer on the cell performance and characterized the devices in terms of static and transient current response with respect to illumination and voltage conditions. We observed reproducible and stable photovoltaic behavior with photovoltages of up to 0.9 V.

  5. Atomic Layer Deposition Films as Diffusion Barriers for Silver Artifacts

    Science.gov (United States)

    Marquardt, Amy; Breitung, Eric; Drayman-Weisser, Terry; Gates, Glenn; Rubloff, Gary W.; Phaneuf, Ray J.

    2012-02-01

    Atomic layer deposition (ALD) was investigated as a means to create transparent oxide diffusion barrier coatings to reduce the rate of tarnishing for silver objects in museum collections. Accelerated aging by heating various thicknesses (5 to 100nm) of ALD alumina (Al2O3) thin films on sterling and fine silver was used to determine the effectiveness of alumina as a barrier to silver oxidation. The effect of aging temperature on the thickness of the tarnish layer (Ag2S) created at the interface of the ALD coating and the bulk silver substrate was determined by reflectance spectroscopy and X-Ray Photoelectric Spectroscopy (XPS). Reflectance spectroscopy was an effective rapid screening tool to determine tarnishing rates and the coating's visual impact. X-Ray Photoelectric Spectroscopy (XPS), and Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) analysis showed a phase transformation in the Ag2S tarnish layer at 177 C and saturation in the thickness of the silver sulfide layer, indicating possible self-passivation of the tarnish layer.

  6. Atomic layer deposition of nanolaminate oxide films on Si

    Science.gov (United States)

    Tallarida, M.; Weisheit, M.; Kolanek, K.; Michling, M.; Engelmann, H. J.; Schmeisser, D.

    2011-11-01

    Among the methods for depositing thin films, atomic layer deposition is unique for its capability of growing conformal thin films of compounds with a control of composition and thickness at the atomic level. The conformal growth of thin films can be of particular interest for covering nanostructures since it assures the homogeneous growth of the ALD film in all directions, independent of the position of the sample with respect to the incoming precursor flow. Here we describe the technique for growing the HfO2/Al2O3 bilayer on Si substrate and our in situ approach for its investigation by means of synchrotron radiation photoemission. In particular, we study the interface interactions between the two oxides for various thickness compositions ranging from 0.4 to 2.7 nm. We find that the ALD of HfO2 on Si induces the increase of the interfacial SiO2 layer, and a change in the band bending of Si. On the contrary, the ALD of Al2O3 on HfO2 shows negligible interaction between layers as the binding energies of Hf4f, Si2p, and O1s core level peaks and the valence band maximum of HfO2 do not change and the interfacial SiO2 does not increase.

  7. Recent progress of atomic layer deposition on polymeric materials.

    Science.gov (United States)

    Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Atomic Layer Deposited Catalysts for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta

    catalyst toward the methanol oxidation reaction (MOR). In the work described in this PhD dissertation, two series of Pt-Ru ALD catalysts supported on nitrogen-doped multi-walled carbon nanotubes (N-CNTs) have been evaluated toward the CO oxidation and MOR at room temperature in a three...... for the realization of such tiny devices. It is a mature technology, suitable for mass production, where versatile structuring is available at the micro and nano regime. Carbon black supported catalysts synthesized by wet chemistry methods are not readily applicable for standard microfabrication techniques. Atomic...... layer deposition (ALD), on the other hand, is a highly suitable and still relatively unexplored approach for the synthesis of noble metal catalysts. It is a vapor phase growth method, primarily used to deposit thin lms. ALD is based on self-limiting chemical reactions of alternately injected precursors...

  9. Buffer-layer enhanced crystal growth of BaB{sub 6} (1 0 0) thin films on MgO (1 0 0) substrates by laser molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yushi; Yamauchi, Ryosuke; Arai, Hideki; Tan, Geng [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259-J2-46, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Tsuchimine, Nobuo; Kobayashi, Susumu [Toshima Manufacturing Company Limited, 1414 Shimonomoto, Higashimatsuyama-shi, Saitama 355-0036 (Japan); Saeki, Kazuhiko; Takezawa, Nobutaka [Department of Materials Technology, Industrial Technology Center of Tochigi Prefecture, 367-1 Karinuma, Utsunomiya-shi, Tochigi 321-3224 (Japan); Mitsuhashi, Masahiko; Kaneko, Satoru [Kanagawa Industrial Technology Center, Kanagawa Prefectural Government, 705-1 Shimo-Imaizumi, Ebina, Kanagawa 243-0435 (Japan); Yoshimoto, Mamoru, E-mail: yoshimoto.m.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259-J2-46, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Patent Attorney, Tokyo Institute of Technology, 4259-J2-46, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2012-02-01

    Crystalline BaB{sub 6} (1 0 0) thin films can be fabricated on MgO (1 0 0) substrates by inserting a 2-3 nm-thick epitaxial SrB{sub 6} (1 0 0) buffer layer by pulsed laser deposition (PLD) in ultra-high vacuum (i.e., laser molecular beam epitaxy). Reflection high-energy electron diffraction and X-ray diffraction measurements indicated the heteroepitaxial structure of BaB{sub 6} (1 0 0)/SrB{sub 6} (1 0 0)/MgO (1 0 0) with the single domain of the epitaxial relationship. Conversely, BaB{sub 6} thin films without the buffer layer were not epitaxial instead they developed as polycrystalline films with a random in-plane configuration and some impurity phases. As a result, the buffer layer is considered to greatly affect the initial growth of epitaxial BaB{sub 6} thin films; therefore, in this study, buffering effects have been discussed. From the conventional four-probe measurement, it was observed that BaB{sub 6} epitaxial thin films exhibit n-type semiconducting behavior with a resistivity of 2.90 Multiplication-Sign 10{sup -1} {Omega} cm at room temperature.

  10. Selective growth of graphene in layer-by-layer via chemical vapor deposition

    Science.gov (United States)

    Park, Jaehyun; An, Hyosub; Choi, Dong-Chul; Hussain, Sajjad; Song, Wooseok; An, Ki-Seok; Lee, Won-Jun; Lee, Naesung; Lee, Wan-Gyu; Jung, Jongwan

    2016-07-01

    Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene on a specific position. The key idea is to deposit a thin Cu layer (~40 nm thick) on pre-grown monolayer graphene and to apply additional growth. The thin Cu atop the graphene/Cu substrate acts as a catalyst to decompose methane (CH4) gas during the additional growth. The adlayer is grown selectively on the pre-grown graphene, and the thin Cu is removed through evaporation during CVD, eventually forming large-area and uniform double layer graphene. With this technology, highly uniform graphene films with precise thicknesses of 1 to 5 layers and graphene check patterns with 1 to 3 layers were successfully demonstrated. This method provides precise LBL growth for a uniform graphene film and a technique for the design of new graphene devices.Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene

  11. The effect of employing the p/i buffer layers and in-situ hydrogen treatment for transparent a-Si:H solar cells.

    Science.gov (United States)

    Lee, Da Jung; Yun, Sun Jin; Park, Min A; Lim, Jung Wook

    2014-05-01

    In this study, we describe the effects of various thicknesses of triple p/i buffer layers and hydrogen treatment on various performances in the fabrication of transparent a-Si:H solar cells. For the increment of buffer layer thickness, V(oc) increases steadily and J(sc) firstly increases and then decreases. The triple buffer layers also enhance the transmittance as well as conversion efficiency. For hydrogen plasma treatment, overall performances were enhanced with plasma power due to the passivation of dangling bonds at p/i interface. Therefore, the usage of triple buffer layers with proper treatment is beneficial to obtaining transparent a-Si:H solar cells with high quality.

  12. Applications of atomic layer deposition in solar cells.

    Science.gov (United States)

    Niu, Wenbin; Li, Xianglin; Karuturi, Siva Krishna; Fam, Derrick Wenhui; Fan, Hongjin; Shrestha, Santosh; Wong, Lydia Helena; Tok, Alfred Iing Yoong

    2015-02-13

    Atomic layer deposition (ALD) provides a unique tool for the growth of thin films with excellent conformity and thickness control down to atomic levels. The application of ALD in energy research has received increasing attention in recent years. In this review, the versatility of ALD in solar cells will be discussed. This is specifically focused on the fabrication of nanostructured photoelectrodes, surface passivation, surface sensitization, and band-structure engineering of solar cell materials. Challenges and future directions of ALD in the applications of solar cells are also discussed.

