WorldWideScience

Sample records for buffer gas cooled

  1. Intense Atomic and Molecular Beams via Neon Buffer Gas Cooling

    CERN Document Server

    Patterson, David; Doyle, John M

    2008-01-01

    We realize a continuous guided beam of cold deuterated ammonia with a flux of 3e11 ND3 molecules/s and a continuous free-space beam of cold potassium with a flux of 1e16 K atoms/s. A novel feature of the buffer gas source used to produce these beams is cold neon, which, due to intermediate Knudsen number beam dynamics, produces a forward velocity and low-energy tail that is comparable to much colder helium-based sources. We expect this source to be trivially generalizable to a very wide range of atomic and molecular species with significant vapor pressure below 1000 K. This source has properties that make it a good starting point for laser cooling of molecules or atoms, cold collision studies, trapping, or nonlinear optics in buffer-gas-cooled atomic or molecular gases.

  2. A buffer gas cooled beam of barium monohydride

    Science.gov (United States)

    Iwata, Geoffrey; Tarallo, Marco; Zelevinsky, Tanya

    2016-05-01

    Significant advances in direct laser cooling of diatomic molecules have opened up a wide array of molecular species to precision studies spanning many-body physics, quantum collisions and ultracold dissociation. We present a cryogenic beam source of barium monohydride (BaH), and study laser ablation of solid precursor targets as well as helium buffer gas cooling dynamics. Additionally, we cover progress towards a molecular magneto-optical trap, with spectroscopic studies of relevant cooling transitions in the B2 Σ <--X2 Σ manifold in laser ablated molecules, including resolution of hyperfine structure and precision measurements of the vibrational Frank-Condon factors. Finally, we examine the feasibility of photo dissociation of trapped BaH molecules to yield optically accessible samples of ultracold hydrogen.

  3. Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas.

    Science.gov (United States)

    Hansen, A K; Versolato, O O; Kłosowski, L; Kristensen, S B; Gingell, A; Schwarz, M; Windberger, A; Ullrich, J; López-Urrutia, J R Crespo; Drewsen, M

    2014-04-01

    The preparation of cold molecules is of great importance in many contexts, such as fundamental physics investigations, high-resolution spectroscopy of complex molecules, cold chemistry and astrochemistry. One versatile and widely applied method to cool molecules is helium buffer-gas cooling in either a supersonic beam expansion or a cryogenic trap environment. Another more recent method applicable to trapped molecular ions relies on sympathetic translational cooling, through collisional interactions with co-trapped, laser-cooled atomic ions, into spatially ordered structures called Coulomb crystals, combined with laser-controlled internal-state preparation. Here we present experimental results on helium buffer-gas cooling of the rotational degrees of freedom of MgH(+) molecular ions, which have been trapped and sympathetically cooled in a cryogenic linear radio-frequency quadrupole trap. With helium collision rates of only about ten per second--that is, four to five orders of magnitude lower than in typical buffer-gas cooling settings--we have cooled a single molecular ion to a rotational temperature of 7.5(+0.9)(-0.7) kelvin, the lowest such temperature so far measured. In addition, by varying the shape of, or the number of atomic and molecular ions in, larger Coulomb crystals, or both, we have tuned the effective rotational temperature from about 7 kelvin to about 60 kelvin by changing the translational micromotion energy of the ions. The extremely low helium collision rate may allow for sympathetic sideband cooling of single molecular ions, and eventually make quantum-logic spectroscopy of buffer-gas-cooled molecular ions feasible. Furthermore, application of the present cooling scheme to complex molecular ions should enable single- or few-state manipulations of individual molecules of biological interest. PMID:24670662

  4. Buffer-Gas Cooling of a Single Ion in a Multipole Radio Frequency Trap Beyond the Critical Mass Ratio

    Science.gov (United States)

    Höltkemeier, Bastian; Weckesser, Pascal; López-Carrera, Henry; Weidemüller, Matthias

    2016-06-01

    We theoretically investigate the dynamics of a trapped ion immersed in a spatially localized buffer gas. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination with a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer-gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer-gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. Final ion temperatures down to the millikelvin regime can be achieved by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling).

  5. High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules

    CERN Document Server

    Tokunaga, Sean; Tarbutt, M; Darquié, B

    2016-01-01

    We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers may be measurable. The molecules are produced with a rotational temperature of approximately 6~K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2~$\\mu$m antisymmetric Re=O stretching mode of MTO with a resolution of 8~MHz and a frequency accuracy of 30~MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state.

  6. Buffer gas loading and Doppler cooling of strontium ions in a planar Paul trap

    Science.gov (United States)

    Clark, Robert; Brown, Kenneth; Labaziewicz, Jaroslaw; Richerme, Philip; Chuang, Isaac

    2006-05-01

    Traditional geometries for ion traps involve three dimensional structures which may be difficult to assemble in complex geometries demanded by applications such as large-scale quantum computation. Planar Paul traps provide an alternative approach [Chiaverini et. al., Quant. Inf. Comput. 5, 419 (2005)], in which the RF and DC electrodes are placed in a single plane, providing simpler fabrication and greater optical access to the trapped ions. We have designed and constructed a planar Paul trap using copper electrodes on a Rogers 4350 substrate. Strontium ions were loaded into this structure at UHV, and also at high vacuum using helium buffer gas cooling. The temperature of the ion cloud as a function of buffer gas pressure is compared to predictions from a model which includes ion-helium collisions and RF heating. The measured trap parameters, including secular frequencies, trap depth, and RF heating rates, agree well with a pseudopotential model based on finite-element electrostatic calculations.

  7. Cooling, Collisions and non-Sticking of Polyatomic Molecules in a Cryogenic Buffer Gas Cell

    OpenAIRE

    Piskorski, Julia Hege

    2014-01-01

    We cool and study trans-Stilbene, Nile Red and Benzonitrile in a cryogenic (7K) cell filled with low density helium buffer gas. No molecule-helium cluster formation is observed, indicating limited atom-molecule sticking in this system. We place an upper limit of 5% on the population of clustered He-trans-Stilbene, consistent with a measured He-molecule collisional residence time of less than \\(1 \\mu s\\). With several low energy torsional modes, trans-Stilbene is less rigid than any molecule p...

  8. Buffer gas cooling of ions stored in an R.F. trap: Computed properties of the ionic cloud

    International Nuclear Information System (INIS)

    The spatial and energetic properties of an ion cloud confined in an RF quadrupole trap, together with the lifetimes of the confined ions, have been computed by statistical methods and recently by a simulation method. The influences of different parameters such as ion mass, buffer gas mass, working point in the stability diagram, 'weak' space-charge and shape of the velocity distribution of the cooling buffer gas have been investigated and are described. (orig.)

  9. Formation of van der Waals molecules in buffer gas cooled magnetic traps

    CERN Document Server

    Brahms, N; Zhang, P; los, J K; Sadeghpour, H R; Dalgarno, A; Doyle, J M; Walker, T G

    2010-01-01

    We show that a large class of helium-containing cold polar molecules form readily in a cryogenic buffer gas, achieving densities as high as 10^12 cm^-3. We explore the spin relaxation of these molecules in buffer gas loaded magnetic traps, and identify a loss mechanism based on Landau-Zener transitions arising from the anisotropic hyperfine interaction. Our results show that the recently observed strong T^6 thermal dependence of spin change in buffer gas trapped silver (Ag) is accounted for by the formation and spin change of AgHe, thus providing evidence for molecular formation in a buffer gas trap.

  10. Formation of van der Waals molecules in buffer-gas-cooled magnetic traps [corrected].

    Science.gov (United States)

    Brahms, N; Tscherbul, T V; Zhang, P; Kłos, J; Sadeghpour, H R; Dalgarno, A; Doyle, J M; Walker, T G

    2010-07-16

    We predict that a large class of helium-containing cold polar molecules form readily in a cryogenic buffer gas, achieving densities as high as 10(12)  cm(-3). We explore the spin relaxation of these molecules in buffer-gas-loaded magnetic traps and identify a loss mechanism based on Landau-Zener transitions arising from the anisotropic hyperfine interaction. Our results show that the recently observed strong T(-6) thermal dependence of the spin-change rate of silver (Ag) trapped in dense (3)He is accounted for by the formation and spin change of Ag(3)He van der Waals molecules, thus providing indirect evidence for molecular formation in a buffer-gas trap.

  11. Formation of van der Waals molecules in buffer gas cooled magnetic traps

    OpenAIRE

    Dalgarno, Alexander; Brahms, Nathan; Tscherbul, Timur; Zhang, Peng; Klos, Jacek; Sadeghpour, Hossein R.; Doyle, John M.; Walker, Thad G.

    2010-01-01

    We predict that a large class of helium-containing cold polar molecules form readily in a cryogenic buffer gas, achieving densities as high as 10\\(^{12}\\)  cm\\(^{-3}\\). We explore the spin relaxation of these molecules in buffer-gas-loaded magnetic traps and identify a loss mechanism based on Landau-Zener transitions arising from the anisotropic hyperfine interaction. Our results show that the recently observed strong \\(T^{-6}\\) thermal dependence of the spin-change rate of silver (Ag) trappe...

  12. Production of cold beams of ND3 with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams

    International Nuclear Information System (INIS)

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND3 is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND3 beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90° bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND3 can be produced with rotational state populations corresponding to approximately Trot = 9–18 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND3. The translational temperature of the guided ND3 is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions

  13. Laser cooling of dense atomic gases by collisional redistribution of radiation and spectroscopy of molecular dimers in a dense buffer gas environment

    CERN Document Server

    Saß, Anne; Christopoulos, Stavros; Knicker, Katharina; Moroshkin, Peter; Weitz, Martin

    2014-01-01

    We study laser cooling of atomic gases by collisional redistribution of fluorescence. In a high pressure buffer gas regime, frequent collisions perturb the energy levels of alkali atoms, which allows for the absorption of a far red detuned irradiated laser beam. Subsequent spontaneous decay occurs close to the unperturbed resonance frequency, leading to a cooling of the dense gas mixture by redistribution of fluorescence. Thermal deflection spectroscopy indicates large relative temperature changes down to and even below room temperature starting from an initial cell temperature near 700 K. We are currently performing a detailed analysis of the temperature distribution in the cell. As we expect this cooling technique to work also for molecular-noble gas mixtures, we also present initial spectroscopic experiments on alkali-dimers in a dense buffer gas surrounding.

  14. Surpassing the mass restriction of buffer gas cooling: Cooling of low mass ions by localized heavier atoms

    Science.gov (United States)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S. A.

    2016-05-01

    Cooling of trapped ions has resulted in fascinating science including the realization of some of the most accurate atomic clocks. It has also found widespread application, for example, in mass spectrometry and cold chemistry. Among the different methods for cooling ions, cooling by elastic collisions with ultracold neutral atoms is arguably the most generic. However, in spite of its widespread application, there is confusion with regards the collisional heating/cooling of light ions by heavier neutral atoms. We address the question experimentally and demonstrate, for the first time, cooling of light ions by co-trapped heavy atoms. We show that trapped 39 K+ ions are cooled by localized ultracold neutral 85 Rb atoms. The atom-ion mass ratio (= 2.18) is well beyond any theoretical predictions so far. We further argue that cooling of ions by localized cold atoms is possible for any mass ratio. The result opens up the possibility of reaching the elusive s-wave collision regime in atom-ion collisions. S.D. is supported by DST-INSPIRE Faculty Fellowship, India.

  15. F-state quenching with CH4 for buffer-gas cooled 171Y b+ frequency standard

    International Nuclear Information System (INIS)

    We report that methane, CH4, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 ± 0.3) × 106 s−1 Torr−1. For applications that use microwave hyperfine transitions of the ground-state 171Y b ions, the CH4 induced frequency shift coefficient and the decoherence rate coefficient are measured as δν/ν = (−3.6 ± 0.1) × 10−6 Torr−1 and 1/T2 = (1.5 ± 0.2) × 105 s−1 Torr−1. In our buffer-gas cooled 171Y b+ microwave clock system, we find that only ≤10−8 Torr of CH4 is required under normal operating conditions to efficiently clear the F-state and maintain ≥85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance

  16. Efficient transfer of positrons from a buffer-gas-cooled accumulator into an orthogonally oriented superconducting solenoid for antihydrogen studies

    CERN Document Server

    Comeau, D; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Grzonka, D; Oelert, W; Gabrielse, G; Kalra, R; Kolthammer, W S; McConnell, R; Richerme, P; Mullers, A; Walz, J

    2012-01-01

    Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap used in antihydrogen research. The positrons are guided along a 9 m long magnetic guide that connects the central field lines of the 0.15 T field in the positron accumulator to the central magnetic field lines of the superconducting solenoid. Seventy independently controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15 degrees upward bend and a 105 degrees downward bend to account for the orthogonal orientation of the positron accumulator with respect to the cryogenic Penning trap. Low-energy positrons ejected from the accumulator follow the magnetic field lines within the guide and are transferred into the superconducting solenoid with nearly 100% efficiency. A 7 m long 5 cm diameter stainless-steel tube and a 20 mm long, 1.5 mm diamet...

  17. Buffer Gas Acquisition and Storage

    Science.gov (United States)

    Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.; Callahan, Richard A.; Delgado, H. (Technical Monitor)

    2001-01-01

    The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture Of CO2 Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO, freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (ND, and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193K and 10 kpa to 300 kPa. Concentrations were measured with a gas chromatograph that used a thermoconductivity (TCD) detector with helium (He) as the carrier gas. The general trend as the temperature was lowered was for the membranes to become more selective, In addition, the relative permeation rates between the three gases changed with temperature. The end result was to provide design parameters that could be used to separate CO2 from N2 and Ar.

  18. F-state quenching with CH{sub 4} for buffer-gas cooled {sup 171}Y b{sup +} frequency standard

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Y.-Y., E-mail: yjau@sandia.gov; Hunker, J. D.; Schwindt, P. D. D. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2015-11-15

    We report that methane, CH{sub 4}, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 ± 0.3) × 10{sup 6} s{sup −1} Torr{sup −1}. For applications that use microwave hyperfine transitions of the ground-state {sup 171}Y b ions, the CH{sub 4} induced frequency shift coefficient and the decoherence rate coefficient are measured as δν/ν = (−3.6 ± 0.1) × 10{sup −6} Torr{sup −1} and 1/T{sub 2} = (1.5 ± 0.2) × 10{sup 5} s{sup −1} Torr{sup −1}. In our buffer-gas cooled {sup 171}Y b{sup +} microwave clock system, we find that only ≤10{sup −8} Torr of CH{sub 4} is required under normal operating conditions to efficiently clear the F-state and maintain ≥85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance.

  19. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    Science.gov (United States)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  20. Kinetics of a single trapped ion in an ultracold buffer gas

    OpenAIRE

    Zipkes, Christoph; Ratschbacher, Lothar; Sias, Carlo; Köhl, Michael

    2010-01-01

    The immersion of a single ion confined by a radiofrequency trap in an ultracold atomic gas extends the concept of buffer gas cooling to a new temperature regime. The steady state energy distribution of the ion is determined by its kinetics in the radiofrequency field rather than the temperature of the buffer gas. Moreover, the finite size of the ultracold gas facilitates the observation of back-action of the ion onto the buffer gas. We numerically investigate the system's properties depending...

  1. Comparison experiments of neon and helium buffer gases cooling in trapped 199Hg+ ions linear trap

    International Nuclear Information System (INIS)

    The influences of different buffer gas, neon and helium, on 199Hg+ clock transition are compared in trapped 199Hg+linear trap. By the technique of time domain's Ramsey separated oscillatory fields, the buffer gas pressure frequency shifts of 199Hg+ clock transition are measured to be (df/dPNe)(1/f) = 1.8 × 10−8 Torr−1 for neon and (df/dPHe)(1/f) = 9.1×10−8 Torr−1 for helium. Meanwhile, the line-width of 199Hg+ clock transition spectrum with the buffer gas neon is narrower than that with helium at the same pressure. These experimental results show that neon is a more suitable buffer gas than helium in 199Hg+ ions microwave frequency standards because of the 199Hg+ clock transition is less sensitive to neon variations and the better cooling effect of neon. The optimum operating pressure for neon is found to be about 1.0×10−5 Torr in our linear ion trap system. (atomic and molecular physics)

  2. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    The gas temperature of a hot gas loop in gas-cooled nuclear reactor plants shall be able to be modified without influencing the gas temperature of the other loops. If necessary, it should be possible to stop the loop. This is possible by means of a mixer which is places below the heat absorbing component in the hot channel and which is connected to a cold gas line. (orig.)

  3. Gas cooled traction drive inverter

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan

    2016-04-19

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  4. Kinetics of a single trapped ion in an ultracold buffer gas

    CERN Document Server

    Zipkes, Christoph; Sias, Carlo; Köhl, Michael

    2010-01-01

    The immersion of a single ion confined by a radiofrequency trap in an ultracold atomic gas extends the concept of buffer gas cooling to a new temperature regime. The steady state energy distribution of the ion is determined by its kinetics in the radiofrequency field rather than the temperature of the buffer gas. Moreover, the finite size of the ultracold gas facilitates the observation of back-action of the ion onto the buffer gas. We numerically investigate the system's properties depending on mass ratio, trap geometry, differential cross-section, and non-uniform neutral atom density distribution. We identify excess micromotion to set the typical scale for the ion energy statistics and explore the applicability of the mobility collision cross-section to the ultracold regime.

  5. Dynamics of a single trapped ion immersed in a buffer gas

    CERN Document Server

    Höltkemeier, Bastian; López-Carrera, Henry; Weidemüller, Matthias

    2016-01-01

    We provide a comprehensive theoretical framework for describing the dynamics of a single trapped ion interacting with a neutral buffer gas, thus extending our previous studies on buffer-gas cooling of ions beyond the critical mass ratio [B. H\\"oltkemeier et al., Phys. Rev. Lett. 116, 233003 (2016)]. By transforming the collisional processes into a frame, where the ion's micromotion is assigned to the buffer gas atoms, our model allows one to investigate the influence of non-homogeneous buffer gas configurations as well as higher multipole orders of the radio-frequency trap in great detail. Depending on the neutral-to-ion mass ratio, three regimes of sympathetic cooling are identified which are characterized by the form of the ion's energy distribution in equilibrium. We provide analytic expressions and numerical simulations of the ion's energy distribution, spatial profile and cooling rates for these different regimes. Based on these findings, a method for actively decreasing the ion's energy by reducing the ...

  6. Rotational relaxation of molecular ions in a buffer gas

    Science.gov (United States)

    Pérez-Ríos, Jesús; Robicheaux, F.

    2016-09-01

    The scattering properties regarding the rotational degrees of freedom of a molecular ion in the presence of a buffer gas of helium are investigated. This study is undertaken within the framework of the infinite-order sudden approximation for rotational transitions, which is shown to be applicable to a large variety of molecular ions in a buffer gas of helium at fairly low temperatures. The results derived from the present approach have potential applications in cold chemistry and molecular quantum logic spectroscopy.

  7. Optimization of buffer gas pressure for Rb atomic magnetometer

    Science.gov (United States)

    Chen, Chang; Liu, Xiaohu; Qu, Tianliang; Yang, Kaiyong

    2015-08-01

    The optimization of buffer gas pressure is very important to improve the performance of the rubidium (Rb) atomic magnetometer. In this paper we briefly introduce the basic principle and the experimental method of the rubidium magnetometer based on Faraday rotation effect, and describe the factors affecting the magnetometer sensitivity, then analyze and summarize the mechanism of the influence of spin-exchange, spin-destruction collisions, radiation trapping and the spin diffusion on spin relaxation of Rb atoms. Based on this, the relationship between the rubidium magnetometer sensitivity, the spin relaxation rate and the gas chamber conditions (buffer gas pressure, the bubble radius, measuring temperature) is established. Doing calculations by the simulation software, how the magnetometer sensitivity and the relaxation rate vary with the gas chamber conditions can be seen; finally, the optimal values of the buffer gas pressure under certain gas chamber conditions are obtained. The work is significant for the engineering development of rubidium magnetometer.

  8. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    Science.gov (United States)

    Kruger, Hans W.

    1994-01-01

    A buffer assembly for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode.

  9. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  10. Thermometry of Guided Molecular Beams from a Cryogenic Buffer-Gas Cell

    CERN Document Server

    Wu, X; Zeppenfeld, M; Chervenkov, S; Rempe, G

    2016-01-01

    We present a comprehensive characterization of cold molecular beams from a cryogenic buffer-gas cell, providing an insight into the physics of buffer-gas cooling. Cold molecular beams are extracted from a cryogenic cell by electrostatic guiding, which is also used to measure their velocity distribution. Molecules' rotational-state distribution is probed via radio-frequency resonant depletion spectroscopy. With the help of complete trajectory simulations, yielding the guiding efficiency for all of the thermally populated states, we are able to determine both the rotational and the translational temperature of the molecules at the output of the buffer-gas cell. This thermometry method is demonstrated for various regimes of buffer-gas cooling and beam formation as well as for molecular species of different sizes, $\\rm{CH_3F}$ and $\\rm{CF_3CCH}$. Comparison between the rotational and translational temperatures provides evidence of faster rotational thermalization for the $\\rm{CH_3F-He}$ system in the limit of low...

  11. Buffer-gas effects on dark resonances: Theory and experiment

    Science.gov (United States)

    Erhard, Michael; Helm, Hanspeter

    2001-04-01

    Dark resonances with widths below 30 Hz have been observed in a rubidium cell filled with neon as buffer gas at room temperature. We compare an approximate analytic solution of a Λ system to our data and show that under our experimental conditions the presence of the buffer gas reduces the power broadening of the dark resonances by two orders of magnitude. We also present numerical calculations that take into account the thermal motion and velocity-changing collisions with the buffer-gas atoms. The resulting dark-resonance features exhibit strong Dicke-type narrowing effects and thereby explain the elimination of Doppler shifts and Doppler broadening, leading to observation of a single ultranarrow dark line.

  12. Rotational relaxation of fluoromethane molecules in low-temperature collisions with buffer-gas helium

    Science.gov (United States)

    Li, Xingjia; Xu, Liang; Yin, Yanning; Xu, Supeng; Xia, Yong; Yin, Jianping

    2016-06-01

    We propose a method to study the rotational relaxation of polar molecules [here taking fluoromethane (CH3F ) as an example] in collisions with 3.5 K buffer-gas helium (He) atoms by using an electrostatic guiding technique. The dependence of the guiding signal of CH3F on the injected He flux and the dependence of the guiding efficiency of CH3F on its rotational temperature are investigated both theoretically and experimentally. By comparing the experimental and simulated results, we find that the translational and rotational temperatures of the buffer-gas cooled CH3F molecules can reach to about 5.48 and 0.60 K, respectively, and the ratio between the translational and average rotational collisional cross sections of CH3F -He is γ =σt/σr=36.49 ±6.15 . In addition, the slowing, cooling, and boosting effects of the molecular beam with different injected He fluxes are also observed and their forming conditions are investigated in some detail. Our study shows that our proposed method can not only be used to measure the translational and rotational temperatures of the buffer-gas cooled molecules, but also to measure the ratio of the translational collisional cross section to the average rotational collisional cross section, and even to measure the average rotational collisional cross section when the translational collisional cross section is measured by fitting the lifetime of molecule signal to get a numerical solution from the diffusion equation of buffer-gas He atoms in the cell.

  13. Simulations of pulses in a buffer gas positron trap

    Energy Technology Data Exchange (ETDEWEB)

    Tattersall, W; Sullivan, J P; Buckman, S J [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); White, R D; Robson, R E, E-mail: wade.tattersall@anu.edu.au [ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD (Australia)

    2011-01-01

    In this study we simulate positron transport properties for various configurations of the gases and electric fields used in the Australian Positron Beamline Facility positron trap, which is based on the Surko buffer-gas trap. In an attempt to further improve the time and energy resolution of the trap and thus the associated scattering experiments, we apply a Monte-Carlo simulation procedure to a variety of possible configurations of the dumping stage of the trap.

  14. Gas-cooled reactors and their applications

    International Nuclear Information System (INIS)

    The purpose of the meeting was to review and discuss the current status and recent progress made in the technology and design of gas-cooled reactors and their application for electricity generation, process steam and process heat production. The meeting was attended by more than 200 participants from 25 countries and International Organizations presenting 34 papers. The technical part of the meeting was subdivided into 7 sessions: A. Overview of the Status of Gas-Cooled Reactors and Their Prospects (2 papers); B. Experience with Gas-Cooled Reactors (5 papers); C. Description of Current GCR Plant Designs (10 papers); D. Safety Aspects (4 papers); E. Gas-Cooled Reactor Applications (3 papers); F. Gas-Cooled Reactor Technology (6 papers); G. User's Perspectives on Gas-Cooled Reactors (4 papers). At the end of the meeting a round table discussion was organized in order to summarize the meeting and to make recommendations for future activities. A separate abstract was prepared for each of the 34 presentations of this meeting. Refs, figs and tabs

  15. Non-Sticking of Helium Buffer Gas to Hydrocarbons

    CERN Document Server

    Croft, James F E

    2014-01-01

    Lifetimes of complexes formed during helium-hydrocarbon collisions at low temperature are estimated for symmetric top hydrocarbons. The lifetimes are obtained using a density-of-states approach. In general the lifetimes are less than 10-100 ns, and are found to decrease with increasing hydrocarbon size. This suggests that clustering will not limit precision spectroscopy in helium buffer gas experiments. Lifetimes are computed for noble-gas benzene collisions and are found to be in reasonable agreement with lifetimes obtained from classical trajectories as reported by Cui {\\it et al}.

  16. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  17. Beam cooling using a gas-filled RFQ ion guide

    CERN Document Server

    Henry, S; De Saint-Simon, M; Jacotin, M; Képinski, J F; Lunney, M D

    1999-01-01

    A radiofrequency quadrupole mass filter is being developed for use as a high-transmission beam cooler by operating it in buffer gas at high pressure. Such a device will increase the sensitivity of on-line experiments that make use of weakly produced radioactive ion beams. We present simulations and some preliminary measurements for a device designed to cool the beam for the MISTRAL RF mass spectrometer on- line at ISOLDE. The work is carried out partly within the frame of the European Community research network: EXOTRAPS. (9 refs).

  18. Cooling and Collisions of Large Gas Phase Molecules

    OpenAIRE

    Patterson, David; Tsikata, Edem; Doyle, John M.

    2010-01-01

    Cold and dense samples of naphthalene \\((C_{10}H_8)\\) are produced using buffer gas cooling in combination with rapid, high flow molecule injection. The observed naphthalene density is \\(n \\approx 10^{11} cm_{−3}\\) over a volume of a few \\(cm^3\\) at a temperature of 6 K. We observe naphthalene–naphthalene collisions through two-body loss of naphthalene with a loss cross section of \\(\\sigma_{\\Lambda-\\Lambda} = 1.4 × 10^{-14} cm^2\\). Analysis is presented that indicates that this combination of...

  19. Pulsed extraction of ionization from helium buffer gas

    CERN Document Server

    Morrissey, D J; Facina, M; Schwarz, S

    2008-01-01

    The migration of intense ionization created in helium buffer gas under the influence of applied electric fields is considered. First the chemical evolution of the ionization created by fast heavy-ion beams is described. Straight forward estimates of the lifetimes for charge exchange indicate a clear suppression of charge exchange during ion migration in low pressure helium. Then self-consistent calculations of the migration of the ions in the electric field of a gas-filled cell at the National Superconducting Cyclotron Laboratory (NSCL) using a Particle-In-Cell computer code are presented. The results of the calculations are compared to measurements of the extracted ion current caused by beam pulses injected into the NSCL gas cell.

  20. Quantum memory in warm rubidium vapor with buffer gas

    CERN Document Server

    Bashkansky, Mark; Vurgaftman, Igor

    2011-01-01

    The realization of quantum memory using warm atomic vapor cells is appealing because of their commercial availability and the perceived reduction in experimental complexity. In spite of the ambiguous results reported in the literature, we demonstrate that quantum memory can be implemented in a single cell with buffer gas using the geometry where the write and read beams are nearly co-propagating. The emitted Stokes and anti-Stokes photons display cross-correlation values greater than 2, characteristic of quantum states, for delay times up to 4 microseconds.

  1. French activities on gas cooled reactors

    International Nuclear Information System (INIS)

    The gas cooled reactor programme in France originally consisted of eight Natural Uranium Graphite Gas Cooled Reactors (UNGG). These eight units, which are now permanently shutdown, represented a combined net electrical power of 2,375 MW and a total operational history of 163 years. Studies related to these reactors concern monitoring and dismantling of decommissioned facilities, including the development of methods for dismantling. France has been monitoring the development of HTRs throughout the world since 1979, when it halted its own HTR R and D programme. France actively participates in three CRPs set up by the IAEA. (author). 1 tab

  2. The extraction of 229Th3+ from a buffer-gas stopping cell

    Science.gov (United States)

    Wense, L. v. d.; Seiferle, B.; Laatiaoui, M.; Thirolf, P. G.

    2016-06-01

    In the whole landscape of atomic nuclei, 229Th is currently the only known nucleus which could allow for the development of a nuclear-based frequency standard, as it possesses an isomeric state of just 7.6 eV energy above the ground state. The 3+ charge state is of special importance in this context, as Th3+ allows for a simple laser-cooling scheme. Here we emphasize the direct extraction of triply-charged 229Th from a buffer-gas stopping cell. This finding will not only simplify any future approach of 229Th ion cooling, but is also used for thorium-beam purification and in this way provides a powerful tool for the direct identification of the 229Th isomer to ground state nuclear transition.

  3. Formation and dynamics of van der Waals molecules in buffer-gas traps.

    Science.gov (United States)

    Brahms, Nathan; Tscherbul, Timur V; Zhang, Peng; Kłos, Jacek; Forrey, Robert C; Au, Yat Shan; Sadeghpour, H R; Dalgarno, A; Doyle, John M; Walker, Thad G

    2011-11-14

    We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxation is too slow to affect trap lifetimes. However, (3)He-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag(3)He molecules, using ab initio calculation of Ag-He interaction potentials and spin interactions, quantum scattering theory, and direct Monte Carlo simulations to describe formation and spin relaxation in this system. The calculated rate of spin-change agrees quantitatively with experimental observations, providing indirect evidence for molecular formation in buffer-gas-cooled magnetic traps. Finally, we discuss the possibilities for spectroscopic detection of these complexes, including a calculation of expected spectra for Ag(3)He, and report on our spectroscopic search for Ag(3)He, which produced a null result.

  4. Magnetization Cooling of an Electron Gas

    CERN Document Server

    Tsintsadze, Nodar L

    2012-01-01

    We propose an adiabatic magnetization process for cooling the Fermi electron gas to ultra-low temperatures as an alternative to the known adiabatic demagnetization mechanism. We show via a new adiabatic equation that at the constant density the increase of the magnetic field leads to the temperature decrease as $T\\sim 1/H^2$.

  5. Neutronic of heterogenous gas cooled reactors

    International Nuclear Information System (INIS)

    At present, one of the main technical features of the advanced gas cooled reactor under development is its fuel element concept, which implies a neutronic homogeneous design, thus requiring higher enrichment compared with present commercial nuclear power plants.In this work a neutronic heterogeneous gas cooled reactor design is analyzed by studying the neutronic design of the Advanced Gas cooled Reactor (AGR), a low enrichment, gas cooled and graphite moderated nuclear power plant.A search of merit figures (some neutronic parameter, characteristic dimension, or a mixture of both) which are important and have been optimized during the reactor design stage is been done, to aim to comprise how a gas heterogeneous reactor is been design, given that semi-infinity arrangement criteria of rods in LWRs and clusters in HWRs can t be applied for a solid moderator and a gas refrigerator.The WIMS code for neutronic cell calculations is been utilized to model the AGR fuel cell and to calculate neutronic parameters such as the multiplication factor and the pick factor, as function of the fuel burnup.Also calculation is been done for various nucleus characteristic dimensions values (fuel pin radius, fuel channel pitch) and neutronic parameters (such as fuel enrichment), around the design established parameters values.A fuel cycle cost analysis is carried out according to the reactor in study, and the enrichment effect over it is been studied.Finally, a thermal stability analysis is been done, in subcritical condition and at power level, to study this reactor characteristic reactivity coefficients.Present results shows (considering the approximation used) a first set of neutronic design figures of merit consistent with the AGR design.

  6. Formation and dynamics of van der Waals molecules in buffer-gas traps

    CERN Document Server

    Brahms, Nathan; Zhang, Peng; Kłos, Jacek; Forrey, Robert C; Au, Yat Shan; Sadeghpour, H R; Dalgarno, A; Doyle, John M; Walker, Thad G

    2011-01-01

    We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxations are too slow to affect trap lifetimes. However, helium-3-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag3He molecules, using ab initio calc...

  7. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  8. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed wi

  9. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  10. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    International Nuclear Information System (INIS)

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10−28e cm. -- Highlights: ► A method of high precision neutron EDM measurement is described. ► Geometric phase effects are discussed in terms of Dyson series. ► A magnetic field drift is compensated by means of a buffer gas magnetometer. ► Geometric phase effects are greatly suppressed. ► The systematic error is reduced by two orders of magnitude compared with before.

  11. Buffer gas-induced resonance vibrational polarizability in the SF6-rare gas mixtures

    Science.gov (United States)

    Bulanin, Michael O.; Burtsev, Andrey P.; Kerl, Klaus; Kisliakov, Ivan M.

    2001-04-01

    Mixed second refractivity virial coefficients BRab(ω) have been evaluated from the analysis of the pressure broadened ν3≈930 cm-1 34SF6 IR absorption band profile in mixtures with Ne, Ar, Kr, and Xe buffer gases at relative densities up to 150 Amagat. The values of the BRab(ω) in the resonance region are found to be orders of magnitude greater compared to those observed for the neat gases in the spectral regions far from resonance. The experimental results are compared with the predictions of the dynamic DID model for the buffer gas-induced vibrational pair polarizability. The DID model reproduces surprisingly well the frequency variation of BRab in the range of the band wings for the heavier buffer gases, but significantly deviates from experiment for the SF6-Ne mixture.

  12. Design codes for gas cooled reactor components

    International Nuclear Information System (INIS)

    High-temperature gas-cooled reactor (HTGR) plants have been under development for about 30 years and experimental and prototype plants have been operated. The main line of development has been electricity generation based on the steam cycle. In addition the potential for high primary coolant temperature has resulted in research and development programmes for advanced applications including the direct cycle gas turbine and process heat applications. In order to compare results of the design techniques of various countries for high temperature reactor components, the IAEA established a Co-ordinated Research Programme (CRP) on Design Codes for Gas-Cooled Reactor Components. The Federal Republic of Germany, Japan, Switzerland and the USSR participated in this Co-ordinated Research Programme. Within the frame of this CRP a benchmark problem was established for the design of the hot steam header of the steam generator of an HTGR for electricity generation. This report presents the results of that effort. The publication also contains 5 reports presented by the participants. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  13. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  14. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    Science.gov (United States)

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  15. Cool Gas in High Redshift Galaxies

    CERN Document Server

    Carilli, Chris

    2013-01-01

    Over the last decade, observations of the cool interstellar medium in distant galaxies via molecular and atomic fine structure line emission has gone from a curious look into a few extreme, rare objects, to a mainstream tool to study galaxy formation, out to the highest redshifts. Molecular gas has now been observed in close to 200 galaxies at z>1, including numerous AGN host-galaxies out to z~7, highly starforming sub-millimeter galaxies (median redshift z~2.5), and increasing samples of 'main-sequence' star forming galaxies at z~1.5-2.5. Studies have moved well beyond simple detections, to dynamical imaging at kpc-scale resolution, and multi-line, multi-species studies that determine the physical conditions in the interstellar medium. Observations of the cool gas are the required complement to studies of the stellar density and star formation history of the Universe, as they reveal the phase of the interstellar medium that immediately precedes star formation. Current observations suggest that the order of m...

  16. Mathematical modeling of gas turbine cooled elements

    Energy Technology Data Exchange (ETDEWEB)

    Pashayev, A.; Askerov, D.; Sadiqov, R.; Samedov, A. [Academy of Aviation, Baku (Azerbaijan). Dept. of Mathematical Modeling and Design of Gas Turbine Engines

    2007-07-01

    The profile section of a gas turbine blade with convective cooling was modelled. Converging quadrature processes were used to determine the stationary and quasi-stationary temperature field of the profile part of the blade. Profiles were visualized using the least squares method along with automatic conjecture, device spline, smooth replenishment, and neural nets. Heat exchange boundary conditions were characterized using the finite difference method; finite element analysis (FEA); the Monte Carlo method; and the boundary integral equations method (BIEM). Boundary conditions included the heat quantity assigned by convection of the cooler transmitted by heat conduction of the blade material to the surface of cooling channels. Errors were investigated using a quadratures method and Tikhonov regularization. A Kirchhoff permutation was used to linearize tasks. The developed equation was then transformed into a Laplace equation. The model was then compared with experimental investigations to validate heat and hydraulic characteristics, as well as the temperature field of the blade cross section. It was concluded that the model can be used to assess the reliability of gas turbine engine designs. 3 refs., 1 fig.

  17. Status of national gas cooled reactor programmes

    International Nuclear Information System (INIS)

    This report has been compiled as a central source of summary-level information on the present status of High Temperature Gas-Cooled Reactor (HTGR) programmes in the world and on future plans for the continued development and deployment of HTGRs. Most of the information concerns the programmes in the United States, Germany, Japan and the Soviet Union, countries that have had large programmes related to HTGR technology for several years. Summary-level information is also provided in the report on HTGR-related activities in several other countries who either have an increasing interest in the technology and/or who are performing some development efforts related to HTGR technology. The report contains a summary-level update on the MAGNOX and AGR programmes. This is the twelfth issue of the document, the first of which was issued in March, 1979. The report has been prepared in the IAEA Nuclear Power Technology Development Section. Figs and tabs

  18. Seismic behaviour of gas cooled reactor components

    International Nuclear Information System (INIS)

    On invitation of the French Government the Specialists' Meeting on the Seismic Behaviour of Gas-Cooled Reactor Components was held at Gif-sur-Yvette, 14-16 November 1989. This was the second Specialists' Meeting on the general subject of gas-cooled reactor seismic design. There were 27 participants from France, the Federal Republic of Germany, Israel, Japan, Spain, Switzerland, the United Kingdom, the Soviet Union, the United States, the CEC and IAEA took the opportunity to present and discuss a total of 16 papers reflecting the state of the art of gained experiences in the field of their seismic qualification approach, seismic analysis methods and of the capabilities of various facilities used to qualify components and verify analytical methods. Since the first meeting, the sophistication and expanded capabilities of both the seismic analytical methods and the test facilities are apparent. The two main methods for seismic analysis, the impedance method and the finite element method, have been computer-programmed in several countries with the capability of each of the codes dependent on the computer capability. The correlations between calculation and tests are dependent on input assumptions such as boundary conditions, soil parameters and various interactions between the soil, the buildings and the contained equipment. The ability to adjust these parameters and match experimental results with calculations was displayed in several of the papers. The expanded capability of some of the new test facilities was graphically displayed by the description of the SAMSON vibration test facility at Juelich, FRG, capable of dynamically testing specimens weighing up to 25 tonnes, and the TAMARIS facility at the CEA laboratories in Gif-sur-Yvette where the largest table is capable of testing specimens weighing up to 100 tonnes. The proceedings of this meeting contain all 16 presented papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  19. Three—body collisions involving Na(3P),Rb(5S) and buffer gas atoms

    Institute of Scientific and Technical Information of China (English)

    沈异凡; 李万兴; 等

    1996-01-01

    Energy pooling in the Na-Rb vapor mixture has been investigated.While some kind of buffer gas is introduced into the cell the peculiar features appear.The buffer gas enhances the energy transfer betwwen Na(3P) and Rb(5S),which can be detected through the effects induced on the highly excited states populated by the Na(3P)/Rb(5P) and Rb(5P)/Rb(5P) collisions.

  20. Status of and prospects for gas-cooled reactors

    International Nuclear Information System (INIS)

    The IAEA International Working Group on Gas-Cooled Reactors (IWGGCR) (see Annex I), which was established in 1978, recommended to the Agency that a report be prepared in order to provide an up-to-date summary of gas-cooled reactor technology. The present Technical Report is based mainly on submissions of Member Countries of the IWGGCR and consists of four main sections. Beside some general information about the gas-cooled reactor line, section 1 contains a description of the incentives for the development and deployment of gas-cooled reactors in various Agency Member States. These include both electricity generation and process steam and process heat production for various branches of industry. The historical development of gas-cooled reactors is reviewed in section 2. In this section information is provided on how, when and why gas-cooled reactors have been developed in various Agency Member States and, in addition, a detailed description of the different gas-cooled reactor lines is presented. Section 3 contains information about the technical status of gas-cooled reactors and their applications. Gas-cooled reactors that are under design or construction or in operation are listed and shortly described, together with an outlook for future reactor designs. In this section the various applications for gas-cooled reactors are described in detail. These include both electricity generation and process steam and process heat production. The last section (section 4) is entitled ''Special features of gas-cooled reactors'' and contains information about the technical performance, fuel utilization, safety characteristics and environmental impact, such as radiation exposure and heat rejection

  1. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  2. Application of Hastelloy X in Gas-Cooled Reactor Systems

    DEFF Research Database (Denmark)

    Brinkman, C. R.; Rittenhouse, P. L.; Corwin, W.R.;

    1976-01-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data...

  3. 30 CFR 7.102 - Exhaust gas cooling efficiency test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exhaust gas cooling efficiency test. 7.102 Section 7.102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING....102 Exhaust gas cooling efficiency test. (a) Test procedures. (1) Follow the procedures specified...

  4. Evaluating the income and employment impacts of gas cooling technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J. [Oak Ridge National Lab., TN (United States); Laitner, S.

    1995-03-01

    The purpose of this study is to estimate the potential employment and income benefits of the emerging market for gas cooling products. The emphasis here is on exports because that is the major opportunity for the U.S. heating, ventilating, and air-conditioning (HVAC) industry. But domestic markets are also important and considered here because without a significant domestic market, it is unlikely that the plant investments, jobs, and income associated with gas cooling exports would be retained within the United States. The prospects for significant gas cooling exports appear promising for a variety of reasons. There is an expanding need for cooling in the developing world, natural gas is widely available, electric infrastructures are over-stressed in many areas, and the cost of building new gas infrastructure is modest compared to the cost of new electric infrastructure. Global gas cooling competition is currently limited, with Japanese and U.S. companies, and their foreign business partners, the only product sources. U.S. manufacturers of HVAC products are well positioned to compete globally, and are already one of the faster growing goods-exporting sectors of the U.S. economy. Net HVAC exports grew by over 800 percent from 1987 to 1992 and currently exceed $2.6 billion annually (ARI 1994). Net gas cooling job and income creation are estimated using an economic input-output model to compare a reference case to a gas cooling scenario. The reference case reflects current policies, practices, and trends with respect to conventional electric cooling technologies. The gas cooling scenario examines the impact of accelerated use of natural gas cooling technologies here and abroad.