  13. Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, Th. [Illinois Institute of Technology; Zasadzinski, J. [Illinois Institute of Technology; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Elam, J. W. [ANL; Norem, J. [ANL; Pellin, M. J. [ANL

    2009-11-01

    We have shown previously that magnetic niobium oxides can influence the superconducting density of states at the surface of cavity-grade niobium coupons. We will present recent results obtained by Point Contact Tunneling spectroscopy (PCT) on coupons removed from hot and cold spots in a niobium cavity, as well as a comparative study of magnetic oxides on mild baked/unbaked electropolished coupons. We will also describe recent results obtained from coated cavities, ALD films properties and new materials using Atomic Layer Deposition (ALD).

  14. 3-D solar cells by electrochemical-deposited Se layer as extremely-thin absorber and hole conducting layer on nanocrystalline TiO2 electrode

    Science.gov (United States)

    Nguyen, Duy-Cuong; Tanaka, Souichirou; Nishino, Hitoshi; Manabe, Kyohei; Ito, Seigo

    2013-01-01

    A three-dimensional selenium solar cell with the structure of Au/Se/porous TiO2/compact TiO2/fluorine-doped tin oxide-coated glass plates was fabricated by an electrochemical deposition method of selenium, which can work for the extremely thin light absorber and the hole-conducting layer. The effect of experimental conditions, such as HCl and H2SeO3 in an electrochemical solution and TiO2 particle size of porous layers, was optimized. This kind of solar cell did not use any buffer layer between an n-type electrode (porous TiO2) and a p-type absorber layer (selenium). The crystallinity of the selenium after annealing at 200°C for 3 min in the air was significantly improved. The cells with a selenium layer deposited at concentrations of HCl = 11.5 mM and H2SeO3 = 20 mM showed the best performance, resulting in 1- to 2-nm thickness of the Se layer, short-circuit photocurrent density of 8.7 mA/cm2, open-circuit voltage of 0.65 V, fill factor of 0.53, and conversion efficiency of 3.0%.

  15. Atomic-layer deposition of Lu2O3

    Science.gov (United States)

    Scarel, G.; Bonera, E.; Wiemer, C.; Tallarida, G.; Spiga, S.; Fanciulli, M.; Fedushkin, I. L.; Schumann, H.; Lebedinskii, Yu.; Zenkevich, A.

    2004-07-01

    Rare earth oxides could represent a valuable alternative to SiO2 in complementary metal-oxide-semiconductor devices. Lu2O3 is proposed because of its predicted thermodynamical stability on silicon and large conduction band offset. We report on the growth by atomic-layer deposition of lutetium oxide films using the dimeric {[C5H4(SiMe3)]2LuCl}2 complex, which has been synthesized for this purpose, and H2O. The films were found to be stoichiometric, with Lu2O3 composition, and amorphous. Annealing in nitrogen at 950°C leads to crystallization in the cubic bixbyite structure. The dielectric constant of the as-grown Lu2O3 layers is 12±1.

  16. Ferroelectric BaTiO3 thin films on Ni metal tapes using NiO as buffer layer

    Science.gov (United States)

    Yuan, Z.; Liu, J.; Weaver, J.; Chen, C. L.; Jiang, J. C.; Lin, B.; Giurgiutiu, V.; Bhalla, A.; Guo, R. Y.

    2007-05-01

    Ferroelectric BaTiO3 (BTO) thin films were deposited on NiO buffered polycrystalline Ni tapes by pulsed laser deposition. Microstructural studies by x-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO films have the nanopillar structures with an average size of approximately 80nm in diameter and the good interface structures with no interdiffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. These excellent properties indicate that the as-fabricated BTO films are promising for the development of the structural health monitoring systems.

  17. Indium-Free Fully Transparent Electronics Deposited Entirely by Atomic Layer Deposition.

    Science.gov (United States)

    Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-01

    Indium-free, fully transparent thin-film transistors are fabricated entirely by the atomic layer deposition technique on rigid and flexible substrates at a low temperature of 160 °C. The transistors show high saturation mobility, large switching ratio, and small subthreshold swing value. The inverters and ring oscillators show large gain value and small propagation delay time, indicating the potential of this process in transparent electronic devices.

  18. Hierarchical rendering of trees from precomputed multi-layer z-buffers

    Energy Technology Data Exchange (ETDEWEB)

    Max, N. [California Univ., Davis, CA (United States)

    1996-02-01

    Chen and Williams show how precomputed z-buffer images from different fixed viewing positions can be reprojected to produce an image for a new viewpoint. Here images are precomputed for twigs and branches at various levels in the hierarchical structure of a tree, and adaptively combined, depending on the position of the new viewpoint. The precomputed images contain multiple z levels to avoid missing pixels in the reconstruction, subpixel masks for anti-aliasing, and colors and normals for shading after reprojection.

  19. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; Jong, de M.P.; Wiel, van der W.G.; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3/Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 (1.4 at. % Co). Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  20. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3 /Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 1.4 at. % Co. Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  1. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  2. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  3. Atomic layer deposition ultrathin film origami using focused ion beams

    Science.gov (United States)

    Supekar, O. D.; Brown, J. J.; Eigenfeld, N. T.; Gertsch, J. C.; Bright, V. M.

    2016-12-01

    Focused ion beam (FIB) micromachining is a powerful tool for maskless lithography and in recent years FIB has been explored as a tool for strain engineering. Ion beam induced deformation can be utilized as a means for folding freestanding thin films into complex 3D structures. FIB of high energy gallium (Ga+) ions induces stress by generation of dislocations and ion implantation within material layers, which create creases or folds upon mechanical relaxation enabled by motion of the material layers. One limitation on such processing is the ability to fabricate flat freestanding thin film structures. This capability is limited by the residual stresses formed during processing and fabrication of the films, which can result in initial curvature and deformation of films upon release from a sacrificial fabrication layer. This paper demonstrates folding in freestanding ultrathin films (1:1000) by ion-induced stress relaxation. The ultrathin flat structures are fabricated using atomic layer deposition on sacrificial polyimide. We have demonstrated vertical folding with 30 keV Ga+ ions in structures with lateral dimensions varying from 10 to 50 μm.

  4. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers.

    Science.gov (United States)

    Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2015-10-14

    Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred

  5. Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles.

    Science.gov (United States)

    Trubetskoy, V S; Loomis, A; Hagstrom, J E; Budker, V G; Wolff, J A

    1999-08-01

    DNA can be condensed with an excess of poly-cations in aqueous solutions forming stable particles of submicron size with positive surface charge. This charge surplus can be used to deposit alternating layers of polyanions and polycations on the surface surrounding the core of condensed DNA. Using poly-L-lysine (PLL) and succinylated PLL (SPLL) as polycation and polyanion, respectively, we demonstrated layer-by-layer architecture of the particles. Polyanions with a shorter carboxyl/backbone distance tend to disassemble binary DNA/PLL complexes by displacing DNA while polyanions with a longer carboxyl/backbone distance effectively formed a tertiary complex. The zeta potential of such complexes became negative, indicating effective surface recharging. The charge stoichiometry of the DNA/PLL/SPLL complex was found to be close to 1:1:1, resembling poly-electrolyte complexes layered on macrosurfaces. Recharged particles containing condensed plasmid DNA may find applications as non-viral gene delivery vectors.

  6. Chitosan-assisted buffer layer incorporated with hydroxypropyl methylcellulose-coated silver nanowires for paper-based sensors

    Science.gov (United States)

    Xu, Duohua; Qiu, Jingshen; Wang, Yucheng; Yan, Jiajun; Liu, Gui-Shi; Yang, Bo-Ru

    2017-06-01

    Fabricating flexible sensors on paper is intriguing. Here, we exploited chitosan as a buffer layer to facilitate the fabrication of silver nanowire (AgNW) networks and flexible devices on commercial paper. We found that the AgNW networks exhibited uniform distribution, smooth surface, and strong adhesion. The enhanced adhesion of AgNWs was attributed to the intermolecular hydrogen bonding between chitosan and hydroxypropyl methylcellulose (HPMC), which can be tailored by tuning the pH of the chitosan aqueous solution. This facile fabrication method utilizing biodegradable polymers and cost-effective AgNW ink holds great promise for portable, wearable, and disposable paper-based electronics.

  7. A systematic study on the deposition of {mu}m thick CuInS{sub 2} spray ILGAR layers

    Energy Technology Data Exchange (ETDEWEB)

    Camus, Christian; AbouRas, Daniel; Allsop, Nicholas; Bohne, Wolfgang; Gledhill, Sophie; Lauermann, Iver; Lux-Steiner, Martha C.; Roehrich, Joerg; Fischer, Christian-Herbert [Hahn-Meitner-Institut Berlin (Germany)

    2007-07-01

    The Spray Ion Layer Gas Reaction (ILGAR) is a new non-vacuum process, well suited for roll-to-roll production. In the first step of the process a metal salt solution is sprayed onto a heated substrate. The resulting solid layer is converted to the metal sulfide by H{sub 2}S. Both steps are repeated until the desired thickness is achieved. Recently In{sub 2}S{sub 3} buffer layers for highly efficient Cu(In,Ga)(S,Se){sub 2} solar cells have been deposited by this method. Now we have significantly extended the process and enabled the deposition of copper containing compounds, such as CuInS{sub 2}. By aerosol preheating, temperature optimization and the use of appropriate precursor-salts, the deposition rate has been increased from 3nm/cycle up to 35 nm/cycle in order to achieve {mu}m thick films needed for solar cells. However, in addition to CuInS{sub 2}, In{sub 2}O{sub 3} was also detected, which was strongly reduced by H{sub 2}S-postanealing. Nevertheless, XPS-, ERDA-, SEM- and EDX-measurements still revealed some structural and chemical inhomogeneities. Thus several approaches like a reducing atmosphere were tested to further improve the layer quality. Working solar cells have been produced with these CuInS{sub 2} absorber layers. Their optimization with respect to photovoltaic performance is in progress.

  8. Atomic layer deposition of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, Massimo; Dessmann, Nils; Staedter, Matthias; Friedrich, Daniel; Michling, Marcel; Schmeisser, Dieter [BTU-Cottbus, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany)

    2011-07-01

    We present a study of the initial growth of TiO{sub 2} on Si(111) by atomic layer deposition (ALD). The Si substrate was etched with NH{sub 4}F before ALD to remove the native oxide film and to produce a Si-H termination. In-situ experiments by means of photoemission and X-ray absorption spectroscopy were conducted with synchrotron radiation on Ti-oxide films produced using Ti-tetra-iso-propoxide (TTIP) and water as precursors. O 1s, Ti 2p, C 1s, and S i2p core level, and O 1s and Ti 2p absorption edges show the transition of the Ti-oxide properties during the first layers. The growth starts with a very small growth rate (0.03 nm/cycle) due to the growth inhibition of the Si-H termination and proceeds with higher growth rate (0.1 nm/cycle) after 1.5 nm Ti-oxide has been deposited.

  9. Silicon protected with atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Seger, Brian; Tilley, S. David; Pedersen, Thomas

    2013-01-01

    The present work demonstrates that tuning the donor density of protective TiO2 layers on a photocathode has dramatic consequences for electronic conduction through TiO2 with implications for the stabilization of oxidation-sensitive catalysts on the surface. Vacuum annealing at 400 °C for 1 hour...... of atomic layer deposited TiO2 increased the donor density from an as-deposited value of 1.3 × 1019 cm -3 to 2.2 × 1020 cm-3 following the annealing step. Using an Fe(ii)/Fe(iii) redox couple it was shown that the lower dopant density only allows electron transfer through TiO2 under conditions of weak band...... bending. However it was shown that increasing the dopant density to 2.2 × 1020 cm-3 allows tunneling through the surface region of TiO2 to occur at significant band bending. An important implication of this result is that the less doped material is unsuitable for electron transfer across the TiO2...

  10. Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling.

    Science.gov (United States)

    Yang, Wen Jing; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Rittschof, Daniel

    2012-09-10

    "Click" chemistry-enabled layer-by-layer (LBL) deposition of multilayer functional polymer coatings provides an alternative approach to combating biofouling. Fouling-resistant azido-functionalized poly(ethylene glycol) methyl ether methacrylate-based polymer chains (azido-poly(PEGMA)) and antimicrobial alkynyl-functionalized 2-(methacryloyloxy)ethyl trimethyl ammonium chloride-based polymer chains (alkynyl-poly(META)) were click-assembled layer-by-layer via alkyne-azide 1,3-dipolar cycloaddition. The polymer multilayer coatings are resistant to bacterial adhesion and are bactericidal to marine Gram-negative Pseudomonas sp. NCIMB 2021 bacteria. Settlement of barnacle ( Amphibalanus (= Balanus ) amphitrite ) cyprids is greatly reduced on the multilayer polymer-functionalized substrates. As the number of the polymer layers increases, efficacy against bacterial fouling and settlement of barnacle cyprids increases. The LBL-functionalized surfaces exhibit low toxicity toward the barnacle cyprids and are stable upon prolonged exposure to seawater. LBL click deposition is thus an effective and potentially environmentally benign way to prepare antifouling coatings.

  11. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides

    Science.gov (United States)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeißer, Dieter; van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; de Gendt, Stefan

    2015-06-01

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the

  12. Electrochemical atomic layer deposition of Pt nanostructures on fuel cell gas diffusion layer

    CSIR Research Space (South Africa)

    Modibedi, M

    2010-12-01

    Full Text Available . Acta 42(10) 1587. 4. Stickney, J.L., et al., (2002) Encyclopedia of Electrochemistry, Wiley-VCH: Weinheim 513 5. Mkwizu T.S., Mathe M.K., Cukrowski I., (2010) Langmuir 26 (1) 570. Electrochemical Atomic Layer Deposition of Pt nanostructures on fuel... cell gas diffusion layer Mmalewane Modibedi1, Tumaini Mkwizu1, 2, Nikiwe Kunjuzwa1,3 , Kenneth Ozoemena1 and Mkhulu Mathe1 1. Energy and Processes, Materials Science and Manufacturing, The Council for Scientific and Industrial Research (CSIR...

  13. Continuous production of nanostructured particles using spatial atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ommen, J. Ruud van, E-mail: j.r.vanommen@tudelft.nl; Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis [Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2015-03-15

    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ∼1 nm diameter are deposited onto titania (TiO{sub 2}) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.12–0.31 wt. % of Pt) at a rate of about 1 g min{sup −1}. Tuning the precursor injection velocity (10–40 m s{sup −1}) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100 °C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of core–shell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications.

  14. A Numerical Simulation of the Effect of Buffer Layer Band Gap on the Performances of nc-Si : H Based Solar Cells

    Directory of Open Access Journals (Sweden)

    H. Touati

    2016-06-01

    Full Text Available This paper describes an investigation, by using numerical simulation, into the impacts of i-nc-Si : H buffer layer band gap on the photovoltaic parameters of n-i-p hydrogenated nanocrystalline silicon (nc-Si : H solar cells. The output external cell parameters, like, the short-circuit current (JSC, the open circuit voltage (VOC, the fill factor (FF and efficiency (Eff are simulated by varying the mobility band gap (Eg of i-nc-Si : H buffer layer. Also, the band diagram of nc-Si : H n-i-p solar cell, the electric field and the traped hole density at i/p interface, and the external quantum efficiency, with different values of buffer layer band gap where optimized. The simulation result shows that in valence band and for both interfaces, the band offsets ΔEV1 at p-nc-Si : H (window layer / i-nc-Si : H (buffer layer and ΔEV2 at i-nc-Si : H (buffer layer / i-nc-Si : H (absorber layer can be affected by varying Eg. It is obtained that the values efficiency are 10.89 % and 11.33 % when the value of i-nc-Si : H buffer layer band gap are 1.4 eV and 1.55 eV, respectively. However, the i-nc-Si : H buffer layer band gap of 1.55 eV was optimized for obtaining a better efficiency for n-i-p solar cell based on hydrogenated nanocrystalline silicon.