  5. Diffusion, thermalization and optical pumping of YbF molecules in a cold buffer gas cell

    CERN Document Server

    Skoff, S M; Sinclair, C D J; Hudson, J J; Segal, D M; Sauer, B E; Hinds, E A; Tarbutt, M R

    2010-01-01

    We produce YbF molecules with a density of 10^18 m^-3 using laser ablation inside a cryogenically-cooled cell filled with a helium buffer gas. Using absorption imaging and absorption spectroscopy we study the formation, diffusion, thermalization and optical pumping of the molecules. The absorption images show an initial rapid expansion of molecules away from the ablation target followed by a much slower diffusion to the cell walls. We study how the time constant for diffusion depends on the helium density and temperature, and obtain values for the YbF-He diffusion cross-section at two different temperatures. We measure the translational and rotational temperatures of the molecules as a function of time since formation, obtain the characteristic time constant for the molecules to thermalize with the cell walls, and elucidate the process responsible for limiting this thermalization rate. Finally, we make a detailed study of how the absorption of the probe laser saturates as its intensity increases, showing that...

  6. Operation of static and flowing Cs DPAL with different buffer gas mixtures

    Science.gov (United States)

    Knize, R. J.; Zhdanov, B. V.; Rotondaro, M. T.; Shaffer, M. K.

    2016-03-01

    Cs DPAL operation using Ethane, Methane and mixtures of these hydrocarbons with noble gases He and Ar as a buffer gases for spin-orbit relaxation was studied in this work. The best Cs DPAL performance in continuous wave operation with flowing gain medium was achieved using pure Methane, pure Ethane or a mixture of Ethane (minimum of 200 Torr) and He with a total buffer gas pressure of 300 torr.

  7. Radial molecular abundances and gas cooling in starless cores

    CERN Document Server

    Sipilä, O

    2012-01-01

    Aims: We aim to simulate radial profiles of molecular abundances and the gas temperature in cold and heavily shielded starless cores by combining chemical and radiative transfer models. Methods: A determination of the dust temperature in a modified Bonnor-Ebert sphere is used to calculate initial radial molecular abundance profiles. The abundances of selected cooling molecules corresponding to two different core ages are then extracted to determine the gas temperature at two time steps. The calculation is repeated in an iterative process yielding molecular abundances consistent with the gas temperature. Line emission profiles for selected substances are calculated using simulated abundance profiles. Results: The gas temperature is a function of time; the gas heats up as the core gets older because the cooling molecules are depleted onto grain surfaces. The contributions of the various cooling molecules to the total cooling power change with time. Radial chemical abundance profiles are non-trivial: different s...

  8. Absorption resonance and large negative delay in Rb vapor with buffer gas

    CERN Document Server

    Mikhailov, E E; Novikova, I; Rostovtsev, Yu V; Welch, G R; Mikhailov, Eugeniy E.; Sautenkov, Vladimir A.; Novikova, Irina; Rostovtsev, Yuri V.; Welch, George R.

    2003-01-01

    We observe a narrow, isolated, two-photon absorption resonance in Rb for large one-photon detuning in the presence of a buffer gas. In the absence of buffer gas, a standard Lambda configuration of two laser frequencies gives rise to electromagnetically induced transparency (EIT) for all values of one-photon detuning throughout the inhomogeneously (Doppler) broadened line. However, when a buffer gas is added and the one-photon detuning is comparable to or greater than the Doppler width, an absorption resonance appears instead of the usual EIT resonance. We also observe large negative group delay (~ -300 us for a Gaussian pulse propagating through the media with respect to a reference pulse not affected by the media), corresponding to a superluminal group velocity v_g= -c/(3.6x10^6)=-84 m/s}.

  9. High temperature gas-cooled reactor: gas turbine application study

    International Nuclear Information System (INIS)

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project

  10. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  11. Integrated exhaust gas recirculation and charge cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  12. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J; Latkowski, J

    2010-12-03

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  13. Seismic stability of VGM type high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    The main principles of the design provision of high temperature gas cooled VGM reactors seismic stability and the results of calculations, performed by linear-spectral method are presented. (author). 1 ref., 10 figs

  14. How to get cool in the heat: comparing analytic models of halo gas cooling with EAGLE

    CERN Document Server

    Stevens, Adam R H; Contreras, Sergio; Croton, Darren J; Padilla, Nelson D; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-01-01

    We use the hydrodynamic, cosmological EAGLE simulations to investigate how hot gas in haloes condenses to form and grow galaxies. We select haloes from the simulations that are actively cooling and study the temperature, distribution, and metallicity of their hot, cold, and transitioning `cooling' gas, placing these in context of semi-analytic models. Our selection criteria lead us to focus on Milky Way-like haloes. We find the hot-gas density profiles of the haloes form a progressively stronger core over time, the nature of which can be captured by a beta profile that has a simple dependence on redshift. In contrast, the hot gas that actually cools is broadly consistent with a singular isothermal sphere. We find that cooling gas carries a few times the specific angular momentum of the halo and is offset in spin direction from the rest of the hot gas. The gas loses ~60% of its specific angular momentum during the cooling process, generally remaining greater than that of the halo, and is better aligned with th...

  15. Fuel performance models for high-temperature gas-cooled reactor core design

    International Nuclear Information System (INIS)

    Mechanistic fuel performance models are used in high-temperature gas-cooled reactor core design and licensing to predict failure and fission product release. Fuel particles manufactured with defective or missing SiC, IPyC, or fuel dispersion in the buffer fail at a level of less than 5 x 10-4 fraction. These failed particles primarily release metallic fission products because the OPyC remains intact on 90% of the particles and retains gaseous isotopes. The predicted failure of particles using performance models appears to be conservative relative to operating reactor experience

  16. Compatibility of gas turbine materials with steam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Desai, V.; Tamboli, D.; Patel, Y. [Univ. of Central Florida, Orlando, FL (United States)

    1995-10-01

    Gas turbines had been traditionally used for peak load plants and remote locations as they offer advantage of low installation costs and quick start up time. Their use as a base load generator had not been feasible owing to their poor efficiency. However, with the advent of gas turbines based combined cycle plants (CCPs), continued advances in efficiency are being made. Coupled with ultra low NO{sub x} emissions, coal compatibility and higher unit output, gas turbines are now competing with conventional power plants for base load power generation. Currently, the turbines are designed with TIT of 2300{degrees}F and metal temperatures are maintained around 1700{degrees}F by using air cooling. New higher efficiency ATS turbines will have TIT as high as 2700{degrees}F. To withstand this high temperature improved materials, coatings, and advances in cooling system and design are warranted. Development of advanced materials with better capabilities specifically for land base applications are time consuming and may not be available by ATS time frame or may prove costly for the first generation ATS gas turbines. Therefore improvement in the cooling system of hot components, which can take place in a relatively shorter time frame, is important. One way to improve cooling efficiency is to use better cooling agent. Steam as an alternate cooling agent offers attractive advantages because of its higher specific heat (almost twice that of air) and lower viscosity.

  17. Energy saving in ceramic tile kilns: Cooling gas heat recovery

    International Nuclear Information System (INIS)

    A great quantity of thermal energy is consumed in ceramic tile manufacture, mainly in the firing stage. The most widely used facilities are roller kilns, fuelled by natural gas, in which more than 50% of the energy input is lost through the flue gas and cooling gas exhaust stacks. This paper presents a calculation methodology, based on certain kiln operating parameters, for quantifying the energy saving obtained in the kiln when part of the cooling gases are recovered in the firing chamber and are not exhausted into the atmosphere. Energy savings up to 17% have been estimated in the studied case. Comparison of the theoretical results with the experimental data confirmed the validity of the proposed methodology. The study also evidenced the need to improve combustion process control, owing to the importance of the combustion process in kiln safety and energy efficiency. - Highlights: •Some energy input (30–35%) in ceramic roller kilns is lost through the cooling gas stack. •Cooling air is directly recovered in the combustion chamber, providing oxygen. •This energy recovery from the cooling gas stack has been quantified. •It has been proven that the proposed methodology to estimate energy savings is valid

  18. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  19. Design requirements, operation and maintenance of gas-cooled reactors

    International Nuclear Information System (INIS)

    At the invitation of the Government of the USA the Technical Committee Meeting on Design Requirements, Operation and Maintenance of Gas-Cooled Reactors, was held in San Diego on September 21-23, 1988, in tandem with the GCRA Conference. Both meetings attracted a large contingent of foreign participants. Approximately 100 delegates from 18 different countries participated in the Technical Committee meeting. The meeting was divided into three sessions: Gas-cooled reactor user requirement (8 papers); Gas-cooled reactor improvements to facilitate operation and maintenance (10 papers) and Safety, environmental impacts and waste disposal (5 papers). A separate abstract was prepared for each of these 23 papers. Refs, figs and tabs

  20. Pin-Type Gas Cooled Reactor for Nuclear Electric Propulsion

    Science.gov (United States)

    Wright, Steven A.; Lipinski, Ronald J.

    2003-01-01

    This paper describes a point design for a pin-type Gas-Cooled Reactor concept that uses a fuel pin design similar to the SP100 fuel pin. The Gas-Cooled Reactor is designed to operate at 100 kWe for 7 years plus have a reduced power mode of 20% power for a duration of 5 years. The power system uses a gas-cooled, UN-fueled, pin-type reactor to heat He/Xe gas that flows directly into a recuperated Brayton system to produce electricity. Heat is rejected to space via a thermal radiator that unfolds in space. The reactor contains approximately 154 kg of 93.15 % enriched UN in 313 fuel pins. The fuel is clad with rhenium-lined Nb-1Zr. The pressures vessel and ducting are cooled by the 900 K He/Xe gas inlet flow or by thermal radiation. This permits all pressure boundaries to be made of superalloy metals rather than refractory metals, which greatly reduces the cost and development schedule required by the project. The reactor contains sufficient rhenium (a neutron poison) to make the reactor subcritical under water immersion accidents without the use of internal shutdown rods. The mass of the reactor and reflectors is about 750 kg.

  1. Applications for Solid Propellant Cool Gas Generator Technology

    Science.gov (United States)

    van der List, M.; van Vliet, L. D.; Sanders, H. M.; Put, P. A. G.; Elst, J. W. E. C.

    2004-10-01

    In 2002 and 2003, Bradford Engineering B.V. conducted, in corporation with the Dutch research institute TNO Prins Maurits Laboratory (PML) a SME study for ESA-ESTEC for the identification of spaceflight applications and on-ground demonstration of Solid Propellant Cool Gas Generator (SPCGG) technology. This innovative technology has been developed by TNO-PML while Bradford Engineering also brought in its experience in spaceflight hardware development and manufacturing. The Solid Propellant Cool Gas Generator (SPCGG) technology allows for pure gas generation at ambient temperatures, as opposed to conventional solid propellant gas generators. This makes the SPCGG technology interesting for a wide range of terrestrial spaceflight applications. During the first part of the study, a variety of potential applications have been identified and three applications were selected for a more detailed quantitative study. In the third phase a ground demonstration was performed successfully for a cold gas propulsion system application. During the actual demonstration test, 10 cool gas generators were mounted and all operated successfully in sequence, demonstrating good repeatability of the produced amount of gas and pressure.

  2. Characterizing passive coherent population trapping resonance in a cesium vapor cell filled with neon buffer gas

    Institute of Scientific and Technical Information of China (English)

    Liu Zhi; Wang Jie-Ying; Diao Wen-Ting; He Jun; Wang Jun-Min

    2013-01-01

    We present a pair of phase-locked lasers with a 9.2-GHz frequency difference through the injection locking of a master laser to the RF-modulation sideband of a slave diode laser.Using this laser system,a coherent population trapping (CPT)signal with a typical linewidth of ~ 182 Hz is obtained in a cesium vapor cell filled with 30 Torr (4 kPa) of neon as the buffer gas.We investigate the influence of the partial pressure of the neon buffer gas on the CPT linewidth,amplitude,and frequency shift.The results may offer some references for CPT atomic clocks and CPT atomic magnetometers.

  3. Neon as a Buffer Gas for a Mercury-Ion Clock

    Science.gov (United States)

    Prestage, John; Chung, Sang

    2008-01-01

    A developmental miniature mercury-ion clock has stability comparable to that of a hydrogen-maser clock. The ion-handling components are housed in a sealed vacuum tube, wherein a getter pump is used to maintain the partial vacuum, and the evacuated tube is backfilled with mercury vapor in a buffer gas. Neon was determined to be the best choice for the buffer gas: The pressure-induced frequency pulling by neon was found to be only about two-fifths of that of helium. Furthermore, because neon diffuses through solids much more slowly than does helium, the operational lifetime of a tube backfilled with neon could be considerably longer than that of a tube backfilled with helium.

  4. Observing random walks of atoms in buffer gas through resonant light absorption

    Science.gov (United States)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  5. Observing random walks of atoms in buffer gas through resonant light absorption

    CERN Document Server

    Aoki, Kenichiro

    2016-01-01

    Using resonant light absorption, random walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured and its spectrum is obtained, down to orders of magnitude below the shot noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a gaussian light beam is computed and its analytical form is obtained. The spectrum has $1/f^2$ ($f$: frequency) behavior at higher frequencies, crossing over to a different, but well defined behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas and the atomic number density, from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  6. Method for traveling-wave deceleration of buffer-gas beams of CH

    OpenAIRE

    Fabrikant, M. I.; Li, Tian; Fitch, N J; N. Farrow; Weinstein, Jonathan D.; Lewandowski, H. J.

    2013-01-01

    Cryogenic buffer-gas beams are a promising method for producing bright sources of cold molecular radicals for cold collision and chemical reaction experiments. In order to use these beams in studies of reactions with controlled collision energies, or in trapping experiments, one needs a method of controlling the forward velocity of the beam. A Stark decelerator can be an effective tool for controlling the mean speed of molecules produced by supersonic jets, but efficient deceleration of buffe...

  7. Coherent population trapping in small- and chip-scale 87Rb vapor cells with buffer gas

    Science.gov (United States)

    Ermak, S. V.; Semenov, V. V.; Petrenko, M. V.; Pyatyshev, E. N.

    2016-03-01

    The characteristics of coherent population trapping (CPT) signal were investigated in small-size glass vapor cells containing 87Rb and Ne buffer gas with narrow line-width laser pumping on D2 line. The parameters of CPT signals were measured using small-size vapor cells with Ne buffer gas pressure in the range of 200-400 Torr, cell temperature in the range of 65-120 ∘C and the values of laser pumping power of 30-400 μW/cm2. Optimal conditions, under which the minimal value of short-term instability of resonance line is achieved, were obtained in experiments. Orientation frequency shifts of CPT resonance using glass 87Rb vapor cells containing buffer gas and anti-relaxation coating were compared. CPT signals using vapor cells based on integrated technologies containing 87Rb in atmosphere of Ne were also investigated. The CPT signals with typical line widths of 2-3 kHz and signal-to-noise ratio of 1500 in 1 Hz bandwidth are observed, which allows one to provide relative frequency instability of 10-11 at 100 s.

  8. Decoherence of trapped bosons by buffer gas scattering: What length scales matter?

    CERN Document Server

    Gilz, Lukas; Anglin, James R

    2014-01-01

    We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be, before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be, before an environment of thermal atoms of a different species (`buffer gas') responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, howev...

  9. Radial molecular abundances and gas cooling in starless cores

    OpenAIRE

    Sipilä, O.

    2012-01-01

    Aims: We aim to simulate radial profiles of molecular abundances and the gas temperature in cold and heavily shielded starless cores by combining chemical and radiative transfer models. Methods: A determination of the dust temperature in a modified Bonnor-Ebert sphere is used to calculate initial radial molecular abundance profiles. The abundances of selected cooling molecules corresponding to two different core ages are then extracted to determine the gas temperature at two time steps. The c...

  10. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  11. Fuel Development For Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  12. International working group on gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-15

    The purpose of the meeting was to provide a forum for exchange of information on safety and licensing aspects for gas-cooled reactors in order to provide comprehensive review of the present status and of directions for future applications and development. Contributions were made concerning the operating experience of the Fort St. Vrain (FSV) HTGR Power Plant in the United States of America, the experimental power station Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany, and the CO/sub 2/-cooled reactors in the United Kingdom such as Hunterson B and Hinkley Point B. The experience gained at each of these reactors has proved the high safety potential of Gas-cooled Reactor Power Plants.

  13. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  14. Gas Cooled, Natural Uranium, D20 Moderated Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, R.C.; Beasley, E.G.; DeBoer, T.K.; Evans, T.C.; Molino, D.F.; Rothwell, W.S.; Slivka, W.R.

    1956-08-01

    The attractiveness of a helium cooled, heavy water moderated, natural uranium central station power plant has been investigated. A fuel element has been devised which allows the D20 to be kept at a low pressure while the exit gas temperature is high. A preliminary cost analysis indicates that, using currently available materials, competitive nuclear power in foreign countries is possible.

  15. IAEA activities in Gas-cooled Reactor technology development

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has the charter to ''foster the exchange of scientific and technical information'', and ''encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world''. This paper describes the Agency's activities in Gas-cooled Reactor (GCR) technology development

  16. IAEA activities in gas-cooled reactor technology development

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has the charter to ''foster the exchange of scientific and technical information'', and ''encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world''. This paper describes the Agency's activities in Gas-cooled Reactor (GCR) technology development

  17. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    The research and development work in the field of core thermal-hydraulics, experimental and analytical physics and carbide fuel development carried out 1978 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  18. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1978 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  19. Control rod drive for high temperature gas cooled reactor

    Institute of Scientific and Technical Information of China (English)

    DengJun-Xian; XuJi-Ming; 等

    1998-01-01

    This control rod drive is developed for HTR-10 high temperature gas cooled test reactor.The stepmotor is prefered to improve positioning of the control rod and the scram behavior.The preliminary test in 1600170 ambient temperature shows that the selected stepmotor and transmission system can meet the main operation function requirements of HTR-10.

  20. High Temperature Gas-Cooled Test Reactor Options Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  1. Coated particle fuel for high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    for process heat/hydrogen generation applications with 950 .deg. C outlet temperatures. There is a clear set of standards for modern high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a 500 μm diameter UO2 kernel of 10% enrichment is surrounded by a 100 μm thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of 35 μm thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum 1600 .deg. C afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modern coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond 1600 .deg. C for a short period of time. This work should proceed at both national and international level

  2. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions

    Science.gov (United States)

    Schowalter, Steven J.; Dunning, Alexander J.; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R.

    2016-01-01

    Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to 10 barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behaviour as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behaviour leads to the limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying non-equilibrium thermodynamics at the atomic level. PMID:27511602

  3. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions

    CERN Document Server

    Schowalter, Steven J; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R

    2016-01-01

    Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to ten barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behavior as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behavior leads to limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying nonequilibrium thermodynamics.

  4. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions.

    Science.gov (United States)

    Schowalter, Steven J; Dunning, Alexander J; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R

    2016-01-01

    Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to 10 barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behaviour as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behaviour leads to the limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying non-equilibrium thermodynamics at the atomic level. PMID:27511602

  5. Gas migration in KBS-3 buffer bentonite. Sensitivity of test parameters to experimental boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, J.F.; Horseman, S.T. [British Geological Survey, Nottingham (United Kingdom)

    2003-01-01

    In the current Swedish repository design concept, hydrogen gas can be generated inside a waste canister by anaerobic corrosion of the ferrous metal liner. If the gas generation rate exceeds the diffusion rate of gas molecules in the buffer porewater, gas will accumulate in the void-space of a canister until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. Three long tenn gas injection tests have been performed on cylinders of pre-compacted MX80 bentonite. Two of these tests were undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. Gas was injected at a centrally located porous filter installed in the clay before hydration. Arrangements were made for gas to flow to three independently monitored sink-filter arrays mounted around the specimen. Axial and radial total stresses and internal porewater pressures were continuously monitored. Breakthrough and peak gas pressures were substantially larger than the sum of the swelling pressure and the external porewater. The third test was performed. using an apparatus which radially constrains the specimen during gas flow. Observed sensitivity of the breakthrough and peak gas pressures to the test boundary conditions suggests that gas entry must be accompanied by dilation of the bentonite fabric. In other words, there is a tendency for the volume of the specimen to increase during this process. The experimental evidence is consistent with the flow of gas along a relatively small number of crack-like pathways which propagate through the clay as gas pressure increases. Gas entry and breakthrough under constant volume boundary conditions causes a substantial increase in the total stress and the internal porewater pressure. It is possible to determine the point at which gas enters the clay by monitoring changes in these parameters. Localisation of gas flow within multiple pathways results, in nonuniform discharge rates at the sinks. When gas injection

  6. Gas migration in KBS-3 buffer bentonite. Sensitivity of test parameters to experimental boundary conditions

    International Nuclear Information System (INIS)

    In the current Swedish repository design concept, hydrogen gas can be generated inside a waste canister by anaerobic corrosion of the ferrous metal liner. If the gas generation rate exceeds the diffusion rate of gas molecules in the buffer porewater, gas will accumulate in the void-space of a canister until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. Three long tenn gas injection tests have been performed on cylinders of pre-compacted MX80 bentonite. Two of these tests were undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. Gas was injected at a centrally located porous filter installed in the clay before hydration. Arrangements were made for gas to flow to three independently monitored sink-filter arrays mounted around the specimen. Axial and radial total stresses and internal porewater pressures were continuously monitored. Breakthrough and peak gas pressures were substantially larger than the sum of the swelling pressure and the external porewater. The third test was performed. using an apparatus which radially constrains the specimen during gas flow. Observed sensitivity of the breakthrough and peak gas pressures to the test boundary conditions suggests that gas entry must be accompanied by dilation of the bentonite fabric. In other words, there is a tendency for the volume of the specimen to increase during this process. The experimental evidence is consistent with the flow of gas along a relatively small number of crack-like pathways which propagate through the clay as gas pressure increases. Gas entry and breakthrough under constant volume boundary conditions causes a substantial increase in the total stress and the internal porewater pressure. It is possible to determine the point at which gas enters the clay by monitoring changes in these parameters. Localisation of gas flow within multiple pathways results, in nonuniform discharge rates at the sinks. When gas injection

  7. Ultrasonic gas accumulation detection and evaluation in nuclear cooling pipes

    Science.gov (United States)

    Yu, Lingyu; Lin, Bin; Shin, Yong-June; Wang, Jingjiang; Tian, Zhenhua

    2012-04-01

    This paper presents a novel ultrasonic guided wave based inspection methodology for detecting and evaluating gas accumulation in nuclear cooling pipe system. The sensing is in-situ by means of low-profile permanently installed piezoelectric wafer sensors to excite interrogating guided waves and to receive the propagating waves in the pipe structure. Detection and evaluation is established through advanced cross time-frequency analysis to extract the phase change in the sensed signal when the gas is accumulating. A correlation between the phase change and the gas amount has been established to provide regulatory prediction capability based on measured sensory data.

  8. AGN-stimulated Cooling of Hot Gas in Elliptical Galaxies

    CERN Document Server

    Valentini, Milena

    2015-01-01

    We study the impact of relatively weak AGN feedback on the interstellar medium of intermediate and massive elliptical galaxies. We find that the AGN activity, while globally heating the ISM, naturally stimulates some degree of hot gas cooling on scales of several kpc. This process generates the persistent presence of a cold ISM phase, with mass ranging between 10$^4$ and $\\gtrsim$ 5 $\\times$ 10$^7$ M$_\\odot$, where the latter value is appropriate for group centered, massive galaxies. Widespread cooling occurs where the ratio of cooling to free-fall time before the activation of the AGN feedback satisfies $t_{cool}/t_{ff} \\lesssim 70$, that is we find a less restrictive threshold than commonly quoted in the literature. This process helps explaining the body of observations of cold gas (both ionized and neutral/molecular) in Ellipticals and, perhaps, the residual star formation detected in many early-type galaxies. The amount and distribution of the off-center cold gas vary irregularly with time. The cold ISM v...

  9. Salinity-buffered methane hydrate formation and dissociation in gas-rich systems

    Science.gov (United States)

    You, Kehua; Kneafsey, Timothy J.; Flemings, Peter B.; Polito, Peter; Bryant, Steven L.

    2015-02-01

    Methane hydrate formation and dissociation are buffered by salinity in a closed system. During hydrate formation, salt excluded from hydrate increases salinity, drives the system to three-phase (gas, water, and hydrate phases) equilibrium, and limits further hydrate formation and dissociation. We developed a zero-dimensional local thermodynamic equilibrium-based model to explain this concept. We demonstrated this concept by forming and melting methane hydrate from a partially brine-saturated sand sample in a controlled laboratory experiment by holding pressure constant (6.94 MPa) and changing temperature stepwise. The modeled methane gas consumptions and hydrate saturations agreed well with the experimental measurements after hydrate nucleation. Hydrate dissociation occurred synchronously with temperature increase. The exception to this behavior is that substantial subcooling (6.4°C in this study) was observed for hydrate nucleation. X-ray computed tomography scanning images showed that core-scale hydrate distribution was heterogeneous. This implied core-scale water and salt transport induced by hydrate formation. Bulk resistivity increased sharply with initial hydrate formation and then decreased as the hydrate ripened. This study reproduced the salinity-buffered hydrate behavior interpreted for natural gas-rich hydrate systems by allowing methane gas to freely enter/leave the sample in response to volume changes associated with hydrate formation and dissociation. It provides insights into observations made at the core scale and log scale of salinity elevation to three-phase equilibrium in natural hydrate systems.

  10. Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs

    OpenAIRE

    Oldenburg, Curtis M.

    2006-01-01

    Depleted natural gas reservoirs are a promising target for Carbon Sequestration with Enhanced Gas Recovery (CSEGR). The focus of this study is on evaluating the importance of Joule-Thomson cooling during CO2 injection into depleted natural gas reservoirs. Joule-Thomson cooling is the adiabatic cooling that accompanies the expansion of a real gas. If Joule-Thomson cooling were extreme, injectivity and formation permeability could be altered by the freezing of residual water, formation of ...

  11. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  12. Decay heat removal in GEN IV gas cooled fast reactors

    International Nuclear Information System (INIS)

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  13. Gas Cooled Fast Reactors: Recent advances and prospects

    International Nuclear Information System (INIS)

    The paper presents the current status of the Gas cooled Fast Reactor system development which is shared within the Generation IV International Forum including EURATOM through the 7th Framework Programme project GoFastR. The various areas considered will include suitable fuel compounds and high temperature resistant cladding materials options, core design optimisation, primary system boundary, energy conversion. The safety approach, mainly oriented on core cooling for the moment, will be recalled together with a discussion of the results obtained. Further potential improvements or simplification of the system safety, at the light of the Fukushima accident, including an indirect coupled cycle for the energy conversion and a self sustainable Decay Heat Removal loop will be mentioned. The main issues related to the necessary R&D programme accompanying the system development will be recalled (fuel and materials, helium coolant technology, components such as gas circulators, valves and heat exchangers, thermal barriers). (author)

  14. Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jordal, Kristin

    1999-02-01

    Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency

  15. Flue gas injection control of silica in cooling towers.

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

    2011-06-01

    Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

  16. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  17. The status of graphite development for gas cooled reactors

    International Nuclear Information System (INIS)

    The meeting was convened by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors. It was attended by 61 participants from 6 countries. The meeting covered the following subjects: overview of national programs; design criteria, fracture mechanisms and component test; materials development and properties; non-destructive examination, inspection and surveillance. The participants presented 33 papers on behalf of their countries. A separate abstract was prepared for each of these papers. Refs, figs, tabs, photos and diagrams

  18. Spectral narrowing of coherent population trapping resonance in laser-cooled and room-temperature atomic gas

    Indian Academy of Sciences (India)

    S Pradhan; S Mishra; R Behera; N Kawade; A K Das

    2014-02-01

    We have investigated coherent population trapping (CPT) in laser-cooled as well as room-temperature (with and without buffer gas) rubidium atoms. The characteristic broad signal profile emerging from the two-photon Raman resonance for room-temperature atomic vapour is consistent with the theoretical calculation incorporating associated thermal averaging. The spectral width of the dark resonance obtained with cold atoms is found to be broadened, compared to roomtemperature vapour cell, due to the feeble role played by thermal averaging, although the cold atomic sample significantly overcomes the limitation of the transit time broadening. An alternative way to improve transit time is to use a buffer gas, with which we demonstrate that the coherent population trapping signal width is reduced to < 540 Hz.

  19. Non-negligible collisions of alkali atoms with background gas in buffer-gas-free cells coated with paraffin

    Science.gov (United States)

    Sekiguchi, Naota; Hatakeyama, Atsushi

    2016-04-01

    We measured the rate of velocity-changing collisions (VCCs) between alkali atoms and background gas in buffer-gas-free anti-relaxation-coated cells. The average VCC rate in paraffin-coated rubidium vapor cells prepared in this work was 1× 106 hbox {s}^{-1}, which corresponds to 1 mm in the mean free path of rubidium atoms. This short mean free path indicates that the background gas is not negligible in the sense that alkali atoms do not travel freely between the cell walls. In addition, we found that a heating process known as "ripening" increases the VCC rate, and also confirmed that ripening improves the anti-relaxation performance of the coatings.

  20. 780nm Rubdium Faraday Anomalous Dispersion Optical Filter with Buffer Gas Xe

    Science.gov (United States)

    Xiong, Junyu; Yin, Longfei; Luo, Bin; Guo, Hong; Cream Team

    2016-05-01

    Faraday anomalous dispersion optical filter (FADOF) is the most commonly used atomic filter, which is usually realized using alkali metal vapor cells. The filter has wide applications fields such as free-space optical communication, lidar and ghost imaging due to its high transmittance and ultra-narrow bandwidth. However, because FADOF is based on the resonant transitions of atoms, and due to the hyperfine structure of alkali elements, the transmittance spectrum of FADOF usually exhibit multi-peak form, which is not appropriate for applications requiring for single peak and will also reduce the signal to noise ratio(SNR). In this work, a 4cm long rubidium cell filled with 1torr Xenon as buffer gas has been used to realize a 780nm FADOF. Under the influence of the buffer gas Xenon, the sidebands of the transmittance spectrum has been removed, and a 780nm FADOF with single peak transmittance spectrum is achieved, which still keeps the high transmittance and ultra-narrow bandwidth. The peak transmittance of the filter is 82.7% if the power loss caused by the optical instruments (38%) is not included, and the bandwidth equals 1.2GHz. This work is supported by the National Science Fund for Distinguished Young Scholars of China (61225003), the National Natural Science Foundation of China (61401036, 61531003, 61571018), the China Postdoctoral Science Foundation (2015M580008).

  1. The formation and physical origin of highly ionized cooling gas

    CERN Document Server

    Bordoloi, Rongmon; Norman, Colin A

    2016-01-01

    We present a physically clear cooling flow theory that explains the origin of warm diffuse gas seen primarily as highly ionized absorption line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O VI, O VII, Ne VIII, N V, and Mg X; and present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most of such absorption line systems are consistent with being collisionally ionized, and estimate the maximum likelihood temperature of the gas in each observation. This model satisfactorily explains why O VI is regularly observed around star-forming low-z L* galaxies, and why N V is rarely seen around the same galaxies. We predict...

  2. Diffusion, thermalization, and optical pumping of YbF molecules in a cold buffer-gas cell

    Science.gov (United States)

    Skoff, S. M.; Hendricks, R. J.; Sinclair, C. D. J.; Hudson, J. J.; Segal, D. M.; Sauer, B. E.; Hinds, E. A.; Tarbutt, M. R.

    2011-02-01

    We produce YbF molecules with a density of 1018 m-3 using laser ablation inside a cryogenically cooled cell filled with a helium buffer gas. Using absorption imaging and absorption spectroscopy we study the formation, diffusion, thermalization, and optical pumping of the molecules. The absorption images show an initial rapid expansion of molecules away from the ablation target followed by a much slower diffusion to the cell walls. We study how the time constant for diffusion depends on the helium density and temperature and obtain values for the YbF-He diffusion cross section at two different temperatures. We measure the translational and rotational temperatures of the molecules as a function of time since formation, obtain the characteristic time constant for the molecules to thermalize with the cell walls, and elucidate the process responsible for limiting this thermalization rate. Finally, we make a detailed study of how the absorption of the probe laser saturates as its intensity increases, showing that the saturation intensity is proportional to the helium density. We use this to estimate collision rates and the density of molecules in the cell.

  3. Medium-size high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 7600C (14000F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics [a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant] and engineered safety features

  4. Power boost of gas turbines by inlet air cooling

    Energy Technology Data Exchange (ETDEWEB)

    White, C.; Raghu, S. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering; Giannotti, G.; Giannotti, H. [Giannotti Associates, Bellport, NY (United States)

    1996-12-31

    The design of a power boost system for an existing gas turbine unit using a direct spray evaporative spray cooling method is described in this paper. Experiments were conducted to determine the extent of cooling possible by this method, droplet size requirements and spray water requirements. Although up to 4.9% of power boost is theoretically possible at the design conditions of 32.2 C (90 F) and 60% relative humidity, various other constraints limit the actual power boost to about 3.8% of the nominal power. For small values of the wet-bulb depression (less than about 5 C or 10 F), the required droplet sizes for complete evaporation become so small (of the order of 5--10 microns with high flow rates) that production of them at the required flow rates is a challenging task.

  5. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    International Nuclear Information System (INIS)

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10−11/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10−22 m2 s−1 Pa−1 at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases

  6. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  7. Gas-cooled reactor coolant circulator and blower technology

    International Nuclear Information System (INIS)

    In the previous 17 meetings held within the framework of the International Working Group on Gas-Cooled Reactors, a wide variety of topics and components have been addressed, but the San Diego meeting represented the first time that a group of specialists had been convened to discuss circulator and blower related technology. A total of 20 specialists from 6 countries attended the meeting in which 15 technical papers were presented in 5 sessions: circulator operating experience I and II (6 papers); circulator design considerations I and II (6 papers); bearing technology (3 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  8. Thorium fueled high temperature gas cooled reactors. An assessment

    International Nuclear Information System (INIS)

    The use of thorium as a fertile fuel for the High Temperature Gas Cooled Reactor (HTR) instead of uranium has been reviewed. It has been concluded that the use of thorium might be beneficial to reduce the actinide waste production. To achieve a real advancement, the uranium of the spent fuel has to be recycled and the requested make-up fissile material for the fresh fuel has to be used in the form of highly-enriched uranium. A self-sustaining fuel cycle may be possible in the HTR of large core size, but this could reduce the inherent safety features of the design. (orig.)

  9. Evaluation of Gas-Cooled Pressurized Phosphoric Acid Fuel Cells for Electric Utility Power Generation

    Science.gov (United States)

    Faroque, M.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas-cooling was already demonstrated in atmospheric pressure stacks. Theoretical and experimental investigations of gas-cooling for pressurized PAFC are presented. Two approaches to gas cooling, Distributed Gas-Cooling (DIGAS) and Separated Gas-Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  10. The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    Science.gov (United States)

    Surko, C.M.

    2007-01-01

    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution.

  11. Gas cooled fast reactor background, facilities, industries and programmes

    International Nuclear Information System (INIS)

    This report was prepared at the request of the OECD-NEA Coordinating Group on Gas Cooled Fast Reactor Development and it represents a contribution (Vol.II) to the jointly sponsored Vol.I (GCFR Status Report). After a chapter on background with a brief description of the early studies and the activities in the various countries involved in the collaborative programme (Austria, Belgium, France, Germany, Japan, Sweden, Switzerland, United Kingdom and United States), the report describes the facilities available in those countries and at the Gas Breeder Reactor Association and the industrial capabilities relevant to the GCFR. Finally the programmes are described briefly with programme charts, conclusions and recommendations are given. (orig.)

  12. Cooling molten salt reactors using “gas-lift”

    Energy Technology Data Exchange (ETDEWEB)

    Zitek, Pavel, E-mail: zitek@kke.zcu.cz, E-mail: klimko@kke.zcu.cz; Valenta, Vaclav, E-mail: zitek@kke.zcu.cz, E-mail: klimko@kke.zcu.cz; Klimko, Marek, E-mail: zitek@kke.zcu.cz, E-mail: klimko@kke.zcu.cz [University of West Bohemia in Pilsen, Univerzitní 8, 306 14 Pilsen (Czech Republic)

    2014-08-06

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a “Two-phase flow demonstrator” (TFD) used for experimental study of the “gas-lift” system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for “gas-lift” (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

  13. Cooling molten salt reactors using "gas-lift"

    Science.gov (United States)

    Zitek, Pavel; Valenta, Vaclav; Klimko, Marek

    2014-08-01

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a "Two-phase flow demonstrator" (TFD) used for experimental study of the "gas-lift" system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for "gas-lift" (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

  14. A gas-cooled reactor surface power system

    Science.gov (United States)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  15. Gas turbine HTGR plant: economical dry cooling or a wet-cooled high-efficiency binary configuration

    International Nuclear Information System (INIS)

    The dry-cooled gas turbine HTGR plant offers the means whereby power plant siting flexibility can be substantially increased without efficiency penalty or cost disadvantage. With other advantages of the basic HTGR, the result is a nearly environmentally neutral plant. Optionally, the binary-cycle gas turbine HTGR maximizes electrical output from available cooling water and nuclear fuel resources because of the very high efficiency achievable by combining the closed-cycle gas turbine with a vapor secondary-power cycle. For either option, the resulting power plant offers the highest available nuclear efficiencies with lower generating costs and with minimum environmental impact

  16. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-09-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850ºC at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05).

  17. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  18. Characterization of a cryogenically cooled high-pressure gas jet

    International Nuclear Information System (INIS)

    We have developed and carried out a detailed characterization of a cryogenically cooled(80 K)high-pressure(50 x 105Pa) solenoid driven pulsed valve that has been used to produce dense jets of deuterium atomic clusters for interaction studies with high intensity laser. Rayleigh scattering was employed to investigate the scaling law between cluster size and upstream gas pressure, which was shown to be of the form Nc∝P02.89. Cluster size gets to its peak Nc≅2630 at 80 K, 48 x 105 Pa. We also studied the cluster formation process, portrayed a characteristic curve which revealed cluster size temporal evolution. Our results are important for analyzing the cluster interaction with intense laser, and are expected to provide guidelines to choose proper fire time. (authors)

  19. Development of failure detection system for gas-cooled reactor

    International Nuclear Information System (INIS)

    This work presents several kinds of Failure Detection Systems for Fuel Elements, stressing their functional principles and major applications. A comparative study indicates that the method of electrostatic precipitation of the fission gases Kr and Xe is the most efficient for fuel failure detection in gas-cooled reactors. A detailed study of the physical phenomena involved in electrostatic precipitation led to the derivation of an equation for the measured counting rate. The emission of fission products from the fuel and the ion recombination inside the chamber are evaluated. A computer program, developed to simulate the complete operation of the system, relates the counting rate to the concentration of Kr and Xe isotopes. The project of a mock-up is then presented. Finally, the program calculations are compared to experimental data, available from the literature, yielding a close agreement. (author)

  20. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  1. A He-gas Cooled, Stationary Granular Target

    CERN Document Server

    Pugnat, P

    2003-01-01

    In the CERN approach to the design of a neutrino factory, the repetition frequency of the proton beam is high enough to consider stationary solid targets as a viable solution for multi-MW beams. The target consists of high density tantalum spheres of 2 mm diameter which can efficiently be cooled by passing a high mass flow He-gas stream through the voids between the Ta-granules. Very small thermal shocks and stresses will arise in this fine grained structure due to the relatively long burst of 3.3 ms from the SPL-proton linac. In a quadruple target system where each target receives only one quarter of the total beam power of 4 MW, conservative temperature levels and adequate lifetimes of the target are estimated in its very high radiation environment. A conceptual design of the integration of the target into the magnetic horn-pion-collector is presented.

  2. Description of the magnox type of gas cooled reactor (MAGNOX)

    International Nuclear Information System (INIS)

    The present report comprises a technical description of the MAGNOX type of reactor as it has been build in Great Britain. The Magnox reactor is gas cooled (CO2) with graphite moderators. The fuels is natural uranium in metallic form, canned with a magnesium alloy called 'Magnox'. The Calder Hall Magnox plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other stations are given in tables with a summary of design data. Special design features are also shortly described. Where specific data for Calder Hall Magnox has not been available, corresponding data from other Magnox plants has been used. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 sub-project 3: 'Reactors in Nordic Surroundings', which comprises a description of nuclear power plants neighbouring the Nordic countries. (au)

  3. Preliminary evaluation of alternate-fueled gas cooled fast reactors

    International Nuclear Information System (INIS)

    A preliminary evaluation of various alternative fuel cycles for the Gas-Cooled Fast Reactor (GCFR) is presented. Both homogeneous and heterogeneous oxide-fueled GCFRs are considered. The scenario considered is the energy center/dispersed reactor concept in which proliferation-resistant denatured reactors are coupled to 233U production reactors operating in secure energy centers. Individual reactor performance characteristics and symbiotic system parameters are summarized for several possible alternative fuel concepts. Comparisons are made between the classical homogeneous GCFR and the advanced heterogeneous concept on the basis of breeding ratio, doubling time, and net fissile gain. In addition, comparisons are made between a three-dimensional reactor model and the R-Z heterogeneous configuration utilized for the depletion and fuel management calculations. Lastly, thirty-year mass balance data are given for the various GCFR fuel cycles studied

  4. The generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    The gas cooled fast reactor (GFR) is a helium-cooled fast spectrum reactor operating within a closed fuel cycle. It combines the advantages of fast reactors, in terms of a more sustainable use of uranium resources and waste minimisation, with the wider applicability of high temperature gas reactors, in terms of high efficiency electricity generation and the co-generation of high-quality process heat. Other advantages like the absence of threshold effect due to phase changing, the optical transparency and chemical inertness of the Helium coolant are also acknowledged. Within the European Union, GFR is one of the three fast reactors proposed for development to the demonstration stage within the European Sustainable Nuclear Industry Initiative (ESNII). On a wider global scale, GFR is one of the six systems proposed for further development within the Generation IV International Forum (GIF). In this respect, France, Switzerland, Japan and the European Union (through EURATOM) are signatories to the 'System Arrangement', the instrument through which the international research efforts are coordinated. This paper presents the current status of the development of the GFR system. The status of the GFR programme in each of the signatory countries is summarised including the intended contribution of the newly launched EURATOM 7. Framework Programme project - GoFastR. France has provided the bulk of the effort on conceptual design, safety assessment and fuel development. Switzerland makes significant contributions to the GFR system in the areas of core physics, uncertainty analysis, deterministic safety assessment and fuel development. Historically Japan has been very active in the development of the GFR system. Within the Generation IV GFR system, Japan contributes to the development of fuel and core materials

  5. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  6. Measurement of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Sulphur is an important element in some food chains and the release of radioactive sulphur to the environment must be closely controlled if the chemical form is such that it is available or potentially available for entering food chains. The presence of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor warranted a study to assess the quantity and chemical form of the radioactive sulphur in order to estimate the magnitude of the potential environmental hazard which might arise from the release of coolant gas from Civil Advanced Gas-Cooled Reactors. A combination of gas chromatographic and radiochemical analyses revealed carbonyl sulphide to be the only sulphur-35 compound present in the coolant gas of the Windscale Reactor. The concentration of carbonyl sulphide was found to lie in the range 40 to 100 x 10-9 parts by volume and the sulphur-35 specific activity was about 20 mCi per gramme. The analytical techniques are described in detail. The sulphur-35 appears to be derived from the sulphur and chlorine impurities in the graphite. A method for the preparation of carbonyl sulphide labelled with sulphur-35 is described. (author)

  7. Enhanced performance of a wide-aperture copper vapour laser with hydrogen additive in neon buffer gas

    Indian Academy of Sciences (India)

    Bijendra Singh; V V Subramaniam; S R Daultabad; Ashim Chakraboty

    2010-11-01

    A wide-aperture copper vapour laser was demonstrated at ∼ 10 kHz rep-rate with hydrogen additive in its buffer gas. Maximum power in excess of ∼ 50 W (at 10 kHz) was achieved by adding 1.96% hydrogen to the neon buffer gas at 20 mbar total gas pressure. This increase in output power was about 70% as compared to ∼ 30 W achieved with pure neon at 5.5 kHz rep-rate. The 70% enhancement achieved was significantly higher than the maximum reported value of 50% so far in the literature. The enhancement was much higher (about 150%) as compared to its 20 W power at 10 kHz rep-rate using pure neon as the standard CVL operation.