  15. Reversible layer-by-layer deposition on solid substrates inspired by mussel byssus cuticle.

    Science.gov (United States)

    Kim, Suyeob; Kim, Dong Soo; Kang, Sung Min

    2014-01-01

    The protective coating on mussel (Mytilus galloprovincialis) byssus has attracted considerable research interest because of its excellent mechanical properties such as hardness and extensibility. These special properties are known to be highly related with specific interactions between mussel foot protein-1 and metal ions. In particular, the complexation between catechols in mfp-1 and iron(III) has been identified as a key interaction. This finding has given opportunities for pursuing promising applications. Herein, we report that emulating the properties of the mussel byssus cuticle provides an important platform for developing reversible layer-by-layer (LbL) deposition, an advanced technique for surface modification. LbL films were constructed on solid substrates by sequential immersion of substrates into solutions containing iron(III) and catecholic compounds. The thickness of the LbL films was effectively controlled by increasing the immersion steps, and the reversibility of the LbL deposition was demonstrated by addition of a chelating agent.

  16. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model

    Science.gov (United States)

    Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael

    2017-01-01

    A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.

  17. Atomic Layer Deposition of Chemical Passivation Layers and High Performance Anti-Reflection Coatings on Back-Illuminated Detectors

    Science.gov (United States)

    Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)

    2014-01-01

    A back-illuminated silicon photodetector has a layer of Al2O3 deposited on a silicon oxide surface that receives electromagnetic radiation to be detected. The Al2O3 layer has an antireflection coating deposited thereon. The Al2O3 layer provides a chemically resistant separation layer between the silicon oxide surface and the antireflection coating. The Al2O3 layer is thin enough that it is optically innocuous. Under deep ultraviolet radiation, the silicon oxide layer and the antireflection coating do not interact chemically. In one embodiment, the silicon photodetector has a delta-doped layer near (within a few nanometers of) the silicon oxide surface. The Al2O3 layer is expected to provide similar protection for doped layers fabricated using other methods, such as MBE, ion implantation and CVD deposition.

  18. Damage layer study of the overcoat deposited on the top magnetic layer of hard disks

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, R.H. [Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan (China); Chao, T.M. [Department of Applied Geomatics, Chien-Hsin University, JungLi 32097, Taiwan (China); Tan, A.H., E-mail: ahtan@uch.edu.tw [Department of Mechanical Engineering, Chien-Hsin University, JungLi 32097, Taiwan (China)

    2014-02-15

    This paper presents the effect of nanoscale damage layer on magnetic results obtained from the optimization of media overcoat deposition parameters on the top magnetic layer on magnetic hard disks. We have investigated the effects of interface interaction between the overcoat deposition parameters on the top magnetic layer on the media by using a plasma enhanced chemical vapor deposition (PECVD) on next generation hard disks. The goal is to achieve a reduced damage layer, lower head media spacing (HMS) and a higher spectrum of signal to noise ratio (SpSNR) optimized by using Taguchi experimental design with a four-factor three-level (L9) orthogonal array. An analysis of variance (ANOVA) was carried out to interpret the measured coercivity (Hc), HMS and SpSNR. It was found that source gas type is the most significant factor with a percentage contribution effect of 59.8% on HMS and 51.7% on SpSNR. The bias voltage is the second most significant factor with its percentage contribution being 24.2% on HMS and 31.0% on SpSNR. Overall, the optimum SpSNR was obtained using a C{sub 2}H{sub 2} source gas, −100 V bias voltage, 50 V anode voltage and 20 sccm gas flow rate, respectively. - Highlights: • Taguchi method and analysis of variance (ANOVA) are used in this study. • The optimal DLC deposition parameters are C{sub 2}H{sub 2} source gas, −100 V bias voltage, 50 V anode voltage and 20 sccm gas flow rate. • Compared with current design, optimum design can achieve a 0.56 nm lower HMS, a 0.51 dB higher SpSNR and better wear resistance. • The source gas type is the most significant factor with a percentage contribution effect of 59.8% on HMS and 51.7% on SpSNR.

  19. Atomic layer deposition of W - based layers on SiO2

    NARCIS (Netherlands)

    Bystrova, S.; Holleman, J.; Wolters, R.A.M.; Aarnink, A.A.I.

    2003-01-01

    W and W1-xNx , where x= 15- 22 at%, thin films were grown using the ALD (Atomic Layer Deposition) principle. Growth rate of W films is about 4- 5 monolayers/ cycle at 300- 350 ºC. Growth rate of W1-xNx is 0.5 monolayer/cycle at 325- 350 ºC. Standard Deviation (STDV) of thickness is about 2%

  20. Enhanced performance of C60 organic field effect transistors using a tris(8-hydroxyquinoline) aluminum buffer layer

    Institute of Scientific and Technical Information of China (English)

    Zheng Hong; Cheng Xiaoman; Tian Haijun; Zhao Geng

    2011-01-01

    We have investigated the properties of C60-based organic field effect transistors (OFETs) with a tris(8-hydroxyquinoline) aluminum (Alq3) buffer layer inserted between the source/drain electrodes and the active material.The electrical characteristics of OFETs are improved with the insertion of Aiq3 film.The peak field effect mobility is increased to 1.28 × 10-2 cm2/(V.s) and the threshold voltage is decreased to 10 V when the thickness of the Alq3 is 10 nm.The reason for the improved performance of the devices is probably due to the prevention of metal atoms diffusing into the C60 active layer and the reduction of the channel resistance in Alq3 films.

  1. Magnetization reversal dynamics in Au/Co/Au(111) ultrathin films: Effect of roughness of the buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Adanlete Adjanoh, A. [Departement de Physique, Faculte des Sciences de Tunis, Campus Universitaire le Belvedere, Tunis 1060 (Tunisia); Belhi, R., E-mail: Rachid.Belhi@fst.rnu.t [Departement de Physique, Faculte des Sciences de Tunis, Campus Universitaire le Belvedere, Tunis 1060 (Tunisia); Vogel, J.; Fruchart, O. [Institut Neel (CNRS and UJF), 25 rue des Martyrs, B.P. 166, 38042 Grenoble cedex 9 (France); Ayadi, M.; Abdelmoula, K. [Departement de Physique, Faculte des Sciences de Tunis, Campus Universitaire le Belvedere, Tunis 1060 (Tunisia)

    2010-09-15

    We present a study of the magnetization reversal dynamics in ultrathin Au/Co/Au films with perpendicular magnetic anisotropy, for a Co thickness of 0.5, 0.7 and 1 nm. In these films, the magnetization reversal is dominated by domain nucleation for t{sub Co}=0.5, 0.7 nm and by domain wall propagation for t{sub Co}=1 nm. The prevalence of domain nucleation for the thickness range 0.5-0.7 nm is different from results reported in the literature, for the same system and for the same thickness range, where the magnetization reversal took place mainly by domain wall motion. We attribute this difference to the effect of roughness of the Au buffer layer on the morphology of the magnetic layer.

  2. Secondary Crater Populations on the Martian South Polar Layered Deposits

    Science.gov (United States)

    Schaller, E. L.; Murray, B.; Rasmussen, J.; Byrne, S.

    2003-12-01

    Understanding the formation and evolution of the Mars South Polar Layered Deposits (SPLD) is an important step toward unraveling Martian climate history. The cratering record on the SPLD suggests that the surface of these deposits has been recently modified. Extremely shallow large (>800 m) impact craters along with a lack of small (material from a primary impact event, are important stratigraphic markers that can shed light on the modification history of the deposits. Using MOC, THEMIS and MOLA data, we examined the broad secondary crater field surrounding McMurdo crater (84.5S, 0W) on the SPLD, the field surrounding a 15 km crater at 80.5S, 284W on the SPLD, and the field surrounding a 43 km crater at 81S, 285W off of the SPLD. These datasets provided us with the opportunity to compare and contrast the morphologies of craters in different secondary crater fields both on and off of the deposits. We measured the depth to diameter (d/D) ratios of secondary craters and compared them with those of other primary craters on the deposits measured by Koutnik et al (2002). Among secondary craters on the SPLD, we found a correlation between crater d/D and the steepness of the slope on which the crater resides. Specifically, craters with extremely low d/D ratios (indicating high modification) are found more often on flat areas. Those with high d/D ratios are often associated with scarps and are on higher slopes. This indicates that there have been different resurfacing rates over areas as small as several hundred square kilometers and that modification occurs more readily on flat areas. We examine different mechanisms that may have led to decreased d/D ratios such as blanketing, ice flow, wind erosion or viscous relaxation. We find that the d/D ratios of secondary craters on flat regions of the SPLD are comparable with the extremely low d/D ratios of the primary craters elsewhere on the deposits measured by Koutnik et al (2002). The d/D ratios of secondary craters on the

  3. The mechanical robustness of atomic-layer- and molecular-layer-deposited coatings on polymer substrates

    Science.gov (United States)

    Miller, David C.; Foster, Ross R.; Zhang, Yadong; Jen, Shih-Hui; Bertrand, Jacob A.; Lu, Zhixing; Seghete, Dragos; O'Patchen, Jennifer L.; Yang, Ronggui; Lee, Yung-Cheng; George, Steven M.; Dunn, Martin L.

    2009-05-01

    The mechanical robustness of atomic layer deposited alumina and recently developed molecular layer deposited aluminum alkoxide ("alucone") films, as well as laminated composite films composed of both materials, was characterized using mechanical tensile tests along with a recently developed fluorescent tag to visualize channel cracks in the transparent films. All coatings were deposited on polyethylene naphthalate substrates and demonstrated a similar evolution of damage morphology according to applied strain, including channel crack initiation, crack propagation at the critical strain, crack densification up to saturation, and transverse crack formation associated with buckling and delamination. From measurements of crack density versus applied tensile strain coupled with a fracture mechanics model, the mode I fracture toughness of alumina and alucone films was determined to be KIC=1.89±0.10 and 0.17±0.02 MPa m0.5, respectively. From measurements of the saturated crack density, the critical interfacial shear stress was estimated to be τc=39.5±8.3 and 66.6±6.1 MPa, respectively. The toughness of nanometer-scale alumina was comparable to that of alumina thin films grown using other techniques, whereas alucone was quite brittle. The use of alucone as a spacer layer between alumina films was not found to increase the critical strain at fracture for the composite films. This performance is attributed to the low toughness of alucone. The experimental results were supported by companion simulations using fracture mechanics formalism for multilayer films. To aid future development, the modeling method was used to study the increase in the toughness and elastic modulus of the spacer layer required to render improved critical strain at fracture. These results may be applied to a broad variety of multilayer material systems composed of ceramic and spacer layers to yield robust coatings for use in chemical barrier and other applications.

  4. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides.

    Science.gov (United States)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeisser, Dieter; Van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; De Gendt, Stefan

    2015-06-28

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.

  5. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luka, G., E-mail: gluka@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Witkowski, B.S.; Wachnicki, L.; Jakiela, R. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Virt, I.S. [University of Rzeszow, Rzeszow (Poland); Drohobych Ivan Franko State Pedagogical University, Drohobych (Ukraine); Andrzejczuk, M.; Lewandowska, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland)

    2014-08-01

    Highlights: • Transparent and conductive ZnO:Al films were grown by atomic layer deposition. • The films were grown on flexible substrates at low growth temperatures (110–140 °C). • So-obtained films have low resistivities, of the order of 10{sup −3} Ω cm. • Bending tests indicated a critical bending radius of ≈1.2 cm. • Possible sources of the film resistivity changes upon bending are proposed. - Abstract: Aluminum-doped zinc oxide (AZO) films were grown on polyethylene terephthalate (PET) substrates by atomic layer deposition (ALD) at low deposition temperatures (110–140 °C). The films have low resistivities, ∼10{sup −3} Ω cm, and high transparency (∼90%) in the visible range. Bending tests indicated a critical bending radius of ≈1.2 cm, below which the resistivity changes became irreversible. The films deposited on PET with additional buffer layer are more stable upon bending and temperature changes.

  6. Damage evaluation in graphene underlying atomic layer deposition dielectrics.

    Science.gov (United States)

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A

    2015-08-27

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.

  7. Phase change properties of Ti-Sb-Te thin films deposited by thermal atomic layer deposition

    Science.gov (United States)

    Song, Sannian; Shen, Lanlan; Song, Zhitang; Yao, Dongning; Guo, Tianqi; Li, Le; Liu, Bo; Wu, Liangcai; Cheng, Yan; Ding, Yuqiang; Feng, Songlin

    2016-10-01

    Phase change random access memory (PCM) appears to be the strongest candidate for next-generation high density nonvolatile memory. The fabrication of ultrahigh density PCM depends heavily on the thin film growth technique for the phase changing chalcogenide material. In this study, TiSb2Te4 (TST) thin films were deposited by thermal atomic layer deposition (ALD) method using TiCl4, SbCl3, (Et3Si)2Te as precursors. The threshold voltage for the cell based on thermal ALD-deposited TST is about 2.0 V, which is much lower than that (3.5 V) of the device based on PVD-deposited Ge2Sb2Te5 (GST) with the identical cell architecture. Tests of TST-based PCM cells have demonstrated a fast switching rate of 100 ns. Furthermore, because of the lower melting point and thermal conductivities of TST materials, TST-based PCM cells exhibit 19% reduction of pulse voltages for Reset operation compared with GST-based PCM cells. These results show that thermal ALD is an attractive method for the preparation of phase change materials.

  8. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham; Nikzad, Shouleh [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-15

    Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.

  9. Microwave annealing effects on ZnO films deposited by atomic layer deposition

    Institute of Scientific and Technical Information of China (English)

    Zhao Shirui; Dong Yabin; Yu Mingyan; Guo Xiaolong; Xu Xinwei; Jing Yupeng; Xia Yang

    2014-01-01

    Zinc oxide thin films deposited on glass substrate at 150 ℃ by atomic layer deposition were annealed by the microwave method at temperatures below 500 ℃.The microwave annealing effects on the structural and luminescent properties of ZnO films have been investigated by X-ray diffraction and photoluminescence.The results show that the MWA process can increase the crystal quality of ZnO thin films with a lower annealing temperature than RTA and relatively decrease the green luminescence of ZnO films.The observed changes have demonstrated that MWA is a viable technique for improving the crystalline quality of ZnO thin film on glass.

  10. Device performance and lifetime of polymer:fullerene solar cells with UV-ozone-irradiated hole-collecting buffer layers.

    Science.gov (United States)

    Lee, Seungsoo; Nam, Sungho; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2011-11-18

    We report the influence of UV-ozone irradiation of the hole-collecting buffer layers on the performance and lifetime of polymer:fullerene solar cells. UV-ozone irradiation was targeted at the surface of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layers by varying the irradiation time up to 600 s. The change of the surface characteristics in the PEDOT:PSS after UV-ozone irradiation was measured by employing optical absorption spectroscopy, photoelectron yield spectroscopy, and contact angle measurements, while Raman and X-ray photoelectron spectroscopy techniques were introduced for more microscopic analysis. Results showed that the UV-ozone irradiation changed the chemical structure/composition of the surface of the PEDOT:PSS layers leading to the gradual increase of ionization potential with irradiation time in the presence of up-and-down variations in the contact angle (polarity). This surface property change was attributed to the formation of oxidative components, as evidenced by XPS and Auger electron images, which affected the sheet resistance of the PEDOT:PSS layers. Interestingly, device performance was slightly improved by short irradiation (up to 10 s), whereas it was gradually decreased by further irradiation. The short-duration illumination test showed that the lifetime of solar cells with the UV-ozone irradiated PEDOT:PSS layer was improved due to the protective role of the oxidative components formed upon UV-ozone irradiation against the attack of sulfonic acid groups in the PEDOT:PSS layer to the active layer.