  8. CAST search for sub-eV mass solar axions with $^{3}$He buffer gas

    CERN Document Server

    Aune, S; Belov, A; Borghi, S; Brauninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galan, J; Garcia, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gomez, H; Gruber, E; Guthorl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovcic, K; Karuza, M; Konigsmann, K; Kotthaus, R; Krcmar, M; Kuster, M; Lakic, B; Laurent, J M; Liolios, A; Ljubicic, A; Lozza, V; Lutz, G; Luzon, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodriguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S.K; Stewart, L; Tomas, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-01-01

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using 3He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with 4He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV < m_a < 0.64 eV. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 2.3 x 10^{-10} GeV^{-1} at 95% CL, the exact value depending on the pressure setting. KSVZ axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In future we will extend our search to m_a < 1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  9. Hybrid high temperature gas-cooled reactor, thermonuclear fusion

    International Nuclear Information System (INIS)

    The project of a multi-purpose high temperature gas-cooled reactor started in 1969. The Atomic Energy Commission, Japan, approved in 1980 the budget for the design study of the experimental reactor. The conceptual design is in progress. The manufacturing of coated fuel pellets and the test method have been developed. The study of graphite structure is carried out. Corrosion and creep tests are made to obtain the knowledge concerning the metals in high temperature helium gas. The engineering study of various machines and structures operating at high temperature is performed. International cooperative works are considered. The experimental reactor will be critical in 1987. A critical plasma test facility, JT-60, has been constructed at the Japan Atomic Energy Research Institute. As the theoretical work on plasma confinement, the evaluation of the critical beta value of JT-60 was made. By high temperature neutral beam injection, the slowing down and heating processes of high energy particles are studied. The development of a non-circular cross-section tokamak is in progress. The construction of JT-60 will be completed in 1984. Study concerning superconducting magnets is considered. Japan is one of the members of INTOR project. (Kato, T.)

  10. SIMMER-III modeling of gas cooled fast reactor

    International Nuclear Information System (INIS)

    This paper deals with extension and application of the SIMMER-III code for safety studies of a gas cooled fast reactor. The equation of state of the helium gas and its thermal physical properties have been prepared and implemented in the code. The geometric, thermal hydraulic and neutronic models have been set up for the ALLEGERO reactor. The code and the associated model are verified by comparing steady state and unprotected loss of flow 20% remained flow rate (ULOF-20%) results with those done by other project partners. Reasonable or good agreements have been achieved for major physical variables. The unprotected loss of coolant accident (ULOCA) case is a severe transient case with core melting and degradation that was emulated only by SIMMER, in the project. In the initiating phase the clad becomes molten, this triggers the first power excursion. Then the fuel becomes more mobile and further power excursions take place, which lead to core melting and degradation. The fuel is ejected by power excursion and then moves relatively slowly to the lower part of vessel. Finally there are only a few kilograms of fuel escaping to the vessel outside (into reactor container) and the released thermal energy is about 6 GJ within a period of one minute. The final power stays below one MW and the reactor is in a deep sub-criticality state, since 1/2 fuel becomes noneffective. (author)

  11. Role of gas cooling in tomorrow`s energy services industry

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J.

    1997-04-01

    This article discusses the marketing approach and opportunities for suppliers and manufacturers of gas cooling equipment to partner with energy service companies (ESCOs). The author`s viewpoint is that in educating and partnering with ESCOs the gas cooling industry enables their technology to reach its potential in the projects that the ESCOs develop.

  12. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  13. Air cooling of disk of a solid integrally cast turbine rotor for an automotive gas turbine

    Science.gov (United States)

    Gladden, H. J.

    1977-01-01

    A thermal analysis is made of surface cooling of a solid, integrally cast turbine rotor disk for an automotive gas turbine engine. Air purge and impingement cooling schemes are considered and compared with an uncooled reference case. Substantial reductions in blade temperature are predicted with each of the cooling schemes studied. It is shown that air cooling can result in a substantial gain in the stress-rupture life of the blade. Alternatively, increases in the turbine inlet temperature are possible.

  14. Advanced Combustor Liner Cooling Technology for Gas Turbines

    Directory of Open Access Journals (Sweden)

    Aspi R. Wadia

    1988-10-01

    Full Text Available This paper briefly reviews some of the work on advanced liner cooling techniques - specificially laminated porous wall cooling, angled-multihole (effusion cooling and composite metal matrix liner cooling. The concept definition, heat transfer design procedure and design problems including key materials and fabrication considerations associated with each basic concept will be reviewed. Published rig and engine experience of aircraft engine manufacturers and research organizations will be cited. Some logical extensions of the current liner cooling schemes are suggested for future applications.

  15. Study and development of a radiofrequency Cooler with buffer gas for a very high intensity radioactive beams

    International Nuclear Information System (INIS)

    The low energy facility DESIR/SPIRAL2 is a second generation installation of radioactive beams. The flows of radioactive ions will require purification at isobaric level of the isotopes. This separation will be made by a high resolution separator (HRS) developed at CENBG. To have the nominal performance the HRS requires a low emittance beam. The only universal technique which can lead to a low emittance beam is the RFQ Cooler with buffer gas. The goal of this Cooler is to reduce the beam emittance to less than 1 p.mm.mrad and the longitudinal spread energy about 1 eV, using the very high intensity beams (i≅1μA). Therefore, the space charge effect is significant to cooling beam degradation. The compensation of this effect requires the high RF voltage and high frequency respectively a few kV and a few MHz. The latter points are what distinguish this Cooler with those who are existing. The RFQ Cooler prototype examined in this thesis, commonly called 'SHIRaC'. It was developed so as to transmit at least 60% of ions at very high intensity. The numerical simulations related to the definition of SHIRaC led to find the operating parameters in terms of pressure RFQ, the guiding field and the electrodes voltage of injection and extractions cells. They also allowed choosing and optimizing an electrostatic extraction triplet which adapts the cooling beam to the HRS. At an intensity of 1μA, the optimum cooling results of 133Cs+ ions are variants: either minimum longitudinal spread energy of 1.15 eV for a transmission of 21 % or longitudinal spread energy of 4.67 eV for a transmission of 60 %. The emittance is about 2.2 π.mm.mrad. The degradation of longitudinal spread energy is due to contribution of space charge and longitudinal effects. Outside the RFQ, when these two effects act, only the reduction of the second effect is possible. To achieve this reduction we had replace the three electrodes lens of extraction cell by a two electrodes lens. Through the use of this new

  16. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

    2005-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in

  17. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    International Nuclear Information System (INIS)

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in

  18. Unsteady thermal analysis of gas-cooled fast reactor core

    International Nuclear Information System (INIS)

    This thesis presents numerical analysis of transient heat transfer in an equivalent coolant-fuel rod cell of a typical gas cooled, fast nuclear reactor core. The transient performance is assumed to follow a complete sudden loss of coolant starting from steady state operation. Steady state conditions are obtained from solving a conduction problem in the fuel rod and a parabolic turbutent convection problem in the coolant section. The coupling between the two problems is accomplished by ensuring continuity of the thermal conditions at the interface between the fuel rod and the coolant. to model turbulence, the mixing tenght theory is used. Various fuel rod configurations have been tested for optimal transient performance. Actually, the loss of coolant accident occurs gradually at an exponential rate. Moreover, a time delay before shutting down the reactor by insertion of control rods usually exists. It is required to minimize maximum steady state cladding temperature so that the time required to reach its limiting value during transient state is maximum. This will prevent the escape of radioactive gases that endanger the environment and the public. However, the case considered here is a limiting case representing what could actually happen in the worst probable accident. So, the resutls in this thesis are very indicative regarding selection of the fuel rode configuration for better transient performance in case of accidents in which complete loss of collant occurs instantaneously

  19. Analysis of Internal Cooling Geometry Variations in Gas Turbine Blades

    Institute of Scientific and Technical Information of China (English)

    M. Eifel; V. Caspary; H. H(o)nen; P. Jeschke

    2009-01-01

    The present investigation analyzes the effects of major geometrical modifications to the interior of a convection cooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on the heat transfer. An experimental approach is performed with flow visualization via paint injection into water. Also numerical calculations are carried out in two sets, on the one hand water calculations accompanying the experi-ments and on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter cal-culations are still ongoing delivering preliminary results. Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leading edge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modi-fied geometries the pressure ratio is held constant compared to the base. Among several investigated configurations one could be identified that leads to a heat transfer enhancement in one leading edge channel 7 % larger compared to the base.

  20. Description of the advanced gas cooled type of reactor (AGR)

    International Nuclear Information System (INIS)

    The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain. 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors. The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other 6 stations, Dungeness B, Hinkely Point B, Hunterston G, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data. Where specific data for Torness AGR has not been available, corresponding data from other AGR plans has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 subproject 3: 'Reactors in Nordic Surroundings', which comprises a description of nuclear power plants neighbouring the Nordic countries. (au) 11 refs

  1. Gas-Cooled Fast Reactor (GFR) FY04 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. C. Totemeier; D. E. Clark; E. E. Feldman; E. A. Hoffman; R. B. Vilim; T. Y. C. Wei; J. Gan; M. K. Meyer; W. F. Gale; M. J. Driscoll; M. Golay; G. Apostolakis; K. Czerwinski

    2004-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  2. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  3. Gas-contact cooling for VUV laser oscillation in recombining plasmas

    International Nuclear Information System (INIS)

    High potentiality leading to rapid cooling of a high temperature plasma is investigated in a gas contact cooling method in which the effect of finite time for mixing the plasma and the contact gas is considered. The calculation has shown that the cooling is much more rapid than the radiative loss cooling and that the gain per unit length of the HeII 164 nm is ∼2 cm-1 for the laser oscillation under an optimum condition. Possibility of realizing a shorter wavelength laser is also discussed in a plasma with higher charge number Z. (author)

  4. Grey-molasses cooling of an optically trapped Fermi gas

    Science.gov (United States)

    Day, Ryan; Jervis, Dylan; Edge, Graham; Anderson, Rhys; Trotzky, Stefan; Thywissen, Joseph

    2014-05-01

    Robust sub-Doppler cooling has recently been demonstrated at the D1 (nS1/2 to nP1/2) transition of potassium and lithium, atoms that are challenging to cool on the D2 cycling transition. Two mechanisms are at work: first, Sisyphus cooling in the standing-wave dipole potential, at least partially due to polarization gradients; second, velocity-selective coherent population trapping (VSCPT) in a superposition of the two hyperfine ground states. We extend this technique to the cooling of dense clouds in optical traps. Since the VSCPT dark state relies only on ground-state coherences, it is insensitive to optical shifts from far-detuned optical traps. We also observe that the molasses has sufficient cooling power to withstand light scattering on the 4S-5P transition. Together these observations indicate that D1 cooling is a promising approach to fluorescent imaging of single fermions in an optical lattice.

  5. Nonthermal inactivation of Escherichia coli K12 in buffered peptone water using a pilot-plant scale supercritical carbon dioxide system with gas-liquid porous metal contractor

    Science.gov (United States)

    This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas-liquid CO2 contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 con...

  6. Gas-fired cogeneration and cooling: new study identifies major benefits

    International Nuclear Information System (INIS)

    A research paper- 'Gas Fired Cogeneration and Cooling: Markets, Technologies and Greenhouse Gas Savings'- launched at last month's Australian Gas Association 2001 Convention, reveals that gas cooling could replace 25 PJ of electricity summer demand, and reduce greenhouse gas emissions by 58 percent compared with electrical technologies. Commissioned by the AGA's Gas Cooling Task Force and supported by the Sustainable Energy Authority of Victoria and the Sustainable Energy Development Authority of NSW, the study examined market opportunities and environmental outcomes for the combined gas cogeneration and cooling technologies. It shows that the penetration of gas into the distributed cooling and power generation market is being driven by the following developments: the uncertainty and volatility of electricity costs, particularly during summer, electricity market structural changes which encourage distributed generation, high and uncertain world oil prices, the relative stability of Australian gas prices, the encouragement of demand and energy management strategies by regulators, greenhouse gas emission reduction policies, indoor air quality issues, product and productivity improvements in industry and CFC phase-out opportunities

  7. Containment for Heavy-Water Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    The safety principles applicable to heavy-water, gas-cooled reactors are outlined, with a view to establishing containment specifications adapted to the sites available in Switzerland for the construction of nuclear plants. These specifications are derived from dose rates considered acceptable, in the event of a serious reactor accident, for persons living near the plant, and are based on-meteorological and demographic conditions representative of the majority of the country's sites. The authors consider various designs for the containment shell, taking into account the conditions which would exist in the shell after the maximum credible accident. The following types of shell are studied: pre-stressed concrete; pre-stressed concrete with steel dome; pre-stressed concrete with inner, leakproof steel lining; steel with concrete side shield to protect against radiation; double shell. The degree of leak proofing of the shells studied is regarded as a feature of the particular design and not as a fixed constructional specification. The authors assess the leak proofing properties of each type of shell and establish building costs for each of them on the basis of precise plans, with the collaboration of various specialized firms. They estimate the effectiveness of the various shells from a safety standpoint, in relation to different emergency procedures, in particular release into the atmosphere through appropriate filters and decontamination of the air within the shell by recycling through batteries of filters. The paper contains a very detailed comparison of about 10 cases corresponding to various combinations of design and emergency procedure; the comparison was made using a computer programme specially established for the purpose. The results are compared with those for a reactor of the same type and power, but assembled together with the heat exchangers in a pre-stressed concrete shell. (author)

  8. Closed-cycle gas flow system for cooling of high Tc d.c. SQUID magnetometers

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1995-01-01

    A high Tc.d.c SQUID based magnetometer for magnetocardiography is currently under development at the University of Twente. Since such a magnetometer should be simple to use, the cooling of the system can be realized most practically by means of a cryocooler. A closed-cycle gas flow cooling system in

  9. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Science.gov (United States)

    2010-07-01

    ... water consumption, high-water level when the system sprays excess water, and low-water level when the... allowable liquid fuel rate and governed speed with 0.5 ±0.1 percent, by volume, of natural gas in the intake... cooling water shall be filled with the quantity of water recommended by the applicant. No cooling...

  10. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors

    International Nuclear Information System (INIS)

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs

  11. Shutdown cooling helium circulator design considerations for MHTGR [Modular High Temperature Gas-Cooled Reactor] power plant

    International Nuclear Information System (INIS)

    The Modular High Temperature Gas-Cooled Reactor (MHTGR) plant embodies a shutdown cooling system to expedite plant cooldown for refueling, maintenance, and repair in the event that the main cooling loop is unavailable. This is a non safety related system. A key component in this system, is a helium circulator. Oriented vertically, the rotating assembly in this machine is supported on active magnetic bearings, and the radial flow compressor is driven by a submerged induction electric motor rated at 160 kW(e). This paper gives details of the circulator design considerations and includes topics related to the machine operation and maintenance, and the technology base. 12 refs., 11 figs., 3 tabs

  12. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    International Nuclear Information System (INIS)

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity

  13. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  14. Cooling system having reduced mass pin fins for components in a gas turbine engine

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  15. High-power gas-discharge excimer ArF, KrCl, KrF and XeCl lasers utilising two-component gas mixtures without a buffer gas

    Science.gov (United States)

    Razhev, A. M.; Kargapol'tsev, E. S.; Churkin, D. S.

    2016-03-01

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an active medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%.

  16. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    Science.gov (United States)

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  17. Development of an evaluation method of fission product release fraction from High Temperature Gas-cooled Reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Kazuhiro; Minato, Kazuo; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-11-01

    The High Temperature Gas-cooled Reactor (HTGR) uses coated particles as fuel. Current coated particle is a microsphere of fuel kernel with TRISO coatings. The TRISO coatings consist of a low-density, porous pyrolytic carbon (PyC) buffer layer adjacent to the spherical fuel kernel, followed by an inner isotropic PyC layer, a SiC layer and a final (outer) PyC layer. An evaluation method of fission product release behavior during the normal operation was developed. Key issues of fission gas release model were: (1) fission gas releases from matrix contamination uranium and through-coatings failed particle were separately modeled and (2) burnup and fast neutron irradiation effects were newly considered. For metallic fission product, fractional release of cesium from coated fuel particles was investigated by comparing measured data in an irradiation test which contained three kinds of fuel particles; artificially bored particles simulating through-coatings failed particles, as-manufactured SiC-failed particles and intact particles. Through the comparison of measured and calculated fractional releases, an equivalent diffusion coefficient of SiC layer in the SiC-failed particle was introduced. This report describes the developed model together with validation result of the release model. (author)

  18. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    Science.gov (United States)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  19. A review of gas-cooled reactor concepts for SDI (Strategic Defense Initiative) applications

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1989-08-01

    We have completed a review of multimegawatt gas-cooled reactor concepts proposed for SDI applications. Our study concluded that the principal reason for considering gas-cooled reactors for burst-mode operation was the potential for significant system mass savings over closed-cycle systems if open-cycle gas-cooled operation (effluent exhausted to space) is acceptable. The principal reason for considering gas-cooled reactors for steady-state operation is that they may represent a lower technology risk than other approaches. In the review, nine gas-cooled reactor concepts were compared to identify the most promising. For burst-mode operation, the NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor concept emerged as a strong first choice since its performance exceeds the anticipated operational requirements and the technology has been demonstrated and is retrievable. Although the NERVA derivative concepts were determined to be the lead candidates for the Multimegawatt Steady-State (MMWSS) mode as well, their lead over the other candidates is not as great as for the burst mode. 90 refs., 2 figs., 10 tabs.

  20. Effects of Natural Gas Compositions on CNG Fast Filling Process for Buffer Storage System

    Directory of Open Access Journals (Sweden)

    Farzaneh-Gord M.

    2013-02-01

    Full Text Available The accurate modeling of the fast-fill process occurring in Compressed Natural Gas (CNG fuelled vehicle storage cylinders is a complex process and should be thoroughly studied. Final in-cylinder conditions should meet appropriate cylinder safety standards. The composition of natural gas plays an important role on its thermodynamic properties and consequently, on the fast-fill process and the final conditions. Here, a theoretical analysis has been developed to study the effects of the natural gas composition on the filling process of an onboard Natural Gas Vehicle (NGV cylinder. The cylinder is assumed as a lumped system. The analysis is based on laws of thermodynamics and mass balance. Based on AGA8 Equation of State (EOS and thermodynamics relationships, the required properties of natural gas mixtures have been calculated. The results are presented for an adiabatic system. The results show that the compositions of natural gas have great effects on the filling process and final in-cylinder conditions. Furthermore, the gas with less methane percentage in its composition is more suitable for the filling process.

  1. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  2. Safety aspects of forced flow cooldown transients in Modular High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs), the main Heat Transport System (HTS) and the Shutdown Cooling System n removed by the passive Reactor (SCS) are assumed to have failed. Decay heat is the Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This report used the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  3. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits.

  4. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.

    1992-09-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits.

  5. Integrated Method of the Computation of Cooling Systems for Gas Turbine Rotors

    OpenAIRE

    Тарасов, Александр Иванович; Чан, Конг Шанг; Литвиненко, Оксана Алексеевна; Михайлова, Ирина Александровна

    2015-01-01

    The integrated method allows for the simplification of the CFD analysis of the cooling of turbine rotors through the replacement of small-size elements (slots, labyrinth sealing, etc.) by virtual channels that provide the passage of air from one cavity to the next one. This computation method of the cooling of gas turbines was based on the combination of the method of computation of hydraulic networks and the method of computation of the flow and heat exchange of the viscous compressed liquid...

  6. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    Science.gov (United States)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  7. FUSE Observations of Cooling Flow Gas in the Galaxy Clusters A1795 and A2597

    CERN Document Server

    Oegerle, W R; Davidsen, A; Hu, E; Hutchings, J B; Murphy, E; Sembach, K R; Woodgate, B

    2001-01-01

    We present far-ultraviolet spectroscopy of the cores of the massive cooling flow clusters Abell 1795 and 2597 obtained with FUSE. As the intracluster gas cools through 3x10^5 K, it should emit strongly in the OVI 1032,1038 resonance lines. We report the detection of OVI 1032 emission in A2597, with a line flux of 1.35 +/- 0.35x10^-15 erg/cm2/s, as well as detection of emission from CIII 977. A marginal detection of CIII 977 emission is also reported for A1795. These observations provide evidence for a direct link between the hot (10^7 K) cooling flow gas and the cool (10^4 K) gas in the optical emission line fients. Assuming simple cooling flow models, the OVI line flux in A2597 corresponds to a mass deposition rate of ~40 Msun/yr within the central 36 kpc. Emission from OVI 1032 was not detected in A1795, with an upper limit of 1.5x10^-15 erg/cm2/s, corresponding to a limit on the mass cooling flow rate of Mdot(28 kpc) < 28 Msun/yr. We have considered several explanations for the lack of detection of OVI ...

  8. Analysis of characteristics of different working fluids for gas turbine cycle with high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Gas turbine cycle with high temperature gas-cooled reactor is the main direction of nuclear energy generation, which is with the advantages in terms of the safety and economy. The thermal and physical properties of helium, nitrogen, carbon dioxide and the mixtures were compared and analyzed in this paper. Further more, the heat transfer coefficient, pressure loss and the stage number of turbo-machines have been also compared. Results indicate that taking the mixture of helium and carbon dioxide as the working fluid of gas turbine cycle with high temperature gas-cooled reactor can not only improve the heat transfer coefficient and decrease the stage number of turbo-machinery, but also can limit the pressure loss to a certain level. (authors)

  9. Implementation of gas district cooling and cogeneration systems in Malaysia; Mise en oeuvre de systemes de gas district cooling et de cogeneration en Malaisie

    Energy Technology Data Exchange (ETDEWEB)

    Haron, S. [Gas District Cooling, M, Sdn Bhd (Malaysia)

    2000-07-01

    With its energy demand in the early 1990's growing at a high rate due to the country's strong economic growth, Malaysia studied various options to improve the efficiency of its energy use. Since its natural gas reserves are almost four times that of its crude oil reserves, efforts were therefore centered on seeking ways to boost the use of natural gas to mitigate the growing domestic energy need. PETRONAS, the national oil company, subsequently studied and chose the District Cooling System using natural gas as the primary source of fuel. The Kuala Lumpur City Center development, which houses the PETRONAS Twin Towers, was subsequently chosen as the first project to use the Gas District Cooling (GDC) System. To acquire the technology and implement this project, PETRONAS created a new subsidiary, Gas District Cooling (Malaysia) Sendirian Berhad (GDC(M)). In the process of improving the plant's efficiency, GDC(M) discovered that the GDC system's efficiency and project economics would be significantly enhanced if its is coupled to a Cogeneration system. Having proven the success of the GDC/Cogeneration system, GDC(M) embarked on a campaign to aggressively promote and seek new opportunities to implement the system, both in Malaysia-and abroad. Apart from enhancing efficiency of energy use, and providing better project economics, the GDC/Cogeneration system also is environment friendly. Today, the GDC/Cogeneration systems is the system of choice for several important developments in Malaysia, which also includes the country's prestigious projects such as the Kuala Lumpur International Airport and the New Federal Government Administrative Center in Putrajaya. (author)

  10. Efficiency of gas cooling and accretion at the disc-corona interface

    Science.gov (United States)

    Armillotta, L.; Fraternali, F.; Marinacci, F.

    2016-08-01

    In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding hot corona. Indeed, at the disc-corona interface, the mixing between the cold/metal-rich disc gas (T ≲ 104 K) and the hot coronal gas (T ≳ 106 K) can dramatically reduce the cooling time of a portion of the corona and produce its condensation and accretion. We studied the interaction between fountain clouds and corona in different galactic environments through parsec-scale hydrodynamical simulations, including the presence of thermal conduction, a key mechanism that influences gas condensation. Our simulations showed that the coronal gas condensation strongly depends on the galactic environment, in particular it is less efficient for increasing virial temperature/mass of the haloes where galaxies reside and it is fully ineffective for objects with virial masses larger than 1013M⊙. This result implies that the coronal gas cools down quickly in haloes with low-intermediate virial mass (Mvir ≲ 3 × 1012M⊙) but the ability to cool the corona decreases going from late-type to early-type disc galaxies, potentially leading to the switching off of accretion and the quenching of star formation in massive systems.

  11. Efficiency of gas cooling and accretion at the disc-corona interface

    Science.gov (United States)

    Armillotta, L.; Fraternali, F.; Marinacci, F.

    2016-11-01

    In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding hot corona. Indeed, at the disc-corona interface, the mixing between the cold/metal-rich disc gas (T ≲ 104 K) and the hot coronal gas (T ≳ 106 K) can dramatically reduce the cooling time of a portion of the corona and produce its condensation and accretion. We studied the interaction between fountain clouds and corona in different galactic environments through parsec-scale hydrodynamical simulations, including the presence of thermal conduction, a key mechanism that influences gas condensation. Our simulations showed that the coronal gas condensation strongly depends on the galactic environment, in particular it is less efficient for increasing virial temperature/mass of the haloes where galaxies reside and it is fully ineffective for objects with virial masses larger than 1013 M⊙. This result implies that the coronal gas cools down quickly in haloes with low-intermediate virial mass (Mvir ≲ 3 × 1012 M⊙) but the ability to cool the corona decreases going from late-type to early-type disc galaxies, potentially leading to the switching off of accretion and the quenching of star formation in massive systems.

  12. Influence of AlN Buffer Thickness on GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia

    Institute of Scientific and Technical Information of China (English)

    LIN Guo-Qiang; ZENG Yi-Ping; WANG Xiao-Liang; LIU Hong-Xin

    2008-01-01

    Hexagonal GaN is grown on a Si(111) substrate with AlN as a buffer layer by gas source molecular beam epitaxy(GSMBE) with ammonia. The thickness of AlN buffer is changed from 9 to 72nm. When the thickness of AlN buffer is 36nm, the surface morphology and crystal quality of GaN is optimal. The in-situ reflection high energy electron diffraction (RHEED) reveals that the transition to a two-dimensional growth mode of AlN is the key to the quality of GaN. However, the thickness of AlN buffer is not so critical to the residual in-plane tensile stress in GaN grown on Si(111) by GSMBE for AlN thickness between 9 to 72nm.

  13. Cool core cycles: Cold gas and AGN jet feedback in cluster cores

    CERN Document Server

    Prasad, Deovrat; Babul, Arif

    2015-01-01

    Using high-resolution 3-D and 2-D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGN) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity $\\approx \\epsilon \\dot{M}_{\\rm acc} c^2$; where $\\dot{M}_{\\rm acc}$ is the mass accretion rate at 1 kpc) as small as $5 \\times 10^{-5}$ is sufficient to reduce the cooling/accretion rate by $\\sim 10$ compared to a pure cooling flow. This value is smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted on to the supermassive black hole (SMBH). We find hysteresis cycles in all our simulations with cold mode feedback: {\\em condensation} of cold gas when the ratio...

  14. Mechanical properties of structural materials for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Structural materials for high temperature gas cooled reactor should have good properties such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Mechanical properties of major structural materials, such as pressure vessel, heat exchanger, control rod, were investigated. Effect of He and irradiation on these structural materials were investigated

  15. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  16. Thermoregulated Nitric Cryosystem for Cooling Gas-Filled Detectors of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Zharkov I.P.

    2015-09-01

    Full Text Available Cryosystem for cooling and filling of gas-filled detectors of ionizing radiation with compressed inert gas on the basis of wide-nitrogen cryostat, which provides detetector temperature control in a range of 173 — 293 K and its stabilization with accuracy of ± 1°. The work was carried out within the Ukraine — NATO Program of Collaboration, Grant SfP #984655.

  17. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies

  18. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  19. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all H

  20. Migration of radionuclides in a gas cooled solid state spallation target

    DEFF Research Database (Denmark)

    Jørgensen, Thomas; Severin, Gregory; Jensen, Mikael

    2015-01-01

    The current design of the ESS (European Spallation Source) program proposes a rotating solid tungsten target cooled by helium gas and a pulsed beam of protons. For safety reasons any design has to address whether or not the induced radionuclidic isotopes in the target migrate. In this paper we ha...

  1. Research and development for high temperature gas cooled reactor in Japan

    International Nuclear Information System (INIS)

    The paper describes the current status of High Temperature Gas Cooled Reactor research and development work in Japan, with emphasis on the Experimental Very High Temperature Reactor (Exp. VHTR) to be built by Japan Atomic Energy Research Institute (JAERI) before the end of 1985. The necessity of construction of Exp. VHTR was explained from the points of Japanese energy problems and resources

  2. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  3. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies. (DLC)

  4. Comparative Exergoeconomic Analyses of Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling

    Directory of Open Access Journals (Sweden)

    Hassan Athari

    2015-09-01

    Full Text Available The results are reported of exergoeconomic analyses of a simple gas turbine cycle without a fogging system (SGT, a simple steam injection gas turbine cycle (STIG, and a steam injection gas turbine cycle with inlet fogging cooler (FSTIG. The results show that (1 a gas-turbine cycle with steam injection and simultaneous cooling has a higher power output than the other considered cycle; (2 at maximum energy efficiency conditions the gas turbine has the highest exergy efficiency of the cycle components and the lowest value of exergy efficiency is calculated for the fog cooler, where the mixing of air and water at greatly different temperatures causes the high exergy destruction; and (3 utilization of the fogging cooler in the steam injection cycle increases the exergy destruction in the combustion chamber. Furthermore, the simple gas turbine cycle is found to be more economic as its relative cost difference, total unit product cost, and exergoeconomic factors are less than those for the two other configurations. However, its efficiency and net power output are notably lower than for the gas turbine with steam injection and/or fog cooling. The total unit product cost is highest for the simple gas turbine with steam injection.

  5. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production

    KAUST Repository

    Ambler, Jack R.

    2011-01-01

    Microbial electrolysis cells (MECs) are often examined for hydrogen production using non-sustainable phosphate buffered solutions (PBS), although carbonate buffers have been shown to work in other bioelectrochemical systems with a platinum (Pt) catalyst. Stainless steel (SS) has been shown to be an effective catalyst for hydrogen evolution in MECs, but it has not been tested with carbonate buffers. We evaluated the combined using of SS cathodes and a bicarbonate buffer (BBS) at the applied voltages of 0.5, 0.7 and 0.9 V using a new inexpensive method for measuring gas production called the gas bag method (GBM). This method achieved an average error of only 5.0% based on adding known volumes of gas to the bag. Using the GBM, hydrogen production with SS and a BBS was 26.6 ± 1.8 mL which compared well to 26.4 ± 2.8 mL using Pt and BBS, and 26.8 ± 2.5 mL with a Pt cathode and PBS. Electrical energy efficiency was highest with a SS cathode and BBS at 159 ± 17%, compared to 126 ± 14% for the Pt cathode and BBS, and 134 ± 17% for a Pt cathode and PBS. The main disadvantage of the SS was a lower gas production rate of 1.1 ± 0.3 m3 H2-m-3 d-1 with BBS and 1.2 ± 0.3 m3 H2-m-3 d -1 with PBS, compared to 1.7 ± 0.4 m3 H 2-m-3 d-1 with Pt and PBS. These results show that the GBM is an effective new method for measuring gas production of anaerobic gas production processes, and that SS and bicarbonate buffers can be used to effectively produce hydrogen in MECs. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  6. WASP-80b: a gas giant transiting a cool dwarf

    CERN Document Server

    Triaud, Amaury H M J; Cameron, A Collier; Doyle, A P; Fumel, A; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Lovis, C; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Smith, A M S; Udry, S; West, R G; Wheatley, P J; 10.1051/0004-6361/201220900

    2013-01-01

    We report the discovery of a planet transiting the star WASP-80 (1SWASP J201240.26-020838.2; 2MASS J20124017-0208391; TYC 5165-481-1; BPM 80815; V=11.9, K=8.4). Our analysis shows this is a 0.55 +/- 0.04 Mjup, 0.95 +/- 0.03 Rjup gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V. This system produces one of the largest transit depths so far reported, making it a worthwhile target for transmission spectroscopy. We find a large discrepancy between the v sin i inferred from stellar line broadening and the observed amplitude of the Rossiter-McLaughlin effect. This can be understood either by an orbital plane nearly perpendicular to the stellar spin or by an additional, unaccounted for source of broadening.

  7. Optimal use of buffer volumes for the measurement of atmospheric gas concentration in multi-point systems

    Science.gov (United States)

    Cescatti, Alessandro; Marcolla, Barbara; Goded, Ignacio; Gruening, Carsten

    2016-09-01

    Accurate multi-point monitoring systems are required to derive atmospheric measurements of greenhouse gas concentrations both for the calculation of surface fluxes with inversion transport models and for the estimation of non-turbulent components of the mass balance equation (i.e. advection and storage fluxes) at eddy covariance sites. When a single analyser is used to monitor multiple sampling points, the deployment of buffer volumes (BVs) along sampling lines can reduce the uncertainty due to the discrete temporal sampling of the signal. In order to optimize the use of buffer volumes we explored various set-ups by simulating their effect on time series of high-frequency CO2 concentration collected at three Fluxnet sites. Besides, we proposed a novel scheme to calculate half-hourly weighted arithmetic means from discrete point samples, accounting for the probabilistic fraction of the signal generated in the averaging period. Results show that the use of BVs with the new averaging scheme reduces the mean absolute error (MAE) up to 80 % compared to a set-up without BVs and up to 60 % compared to the case with BVs and a standard, non-weighted averaging scheme. The MAE of CO2 concentration measurements was observed to depend on the variability of the concentration field and on the size of BVs, which therefore have to be carefully dimensioned. The optimal volume size depends on two main features of the instrumental set-up: the number of measurement points and the time needed to sample at one point (i.e. line purging plus sampling time). A linear and consistent relationship was observed at all sites between the sampling frequency, which summarizes the two features mentioned above, and the renewal frequency associated with the volume. Ultimately, this empirical relationship can be applied to estimate the optimal volume size according to the technical specifications of the sampling system.

  8. Mechanical Property and Its Comparison of Superalloys for High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Since structural materials for high temperature gas cooled reactor are used during long period in nuclear environment up to 1000 .deg. C, it is important to have good properties at elevated temperature such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Thus, in order to select excellent materials for the high temperature gas cooled reactor, it is necessary to understand the material properties and to gather the data for them. In this report, the items related to material properties which are needed for designing the high temperature gas cooled reactor were presented. Mechanical properties; tensile, creep, and fatigue etc. were investigated for Haynes 230, Hastelloy-X, In 617 and Alloy 800H, which can be used as the major structural components, such as intermediate heat exchanger (IHX), hot duct and piping and internals. Effect of He and irradiation on these structural materials was investigated. Also, mechanical properties; physical properties, tensile properties, creep and creep crack growth rate were compared for them, respectively. These results of this report can be used as important data to select superior materials for high temperature gas reactor

  9. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  10. A novel contra propagating ultrasonic flowmeter using glad buffer rods for high temperature measurement. Application to the oil and gas industries

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Demartonne R. [Brasilia Univ., DF (Brazil). Dept. de Engenharia Eletrica; Cheng-Kuei Jen; Yuu Ono [National Research Council (NRC), Quebec (Canada). Industrial Materials Institute

    2005-07-01

    Ultrasonic techniques are attractive for process monitoring and control because they are non-intrusive, robust and inexpensive. Two common concerns limiting the high temperature performance of conventional ultrasonic systems for flow measurement are related to transducers and couplants. A suitable approach to overcoming this drawback is to insert a thermal isolating buffer rod with good ultrasonic performance (e.g., high signal-to-noise ratio). This requirement is important because, a priori, the noises generated in the buffer rod may bury the desired signals, so that no meaningful information is extracted. Besides protecting the ultrasonic transducers from overheating in applications such as high temperature flow measurements, buffer rods are also a solution for the couplant between the probe and tested sample, since their probing end can be directly wetted by fluids. Here, we propose clad buffer rods driven by shear transducers as the main building block of contra propagating ultrasonic flowmeters for high temperature application. It is demonstrated that the superior signal-to-noise ratio exhibit by clad buffer rods compared to the reported non-clad counterparts improve precision in transit-time measurement, leading to more accurate flow speed determination. In addition, it is shown that clad buffer rods generate specific ultrasonic signals for temperature calibration of flowmeters, allowing temperature variation while still measuring accurately the flow speed. These results are of interest for the oil and gas industries. (author)

  11. Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing

    Science.gov (United States)

    Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.

    2002-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.

  12. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  13. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R and D) that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. This paper presents current R and D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs

  14. Thermal hydraulics of the very high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R and D) that will be critical to the success of the NGNP, primarily in the areas of: · High temperature gas reactor fuels behavior · High temperature materials qualification · Design methods development and validation · Hydrogen production technologies · Energy conversion. This paper presents current R and D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs. (author)

  15. Modular high-temperature gas-cooled reactor core heatup accident simulations

    International Nuclear Information System (INIS)

    The design features of the modular high-temperature gas-cooled reactor (HTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. Simulations of long-term loss-of-forced-convection (LOFC) accidents, both with and without depressurization of the primary coolant and with only passive cooling available to remove afterheat, have shown that maximum core temperatures stay below the point at which fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. 4 refs., 5 figs

  16. On the connection between radio mini-halos and gas heating in cool core clusters

    CERN Document Server

    Bravi, Luca; Brunetti, Gianfranco

    2016-01-01

    In this work, we present a study of the central regions of cool-core clusters hosting radio mini-halos, which are di use synchrotron sources extended on cluster-scales surrounding the radio-loud brightest galaxy. We aim to investigate the interplay between the thermal and non-thermal components in the intracluster medium in order to get more insights into these radio sources, whose nature is still unclear. It has recently been proposed that turbulence plays a role for heating the gas in cool cores. A correlation between the radio luminosity of mini-halos, $\

  17. Preliminary Investigation of an Optimally Scramming Control Rod for Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    A passively safe control rod for gas-cooled reactors is proposed. This Optimally Scramming Control Rod (OSCR) is lifted out of the core region by the core coolant and descends back into the core when the coolant flow is not sufficient for core cooling purposes or in the event of depressurization. It is shown that for the current design of the OSCR, the reactor can be operated under normal lower power conditions down to about 80% of total power. It is also shown that cold shutdown can be achieved with rods of sufficiently low mass to allow naturally passive operation of the concept. (authors)

  18. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  19. Internally gas-cooled radiofrequency applicators as an alternative to conventional radiofrequency and microwave ablation devices: An in vivo comparison

    Energy Technology Data Exchange (ETDEWEB)

    Rempp, Hansjörg, E-mail: Hansjoerg.rempp@med.uni-tuebingen.de [Eberhard Karls University of Tübingen, Tübingen University Hospital, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Straße 3, Tübingen, 72076 (Germany); Voigtländer, Matthias [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); Schenk, Martin [Eberhard Karls University of Tuebingen, Tübingen University Hospital, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Enderle, Markus D. [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); Scharpf, Marcus [Eberhard Karls University of Tuebingen, Insitute of Pathology, Department on General Pathology and Pathological Anatomy, Liebermeisterstraße 8, 72076 Tübingen (Germany); Greiner, Tim O. [Eberhard Karls University of Tuebingen, Tübingen University Hospital, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Neugebauer, Alexander [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); and others

    2013-08-15

    Purpose: To test the efficacy of internally CO{sub 2}-cooled radiofrequency (RF) ablation in vivo and to compare its effectiveness to a standard water-cooled RF probe and to a gas-cooled microwave (MW) device. Method and materials: 49 ablations were performed on 15 pigs under general anesthesia using 15G monopolar CO{sub 2}-cooled RF applicators, 17G monopolar water-cooled RF applicators and 15G internally CO{sub 2}-cooled microwave devices. The power of the MW device was 45 W, the current of the gas-cooled RF device was 1200–1600 mA. At the water-cooled RF probe, maximum power of 200 W was set. Ablation time was 15 min. The short and long axes of the ablation zone were measured. Histological analyses and NADH-staining were performed. The diameters and the ablation volumes were compared using an analysis of variance. Results: No spots of untreated tissue were observed close to the cooled needle track in any of the ablation zones. The largest short axis diameter was 3.4 ± 0.5 cm achieved with the gas-cooled monopolar applicator. With the water-cooled applicators, short axis diameter was significantly smaller, reaching 2.5 ± 0.4 cm. Gas-cooled MW probes achieved 2.9 ± 1.0 cm. The largest ablation volume was 31.5 ± 12 ml (gas-cooled RF), and the smallest was 12.7 ± 4 ml (water-cooled RF). Short/long axis ratio was largest for gas-cooled RF probes with 0.73 ± 0.08 versus 0.64 ± 0.04 for the water-cooled probes and 0.49 ± 0.25 for the microwave applicator. Conclusion: Gas-cooled RF applicators may have a higher potential for effective destruction of liver lesions than comparable water-cooled RF systems, and may be an alternative to standard RF and MW ablation devices.