  11. Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer

    Directory of Open Access Journals (Sweden)

    T. Liu

    2012-09-01

    Full Text Available By systematically comparing the magnetic properties of the Ta/CoFeB/Ta and MgO/CoFeB/MgO structures with and without a submonolayer of MgO, Ta, V, Nb, Hf and W inserted in the middle of the CoFeB layer, we have proved that the observed perpendicular magnetic anisotropy (PMA in Ta/CoFeB/MgO sandwiches is solely originated from the CoFeB/MgO interface with the Ta buffer acting to enhance the CoFeB/MgO interface anisotropy significantly. Moreover, replacing Ta with Hf causes the CoFeB/MgO interfacial PMA further enhanced by 35%, and the CoFeB layer with perpendicular magnetization has a much larger critical thickness accordingly, leaving a wider thickness margin for the CoFeB/MgO-based perpendicular magnetic tunnel junction optimization. Also the sputter deposited thin Hf films are amorphous with low surface roughness. These results will ensure the Hf/CoFeB/MgO more promising material system for PMA device development.

  12. Physical-Layer Security of a Buffer-Aided Full-Duplex Relaying System

    KAUST Repository

    El Shafie, Ahmed

    2016-07-07

    This letter proposes a novel hybrid half-/full-duplex relaying scheme to enhance the relay channel security. A source node (Alice) communicates with her destination node (Bob) in the presence of a buffer-aided full-duplex relay node (Rooney) and a potential eavesdropper (Eve). Rooney adopts two different relaying, namely randomize-and-forward and decode-andforward relaying strategies, to improve the security of the legitimate system. In the first relaying strategy, Rooney uses a codebook different from that used at Alice. In the second relaying strategy, Rooney and Alice use the same codebooks. In addition, Rooney switches between half-duplex and full-duplex modes to further enhance the security of the legitimate system. The numerical results demonstrate that our proposed scheme achieves a significant average secrecy end-to-end throughput improvement relative to the conventional bufferless full-duplex relaying scheme.

  13. Oxygen-free atomic layer deposition of indium sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  14. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Science.gov (United States)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  15. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zuzuarregui, Ana, E-mail: a.zuzuarregui@nanogune.eu; Gregorczyk, Keith E. [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier [IK4-Tekniker, Iñaki Goenaga 5, 20600 Eibar (Spain); Rodríguez, Jorge [Torresol Energy (SENER Group), Avda. de Zugazarte 61, 48930 Las Arenas (Spain); Knez, Mato [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)

    2015-08-10

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  16. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition.

    Science.gov (United States)

    Sobel, Nicolas; Hess, Christian

    2015-12-01

    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy.

  17. Atomic layer deposition overcoating: tuning catalyst selectivity for biomass conversion.

    Science.gov (United States)

    Zhang, Hongbo; Gu, Xiang-Kui; Canlas, Christian; Kropf, A Jeremy; Aich, Payoli; Greeley, Jeffrey P; Elam, Jeffrey W; Meyers, Randall J; Dumesic, James A; Stair, Peter C; Marshall, Christopher L

    2014-11-01

    The terraces, edges, and facets of nanoparticles are all active sites for heterogeneous catalysis. These different active sites may cause the formation of various products during the catalytic reaction. Here we report that the step sites of Pd nanoparticles (NPs) can be covered precisely by the atomic layer deposition (ALD) method, whereas the terrace sites remain as active component for the hydrogenation of furfural. Increasing the thickness of the ALD-generated overcoats restricts the adsorption of furfural onto the step sites of Pd NPs and increases the selectivity to furan. Furan selectivities and furfural conversions are linearly correlated for samples with or without an overcoating, though the slopes differ. The ALD technique can tune the selectivity of furfural hydrogenation over Pd NPs and has improved our understanding of the reaction mechanism. The above conclusions are further supported by density functional theory (DFT) calculations.

  18. Analysis by high-resolution electron microscopy of elastic strain in thick InAs layers embedded in Ga{sub 0.47}In{sub 0.53}As buffers on InP(0 0 1) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gatel, C., E-mail: gatel@cemes.fr [CNRS, CEMES (Centre d' Elaboration des Materiaux et d' Etudes Structurales), BP 94347, 29 rue J. Marvig, 31055 Toulouse (France)] [Universite de Toulouse, UPS, 31055 Toulouse (France); Tang, H.; Crestou, C.; Ponchet, A. [CNRS, CEMES (Centre d' Elaboration des Materiaux et d' Etudes Structurales), BP 94347, 29 rue J. Marvig, 31055 Toulouse (France)] [Universite de Toulouse, UPS, 31055 Toulouse (France); Bertru, N.; Dore, F.; Folliot, H. [FOTON-LENS-INSA, 20 av. des Buttes de Coesmes, CS 14315, 35043 Rennes (France)

    2010-05-15

    Elastic strain has been investigated by transmission electron microscopy in nanometric InAs layers grown on Ga{sub 0.47}In{sub 0.53}As/InP(0 0 1) by molecular beam epitaxy using a residual Sb flux. Deposits of 10 and 15 monolayers of InAs (3 and 4.5 nm) remain elastically stressed with a two-dimensional growth mode. The out-of-plane strain in the layers is analyzed by cross-sectional high-resolution electron microscopy. A distortion of the substrate below and on top of the InAs layers is detected and is attributed to a significant surface relaxation effect due to thinning. Surface relaxation is modeled by three-dimensional finite element modeling. An additional relaxation effect is obtained when the sample is not infinite along the direction perpendicular to the thinning. This effect enhances the buffer distortion of the buffers below and on top of the strained layers. Taking into account thin foil effects, the experimental out-of-plane strain is in excellent agreement with the theoretical value calculated for a pure InAs layer (i.e. 0.035), demonstrating the high level of strain and stress in the layers.

  19. Very high frequency plasma reactant for atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Tae Hyung; Yeom, Geun Young [Department of Advanced Materials Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Kangsik; Lee, Zonghoon [School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Jung, Hanearl; Lee, Chang Wan [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Han-Bo-Ram, E-mail: hbrlee@inu.ac.kr [Department of Materials Science and Engineering, Incheon National University, 406-840 Incheon (Korea, Republic of)

    2016-11-30

    Highlights: • Fundamental research plasma process for thin film deposition is presented. • VHF plasma source for PE-ALD Al{sub 2}O{sub 3} was employed to reduce plasma damage. • The use of VHF plasma improved all of the film qualities and growth characteristics. - Abstract: Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al{sub 2}O{sub 3} were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al{sub 2}O{sub 3} shows superior physical and electrical properties over RF PE-ALD Al{sub 2}O{sub 3}, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al{sub 2}O{sub 3} on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  20. Characterization and modeling of atomic layer deposited high-density trench capacitors in silicon

    NARCIS (Netherlands)

    Matters-Kammerer, M.K.; Jinesh, K.B.; Rijks, T.G.S.M.; Roozeboom, F.; Klootwijk, J.H.

    2012-01-01

    A detailed electrical analysis of multiple layer trench capacitors fabricated in silicon with atomic-layer-deposited Al 2O 3 and TiN is presented. It is shown that in situ ozone annealing of the Al 2O 3 layers prior to the TiN electrode deposition significantly improves the electric properties of th

  1. Environmental Modeling, The Buffer Priority layers for Nitrogen Removal identify priority forest/grass buffer sites by subwatershed. Land use, hydrology, soil, and landscape characteristics were analyzed to rank opportunities with high nitrogen removal potential., Published in 2014, Smaller than 1:100000 scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Environmental Modeling dataset current as of 2014. The Buffer Priority layers for Nitrogen Removal identify priority forest/grass buffer sites by subwatershed. Land...