  20. Spitzer Secondary Eclipse Observations of Five Cool Gas Giant Planets and Empirical Trends in Cool Planet Emission Spectra

    CERN Document Server

    Kammer, Joshua A; Line, Michael R; Fortney, Jonathan J; Deming, Drake; Burrows, Adam; Cowan, Nicolas B; Triaud, Amaury H M J; Agol, Eric; Desert, Jean-Michel; Fulton, Benjamin J; Howard, Andrew W; Laughlin, Gregory P; Lewis, Nikole K; Morley, Caroline V; Moses, Julianne I; Showman, Adam P; Todorov, Kamen O

    2015-01-01

    In this work we present Spitzer 3.6 and 4.5 micron secondary eclipse observations of five new cool (<1200 K) transiting gas giant planets: HAT-P-19b, WASP-6b, WASP-10b, WASP-39b, and WASP-67b. We compare our measured eclipse depths to the predictions of a suite of atmosphere models and to eclipse depths for planets with previously published observations in order to constrain the temperature- and mass-dependent properties of gas giant planet atmospheres. We find that the dayside emission spectra of planets less massive than Jupiter require models with efficient circulation of energy to the night side and/or increased albedos, while those with masses greater than that of Jupiter are consistently best-matched by models with inefficient circulation and low albedos. At these relatively low temperatures we expect the atmospheric methane to CO ratio to vary as a function of metallicity, and we therefore use our observations of these planets to constrain their atmospheric metallicities. We find that the most massi...

  1. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors.

  2. Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling

    Directory of Open Access Journals (Sweden)

    J. P. Yadav

    2012-08-01

    Full Text Available Performance of gas turbine significantly depends upon the ambient air temperature and mass flow rate. During summer season the density of the air decreases which affects the mass flow rate and ultimately the power output of a gas turbine is reduced. In order to overcome this situation several techniques are already in the practice and one of the most effective and economical is adopting the inlet fog cooling which basically enhances the power output of the machine. The cooling of ambient air by fog cooling up to wet bulb temperature increases the mass flow rate on account of increase in air density, as a result it ultimately increases the power output of a gas turbine. Fogging is applied with consideration of relative humidity of ambient air not only during summer season but also during dry days of summer season in order to increase the power output of gas turbine. This paper describes the effect on percentage enhancement of power output adopting various fuel options with low and high humidity ambient conditions. The results indicate the potential increase in the power output up to 14�20It is also observed that the total cost of power production increases due to increase in fuel consumption on account of enhanced power output. Thus, the optimum operating parameters are required for taking advantage of power augmentation ensuring that it does not lead to excessive increase in fuel cost.

  3. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  4. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds. PMID:22243149

  5. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  6. Evaluation of distributed gas cooling of pressurized PAFC for utility power generation

    Science.gov (United States)

    Farooque, M.; Maru, H.; Skok, A.

    1981-01-01

    Two short stacks were pressure tested at 446 kPa (4.4 atm.) and the pressure gains were more than the theoretically predicted gains. Temperature profiles were observed to be independent of operating pressure. The pressure drop was found to be inversely proportional to operating pressure as expected. Continuous pressurized operation of a stack for 1000 hours verified the compatability of the fuel cell component design. A simple pressurization procedure was also developed. Six separate designs, covering two gas cooling schemes (DIGAS and separated) and two cooling channel geometries (straight through and treed), were analysed on the net voltage output basis. Separated cooling with 5 cells per cooler was recognized to be the best among the designs considered.

  7. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  8. Penetrating Gas Streams Generate Unrelaxed,Non-Cool-Core Clusters of Galaxies

    CERN Document Server

    Zinger, E; Birnboim, Y; Kravtsov, A; Nagai, D

    2015-01-01

    We utilize cosmological simulations of 16 galaxy clusters at redshifts $z=0$ and $z=0.6$ to study the effect of inflowing streams on the properties of the inner Intra-Cluster Medium (ICM). We find that the mass accretion occurs predominantly along streams that originate from the cosmic web and consist of heated gas. Clusters that are unrelaxed in terms of their X-ray morphology are characterized by higher mass inflow rates and deeper penetration of the streams, typically into the inner third of the virial radius. The penetrating streams generate elevated random motions, bulk flows, cold fronts and metal mixing, thus producing Non-Cool-Core clusters. The degree of penetration of the streams may change over time such that clusters can switch from being unrelaxed to relaxed over a time-scale of several Gyrs. The stream properties thus help us understand the distinction between cool-core and non-cool-core clusters.

  9. Dynamics of Greenhouse Gas Emissions from Riparian Buffer Zones and Wetlands as Hot Spots in Agricultural Landscapes

    International Nuclear Information System (INIS)

    The study considers various aspects of riparian buffer zones and wetlands for greenhouse gas emissions in agricultural landscapes of northern and north-eastern Europe. In particular, the impact of pulsing water regime, continuous loading and several alterations of environmental conditions on greenhouse gas emissions are taken into the consideration. In two case studies the isotopologue technique was used to distinguish between N2O sources in both riparian zones and constructed wetlands. Nitrous oxide (N2O) and nitrogen (N2) emissions, isotopic signatures of N2O and nitrate (NO3-) in groundwater of two differently loaded riparian grey alder stands in southern Estonia were investigated over a period of nine months. One area was a 38-year-old stand in Porijõgi (PJ), where uphill agricultural activities had been abandoned since the middle of 1990s, and the second area was a 55-year-old alder stand in Viiratsi (Vi), which still receives polluted lateral flow from uphill fields applied with pig slurry. Gas fluxes were measured in six sampling sessions, and water samples were analysed for NO3-, N2, N2O, and isotopic signatures of oxygen-18 (delta 18O, δ18O) and nitrogen-15 (delta 15N, δ15N) in N2O and NO3- in four of the six sessions. The N2O and N2 fluxes from both riparian zones did not differ significantly, being 9.6 ± 4.7 and 14.5 ± 3.9 μg N2O–N m−2 h−1, and 2 466 ± 275 and 3 083 ± 371 μg N2–N m−2 h−1 in PJ and Vi sites respectively, suggesting that gaseous N2 is the dominant gas emission from these alder stands. The isotopic signatures of N2O and NO3- were not significantly different between PJ and Vi study sites suggesting possible conversion of NO3- to N2O in both areas. The greater prevalence of N2 emissions over N2O in both areas, and the strong relationship between NO3- and N2O concentrations (r2 = 0.846, with p < 0.01) further suggested that denitrification is the main source of N2O and N2 fluxes in these grey alder stands. The dominant

  10. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  11. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    Directory of Open Access Journals (Sweden)

    Lap-Yan Cheng

    2009-01-01

    Full Text Available The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR in a GEN IV direct-cycle gas-cooled fast reactor (GFR which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  12. Frequency and distribution of leakages in steam generators of gas-cooled reactors

    International Nuclear Information System (INIS)

    In gas cooled reactors with graphitic primary circuit structures - such as HTR, AGR or Magnox - the water ingress is an event of great safety concern. Water or steam entering the primary circuit react with the hot graphite and carbon-oxide and hydrogen are produced. As the most important initiating event a leak in a steam generator must be taken into account. From the safety point of view as well as for availability reasons it is necessary to construct reliable boilers. Thus the occurrence of a boiler leak should be a rare event. In the context of a probabilistic safety study for an HTR-Project much effort was invested to get information about the frequency and the size distribution of tube failures in steam generators of gas cooled reactors. The main data base was the boiler tube failure statistics of United Kingdom gas cooled reactors. The data were selected and applied to a modern HTR steam generator design. A review of the data showed that the failure frequency is not connected with the load level (pressures, temperatures) or with the geometric size of the heating surface of the boiler. Design, construction, fabrication, examination and operation conditions have the greatest influence an the failure frequency but they are practically not to be quantified. The typical leak develops from smallest size. By erosion effects of the entering water or steam it is enlarged to perhaps some mm2, then usually it is detected by moisture monitors. Sudden tube breaks were not reported in the investigated period. As a rule boiler leaks in gas cooled reactors are much more, rare then leaks in steam generators of light water reactors and fossil fired boilers. (author)

  13. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  14. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  15. Improvement of the Decay Heat Removal Characteristics of the Generation IV Gas-cooled Fast Reactor

    OpenAIRE

    Epiney, Aaron Simon

    2010-01-01

    Gas cooling in nuclear power plants (NPPs) has a long history, the corresponding reactor types developed in France, the UK and the US having been thermal neutron-spectrum systems using graphite as the moderator. The majority of NPPs worldwide, however, are currently light water reactors, using ordinary water as both coolant and moderator. These NPPs – of the so-called second generation – will soon need replacement, and a third generation is now being ...

  16. Analysis of passive residual heat removal system of modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The passive residual heat removal system plays an important role for the inherent safety of high temperature gas-cooled reactor (HTGR). The thermal hydraulic calculation method for the residual heat removal system of HTGR was introduced. The operating temperatures of the residual heat removal system at different residual heat powers and different environmental temperatures were calculated. The containment concrete temperature was numerically simulated. The results show that the highest concrete temperature is acceptable. (authors)

  17. Design features facilitating the decommissioning of advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    The design of the advanced gas-cooled reactors is discussed as is the proposed decommissioning plan for delayed decommissioning. The special features which assist in decommissioning are presented. As a result of the study a catalogue of design features which will facilitate decommissioning is given. In addition to the catalogue of design features, the radioactive inventory 10 years after shutdown and 100 years after shutdown has been calculated. From this a provisional operator dose from activities associated with decommissioning has been assessed

  18. The key device--elevator in 10 MW high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The basic structure, working principle and behavior of the control system of the elevator in 10 MW high temperature gas-cooled reactor (HTR-10) are researched. The five-phase hybrid stepping motor and the closed-loop control are adopted in the construction design of the elevator. About 20000 fuel elements and graphite balls were transported into the reactor core by the elevator to achieve the critical loading for HTR-10

  19. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    International Nuclear Information System (INIS)

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  20. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    International Nuclear Information System (INIS)

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc

  1. Fabrication of spherical fuel element for 10 MW high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Cold quasi-isostatic molding with a silicon rubber die was used for manufacturing the spherical fuel elements of 10 MW high temperature gas-cooled reactor. 44 batches of fuel elements, about 20540 of the fuel elements, were produced. The cold properties of the graphite matrix materials satisfies the design specifications. The mean free uranium fraction in spherical fuel element from 44 batches is 4.57 x 10-5, certified products is 99%

  2. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    OpenAIRE

    Abánades Velasco, Alberto; C. García; García, L.; Escrivá, A.; Pérez-Navarro, A.; Rosales, J.

    2011-01-01

    The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fu...

  3. Preliminary Evaluation of a Nuclear Scenario Involving Innovative Gas Cooled Reactors

    OpenAIRE

    Eugene Shwageraus; Vincenzo Romanello; Guglielmo Lomonaco; Emil Fridman; Giuseppe Forasassi; Nicola Cerullo; Barbara Vezzoni

    2009-01-01

    In order to guarantee a sustainable supply of future energy demand without compromising the environment, some actions for a substantial reduction of C O 2 emissions are nowadays deeply analysed. One of them is the improvement of the nuclear energy use. In this framework, innovative gas-cooled reactors (both thermal and fast) seem to be very attractive from the electricity production point of view and for the potential industrial use along the high temperature processes (e.g., H 2 production b...

  4. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    OpenAIRE

    Abánades Velasco, Alberto; García, C.; García, L; Escrivá, A.; Pérez-Navarro, A.; Rosales, J.

    2011-01-01

    The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel f...

  5. Design of a large-scale, multi-purpose high temperature gas-cooled reactor system

    International Nuclear Information System (INIS)

    The trial design of a large-scale, multi-purpose high temperature gas-cooled reactor system is described on its three aspects: nuclear reactor, nuclear heat utilization, and safety. The system is a littoral iron and steel making plant employing a multi-purpose HTGR (heat output 3,000 MW) with helium gas temperature of 1,0000C; the capacity is about 6,300,000 tons of crude steel production per year. It consists of a direct reduction furnace for ore and an electric furnace, and also an electric power generating facility. (Mori, K.)

  6. Evaluation of proposed German safety criteria for high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Barsell, A.W.

    1980-05-01

    This work reviews proposed safety criteria prepared by the German Bundesministerium des Innern (BMI) for future licensing of gas-cooled high-temperature reactor (HTR) concepts in the Federal Republic of Germany. Comparison is made with US General Design Criteria (GDCs) in 10CFR50 Appendix A and with German light water reactor (LWR) criteria. Implications for the HTR design relative to the US design and safety approach are indicated. Both inherent characteristics and design features of the steam cycle, gas turbine, and process heat concepts are taken into account as well as generic design options such as a pebble bed or prismatic core.

  7. Specialists' meeting on heat exchanging components of gas-cooled reactors

    International Nuclear Information System (INIS)

    The objective of the Meeting sponsored by IAEA was to provide a forum for the exchange and discussion of technical information related to heat exchanging and heat conducting components for gas-cooled reactors. The technical part of the meeting covered eight subjects: Heat exchanging components for process heat applications, design and requirements, and research and development programs; Status of the design and construction of intermediate He/He exchangers; Design, construction and performance of steam generators; Metallic materials and design codes; Design and construction of valves and hot gas ducts; Description of component test facilities and test results; Manufacturing of heat exchanging components

  8. Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Holowczak, J.

    2002-03-01

    With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

  9. Economic analysis of multiple-module high temperature gas-cooled reactor (MHTR) nuclear power plants

    International Nuclear Information System (INIS)

    In recent years, as the increasing demand of energy all over the world, and the pressure on greenhouse emissions, there's a new opportunity for the development of nuclear energy. Modular High Temperature Gas-cooled Reactor (MHTR) received recognition for its inherent safety feature and high outlet temperature. Whether the Modular High Temperature Gas-cooled Reactor would be accepted extensively, its economy is a key point. In this paper, the methods of qualitative analysis and the method of quantitative analysis, the economic models designed by Economic Modeling Working Group (EMWG) of the Generation IV International Forum (GIF), as well as the HTR-PM's main technical features, are used to analyze the economy of the MHTR. A prediction is made on the basis of summarizing High Temperature Gas-cooled Reactor module characteristics, construction cost, total capital cost, fuel cost and operation and maintenance (O and M) cost and so on. In the following part, comparative analysis is taken measures to the economy and cost ratio of different designs, to explore the impacts of modularization and standardization on the construction of multiple-module reactor nuclear power plant. Meanwhile, the analysis is also adopted in the research of key factors such as the learning effect and yield to find out their impacts on the large scale development of MHTR. Furthermore, some reference would be provided to its wide application based on these analysis. (author)

  10. Redistributing hot gas around galaxies: do cool clouds signal a solution to the overcooling problem?

    CERN Document Server

    Kaufmann, Tobias; Maller, Ariyeh H; Fang, Taotao; Wadsley, James

    2008-01-01

    We present a pair of high-resolution smoothed particle hydrodynamics (SPH) simulations that explore the evolution and cooling behavior of hot gas around Milky-Way size galaxies. The simulations contain the same total baryonic mass and are identical other than their initial gas density distributions. The first is initialised with a low entropy hot gas halo that traces the cuspy profile of the dark matter, and the second is initialised with a high-entropy hot halo with a cored density profile as might be expected in models with pre-heating feedback. Galaxy formation proceeds in dramatically different fashion depending on the initial setup. While the low-entropy halo cools rapidly, primarily from the central region, the high-entropy halo is quasi-stable for ~4 Gyr and eventually cools via the fragmentation and infall of clouds from ~100 kpc distances. The low-entropy halo's X-ray surface brightness is ~100 times brighter than current limits and the resultant disc galaxy contains more than half of the system's ba...

  11. Pahs, Ionized Gas, and Molecular Hydrogen in Brightest Cluster Galaxies of Cool Core Clusters of Galaxies

    CERN Document Server

    Donahue, Megan; O'Connell, Robert W; Voit, G Mark; Hoffer, Aaron; McNamara, Brian R; Nulsen, Paul E J

    2011-01-01

    We present measurements of 5-25 {\\mu}m emission features of brightest cluster galaxies (BCGs) with strong optical emission lines in a sample of 9 cool-core clusters of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telescope. These systems provide a view of dusty molecular gas and star formation, surrounded by dense, X-ray emitting intracluster gas. Past work has shown that BCGs in cool-core clusters may host powerful radio sources, luminous optical emission line systems, and excess UV, while BCGs in other clusters never show this activity. In this sample, we detect polycyclic aromatic hydrocarbons (PAHs), extremely luminous, rotationally-excited molecular hydrogen line emission, forbidden line emission from ionized gas ([Ne II] and [Ne III]), and infrared continuum emission from warm dust and cool stars. We show here that these BCGs exhibit more luminous forbidden neon and H2 rotational line emission than star-forming galaxies with similar total infrared luminosities, as well as ...

  12. Rotor disk cooling and rim sealing to prevent hot gas ingestion. Rotor reikyaku to hot gas no seal

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, K. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1993-03-01

    In designing a high-temperature gas turbine disc, it is necessary to know pressure distribution around a disc, which correlates with flows inside and outside the disc. With design conditions becoming very stringent for efficiency improvement as a background, this paper describes latest trends in technologies on heat transfer around a disc and hot gas sealing while introducing reports on various studies. Generally speaking, fundamental researches on rotors without mainstreams have conventionally been carried out mainly in Europe and the U.S.A. Researches have become active recently on entrainment of mainstream gas where there is a mainstream that renders practical problems. The number of research papers is increasing sharply that relate to rotor shapes closer to those used in practical turbines incorporating moving and static blades, and high rotation Reynolds numbers. Further, studies using numerical analysis are on the increase, and rotor cooling studies are advancing remarkably in recent years. 36 refs., 10 figs.

  13. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs

  14. THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS

    International Nuclear Information System (INIS)

    Planet formation is profoundly impacted by the properties of protoplanetary disks and their central star. However, how disk properties vary with stellar parameters remains poorly known. Here, we present the first comprehensive, comparative Spitzer/IRS study of the dust and gas properties of disks around young Sun-like stars (K1-M5) and cool stars/brown dwarfs (M5-M9). The comparison of these two large samples of over 60 sources reveal major differences in the evolution of both the dust and gas components. We report the first detection of organic molecules in disks around brown dwarfs. The detection rate statistics and the line flux ratios of HCN and C2H2 show a striking difference between the two samples, demonstrating a significant underabundance of HCN relative to C2H2 in the disk surface of cool stars. We propose this to originate from the large difference in the UV irradiation around the two types of sources. The statistical comparison of the 10 μm silicate emission features also reveals a difference between the two samples. Cool stars and brown dwarfs show weaker features arising from more processed silicate grains in the disk atmosphere. These findings complement previous indications of flatter disk structures and longer disk lifetimes around cool stars. Our results highlight important differences in the chemical and physical evolution of protoplanetary disks as a function of stellar mass, temperature, and radiation field which should be taken into account in planet formation models. We note that the different chemistry of preplanetary materials in the disk may also influence the bulk composition and volatile content of the forming planets. In particular, if exogenous HCN has played a key role in the synthesis of prebiotic molecules on Earth as proposed, then prebiotic chemistry may unfold differently on planets around cool stars.

  15. Helium circulator design concepts for the modular high temperature gas-cooled reactor (MHTGR) plant

    International Nuclear Information System (INIS)

    Two helium circulators are featured in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) power plant - (1) the main circulator, which facilitates the transfer of reactor thermal energy to the steam generator, and (2) a small shutdown cooling circulator that enables rapid cooling of the reactor system to be realized. The 3170 kW(e) main circulator has an axial flow compressor, the impeller being very similar to the unit in the Fort St. Vrain (FSV) plant. The 164 kW(e) shutdown cooling circulator, the design of which is controlled by depressurized conditions, has a radial flow compressor. Both machines are vertically oriented, have submerged electric motor drives, and embody rotors that are supported on active magnetic bearings. As outlined in this paper, both machines have been conservatively designed based on established practice. The circulators have features and characteristics that have evolved from actual plant operating experience. With a major goal of high reliability, emphasis has been placed on design simplicity, and both machines are readily accessible for inspection, repair, and replacement, if necessary. In this paper, conceptual design aspects of both machines are discussed, together with the significant technology bases. As appropriate for a plant that will see service well into the 21st century, new and emerging technologies have been factored into the design. Examples of this are the inclusion of active magnetic bearings, and an automated circulator condition monitoring system. (author). 18 refs, 20 figs, 13 tabs

  16. Stagnation region gas film cooling: Spanwise angled injection from multiple rows of holes. [gas turbine engines

    Science.gov (United States)

    Luckey, D. W.; Lecuyer, M. R.

    1981-01-01

    The stagnation region of a cylinder in a cross flow was used in experiments conducted with both a single row and multiple rows of spanwise angled (25 deg) coolant holes for a range of the coolant blowing ratio with a freestream to wall temperature ratio approximately equal to 1.7 and R(eD) = 90,000. Data from local heat flux measurements are presented for injection from a single row located at 5 deg, 22.9 deg, 40.8 deg, 58.7 deg from stagnation using a hole spacing ratio of S/d(o) = 5 and 10. Three multiple row configurations were also investigated. Data are presented for a uniform blowing distribution and for a nonuniform blowing distribution simulating a plenum supply. The data for local Stanton Number reduction demonstrated a lack of lateral spreading by the coolant jets. Heat flux levels larger than those without film cooling were observed directly behind the coolant holes as the blowing ratio exceeded a particular value. The data were spanwise averaged to illustrate the influence of injection location, blowing ratio and hole spacing. The large values of blowing ratio for the blowing distribution simulating a plenum supply resulted in heat flux levels behind the holes in excess of the values without film cooling. An increase in freestream turbulence intensity from 4.4 to 9.5 percent had a negligible effect on the film cooling performance.

  17. Experimental and numerical investigation of heat transfer and pressure drop for innovative gas cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R., E-mail: rodrigo.leija@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz No. 1, 76344 Eggenstein-Leopoldshafen (Germany); Buchholz, S. [Gesellschaft für Anlagen- und Reaktorsicherheit GRS mbH, Boltzmannstraße 2, 85748 Garching (Germany); Suikkanen, H. [Lappeenranta University of Technology, LUT Energy, PO Box 20, FI-53851 Lappeenranta (Finland)

    2015-08-15

    Highlights: • Experimental results of the L-STAR within the first stage of THINS project. • CFD validation for the heat transfer and pressure losses in innovative gas cooled systems. • The results indicate a strong dependency Turbulent Prandtl at the rod wall temperature distribution. • Gas loop facility suitable for the investigation of thermohydraulic issues of GFR, however there might be flow instabilities when flow is very low. - Abstract: Heat transfer enhancement through turbulence augmentation is recognized as a key factor for improving the safety and economic conditions in the development of both critical and subcritical innovative advanced gas cooled fast reactors (GFR) and transmutation systems. The L-STAR facility has been designed and erected at the Karlsruhe Institute of Technology (KIT) to study turbulent flow behavior and its heat transfer enhancement characteristics in gas cooled annular channels under a wide range of conditions. The test section consists of an annular hexagonal cross section channel with an inner electrical heater rod element, placed concentrically within the test section, which seeks to simulate the flow area of a fuel rod element in a GFR. The long term objective of the experimental study is to investigate and improve the understanding of complex turbulent convective enhancement mechanisms as well as the friction loss penalties of roughened fuel rods compared to smooth ones and to generate an accurate database for further development of physical models. In the first step, experimental results of the fluid flow with uniform heat release conditions for the smooth heater rod are presented. The pressure drops, as well as the axial temperature profiles along the heater rod surface have been measured at Reynolds numbers in the range from 4000 to 35,000. The experimental results of the first stage were compared with independently conducted CFD analyses performed at Lappeenranta University of Technology (LUT) with the code ANSYS

  18. Modular high-temperature gas-cooled reactor simulation using parallel processors

    International Nuclear Information System (INIS)

    The MHPP (Modular HTGR Parallel Processor) code has been developed to simulate modular high-temperature gas-cooled reactor (MHTGR) transients and accidents. MHPP incorporates a very detailed model for predicting the dynamics of the reactor core, vessel, and cooling systems over a wide variety of scenarios ranging from expected transients to very-low-probability severe accidents. The simulation routines, which had originally been developed entirely as serial code, were readily adapted to parallel processing Fortran. The resulting parallelized simulation speed was enhanced significantly. Workstation interfaces are being developed to provide for user (''operator'') interaction. The benefits realized by adapting previous MHTGR codes to run on a parallel processor are discussed, along with results of typical accident analyses. 3 refs., 3 figs

  19. EFFECTS OF COOLED EXTERNAL EXHAUST GAS RECIRCULATION ON DIESEL HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; CUI Yi; DENG Kangyao

    2007-01-01

    The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.

  20. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  1. Basic study on high temperature gas cooled reactor technology for hydrogen production

    International Nuclear Information System (INIS)

    The annual production of hydrogen in the world is about 500 billion m3. Currently hydrogen is consumed mainly in chemical industries. However hydrogen has huge potential to be consumed in transportation sector in coming decades. Assuming that 10% of fossil energy in transportation sector is substituted by hydrogen in 2020, the hydrogen in the sector will exceed current hydrogen consumption by more than 2.5 times. Currently hydrogen is mainly produced by steam reforming of natural gas. Steam reforming process is chiefest way to produce hydrogen for mass production. In the future, hydrogen has to be produced in a way to minimize CO2 emission during its production process as well as to satisfy economic competition. One of the alternatives to produce hydrogen under such criteria is using heat source of high-temperature gas-cooled reactor. The high-temperature gas-cooled reactor represents one type of the next generation of nuclear reactors for safe and reliable operation as well as for efficient and economic generation of energy

  2. Experimental study of gas engine driven air to water heat pump in cooling mode

    International Nuclear Information System (INIS)

    Nowadays a sustainable development for more efficient use of energy and protection of the environment is of increasing importance. Gas engine heat pumps represent one of the most practicable solutions which offer high energy efficiency and environmentally friendly for heating and cooling applications. In this paper, the performance characteristics of gas engine driven heat pump used in water cooling were investigated experimentally without engine heat recovery. The effects of several important factors (evaporator water inlet temperature, evaporator water volume flow rate, ambient air temperature, and engine speed) on the performance of gas engine driven heat pump were studied in a wide range of operating conditions. The results showed that primary energy ratio of the system increased by 22.5% as evaporator water inlet temperature increased from 13 oC to 24 oC. On the other hand, varying of engine speed from 1300 rpm to 1750 rpm led to decrease in system primary energy ratio by 13%. Maximum primary energy ratio has been estimated with a value of two over a wide range of operating conditions.

  3. Steam generators and heat exchangers for gas-cooled reactors. Background and status in Switzerland

    International Nuclear Information System (INIS)

    The Swiss company Sulzer Brothers Ltd. built its first nuclear steam generator in 1961 for a CO2-cooled prototype reactor. Since then the Company has been involved in the planning, development and manufacture of steam generators for gas-cooled reactors, in particular for the French Magnox reactor program. In 1980 Sulzer delivered the 6-module steam generator for the German High Temperature Reactor Prototype THTR-300. The production of hardware was continuously accompanied and supported by extensive research and development activities. Experimental programs comprised thermohydraulic investigations related to the primary gas-side as well as to the secondary side and its two-phase-flow stability. In the area of high temperature materials thermal cycling tests were performed to analyse the fatigue of bimetallic welds under severe transients. Low cycle creep fatigue damage in tube bends and the wear and fretting characteristics of protective coatings on the helium side of hot tubes were investigated. Fabrication experiments for large helical heat exchangers served to extrapolate known manufacturing technology to commercial size HTGR units. In the frame of international GCR programs Switzerland participated in the Gas Breeder Reactor Association and the High Temperature Helium Turbine Project. For these projects Sulzer designed and developed steam generators, recuperators and primary coolers

  4. Study on Performance Improvement and Economical Aspect of Gas Turbine Power Plant Using Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Hilman Syaeful Alam

    2015-12-01

    Full Text Available The study is intended to improve the performance of gas turbine engines in order to meet both electrical power demand and peak load in the power plant. In this paper, evaporative cooling system had been applied to improve the performance of gas turbine in Pesanggaran power plant in southern Bali Island, Indonesia. Moreover, the economic analysis was conducted to determine the capacity cost, operating cost and payback period due to the investment cost of the system. Based on the evaluation results, the power improvement for the three gas turbine units (GT1, GT2 and GT3 are 2.09%, 1.38%, and 1.28%, respectively. These results were not very significant when compared to the previous studies as well as on the aspects of SFC (Specific Fuel Consumption, heat rate and thermal efficiency. Based on the evaluation of the economic aspects, the reduction of production costs due to the application of evaporative cooling system was not economical, because it could not compensate the investment cost of the system and it resulted a very long payback period. These unsatisfactory results could be caused by the high relative humidity. Therefore, further studies are needed to investigate the other alternative technologies which are more suitable to the climate conditions in Indonesia.

  5. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  6. High temperature gas cooled reactor technology development. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    The successful introduction of an advanced nuclear power plant programme depends on many key elements. It must be economically competitive with alternative sources of energy, its technical development must assure operational dependability, the support of society requires that it be safe and environmentally acceptable, and it must meet the regulatory standards developed for its use and application. These factors interrelate with each other, and the ability to satisfy the established goals and criteria of all of these requirements is mandatory if a country or a specific industry is to proceed with a new, advanced nuclear power system. It was with the focus on commercializing the high temperature gas cooled reactor (HTGR) that the IAEA's International Working Group on Gas Cooled Reactors recommended this Technical Committee Meeting (TCM) on HTGR Technology Development. Over the past few years, many Member States have instituted a re-examination of their nuclear power policies and programmes. It has become evident that the only realistic way to introduce an advanced nuclear power programme in today's world is through international co-operation between countries. The sharing of expertise and technical facilities for the common development of the HTGR is the goal of the Member States comprising the IAEA's International Working Group on Gas Cooled Reactors. This meeting brought together key representatives and experts on the HTGR from the national organizations and industries of ten countries and the European Commission. The state electric utility of South Africa, Eskom, hosted this TCM in Johannesburg, from 13 to 15 November 1996. This TCM provided the opportunity to review the status of HTGR design and development activities, and especially to identify international co-operation which could be utilized to bring about the commercialization of the HTGR

  7. Factors affecting the performances of sprayed chromium carbide coatings for gas-cooled reactor heat exchangers

    International Nuclear Information System (INIS)

    The paper discusses some important factors to be considered for using sprayed coatings in gas-cooled reactor heat exchangers. These factors include (a) high-temperature gaseous corresion, (b) thermal stability of coatings, (c) metallurgical compatibility between the coating and substrate, and (d) effects of the coating on the mechanical properties of the substrate alloy. The coatings evaluated were Cr3C2--NiCr and Cr23C6--NiCr applied by either plasma-arc or detonation-gun process

  8. High-temperature gas-cooled reactor (HTGR): long term program plan

    International Nuclear Information System (INIS)

    The FY 1980 effort was to investigate four technology options identified by program participants as potentially viable candidates for near-term demonstration: the Gas Turbine system (HTGR-GT), reflecting its perceived compatibility with the dry-cooling market, two systems addressing the process heat market, the Reforming (HTGR-R) and Steam Cycle (HTGR-SC) systems, and a more developmental reactor system, The Nuclear Heat Source Demonstration Reactor (NHSDR), which was to serve as a basis for both the HTGR-GT and HTGR-R systems as well as the further potential for developing advanced applications such as steam-coal gasification and water splitting

  9. Development of a CVD silica coating for UK advanced gas-cooled nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Vapour deposited silica coatings could extend the life of the 20% Cr/25% Ni niobium stabilised (20/25/Nb) stainless steel fuel cladding of the UK advanced gas cooled reactors. A CVD coating process developed originally to be undertaken at atmospheric pressure has now been adapted for operation at reduced pressure. Trials on the LP CVD process have been pursued to the production scale using commercial equipment. The effectiveness of the LP CVD silica coatings in providing protection to 20/25/Nb steel surfaces against oxidation and carbonaceous deposition has been evaluated. (author)

  10. Procedure of Active Residual Heat Removal after Emergency Shutdown of High-Temperature-Gas-Cooled Reactor

    OpenAIRE

    Xingtuan Yang; Yanfei Sun; Huaiming Ju; Shengyao Jiang

    2014-01-01

    After emergency shutdown of high-temperature-gas-cooled reactor, the residual heat of the reactor core should be removed. As the natural circulation process spends too long period of time to be utilized, an active residual heat removal procedure is needed, which makes use of steam generator and start-up loop. During this procedure, the structure of steam generator may suffer cold/heat shock because of the sudden load of coolant or hot helium at the first few minutes. Transient analysis was ca...

  11. Development status and operational features of the high temperature gas-cooled reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winkleblack, R.K.

    1976-04-01

    The objective of this study is to investigate the maturity of HTR-technology and to look out for possible technical problems, concerning introduction of large HTR power plants into the market. Further state and problems of introducing and closing the thorium fuel cycle is presented and judged. Finally, the state of development of advanced HTR-concepts for electricity production, the direct cycle HTR with helium turbine, and the gas-cooled fast breeder is discussed. In preparing the study, both HTR concepts with spherical and block-type fuel elements have been considered.

  12. Experimental study of gas-cooled current leads for superconducting magnets

    International Nuclear Information System (INIS)

    Design details and experimental test results from several design variations of the gas-cooled, copper current leads used in conjunction with the superconducting dipole magnets for ESCAR (Experimental Superconducting Accelerator Ring) are reported. Thermal acoustic oscillations, which were experienced with an initial design, were eliminated in subsequent designs by a reduction of the hydraulic diameter. The occurrence of these oscillations is in general agreement with the stability analysis of Rott but the observed gas flow dependence is not in agreement with some other recently reported results for leads operated supercritical phase coolant. An empirically determined correlation was obtained by plotting lead resistance vs. enthalpy gain of the coolant gas. The resulting family of curves can be reduced to a single line on a plot of effective resistivity vs. the product of current and cross-sectional area divided by the product of the square of the mass flow of the coolant and the lead length. This correlation, which should be applicable to other designs of copper current leads in which ideal heat transfer to the coolant gas is approached, predicts that the enthalpy gain of the coolant, and therefore the peak lead temperature, is proportional to the cube of the ratio of current to coolant mass flow. The effective value of the strongly temperature-dependent kinematic viscosity of the coolant gas was found to vary linearly with the effective resistivity of the lead

  13. Efficiency of gas cooling and accretion at the disc-corona interface

    CERN Document Server

    Armillotta, L; Marinacci, F

    2016-01-01

    In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding hot corona. Indeed, at the disc-corona interface, the mixing between the cold/metal-rich disc gas (T ~ 10^6 K) can dramatically reduce the cooling time of a portion of the corona and produce its condensation and accretion. We studied the interaction between fountain clouds and corona in different galactic environments through parsec-scale hydrodynamical simulations, including the presence of thermal conduction, a key mechanism that influences gas condensation. Our simulations showed that the coronal gas condensation strongly depends on the galactic environment, in particular it is less efficient for increasing virial temperature/mass of the haloes where galaxies reside and it is fully ineffective for objects with v...

  14. The Large-scale Distribution of Cool Gas around Luminous Red Galaxies

    CERN Document Server

    Zhu, Guangtun; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Ho, Shirley; Kinemuchi, Karen; Malanushenko, Viktor; Malanushenko, Elena; Marchante, Moses; More, Surhud; Oravetz, Daniel; Pan, Kaike; Petitjean, Patrick; Simmons, Audrey

    2013-01-01

    We present a measurement of the correlation function between luminous red galaxies and cool gas traced by Mg II \\lambda \\lambda 2796, 2803 absorption, on scales ranging from about 30 kpc to 20 Mpc. The measurement is based on cross-correlating the positions of about one million red galaxies at z~0.5 and the flux decrements induced in the spectra of about 10^5 background quasars from the Sloan Digital Sky Survey. We find that: (i) This galaxy-gas correlation reveals a change of slope on scales of about 1 Mpc, consistent with the expected transition from a dark matter halo dominated environment to a regime where clustering is dominated by halo-halo correlations. Assuming that, on average, the distribution of Mg II gas follows that of dark matter up to a gas-to-mass ratio, we find the standard halo model to provide an accurate description of the gas distribution over three orders of magnitude in scale. Within this framework we estimate the average host halo mass of luminous red galaxies to be about 10^{13.5} M_s...

  15. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  16. A small high temperature gas cooled reactor for nuclear marine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brugiere, F.; Sillon, C. [Ecole des Applications Militaires de l' Energie Atomique, 50 - Cherbourg (France); Foster, A.; Hamilton, P.; Jewer, S.; Thompson, A.C. [Defence College of Electromechanical Engineering, Nuclear Dept., Military Rd, Gosport (United Kingdom); Kingston, T.; Williams, A.M.; Beeley, P.A. [Rolls-Royce (Marine Power), Raynesway, Derby (United Kingdom)

    2007-07-01

    Results from a design study for a hypothetical nuclear marine propulsion plant are presented. The plant utilizes a small High Temperature Gas Cooled Reactor (HTGCR) similar to the GTHTR300 design by the Japan Atomic Energy Agency with power being generated by a direct cycle gas turbine. The GTHTR300 design is modified in order to achieve the required power of 80 MWth and core lifetime of approximately 10 years. Thermal hydraulic analysis shows that in the event of a complete loss of flow accident the hot channel fuel temperature exceeds the 1600 Celsius degrees limit due to the high power peaking in assemblies adjacent to the inner reflector. Reactor dynamics shows oscillatory behaviour in rapid power transients. An automatic control rod system is suggested to overcome this problem. (authors)

  17. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  18. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  19. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  20. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, K.D.; Sterbentz, J. [Idaho National Engineering and Environmental Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-3850 (United States); Meyer, M. [Argonne National Laboratory- West (United States); Lowden, R. [Oak Ridge National Laboratory (United States); Hoffman, E.; Wei, T.Y.C. [Argonne National Laboratory (United States)]. e-mail: weavkd@inel.gov

    2004-07-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO{sub 2}) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  1. Simulation and control of water-gas shift packed bed reactor with inter-stage cooling

    Science.gov (United States)

    Saw, S. Z.; Nandong, J.

    2016-03-01

    Water-Gas Shift Reaction (WGSR) has become one of the well-known pathways for H2 production in industries. The issue with WGSR is that it is kinetically favored at high temperatures but thermodynamically favored at low temperatures, thus requiring careful consideration in the control design in order to ensure that the temperature used does not deactivate the catalyst. This paper studies the effect of a reactor arrangement with an inter-stage cooling implemented in the packed bed reactor to look at its effect on outlet temperature. A mathematical model is developed based on one-dimensional heat and mass transfers which incorporate the intra-particle effects. It is shown that the placement of the inter-stage cooling and the outlet temperature exiting the inter-stage cooling have strong influence on the reaction conversion. Several control strategies are explored for the process. It is shown that a feedback- feedforward control strategy using Multi-scale Control (MSC) is effective to regulate the reactor temperature profile which is critical to maintaining the catalysts activity.

  2. Combined cooling and heating using a gas engine in a supermarket

    Energy Technology Data Exchange (ETDEWEB)

    Maidment, G.G. [South Bank Univ., London (United Kingdom). School of Engineering Systems and Design; Zhao, X.; Riffat, S.B. [Nottingham Univ. (United Kingdom). School of the Built Environment

    2001-07-01

    This paper reports the results of an investigation into the practical and economic viability of an integrated combined heating and cooling system in a supermarket. This system consists of a direct-drive screw compressor, which is powered by a throttle controlled gas engine. The waste heat from the engine is used to provide hot water for space heating and for general usage within the catering and toilet facilities in the supermarket. In this paper, the working principle of the novel system is first described. This details how the gas engine system may be integrated into the typical supermarket. The paper then describes a model, which is used to simulate the energy consumption of the supermarket. This is used to calculate the energy consumed by the conventional system and that used by a number of alternative combined heating and cooling system configurations, which are also described. The additional capital cost of each configuration is estimated and this is used to calculate the payback period. The results show that a payback period of 4.2 years may be achieved with a system that uses approximately 500,000 kWh per annum less primary energy than a conventional system. Finally, comparison between this system and a traditional Combined Heat and Power (CHP) installation is given. (author)

  3. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  4. The role of the IAEA in gas-cooled reactor development and application

    International Nuclear Information System (INIS)

    Within the Statute establishing the International Atomic Energy Agency there are several functions authorized for the Agency. One of these functions is ''to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world...''. The development of nuclear power is deemed an important application of this function. The representatives of Member States with national gas cooled reactor (GCR) programmes advise the Agency on its activities in the development and application of the GCR. The committee of leaders in GCR technology representing these Member States is the International Working Group on Gas Cooled Reactors (IWGGCR). The activities carried out by the Agency under the frame of the IWGGCR include technical information exchange meetings and cooperative Coordinated Research Programmes. Within the technical information exchange meetings are Specialist Meetings to review progress on selected technology areas and Technical Committee Meetings and Workshops for more general participation. Consultancies and Advisory Group Meetings are convened to provide the Agency with advise on specific technical matters. The Coordinated Research Programmes (CRPs) established within the frame of the IWGGCR for the GCR programme include: Validation of Safety Related Physics Calculations for Low Enriched GCRs; Validation of Predictive Methods for Fuel and Fission Product Behaviour in GCRs; Heat Transport and Afterheat Heat Removal for GCRs under Accident Conditions; and Design and Evaluation of Heat Utilization Systems for the High Temperature Engineering Test Reactor. This paper summarizes the role of the International Atomic Energy Agency in GCR technology development and application. (author). 6 refs, 3 tabs

  5. On the quasihydrostatic flows of radiatively cooling self-gravitating gas clouds

    Energy Technology Data Exchange (ETDEWEB)

    Meerson, B.; Megged, E. [Hebrew Univ. of Jerusalem (Israel). Racah Institute of Physics; Tajima, T. [Univ. of Texas, Austin, TX (United States)

    1995-03-01

    Two model problems are considered, illustrating the dynamics of quasihydrostatic flows of radiatively cooling, optically thin self-gravitating gas clouds. In the first problem, spherically symmetric flows in an unmagnetized plasma are considered. For a power-law dependence of the radiative loss function on the temperature, a one-parameter family of self-similar solutions is found. The authors concentrate on a constant-mass cloud, one of the cases, when the self-similarity indices are uniquely selected. In this case, the self-similar flow problem can be formally reduced to the classical Lane-Emden equation and therefore solved analytically. The cloud is shown to undergo radiative condensation, if the gas specific heat ratio {gamma} > 4/3. The condensation proceeds either gradually, or in the form of (quasihydrostatic) collapse. For {gamma} < 4/3, the cloud is shown to expand. The second problem addresses a magnetized plasma slab that undergoes quasihydrostatic radiative cooling and condensation. The problem is solved analytically, employing the Lagrangian mass coordinate.

  6. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  7. Safety aspects of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)

    International Nuclear Information System (INIS)

    The Modular High-Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry and the utilities. The design utilizes the basic high-temperature gas-cooled reactor (HTGR) features of ceramic fuel, helium coolant, and a graphite moderator. The qualitative top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. The MHTGR safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles has been evaluated. A broad range of challenges to core heat removal have been examined which include a loss of helium pressure and a simultaneous loss of forced cooling of the core. The challenges to control of heat generation have considered not only the failure to insert the reactivity control systems, but the withdrawal of control rods. Finally, challenges to control chemical attack of the ceramic coated fuel have been considered, including catastrophic failure of the steam generator allowing water ingress or of the pressure vessels allowing air ingress. The plant's response to these extreme challenges is not dependent on operator action and the events considered encompass conceivable operator errors. In the same vein, reliance on radionuclide retention within the full particle and on passive features to perform a few key functions to maintain the fuel within acceptable conditions also reduced susceptibility to external events, site-specific events, and to acts of sabotage and terrorism. 4 refs., 14 figs., 1 tab

  8. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MWth reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs

  9. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.

  10. The Cool ISM in S0 Galaxies. I. A Survey of Molecular Gas

    CERN Document Server

    Welch, G A; Welch, Gary A.; Sage, Leslie J.

    2003-01-01

    Lenticular galaxies remain remarkably mysterious as a class. Observations to date have not led to any broad consensus about their origins, properties and evolution, though they are often thought to have formed in one big burst of star formation early in the history of the Universe, and to have evolved relatively passively since then. In that picture, current theory predicts that stellar evolution returns substantial quantities of gas to the interstellar medium; most is ejected from the galaxy, but significant amounts of cool gas might be retained. Past searches for that material, though, have provided unclear results. We present results from a survey of molecular gas in a volume-limited sample of field S0 galaxies, selected from the Nearby Galaxies Catalog. CO emission is detected from 78 percent of the sample galaxies. We find that the molecular gas is almost always located inside the central few kiloparses of a lenticular galaxy, meaning that in general it is more centrally concentrated than in spirals. We ...

  11. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Downs, James [Florida Turbine Technologies Inc., Jupiter, FL (United States)

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  12. Analysis and test verification of control rod buffer in HTR

    International Nuclear Information System (INIS)

    The thin-walled shell buffer in high temperature gas-cooled reactor (HTR) was designed for absorbing the kinetic energy of the control rod drop in the drive line fracture accident. The thin-walled cylinder structure satisfying the requirements of actual working condition was design by using the energy absorption model of the classical cylinder shell under axial pressure. By using ABAQUS/explicit with J-C constitutive model, the finite element models of both the real reactor condition and the test condition were built to simulate the collision. Based on the analysis results, the control rod fall- down test was designed and implemented. The test results demonstrate that stable pro gressive buckling occurs when the full size buffer is impacted by equiponderance test bar, and the buffer can reduce the crush force effectively and protect the graphite from being destroyed. The analysis results show that the test model can represent and envelope the real condition in reactor. (authors)

  13. Contributions to the neutronic analysis of a gas-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martin-del-Campo, Cecilia, E-mail: cecilia.martin.del.campo@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico); Reyes-Ramirez, Ricardo, E-mail: ricarera@yahoo.com.mx [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico); Francois, Juan-Luis, E-mail: juan.luis.francois@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico); Reinking-Cejudo, Arturo G., E-mail: reinking@servidor.unam.mx [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico)

    2011-06-15

    Highlights: > Differences on reactivity with MCNPX and TRIPOLI-4 are negligible. > Fuel lattice and core criticality calculations were done. > A higher Doppler coefficient than coolant density coefficient. > Zirconium carbide is a better reflector than silicon carbide. > Adequate active height, radial size and reflector thickness were obtained. - Abstract: In this work the Monte Carlo codes MCNPX and TRIPOLI-4 were used to perform the criticality calculations of the fuel assembly and the core configuration of a gas-cooled fast reactor (GFR) concept, currently in development. The objective is to make contributions to the neutronic analysis of a gas-cooled fast reactor. In this study the fuel assembly is based on a hexagonal lattice of fuel-pins. The materials used are uranium and plutonium carbide as fuel, silicon carbide as cladding, and helium gas as coolant. Criticality calculations were done for a fuel assembly where the axial reflector thickness was varied in order to find the optimal thickness. In order to determine the best material to be used as a reflector, in the reactor core with neutrons of high energy spectrum, criticality calculations were done for three reflector materials: zirconium carbide, silicon carbide and natural uranium. It was found that the zirconium carbide provides the best neutron reflection. Criticality calculations using different active heights were done to determine the optimal height, and the reflector thickness was adjusted. Core criticality calculations were performed with different radius sizes to determine the active radial dimension of the core. A negative temperature coefficient of reactivity was verified for the fuel. The effect on reactivity produced by changes in the coolant density was also evaluated. We present the main neutronic characteristics of a preliminary fuel and core designs for the GFR concept. ENDF-VI cross-sections libraries were used in both the MCNPX and TRIPOLI-4 codes, and we verified that the obtained

  14. Testing and analyses of a high temperature duct for gas-cooled reactors

    International Nuclear Information System (INIS)

    A 0.6 scale model of a steam cycle gas-cooled reactor high temperature duct was tested in a closed loop helium facility. The object of the test series was to determine: 1) the thermal effects of gas permeation within the thermal barrier, 2) the plastic deformation of the metallic components, and 3) the thermal performance of the fibrous insulation. A series of tests was performed with thermal cyclings from 1000C to 7600C at 50 atmospheres until the system thermal performance had stabilized hence enabling predictions for the reactor life. Additional tests were made to assess permeation by deliberately simulating sealing weld failures thereby allowing gas flow by-pass within the primary thermal barrier. After 100 cycles the entire primary structure was found to have performed without structural failure. Due to high pressures exerted by the insulation on the cover plates and a design oversight, the thin seal sheets were unable to expand in an anticipated manner. Local buckling resulted. The insulation retained an acceptable degree of resiliency. However, some fiber damage was observed within both the high and low temperature insulation blankets. A thermal analysis was conducted to correlate the hot duct heat transfer results with those obtained from the analytical techniques used for the HTGR design using a computer thermal model representative of the duct and test setup. The thermal performance of the insulation, the temperature gradient through the structural components, the heating load to the cooling system and the permeation flow effect on heat transfer were verified. Exellent correlation between the experimental data and the analytical techniques were obtained

  15. Effects of buffer layer preparation and Bi concentration on InGaAsBi epilayers grown by gas source molecular beam epitaxy

    International Nuclear Information System (INIS)

    The effect of using an In0.53Ga0.47As buffer layer on the crystalline quality of InGaAsBi epilayer with Bi concentration up to 3.1% grown by gas source molecular beam epitaxy was investigated. It is found that use of the buffer layer has a dramatic effect on the improvement of surface morphology, structural, electrical and optical properties of InGaAsBi epilayers. Bi incorporation in InGaAs up to a concentration of 3.1% causes no degradation of the electron mobility and induces p-type carriers that compensate the background n-type carriers resulting in mobility enhancement with increasing Bi concentration. With the buffer layer preparation, a maximum electron mobility of 5550 cm2 V–1 s–1 at room temperature is demonstrated in InGaAsBi with x Bi = 3.1%, which is the highest value reported in InGaAsBi with x Bi > 2.5%. (paper)

  16. Modular high-temperature gas-cooled reactor short term thermal response to flow and reactivity transients

    International Nuclear Information System (INIS)

    The short-term thermal response of the modular high-temperature gas-cooled reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described

  17. High temperature corrosion of structural materials under gas-cooled reactor helium

    International Nuclear Information System (INIS)

    The Generation IV International Forum has selected six promising nuclear power systems for further collaborative investigations and development. Among these six concepts, two candidates are Gas Cooled Reactors (GCR), namely the Very High Temperature Reactor (VHTR) and the Gas-cooled Fast Reactor (GFR). The CEA has launched a R and D program on the metallic materials for application in an innovative GCR. Structural GCR alloys have been extensively studied in the past three decades. Some critical aspects for the steels and nickel base alloys resistance under the service conditions are microstructural stability, creep strength and compatibility with the cooling gas. The coolant, namely helium, proved to contain impurities mainly H2, CO, CH4, N2 and steam in the microbar range that interact with metals at high temperature. Surface scale formation, bulk carburisation and/or decarburisation can occur, depending on the atmosphere characteristics, primarily the effective oxygen partial pressure and carbon activity, on the temperature and on the alloys chemical composition. These structural transformations can notably influence the mechanical properties: carburisation may induce a loss in toughness and ductility whereas decarburisation impedes the creep strength. There is a valuable theoretical as well as practical knowledge on the corrosion of high temperature alloys in the primary circuit of a GCR but this past experience is not sufficient to qualify every component in a future reactor. On the one hand, the material environment could be significantly different from the former GCR's, especially regarding the higher temperature. On the other hand, the materials of interest are partly different. Ni-Cr-W alloys, for instance, may offer significant improvement in the maximum operating temperature as far as the mechanical properties are concerned. However, their corrosion resistance toward the GCR atmosphere is still unknown. We describe here our first corrosion tests of Haynes

  18. Case study on natural gas application for district heating and cooling in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maues, Jair Arone [Pontificia Universidade Catolica do Rio de Janeiro (IE/PUC-Rio), Rio de Janeiro, RJ (Brazil). Inst. de Energia; Akiyama, Junichi [Mitsui Gas e Energia do Brasil Ltda., Rio de janeiro, RJ (Brazil)

    2012-07-01

    The distributed cogeneration applying natural gas consists in an excellent alternative to use this source, but it is limited by a compatible heat demand that must be found in its application. District heating and cooling solutions can overcome this hurdle, especially in Brazil, a tropical country, where new industrial and commercial enterprises usually install central air conditioning systems. By 2020 natural gas demand shall reach a value of more than 200 MM m{sup 3} per day, accordingly to the Brazilian Energy Research Office (EPE, 2011). An expressive part of it could be consumed in cogeneration systems like the one described in this paper. This project had a special taxes exception rule applied. The chilled water and heated thermal oil produced were not taxed at all. But these two DHC utilities could obtain a different treatment if someone considers this is a tricky way of power and heat trading, which should be taxed as electricity and natural gas normally are. A bolder legislation with respect to the export of energy surplus would facilitate the project and operation of this kind of system, because the basic premise would be to attend the thermal demand with the electrical power installed, maximizing the global efficiency of the installation. An average 8 GW of Brazilian power demand, with roughly 50 MMm{sup 3}/day of natural gas consumption, could be attended by distributed energy gas cogeneration enterprises. If this prediction were totally accomplished it would bring the Brazilian participation of distributed energy in total power generation to values close to 10% in 2020, value already reached in average by the world biggest electricity's consumer countries (WADE, 2006). This also would mean an equivalent investment economy of approximately 11,000 MW in transmission and distribution lines capacity (author)

  19. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine

    2008-11-29

    The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results

  20. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    International Nuclear Information System (INIS)

    Thermo-mechanical contributions to pellet–clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS’s well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used

  1. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    The majority of NPPs worldwide are currently light water reactors, using ordinary water as both coolant and moderator. (...) For the longer-term future, viz. beyond the year 2030, Research and Development is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Since the very beginning of the international cooperation on Generation IV, viz. the year 2000, the main research interest in Europe as regards the advanced fast-spectrum systems needed for achieving complete fuel cycle closure, has been for the Sodium-cooled Fast Reactor (SFR). However, the Gas-cooled Fast Reactor (GFR) is currently considered as the main back-up solution. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For depressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be

  2. Analysis of the horizontal flow in the advanced gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Ganesan, P. [Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Gotts, J. [EDF Energy, Barnwood, Gloucester GL4 3RS (United Kingdom)

    2014-06-01

    Highlights: • CFD is used to assess the effect of horizontal flows in AGRs. • The horizontal flows can reduce the graphite brick temperature significantly. • Such effects are not taken into consideration in current engineering calculations. • There might be flow instabilities when the fuel channel flow is very low but horizontal flows reduce its possibility. - Abstract: The purpose of the paper is to report a computational investigation of horizontal flows in the UK advanced-gas-cooled reactor (AGR) by using computational fluid dynamics with ANSYS FLUENT. The study is relevant to practical issues encountered in some AGR stations currently in operation in the UK. It is carried out using a comparative approach based on the results of two contrasting models: one simulating the full effect of the cross flow, the other simulating the simplified approach currently employed by the industry which neglects the momentum of the horizontal cross flow. The study reveals that the horizontal cross flow plays a significant role in the cooling of the moderator brick, while the axial variation of the brick geometry also significantly changes the distribution of the temperature within the brick. It is also found that under some circumstances the so-called horizontal inter-brick leakage (HIBL) flow could influence the cooling performance in the narrow gaps, resulting in a local hot spot. Furthermore, there may be flow instabilities in the flows in AGR fuel channels due to the interactions between the flow in the main arrowhead flow passages and that in some narrow passages connected to it, but the influence on the brick temperature is negligible. Horizontal cross flow has an effect of reducing such instabilities.

  3. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-11-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  4. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  5. Technologies for gas cooled reactor decommissioning, fuel storage and waste disposal. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    Gas cooled reactors (GCRs) and other graphite moderated reactors have been important part of the world's nuclear programme for the past four decades. The wide diversity in status of this very wide spectrum of plants from initial design to decommissioning was a major consideration of the International Working group on Gas Cooled Reactors which recommended IAEA to convene a Technical Committee Meeting dealing with GCR decommissioning, including spent fuel storage and radiological waste disposal. This Proceedings includes papers 25 papers presented at the Meeting in three sessions entitled: Status of Plant Decommissioning Programmes; Fuels Storage Status and Programmes; waste Disposal and decontamination Practices. Each paper is described here by a separate abstract

  6. Gas cooled fast reactor materials: compatibility and reaction kinetics of fuel/matrices couples

    International Nuclear Information System (INIS)

    Fourth Generation Gas cooled Fast Reactor concept implies a fast neutron spectrum and aims to lead to an iso-generation of minor actinides. Criteria have been defined for these fuels such as: high core filling factor, efficient fuel cooling, low operation temperature, i.e. 400-850 deg C, good fission product retention, burn-ups in the range of 5-8 atom%, Pu content in the range of 15-25%. Materials matching this demand are considered: mixed uranium - plutonium nitrides and carbides as fuels, whereas TiN, TiC, ZrN, ZrC, SiC are investigated as inert matrices. Thermo-chemical compatibility studies have been carried out, mostly for (U,Pu)N/SiC and (U,Pu)N/TiN couples. They have been associated to matching diffusional studies. For the first studies, accidental reactor conditions have been chosen (1600 deg C) so as to select a couple. Results are presented in terms of nature and quantity of resulting phases identified by XRD and SEM for thermodynamical equilibrium experiments. (authors)

  7. Gas-Cooled Fast Reactor: A Historical Overview and Future Outlook

    Directory of Open Access Journals (Sweden)

    W. F. G. van Rooijen

    2009-01-01

    Full Text Available A review is given of developments in the area of Gas-Cooled Fast Reactors (GCFR in the period from roughly 1960 until 1980. During that period, the GCFR concept was expected to increase the breeding gain, the thermal efficiency of a nuclear power plant, and alleviate some of the problems associated with liquid metal coolants. During this period, the GCFR concept was found to be more challenging than liquid-metal-cooled reactors, and none were ever constructed. In the second part of the paper, we provide an overview of the investigations on GCFR since the year 2000, when the Generation IV Initiative rekindled interest in this reactor type. The new GCFR concepts focus primarily on sustainable nuclear power, with very efficient resource use, minimum waste, and a very strong focus on (passive safety. An overview is presented of the main design characteristics of these Gen IV GCFRs, and a literature list is provided to guide the interested reader towards more detailed publications.

  8. Current design efforts for the gas-cooled fast reactor (GFR)

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, K.D. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-3850 (United States)]. e-mail: Kevan.Weaver@inl.gov

    2005-07-01

    Current research and development on the Gas-Cooled Fast Reactor (GCFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFC I) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GCFR: a helium-cooled, direct Brayton cycle power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GCFR. These are EURATOM (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, EURATOM (including the United Kingdom), France, Japan, and Switzerland have active research activities with respect to the GCFR. The research includes GCFR design and safety, and fuels/in-core materials/fuel cycle projects. This paper outlines the current design status of the GCFR, and includes work done in the areas mentioned above. (Author)

  9. Measurement of the Radiative Cooling Coefficient of Krypton Gas in the Frascati Tokamak Upgrade

    Science.gov (United States)

    Fournier, K. B.; Goldstein, W. H.; Pacella, D.; Mazzitelli, G.; Gabellieri, L.; Leigheb, M.; de Angelis, R.; May, M. J.; Regan, S. P.; Stutman, D.; Soukhanovskii, V.; Finkenthal, M.; Moos, H. W.

    1997-11-01

    For future fusion reactors, a careful balance must be achieved between the cooling of the outer plasma via impurity radiation and the deleterious effects of inevitable core penetration by impurity ions. We extract the krypton impurity radial profile and the radiative cooling rate for krypton gas in the Frascati Tokamak Upgrade (FTU). The measured bolometric, soft x-ray and visible bremmstrhalung signals are Abel inverted and then incorporated in an analytic model. Using the known (calculated) ionization state distribution, the radial power loss profile for krypton is derived. Anamolous transport is assumed to have a negligible affect on the total krypton radiation profile; this assumption is confirmed using the derived krypton radiation rate in a plasma transport modeling code. The level of intrinsic impurities (Mo, Cr, Mn and Fe) in the plasma during the krypton puffing is monitored with a VUV SPRED spectrometer. Models for krypton emissivity from the literature are compared to our measured results. These initial results are part of a multiwavelength impurity spectroscopy campaign that will measure transport profiles and basic atomic data in the FTU. Work carried out under the auspices of the U.S. DoE, Contract No. W-7405-ENG-48.

  10. Evaluation of sprayed chromium carbide coatings for gas-cooled reactor applications

    International Nuclear Information System (INIS)

    Sprayed chromium carbide-nichrome coatings are candidates for protection of faying and sliding surfaces of critical components of gas-cooled reactors from friction and wear damage. These coatings must provide protection throughout the reactor lifetime under high temperature exposure conditions. Extensive evaluation work to characterize these coatings is underway. The work includes studies of friction and wear behavior in helium; stability of the coatings in a low oxygen potential helium environment; impure helium corrosion of coated specimens; and the effect of the coatings on mechanical properties of the substrate alloy. Much of the work reported is on the evaluation of plasma-sprayed coatings. However, a brief discussion of the behavior of coatings applied by the detonation-gun process and high-energy plasma-gun processes is also included

  11. 2400MWt GAS-COOLED FAST REACTOR DHR STUDIES STATUS UPDATE.

    Energy Technology Data Exchange (ETDEWEB)

    CHENG,L.Y.; LUDEWIG, H.

    2007-06-01

    A topical report on demonstrating the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400MWt GEN-IV gas-cooled fast reactor was published in March 2006. The analysis was performed with the system code RELAP5-3D (version 2.4.1.1a) and the model included the full complement of the power conversion unit (PCU): heat exchange components (recuperator, precooler, intercooler) and rotating machines (turbine, compressor). A re-analysis of the success case in Ref is presented in this report. The case was redone to correct unexpected changes in core heat structure temperatures when the PCU model was first integrated with the reactor model as documented in Ref [1]. Additional information on the modeling of the power conversion unit and the layout of the heat exchange components is provided in Appendix A.

  12. Adaptation of a robot and tools for dismantling of a gas-cooled reactor

    International Nuclear Information System (INIS)

    This report details the progress on a research programme to develop the techniques and design necessary to facilitate the use of commercially available industrial manipulator systems and cutting tools in nuclear environments, particularly that envisaged whilst decommissioning a gas-cooled reactor. The technology for the type of control and the machines to perform it already exist in the form of industrial-type robots. Development of the techniques for using these machines in a more operator-sensitive environment, together with the requirements of decontamination and radiation tolerance will enable them to be used in place of expensive purpose-built machines at a considerable cost saving. From this work it was possible to highlight the viability and associated costs of modifying a standard manipulator for use in decommissioning operations

  13. High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2011-08-01

    This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

  14. a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor

    Science.gov (United States)

    Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.

    2009-08-01

    This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.

  15. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Monado, Fiber [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su' ud, Zaki; Waris, Abdul; Basar, Khairul [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-09-30

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  16. Simultaneous approach for simulation of a high-temperature gas-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    Yang CHEN; Jiang-hong YOU; Zhi-jiang SHAO; Ke-xin WANG; Ji-xin QIAN

    2011-01-01

    The simulation of a high-temperature gas-cooled reactor pebble-bed module (HTR-PM) plant is discussed.This lumped parameter model has the form of a set differential algebraic equations (DAEs) that include stiff equations to model point neutron kinetics.The nested approach is the most common method to solve DAE,but this approach is very expensive and time-consuming due to inner iterations.This paper deals with an alternative approach in which a simultaneous solution method is used.The DAEs are discretized over a time horizon using collocation on finite elements,and Radau collocation points are applied.The resulting nonlinear algebraic equations can be solved by existing solvers.The discrete algorithm is discussed in detail; both accuracy and stability issues are considered.Finally,the simulation results are presented to validate the efficiency and accuracy of the simultaneous approach that takes much less time than the nested one.

  17. Appraisal of possible combustion hazards associated with a high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The report presents a study of combustion hazards that may be associated with the High Temperature Gas Cooled Reactor (HTGR) in the event of a primary coolant circuit depressurization followed by water or air ingress into the prestressed concrete reactor vessel (PCRV). Reactions between graphite and steam or air produce the combustible gases H2 and/or CO. When these gases are mixed with air in the containment vessel (CV), flammable mixtures may be formed. Various modes of combustion including diffusion or premixed flames and possibly detonation may be exhibited by these mixtures. These combustion processes may create high over-pressure, pressure waves, and very hot gases within the CV and hence may threaten the structural integrity of the CV or damage the instrumentation and control system installations within it. Possible circumstances leading to these hazards and the physical characteristics related to them are delineated and studied in the report

  18. Dynamic response simulation for high temperature gas-cooled reactor with indirect closed Brayton cycle

    International Nuclear Information System (INIS)

    A transient simulation program is developed in order to study dynamic characteristics of high temperature gas-cooled reactor with indirect closed Brayton cycle. After the brief introduction to such a plant, detailed mathematical models for important installations are described in the paper. By inducing step positive reactivity into the reactor, it looks like that the powers of turbo machine installations have a different growth rate accompanied with small increase of reactor power. Furthermore, this paper shows the temperature changes of reactor and heat exchangers. For the heat exchangers of the whole secondary loop, the pressure changes behave quite differently for those three sections divided by turbine, low pressure compressor and high pressure compressor. For all these equipments, the simulation program gives reasonable results and is in accordance with dynamic characteristics of their own. (authors)

  19. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  20. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  1. Parameter estimation from dragon high temperature gas cooled reactor dynamic experiments

    International Nuclear Information System (INIS)

    Dynamic experiments were performed on the Dragon high temperature gas cooled reactor at full power, 20 MW. Both terminated ramp and pseudo-random chain code perturbations were applied to a control rod for two amplitudes of reactivity perturbation. Neutron flux and thermocouple signals were observed and recorded together with samples of the inherent noise with the reactor unperturbed. Frequency responses were deduced from the measurements and compared with previous sinusoidal frequency response measurements and theoretical predictions. A simplified model was constructed and optimized by least squares fitting of the equivalent response from the binary cross correlator to the model's output. These optimizations showed that a very simple feedback model is appropriate to Dragon and that a good estimate of the power/reactivity coefficient and temperature coefficient of reactivity may be made. (author)

  2. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  3. Using high temperature gas-cooled reactors for greenhouse gas reduction and energy neutral production of phosphate fertilizers

    International Nuclear Information System (INIS)

    Highlights: • We estimate the energy requirements of wet- and thermal phosphate rock processing. • We estimate the amount of U needed to operate a representative HTGR. • Energy neutral phosphate fertilizer production is theoretically possible. - Abstract: This paper discusses how high temperature gas-cooled reactors (HTGRs) could provide energy for phosphate rock (PR) processing while extracting uranium (U) from the processed PR that can again be used as raw material for nuclear reactor fuel that may power the greenhouse gas lean energy source employed. First estimates using a HTGR presently constructed in China (HTR-PM) conclude that a concentration of approximately 80 mg/kg U in PR is sufficiently high for energy neutral wet acid PR processing with waste treatment and a concentration of approximately 110 mg/kg U is adequate to promote energy intensive high quality thermal phosphoric acid production. In addition, the recovery of U from PRs yields beneficial side-effects in a way that U loads on agricultural soils are reduced and consequently contamination of groundwater with U will be diminished

  4. Development of a equipment to measure gas transport properties: Application to study candidate buffer mixtures for low-medium level waste repositories

    International Nuclear Information System (INIS)

    This report describes the design, the construction and a testing of a system set-up for the measurement of gas transport, created at CIEMAT, and its application to study mixtures of candidate buffer materials for Low-Medium Level Waste Repertories. The measure of the gas flows is carried on by mass flow meters of several ranges, white the pressure of the applied within the sample is controlled. Two National l Instrument's acquisition system that permits the control and recording of the parameters. A specific application developed for this test, with National Instruments LabWIEW DSC, permits to mange the system. A client interface lets to follow the experiment course from a remote location through Internet. (Author) 21 refs

  5. Development of a Equipment to Measure Gas Transport Properties: Application to Study Mixtures of Candidates Buffer Materials for Low-Medium Level Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.L.; Barcala, J.M.; Oller, J.C.

    2002-07-01

    This report describes the design, the construction and a testing of a system set-up for the measurement of gas transport, created at CIEMAT, and its application to study mixtures of candidate buffer materials for Low-Medium Level Waste Repertories. The measure of the gas flows is carried on by mass flow meters of several ranges, white the pressure of the applied within the sample is controlled. Two National l Instrument's acquisition system that permits the control and recording of the parameters. A specific application developed for this test, with National Instruments LabWIEW DSC, permits to mange the system. A client interface lets to follow the experiment course from a remote location through Internet. (Author) 21 refs.

  6. Development of GAMMA Code and Evaluation for a Very High Temperature gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang H; Lim, H.S.; Kim, E.S.; NO, H.C.

    2007-06-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. This paper will also include what improvements will be made in the Gamma code for the VHTR.

  7. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  8. Influence of plasma loading in a hybrid muon cooling channel

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, B.; Stratakis, D.; Yonehara, K.

    2015-05-03

    In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.

  9. Air-cooled gas turbine cycles – Part 1: An analytical method for the preliminary assessment of blade cooling flow rates

    International Nuclear Information System (INIS)

    It is well known that, for a given compressor technology, gas turbine efficiency increases with the turbine inlet temperature (TIT): both modern aeronautical and land-based gas turbines operate at very high temperatures (1500–2000K) –and correspondingly high pressure ratios. As the TIT increases, the heat transferred from the expanding gas to the turbine blade also increases, and the need to extend the operational life make it necessary to adopt internal air cooling to reduce blade creep, oxidation and low-cycle fatigue. The cooling medium is usually air extracted from the high-pressure compressor stages, and since this extraction decreases the thermal efficiency and power output of the engine, it is important to bleed the minimum amount of coolant to attain a prescribed maximum material temperature in the blade with the maximum possible uniformity (lower thermal stresses): thence the need to properly model the cooling system for a given turbine blade geometry under realistic engine operating conditions. In the preliminary design of the first statoric and rotoric blading, it is essential for designers to rely on simple models that often neglect the small scales effects on the external flows and also by force adopt a much simplified treatment of the internal ones, and as a result attain a substantially lower degree of approximation than that offered by more complex and expensive numerical simulations. The goal in the design of a lumped model is therefore to make it both sufficiently general and accurate to analyze blade shapes and cooling channels structures that can be further refined by means of more accurate, but also more computationally intensive, models. This paper presents a simple, globally lumped thermodynamic model of blade cooling whose most important feature is its being analytical, so that the solution is devoid of numerical approximations and leads to closed-form expressions that can be easily manipulated to accommodate for different process

  10. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Gas cooling in nuclear power plants (NPPs) has a long history, the corresponding reactor types developed in France, the UK and the US having been thermal neutron spectrum systems using graphite as the moderator. The majority of NPPs worldwide, however, are currently light water reactors, using ordinary water as both coolant and moderator. These NPPs - of the so-called second generation - will soon need replacement, and a third generation is now being made available, offering increased safety while still based on light water technology. For the longer-term future, viz. beyond the year 2030, R and D is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For de-pressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure

  11. Investigation of a transsonic slot cooling system for high-temperature gas turbine blades; Untersuchung einer transsonischen Schlitzkuehlung fuer Hochtemperaturgasturbinenschaufeln

    Energy Technology Data Exchange (ETDEWEB)

    Moser, S.

    2003-07-01

    The author investigated a slot cooling system with transsonic blowout of cooling air for high-temperature gas turbine blades. The method has the advantage that the cooling film is closer to the blade surface and the boundary layer at the blade wall is not interrupted even at high blowout rates. This way, the cooling film will mix less with the hot gas flow, and the cooling effect will last longer. The method is based on the subsonic Coanda effect and the supersonic Prandtl-Meyer effect, both of which result in attachment of the cooling film to a curved surface. The investigations and the optimisation were carried out using the experimental system, measuring instruments and software of the Institute of Thermal Turbo-Engines and Machine Dynamics. [German] In dieser Arbeit wird eine Schlitzkuehlung mit transsonischer Kuehlluftausblasung fuer Hochtemperaturgasturbinenschaufeln untersucht. Der Vorteil dieser Kuehlmethode ist, dass der entstehende Kuehlfilm besser an die Schaufeloberflaeche anliegt und die Grenzschicht an der Schaufelwand auch bei hohen Ausblasraten nicht durchstossen wird. Dies bewirkt ein geringeres Vermischen des Kuehlfilms mit der heissen Gasstroemung und somit ein laengeres Anhalten des Kuehlungseffektes. Man bedient sich dabei zweier in der Stroemungslehre bekannter Effekte, naemlich dem subsonischen Coanda Effekt und dem im Ueberschall auftretenden Prandtl-Meyer Effekt. Beide bewirken das Anlegen der Kuehlfilme an eine gekruemmte Oberflaeche. Mit Hilfe der am Institut fuer thermische Turbomaschinen und Maschinendynamik zur Verfuegung stehenden Versuchsanlagen, Messgeraete und Software wurde die Untersuchung bzw. Optimierung der transsonischen Schlitzkuehlung durchgefuehrt. (orig.)

  12. Optimized Condition for Buffer Gas in Cesium Atomic Magnetometer%铯原子磁力仪中缓冲气体的最佳条件研究

    Institute of Scientific and Technical Information of China (English)

    李庆萌; 张军海; 曾宪金; 黄强; 孙伟民

    2013-01-01

    介绍了基于共振吸收法检测椭圆率变化的全光铯原子磁力仪的基本原理.为了降低工作介质碱金属铯原子的横向弛豫速率,延长自旋极化时间,使磁力仪达到较高的磁测灵敏度,通常将最外层电子排列稳定的惰性气体He和双原子分子N2作为缓冲气体充入铯原子气室中,这样既能有效地减少极化原子与气室壁碰撞的几率,又可以很好地避免辐射陷阱现象.分析了He和N2的压强对Cs原子极化程度及磁力仪输出信号的影响,给出了100℃时实现无自旋交换弛豫铯原子磁力仪的最佳压强:He约为3.9×104 Pa,N2约为3.6×103 Pa.%This paper described the principle of an all-optical cesium magnetometer based on absorptive detection.In order to reduce transverse relaxation rate and to maximize spin polarization time of the alkali-metal atoms,it is usually to fill the inert gas He and the diatomic molecule N2 which are used as buffer gases into the cell to achieve high measuring sensitivity.Not only the collision probability of polarized atoms with the cell wall but also the radiation trapping can be reduced or avoid by this approach.The relationships between the output signals of this magnetometer with buffer gas pressures were expressed here.After a detail theoretical analysis,it was found that the optimal gas pressure of the buffer gas was about 3.9 × 104 Pa for helium (He) and 3.6 × 103 Pa for nitrogen (N2).

  13. Not Dead Yet: Cool Circumgalactic Gas in the Halos of Early Type Galaxies

    CERN Document Server

    Thom, Christopher; Werk, Jessica K; Prochaska, J Xavier; Oppenheimer, Benjamin D; Peeples, Molly S; Tripp, Todd M; Katz, Neal S; O'Meara, John M; Ford, Amanda Brady; Dave, Romeel; Sembach, Kenneth R; Weinberg, David H

    2012-01-01

    We report new observations of circumgalactic gas in the halos of early type galaxies obtained by the COS-Halos Survey with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope. We find that detections of HI surrounding early type galaxies are typically as common and strong as around star-forming galaxies, implying that the total mass of circumgalactic material is comparable in the two populations. For early type galaxies, the covering fraction for HI absorption above 10^16 cm^2 is ~40-50% within ~150 kpc. Line widths and kinematics of the detected material show it to be cold (T ~< 10^5 K) in comparison to the virial temperature of the host halos. The implied masses of cool, photoionized CGM baryons may be up to 10^9 --- 10^11 Msun. Contrary to some theoretical expectations, strong halo HI absorbers do not disappear as part of the quenching of star-formation. Even passive galaxies retain significant reservoirs of halo baryons which could replenish the interstellar gas reservoir and eventually ...

  14. Thermochemical Analysis of Gas-Cooled Reactor Fuels Containing Am and Pu Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lindemer, T.B.

    2002-09-05

    Literature values and estimated data for the thermodynamics of the actinide oxides and fission products are applied to explain the chemical behavior in gas-cooled-reactor fuels. Emphasis is placed on the Am-O-C and Pu-O-C systems and the data are used to plot the oxygen chemical potential versus temperature of solid-solid and solid-gas equilibria. These results help explain observations of vaporization in Am oxides, nitrides, and carbides and provide guidance for the ceramic processing of the fuels. The thermodynamic analysis is then extended to the fission product systems and the Si-C-O system. Existing data on oxygen release (primarily as CO) as a function of burnup in the thoria-urania fuel system is reviewed and compared to values calculated from thermodynamic data. The calculations of oxygen release are then extended to the plutonia and americia fuels. Use of ZrC not only as a particle coating that may be more resistant to corrosion by Pd and other noble-metal fission products, but also as a means to getter oxygen released by fission is discussed.

  15. Techno-economic analysis of seawater desalination using high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Our world, including China (especially in big cities and foreland), is facing the increased global shortage of potable water and pollution of water. It is ideal to promote seawater desalination to satisfy the potable water demand in these areas. Among the various processes, MED, RO and VC have proven well developed and promising. Due to the inherent safety and its vapor produced with high parameters and features of small size and modular design, HTGR (High Temperature Gas-cooled Reactor) of 2x200MW is chosen as the energy source for the desalination in dual production of clean water and power. This paper discusses the techno-economic feasibility of different seawater desalting systems using 2x200MW HTGR in the areas mentioned above, that is, ST-MED (Steam Turbine Cycle), RO, MED/TVC, RO/MED and GT-MED (Gas Turbine Cycle). The exergy concept is used in calculating availability to get cost of energy in desalination, and power credit method is used in economic assessment of different systems to get reasonable evaluating, while economic-life levelized cost method is adopted for calculating electricity cost of referred HTGR plant. In addition, sensitivity analysis on ST-MED economy is also presented. (author)

  16. Core design and safety analyses of 600 MWt, 950 °C high temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Masaaki, E-mail: nakano-m@fujielectric.co.jp [Fuji Electric Co., Ltd., 1-1, Tanabe-shinden, Kawasaki-ku, Kawasaki-city 210-9530 (Japan); Takada, Eiji; Tsuji, Nobumasa; Tokuhara, Kazumi; Ohashi, Kazutaka; Okamoto, Futoshi [Fuji Electric Co., Ltd., 1-1, Tanabe-shinden, Kawasaki-ku, Kawasaki-city 210-9530 (Japan); Tazawa, Yujiro; Tachibana, Yukio [Japan Atomic Energy Agency, Oarai, Ibaraki-pref. 311-1393 (Japan)

    2014-05-01

    The conceptual core design study of high temperature gas-cooled reactor (HTGR) is performed. The major specifications are 600 MW thermal output, 950 °C outlet coolant temperature, prismatic core type, enriched uranium fuel. The decay heat in the core can be removed with only passive measures, for example, natural convection reactor cavity cooling system (RCCS), even if any electricity is not supplied (station blackout). The transient thermal analysis of the depressurization accident in the case the primary coolant decreases to the atmosphere pressure shows that the fuels and the reactor pressure vessel temperatures are kept under their safety limit criteria. The fission product release, Ag-110m and Cs-137 from the fuels under the normal operation is small as to make maintenance of devices in the primary cooling system, such as a gas turbine, without remote maintenance. The HTGRs can achieve the advanced safety features based on their inherent passive safety characteristics.

  17. A statistically-selected Chandra sample of 20 galaxy clusters -- II. Gas properties and cool-core/non-cool core bimodality

    CERN Document Server

    Sanderson, Alastair J R; Ponman, Trevor J; ),

    2009-01-01

    We investigate the thermodynamic and chemical structure of the intracluster medium (ICM) across a statistical sample of 20 galaxy clusters analysed with the Chandra X-ray satellite. In particular, we focus on the scaling properties of the gas density, metallicity and entropy and the comparison between clusters with and without cool cores (CCs). We find marked differences between the two categories except for the gas metallicity, which declines strongly with radius for all clusters (Z ~ r^{-0.31}), outside ~0.02 r500. The scaling of gas entropy is non-self-similar and we find clear evidence of bimodality in the distribution of logarithmic slopes of the entropy profiles. With only one exception, the steeper sloped entropy profiles are found in CC clusters whereas the flatter slope population are all non-CC clusters. We explore the role of thermal conduction in stabilizing the ICM and conclude that this mechanism alone is sufficient to balance cooling in non-CC clusters. However, CC clusters appear to form a dis...

  18. An optimized process for tritium-containing waste water collection of High-Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Highlights: • An optimized process for tritium-containing waste water collection of High-Temperature Gas-cooled Reactor was developed. • The optimized process and verification experiment using the HTR-10 were presented in detail. • A large quantity of high-dose tritium-containing waste water was successfully collected in commissioning experiment of the improved HTR-10. • The optimized process was proved to be reliable to avoid the large emission of radioactive waste water to the environment. - Abstract: An optimized process for tritium-containing waste water collection of High-Temperature Gas-cooled Reactor (HTGR) was developed and experimentally verified using the 10 MW High-Temperature Gas-cooled Reactor-test module (HTR-10). Compared with the previous process, an auxiliary molecular sieve bed was added in helium purification regeneration system and new operation process was proposed to collect tritium-containing waste water. In this paper, the optimized process and verification experiment were presented in detail. In commissioning experiment of the improved HTR-10, a large quantity of high-dose tritium-containing waste water was successfully collected in the water separator of helium purification regeneration system, with the specific activity being 6.1 × 109 Bq/L. The verification experiment confirms that the optimized process is effective and reliable for the demonstration plant design of High Temperature Gas-cooled Reactor-Pebble bed module (HTR-PM) to avoid the large emission of detrimentally radioactive waste water to the environment

  19. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    Energy Technology Data Exchange (ETDEWEB)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  20. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-3: High Temperature Gas Cooled Reactor Thermal-Hydraulics.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical high temperature gas-cooled reactor (HTGR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module…

  1. Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

    International Nuclear Information System (INIS)

    The Gas Cooled Fast Reactor (GCFR)is one of the Generation IV reactor concepts. This concept specifically targets sustainability of nuclear power generation. In nuclear reactors fertile material is converted to fissile fuel. If the neutrons inducing fission are highly energetic, the opportunity exists to convert more than one fertile nucleus per fission, thereby effectively breeding new nuclear fuel. Reactors operating on this principle are called ‘Fast Breeder Reactor’. Since natural uranium contains 99.3%of the fertile isotope 238U, breeding increases the energy harvested from the nuclear fuel. If nuclear energy is to play an important role as a source of energy in the future, fast breeder reactors are essential for breeding nuclear fuel. Fast neutrons are also more efficient to destruct heavy (Minor Actinide, MA) isotopes, such as Np, Am and Cm isotopes, which dominate the long-term radioactivity of nuclear waste. So the waste life-time can be shortened if the MA nuclei are destroyed. An important prerequisite of sustainable nuclear energy is the closed fuel cycle, where only fission products are discharged to a final repository, and all Heavy Metal (HM) are recycled. The reactor should breed just enough fissile material to allow refueling of the same reactor, adding only fertile material to the recycled material. Other key design choices are highly efficient power conversion using a direct cycle gas turbine, and better safety through the use of helium, a chemically inert coolant which cannot have phase changes in the reactor core. Because the envisaged core temperatures and operating conditions are similar to thermal-spectrum High Temperature Reactor (HTR) concepts, the research for this thesis initially focused on a design based on existing HTR fuel technology: coated particle fuel, assembled into fuel assemblies. It was found that such a fuel concept could not meet the Generation IV criteria set for GCFR: self-breeding is difficult, the temperature

  2. Modeling LOCA performance for the generation IV gas-cooled fast reactor design

    International Nuclear Information System (INIS)

    Full text of publication follows: Generation IV nuclear energy systems are next-generation technologies that will offer significant advances in sustainability, safety and reliability, economics, and proliferation resistance. Expected to be available for worldwide deployment by 2030, these energy systems would provide electrical power for the subsequent decades. The Gas-Cooled Fast Reactor (GFR) is a Generation IV concept that features a fast-neutron spectrum, direct Brayton cycle gas turbine, and a closed fuel cycle. Through the combination of a fast neutron spectrum and the full recycle of actinides, the GFR minimizes the production of long-lived radioactive waste and makes it possible to use existing fissile and fertile materials (including depleted uranium) more efficiently than existing thermal spectrum gas reactors. The prominent GFR design features a 'pancake' style core (H/D ∼ 1.7/2.9 m) that produces 600 MW of thermal power with an average power density of 55 MW/m3. The core is comprised of SiC-coated UPuC spheres that are collected in channels to form a prismatic, hexagonal fuel assembly or coagulated to form fuel pebbles. The 11 m3 core is enveloped by TiN reflectors and stainless steel shields in both the radial and axial directions. The initial GFR design used He gas at a pressure of 7 MPa and an outlet temperature of 850 deg. C, however the design has been expanded to consider supercritical CO2 (S-CO) gas at a pressure of 19 MPa and an outlet temperature of 550 - 650 deg. C. The higher density S-CO has advantageous characteristics during off-normal low flow and pressure conditions. One of the strengths of the Generation IV reactor concepts is their inherent safety and extensive use of passive safety systems. This paper discusses an analysis performed to study the GFR's response during a severe off-normal scenario. The loss of coolant accident was chosen because it will be one of the more severe challenges to the reactors decay heat removal system

  3. Steam generator materials constraints in UK design gas-cooled reactors

    International Nuclear Information System (INIS)

    A widely reported problem with Magnox-type reactors was the oxidation of carbon steel components in gas circuits and steam generators. The effects of temperature, pressure, gas composition and steel composition on oxidation kinetics have been determined, thus allowing the probabilities of failure of critical components to be predicted for a given set of operating conditions. This risk analysis, coupled with regular inspection of reactor and boiler internals, has allowed continued operation of all U.K. Magnox plant. The Advanced Gas Cooled Reactor (AGR) is a direct development of the Magnox design. The first four AGRs commenced operation in 1976, at Hinkley Point 'B' and at Hunterston 'B'. All known materials problems with the steam generators have been diagnosed and solved by the development of appropriate operational strategies, together with minor plant modifications. Materials constraints no longer impose any restrictions to full load performance from the steam generators throughout the predicted life of the plant. Problems discussed in detail are: 1. oxidation of the 9 Cr - 1 Mo superheater. 2. Stress corrosion of the austenitic superheater. 3. Creep of the transition joints between the 9 Cr - 1 Mo and austenitic sections. With the 9 Cr - 1 Mo oxidation maximum temperature restriction virtually removed and creep constraints properly quantified, boiler operation in now favourably placed. Stress corrosion research has allowed the risk of tube failure to be related to time, temperature, stress and chemistry. As a result, the rigorous 'no wetting' policy has been relaxed for the normally high quality AGR feedwater, and the superheat margin has been reduced to 23 deg. C. This has increased the size of the operating window and reduced the number of expensive, and potentially harmful, plant trips. (author)

  4. Determination of an instability temperature for alloys in the cooling gas of a high temperature reactor

    International Nuclear Information System (INIS)

    High temperature alloys designed to be used for components in the primary circuit of a helium cooled high temperature nuclear reactor show massive CO production above a certain temperature, called the instability temperature T/sub i/, which increases with increasing partial pressure of CO in the cooling gas. At p/sub CO/ = 15 microbar, T/sub i/ lies between 900 and 950 degrees C for the four alloys under investigation: T/sub i/ is lowest for the iron base alloy Incoloy 800 H and increases for the nickel base alloys in the order Inconel 617, HDA 230 and Nimonic 86. Measurements of T/sub i/ made at 3 different laboratories were compared and shown to agree for p/sub CO/25 microbar, compatible with CO production by a reaction of Cr2O3 with carbides. Some measurements of T/sub i/ on HDA 230 and Nimonic 86 were performed in the course of simulated reactor disturbances. They showed that the oxide layer looses its protective properties above T/sub i/. A highlight of the examinations was the detection of eta-carbides (M6C) with unusual properties. M6C is the only type of carbide occuring in HDA 230. An eta-carbide with a lattice constant of 1088.8 pm had developed at the surface of Nimonic 86 during pre-oxidation before the disturbance simulation. Its composition is estimated at Ni3SiMo2C. Eta-carbides containing Si and especially eta-carbides with lattice constants as low as 1088.8 pm have been described only rarely until now. (author)

  5. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, William Earl (Pinson, AL); Felix, Larry Gordon (Pelham, AL); Snyder, Todd Robert (Birmingham, AL)

    2009-12-15

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  6. High-Temperature Gas-Cooled Reactor Technology Development Program: Annual progress report for period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.E.,Jr.; Kasten, P.R.; Rittenhouse, P.L.; Sanders, J.P.