  2. Simulation studies on the effect of a buffer layer on the external parameters of hydrogenated amorphous silicon –– solar cells

    Indian Academy of Sciences (India)

    K Rajeev Kumar; M Zeman

    2008-10-01

    Device modeling of –– junction amorphous silicon solar cells has been carried out using the amorphous semiconductor analysis (ASA) simulation programme. The aim of the study was to explain the role of a buffer layer in between the - and -layers of the –– solar cell on the external parameters such as dark current density and open circuit voltage. Investigations based on the simulation of dark – characteristics revealed that as the buffer layer thickness increases the dark current for a given voltage decreases.

  3. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.

    Science.gov (United States)

    Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng

    2013-01-01

    A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.

  4. Quantum transport modeling of the symmetric Fe/FeO0.5/MgO magnetic tunnel junction: the effects of correlations in the buffer layer.

    Science.gov (United States)

    Timoshevskii, Vladimir; Hu, Yibin; Marcotte, Étienne; Guo, Hong

    2014-01-08

    We report ab initio simulations of quantum transport properties of Fe/MgO/Fe trilayer structures with FeO0.5 buffer iron oxide layer, where on-site Coulomb interaction is explicitly taken into account by local density approximation + Hubbard U approach. We show that on-site Coulomb repulsion in the iron-oxygen layer can cause a dramatic drop of the tunnel magnetoresistance of the system. We present an understanding of microscopic details of this phenomenon, connecting it to localization of electronic states of particular symmetry, which takes place in the buffer Fe-O layer, when on-site Coulomb repulsion is introduced. We further study the possible influence of the symmetry reduction in the buffer Fe-O layer on the transport properties of the Fe/MgO/Fe interface.

  5. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers

    Science.gov (United States)

    2016-01-01

    We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411

  6. Research Progress on Buffer Layer Materials of CIGS Thin Film Solar Cell%CIGS薄膜太阳能电池缓冲层材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    王卫兵; 刘平; 李伟; 马凤仓; 刘新宽; 陈小红

    2012-01-01

    CIGS薄膜太阳能电池的缓冲层为低带隙CIGS吸收层与高带隙ZnO窗口层之间形成过渡,减少两者带隙的晶格失配和带隙失调,并可防止溅射ZnO窗口层时给CIGS吸收层带来损害等,对提高CIGS薄膜太阳能电池效率起了重要作用.介绍了CIGS薄膜太阳能电池缓冲层材料的分类和制备工艺,主要阐述了CdS、ZnS及In2S3薄膜缓冲层材料及化学水浴法、原子层化学气相沉积法、金属化合物化学气相沉积法等制备工艺的研究现状,最后指出CIGS太阳能电池缓冲层在制备工艺、环境保护及大规模工业化生产中遇到的问题,并展望了其发展方向.%The buffer layers of CTGS thin film solar cells can form transition layers between low band gap CIGS absorber layers and high band gap of ZnO window layers, which reduces the lattice matching and band gap difference, and prevents damage of CIGS absorber layer from sputtering ZnO window layer, and therefore plays an important role in improving efficiency of CIGS thin film solar cells. Classification and preparation technology of CIGS thim film solar cells material are discussed, including the research progress of CdS,ZnS and In2S3 thin film buffer layer materials, and chemical bath deposition (CBD), atomic layer chemical vapor deposition (ALCVD), metal organic chemical vapor deposition (MOCVD) and other preparation technologies. The problems and development directions of buffer layer materials of CIGS thin film solar cells in preparation process, environment protection and large-scale industrial production are finally prospected.

  7. Synthesis of multicomponent metallic layers during impulse plasma deposition

    Directory of Open Access Journals (Sweden)

    Nowakowska-Langier Katarzyna

    2015-12-01

    Full Text Available Pulsed plasma in the impulse plasma deposition (IPD synthesis is generated in a coaxial accelerator by strong periodic electrical pulses, and it is distributed in a form of energetic plasma packets. A nearly complete ionization of gas, in these conditions of plasma generation, favors the nucleation of new phase of ions and synthesis of metastable materials in a form of coatings which are characterized by amorphous and/or nanocrystalline structure. In this work, the Fe–Cu alloy, which is immiscible in the state of equilibrium, was selected as a model system to study the possibility of formation of a non-equilibrium phase during the IPD synthesis. Structural characterization of the layers was done by means of X-ray diffraction and conversion-electron Mössbauer spectroscopy. It was found that supersaturated solid solutions were created as a result of mixing and/or alloying effects between the layer components delivered to the substrate independently and separately in time. Therefore, the solubility in the Fe–Cu system was largely extended in relation to the equilibrium conditions, as described by the equilibrium phase diagram in the solid state.

  8. Confirmation of sublunarean voids and thin layering in mare deposits

    Science.gov (United States)

    Robinson, M. S.; Ashley, J. W.; Boyd, A. K.; Wagner, R. V.; Speyerer, E. J.; Ray Hawke, B.; Hiesinger, H.; van der Bogert, C. H.

    2012-08-01

    Typical flow thicknesses of lunar mare basalts were not well constrained in the past, because as craters and rilles age, downslope movement of loose material tends to mix and bury stratigraphy, obscuring the three dimensional nature of the maria. New Lunar Reconnaissance Orbiter Camera high resolution images unambiguously reveal thicknesses of mare basalt layers exposed in impact craters, rilles, and steep-walled pits. Pits up to one hundred meters deep present relatively unmodified, near-vertical sections of mare in three cases, and many young impact craters also expose well preserved sections of mare. Oblique views of each pit and many of these craters reveal multiple layers, 3 to 14 m thick, indicating that eruptions typically produced a series of ˜10 m thick flows (or flow lobes) rather than flows many tens to hundreds of meters thick. Additionally, these images unambiguously show that the floors of two pits extend beneath the mare surfaces, thus revealing sublunarean voids of unknown lateral extent. We also document the occurrence of pits that may be expressions of collapse into subsurface voids in non-mare impact melt deposits. These voids are compelling targets for future human and robotic exploration, with potential as temporary shelters, habitations, or geologic museums.

  9. Very high frequency plasma reactant for atomic layer deposition

    Science.gov (United States)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  10. Buffer Layers May Reduce Recombination in Solid State Dye-Sensitized Solar Cells (Invited)

    Science.gov (United States)

    Proctor, J.; Brennan, T.; Bakke, J.; Bent, S.

    2009-12-01

    The dye-sensitized solar cell is a new and renewable energy device that aims to compete with conventional fuels with its low cost and ease to manufacture. While the efficiencies of dye-sensitized solar cells are improving, they are not yet cost-competitive with current energy sources such as coal. Our project focuses on improving the efficiency of these organic solar cells by adding a self-assembled monolayer (SAM) in between the electron donor, a dye called Z907, and the semiconductor, nanoporous titania (TiO2). This SAM will theoretically reduce an unfavorable process called recombination, in which the light-excited electrons fall from their high-energy state directly back into the dye or hole-transport medium, instead of flowing through the circuit. The SAM molecules that we are using have a phosphonic acid head which should bind readily to the TiO2, and an amine group tail to tether the dye. To deposit the SAMs, the phosphonic acids are first dissolved in an organic solvent with the help of either acid (HCl) or base (KOH). We used Fourier Transform Infrared Spectroscopy (FTIR) to see what differences there were between acidic and basic deposition. FTIR analysis showed greater attachment of SAMs using acidic solutions rather than basic solutions for two out of the three SAMs. In the third, deposition was fairly even. By developing a reliable procedure to deposit SAMs onto titania, we will be able to more accurately test the effects of SAMs on dye-sensitized solar cells. This could improve the efficiencies of these organic devices and possibly offer a greener and cost-competitive alternative to fossil fuels.

  11. Effects of BaTiO3 and SrTiO3 as the buffer layers of epitaxial BiFeO3 thin films

    Science.gov (United States)

    Feng, Yu; Wang, Can; Tian, ShiLu; Zhou, Yong; Ge, Chen; Guo, HaiZhong; He, Meng; Jin, KuiJuan; Yang, GuoZhen

    2017-06-01

    BiFeO3 (BFO) thin films with BaTiO3 (BTO) or SrTiO3 (STO) as buffer layer were epitaxially grown on SrRuO3-covered SrTiO3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.

  12. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    Science.gov (United States)

    Lu, Hsin-Wei; Tsai, Cheng-Che; Hong, Cheng-Shong; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2016-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF3 (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq3) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF3 film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF3 film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF3 film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 24760 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  13. Recombination-current suppression in GaAs p-n junctions grown on AlGaAs buffer layers by molecular-beam epitaxy

    Science.gov (United States)

    Rancour, D. P.; Melloch, M. R.; Pierret, R. F.; Lundstrom, M. S.; Klausmeier-Brown, M. E.; Kyono, C. S.

    1987-08-01

    n+pp+GaAs and n+pP+ GaAs/GaAs/Al0.3Ga0.7As mesa diodes have been fabricated from films grown by molecular-beam epitaxy. The diodes made from films employing an AlGaAs buffer layer show marked improvements (a factor of 5 reduction) in recombination current densities. Deep level transient spectroscopy measurements moreover indicate that deep level concentrations are reduced by the AlGaAs buffer.

  14. Finding the lost open-circuit voltage in polymer solar cells by UV-ozone treatment of the nickel acetate anode buffer layer.

    Science.gov (United States)

    Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang

    2014-06-25

    Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.

  15. Influence of Different Annealing Ambients on the Properties of Zinc Sulfide Prepared by Atomic Layer Deposition

    Science.gov (United States)

    Yoo, Dongjun; Heo, Seung Chan; Choi, Moon Suk; Kim, Dohyung; Chung, Chulwon; Choi, Hag Young; Jeon, Hyeongtag; Choi, Changhwan

    2013-10-01

    The effects of different post annealing ambients (vacuum, O2, and H2S gases) on the chemical, structural, and optical properties of zinc sulfide (ZnS) thin films prepared by atomic layer deposition (ALD) were investigated. Diethylzinc [DEZ, Zn(C2H5)2] and H2S gas were used as precursor and reactant gas, respectively. Compared to as-deposited 50-nm-thick ZnS film, the optical energy band gap (Eg) of ZnS annealed under vacuum and H2S conditions increased from 3.73 to 3.85 eV, while it decreased down to 3.23 eV for the O2 annealing case. The change in the Eg of the thicker ZnS is similar to that of the thinner ZnS case. This behavior is related to the change in the Zn to S ratio. The vacuum and H2S anneals increases the Zn/S ratio, leading to higher Zn interstitial defects or S vacancy sites in the films. X-ray diffraction analysis reveals that ZnS thin film has a preferred orientation of hexagonal wurtizte (002) and cubic zinc blend (111) at ˜28.2°, and its grain size changes in a range from 18.79 to 28.14 nm after annealing. However, for O2 annealing, the patterns of both the newly formed ZnO phase and the reduced ZnS phase appear at 34.04°. This result suggests that change in the composition and crystal structure during the process significantly affects the optical properties of ZnS thin film, which should be taken into consideration in searching for an alternative buffer layer for Cu2InGaSe(S)4 (CIGS) thin film solar cell systems.

  16. Monodisperse gold nanoparticles formed on bacterial crystalline surface layers (S-layers) by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dieluweit, S. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Pum, D. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Sleytr, U.B. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Kautek, W. [Department for Physical Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna (Austria)]. E-mail: wolfgang.kautek@univie.ac.at

    2005-12-15

    The fabrication of patterned arrays of nanoparticles whose electronic, optical and magnetic properties will find technological applications, such as ultra-high-density memories, is currently one of the most important objectives of inorganic material research. In this study, the in situ electroless nucleation of ordered two-dimensional arrays of gold nanoparticles (5 nm in size) by using bacterial S-layers as molecular templates and their characterization by small spot X-ray photoelectron emission spectroscopy (XPS) is presented. This yielded the elemental composition of the nanoclusters, which consisted of almost entirely elemental gold, and possible side reactions on the cluster and protein surface. The preferential deposition of the gold nanoparticles on the S-layer suggests that topography and functional groups are important for superlattice formation.

  17. Synthesis, Characterization and Photoluminescence of Well-Ordered ZnO Micropillars Grown on ZnO Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    LU Hongbing; TIAN Yu; HU Meifeng; SHUAI Min; LI Jinchai

    2007-01-01

    Using ZnO buffer layers prepared by simply thermaloxidation of ion beam sputtered Zn films, highly oriented anduniformly aligned single-crystalline ZnO micropillars arrays have been synthesized by thermal evaporation of Zn powder with free catalysts at low temperature of 430 ℃. The ZnO micropillars show sharp hexagonal umbrella-like tips with thin ZnO nanowire grown on the tips. The umbrella-like tips grow in a layer-by-layer mode along the direction of [001]. The growth mechanism has been discussed. The formation of the micropillars basically depends on the gradually decreasing Zn vapor pressure and subse-quently cooling process. The photo1luminescence (PL) spectrum indicates a moderately good crystal quality of the ZnO micropillars. Our results may reinforce the understanding of the formation mechanism of different ZnO nano/microstructures. This kind of complex microstructures may find potential applications in multi-functional microdevices, optoelectronic and field emission devices.

  18. Magnetic anisotropy of crystalline Fe films grown on (001 GaAs substrates using Ge buffer layers

    Directory of Open Access Journals (Sweden)

    Seul-Ki Bac

    2016-05-01

    Full Text Available Magnetic anisotropy of Fe films grown on (001 GaAs substrates using Ge buffer layers were investigated by planar Hall effect measurements. In addition to phenomena arising from dominant cubic symmetry of the Fe specimen, the study of angular dependence of magnetization reversal revealed breaking of this symmetry in the form of systematic asymmetric shifts of magnetic hysteresis loops around the crystallographic directions. We ascribe such symmetry breaking to an admixture of uniaxial anisotropy associated with the [100] direction in the Fe film. To determine the parameters associated with this uniaxial anisotropy, we quantitatively analyze the asymmetric shifts of the hysteresis loop centers from the directions. Even though the value of these parameters turns out to be relatively small compared to that of the cubic anisotropy (by about two orders of magnitude, they survive up to room temperature.

  19. Magnetic anisotropy of crystalline Fe films grown on (001) GaAs substrates using Ge buffer layers

    Science.gov (United States)

    Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyeop; Choi, Seonghoon; Yoo, Taehee; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2016-05-01

    Magnetic anisotropy of Fe films grown on (001) GaAs substrates using Ge buffer layers were investigated by planar Hall effect measurements. In addition to phenomena arising from dominant cubic symmetry of the Fe specimen, the study of angular dependence of magnetization reversal revealed breaking of this symmetry in the form of systematic asymmetric shifts of magnetic hysteresis loops around the crystallographic directions. We ascribe such symmetry breaking to an admixture of uniaxial anisotropy associated with the [100] direction in the Fe film. To determine the parameters associated with this uniaxial anisotropy, we quantitatively analyze the asymmetric shifts of the hysteresis loop centers from the directions. Even though the value of these parameters turns out to be relatively small compared to that of the cubic anisotropy (by about two orders of magnitude), they survive up to room temperature.

  20. Vacuum Electron-Beam Evaporation of Fe Nanocrystals on Si3N4 Buffer Layer for carbon Nanotube Growth

    Institute of Scientific and Technical Information of China (English)

    万青; 王太宏; 林成鲁

    2003-01-01

    Vacuum electron-beam evaporated iron nanocrystal is used for the growth of carbon nanotubes. Atomic force microscopy and Raman scattering studies reveal the formation of beta-iron silicide islands on bare silicon substrate after annealing at 700°C in N2 ambient. In order to eliminate the influence of iron-silicon interaction, Si3N4 buffer layer with the thickness of 80 nm is used. This technical route prevents effectively the formation of iron silicide and improves the quality of the iron nanocrystals. Using these iron nanocrystals with high density (about 7 × 1010/cm2) as catalyst, high-density multiwall carbon nanotubes are synthesized on Si3N4/Si substrate.