    1989-03-01

    The High-Temperature Gas-Cooled Reactor (HTGR) Program being carried out under the US Department of Energy (DOE) continues to emphasize the development of modular high-temperature gas-cooled reactors (MHTGRs) possessing a high degree of inherent safety. The emphasis at this time is to develop the preliminary design of the reference MHTGR and to develop the associated technology base and licensing infrastructure in support of future reactor deployment. A longer-term objective is to realize the full high-temperature potential of HTGRs in gas turbine and high-temperature, process-heat applications. This document summarizes the activities of the HTGR Technology Development Program for the period ending December 31, 1987.

  7. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  8. It is now time to proceed with a gas-cooled breeder reactor (GBR) demonstration plant

    International Nuclear Information System (INIS)

    Since 1969, the GBRA has been making studies to provide evidence on questions which were not clear regarding the Gas-cooled Breeder Reactor: design feasibility and performance, safety, strategy and economics, and R and D necessary for a demonstration plant. Studies were carried out on a 1200-MW(e) commercial reference design with pin fuel, which was also used as a basis for a definition of the GBR demonstration plant. During the six years, a great deal of information has been generated at GBRA and it confirms the forecasts of the promoters of the Gas-cooled Breeder Reactor that the GBR is an excellent reactor from all points of view: design - the reactor can be engineered without major difficulty, using present techniques. As far as fuel is concerned, LMFBR fuel technology is applicable plus limited specific development effort. Performance - the GBR is the best breeder with oxide fuel and using conventional techniques. The strategy studies carried out at GBRA have clearly shown that a high performance breeder such as the GBR is absolutely required in large quantities by the turn of the century in order to avoid dependence on natural uranium resources. Regarding safety, a major step forward has been made when an ad hoc group on GBR safety, sponsored by the EEC, concluded that no major difficulties were anticipated which would prevent the GBR reaching adequate safety standards. Detailed economic assessments performed on an item-to-item basis have shown that the cost of a GBR with its high safety standard is about the same as that of an HTR. One can therefore conclude that, with the present cost of natural uranium, the GBR is competitive with the LWRs. Owing to the very limited R and D effort necessary and the obvious safety, economic and strategic advantages of the concept, it is concluded that the development and construction of a GBR demonstration plant must be started now if one wants to secure an adequate energy supply past the turn of the century. (author)

  9. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  10. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    International Nuclear Information System (INIS)

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO2-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR designs and their ability to accept a variety

  11. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  12. Determination of the extraction efficiency for $^{233}$U source $\\alpha$-recoil ions from the MLL buffer-gas stopping cell

    CERN Document Server

    von der Wense, Lars; Laatiaoui, Mustapha; Thirolf, Peter G

    2016-01-01

    Following the $\\alpha$ decay of $^{233}$U, $^{229}$Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass-purification efficiency for $^{229}$Th$^{3+}$ is determined via MCP-based measurements and via the direct detection of the $^{229}$Th $\\alpha$ decay. A large value of $(10\\pm2)$\\% for the combined extraction and mass-purification efficiency of $^{229}$Th$^{3+}$ is obtained at a mass resolution of about 1 u/e. In addition to $^{229}$Th, also other $\\alpha$-recoil ions of the $^{233,232}$U decay chains are addressed.

  13. Search for Solar Axions by the CERN Axion Solar Telescope with 3 He Buffer Gas: Closing the Hot Dark Matter Gap

    CERN Document Server

    Arik, M; Barth, K.; Belov, A.; Borghi, S.; Brauninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; Da Riva, E.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galan, J.; Garcia, J.A.; Gardikiotis, A.; Garza, J.G.; Gazis, E.N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gomez, H.; Gomez Marzoa, M.; Gruber, E.; Guthorl, T.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M.D.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Jacoby, J.; Jakovcic, K.; Karuza, M.; Konigsmann, K.; Kotthaus, R.; Krcmar, M.; Kuster, M.; Lakic, B.; Lang, P.M.; Laurent, J.M.; Liolios, A.; Ljubicic, A.; Lozza, V.; Luzon, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Riege, H.; Rodriguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Silva, P.S.; Solanki, S.K.; Stewart, L.; Tomas, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J.K.; Yildiz, S.C.; Zioutas, K.

    2014-01-01

    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

  14. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-01

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  15. Search for solar axions with the Time Projection Chamber of the CERN Axion Solar Telescope with 4-Helium as buffer gas

    CERN Document Server

    Ruz, J; García Irastorza, I

    CAST (CERN Axion Solar Telescope) is a helioscope looking for axions coming from the solar core to the Earth. The experiment, located at CERN, is based on the Primakoff effect and uses a magnetic field of 9 Tesla provided by a decommissioned LHC magnet. CAST is able to follow the Sun during sunrise and sunset and, therefore, different X-ray detectors are mounted on both ends of the magnet waiting for a photon from axion-to-photon conversion due to the Primakoff effect. During its First Phase, which concluded in 2004, the TPC detector of CAST looked for axions with masses up to 0.02 eV. By using a Helium-4 buffer gas, CAST's TPC detector has been able to re-establish the coherence needed to scan for axions with masses up to 0.39 eV, technique that allows CAST to look into the theoretical regions for axions.

  16. Comparative analysis of steady state heat transfer in a TBC and functionally graded air cooled gas turbine blade

    Indian Academy of Sciences (India)

    Nilanjan Coomar; Ravikiran Kadoli

    2010-02-01

    Internal cooling passages and thermal barrier coatings (TBCs) are presently used to control metal temperatures in gas turbine blades. Functionally graded materials (FGMs), which are typically mixtures of ceramic and metal, have been proposed for use in turbine blades because they possess smooth property gradients thereby rendering them more durable under thermal loads. In the present work, a functionally graded model of an air-cooled turbine blade with airfoil geometry conforming to the NACA0012 is developed which is then used in a finite element algorithm to obtain a non-linear steady state solution to the heat equation for the blade under convection and radiation boundary conditions. The effects of external gas temperature, coolant temperature, surface emissivity changes and different average ceramic/metal content of the blade on the temperature distributions are examined. Simulations are also carried out to compare cooling effectiveness of functionally graded blades with that of blades having TBC. The results highlight the effect of including radiation in the simulation and also indicate that external gas temperature influences the blade heat transfer more strongly. It is also seen that graded blades with about 70% ceramic content can deliver better cooling effectiveness than conventional blades with TBC.

  17. Approaches to experimental validation of high-temperature gas-cooled reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Belov, S.E. [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Borovkov, M.N., E-mail: borovkov@okbm.nnov.ru [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Golovko, V.F.; Dmitrieva, I.V.; Drumov, I.V.; Znamensky, D.S.; Kodochigov, N.G. [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Baxi, C.B.; Shenoy, A.; Telengator, A. [General Atomics, 3550 General Atomics Court, CA (United States); Razvi, J., E-mail: Junaid.Razvi@ga.com [General Atomics, 3550 General Atomics Court, CA (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Computational and experimental investigations of thermal and hydrodynamic characteristics for the equipment. Black-Right-Pointing-Pointer Vibroacoustic investigations. Black-Right-Pointing-Pointer Studies of the electromagnetic suspension system on GT-MHR turbo machine rotor models. Black-Right-Pointing-Pointer Experimental investigations of the catcher bearings design. - Abstract: The special feature of high-temperature gas-cooled reactors (HTGRs) is stressed operating conditions for equipment due to high temperature of the primary circuit helium, up to 950 Degree-Sign C, as well as acoustic and hydrodynamic loads upon the gas path elements. Therefore, great significance is given to reproduction of real operation conditions in tests. Experimental investigation of full-size nuclear power plant (NPP) primary circuit components is not practically feasible because costly test facilities will have to be developed for the power of up to hundreds of megawatts. Under such conditions, the only possible process to validate designs under development is representative tests of smaller scale models and fragmentary models. At the same time, in order to take in to validated account the effect of various physical factors, it is necessary to ensure reproduction of both individual processes and integrated tests incorporating needed integrated investigations. Presented are approaches to experimental validation of thermohydraulic and vibroacoustic characteristics for main equipment components and primary circuit path elements under standard loading conditions, which take account of their operation in the HTGR. Within the framework of the of modular helium reactor project, including a turbo machine in the primary circuit, a new and difficult problem is creation of multiple-bearing flexible vertical rotor. Presented are approaches to analytical and experimental validation of the rotor electromagnetic bearings, catcher bearings, flexible rotor

  18. Computational Analysis of Supercritical Carbon Dioxide Gas Turbine for Liquid Metal Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wi S.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Energy demands at a remote site are increased as the world energy requirement diversifies so that they should generate power on their own site. A Small Modular Reactor (SMR) becomes a viable option for these sites. Generally, the economic feasibility of a high power reactor is greater than that for SMR. As a result the supercritical fluid driven Brayton cycle is being considered for a power conversion system to increase economic competitiveness of SMR. The Brayton cycle efficiency is much higher than that for the Rankine cycle. Moreover, the components of the Brayton cycle are smaller than Rankine cycle's due to high heat capacity when a supercritical fluid is adopted. A lead (Pb) cooled SMR, BORIS, and a supercritical fluid driven Brayton cycle, MOBIS, are being developed at the Seoul National University (SNU). Dostal et al. have compared some advanced power cycles and proposed the use of a supercritical carbon dioxide (SCO{sub 2}) driven Brayton cycle. According to their suggestion SCO{sub 2} is adopted as a working fluid for MOBIS. The turbo machineries are most important components for the Brayton cycle. The turbo machineries of Brayton cycle consists of a turbine to convert kinetic energy of the fluid into mechanical energy of the shaft, and a compressor to recompress and recover the driving force of the working fluid. Therefore, turbine performance is one of the pivotal factors in increasing the cycle efficiency. In MOBIS a supercritical gas turbine is designed in the Gas Advanced Turbine Operation (GATO) and analyzed in the Turbine Integrated Numerical Analysis (TINA). A three-dimensional (3D) numerical analysis is employed for more detailed design to account for the partial flow which the one-dimensional (1D) analysis cannot consider.

  19. Numerical Simulation of Accident Scenario in High Temperature Gas Cooled (Pebble Bed) Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Geoffrey J. [Oregon Institute of Technology - Portland Center, Portland (United States)

    2012-03-15

    The accident scenario resulting from blockages due to the retention of dust in the coolant gas or from the rupture of one or more fuel particles used in the High Temperature Gas Cooled (Pebble Bed) Nuclear Reactors is considered in this paper. The next generation of Advanced High Temperature Reactors (AHTR), are considered for nuclear power production, and for high-temperature hydrogen production using nuclear reactors to reduce the carbon footprint. Blockages can cause LOCA variations in flow and heat transfer that may lead to hot spots within the bed that could compromise reactor safety. Therefore, it is important to know the void fraction distribution and the interstitial velocity field in the packed bed. The blockage for this numerical study simulated a region with significantly lower void than that in the rest of the bed. Finite difference technique solved the simplified continuity, momentum, and energy equations. Any meaningful outcome of the solution depended largely upon the validity of the boundary conditions. Among them, the inlet and outlet velocity profiles required special attention. Thus, a close approximation to these profiles obtained from an experimental set-up established the boundary conditions. This paper presents the development of the elliptic-partial equation for a bed of a bed of pebbles, and the solution procedure. The paper also discusses velocity and temperature profiles obtained from both numerical and experimental set-up, with and without effect of blockage. Based on the studies it is evident that knowledge of LOCA velocity and temperature distribution within the fuel element in a Pebble Bed Nuclear Reactor or AHTR is essential for reactor safety.

  20. Study on transmutation and storage of LLFP using a high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    There is a need to temporally store high-level radioactive waste (HLW) until the location of final disposal is decided. HLW contains several types of long-lived fission product (LLFP) which stay radioactive for hundreds of thousands of years. In addition, they tend to be chemically mobile when dissolved into ground water thus may not be suited for geological disposal. A facility that is able to store and incinerate LLFP simultaneously is desirable. The high-temperature gas-cooled reactor (HTGR) is one of the fourth generation nuclear reactors currently under research and it has some favorable characteristics that allow the reactor to destroy LLFP through nuclear transmutation. In this study the capability of HTGR as LLFP transmuter was evaluated in terms of neutron economy. Considering gas turbine high-temperature reactor with 300 MWe nominal capacity (GTHTR300) as HTGR, transmutations of four types of LLFP nuclide were estimated using Monte Carlo transport code MVP and ORIGEN. In addition, burn-up simulations for whole-core region were carried out using MVP-BURN. It was numerically shown that the neutron fluxes change significantly depending on the arrangement of LLFP in the core. When 15 t of LLFP is placed in an ideal manner, the GTHTR300 can sustain sufficient reactivity for one year while transmuting up to 30 kg per year. Additionally, there are more space available for storing larger amount of LLFP without affecting the reactivity. These results suggest that there is a possibility of using GTHTR300 as both LLFP storage and transmuter. (author)

  1. A 50-100 kWe gas-cooled reactor for use on Mars

    International Nuclear Information System (INIS)

    In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered

  2. Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Ilas, Dan [ORNL; Kelly, Ryan P [ORNL; Sunny, Eva E [ORNL

    2012-08-01

    This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

  3. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  4. Research and development program of hydrogen production system with high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) has been developing a hydrogen production system with a high temperature gas-cooled reactor (HTGR). While the HTGR hydrogen production system has the following advantages compared with a fossil-fired hydrogen production system; low operation cost (economical fuel cost), low CO2 emission and saving of fossil fuel by use of nuclear heat, it requires some items to be solved as follows; cost reduction of facility such as a reactor, coolant circulation system and so on, development of control and safety technologies. As for the control and safety technologies, JAERI plans demonstration test with hydrogen production system by steam reforming of methane coupling to 30 Wt HTGR, named high temperature engineering test reactor (HTTR). Prior to the demonstration test, a 1/30-scale out-of-pile test facility is in construction for safety review and detailed design of the HTTR hydrogen production system. Also, design study will start for reduction of facility cost. Moreover, basic study on hydrogen production process without CO2 emission is in progress by thermochemical water splitting. (orig.)

  5. High-temperature gas-cooled-reactor steam-methane reformer design

    International Nuclear Information System (INIS)

    The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam reforming reaction, is currently being evaluated as an energy source/application for use early in the 21st century. The steam-methane reforming reaction is an endothermic reaction at temperatures approximately 7000C and higher, which produces hydrogen, carbon monoxide and carbon dioxide. The heat of the reaction products can then be released, after being pumped to industrial site users, in a methanation process producing superheated steam and methane which is then returned to the reactor plant site. In this application the steam reforming reaction temperatures are produced by the heat energy from the core of the HTGR through forced convection of the primary or secondary helium circuit to the catalytic chemical reactor (steam reformer). This paper summarizes the design of a helium heated steam reformer utilized in conjunction with a 1170 MW(t) intermediate loop, 8500C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, materials selection and the structural design analysis

  6. Preliminary Evaluation of a Nuclear Scenario Involving Innovative Gas Cooled Reactors

    International Nuclear Information System (INIS)

    In order to guarantee a sustainable supply of future energy demand without compromising the environment, some actions for a substantial reduction of Co2 emissions are nowadays deeply analysed. One of them is the improvement of the nuclear energy use. In this framework, innovative gas-cooled reactors (both thermal and fast) seem to be very attractive from the electricity production point of view and for the potential industrial use along the high temperature processes (e.g., H2 production by steam reforming or I-S process). This work focuses on a preliminary (and conservative) evaluation of possible advantages that a symbiotic cycle (EPR-PBMR-GCFR) could entail, with special regard to the reduction of the HLW inventory and the optimization of the exploitation of the fuel resources. The comparison between the symbiotic cycle chosen and the reference one (once-through scenario, i.e., EPR-SNF directly disposed) shows a reduction of the time needed to reach a fixed reference level from 170000 years to 1550 years (comparable with typical human times and for this reason more acceptable by the public opinion). In addition, this cycle enables to have a more efficient use of resources involved: the total electric energy produced becomes equal to -630 TWh/year (instead of only -530 TWh/year using only EPR) without consuming additional raw materials.

  7. Physics model of a gas-cooled fast reactor: Review and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H. [General Atomics, 3550 General Atomics Court, San Diego, CA 92121-1122 (United States)

    2012-07-01

    The current physics design and analysis model was reviewed and assessed for its application to a long-life gas-cooled fast reactor (GFR) design. The physics design uses MICROX, BURP, and DIF3D for the cross section generation, depletion calculation, and criticality and flux calculation, respectively. For the application to the long-life GFR, the depletion model was adjusted such that more lumped fission products are included in the burn-up chain to preserve the reaction rate and fuel mass. The performance of the physics design tools including the adjustment of the depletion model was assessed against Monte Carlo depletion calculations. The comparison has shown that the excess reactivity and cycle length of the long-life GFR are reasonably predicted. Some discrepancies were found at the beginning of cycle, which can be attributed to the differences between the nuclear data used in each model. Further studies will be carried out to update the cross section library of the MICROX code for agreement with the latest sets and to expand the fuel burn-up chain for the high burn-up and recycling fuel cycle analysis. (authors)

  8. Physics model of a gas-cooled fast reactor: Review and assessment

    International Nuclear Information System (INIS)

    The current physics design and analysis model was reviewed and assessed for its application to a long-life gas-cooled fast reactor (GFR) design. The physics design uses MICROX, BURP, and DIF3D for the cross section generation, depletion calculation, and criticality and flux calculation, respectively. For the application to the long-life GFR, the depletion model was adjusted such that more lumped fission products are included in the burn-up chain to preserve the reaction rate and fuel mass. The performance of the physics design tools including the adjustment of the depletion model was assessed against Monte Carlo depletion calculations. The comparison has shown that the excess reactivity and cycle length of the long-life GFR are reasonably predicted. Some discrepancies were found at the beginning of cycle, which can be attributed to the differences between the nuclear data used in each model. Further studies will be carried out to update the cross section library of the MICROX code for agreement with the latest sets and to expand the fuel burn-up chain for the high burn-up and recycling fuel cycle analysis. (authors)

  9. A Compact Gas-Cooled Fast Reactor with an Ultra-Long Fuel Cycle

    Directory of Open Access Journals (Sweden)

    Hangbok Choi

    2013-01-01

    Full Text Available In an attempt to allow nuclear power to reach its full economic potential, General Atomics is developing the Energy Multiplier Module (EM2, which is a compact gas-cooled fast reactor (GFR. The EM2 augments its fissile fuel load with fertile materials to enhance an ultra-long fuel cycle based on a “convert-and-burn” core design which converts fertile material to fissile fuel and burns it in situ over a 30-year core life without fuel supplementation or shuffling. A series of reactor physics trade studies were conducted and a baseline core was developed under the specific physics design requirements of the long-life small reactor. The EM2 core performance was assessed for operation time, fuel burnup, excess reactivity, peak power density, uranium utilization, etc., and it was confirmed that an ultra-long fuel cycle core is feasible if the conversion is enough to produce fissile material and maintain criticality, the amount of matrix material is minimized not to soften the neutron spectrum, and the reactor core size is optimized to minimize the neutron loss. This study has shown the feasibility, from the reactor physics standpoint, of a compact GFR that can meet the objectives of ultra-long fuel cycle, factory-fabrication, and excellent fuel utilization.

  10. Design of the material performance test apparatus for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Most materials can be easily corroded or ineffective in carbonaceous atmospheres at high temperatures in the reactor core of the high temperature gas-cooled reactor (HTGR). To solve the problem, a material performance test apparatus was built to provide reliable materials and technical support for relevant experiments of the HTGR. The apparatus uses a center high-purity graphite heater and surrounding thermal insulating layers made of carbon fiber felt to form a strong carbon reducing atmosphere inside the apparatus. Specially designed tungsten rhenium thermocouples which can endure high temperatures in carbonaceous atmospheres are used to control the temperature field. A typical experimental process was analyzed in the paper, which lasted 76 hours including seven stages. Experimental results showed the test apparatus could completely simulate the carbon reduction atmosphere and high temperature environment the same as that confronted in the real reactor and the performance of screened materials had been successfully tested and verified. Test temperature in the apparatus could be elevated up to 1600℃, which covered the whole temperature range of the normal operation and accident condition of HTGR and could fully meet the test requirements of materials used in the reactor. (authors)

  11. A UKAEA review of gas-cooled reactors in the United Kingdom

    International Nuclear Information System (INIS)

    The commercial use of nuclear power for electrical generation commenced in the UK in the 1950s with the Calder Hall reactors. Based on this concept, eighteen commercial reactor units, with two further units outside the UK, were constructed and have been in operation for periods ranging from 10 to 19 years. The paper reviews this experience mainly from the aspects of safety and the achieved costs, which compare favourably with current figures for fossil fired generation. The further development of the gas-cooled system in the UK commenced with the construction of the Windscale AGR, which came into operation in 1962. This led to the ordering of 14 large commercial AGR units, 4 of which have been in service since 1976, 6 are at an advanced stage of construction and 4 are at an early stage of construction. The paper reviews the main safety features of the AGR and considers the costs, taking achieved costs for the units which are in service and a combination of historical costs and projected costs for the units under construction. Again a clear advantage over fossil fuelled stations is shown. The paper also includes a preliminary account of the use of the prototype AGR at Windscale for the series of experiments concerning plateout, over-temperature in the fuel and simulated fault transients in the core which were carried out earlier in 1981. (author)

  12. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  13. Report of the 1st technical meeting on high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    The 1st Technical Meeting on High Temperature Gas Cooled Reactors (HTGRs) was held on February 1 and 2, 1990 in the Tokai Research Establishment in order to review the results of R and D associated with the High Temperature Engineering Test Reactor (HTTR) accumulated so far in the JAERI and to investigate how to promote the further R and D on high temperature engineering and examination. From the point of view for establishing and upgrading the technology basis of HTGRs, the R and D results obtained so far and the present status of R and D were reviewed for the key items in the meeting, and the R and D items to be investigated positively and items of international cooperation to be promoted in future were discussed based on the comments and suggestions offered by the experts outside the JAERI. This report summarizes the papers which were presented on each subject of R and D in the meeting along with the comments and suggestions by the experts outside the JAERI. The results of the meeting will be reflected effectively for promoting the R and D on the high temperature engineering and examination. (author)

  14. Concept on inherent safety in high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    A new safety concept in a high-temperature gas-cooled reactor (HTGR) was proposed to provide the most advanced nuclear reactor that exerts no harmful consequences on the people and the environment even if multiple failures in all safety systems occur. The proposed safety concept is that the consequence of the accidents is mitigated by the confinement of fission products employing not multiple physical barriers as in light water reactors, but only the cladding of fuel (i.e., the coating layers of the coated fuel particle). The progression of the events that lead to the loss or degradation of the confinement function of the coating layers (i.e., core heat up, oxidation of the coating layers, and explosion of carbon monoxide) is suppressed by only physical phenomena (i.e., the Doppler effect, thermal radiation and natural convection, formation of a protective oxide layer for coating layers of fuel, oxidation of carbon monoxide) that emerge deterministically as a cause of the events. The feasibility studies for severe events and related information revealed that the HTGR design based on this safety concept is technically feasible. This concept indicates the direction in which nuclear reactor research should be headed in terms of safety after the accident at the Fukushima Daiichi Nuclear Power Plant. (author)

  15. An ytterbium quantum gas microscope with narrow-line laser cooling

    Science.gov (United States)

    Yamamoto, Ryuta; Kobayashi, Jun; Kuno, Takuma; Kato, Kohei; Takahashi, Yoshiro

    2016-02-01

    We demonstrate site-resolved imaging of individual bosonic {}174{Yb} atoms in a Hubbard-regime two-dimensional optical lattice with a short lattice constant of 266 nm. To suppress the heating by probe light with the 1S0-1P1 transition of the wavelength λ = 399 nm for high-resolution imaging and preserve atoms at the same lattice sites during the fluorescence imaging, we simultaneously cool atoms by additionally applying narrow-line optical molasses with the 1S0-3P1 transition of the wavelength λ = 556 nm. We achieve a low temperature of T=7.4(13) μ {{K}}, corresponding to a mean oscillation quantum number along the horizontal axes of 0.22(4) during the imaging process. We detect, on average, 200 fluorescence photons from a single atom within a 400 ms exposure time, and estimate a detection fidelity of 87(2)%. The realization of a quantum gas microscope with enough fidelity for Yb atoms in a Hubbard-regime optical lattice opens up the possibilities for studying various kinds of quantum many-body systems such as Bose and Fermi gases, and their mixtures, and also long-range-interacting systems such as Rydberg states.

  16. Effect of Target Configuration on the Neutronic Performance of the Gas-Cooled ADS

    CERN Document Server

    Biss, K; Shetty, N; Nabbi, R

    2013-01-01

    With the utilization of nuclear energy transuranic elements like Pu, Am and Cm are produced causing high, long term radioactivity and radio toxicity, respectively. To reduce the radiological impact on the environment and to the repository Partitioning and Transmutation is considered as an efficient way. In this respect comprehensive research works are performed at different research institutes worldwide. The results show that the transmutation of TRU is achieved with fast neutrons due to the higher fission probability. Based on Accelerator Driven Systems (ADS) those neutrons are used in a particular system, in which mainly liquid metal eutectic (lead bismuth) is used as coolant. The neutronic performance of an ADS system based on gas cooling was studied in this work by using the simulation tool MCNPX. The usage of the Monte-Carlo method in MCNPX allows the simulation of the physical processes in a 3D-model of the core. In dependence of the spallation target material and design several parameters like the mult...

  17. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  18. Procedure of Active Residual Heat Removal after Emergency Shutdown of High-Temperature-Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available After emergency shutdown of high-temperature-gas-cooled reactor, the residual heat of the reactor core should be removed. As the natural circulation process spends too long period of time to be utilized, an active residual heat removal procedure is needed, which makes use of steam generator and start-up loop. During this procedure, the structure of steam generator may suffer cold/heat shock because of the sudden load of coolant or hot helium at the first few minutes. Transient analysis was carried out based on a one-dimensional mathematical model for steam generator and steam pipe of start-up loop to achieve safety and reliability. The results show that steam generator should be discharged and precooled; otherwise, boiling will arise and introduce a cold shock to the boiling tubes and tube sheet when coolant began to circulate prior to the helium. Additionally, in avoiding heat shock caused by the sudden load of helium, the helium circulation should be restricted to start with an extreme low flow rate; meanwhile, the coolant of steam generator (water should have flow rate as large as possible. Finally, a four-step procedure with precooling process of steam generator was recommended; sensitive study for the main parameters was conducted.

  19. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  20. Gas Cooled Fast Reactor Research and Development in the European Union

    Directory of Open Access Journals (Sweden)

    Richard Stainsby

    2009-01-01

    Full Text Available Gas-cooled fast reactor (GFR research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV, that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5 GCFR project in 2000, through FP6 (2005 to 2009 and looking ahead to the proposed activities within the 7th Framework Programme (FP7.

  1. Sliding wear studies of sprayed chromium carbide-nichrome coatings for gas-cooled reactor applications

    International Nuclear Information System (INIS)

    Chromium carbide-nichrome coatings being considered for wear protection of some critical components in high-temperature gas-cooled reactors (HTGR's) were investigated. The coatings were deposited either by the detonation gun or the plasma-arc process. Sliding wear tests were conducted on specimens in a button-on-plate arrangement with sliding velocities of 7.1 x 10-3 and 7.9 mm/s at 8160C in a helium environment simulates HTGR primary coolant chemistry. The coatings containing 75 or 80 wt % chromium carbide exhibited excellent wear resistance. As the chromium carbide content decreased from either 80 or 75 to 55 wt %, with a concurrent decrease in coating hardness, wear-resistance deteriorated. The friction and wear behavior of the soft coating was similar to that of the bare metal--showing severe galling and significant amounts of wear debris. The friction characteristics of the hard coating exhibited a strong velocity dependence with high friction coefficients in low sliding velocity tests ad vice versa. Both the soft coating and bare metal showed no dependence on sliding velocity. The wear behavior observed in this study is of adhesive type, and the wear damage is believed to be controlled primarily by the delamination process

  2. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  3. Current status and future development of modular high temperature gas cooled reactor technology

    International Nuclear Information System (INIS)

    associated with these R and D programmes. Also, support of specific HTGR related research projects is included in the European Union's Fifth Framework Program beginning in 2000. Further opportunities and capabilities of the HTGR in the development of co-generation and non-electric applications are presented in Chapter 7. Spent fuel disposal and decommissioning are key issues that are significantly influencing the future of nuclear power. Chapter 8 addresses the anticipated manner of handling these areas within the PBMR and GT-MHR. Also addressed are the activities associated with spent fuel disposal and decommissioning of HTGRs previously shut down. The development and commissioning of any new nuclear plant concept is subject to risks and challenges to its commercialization. This is also evident in the closed cycle gas turbine, particularly with regard to the design and development of the power conversion system (PCS). The GT-MHR and the PBMR (as well as many other designs under consideration) incorporate state-of-the-art components in their PCS that must operate safely and efficiently for this concept to succeed. These components include magnetic bearings on the rotating machines, large compact plate-fin recuperator modules and seals between PCS components that have size, orientation or environmental operating characteristics yet to be fully demonstrated and proven. These challenges to the commercialization of the GT-MHR and PBMR are discussed in Chapter 9. The IAEA is advised on its activities in development and application of gas cooled reactors by the IWGGCR which is a committee of leaders in national programmes in this technology. The IWGGCR meets periodically to serve as a global forum for information exchange and progress reports on the national programmes, to identify areas of collaboration and to advise the IAEA on its programme. Countries with representation in the IWGGCR include Austria, China, France, Germany, Indonesia, Italy, Japan, the Netherlands, Poland, the

  4. TRISO-Coated Fuel Processing to Support High Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.

    2002-10-01

    The initial objective of the work described herein was to identify potential methods and technologies needed to disassemble and dissolve graphite-encapsulated, ceramic-coated gas-cooled-reactor spent fuels so that the oxide fuel components can be separated by means of chemical processing. The purpose of this processing is to recover (1) unburned fuel for recycle, (2) long-lived actinides and fission products for transmutation, and (3) other fission products for disposal in acceptable waste forms. Follow-on objectives were to identify and select the most promising candidate flow sheets for experimental evaluation and demonstration and to address the needs to reduce technical risks of the selected technologies. High-temperature gas-cooled reactors (HTGRs) may be deployed in the next -20 years to (1) enable the use of highly efficient gas turbines for producing electricity and (2) provide high-temperature process heat for use in chemical processes, such as the production of hydrogen for use as clean-burning transportation fuel. Also, HTGR fuels are capable of significantly higher burn-up than light-water-reactor (LWR) fuels or fast-reactor (FR) fuels; thus, the HTGR fuels can be used efficiently for transmutation of fissile materials and long-lived actinides and fission products, thereby reducing the inventory of such hazardous and proliferation-prone materials. The ''deep-burn'' concept, described in this report, is an example of this capability. Processing of spent graphite-encapsulated, ceramic-coated fuels presents challenges different from those of processing spent LWR fuels. LWR fuels are processed commercially in Europe and Japan; however, similar infrastructure is not available for processing of the HTGR fuels. Laboratory studies on the processing of HTGR fuels were performed in the United States in the 1960s and 1970s, but no engineering-scale processes were demonstrated. Currently, new regulations concerning emissions will impact the

  5. Development and validation of a full-range performance analysis model for a three-spool gas turbine with turbine cooling

    International Nuclear Information System (INIS)

    The performance analysis of a gas turbine is important for both its design and its operation. For modern gas turbines, the cooling flow introduces a noteworthy thermodynamic loss; thus, the determination of the cooling flow rate will clearly influence the accuracy of performance calculations. In this paper, a full-range performance analysis model is established for a three-spool gas turbine with an open-circuit convective blade cooling system. A hybrid turbine cooling model is embedded in the analysis to predict the amount of cooling air accurately and thus to remove the errors induced by the relatively arbitrary value of cooling air requirements in the previous research. The model is subsequently used to calculate the gas turbine performance; the calculation results are validated with detailed test data. Furthermore, multistage conjugate heat transfer analysis is performed for the turbine section. The results indicate that with the same coolant condition and flow rate as those in the performance analysis, the blade metal has been effectively cooled; in addition, the maximum temperature predicted by conjugate heat transfer analysis is close to the corresponding value in the cooling model. Hence, the present model provides an effective tool for analyzing the performance of a gas turbine with cooling. - Highlights: • We established a performance model for a gas turbine with convective cooling. • A hybrid turbine cooling model is embedded in the performance analysis. • The accuracy of the model is validated with detailed test data of the gas turbine. • Conjugate heat transfer analysis is performed for the turbine for verification

  6. A method for calculation of forces acting on air cooled gas turbine blades based on the aerodynamic theory

    Directory of Open Access Journals (Sweden)

    Grković Vojin R.

    2013-01-01

    Full Text Available The paper presents the mathematical model and the procedure for calculation of the resultant force acting on the air cooled gas turbine blade(s based on the aerodynamic theory and computation of the circulation around the blade profile. In the conducted analysis was examined the influence of the cooling air mass flow expressed through the cooling air flow parameter λc, as well as, the values of the inlet and outlet angles β1 and β2, on the magnitude of the tangential and axial forces. The procedure and analysis were exemplified by the calculation of the tangential and axial forces magnitudes. [Projekat Ministarstva nauke Republike Srbije: Development and building the demonstrative facility for combined heat and power with gasification

  7. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  8. Improvement of the raw gas drying process in olefin plants using an absorption cooling system driven by quench oil waste heat

    International Nuclear Information System (INIS)

    The raw gas (RG) in olefin plants is usually dried by triethyleneglycol absorption of the gas humidity. As low temperatures favour the absorption process, a tower cooling water system is conventionally used to reduce the raw gas temperature. However, in this case, the ambient temperature heavily influences the RG temperature, and at very high ambient temperatures, the efficiency of the drying process is too low. The objective of this paper is to propose a new cooling system that recovers part of the waste heat contained in the quench oil to improve the drying process of raw gas in olefin plants. This cooling system consists of a single effect water/LiBr absorption system, which produces chilled water at 10 deg C, and an additional chilled water/raw gas heat exchanger. The cooling water is used in parallel to dissipate heat in the absorption chiller and also as the first stage for cooling the raw gas before the chilled water is used. The technical performance of the new raw gas cooling system is compared with that of the conventional system using a cooling system design for a typical size olefin plant. The proposed system can run the drying process at the required optimised temperature, eliminate the dependence of the process on ambient temperature and use waste heat that would otherwise be dissipated in some form, as it is not useful for other applications inside the plant

  9. INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHENOMENA IN ADVANCED GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHE

    2006-09-01

    INL LDRD funded research was conducted at MIT to experimentally characterize mixed convection heat transfer in gas-cooled fast reactor (GFR) core channels in collaboration with INL personnel. The GFR for Generation IV has generated considerable interest and is under development in the U.S., France, and Japan. One of the key candidates is a block-core configuration first proposed by MIT, has the potential to operate in Deteriorated Turbulent Heat Transfer (DTHT) regime or in the transition between the DTHT and normal forced or laminar convection regime during post-loss-of-coolant accident (LOCA) conditions. This is contrary to most industrial applications where operation is in a well-defined and well-known turbulent forced convection regime. As a result, important new need emerged to develop heat transfer correlations that make possible rigorous and accurate predictions of Decay Heat Removal (DHR) during post LOCA in these regimes. Extensive literature review on these regimes was performed and a number of the available correlations was collected in: (1) forced laminar, (2) forced turbulent, (3) mixed convection laminar, (4) buoyancy driven DTHT and (5) acceleration driven DTHT regimes. Preliminary analysis on the GFR DHR system was performed and using the literature review results and GFR conditions. It confirmed that the GFR block type core has a potential to operate in the DTHT regime. Further, a newly proposed approach proved that gas, liquid and super critical fluids all behave differently in single channel under DTHT regime conditions, thus making it questionable to extrapolate liquid or supercritical fluid data to gas flow heat transfer. Experimental data were collected with three different gases (nitrogen, helium and carbon dioxide) in various heat transfer regimes. Each gas unveiled different physical phenomena. All data basically covered the forced turbulent heat transfer regime, nitrogen data covered the acceleration driven DTHT and buoyancy driven DTHT

  10. Experimental investigation of a micro-combined cooling, heating and power system driven by a gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Kong, X.Q.; Wang, R.Z.; Wu, J.Y.; Huang, X.H.; Huangfu, Y.; Wu, D.W.; Xu, Y.X. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 1954 Huanshan Road, Shanghai 200030 (China)

    2005-11-01

    An experimental investigation of the performance of a micro-combined cooling, heating and power (CCHP) system is described. The natural gas and LPG-fired micro-CCHP system uses a small-scale generator set driven by a gas engine and a new small-scale adsorption chiller, which has a rated electricity power of 12kW, a rated cooling of 9kW and a rated heating capacity of 28kW. Silica gel-water is used as working pair in the adsorption cooling system. The refrigeration COP of the adsorption chiller is over 0.3 for 13{sup o}C evaporation temperature. The test facility designed and built is described, which supplies better test-rig platform for cooling, heating and power cogeneration. Experimental methodology of this system is presented and the results are discussed. An energetic analysis of micro-CCHP system is performed as well. The overall thermal and electrical efficiency is over 70%. (author)

  11. Conceptual design study of Pebble Bed Type High Temperature Gas-cooled Reactor with annular core structure

    International Nuclear Information System (INIS)

    This report presents the Conceptual Design Study of Pebble Bed Type High Temperature Gas-cooled Reactor with Annular Core Structure. From this study, it is made clear that the thermal power of the Pebble Bed Type Reactor can be increased to 500MW through introducing the annular core structure without losing the inherent safe characteristics (in the coolant depressurization accident, the fuel temperature does not exceed the temperature where the fuel defect begins.) This thermal power is two times higher than the inherent safe Pebble Bed Type High temperature Gas-cooled Reactor (MHTGR) designed in West Germany. From this result, it is foreseen that the ratio of the plant cost to the reactor power is reduced and the economy of the plant operation is improved. The reactor performances e.g. fuel burnup and fuel temperature are maintained in same level of the MHTGR. (author)

  12. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  13. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies

  14. Gas-cooled reactor technology safety and siting. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    At the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGRs to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: the diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors; the Government approval of the budget for the construction of the 30 MWt High Temperature Test Reactor (HTTR) in Japan (The schedule contemplates a start of construction in spring 1990 on a site at the Oarai Research Establishment and about a five year construction period.); disappointment in the announced plans to shutdown both the Fort St. Vrain (FSV) plant in the United States (US) and the Thorium High Temperature Reactor (THTR-300) in Germany (These two reactors presently represent the only operating HTGRs in the world since the AVR plant in Juelich, Germany, was also shutdown at the end of 1988.); the continuing negotiations between Germany and the USSR on the terms of the co-operation between the two countries for the construction of a HTR Module supplemented by joint research and development activities aimed at increasing coolant outlet temperatures from 750 deg. C to 950 deg. C; the continued enthusiasm displayed by both the US and German representatives for the potential of the small modular designs under development in both countries and the ability for these designs to meet the stringent requirements demanded for the future expansion of nuclear power; the combining of the HTGR technology interest of ABB-Atom and Siemens in Germany into a joint enterprise, HTR GmbH, in May 1989

  15. Optimal operation of a micro-combined cooling, heating and power system driven by a gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Kong, X.Q.; Li, Y. [School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Wang, R.Z.; Huang, X.H. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China)

    2009-03-15

    The objective of this paper is to investigate the problem of energy management and optimal operation of cogeneration system for micro-combined cooling, heating and power production (CCHP). The energy system mainly consists of a gas engine, an adsorption chiller, a gas boiler, a heat exchanger and an electric chiller. On the basis of an earlier experimental research of the micro-CCHP system, a non-linear-programming cost-minimization optimization model is presented to determine the optimum operational strategies for the system. It is shown that energy management and optimal operation of the micro-CCHP system is dependent upon load conditions to be satisfied and energy cost. In view of energy cost, it would not be optimal to operate the gas engine when the electric-to-gas cost ratio (EGCR) is very low. With higher EGCR, the optimum operational strategy of the micro-CCHP system is independent of energy cost. (author)

  16. Study on the properties of the fuel compact for High Temperature Gas-cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chung-yong; Lee, Sung-yong; Choi, Min-young; Lee, Seung-jae; Jo, Young-ho [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of); Lee, Young-woo; Cho, Moon-sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    High Temperature Gas-cooled Reactors (HTGR), one of the Gen-IV reactors, have been using the fuel element which is manufactured by the graphite matrix, surrounding Tristructural-isotropic (TRISO)-coated Uranium particles. Factors with these characteristics effecting on the matrix of fuel compact are chosen and their impacts on the properties are studied. The fuel elements are considered with two types of concepts for HTGR, which are the block type reactor and the pebble bed reactor. In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength with the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and the two kinds of candidate binder (Phenol and Polyvinyl butyral) were chosen and mixed with each other, formed and heated to measure mechanical properties. The objective of this research is to optimize the materials and composition of the mixture and the forming process by evaluating the mechanical properties before/after carbonization and heat treatment. From the mechanical test results, the mechanical properties of graphite pellets was related to the various conditions such as the contents and kinds of binder, the kinds of graphite and the heat treatments. In the result of the compressive strength and Vicker's hardness, the 10 wt% phenol binder added R+S graphite pellet was relatively higher mechanical properties than other pellets. The contents of Phenol binder, the kinds of graphite powder and the temperature of carbonization and heat treatment are considered important factors for the properties. To optimize the mechanical properties of fuel elements, the role of binders and the properties of graphites will be investigated as

  17. Control rod shadowing and anti-shadowing effects in a large gas-cooled fast reactor

    International Nuclear Information System (INIS)

    An investigation of control rod shadowing and anti-shadowing (interaction) effects has been carried out in the context of a design study of the control rod pattern for the large 2400 MWth Generation IV Gas-cooled Fast Reactor (GFR). For the calculations, the deterministic code system ERANOS-2.0 has been used, in association with a full core model including a European Fast Reactor (EFR)-type pattern for the control rods. More specifically, the core contains a total of 33 control (CSD) and safety (DSD) rods implemented in three banks: -1) a first bank of 6 CSD rods, placed at 64 cm from core centre in the inner fuel zone (Pu content 16.3 % vol.), -2) a safety bank consisting of 9 DSD rods, at an average distance of 118 cm, and -3) a third bank with 18 CSD rods, placed at 171 cm, i.e. at the interface between the inner and outer (Pu content 19.2 % vol.) core regions. Each control rod has been modelled as a homogeneous material containing 90%-enriched B4C, steel and helium. Considerable shadowing effects have been observed between the first bank and the safety bank, as also between individual rods within the first bank. Large anti-shadowing effects take place in an even greater number of the studied rod configurations. The largest interaction is between the two CSD banks, the anti-shadowing value being 46% in this case, implying that the total rod worth is increased by a factor of almost 2 when compared to the sum of the individual bank values. Additional investigations have been performed, in particular the computation of the first order eigenvalue and the eigenvalue separation. The main finding is that the interactions are lower when one of the control rod banks is located at a radial position corresponding to half the core radius. (authors)

  18. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  19. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes [1000 and 3000 MW(t)] and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 9500C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 9500C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG

  20. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    International Nuclear Information System (INIS)

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched 235U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched 235U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing

  1. Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Travis W

    2010-01-31

    The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressures and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.

  2. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  3. Migration of radionuclides in a gas cooled solid state spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Jørgensen, Thomas; Severin, Gregory; Jensen, Mikael, E-mail: kmje@dtu.dk

    2015-02-15

    Highlights: • We have investigated diffusion of (primarily) tritium in solid tungsten. • We have used an analytical and a numerical approach. • The temperature of tungsten changes with a short-term pulse driven proton beam. • The time structure of the temperature has a negligible impact on the diffusion. • Radioactive release at the surface can be found by solving the differential equation. - Abstract: The current design of the ESS (European Spallation Source) program proposes a rotating solid tungsten target cooled by helium gas and a pulsed beam of protons. For safety reasons any design has to address whether or not the induced radionuclidic isotopes in the target migrate. In this paper we have investigated the diffusion of (primarily) tritium in solid tungsten to see if a pulse driven short-term variation in temperature (temperature peaks separated by one turn of the wheel (2.36 s)) could possibly give rise to wave-like migration of the radionuclides, possibly accelerating the overall release. In order to calculate the diffusion in the solid tungsten target two approaches have been used. One neglecting the time structure of the beam and thermal cycling of the target, and one numerical, discrete time step simulation to capture the effects of the thermal cycling on the diffusion behavior. We found that the time structure of the of the temperature has a negligible impact on the diffusion, and that the radioactive release at the surface can be calculated safely by solving the differential equation (Fick's law) using an appropriate temperature to calculate the diffusion constant.

  4. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  5. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    Science.gov (United States)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of

  6. PH adjustment of power plant cooling water with flue gas/fly ash

    Science.gov (United States)

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  7. Eighth meeting of the International Working Group on Gas-Cooled Reactors, Vienna, 30 January - 1 February 1989. Summary report. Part 1

    International Nuclear Information System (INIS)

    The Eighth Meeting of the IAEA International Working Group on Gas-Cooled Reactors was held in Vienna, Austria, from 30 January - 1 February, 1989. The Summary Report (Part I) contains the Minutes of the Meeting

  8. Designing a gas cooled ADS for enhanced waste transmutation. The PDS-XADS European Project contribution

    Energy Technology Data Exchange (ETDEWEB)

    Rimpault, G. [Commissariat a l' Energie Atomique, CEA, 31-33, rue de la Federation, 75752 Paris cedex (France); Sunderland, R. [AMEC NNC Limited, Booths Hall, Chelford Road, Knutsford, Cheshire, WA16 8QZ (United Kingdom); Mueller, A.C. [CNRS IN2P3 IPN, F-0 91906 Cedex Orsay (France)

    2006-07-01

    Accelerator driven system (ADS) are complex in their conception. It is the reason why studies proceed step by step. At the moment, one can take advantage of the work performed within the PDS-XADS project (Preliminary Design Studies of an eXperimental ADS) of the 5. European programme. The PDS-XADS project has been the first one to define rather detailed plants for a demonstration of the ADS technology, making a full use of European expertise from different research organizations, industries and universities. This first step was using MOX fuel technology with a design mostly devoted to the technology demonstration. Elaborated designs are sufficiently advanced to confirm the good prospects in the feasibility of such ADS plants. Also weak points have been identified and it is not a surprise that the open issues appear in the most unusual parts of reactor design i.e. in the spallation module. For what concerns the accelerator, the high reliability/availability requirements remain an important issue. The strategy to overcome these difficulties is a standard practice in reliability engineering, a technical discipline for risk estimation and management that is followed for many industrial applications or products in various fields. The gas technology exhibits clear interests in terms of coolant chemical inertness, overall simplicity of the reactor (internals, components) that can be based on proven helium cooled reactor experience but the chosen volume power (56 W/cm{sup 3}) for this concept is an upper limit due to constraints to the mechanical behaviour of the steel of the cladding. On the other hand, the removal of the decay heat is very much associated to the use of active systems even in protected transients i.e. with proton beam interruption. The statistical safety analysis has demonstrated however that the heat exchangers are the less reliable part of the DHR system. A solution to overcome this difficulty is the use of redundant and diversified systems. The final

  9. Experimental investigation of heat transfer and flow using V and broken V ribs within gas turbine blade cooling passage

    Science.gov (United States)

    Kumar, Sourabh; Amano, R. S.

    2015-05-01

    Gas turbines are extensively used for aircraft propulsion, land-based power generation, and various industrial applications. With an increase in turbine rotor inlet temperatures, developments in innovative gas turbine cooling technology enhance the efficiency and power output; these advancements of turbine cooling have allowed engine designs to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream of gas are based on an increase in the heat transfer areas and on the promotion of turbulence of the cooling flow. In this study, an improvement in performance is obtained by casting repeated continuous V- and broken V-shaped ribs on one side of the two pass square channels into the core of the blade. A detailed experimental investigation is done for two pass square channels with a 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for a steady state experiment. Four different combinations of 60° V- and broken 60° V-ribs in a channel are considered. A series of thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for Reynolds numbers 16,000, 56,000 and 85,000 within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the rib. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. A series of experimental measurements is performed to predict the overall performance of the channel. This paper presents an attempt to collect information about the Nusselt number, the pressure drop and the overall performance of the eight different ribbed ducts at the specified Reynolds number. The main contribution of this study is to evaluate the best combination of rib arrangements

  10. Gas-cooled fast breeder reactor. Quarterly progress report, February 1-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Information is presented concerning the reactor vessel; reactivity control mechanisms and instrumentation; reactor internals; primary coolant circuits;core auxiliary cooling system; reactor core; systems engineering; and reactor safety and reliability;

  11. Study of the oxidation mechanisms between impurities and surfaces applied to the future gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Inconel 617, main candidate for the heat exchangers of the gas-cooled next generation of nuclear reactors has been investigated. Two different problems occurring in the cooling system splits the study into two parts. Oxidizing impurities contained in the coolant can cause severe corrosion at 850 C. Radioactive impurities, coming from the fission reaction of the core can, in another hand contaminate the cooling loop and cause radioprotection problem for the maintenance and dismantling operations. Firstly, oxidizing gas partial pressure influence on oxidation of IN 617 at 850 C was investigated varying oxygen and water vapour partial pressure between 1.10-5 mbar and 200 mbar. Oxide layers were characterized using XPS, SEM, EDX, GD-OES, XRD. Influence of partial pressure on layers structure and composition was determined. Effect of water vapour and partial pressure on growth mechanisms were also investigated. The second part of this study is focused on diffusion of Ag, stable isotope of Ag-110m in IN617 alloy and in the oxide layer forming at its surface at 850 C. Concentration profiles were obtained by GD-OES calibrated analysis. Diffusion coefficient could be obtained from these diffusion profiles: volume diffusion and grain boundary diffusion coefficients for the diffusion in the alloy, and an apparent diffusion coefficient for the diffusion in the oxide, due to the porosity of the structure. (author)

  12. Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink; Keith G. Condie; Glenn E. McCreery

    2007-09-01

    Mean velocity field and turbulence data are presented for flow phenomena in a lower plenum of a typical prismatic gas-cooled reactor (GCR), such as in a Very High Temperature Reactor (VHTR) concept. In preparation for design, safety analyses and licensing, research has begun on readying the computational tools that will be needed to predict the thermal-hydraulics behavior of the reactor design. Fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of computational fluid dynamics (CFD) codes and their turbulence models for a typical VHTR plenum geometry in the limiting case of negligible buoyancy and constant fluid properties. This experiment has been proposed as a “Standard Problem” for assessing advanced reactor (CFD) analysis tools. Present results concentrate on the region of the plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum can locally be considered as multiple jets into a confined cross flow - with obstructions. A model of the lower plenum has been fabricated and scaled to the geometric dimensions of the Next Generation Nuclear Plant (NGNP) Point Design. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to induce flow features somewhat comparable to those expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive-index of the working fluid so that optical techniques may be employed for the measurements. The experiments were conducted in the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Laboratory (INL). The benefit of the MIR technique is that it permits optical measurements to determine complex flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The

  13. Magneto-optical resonance of electromagnetically induced absorption with high contrast and narrow width in a vapour cell with buffer gas

    CERN Document Server

    Brazhnikov, D V; Yudin, V I

    2014-01-01

    The method for observing the high-contrast and narrow-width resonances of electromagnetically induced absorption (EIA) in the Hanle configuration under counterpropagating light waves is proposed. We theoretically analyze the absorption of a probe light wave in presence of counterpropagating one with the same frequency as the function of a static magnetic field applied along the vectors of light waves, propagating in a vapour cell. Here, as an example, we study a "dark" type of atomic dipole transition Fg=1-->Fe=1 in D1 line of 87Rb, where usually the electromagnetically induced transparency (EIT) can be observed. To obtain the EIA signal one should proper chose the polarizations of light waves and intensities. In contrast of regular schemes for observing EIA signals (in a single travelling light wave in the Hanle configuration or in a bichromatic light field consisted of two travelling waves), the proposed scheme allows one to use buffer gas to significantly enhance properties of the resonance. Also the drama...

  14. Characteristics of a cylindrical collector mirror for laser-produced xenon plasma soft X-rays and improvement of mirror lifetime by buffer gas.

    Science.gov (United States)

    Inoue, Tomoaki; Mochizuki, Takayasu; Miyamoto, Shuji; Masuda, Kazuya; Amano, Sho; Kanda, Kazuhiro

    2012-12-01

    The focusing characteristics of a ruthenium-coated cylindrical mirror were investigated on the basis of its ability to collect and focus broadband 5-17-nm soft X-rays emitted from a laser-produced plasma. Based on the plasmas spectral intensity distribution and the reflectivity function of the mirror, we defined the optimum position of the integrated cylindrical mirror at which the X-ray energy flux transported and focused through the mirror was maximum. A minimum spot diameter of 22 mm at a distance of approximately 200 mm from a soft X-ray source was confirmed. The maximum intensity of the collected soft X-rays was 1.3 mJ/cm(2) at the center of the irradiation zone. Thus, the irradiation intensity was improved by approximately 27 times when compared to that of 47 μJ/cm(2) without the mirror. The debris sputtering rate on the reflection surface of the mirror can be reduced to 1/110 by argon gas at 11 Pa, while the attenuation rate of the soft X-rays due to absorption by the buffer gas can be suppressed to less than 10% at the focal point. The focusing property of the mirror is expected to be maintained for 3000 h or longer without significant degradation for a 100 W/320 pps laser shot if the ruthenium layer is thicker than 10 μm. These results suggest that a stand-alone broadband soft X-ray processing system can be realized by using laser-produced plasma soft X-rays.

  15. Gas-burning air cooling developed by leading gas enterprises (Toho Gas). Nagoyaka Home Yokota, a nursing home; Ote kakusha ni miru gas reibo no saiyo jirei (Toho Gas). Tokubetsu yogo rojin home `Nagoyaka House Yokota`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Described herein is the air-conditioning system for Nagoyaka Home Yokota, a nursing home in Nagoya City. It is a 7-story building with a total floor area of 4,444m{sup 2}. The first and second floors are for common purposes (dinning rooms, bathrooms, etc.), and the upper floors are for a total of 39 residents. The air-conditioning system is divided into two lines, one for the residents and the other for offices, where each office is equipped with an individual heat-pump type air conditioner. The residential rooms are air-conditioned by the gas absorption type cool/hot water generating system (capacity: 120 refrigeration tons) installed on the roof, where each room is equipped with a fan coil unit on the ceiling to allow each resident to control temperature independently. The home is also equipped with gas-burning systems for hot water generators, clothes driers and cookers. These city gas burning systems support comfortableness of the home. 5 figs.

  16. Towards redistribution laser cooling of molecular gases: Production of candidate molecules SrH by laser ablation

    CERN Document Server

    Simon, Philipp; Weller, Lars; Sass, Anne; Weitz, Martin; 10.1117/12.2002379

    2013-01-01

    Laser cooling by collisional redistribution of radiation has been successfully applied in the past for cooling dense atomic gases. Here we report on progress of work aiming at the demonstration of redistribution laser cooling in a molecular gas. The candidate molecule strontium monohydride is produced by laser ablation of strontium dihydride in a pressurized noble gas atmosphere. The composition of the ablation plasma plume is analyzed by measuring its emission spectrum. The dynamics of SrH molecular density following the ablation laser pulse is studied as a function of the buffer gas pressure and the laser intensity.

  17. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: marija_miletic@live.com [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: fuk@cvrez.cz [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: Igor.Pioro@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: Alexey.Dragunov@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada)

    2014-09-15

    Highlights: • Gas as a coolant in Gen-IV reactors, history and development. • Main physical parameters comparison of gas coolants: carbon dioxide, helium, hydrogen with water. • Forced convection in turbulent pipe flow. • Gas cooled fast reactor concept comparisons to very high temperature reactor concept. • High temperature helium loop: concept, development, mechanism, design and constraints. - Abstract: Rapidly increasing energy and electricity demands, global concerns over the climate changes and strong dependence on foreign fossil fuel supplies are powerfully influencing greater use of nuclear power. In order to establish the viability of next-generation reactor concepts to meet tomorrow's needs for clean and reliable energy production the fundamental research and development issues need to be addressed for the Generation-IV nuclear-energy systems. Generation-IV reactor concepts are being developed to use more advanced materials, coolants and higher burn-ups fuels, while keeping a nuclear reactor safe and reliable. One of the six Generation-IV concepts is a very high temperature reactor (VHTR). The VHTR concept uses a graphite-moderated core with a once-through uranium fuel cycle, using high temperature helium as the coolant. Because helium is naturally inert and single-phase, the helium-cooled reactor can operate at much higher temperatures, leading to higher efficiency. Current VHTR concepts will use fuels such as uranium dioxide, uranium carbide, or uranium oxycarbide. Since some of these fuels are new in nuclear industry and due to their unknown properties and behavior within VHTR conditions it is very important to address these issues by investigate their characteristics within conditions close to those in VHTRs. This research can be performed in a research reactor with in-pile helium loop designed and constructed in Research Center Rez Ltd. One of the topics analyzed in this article are also physical characteristic and benefits of gas

  18. Development of a nuclear steam generator system for gas-cooled reactors for application in oil sands extraction

    International Nuclear Information System (INIS)

    Canada has vast energy reserves in the Oil Sands regions of Alberta and Saskatchewan. Present extraction technologies, such as strip mining, where oil deposits are close to the surface, and Steam Assisted Gravity Drainage (SAGD) technologies for deeper deposits consume significant amounts of energy to produce the bitumen and upgraded synthetic crude oil. Studies have been performed to assess the feasibility of using nuclear reactors as primary energy sources to produce, in particular the steam required for the SAGD deeper deposit extraction process. Presently available reactors fall short of meeting the requirements, in two areas: the steam produced in a 'standard' reactor is too low in pressure and temperature for the SAGD process. Requirements can be for steam as high as 12MPa pressure with superheat; and, 'standard' reactors are too large in total output. Ideally, reactors of output in the range of 400 to 500 MWth, in modules are better suited to Oil Sands applications. The above two requirements can be met using gas-cooled reactors. Generally, newer generation gas-cooled reactors have been designed for power generation, using Brayton Cycle gas turbines run directly from the heated reactor coolant (helium). Where secondary steam is required, heat recovery steam generators have been used. In this paper, a steam generating system is described which uses the high temperature helium from the reactor directly for steam generation purposes, with sufficient quantities of steam produced to allow for SAGD steam injection, power generation using a steam turbine-generator, and with potential secondary energy supply for other purposes such as hydrogen production for upgrading, and environmental remediation processes. It is assumed that the reactors will be in one central location, run by a utility type organization, providing process steam and electricity to surrounding Oil Sands projects, so steam produced is at very high pressure (12 MPa), with superheat, in order to

  19. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    International Nuclear Information System (INIS)

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR

  20. Enhancing efficiency and power output of gas turbines using either renewable energy or heat recovery cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Nasser, A.E.M. [Higher Technological Inst., Tenth of Ramadan (Egypt). Dept. of Mechanical Engineering

    2006-07-01

    An absorption system to cool intake air to the compressor of an air conditioning system was presented. The system used both solar energy and the waste heat of the exhaust gases to obtain higher temperatures during the summer months. The lithium bromide-water absorption system increased power output by more than 20 per cent during the summer months without consuming more fuel. The system was designed to conserve energy and output power in gas turbine power stations. The system operated by using hot effluent gases leaving the turbine and entered the flue stacks, where heat exchangers recovered the heat energy. Excess electricity produced by the turbine was then used to cool the ambient air before it entered the compressor. Studies have confirmed that the system is financially viable and suited for use in Arabian Gulf countries where temperatures regularly exceed 40 degrees C. 6 refs., 6 figs.

  1. Taguchi Based Regression Analysis of End-Wall Film Cooling in a Gas Turbine Cascade with Single Row of Holes

    Science.gov (United States)

    Ravi, D.; Parammasivam, K. M.

    2016-09-01

    Numerical investigations were conducted on a turbine cascade, with end-wall cooling by a single row of cylindrical holes, inclined at 30°. The mainstream fluid was hot air and the coolant was CO2 gas. Based on the Reynolds number, the flow was turbulent at the inlet. The film hole row position, its pitch and blowing ratio was varied with five different values. Taguchi approach was used in designing a L25 orthogonal array (OA) for these parameters. The end-wall averaged film cooling effectiveness (bar η) was chosen as the quality characteristic. CFD analyses were carried out using Ansys Fluent on computational domains designed with inputs from OA. Experiments were conducted for one chosen OA configuration and the computational results were found to correlate well with experimental measurements. The responses from the CFD analyses were fed to the statistical tool to develop a correlation for bar η using regression analysis.

  2. Experimental investigation of gas turbine airfoil aerodynamic performance without and with film cooling in an annular sector cascade

    Energy Technology Data Exchange (ETDEWEB)

    Wiers, S.H.

    2002-02-01

    The steady growing of industrialization, the densification of the anthroposphere, the increasing concern over the effects of gas turbine cruise emissions on the atmosphere threaten the growth of air transportation, and the perception about the possible climatic impact of CO{sub 2} emissions causes a public distinctive sense of responsibility. The conventional energy production techniques, which are based on fossil fuel, will keep its central importance within the global energy production. Forecasts about the increasing air transportation give duplication in the next 10-15 years. The optimization of the specific fuel consumption is necessary to decrease the running costs and the pollution emissions in the atmosphere, which makes an increased process efficiency of stationary turbines as well as of jet engines essential. This leads to the necessity of an increased thermodynamic efficiency of the overall process and the optimization of the aerodynamic components. Due to the necessity of more detailed three-dimensional data on the behavior of film cooled blades an annular sector cascade turbine test facility has gone into service. The annular sector cascade facility is a relative cost efficient solution compared to a full annular facility to investigate three-dimensional effects on a non cooled and cooled turbine blade. The aerodynamic investigations on the annular sector cascade facility are part of a broad perspective where experimental data from a hot annular sector cascade facility and the cold annular sector facility are used to verify, calibrate and understand the physics for both internal and external calculation methods for flow and heat transfer prediction. The objective of the present study is the design and validation of a cold flow annular sector cascade facility, which meets the flow conditions in a modem turbine as close as possible, with emphasis on achieving periodic flow conditions. The first part of this study gives the necessary background on this

  3. Study on a method for loading a Li compound to produce tritium using high-temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Hiroyuki, E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, Hideaki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Katayama, Kazunari [Department of Advanced Energy Engineering Science, Kyushu University, 6-1 Kasuga-koen, Kasuga 8168580 (Japan); Goto, Minoru; Nakagawa, Shigeaki [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan)

    2015-10-15

    Highlights: • Tritium production by a high-temperature gas-cooled reactor was studied. • The loading method considering tritium outflow suppression was estimated. • A reactor with 600 MWt produced 400–600 g of tritium for 180 days. • A possibility that tritium outflow can be sufficiently suppressed was shown. - Abstract: Tritium production using high-temperature gas-cooled reactors and its outflow from the region loading Li compound into the helium coolant are estimated when considering the suppression of tritium outflow. A Li rod containing a cylindrical Li compound placed in an Al{sub 2}O{sub 3} cladding tube is assumed as a method for loading Li compound. A gas turbine high-temperature reactor of 300 MW electrical nominal capacity (GTHTR300) with 600 MW thermal output power is considered and modeled using the continuous-energy Monte Carlo transport code MVP-BURN, where burn-up simulations are carried out. Tritium outflow is estimated from equilibrium solution for the tritium diffusion equation in the cladding tube. A GTHTR300 can produce 400–600 g of tritium over a 180-day operation using the chosen method of loading the Li compound while minimizing tritium outflow from the cladding tube. Optimizing tritium production while suppressing tritium outflow is discussed.

  4. Insights into gas heating and cooling in the disc of NGC 891 from Herschel far-infrared spectroscopy

    CERN Document Server

    Hughes, T M; Schirm, M R P; Parkin, T J; De Looze, I; Wilson, C D; Bendo, G J; Baes, M; Fritz, J; Boselli, A; Cooray, A; Cormier, D; Karczewski, O Ł; Lebouteiller, V; Lu, N; Madden, S C; Spinoglio, L; Viaene, S

    2014-01-01

    We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in the nearby edge-on spiral galaxy, NGC 891: [CII] 158 $\\mu$m, [NII] 122, 205 $\\mu$m, [OI] 63, 145 $\\mu$m, and [OIII] 88 $\\mu$m. We find that the photoelectric heating efficiency of the gas, traced via the ([CII]+[OII]63)/$F_{\\mathrm{TIR}}$ ratio, varies from a mean of 3.5$\\times$10$^{-3}$ in the centre up to 8$\\times$10$^{-3}$ at increasing radial and vertical distances in the disc. A decrease in ([CII]+[OII]63)/$F_{\\mathrm{TIR}}$ but constant ([CII]+[OI]63)/$F_{\\mathrm{PAH}}$ with increasing FIR colour suggests that polycyclic aromatic hydrocarbons (PAHs) may become important for gas heating in the central regions. We compare the observed flux of the FIR cooling lines and total IR emission with the predicted flux from a PDR model to determine the gas density, surface temperature and the strength of the incident far-ultraviolet (FUV) radiation field, $G_{0}$. Resolving details on physical scales of ~0.6 kpc, a p...

  5. Thermodynamic analysis of performance of steam methane reforming hydrogen production system connected with high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Thermodynamic analysis of performance of steam methane reforming hydrogen production system connected with High-Temperature Gas-Cooled Reactor is presented, which provides a framework for further detailed research. Complete reaction model and equilibrium reaction model were developed. System efficiency and hydrogen output variation related to process parameters were researched. Limit value of performance index and optimum process parameter were determined. The comparison of equilibrium reaction model prediction to experimental data shows that the equilibrium reaction model is appropriate for preliminary analysis for the system. (authors)

  6. Numerical analysis of steam reformer of steam methane reforming hydrogen production system connected with high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    In order to quantitatively analyze the performance of the helium-heated reformer used in steam methane reforming hydrogen production system connected with high temperature gas cooled reactor, a dynamic model has been set up based on one-dimension quasi-homogeneous phase model. And a computer program is development. Model verification is performed under steady state using test results of Japan Atomic Energy Institute. The steady state calculation results fit well with the experiment results. Reaction velocity is not the main factor influencing the performance. Reformer tube with finned central tube improves the performance remarkably comparing with smooth central tube. (authors)

  7. Initial study on steam reformer of high-temperature gas-cooled reactor powered steam methane reforming hydrogen production system

    International Nuclear Information System (INIS)

    Based on one-dimension quasi-homogeneous phase model, a dynamic model for single-tube steam reformer of high-temperature gas-cooled reactor was presented, and computer program was developed. Steady state calculation and analysis were performed for the steam reformer design by Japan Atomic Energy Research Institute. The results show that heat loss at the entrance of helium influences the steam reformer performance remarkably, and reaction velocity is not main factor influencing the performance. The steady state calculation results fit well with experiment results. (authors)

  8. Status and prospects for gas cooled reactor fuels. Proceedings of two IAEA meetings held in June 2004 and June 2005

    International Nuclear Information System (INIS)

    Recently, efforts to develop high temperature gas cooled reactors with an aim to building futuristic nuclear energy systems with advanced nuclear fuel cycles in the context of the Generation IV International Forum have increased significantly. In addition, several development projects are ongoing, focusing on the burning of weapons grade plutonium, including civil plutonium and other transuranic elements using the 'deep-burn concept', or 'inert matrix fuels', especially in the form of coated particles in gas cooled reactor systems. There is also considerable global interest in developing 'nuclear hydrogen' energy systems using high temperature gas cooled reactors. Apart from these developments, the value of preserving the large technology base developed in Germany, the United Kingdom and the United States of America, as well as information developed in other countries, has also been a subject of interest to the IAEA. At the second annual meeting of the 'technical working group on nuclear fuel cycles options and spent fuel management' (TWG-NFCO), held in Vienna from 28-30 May 2003, it was recommended to hold a technical meeting on Current Status and Future Prospects of Gas Cooled Reactor Fuels. The meeting should cover the technological progress that has been made in the last three years and plan future fabrication and qualification facilities for GCR/HTR fuel. TWG-NFCO considered it timely that this progress should be presented and discussed in the interested community. Recognizing the numerous activities being pursued in many Member States, the IAEA convened the technical meeting on this topic in June 2004 in Vienna. Consequently, an update meeting was held in June 2005, which was hosted by the Kharkov Institute of Physics and Technology of Ukraine to review and integrate the latest developments. This publication combines the results of the technical meeting of June 2004 and the meeting of June 2005. The proceedings presented here contain 25 in depth papers on the

  9. Nondestructive testing of welds in steam generators for advanced gas cooled reactors at Heyshamm II and Torness

    International Nuclear Information System (INIS)

    The paper concerns non-destructive testing (NDT) of welds in advanced gas cooled steam generators for Heysham II and Torness nuclear power stations. A description is given of the steam generator. The selection of NDT techniques is also outlined, including the factors considered to ascertain the viability of a technique. Examples are given of applied NDT methods which match particular fabrication processes; these include: microfocus radiography, ultrasonic testing of austenitic tube butt welds, gamma-ray isotope projection system, surface crack detection, and automated radiography. Finally, future trends in this field of NDT are highlighted. (UK)

  10. Preliminary study on rotor dynamics of magnetic bearing for 10MW high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The finite element method and MSC. Marc software are applied to analyze the rotor modal of magnetic bearings for power conversion unit (PCU) of 10 MW high temperature gas-cooled reactor (HTR-10). The effects of the magnetic bearings sustaining stiffness on the rotor natural frequencies were studied. Results show that the natural frequencies may be adjusted by changing the sustaining stiffness and rotor material. It is very important for the magnetic bearing to pass two order bending natural frequencies and design control system

  11. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  12. Experimental and calculational investigation of longitudinal-and-transverse coolant flow in the fuel assembly of a gas cooled reactor

    International Nuclear Information System (INIS)

    A method for calculating fields of rates temperature and pressure of gas coolant in two-dimensional setup in a gas-cooled reactor fuel assembly including an inlt monifold porous energy-release medium and outlet monifold is considered. From the view of structure the fuel assembly coaxially located porous cylinders with spherical fuel elements between them. An experimental large-scale facility permitting to perform a set of necessary measurements is described. Fields of rtes in the inlet manifold were measured as well as pressure distributions on external (imprenetrable) and internal (perforated) walls of the inlet manifold on its end face wall, on the perforated wall of the outlet manifoled. Experimental and calculational results have been compared

  13. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2016-01-01

    Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  14. Research and development on the relating technology of a multi-purpose high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    In a multi-purpose high temperature gas-cooled reactor, a heat exchanger, fuel elements and heat-insulating material are in severe heat transfer condition due to the circulating helium gas of about 1,0000C and pressure of 40 kg/cm2. It is thus necessary to acquire ample experimental data on such components. Studies made so far on the fuel elements and graphite in Japan Atomic Energy Research Institute and First Atomic Power Industry Group are described: fuel and its production test, out-of-pile test, irradiation test and FP release; graphite and high temperature irradiation test and post-irradiation test, mechanical strength, high temperature corrosion and selection of graphite. (Mori, K.)

  15. The Addition of Noncondensable Gases into RELAP5-3D for Analysis of High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Oxygen, carbon dioxide, and carbon monoxide have been added to the RELAP5-3D computer code as noncondensable gases to support analysis of high temperature gas-cooled reactors. Models of these gases are required to simulate the effects of air ingress on graphite oxidation following a loss-of-coolant accident. Correlations were developed for specific internal energy, thermal conductivity, and viscosity for each gas at temperatures up to 3000 K. The existing model for internal energy (a quadratic function of temperature) was not sufficiently accurate at these high temperatures and was replaced by a more general, fourth-order polynomial. The maximum deviation between the correlations and the underlying data was 2.2% for the specific internal energy and 7% for the specific heat capacity at constant volume. The maximum deviation in the transport properties was 4% for oxygen and carbon monoxide and 12% for carbon dioxide

  16. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-25

    Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

  17. TRANCS, a computer code for calculating fission product release from high temperature gas-cooled reactor fuel, (2)

    International Nuclear Information System (INIS)

    This report describes the calculation procedure of the TRANCS code, which deals with fission product transport in fuel rod of high temperature gas-cooled reactor (HTGR). The fundamental equation modeled in the code is a cylindrical one-dimensional diffusion equation with generation and decay terms, and the non-stationary solution of the equation is obtained numerically by a finite difference method. The generation terms consist of the diffusional release from coated fuel particles, recoil release from outer-most coating layer of the fuel particle and generation due to contaminating uranium in the graphite matrix of the fuel compact. The decay term deals with neutron capture as well as beta decay. Factors affecting the computation error has been examined, and further extention of the code has been discussed in the fields of radial transport of fission products from graphite sleeve into coolant helium gas and axial transport in the fuel rod. (author)

  18. Critical Current and Stability of MgB$_2$ Twisted-Pair DC Cable Assembly Cooled by Helium Gas

    CERN Document Server

    AUTHOR|(CDS)2069632; Ballarino, Amalia; Yang, Yifeng; Young, Edward Andrew; Bailey, Wendell; Beduz, Carlo

    2013-01-01

    Long length superconducting cables/bus-bars cooled by cryogenic gases such as helium operating over a wider temperature range are a challenging but exciting technical development prospects, with applications ranging from super-grid transmission to future accelerator systems. With limited existing knowledge and previous experiences, the cryogenic stability and quench protection of such cables are crucial research areas because the heat transfer is reduced and temperature gradient increased compared to liquid cryogen cooled cables. V-I measurements on gas-cooled cables over a significant length are an essential step towards a fully cryogenic stabilized cable with adequate quench protection. Prototype twisted-pair cables using high-temperature superconductor and MgB2 tapes have been under development at CERN within the FP7 EuCARD project. Experimental studies have been carried out on a 5-m-long multiple MgB$_2$ cable assembly at different temperatures between 20 and 30 K. The subcables of the assembly showed sim...

  19. CAST3M/ARCTURUS: a coupled heat transfer / CFD code for thermal-hydraulic analyses of gas cooled reactors

    International Nuclear Information System (INIS)

    Full text of publication follows: The safety of gas-cooled reactors (High Temperature Reactors, Very High Temperature Reactors or as Cooled Fast Reactors) must be ensured by systems (active or passive) which must fulfill the task keeping loads on components (fuel) and structures (vessel, containment) within acceptable limits under conditions and in time. To support this effort, thermal-hydraulics computer codes are necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Some key safety questions are related to the decay heat removal in de-pressurized conditions. Accurate simulation of conduction, thermal radiation and energy storage are necessary requirements for reactor characterized by a low core power density, i.e. HTR or VHTR. Coupling with neutronics is also an important modeling aspect for the determination of representative parameters like neutronics coefficient (Doppler coefficient, Moderator coefficient,...), critical position of control rods, reactivity insertion aspects... Neutronics calculations performed on the Gas Turbine Modular Helium Reactor core have shown a strong interaction between the reactor core and the graphite reflector. Indeed, the reflector temperature coefficient is positive so that, during the increase in temperature, there will be not only modifications of the reaction rate in the reflector but also modification of the albedo to the interface. The modeling of this phenomenon is complex and requires a detailed calculation of the feedback through a coupling between neutronics and thermal-hydraulics. Other phenomena such as critical position of control rods for different power levels or temperature coefficient require the same coupling. Concerning Gas-Cooled Fast Reactors, the high power density of the core and its necessary reduced dimension are not allowing to consider only passive systems for decay heat removal. Therefore, forced convection using active safety systems (gas blowers

  20. Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3

    CERN Document Server

    Bouché, N; Kacprzak, G G; Péroux, C; Contini, T; Martin, C; Dessauges-Zavadsky, M

    2013-01-01

    Galaxies are thought to be fed by the continuous accretion of intergalactic gas, but direct observational evidence has been elusive. The accreted gas is expected to orbit about the galaxy's halo, delivering not just fuel for star-formation but also angular momentum to the galaxy, leading to distinct kinematic signatures. Here we report observations showing these distinct signatures near a typical distant star-forming galaxy where the gas is detected using a background quasar passing 26 kpc from the host. Our observations indicate that gas accretion plays a major role in galaxy growth since the estimated accretion rate is comparable to the star-formation rate.

  1. Numerical Simulation of Three-dimensional Heat and Mass Transfer in Spray Cooling of Converter Gas in a Venturi Scrubber

    Institute of Scientific and Technical Information of China (English)

    LU Tao; WANG Kuisheng

    2009-01-01

    In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency.

  2. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    Science.gov (United States)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  3. Estimating the occurrence of foreign material in Advanced Gas-cooled Reactors: A Bayesian Monte Carlo approach

    International Nuclear Information System (INIS)

    Highlights: • The amount of a specific type of foreign material found in UK AGRs has been estimated. • The estimate is based on very few instances of detection in numerous inspections. • A Bayesian Monte Carlo approach was used. • The study supports safety case claims on coolant flow impairment. • The methodology is applicable to any inspection campaign on any plant system. - Abstract: The current occurrence of a particular sort of foreign material in eight UK Advanced Gas-cooled Reactors has been estimated by means of a parametric approach. The study includes both variability, treated in analytic fashion via the combination of standard probability distributions, and the uncertainty in the parameters of the model of choice, whose posterior distribution was inferred in Bayesian fashion by means of a Monte Carlo route consisting in the conditional acceptance of sets of model parameters drawn from a prior distribution based on engineering judgement. The model underlying the present study specifically refers to the re-loading and inspection routines of UK Advanced Gas-cooled Reactors. The approach to inference here presented, however, is of general validity and can be applied to the outcome of any inspection campaign on any plant system, and indeed to any situation in which the outcome of a stochastic process is more easily simulated than described by a probability density or mass function

  4. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee Nelson

    2009-10-01

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  5. Gas-cooled HTR reactor installed in a pressure vessel cavern

    International Nuclear Information System (INIS)

    A pebble-bed reactor in a pressure vessel cavern is described which has a reflector which in case of accidents with pressure equalisation between cold gas and hot gas transfers the resulting loads to a lateral thermal shield constructed in the form of a pressure-tight metal cylinder. (TK)

  6. Sustainability and Efficiency Improvements of Gas-Cooled High Temperature Reactors

    OpenAIRE

    Marmier, A.

    2012-01-01

    The work presented in this thesis covers three fundamental aspects of High Temperature Reactor (HTR) performance, namely fuel testing under irradiation for maximized safety and sustainability, fuel architecture for improved economy and sustainability, and a novel Balance of Plant concept to enable future high-tech process heat applications with minimized R&D. The development of HTR started in the 1950s as a graphite moderated and helium cooled reactor. This concept featured important inherent...

  7. Analysis on blow-down transient in water ingress accident of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor, which will cause a positive reactivity introduction with the increase of steam density in reactor core to enhance neutron slowing-down, also the chemical corrosion of graphite fuel elements and the damage of reflector structure material. The increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The research on water ingress transient is significant for the verification of inherent safety characteristics of high temperature gas-cooled reactor. The 200 MWe high temperature gas-cooled reactor (HTR-PM), designed by the Institute of Nuclear and New Energy Technology of Tsinghua University, is exampled to be analyzed in this paper. The design basis accident (DBA) scenarios of double-ended guillotine break of single heat-exchange tube (steam generator heat-exchange tube rupture) are simulated by the thermal-hydraulic analysis code, and some key concerns which are relative to the amount of water into the reactor core during the blow-down transient are analyzed in detail. The results show that both of water mass and steam ratio of the fluid spouting from the broken heat-exchange tube are affected by break location, which will increase obviously with the broken location closing to the outlet of the heat-exchange tube. The double-ended guillotine rupture at the outlet of the heat-exchange will result more steam penetrates into the reactor core in the design basis accident of water ingress. The mass of water ingress will also be affected by the draining system. It is concluded that, with reasonable optimization on design to balance safety and economy, the total mass of water ingress into the primary circuit of reactor could be limited effectively to meet the safety requirements, and the pollution of

  8. GT-MHR international project of high-temperature helium cooled reactor with direct gas-turbine power conversion cycle

    International Nuclear Information System (INIS)

    Full text: The international project of gas-turbine modular helium-cooled reactor (GT-MHR) presented in the report is a realization of high-temperature technology and is based on the experience with helium-cooled reactors with ceramic fuel particles and on innovative solutions concerning power conversion system with closed gas-turbine cycle and turbomachine with electromagnetic bearings. The international GT-MHR Project is currently being jointly developed by USA and Russia for disposition of excessive weapon-grade plutonium. For commercial electricity generation, the reactor will use uranium fuel. The GT-MHR combines a gas-cooled modular helium reactor (MHR) and a highly efficient integrated gas-turbine power conversion system (Brayton cycle) with expected cycle efficiency up to 48%. The reactor and power conversion unit are located in an underground concrete silo. The GT-MHR technical characteristics and design features assure: high level of passive safety that completely prevents core melting in accidents with any scenario, including full loss of inert coolant; low level of thermal and radiation impact to the environment; capability to use various fuels in the core (e.g. low-enriched uranium, mixed uranium-thorium and uranium-plutonium fuel, or plutonium fuel) without modifying the core design; meeting the non-proliferation requirements through technology and properties of ceramic fuel particles; capability to achieve coolant temperatures of up to 1000 deg. C, which is needed for various industrial processes; high efficiency of electricity generation. A whole complex of research and development activities is being carried out by RRC KI, OKBM, VNIINM, 'Lutch', and other Russian organizations in order to support key design solutions, primarily on fuel, turbomachine with electromagnetic bearings, structural materials, vessels and computer codes. At present, the GT-MHR capability to generate high-grade heat at temperatures up to 1000 deg. C makes it the only

  9. A PANDA integral test on the effect of light gas on a Passive Containment Cooling System (PCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Domenico, E-mail: domenico.paladino@psi.ch [Paul Scherrer Institut (PSI), Nuclear Energy and Safety Research Department, Laboratory for Thermal-Hydraulics, 5232 Villigen PSI (Switzerland); Auban, Olivier; Huggenberger, Max; Dreier, Joerg [Paul Scherrer Institut (PSI), Nuclear Energy and Safety Research Department, Laboratory for Thermal-Hydraulics, 5232 Villigen PSI (Switzerland)

    2011-11-15

    Research highlights: Black-Right-Pointing-Pointer The release of large amount of non-condensable gas in the drywell has an effect of the containment pressure, but it does not block the PCCS operation. Black-Right-Pointing-Pointer Containment pressure is directly related to the amount of non-condensable vented to the wetwell. Black-Right-Pointing-Pointer Gas-stratification in PANDA DW dead-end volume determined long-term retention of non-condensable in the Drywell. - Abstract: As part of the Euratom project TEMPEST (Testing and Enhanced Modelling of Passive Evolutionary Systems Technology for Containment Cooling), a series of five tests was performed in the PANDA facility to experimentally investigate the distribution of hydrogen inside the containment and its impact on the performance of the Passive Containment Cooling System (PCCS) designed for the Economic Simplified Boiling Water Reactor (ESBWR). In a postulated severe accident a large amount of hydrogen could be released in the Reactor Pressure Vessel (RPV) as a consequence of the cladding Metal-Water (M-W) reaction and discharged together with steam to the Drywell (DW) compartment. The retention of hydrogen in the DW, instead to be vented in the Wetwell (WW), has a positive effect toward the mitigation of the system pressure build-up. Hydrogen retention in the DW is a consequence of the stratification phenomena driven by the steam-hydrogen density difference. The paper presents the experimental results of the integral Test T1.2 performed in the PANDA facility. Helium was used to simulate hydrogen and the specific PANDA facility configuration included a dead-end volume, allowing for retaining a portion of the released helium in the DW compartment. The results from Test T1.2 showed that the containment end pressure is mainly determined by the redistribution of non-condensable gas inside the containment system and the temporary deterioration of the PCCS performance during the helium release phase plays a minor

  10. Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Phil Ligrani

    2013-01-01

    Full Text Available To provide an overview of the current state of the art of heat transfer augmentation schemes employed for internal cooling of turbine blades and components, results from an extensive literature review are presented with data from internal cooling channels, both with and without rotation. According to this survey, a very small number of existing investigations consider the use of combination devices for internal passage heat transfer augmentation. Examples are rib turbulators, pin fins, and dimples together, a combination of pin fins and dimples, and rib turbulators and pin fins in combination. The results of such studies are compared with data obtained prior to 2003 without rotation influences. Those data are comprised of heat transfer augmentation results for internal cooling channels, with rib turbulators, pin fins, dimpled surfaces, surfaces with protrusions, swirl chambers, or surface roughness. This comparison reveals that all of the new data, obtained since 2003, collect within the distribution of globally averaged data obtained from investigations conducted prior to 2003 (without rotation influences. The same conclusion in regard to data distributions is also reached in regard to globally averaged thermal performance parameters as they vary with friction factor ratio. These comparisons, made on the basis of such judgment criteria, lead to the conclusion that improvements in our ability to provide better spatially-averaged thermal protection have been minimal since 2003. When rotation is present, existing investigations provide little evidence of overall increases or decreases in overall thermal performance characteristics with rotation, at any value of rotation number, buoyancy parameter, density ratio, or Reynolds number. Comparisons between existing rotating channel experimental data and the results obtained prior to 2003, without rotation influences, also show that rotation has little effect on overall spatially-averaged thermal

  11. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.

    1995-09-01

    The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  12. A Computational Study for the Utilization of Jet Pulsations in Gas Turbine Film Cooling and Flow Control

    Science.gov (United States)

    Kartuzova, Olga V.

    2012-01-01

    This report is the second part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part is NASA/CR-2012-217415. The third part is NASA/CR-2012-217417. Jets have been utilized in various turbomachinery applications in order to improve gas turbines performance. Jet pulsation is a promising technique because of the reduction in the amount of air removed from compressor. In this work two areas of pulsed jets applications were computationally investigated using the commercial code Fluent (ANSYS, Inc.); the first one is film cooling of High Pressure Turbine (HPT) blades and second one is flow separation control over Low Pressure Turbine (LPT) airfoil using Vortex Generator Jets (VGJ). Using pulsed jets for film cooling purposes can help to improve the effectiveness and thus allow higher turbine inlet temperature. Effects of the film hole geometry, blowing ratio and density ratio of the jet, pulsation frequency and duty cycle of blowing on the film cooling effectiveness were investigated. As for the low-pressure turbine (LPT) stages, the boundary layer separation on the suction side of airfoils can occur due to strong adverse pressure gradients. The problem is exacerbated as airfoil loading is increased. Active flow control could provide a means for minimizing separation under conditions where it is most severe (low Reynolds number), without causing additional losses under other conditions (high Reynolds number). The effects of the jet geometry, blowing ratio, density ratio, pulsation frequency and duty cycle on the size of the separated region were examined in this work. The results from Reynolds Averaged Navier-Stokes and Large Eddy Simulation computational approaches were compared with the experimental data.

  13. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S

    2016-04-01

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation. PMID:26967583

  14. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S

    2016-04-01

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  15. Design Study of 200MWth Gas Cooled Fast Reactor with Nitride (UN-PuN Fuel Long Life without Refueling

    Directory of Open Access Journals (Sweden)

    Syarifah Ratna Dewi

    2016-01-01

    Full Text Available Design study of 200 MWth Gas Cooled Fast Reactor with UN-PuN fuel long life without refueling has been done. GFR is one type reactor in Generation IV reactor system. It uses helium coolant and fast neutron spectrum. Helium is chemical inert, single phase and low neutron moderation. In this study the calculations are performed by using SRAC code with PIJ calculation for the fuel pin cell calculation and CITATION calculation for core calculation. The data libraries use JENDL 3.2. The variation fuel fractions are 50% until 60%. The diameter active core is 150 cm and the height active core is 100 cm. The reflector radial-axial width is 50 cm. The variation of the powers are 100 MWth up to 500 MWth. The high power causes the high k-eff value. The optimum design is reached when the power is 200 MWth, variation percentage Plutonium for fuel F1:F2:F3=9%:11%:13%. The comparation of fuel:cladding:coolant fraction = 55%:10%:35%. The cooling down time of Plutonium is nine months. The optimum k-eff value is 1.0142 with excess reactivity value 1.403%. The decay of Plutonium decrease k-eff value in the beginning of burn up.

  16. Modeling of the performance of a cryogenic gas cooled Yb:YAG multislab amplifier with a longitudinal doping gradient concentration

    Science.gov (United States)

    Xiao, Kaibo; Yuan, Xiaodong; Yan, Xiongwei; Li, Min; Jiang, Xinying; Wang, Zhenguo; Li, Mingzhong; Zheng, Wanguo; Zheng, Jiangang

    2016-04-01

    A cryogenic helium gas cooled Yb:YAG multislab amplifier with a longitudinal doping gradient concentration was proposed for developing high energy, high average power laser systems. As a comparison, the performance of the gradient doped amplifier was investigated with other constant and stepped doped amplifiers in terms of energy storage capacity, heat deposition, and amplification, based on the theory of quasi-three-level laser ions, Monte Carlo, and ray-tracing approaches. Improved lasing characteristics with more homogenous distributions of gain and heat load and higher efficiency was achieved in the gradient doped multislab amplifier while lower gain medium volume was required. It is shown that at the optimum operating temperature of 200 K, the maximum output energy of 867.76 J in the gradient doped amplifier was obtained, corresponding to an optical-to-optical efficiency of 22.41%.

  17. Experimental study of the neutronics of the first gas cooled fast reactor benchmark assembly (GCFR phase I assembly)

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.K.

    1976-12-01

    The Gas Cooled Fast Reactor (GCFR) Phase I Assembly is the first in a series of ZPR-9 critical assemblies designed to provide a reference set of reactor physics measurements in support of the 300 MW(e) GCFR Demonstration Plant designed by General Atomic Company. The Phase I Assembly was the first complete mockup of a GCFR core ever built. A set of basic reactor physics measurements were performed in the assembly to characterize the neutronics of the assembly and assess the impact of the neutron streaming on the various integral parameters. The analysis of the experiments was carried out using ENDF/B-IV based data and two-dimensional diffusion theory methods. The Benoist method of using directional diffusion coefficients was used to treat the anisotropic effects of neutron streaming within the framework of diffusion theory. Calculated predictions of most integral parameters in the GCFR showed the same kinds of agreements with experiment as in earlier LMFBR assemblies.

  18. Melting of contaminated steel scrap from the dismantling of the CO2 systems of gas cooled, graphite moderated nuclear reactors

    International Nuclear Information System (INIS)

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs

  19. Modelling 3D crack propagation in ageing graphite bricks of Advanced Gas-Cooled Reactor Power Plant

    International Nuclear Information System (INIS)

    In this paper, crack propagation in Advanced Gas-cooled Reactor (AGR) graphite bricks with ageing properties is studied using the eXtended Finite Element Method (X-FEM). A parametric study for crack propagation, including the influence of different initial crack shapes and propagation criteria, is conducted. The results obtained in the benchmark study show that the crack paths from X-FEM are similar to the experimental ones. The accuracy of the strain energy release rate computation in a heterogeneous material is also evaluated using a finite difference approach. Planar and non-planar 3D crack growth simulations are presented to demonstrate the robustness and the versatility of the method utilized. Finally, this work contributes to the better understanding of crack propagation behaviour in AGR graphite bricks and so contributes to the extension of the AGR plant lifetimes in the UK by reducing uncertainties. (author)

  20. Magnitude and reactivity consequences of moisture ingress into the modular High-Temperature Gas-Cooled Reactor core

    International Nuclear Information System (INIS)

    Inadvertent admission of moisture into the primary system of a modular high-temperature gas-cooled reactor has been identified in US Department of Energy-sponsored studies as an important safety concern. The work described here develops an analytical methodology to quantify the pressure and reactivity consequences of steam-generator tube rupture and other moisture-ingress-related incidents. Important neutronic and thermohydraulic processes are coupled with reactivity feedback and safety and control system responses. The rate and magnitude of steam buildup are found to be dominated by major system features such as break size compared with safety valve capacity and reliability and less sensitive to factors such as heat transfer coefficients. The results indicate that ingress transients progress at a slower pace than previously predicted by bounding analyses, with milder power overshoots and more time for operator or automatic corrective actions

  1. Analysis of two-phase flow instability in helical tube steam generator in high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yu; Lv, Xuefeng; Wang, Shengfei; Niu, Fenglei; Tian, Li [North China Electric Power Univ., Beijing (Switzerland)

    2012-03-15

    The steam generator composed of multi-helical tubes is used in high temperature gas cooled reactors and two-phase flow instability should be avoided in design. And density-wave oscillation which is mainly due to flow, density and the relationship between the pressure drop delays and feedback effects is one of the two-phase flow instability phenomena easily to occur. Here drift-flux model is used to simulate the performance of the fluid in the secondary side and frequency domain and time domain methods are used to evaluate whether the density-wave oscillation will happen or not. Several operating conditions with nominal power from 15% to 30% are calculated in this paper. The results of the two methods are in accordance, flow instability will occur when power is less than 20% nominal power, which is also according with the result of the experiments well.

  2. Entropy generation in a channel resembling gas turbine cooling passage: Effect of rotation number and density ratio on entropy generation

    Indian Academy of Sciences (India)

    M Basha; M Al-Qahtani; B S Yilbas

    2009-06-01

    Flow into a passage resembling a gas turbine blade cooling passage is considered and entropy generation rate in the passage is examined for unique rotation number and density ratios. In the simulations, leading and trailing walls of the passage are assumed to be at constant temperature. A control volume approach is introduced to discretize the governing equations of flow, heat transfer, and entropy generation. Reynolds stress turbulence model is accommodated in the simulation to account for the turbulence. The study is extended to include two rotational speeds and three density ratios. The passage aspect ratio is kept 10:1. It is found that volumetric entropy generation rate attains high values at passage inlet due to attainment of high temperature gradient in this region. Increasing rotation number and density ratio enhances volumetric entropy generation rate in the passage.

  3. Modeling the high-temperature gas-cooled reactor process heat plant: a nuclear to chemical conversion process

    International Nuclear Information System (INIS)

    The high-temperature heat available from the High-Temperature Gas-Cooled Reactor (HTGR) makes it suitable for many process applications. One of these applications is a large-scale energy production plant where nuclear energy is converted into chemical energy and stored for industrial or utility applications. This concept combines presently available nuclear HTGR technology and energy conversion chemical technology. The design of this complex plant involves questions of interacting plant dynamics and overall plant control. This paper discusses how these questions were answered with the aid of a hybrid computer model that was developed within the time-frame of the conceptual design studies. A brief discussion is given of the generally good operability shown for the plant and of the specific potential problems and their anticipated solution. The paper stresses the advantages of providing this information in the earliest conceptual phases of the design

  4. Analysis on thermophoretic deposit of fine particle on water wall of 10 MW high temperature gas-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; YANG Rui-Chang; JIA Dou-Nan

    2005-01-01

    The water wall is an important part of the passive natural circulation residual heat removal system in a high temperature gas-cooled reactor. The maximum temperatures of the pressure shell and the water wall are calculated using annular vertical closed cavity model. Fine particles can deposit on the water wall due to the thermophore sis effect. This deposit can affect heat transfer. The thermophoretic deposit efficiency is calculated by using Batch and Shen's formula fitted for both laminar flow and turbulent flow. The calculated results indicate that natural convection is turbulent in the closed cavity. The transient thermophoretic deposit efficiency rises with the increase of the pressure shell's temperature. Its maximum value is 14%.

  5. ORIGEN-ARP Cross-Section Libraries for Magnox, Advanced Gas-Cooled, and VVER Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, BD

    2004-03-10

    Cross-section libraries for the ORIGEN-ARP system were extended to include four non-U.S. reactor types: the Magnox reactor, the Advanced Gas-Cooled Reactor, the VVER-440, and the VVER-1000. Typical design and operational parameters for these four reactor types were determined by an examination of a variety of published information sources. Burnup simulation models of the reactors were then developed using the SAS2H sequence from the Oak Ridge National Laboratory SCALE code system. In turn, these models were used to prepare the burnup-dependent cross-section libraries suitable for use with ORIGEN-ARP. The reactor designs together with the development of the SAS2H models are described, and a small number of validation results using spent-fuel assay data are reported.

  6. Cooling of radioactive ions with the Penning trap REXTRAP

    CERN Document Server

    Ames, F; Delahaye, P; Forstner, O; Huber, G; Kester, O; Reisinger, K; Schmidt, P

    2005-01-01

    Cooling of radioactive ion beams in a Penning trap is an essential component of the post-accelerator REX-ISOLDE at CERN. Prior to their charge-breeding and acceleration, ions from the on-line mass separator ISOLDE are accumulated, cooled and bunched with REXTRAP. This beam preparation provides short ion pulses with low emittance, key ingredient for a high efficiency of REX-ISOLDE. Two different cooling techniques have been investigated with REXTRAP. Both rely on the use of a buffer gas as the coolant but differ in the way the transversal compression of the stored ion cloud is achieved. Sideband cooling with a light buffer gas as coolant is the standard technique used at REXTRAP so far. With this technique an efficiency of about 45% for the injection, cooling, and extraction process has been obtained for stable and radioactive ions. For about 105 simultaneously stored ions the resulting emittance of the extracted ion pulses is about 10pimm mrad at 30 keV beam energy. For much larger numbers of ions shifts of t...

  7. Transmutation of nuclear wastes with gas-cooled pebble-bed ads

    International Nuclear Information System (INIS)

    Transmutation of nuclear wastes is being explored for its application to waste management, a fundamental issue for nuclear industry. Several concepts are under consideration, mainly fast breeder reactors and accelerator driven systems (ADS). Inside this second category, we are analysing a helium-cooled graphite moderated sub-critical assembly, which uses as fuel units a small amount of transuranics diluted, in the form of TRISO coated particles, in graphite pebbles. This configuration (PBT) allows for neutron spectra that, taking advantage of the existence of huge capture resonances in the epithermal region, increase in a substantial factor the system transmutation efficiency. Neutronic studies to determine transmutation performance and thermal behaviour are presented and discussed together with an analysis of the additional studies to address before going into detailed design activities. (author)

  8. The gas-cooled Li2O moderator/breeder canister blanket for fusion-synfuels

    International Nuclear Information System (INIS)

    A new integrated power and breeding blanket is described. The blanket incorporates features that make it suitable for synthetic fuel production. It is matched to the thermal and electrical requirements of the General Atomic water-splitting process for producing hydrogen. The fusion reaction is the Tandem Mirror Reactor (TMR) using Mirror Advanced Reactor Study (MARS) physics. The canister blanket is a high temperature, pressure balanced, crossflow heat exchanger contained within a low activity, independently cooled, moderate temperature, first wall structural envelope. The canister uses Li2O as the moderator/breeder and helium as the coolant. ''In situ'' tritium control, combined with slip stream processing and self-healing permeation barriers, assures a hydrogen product essentially free of tritium. The blanket is particularly adapted to synfuels production but is equally useful for electricity production or co-generation

  9. Development of safety analysis codes and experimental validation for a very high temperature gas-cooled reactor Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2006-03-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. Research Objectives As described above, a pipe break may lead to significant fuel damage and fission product release in the VHTR. The objectives of this Korean/United States collaboration were to develop and validate advanced computational methods for VHTR safety analysis. The methods that have been developed are now

  10. A global model for gas cooled reactors for the Generation-4: application to the Very High Temperature Reactor (VHTR)

    International Nuclear Information System (INIS)

    Gas cooled high temperature reactor (HTR) belongs to the new generation of nuclear power plants called Generation IV. The Generation IV gathers the entire future nuclear reactors concept with an effective deployment by 2050. The technological choices relating to the nature of the fuel, the moderator and the coolant as well as the annular geometry of the core lead to some physical characteristics. The most important of these characteristics is the very strong thermal feedback in both active zone and the reflectors. Consequently, HTR physics study requires taking into account the strong coupling between neutronic and thermal hydraulics. The work achieved in this Phd consists in modeling, programming and studying of the neutronic and thermal hydraulics coupling system for block type gas cooled HTR. The coupling system uses a separate resolution of the neutronic and thermal hydraulics problems. The neutronic scheme is a double level Transport (APOLLO2) /Diffusion (CRONOS2) scheme respectively on the scale of the fuel assembly and a reactor core scale. The thermal hydraulics model uses simplified Navier Stokes equations solved in homogeneous porous media in code CAST3M CFD code. A generic homogenization model is used to calculate the thermal hydraulics parameters of the porous media. A de-homogenization model ensures the link between the porous media temperatures of the temperature defined in the neutronic model. The coupling system is made by external procedures communicating between the thermal hydraulics and neutronic computer codes. This Phd thesis contributed to the Very High Temperature Reactor (VHTR) physics studies. In this field, we studied the VHTR core in normal operating mode. The studies concern the VHTR core equilibrium cycle with the control rods and using the neutronic and thermal hydraulics coupling system. These studies allowed the study of the equilibrium between the power, the temperature and Xenon. These studies open new perspective for core

  11. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. Oh, PhD; Cliff Davis; Richard Moore

    2004-11-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 900 degrees C or operational fuel temperatures above 1250 degrees C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR's higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Engineering and Environmental Laboratory (INEEL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world's computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertaninty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  12. Loss-of-water accident analysis of the pebble-bed modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The high pressure helium and water/steam are respectively used as the primary and secondary coolant for the pebble-bed modular high temperature gas-cooled reactor (HTGR). Loss-of-water accident is one of the typical design basis accident (DBA), which would be caused by malfunction or current failure of the feed water pump, as well as the false action of the feed water valve. During the loss-of-water accident, due to the loss of the secondary heat sink, the temperature and pressure of primary coolant will increase. Subsequently, the reactor scram will be triggered by the protective signal of the “high flow rate proportion of primary circuit and secondary circuit” or the “high core inlet helium temperature”. For this type of the accident, the earlier open of the safety valve of the primary circuit should be avoided by reactor design. Based on the preliminary design of the 250 MW pebble-bed modular high temperature gas-cooled reactor (HTR-PM), with the coupled analysis code TINTE-BLAST, accidents with different slowdown rate of the feed water supply have been studied. The important parameters, including the reactor power, fuel element temperature, inlet/outlet helium temperature of the core, and especially the primary pressure, are analyzed. The consequences with first scram signal succeeding or failing are compared. The results can prove that, according to the current design of the protection system, this kind of accident can be detected in time. The scram signal will trigger the reactor shut down quickly, without causing the earlier open of the safety valve. After the reactor is successfully shut down, due to the inherent safety feature of the HTGR, the temperature and the pressure in the primary circuit will increase very slowly. The temperature of the fuel element, as well as that of the components, will not exceed the design limitations. (author)

  13. NO{sub x} reduction from a heavy-duty diesel engine with direct injection of natural gas and cooled exhaust gas recirculation

    Energy Technology Data Exchange (ETDEWEB)

    McTaggart-Cowan, G.; Bushe, W.K.; Hill, P.G. [British Columbia Univ., Dept. of Mechanical Engineering, Vancouver, BC (Canada); Munshi, S.R. [Westport Innovations Inc., Vancouver, BC (Canada)

    2004-06-01

    A heavy-duty ISX diesel engine has been commissioned for single-cylinder operation fuelled with pilot diesel ignited natural gas injected directly into the cylinder. The stock ISX engine was modified by replacing the diesel fuelling system with a high-pressure natural gas system, replacing the turbocharger with an independently controlled supercharger and installing a variable-flow exhaust gas recirculation (EGR) system. A study of the impact of cooled EGR on engine performance and gaseous emissions was carried out. Various engine speeds, loads and injection timings were tested over a range of EGR fractions. A preliminary study of the effect of EGR 'type' - supplemental or replacement - was also carried out. The results indicate that the NO{sub x} emissions varied linearly with the intake oxygen mass fraction (representative of the EGR fraction) until NO{sub x} emissions reached 20 per cent of their non-EGR levels. Further NO{sub x} reductions were achieved with higher EGR fractions, but the rate of reduction was significantly reduced. The NO{sub x} reductions were found to be independent of engine speed and load. An overall activation energy for NO{sub x} formation was determined by correlating the NO{sub x} reductions with a representative flame temperature. The emissions of combustion by-products, including carbon monoxide (CO)and unburned total hydrocarbons (THC) increased significantly at higher EGR fractions. The engine performance and efficiency were not significantly affected except at very high EGR fractions. (Author)

  14. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    Science.gov (United States)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  15. Not Dead Yet: Cool Circumgalactic Gas in the Halos of Early-type Galaxies

    Science.gov (United States)

    Thom, Christopher; Tumlinson, Jason; Werk, Jessica K.; Prochaska, J. Xavier; Oppenheimer, Benjamin D.; Peeples, Molly S.; Tripp, Todd M.; Katz, Neal S.; O'Meara, John M.; Ford, Amanda Brady; Davé, Romeel; Sembach, Kenneth R.; Weinberg, David H.

    2012-10-01

    We report new observations of circumgalactic gas in the halos of early-type galaxies (ETGs) obtained by the COS-Halos Survey with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We find that detections of H I surrounding ETGs are typically as common and strong as around star-forming galaxies, implying that the total mass of circumgalactic material is comparable in the two populations. For ETGs, the covering fraction for H I absorption above 1016 cm-2 is ~40%-50% within ~150 kpc. Line widths and kinematics of the detected material show it to be cold (T feed the diffuse and molecular gas that is frequently observed inside ETGs. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO11598.

  16. Advanced Gas Cooled Reactor Materials Program. Reducing helium impurity depletion in HTGR materials testing

    International Nuclear Information System (INIS)

    Moisture depletion in HTGR materials testing rigs has been empirically studied in the GE High Temperature Reactor Materials Testing Laboratory (HTRMTL). Tests have shown that increased helium flow rates and reduction in reactive (oxidizable) surface area are effective means of reducing depletion. Further, a portion of the depletion has been shown to be due to the presence of free C released by the dissociation of CH4. This depletion component can be reduced by reducing the helium residence time (increasing the helium flow rate) or by reducing the CH4 concentration in the test gas. Equipment modifications to reduce depletion have been developed, tested, and in most cases implemented in the HTRMTL to date. These include increasing the Helium Loop No. 1 pumping capacity, conversion of metallic retorts and radiation shields to alumina, isolation of thermocouple probes from the test gas by alumina thermowells, and substitution of non-reactive Mo-TZM for reactive metallic structural components

  17. Development of a high temperature cooled fast response probe for gas turbine applications

    OpenAIRE

    Mersinligil, Mehmet

    2014-01-01

    The measurement of unsteady pressures within the hot components of gas turbine engines still remains a true challenge for test engineers. Several high temperature pressure sensors have been developed but so far their applications are restricted to unsteady wall static pressure measurements. Because of the severe flow conditions such as turbine inlet temperatures of 1700°C and pressures of 50 bar or more in the most advanced aero-engine designs; few (if any) experimental techniques exist to me...

  18. Cooling of Dense Gas by H2O Line Emission and an Assessment of its Effects in Chondrule-Forming Shocks

    CERN Document Server

    Morris, M A; Ciesla, F J

    2008-01-01

    We consider gas at densities appropriate to protoplanetary disks and calculate its ability to cool due to line radiation emitted by H2O molecules within the gas. Our work follows that of Neufeld & Kaufman (1993; ApJ, 418, 263), expanding on their work in several key aspects, including use of a much expanded line database, an improved escape probability formulism, and the inclusion of dust grains, which can absorb line photons. Although the escape probabilities formally depend on a complicated combination of optical depth in the lines and in the dust grains, we show that the cooling rate including dust is well approximated by the dust-free cooling rate multiplied by a simple function of the dust optical depth. We apply the resultant cooling rate of a dust-gas mixture to the case of a solar nebula shock pertinent to the formation of chondrules, millimeter-sized melt droplets found in meteorites. Our aim is to assess whether line cooling can be neglected in chondrule-forming shocks or if it must be included....

  19. Effect of RANS-Type Turbulence Models on Adiabatic Film Cooling Effectiveness over a Scaled Up Gas Turbine Blade Leading Edge Surface

    Science.gov (United States)

    Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix

    2016-06-01

    Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.

  20. Fissile compound - Inert matrix compatibility studies for the development of gas cooled fast reactor fuels

    International Nuclear Information System (INIS)

    Helium-Cooled High-Temperature Fast Reactors have a high potential for transmutation of minor actinides (Pu, Am, Cm... ). In this kind of reactor, the fuel temperature would be 1200 deg C in use and the inert matrix should retain the fission products in the fuel structure up to 1600 deg C. The fissile compound would be (U,Pu)C or (U,Pu)N owing to their high density, good thermal conductivity and refractory behavior. SiC, TiC, ZrC and TiN, ZrN would be the inert matrix surrounding (U,Pu)C or (U,Pu)N fissile compounds. This study is devoted to the chemical compatibility between UC or UN and inert matrix in the 1200 deg C - 2000 deg C temperature range. In order to achieve a limited number of specific experiments, thermodynamic calculations are realized using the thermodynamic data provided either by the Thermodata database or from the literature. (authors)

  1. CFD-DEM simulation of a conceptual gas-cooled fluidized bed nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Lucilla C.; Su, Jian, E-mail: lucillalmeida@gmail.com, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Aguirre, Joao, E-mail: aguirre@rocky-dem.com [Engineering Simulation and Scientific Software (ESSS), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Several conceptual designs of the fluidized-bed nuclear reactor have been proposed due to its many advantages over conventional nuclear reactors such as PWRs and BWRs. Amongst their characteristics, the enhanced heat transfer and mixing enables a more uniform temperature distribution, reducing the risk of hot-spot and excessive fuel temperature, in addition to resulting in a higher burnup of the fuel. Furthermore, the relationship between the bed height and reactor neutronics turns the coolant flow rate control into a power production mechanism. Moreover, the possibility of removing the fuel by gravity from the movable core in case of a loss-of-cooling accident increases its safety. High-accuracy modeling of particles and coolant flow in fluidized bed reactors is needed to evaluate reliably the thermal-hydraulic efficiency and safety margin. The two-way coupling between solid and fluid can account for high-fidelity solid-solid interaction and reasonable accuracy in fluid calculation and fluid-solid interaction. In the CFD-DEM model, the particles are modeled as a discrete phase, following the DEM approach, whereas the fluid flow is treated as a continuous phase, described by the averaged Navier-Stokes equations on a computational cell scale. In this work, the coupling methodology between Fluent and Rocky is described. The numerical approach was applied to the simulation of a bubbling fluidized bed and the results were compared to experimental data and showed good agreement. (author)

  2. Herschel observations of the Centaurus cluster - the dynamics of cold gas in a cool core

    CERN Document Server

    Mittal, Rupal; Ferland, Gary; Oonk, Raymond; Edge, Alastair C; Canning, Rebecca E A; Russell, Helen; Baum, Stefi A; Böhringer, Hans; Combes, Francoise; Donahue, Megan; Fabian, Andy C; Hatch, Nina A; Hoffer, Aaron; Johnstone, Roderick; McNamara, Brian R; Salomé, Philippe; Tremblay, Grant

    2011-01-01

    Brightest cluster galaxies (BCGs) in the cores of galaxy clusters have distinctly different properties from other low redshift massive ellipticals. The majority of the BCGs in cool-core clusters show signs of active star formation. We present observations of NGC 4696, the BCG of the Centaurus galaxy cluster, at far-infrared (FIR) wavelengths with the Herschel space telescope. Using the PACS spectrometer, we detect the two strongest coolants of the interstellar medium, CII at 157.74 micron and OI at 63.18 micron, and in addition NII at 121.90 micron. The CII emission is extended over a region of 7 kpc with a similar spatial morphology and kinematics to the optical H-alpha emission. This has the profound implication that the optical hydrogen recombination line, H-alpha, the optical forbidden lines, NII 6583 Angstrom, the soft X-ray filaments and the far-infrared CII line all have the same energy source. We also detect dust emission using the PACS and SPIRE photometers at all six wavebands. We perform a detailed...

  3. Regional variations in the dense gas heating and cooling in M51 from Herschel far-infrared spectroscopy

    CERN Document Server

    Parkin, T J; Schirm, M R P; Baes, M; Boquien, M; Boselli, A; Cooray, A; Cormier, D; Foyle, K; Karczewski, O L; Lebouteiller, V; de Looze, I; Madden, S C; Roussel, H; Sauvage, M; Spinoglio, L

    2013-01-01

    We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in M51, [CII](158 \\mu m), [NII](122 & 205 \\mu m), [OI](63 and 145 \\mu m) and [OIII](88 \\mu m). We compare the observed flux of these lines with the predicted flux from a photon dominated region model to determine characteristics of the cold gas such as density, temperature and the far-ultraviolet radiation field, G_0, resolving details on physical scales of roughly 600 pc. We find an average [CII]/F_TIR of 4 x 10^{-3}, in agreement with previous studies of other galaxies. A pixel-by-pixel analysis of four distinct regions of M51 shows a radially decreasing trend in both the far-ultraviolet (FUV) radiation field, G_0 and the hydrogen density, n, peaking in the nucleus of the galaxy, then falling off out to the arm and interarm regions. We see for the first time that the FUV flux and gas density are similar in the differing environments of the arm and interarm regions, suggesting that the inherent physical prope...

  4. Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants

    International Nuclear Information System (INIS)

    Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed

  5. Evanescent-wave trapping and evaporative cooling of an atomic gas near two-dimensionality

    CERN Document Server

    Hammes, M; Engeser, B; Nägerl, H C; Grimm, R

    2003-01-01

    A dense gas of cesium atoms at the crossover to two-dimensionality is prepared in a highly anisotropic surface trap that is realized with two evanescent light waves. Temperatures as low as 100nK are reached with 20.000 atoms at a phase-space density close to 0.1. The lowest quantum state in the tightly confined direction is populated by more than 60%. The system offers intriguing prospects for future experiments on degenerate quantum gases in two dimensions.

  6. Coupled CFD - system-code simulation of a gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yizhou; Rizwan-uddin, E-mail: yizhou.yan@shawgrp.com, E-mail: rizwan@illinois.edu [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL(United States)

    2011-07-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  7. Gas turbine ceramic-coated-vane concept with convection-cooled porous metal core

    Science.gov (United States)

    Kascak, A. F.; Liebert, C. H.; Handschuh, R. F.; Ludwig, L. P.

    1981-01-01

    Analysis and flow experiments on a ceramic-coated-porous-metal vane concept indicated the feasibility, from a heat transfer standpoint, of operating in a high-temperature (2500 F) gas turbine cascade facility. The heat transfer and pressure drop calculations provided a basis for selecting the ceramic layer thickness (to 0.08 in.), which was found to be the dominant factor in the overall heat transfer coefficient. Also an approximate analysis of the heat transfer in the vane trailing edge revealed that with trailing-edge ejection the ceramic thickness could be reduced to (0.01 in.) in this portion of the vane.

  8. Gas-cooled reactor commercialization study: introduction scenario and commercialization analyses for process heat applications. Final report, July 8, 1977--November 30, 1977

    International Nuclear Information System (INIS)

    This report identifies and presents an introduction scenario which can lead to the operation of High Temperature Gas Cooled Reactor demonstration plants for combined process heat and electric power generation applications, and presents a commercialization analysis relevant to the organizational and management plans which could implement a development program

  9. Seventh meeting of the International Working Group on Gas-Cooled Reactors, Beckum, Federal Republic of Germany, 29-30 October 1987

    International Nuclear Information System (INIS)

    The document contains a summary report on the seventh meeting of the International Working Group on Gas-Cooled Reactors and 8 reports describing the national GCR programmes of Austria, China, France, Japan, Switzerland, USSR, UK and Commission of European Communities. A separate abstract was prepared for each of these reports. Refs and tabs

  10. Gas-cooled reactor commercialization study: introduction scenario and commercialization analyses for process heat applications. Final report, July 8, 1977--November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This report identifies and presents an introduction scenario which can lead to the operation of High Temperature Gas Cooled Reactor demonstration plants for combined process heat and electric power generation applications, and presents a commercialization analysis relevant to the organizational and management plans which could implement a development program.

  11. Gas-Microjet Reactive Scattering: Collisions of HCl and DCl with Cool Salty Water.

    Science.gov (United States)

    Faust, Jennifer A; Sobyra, Thomas B; Nathanson, Gilbert M

    2016-02-18

    Liquid microjets provide a powerful means to investigate reactions of gases with salty water in vacuum while minimizing gas-vapor collisions. We use this technique to explore the fate of gaseous HCl and DCl molecules impinging on 8 molal LiCl and LiBr solutions at 238 K. The experiments reveal that HCl or DCl evaporate infrequently if they become thermally accommodated at the surface of either solution. In particular, we observe minimal thermal desorption of HCl following HCl collisions and no distinct evidence for rapid, interfacial DCl→HCl exchange following DCl collisions. These results imply that surface thermal motions are not generally strong enough to propel momentarily trapped HCl or DCl back into the gas phase before they ionize and disappear into solution. Instead, only HCl and DCl molecules that scatter directly from the surface escape entry. These recoiling molecules transfer less energy upon collision to LiBr/H2O than to LiCl/H2O, reflecting the heavier mass of Br(-) than of Cl(-) in the interfacial region. PMID:26828574

  12. High Pressure Gas Filled RF Cavity Beam Test at the Fermilab MuCool Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, Ben [Illinois Inst. of Technology, Chicago, IL (United States)

    2013-05-01

    The high energy physics community is continually looking to push the limits with respect to the energy and luminosity of particle accelerators. In the realm of leptons, only electron colliders have been built to date. Compared to hadrons, electrons lose a large amount of energy when accelerated in a ring through synchrotron radiation. A solution to this problem is to build long, straight accelerators for electrons, which has been done with great success. With a new generation of lepton colliders being conceived, building longer, more powerful accelerators is not the most enticing option. Muons have been proposed as an alternative particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a much smaller energy range than a comparable electron collider. This allows a circular collider to be built with higher attainable energy than any present electron collider. As part of the accelerator, but separate from the collider, it would also be possible to allow the muons to decay to study neutrinos. The possibility of a high energy, high luminosity muon collider and an abundant, precise source of neutrinos is an attractive one. The technological challenges of building a muon accelerator are many and diverse. Because the muon is an unstable particle, a muon beam must be cooled and accelerated to the desired energy within a short amount of time. This requirement places strict requisites on the type of acceleration and focusing that can be used. Muons are generated as tertiary beams with a huge phase space, so strong magnetic fields are required to capture and focus them. Radio frequency (RF) cavities are needed to capture, bunch and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary for capture and focusing.

  13. Experimental assessment of the aero-thermal performance of rib roughened trailing edge cooling channels for gas turbine blades

    International Nuclear Information System (INIS)

    Based on the combined analysis of detailed flow field and heat transfer experimental data, the aero-thermal behaviour of different trailing edge cooling channels is reported. The reference geometry (G0) is characterized by a trapezoidal cross section of high aspect-ratio, inlet radial flow, and coolant discharge at both model tip and trailing edge, where seven elongated pedestals are also installed. Two variations of the reference geometry have squared ribs installed inside the channel radial central portion (G1) or inside the trailing edge exit region (G2). The forced convection heat transfer coefficient has been measured by means of a steady state Liquid Crystal Thermography (LCT) technique, while reliable and detailed flow measurements have been performed by means of Particle Image Velocimetry (PIV) or Stereo-PIV techniques. The experimental Reynolds number has been fixed at 20,000. The heat transfer data for the three configurations have been analyzed and compared considering both local and channel-averaged features of the heat transfer fields. In particular, the flow mechanisms responsible for the existence of high or low heat transfer regions have been identified and explained. The effects of the different turbulence promoters on both the flow and heat transfer fields have been put in evidence as well. With the aim to determine the most effective configuration, area averaged heat transfer data have been compared, together with information about the channels pressure losses. Configuration G1 turned out to be the most promising, giving rise to a significant heat transfer enhancement associated to a moderate increase in pressure losses. -- Highlights: • Combined aero-thermal analysis of cooling ducts for gas turbine blade trailing edge. • Stereo-PIV and LCT experimental investigation. • Performance comparison of different configurations (smooth and ribbed channels). • Coupling of peculiar flow features with heat transfer augmentation. • Assessment of

  14. POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR

    International Nuclear Information System (INIS)

    various operating conditions as well as trade offs between efficiency and capital cost. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Mechanical analyses were performed to determine hoop stresses and thermal expansion characteristics for the different configurations. Economic analyses were performed to estimate the cost of the various configurations

  15. Degradation of graphite in gas cooled reactors due to radiolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Moskovic, R., E-mail: robert.moskovic@magnoxnorthsites.com

    2014-04-01

    Magnox reactors employ pile grade A (PGA) graphite as a moderator. Reactor cores are constructed typically of twelve to thirteen layers of graphite bricks. Fuel channels (FC) are in the centre of all bricks and interstitial channels (IC) at the centre of the corners of every second set of four bricks. The reactor core is cooled by carbon dioxide, the temperature of graphite core increases from 250 °C at the bottom to 360 °C at the top of the core. The neutron dose increases progressively with the operating time of the reactor. The graphite core looses mass as a result of radiolytic oxidation. The process is dependent on both total energy deposition and temperature which correlates with core height. Fast neutron dose accumulates at the same rate as the total energy deposited and is readily available. The reduction of density of moderator graphite increases the porosity and in turn changes both the physical and mechanical properties of graphite. The mechanical properties and density of graphite are measured either on samples installed in the reactor prior to service or trepanned from graphite bricks. The data obtained on these samples are interrogated using probability modelling to establish trends with increasing service life. Results of the analyses are illustrated in the paper. PGA graphite is an aggregate of coarse needle coke filler particles within a matrix of fine coke flour particles mixed with pitch binder. The bricks are fabricated in the green condition by extrusion of dry calcinated coke impregnated with liquid pitch binder and then graphitized at 2800 °C. This produces a polygranular aggregate with orthotropic properties. The strength properties of graphite are measured using different types of tests. The most commonly used tests involve bending, uniaxial and diametral compression. The initiation and propagation of cracks was investigated to improve understanding of strength behaviour. Cracking was examined on macro-scale using optical microscopy and

  16. Novel concepts and geometries as alternatives to conventional circular pin fins for gas turbine blade cooling applications

    Science.gov (United States)

    Uzol, Oguz

    momentum wake region compared to the wakes of the elliptical fins. Hence, the SEFs and the N fins are found to be excellent alternatives to conventional circular pin fins used in gas turbine blade cooling applications.

  17. Common data buffer

    Science.gov (United States)

    Byrne, F.

    1981-01-01

    Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

  18. Evidence of refilled chamber gas pressure enhancing cooling rate during melt spinning of a Zr50Cu40Al10 alloy

    Institute of Scientific and Technical Information of China (English)

    Hong-wang Yang; Peng Zhang; M J Tan; Yuan Ge; Wan-ping Tian; Rui-chun Wang; Rong-de Li

    2015-01-01

    The inlfuence of the reifl ed gas pressure on the glass forming behaviour of one of the best ternary glass forming al oys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The reifl ed chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, ful y crystal ine fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle;therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulifl ed.

  19. Development of Non-Metallic Fuel Elements for a High-Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    In connection with fuel element development work for the high-temperature gas-coolcd reactor of the Brown-Boveri/Krupp Reaktorbau G.m.b.H., two different fuel element concepts were considered and developed. In both cases the fuel element consists of a graphite ball of 6 cm in diam. which contains the fuel insert, a cylindrical pellet of about 20 mm in diam. and 16 mm in height. The two concepts differ in the type of the.fuel insert as well as in the preparation of the graphite ball. In the first concept the fuel insert consists of a mixture of UC2 and graphite which is prepared by blending U3O8 and graphite, pressing them into pellets and reacting the two components in a vacuum furnace at 1800oC. The atomic ratio of U : C is 1:45. Since this type of fuel pellet does not retain the fission products completely the surrounding graphite sphere had to be made impervious to fission products by impregnation in order to obtain a fission-product retaining element. Permeabilities of the order of 10-6cm2/s could be achieved. In the second concept the fuel insert consists of a solid solution of UC in ZrC and is coated with a layer of ZrC. The molar ratio of UC to ZrC is 1 : 20. The fuel pellet preparation was accomplished by the following procedure: UO2, ZrO2, and graphite were mixed and pressed into pellets. The pellets were reacted to the carbides. Ball milling of the carbides was followed by hot pressing at temperatures o f 2000oC. Densities of more than 95% of the theoretical density could be achieved. A full description of the preparation and of some physical properties of the fuel pellets is given in the paper. A sufficient fission gas retention behaviour of this type of fuel insert which allows it to be put into unimpregnated graphite balls is expected. Other advantages of this kind of fuel are discussed. (author)

  20. Steam generator materials performance in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 7600C and produce superheated steam at 5380C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 106 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc