WorldWideScience

Sample records for budget theory application

  1. Model Theory and Applications

    CERN Document Server

    Mangani, P

    2011-01-01

    This title includes: Lectures - G.E. Sacks - Model theory and applications, and H.J. Keisler - Constructions in model theory; and, Seminars - M. Servi - SH formulas and generalized exponential, and J.A. Makowski - Topological model theory.

  2. THE CONCEPTUAL CONTENT OF STATE BUDGET PROCESS IN ECONOMIC THEORY

    OpenAIRE

    Žubule, Ērika; Puzule, Anita

    2015-01-01

    Evaluating the role of the budget in economy we may declare that the budget process should favour the social economic development of the state. The aim of the research is to explore and evaluate theoretical aspects of the state budget process as a component of the state financial policy and to work out proposals for improvement of the state budget process, based on the theoretical and empirical findings. The main objectives of the research were to study the foreign economic scientific literat...

  3. Sublethal toxicant effects with dynamic energy budget theory: model formulation.

    Science.gov (United States)

    Muller, Erik B; Nisbet, Roger M; Berkley, Heather A

    2010-01-01

    We develop and test a general modeling framework to describe the sublethal effects of pollutants by adding toxicity modules to an established dynamic energy budget (DEB) model. The DEB model describes the rates of energy acquisition and expenditure by individual organisms; the toxicity modules describe how toxicants affect these rates by changing the value of one or more DEB parameters, notably the parameters quantifying the rates of feeding and maintenance. We investigate four toxicity modules that assume: (1) effects on feeding only; (2) effects on maintenance only; (3) effects on feeding and maintenance with similar values for the toxicity parameters; and (4) effects on feeding and maintenance with different values for the toxicity parameters. We test the toxicity modules by fitting each to published data on feeding, respiration, growth and reproduction. Among the pollutants tested are metals (mercury and copper) and various organic compounds (chlorophenols, toluene, polycyclic aromatic hydrocarbons, tetradifon and pyridine); organisms include mussels, oysters, earthworms, water fleas and zebrafish. In most cases, the data sets could be adequately described with any of the toxicity modules, and no single module gave superior fits to all data sets. We therefore propose that for many applications, it is reasonable to use the most general and parameter sparse module, i.e. module 3 that assumes similar effects on feeding and maintenance, as a default. For one example (water fleas), we use parameter estimates to calculate the impact of food availability and toxicant levels on the long term population growth rate. PMID:19633955

  4. A Theory of the Perturbed Consumer with General Budgets

    DEFF Research Database (Denmark)

    McFadden, Daniel L; Fosgerau, Mogens

    subgradients with respect to these perturbations are convex hulls of the utility-maximizing demands. We give necessary as well as sufficient conditions for DGF to be consistent with utility maximization, and establish under quite general conditions that utility-maximizing demands are almost everywhere single......We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose...

  5. Games, theory and applications

    CERN Document Server

    Thomas, L C

    2011-01-01

    Anyone with a knowledge of basic mathematics will find this an accessible and informative introduction to game theory. It opens with the theory of two-person zero-sum games, two-person non-zero sum games, and n-person games, at a level between nonmathematical introductory books and technical mathematical game theory books. Succeeding sections focus on a variety of applications - including introductory explanations of gaming and meta games - that offer nonspecialists information about new areas of game theory at a comprehensible level. Numerous exercises appear with full solutions, in addition

  6. Multifractals theory and applications

    CERN Document Server

    Harte, David

    2001-01-01

    Although multifractals are rooted in probability, much of the related literature comes from the physics and mathematics arena. Multifractals: Theory and Applications pulls together ideas from both these areas using a language that makes them accessible and useful to statistical scientists. It provides a framework, in particular, for the evaluation of statistical properties of estimates of the Renyi fractal dimensions.The first section provides introductory material and different definitions of a multifractal measure. The author then examines some of the various constructions for describing multifractal measures. Building from the theory of large deviations, he focuses on constructions based on lattice coverings, covering by point-centered spheres, and cascades processes. The final section presents estimators of Renyi dimensions of integer order two and greater and discusses their properties. It also explores various applications of dimension estimation and provides a detailed case study of spatial point patte...

  7. Bayesian theory and applications

    CERN Document Server

    Dellaportas, Petros; Polson, Nicholas G; Stephens, David A

    2013-01-01

    The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and devel...

  8. Linking individual-based models and dynamic energy budget theory : lessons for ecology and ecotoxicology

    OpenAIRE

    Martin, Benjamin

    2013-01-01

    In the context of ecological risk assessment of chemicals, individual-based population models hold great potential to increase the ecological realism of current regulatory risk assessment procedures. However, developing and parameterizing such models is time-consuming and often ad hoc. Using standardized, tested submodels of individual organisms would make individual-based modelling more efficient and coherent. In this thesis, I explored whether Dynamic Energy Budget (DEB) theory is suitable ...

  9. Fundamental number theory with applications

    CERN Document Server

    Mollin, Richard A

    2008-01-01

    An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition           Removal of all advanced material to be even more accessible in scope           New fundamental material, including partition theory, generating functions, and combinatorial number theory           Expa

  10. Queueing theory and network applications

    CERN Document Server

    Takahashi, Yutaka; Yue, Wuyi; Nguyen, Viet-Ha

    2016-01-01

    The 16 papers of this proceedings have been selected from the submissions to the 10th  International Conference on Queueing Theory and Network Applications (QTNA2015) held on 17-20 August, 2015 in Ha Noi and Ha Long, Vietnam. All contributions discuss theoretical and practical issues connected with queueing theory and its applications in networks and other related fields. The book brings together researchers, scientists and practitioners from the world and offers an open forum to share the latest important research accomplishments and challenging problems in the area of queueing theory and network applications.

  11. Singularity Theory and its Applications

    CERN Document Server

    Stewart, Ian; Mond, David; Montaldi, James

    1991-01-01

    A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.

  12. Neoclassical Theory and Its Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shaing, Ker-Chung [Univ. of Wisconsin, Madison, WI (United States)

    2015-11-20

    The grant entitled Neoclassical Theory and Its Applications started on January 15 2001 and ended on April 14 2015. The main goal of the project is to develop neoclassical theory to understand tokamak physics, and employ it to model current experimental observations and future thermonuclear fusion reactors. The PI had published more than 50 papers in refereed journals during the funding period.

  13. Resilience: Theory and Application.

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.L.; Haffenden, R.A.; Bassett, G.W.; Buehring, W.A.; Collins, M.J., III; Folga, S.M.; Petit, F.D.; Phillips, J.A.; Verner, D.R.; Whitfield, R.G. (Decision and Information Sciences)

    2012-02-03

    both in its own right and because of its implications for community/regional resilience, it is especially important to develop a sound methodology for assessing resilience at the asset/facility level. This objective will be accomplished by collecting data on four broadly defined groups of resilience-enhancing measures: preparedness, mitigation measures, response capabilities, and recovery mechanisms. Table ES-1 illustrates how the six components that define resilience are connected to the actions that enhance the capacity of an entity to be resilient. The relationships illustrated in Table ES-1 provide the framework for developing a survey instrument that will be used to elicit the information required to assess resilience at the asset/facility level. The resilience of a community/region is a function of the resilience of its subsystems, including its critical infrastructures, economy, civil society, governance (including emergency services), and supply chains/dependencies. The number and complexity of these subsystems will make the measurement of resilience more challenging as we move from individual assets/facilities to the community/regional level (where critical infrastructure resilience is only one component). Specific challenges include uncertainty about relationships (e.g., the composition of specific supply chains), data gaps, and time and budget constraints that prevent collection of all of the information needed to construct a comprehensive assessment of the resilience of a specific community or region. These challenges can be addressed, at least partially, by adopting a 'systems approach' to the assessment of resilience. In a systems approach, the extent to which the analysis addresses the resilience of the individual subsystems can vary. Specifically, high-level systems analysis can be used to identify the most important lower-level systems. In turn, within the most important lower-level systems, site assessment data should be collected only on

  14. Graph theory with applications

    CERN Document Server

    Vasudev, C

    2006-01-01

    Salient Features Over 1500 problems are used to illustrate concepts, related to different topics, and introduce applications. Over 1000 exercises in the text with many different types of questions posed. Precise mathematical language is used without excessive formalism and abstraction. Care has been taken to balance the mix of notation and words in mathematical statements. Problem sets are stated clearly and unambiguously, and all are carefully graded for various levels of difficulty. This text has been carefully designed for flexible use.

  15. Resilience: Theory and Application.

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.L.; Haffenden, R.A.; Bassett, G.W.; Buehring, W.A.; Collins, M.J., III; Folga, S.M.; Petit, F.D.; Phillips, J.A.; Verner, D.R.; Whitfield, R.G. (Decision and Information Sciences)

    2012-02-03

    both in its own right and because of its implications for community/regional resilience, it is especially important to develop a sound methodology for assessing resilience at the asset/facility level. This objective will be accomplished by collecting data on four broadly defined groups of resilience-enhancing measures: preparedness, mitigation measures, response capabilities, and recovery mechanisms. Table ES-1 illustrates how the six components that define resilience are connected to the actions that enhance the capacity of an entity to be resilient. The relationships illustrated in Table ES-1 provide the framework for developing a survey instrument that will be used to elicit the information required to assess resilience at the asset/facility level. The resilience of a community/region is a function of the resilience of its subsystems, including its critical infrastructures, economy, civil society, governance (including emergency services), and supply chains/dependencies. The number and complexity of these subsystems will make the measurement of resilience more challenging as we move from individual assets/facilities to the community/regional level (where critical infrastructure resilience is only one component). Specific challenges include uncertainty about relationships (e.g., the composition of specific supply chains), data gaps, and time and budget constraints that prevent collection of all of the information needed to construct a comprehensive assessment of the resilience of a specific community or region. These challenges can be addressed, at least partially, by adopting a 'systems approach' to the assessment of resilience. In a systems approach, the extent to which the analysis addresses the resilience of the individual subsystems can vary. Specifically, high-level systems analysis can be used to identify the most important lower-level systems. In turn, within the most important lower-level systems, site assessment data should be collected only on

  16. Functional analysis theory and applications

    CERN Document Server

    Edwards, RE

    2011-01-01

    ""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the

  17. Mathematical game theory and applications

    CERN Document Server

    Mazalov, Vladimir

    2014-01-01

    An authoritative and quantitative approach to modern game theory with applications from diverse areas including economics, political science, military science, and finance. Explores areas which are not covered in current game theory texts, including a thorough examination of zero-sum game.Provides introductory material to game theory, including bargaining, parlour games, sport, networking games and dynamic games.Explores Bargaining models, discussing new result such as resource distributions, buyer-seller instructions and reputation in bargaining models.Theoretical results are presented along

  18. Summability theory and its applications

    CERN Document Server

    Feyzi, Basar

    2012-01-01

    The theory of summability has many uses throughout analysis and applied mathematics. Engineers and physicists working with Fourier series or analytic continuation will also find the concepts of summability theory valuable to their research. The concepts of summability have been extended to the sequences of fuzzy numbers and also to the theorems of ergodic theory. This e-book explains various aspects of summability and demonstrates applications in a coherent manner. The content can readily serve as a useful series of lecture notes on the subject. This e-book comprises of 8 chapters starting

  19. Sinusoids theory and technological applications

    CERN Document Server

    Kythe, Prem K

    2014-01-01

    A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers' paradox, black holes, Mars mission, and SETI.The book begins by describing sinusoids-which are periodic sine or cosine functions-using well-known examples from wave theory, including traveling and standing waves, continuous musical rhythms, and the human liver. It next discusses the Fourier series and transform in both continuous and...

  20. Bernstein functions theory and applications

    CERN Document Server

    Schilling, René L; Vondracek, Zoran

    2010-01-01

    This text is a self-contained and unified approach to Bernstein functions and their subclasses, bringing together old and establishing new connections. Applications of Bernstein functions in different fields of mathematics are given, with special attention to interpretations in probability theory. An extensive list of complete Bernstein functions with their representations is provided.

  1. Grey Systems Theory and Applications

    CERN Document Server

    Liu, Sifeng

    2011-01-01

    Due to inherent limitations in human sensing organs, most data collected for various purposes contain uncertainties. Even at the rare occasions when accurate data are available, the truthful predictions derived on the data tend to create chaotic consequences. So, to effectively process and make sense out of available data, we need methods to deal with uncertainty inherently existing inside the data. The intent of this monograph is to explore the fundamental theory, methods, and techniques of practical application of grey systems theory, initiated by Professor Deng Julong in 1982. This volume presents most of the recent advances of the theory accomplished by scholars from around the world. From studying this book, the reader will not only acquire an overall knowledge of this new theory but also be able to follow the most current research activities. All examples presented are based on practical applications of the theory when urgent real-life problems had to be addressed. Last but not the least, this book conc...

  2. Group theory for chemists fundamental theory and applications

    CERN Document Server

    Molloy, K C

    2010-01-01

    The basics of group theory and its applications to themes such as the analysis of vibrational spectra and molecular orbital theory are essential knowledge for the undergraduate student of inorganic chemistry. The second edition of Group Theory for Chemists uses diagrams and problem-solving to help students test and improve their understanding, including a new section on the application of group theory to electronic spectroscopy.Part one covers the essentials of symmetry and group theory, including symmetry, point groups and representations. Part two deals with the application of group theory t

  3. Accounting changes and budgeting practices in the Tanzanian central government: a theory of struggling for conformance

    OpenAIRE

    Mkasiwa, Tausi

    2011-01-01

    This research investigates the phenomenon of budgeting practices in the Tanzanian Central Government. It seeks to understand how budgeting systems under the New Public Management (NPM), World Bank- and IMF-exhorted systems were adopted and implemented. There were several motives for this research: the significance of budgeting in financial management, the sparsity of empirical studies on NPM in developing countries, and a call for an understanding of the local contexts of the country and an e...

  4. Text Mining Applications and Theory

    CERN Document Server

    Berry, Michael W

    2010-01-01

    Text Mining: Applications and Theory presents the state-of-the-art algorithms for text mining from both the academic and industrial perspectives.  The contributors span several countries and scientific domains: universities, industrial corporations, and government laboratories, and demonstrate the use of techniques from machine learning, knowledge discovery, natural language processing and information retrieval to design computational models for automated text analysis and mining. This volume demonstrates how advancements in the fields of applied mathematics, computer science, machine learning

  5. Singular traces theory and applications

    CERN Document Server

    Sukochev, Fedor; Zanin, Dmitriy

    2012-01-01

    This text is the first complete study and monograph dedicated to singular traces. For mathematical readers the text offers, due to Nigel Kalton's contribution, a complete theory of traces on symmetrically normed ideals of compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and the deeper mathematical features of singular traces. An application section explores the consequences of these features, which previously were not discussed in general texts on noncommutative geometry.

  6. Diatomic interaction potential theory applications

    CERN Document Server

    Goodisman, Jerry

    2013-01-01

    Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des

  7. Wavelets theory, algorithms, and applications

    CERN Document Server

    Montefusco, Laura

    2014-01-01

    Wavelets: Theory, Algorithms, and Applications is the fifth volume in the highly respected series, WAVELET ANALYSIS AND ITS APPLICATIONS. This volume shows why wavelet analysis has become a tool of choice infields ranging from image compression, to signal detection and analysis in electrical engineering and geophysics, to analysis of turbulent or intermittent processes. The 28 papers comprising this volume are organized into seven subject areas: multiresolution analysis, wavelet transforms, tools for time-frequency analysis, wavelets and fractals, numerical methods and algorithms, and applicat

  8. Maslow's theory and its application to librarianship

    OpenAIRE

    Sridhar, M. S.

    1981-01-01

    Explains the basis for Maslow’s theory, enumerates Maslow’s hierarchy of needs, describes implications of the theory and finally presents application of Maslow’s theory to librarianship with suitable examples and illustrations.

  9. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  10. Quantification of Strategic Plans Through the Business Budget: A Practical Application Using Stochastic Methods

    Directory of Open Access Journals (Sweden)

    Marino Luiz Eyerkaufer

    2014-12-01

    Full Text Available Traditionally, the process of estimating the quantitative predictions of the strategic plan through the budget happens as from the deterministic data, together with analysis of factors of internal and external environments. As from the budget data decisions are made, often before the fact, which creates uncertainty as to the assertiveness of forecasts. Combined with the traditional preparation methods of corporate budget forecasts, this study presents an application of stochastic methods where the probabilism is presented as an alternative for the minimization of uncertainties related to the assertiveness of the estimates. It also demonstrates itself, as from a practical application, the use of the Monte Carlo method in the sales forecasting; at the same time it is tested the probability of these sales forecasting be materialized within certain intervals that meet the investors’ expectations, by using the limit central theorem and, finally, by using the absorbing Markov chain, it is demonstrated the overall performance of the system as from the funds input and output. The study was limited to a basic application of stochastic methods as from a hypothetical case which, however, allowed to  conclude that both methods, together or separately, can minimize the effects of uncertainty in budget forecasts.

  11. Budget-based power consumption for application execution on a plurality of compute nodes

    Science.gov (United States)

    Archer, Charles J; Inglett, Todd A; Ratterman, Joseph D

    2012-10-23

    Methods, apparatus, and products are disclosed for budget-based power consumption for application execution on a plurality of compute nodes that include: assigning an execution priority to each of one or more applications; executing, on the plurality of compute nodes, the applications according to the execution priorities assigned to the applications at an initial power level provided to the compute nodes until a predetermined power consumption threshold is reached; and applying, upon reaching the predetermined power consumption threshold, one or more power conservation actions to reduce power consumption of the plurality of compute nodes during execution of the applications.

  12. Surface chemistry theory and applications

    CERN Document Server

    Bikerman, J J

    2013-01-01

    Surface Chemistry Theory and Applications focuses on liquid-gas, liquid-liquid, solid-gas, solid-liquid, and solid-solid surfaces. The book first offers information on liquid-gas surfaces, including surface tension, measurement of surface tension, rate of capillarity rise, capillary attraction, bubble pressure and pore size, and surface tension and temperature. The text then ponders on liquid-liquid and solid-gas surfaces. Discussions focus on surface energy of solids, surface roughness and cleanness, adsorption of gases and vapors, adsorption hysteresis, interfacial tension, and interfacial t

  13. Biometrics Theory, Methods, and Applications

    CERN Document Server

    Boulgouris, N V; Micheli-Tzanakou, Evangelia

    2009-01-01

    An in-depth examination of the cutting edge of biometrics. This book fills a gap in the literature by detailing the recent advances and emerging theories, methods, and applications of biometric systems in a variety of infrastructures. Edited by a panel of experts, it provides comprehensive coverage of:. Multilinear discriminant analysis for biometric signal recognition;. Biometric identity authentication techniques based on neural networks;. Multimodal biometrics and design of classifiers for biometric fusion;. Feature selection and facial aging modeling for face recognition;. Geometrical and

  14. Quantile regression theory and applications

    CERN Document Server

    Davino, Cristina; Vistocco, Domenico

    2013-01-01

    A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and

  15. Automata theory and its applications

    CERN Document Server

    Khoussainov, Bakhadyr

    2001-01-01

    The theory of finite automata on finite stings, infinite strings, and trees has had a dis­ tinguished history. First, automata were introduced to represent idealized switching circuits augmented by unit delays. This was the period of Shannon, McCullouch and Pitts, and Howard Aiken, ending about 1950. Then in the 1950s there was the work of Kleene on representable events, of Myhill and Nerode on finite coset congruence relations on strings, of Rabin and Scott on power set automata. In the 1960s, there was the work of Btichi on automata on infinite strings and the second order theory of one successor, then Rabin's 1968 result on automata on infinite trees and the second order theory of two successors. The latter was a mystery until the introduction of forgetful determinacy games by Gurevich and Harrington in 1982. Each of these developments has successful and prospective applications in computer science. They should all be part of every computer scientist's toolbox. Suppose that we take a computer scientist's ...

  16. Some Applications of Eliashberg Theory

    Science.gov (United States)

    Akis, Richard J.

    Eliashberg theory, which was formulated assuming that the electron-phonon interaction is the mechanism for superconductivity, has been very successful in explaining the physical properties of most superconductors. Eliashberg theory is an extension of BCS theory, the original microscopic theory of superconductivity. BCS theory is recovered from Eliashberg theory in the weak electron-boson coupling limit. Recently, a new challenge to Eliashberg theory has been brought forth by the discovery of a new class of superconductors known as the high T_{c} oxides. As of this writing, the question of what is the superconducting mechanism for these materials is still unanswered. In this thesis, many superconducting properties have been calculated mainly in an effort to see if Eliashberg theory may still be applicable to these materials. The approach of this effort has depended on the property being studied. In this case of the critical temperature and the isotope effect, a great deal of work has been put in to fit actual experimental results, particularly for the isotope effect. We shall show that two distinct models, one with an additional electronic mechanism along with the phonons and the other with a very large coulomb repulsion, may be able to explain the experimental results. For the electronic specific heat, maxima that should not be exceeded by an Eliashberg superconductor are established for several quantities associated with this physical property. Unfortunately, some experimental values for these quantities appear to exceed these maxima. In the case of the the nuclear spin relaxation, which has not been very extensively studied in the past, we shall look at how the coherence peak in the relaxation rate can be reduced as a function of coupling strength and draw conclusions that are applicable to conventional superconductors. The behaviour of this property in the oxides is not ignored however, and some fitting of experiment including anisotrophy as well as

  17. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2008-05-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out

  18. Discrete Curvature Theories and Applications

    KAUST Repository

    Sun, Xiang

    2016-08-25

    Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the

  19. An information theory approach for evaluating earth radiation budget (ERB) measurements - Nonuniform sampling of reflected shortwave radiation

    Science.gov (United States)

    Barkstrom, Bruce R.; Direskeneli, Haldun; Halyo, Nesim

    1992-01-01

    An information theory approach to examine the temporal nonuniform sampling characteristics of shortwave (SW) flux for earth radiation budget (ERB) measurements is suggested. The information gain is computed by computing the information content before and after the measurements. A stochastic diurnal model for the SW flux is developed, and measurements for different orbital parameters are examined. The methodology is applied to specific NASA Polar platform and Tropical Rainfall Measuring Mission (TRMM) orbital parameters. The information theory approach, coupled with the developed SW diurnal model, is found to be promising for measurements involving nonuniform orbital sampling characteristics.

  20. Applications of the Theory of Technical Systems

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; McAloone, Timothy Charles

    2008-01-01

    This paper uses the development and applications of Hubka’s Theory of Technical Systems (TTS) at DTU as an example of the power of the theory, the necessity of detailing and fitting the theory, and the role of a theory as a basis for research.At the same time the paper is a balance of the influence...

  1. Towards the determination of Mytilus edulis food preferences using the dynamic energy budget (DEB) theory.

    Science.gov (United States)

    Picoche, Coralie; Le Gendre, Romain; Flye-Sainte-Marie, Jonathan; Françoise, Sylvaine; Maheux, Frank; Simon, Benjamin; Gangnery, Aline

    2014-01-01

    The blue mussel, Mytilus edulis, is a commercially important species, with production based on both fisheries and aquaculture. Dynamic Energy Budget (DEB) models have been extensively applied to study its energetics but such applications require a deep understanding of its nutrition, from filtration to assimilation. Being filter feeders, mussels show multiple responses to temporal fluctuations in their food and environment, raising questions that can be investigated by modeling. To provide a better insight into mussel-environment interactions, an experiment was conducted in one of the main French growing zones (Utah Beach, Normandy). Mussel growth was monitored monthly for 18 months, with a large number of environmental descriptors measured in parallel. Food proxies such as chlorophyll a, particulate organic carbon and phytoplankton were also sampled, in addition to non-nutritious particles. High-frequency physical data recording (e.g., water temperature, immersion duration) completed the habitat description. Measures revealed an increase in dry flesh mass during the first year, followed by a high mass loss, which could not be completely explained by the DEB model using raw external signals. We propose two methods that reconstruct food from shell length and dry flesh mass variations. The former depends on the inversion of the growth equation while the latter is based on iterative simulations. Assemblages of food proxies are then related to reconstructed food input, with a special focus on plankton species. A characteristic contribution is attributed to these sources to estimate nutritional values for mussels. M. edulis shows no preference between most plankton life history traits. Selection is based on the size of the ingested particles, which is modified by the volume and social behavior of plankton species. This finding reveals the importance of diet diversity and both passive and active selections, and confirms the need to adjust DEB models to different

  2. Dependence logic theory and applications

    CERN Document Server

    Kontinen, Juha; Väänänen, Jouko; Vollmer, Heribert

    2016-01-01

    In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning ...

  3. Triboluminescence theory, synthesis, and application

    CERN Document Server

    Okoli, Okenwa; Fontenot, Ross; Hollerman, William

    2016-01-01

    This book expounds on progress made over the last 35 years in the theory, synthesis, and application of triboluminescence for creating smart structures. It presents in detail the research into utilization of the triboluminescent properties of certain crystals as new sensor systems for smart engineering structures, as well as triboluminescence-based sensor systems that have the potential to enable wireless, in-situ, real time and distributed (WIRD) structural health monitoring of composite structures. The sensor component of any structural health monitoring (SHM) technology — measures the effects of the external load/event and provides the necessary inputs for appropriate preventive/corrective action to be taken in a smart structure — sits at the heart of such a system. This volume explores advances in materials properties and structural behavior underlying creation of smart composite structures and sensor systems for structural health monitoring of critical engineering structures, such as bridges, aircraf...

  4. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2004-01-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction

  5. Mathematical analysis, approximation theory and their applications

    CERN Document Server

    Gupta, Vijay

    2016-01-01

    Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

  6. Quantitative graph theory mathematical foundations and applications

    CERN Document Server

    Dehmer, Matthias

    2014-01-01

    The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat

  7. Dynamic random walks theory and applications

    CERN Document Server

    Guillotin-Plantard, Nadine

    2006-01-01

    The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance

  8. Corruption, Public Procurement, and the Budget Composition : Theory and Evidence from OECD Countries

    OpenAIRE

    Zohal Hessami

    2013-01-01

    This paper examines the relationship between corruption and the composition of public expenditures. First, I derive a theoretical model that links the degree of corruption in a country - to be understood as the prevailing culture of corruption - to distortions in the budget composition. The transmission channel is a rent-seeking contest where firms from different sectors pay bribes to politicians and bureaucrats to influence public procurement decisions, which give rise to endogenous rents. I...

  9. International Workshop on Operator Theory and Applications

    CERN Document Server

    Jacob, Birgit; Ran, André; Zwart, Hans

    2016-01-01

    This volume collects a selected number of papers presented at the International Workshop on Operator Theory and its Applications (IWOTA) held in July 2014 at Vrije Universiteit in Amsterdam. Main developments in the broad area of operator theory are covered, with special emphasis on applications to science and engineering. The volume also presents papers dedicated to the eightieth birthday of Damir Arov and to the sixty-fifth birthday of Leiba Rodman, both leading figures in the area of operator theory and its applications, in particular, to systems theory.

  10. Application of difference sequences theory

    OpenAIRE

    Khantarzhiev, Georgii

    2013-01-01

    The results of difference sequences theory are applied to analytic function theory and Diophantine equations. As a result we have the equation which connects the $n$-th derivative of a function with the difference sequence for the values of this function. Also the results of difference sequences theory helps to discover some features of the whole kind of Diophantine equations. The method presented allows to find limits where Diophantine equation does not have integer solutions. The higher pow...

  11. 7 CFR 3402.14 - Budget and budget narrative.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Budget and budget narrative. 3402.14 Section 3402.14 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... budget narrative. Applicants must prepare the Budget, Form CSREES-2004, and a budget...

  12. Acoustic array systems theory, implementation, and application

    CERN Document Server

    Bai, Mingsian R; Benesty, Jacob

    2013-01-01

    Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic

  13. Towards a formalization of budgets

    NARCIS (Netherlands)

    J.A. Bergstra; S. Nolst Trenité; M.B. van der Zwaag

    2008-01-01

    We go into the need for, and the requirements on, a formal theory of budgets. We present a simple algebraic theory of rational budgets, i.e., budgets in which amounts of money are specified by functions on the rational numbers. This theory is based on the tuplix calculus. We go into the importance o

  14. Group theory and its applications

    CERN Document Server

    Thapa, Ram Kumar

    2015-01-01

    Every molecule possesses symmetry and hence has symmetry operations and symmetry elements. From symmetry properties of a system we can deduce its significant physical results. Consequently it is essential to operations of a system forms a group. Group theory is an abstract mathematical tool that underlies the study of symmetry and invariance. By using the concepts of symmetry and group theory, it is possible to obtain the members of complete set of known basis functions of the various irreducible representations of the group. I practice this is achieved by applying the projection operators to linear combinations of atomic orbital (LCAO) when the valence electrons are tightly bound to the ions, to orthogonalized plane waves (OPW) when valence electrons are nearly free and to the other given functions that are judged to the particular system under consideration. In solid state physics the group theory is indispensable in the context of finding the energy bands of electrons in solids. Group theory can be applied...

  15. Quantum entanglement: theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, N.

    2007-10-10

    This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum

  16. Quantum entanglement: theory and applications

    International Nuclear Information System (INIS)

    This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum

  17. Homotopy of extremal problems theory and applications

    CERN Document Server

    Korovin, Sergey K; Emelyanov, Stanislav V; Bulatov, Alexander V

    2007-01-01

    This monograph provides a thorough treatment of parameter-dependent extremal problems with local minimum values that remain unchanged under changes of the parameter. The authors consider the theory as well the practical treatment of those problems, both in finite-dimensional as well as in infinite-dimensional spaces. Various applications are considered, e.g., variational calculus, control theory and bifurcations theory. Thorough treatment of parameter-dependent extremal problems with local minimum values. Includes many applications, e.g., variational calculus, control theory and bifurcations t

  18. Applications of model theory to functional analysis

    CERN Document Server

    Iovino, Jose

    2014-01-01

    During the last two decades, methods that originated within mathematical logic have exhibited powerful applications to Banach space theory, particularly set theory and model theory. This volume constitutes the first self-contained introduction to techniques of model theory in Banach space theory. The area of research has grown rapidly since this monograph's first appearance, but much of this material is still not readily available elsewhere. For instance, this volume offers a unified presentation of Krivine's theorem and the Krivine-Maurey theorem on stable Banach spaces, with emphasis on the

  19. Lectures on Hamiltonian Dynamics : Theory and Applications

    CERN Document Server

    Benettin, Giancarlo; Kuksin, Sergei

    2005-01-01

    This volume collects three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.

  20. Applications of Graph Theory in Computer Science

    OpenAIRE

    U Sekar

    2013-01-01

    The field of mathematics plays vital role in various fields. One of the important areas in mathematics is graph theory which is used in structural models. This structural arrangements of various objects or technologies lead to new inventions and modifications in the existing environment for enhancement in those fields. The field graph theory started its journey from the problem of Konigsberg Bridge in 1735. This paper gives an overview of the applications of graph theory in heterogeneous fiel...

  1. An Application of Activity Theory

    Science.gov (United States)

    Marken, James A.

    2006-01-01

    Activity Theory has often been used in workplace settings to gain new theoretical understandings about work and the humans who engage in work, but rarely has there been sufficient detail in the literature to allow HPT practitioners to do their own activity analysis. The detail presented in this case is sufficient for HPT practitioners to begin to…

  2. Effective medium theory principles and applications

    CERN Document Server

    Choy, Tuck C

    2015-01-01

    Effective medium theory dates back to the early days of the theory of electricity. Faraday in 1837 proposed one of the earliest models for a composite metal-insulator dielectric and around 1870 Maxwell and later Garnett (1904) developed models to describe a composite or mixed material medium. The subject has been developed considerably since and while the results are useful for predicting materials performance, the theory can also be used in a wide range of problems in physics and materials engineering. This book develops the topic of effective medium theory by bringing together the essentials of both the static and the dynamical theory. Electromagnetic systems are thoroughly dealt with, as well as related areas such as the CPA theory of alloys, liquids, the density functional theory etc., with applications to ultrasonics, hydrodynamics, superconductors, porous media and others, where the unifying aspects of the effective medium concept are emphasized. In this new second edition two further chapters have been...

  3. Application and Theory of Petri Nets

    DEFF Research Database (Denmark)

    This volume contains the proceedings of the 13th International Conference onApplication and Theory of Petri Nets, held in Sheffield, England, in June 1992. The aim of the Petri net conferences is to create a forum for discussing progress in the application and theory of Petri nets. Typically....... Balbo and W. Reisig, 18 submitted papers, and seven project papers. The submitted papers and project presentations were selectedby the programme committee and a panel of referees from a large number of submissions....

  4. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  5. Integer programming theory, applications, and computations

    CERN Document Server

    Taha, Hamdy A

    1975-01-01

    Integer Programming: Theory, Applications, and Computations provides information pertinent to the theory, applications, and computations of integer programming. This book presents the computational advantages of the various techniques of integer programming.Organized into eight chapters, this book begins with an overview of the general categorization of integer applications and explains the three fundamental techniques of integer programming. This text then explores the concept of implicit enumeration, which is general in a sense that it is applicable to any well-defined binary program. Other

  6. Advanced electromagnetism foundations, theory and applications

    CERN Document Server

    Barrett, Terence W

    1995-01-01

    Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electro

  7. Applications of Graph Theory in Computer Science

    Directory of Open Access Journals (Sweden)

    U. Sekar

    2013-11-01

    Full Text Available The field of mathematics plays vital role in various fields. One of the important areas in mathematics is graph theory which is used in structural models. This structural arrangements of various objects or technologies lead to new inventions and modifications in the existing environment for enhancement in those fields. The field graph theory started its journey from the problem of Konigsberg Bridge in 1735. This paper gives an overview of the applications of graph theory in heterogeneous fields to some extent but mainly focuses on the computer science applications that uses graph theoretical concepts. Various papers based on graph theory have been studied related to scheduling concepts, computer science applications and an overview has been presented here.Graph theoretical ideas are highly utilized by computer science applications. Especially in research areas of computer science such data mining, image segmentation, clustering, image capturing, networking etc., For example a data structure can be designed in the form of tree which in turn utilized vertices and edges. Similarly modeling of network topologies can be done using graph concepts. In the same way the most important concept of graph coloring is utilized in resource allocation, scheduling. Also, paths, walks and circuits in graph theory are used in tremendous applications say traveling salesman problem, database design concepts, resource networking. This leads to the development of new algorithms and new theorems that can be used in tremendous applications. First section gives the historical background of graph theory and some applications in scheduling. Second section emphasizes how graph theory is utilized in various computer applications.

  8. Markov chains theory and applications

    CERN Document Server

    Sericola, Bruno

    2013-01-01

    Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest.The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the

  9. Copula Theory and Its Applications

    CERN Document Server

    Jaworski, Piotr; Hardle, Wolfgang Karl; Rychlik, Tomasz

    2010-01-01

    Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - 'Surveys' contains 11 chapters that provide an up-to-date account o

  10. Feedback: Theory and Accelerator Applications

    Science.gov (United States)

    Himel, T.

    The use of feedback to stabilize the beam and improve the performance of accelerators is becoming more common. The methods used to design the feedback algorithms are introduced and some practical implementation details are described. The design of a PID loop using classical control techniques is covered as is the design of an optimal controller using modern control theory. Some adaptive control techniques are also briefly described. Examples are given of multiple-input-multiple-output loops and of how to handle systems of many interacting feedback loops.

  11. Benford's law theory and applications

    CERN Document Server

    Miller, Steven J

    2015-01-01

    Benford's law states that the leading digits of many data sets are not uniformly distributed from one through nine, but rather exhibit a profound bias. This bias is evident in everything from electricity bills and street addresses to stock prices, population numbers, mortality rates, and the lengths of rivers. Here, Steven Miller brings together many of the world's leading experts on Benford's law to demonstrate the many useful techniques that arise from the law, show how truly multidisciplinary it is, and encourage collaboration. Beginning with the general theory, the contributors explain t

  12. G-set Theory and Applications in Lie Theory

    CERN Document Server

    Aghayan, Reza

    2012-01-01

    This paper is devoted to the development and applications of some (new) basic concepts in Lie theory, both from `computational" and "observability" viewpoint. We specify set of all "G-equivariant" maps from a given Lie group G to the underlying manifold M, namely $G$-set, and also we introduce "conjugacy" in Lie group theory. The next goal of this paper is detailed analysis of the G-sets in connection with underlying transformation groups and providing a rigorous theoretical justification of "G-sets", when a group of transformations G acts on manifold M.

  13. On Industrial Application of Structural Reliability Theory

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real applications is much smaller than what one would expect. At the beginning most applications were in the design/analyses area especially...

  14. Handbook of probability theory and applications

    CERN Document Server

    Rudas, Tamas

    2008-01-01

    ""This is a valuable reference guide for readers interested in gaining a basic understanding of probability theory or its applications in problem solving in the other disciplines.""-CHOICEProviding cutting-edge perspectives and real-world insights into the greater utility of probability and its applications, the Handbook of Probability offers an equal balance of theory and direct applications in a non-technical, yet comprehensive, format. Editor Tamás Rudas and the internationally-known contributors present the material in a manner so that researchers of vari

  15. Information Processing Theory: Classroom Applications.

    Science.gov (United States)

    Slate, John R.; Charlesworth, John R., Jr.

    1989-01-01

    Utilizes the information processing model of human memory to provide teachers with suggestions for improving the teaching-learning process. Briefly explains and specifies applications of major theoretical concepts: attention, active learning, meaningfulness, organization, advanced organizers, memory aids, overlearning, automatically, and…

  16. Action Research: Theory and Applications

    Science.gov (United States)

    Jefferson, Renée N.

    2014-01-01

    Action research as a methodology is suitable for use within academic library settings. Its theoretical foundations are located in several disciplines and its applications span across many professions. In this article, an overview of the theoretical beginnings and evolution of action research is presented. Approaches generally used in conducting an…

  17. Risk assessment theory, methods, and applications

    CERN Document Server

    Rausand, Marvin

    2011-01-01

    With its balanced coverage of theory and applications along with standards and regulations, Risk Assessment: Theory, Methods, and Applications serves as a comprehensive introduction to the topic. The book serves as a practical guide to current risk analysis and risk assessment, emphasizing the possibility of sudden, major accidents across various areas of practice from machinery and manufacturing processes to nuclear power plants and transportation systems. The author applies a uniform framework to the discussion of each method, setting forth clear objectives and descriptions, while also shedding light on applications, essential resources, and advantages and disadvantages. Following an introduction that provides an overview of risk assessment, the book is organized into two sections that outline key theory, methods, and applications. * Introduction to Risk Assessment defines key concepts and details the steps of a thorough risk assessment along with the necessary quantitative risk measures. Chapters outline...

  18. Bootstrap planning: Theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.C.

    1994-02-01

    We identify a general framework for weak planning called bootstrap planning, which is defined as global planning using only a local planner along with some memory for learning intermediate subgoals. We present a family of algorithms for bootstrap planning, and provide some initial theory on their performance. In our theoretical analysis, we develop a random digraph problem model and use it to make some performance predictions and comparisons of these algorithms. We also use it to provide some techniques for approximating the optimal resource bound on the local planner to achieve the best global planner. We validate our theoretical results with empirical demonstration on the 15-puzzle. We show how to reduce the planning cost of a global planner by 2 orders of magnitude using bootstrap planning. We also demonstrate a natural but not widely recognized connection between search costs and the lognormal distribution.

  19. Process Neural Networks Theory and Applications

    CERN Document Server

    He, Xingui

    2010-01-01

    "Process Neural Networks - Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks, and enhancing the expression capability for practical problems, with broad applicability to solving problems relating to process in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are strictly proved. The application methods, network construction principles, and optimization alg

  20. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  1. Matroid Theory and its Applications

    CERN Document Server

    Barlotti, A

    2011-01-01

    Lectures: T.H. Brylawski: The Tutte polynomial.- D.J.A. Welsh: Matroids and combinatorial optimisation.- Seminars: M. Barnabei, A. Brini, G.-C. Rota: Un'introduzione alla teoria delle funzioni di Mobius.- A. Brini: Some remarks on the critical problem.- J. Oxley: On 3-connected matroids and graphs.- R. Peele: The poset of subpartitions and Cayley's formula for the complexity of a complete graph.- A. Recski: Engineering applications of matroids.- T. Zaslavisky: Voltage-graphic matroids.

  2. Protective relaying theory and applications

    CERN Document Server

    Elmore, Walter A

    2003-01-01

    Targeting the latest microprocessor technologies for more sophisticated applications in the field of power system short circuit detection, this revised and updated source imparts fundamental concepts and breakthrough science for the isolation of faulty equipment and minimization of damage in power system apparatus. The Second Edition clearly describes key procedures, devices, and elements crucial to the protection and control of power system function and stability. It includes chapters and expertise from the most knowledgeable experts in the field of protective relaying, and describes micropro

  3. Controlling the Herd: Applications of Herding Theory

    OpenAIRE

    Sgroi, Daniel

    2001-01-01

    The literature on informational cascades and herding theory has for a decade focused on the externality and suboptimal outcomes generated from decision-making when spaces are coarser than private information spaces. Much of the output has therefore been positive, not normative. This paper redresses this imbalance by detailing several direct applications for marketing and business arising from herding theory. We see that business practices such as encouraging early sales, or selling to gr...

  4. Theory of reproducing kernels and applications

    CERN Document Server

    Saitoh, Saburou

    2016-01-01

    This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapt...

  5. Rheology v.2 theory and applications

    CERN Document Server

    Eirich, Frederick

    1958-01-01

    Rheology: Theory and Applications, Volume II deals with the specific rheological subjects, such as deformational behavior in relation to the classic subjects and topics of rheology. This volume is divided into 13 chapters. Considerable chapters are devoted to the theory and aspects of viscoelastic and relaxation phenomena, as well as the applied theory concerning substances related to these phenomena, including elastomers, gelatins, and fibers. Other chapters cover the general principles of geological deformations derived from the study of less """"immobile"""" objects. The remaining chapt

  6. Vehicle dynamics theory and application

    CERN Document Server

    Jazar, Reza N

    2014-01-01

    This textbook is appropriate for senior undergraduate and first year graduate students in mechanical and automotive engineering. The contents in this book are presented at a theoretical-practical level. It explains vehicle dynamics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, most notably steering, handling, ride, and related components. This book also: Illustrates all key concepts with examples Includes exercises for each chapter Covers front, rear, and four wheel steering systems, as well as the advantages and disadvantages of different steering schemes Includes an emphasis on design throughout the text, which provides a practical, hands-on approach

  7. Applications of information theory to computer graphics

    OpenAIRE

    Sbert Cassasayas, Mateu; Feixas, Miquel; Rigau, Jaume; Castro, Francesc; Vázquez Alcocer, Pere Pau

    2002-01-01

    We present in this talk several applications of Information Theory concepts to Computer Graphics. Mutual information will be applied to Radiosity to obtain the better scene discretization. The concept of entropy will be applied to adaptive pixel supersampling, to RandomWalk Radiosity, and to selection of best view points. Best view point selection has applications to scene exploration, image based rendering and molecular visualization.

  8. The Unknown Component Problem Theory and Applications

    CERN Document Server

    Villa, Tiziano; Brayton, Robert K; Mishchenko, Alan; Petrenko, Alexandre; Sangiovanni-Vincentelli, Alberto

    2012-01-01

    The Problem of the Unknown Component: Theory and Applications addresses the issue of designing a component that, combined with a known part of a system, conforms to an overall specification. The authors tackle this problem by solving abstract equations over a language. The most general solutions are studied when both synchronous and parallel composition operators are used. The abstract equations are specialized to languages associated with important classes of automata used for modeling systems. The book is a blend of theory and practice, which includes a description of a software package with applications to sequential synthesis of finite state machines. Specific topologies interconnecting the components, exact and heuristic techniques, and optimization scenarios are studied. Finally the scope is enlarged to domains like testing, supervisory control, game theory and synthesis for special omega languages. The authors present original results of the authors along with an overview of existing ones.

  9. Current topics in summability theory and applications

    CERN Document Server

    Rhoades, Billy

    2016-01-01

    This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world. .

  10. Application of Game Theory to Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Alfons Schuster

    2010-01-01

    Full Text Available The paper is a theoretical investigation into the potential application of game theoretic concepts to neural networks (natural and artificial. The paper relies on basic models but the findings are more general in nature and therefore should apply to more complex environments. A major outcome of the paper is a learning algorithm based on game theory for a paired neuron system.

  11. Electrical solitons theory, design, and applications

    CERN Document Server

    Ricketts, David S

    2010-01-01

    The dominant medium for soliton propagation in electronics, nonlinear transmission line (NLTL) has found wide application as a testbed for nonlinear dynamics and KdV phenomena as well as for practical applications in ultra-sharp pulse/edge generation and novel nonlinear communication schemes in electronics. While many texts exist covering solitons in general, there is as yet no source that provides a comprehensive treatment of the soliton in the electrical domain.Drawing on the award winning research of Carnegie Mellon's David S. Ricketts, Electrical Solitons Theory, Design, and Applications i

  12. Distributed hash table theory, platforms and applications

    CERN Document Server

    Zhang, Hao; Xie, Haiyong; Yu, Nenghai

    2013-01-01

    This SpringerBrief summarizes the development of Distributed Hash Table in both academic and industrial fields. It covers the main theory, platforms and applications of this key part in distributed systems and applications, especially in large-scale distributed environments. The authors teach the principles of several popular DHT platforms that can solve practical problems such as load balance, multiple replicas, consistency and latency. They also propose DHT-based applications including multicast, anycast, distributed file systems, search, storage, content delivery network, file sharing and c

  13. Uncertainty quantification theory, implementation, and applications

    CERN Document Server

    Smith, Ralph C

    2014-01-01

    The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers ca...

  14. Statistics of extremes theory and applications

    CERN Document Server

    Beirlant, Jan; Segers, Johan; Teugels, Jozef; De Waal, Daniel; Ferro, Chris

    2006-01-01

    Research in the statistical analysis of extreme values has flourished over the past decade: new probability models, inference and data analysis techniques have been introduced; and new application areas have been explored. Statistics of Extremes comprehensively covers a wide range of models and application areas, including risk and insurance: a major area of interest and relevance to extreme value theory. Case studies are introduced providing a good balance of theory and application of each model discussed, incorporating many illustrated examples and plots of data. The last part of the book covers some interesting advanced topics, including  time series, regression, multivariate and Bayesian modelling of extremes, the use of which has huge potential.  

  15. Observed confidence levels theory and application

    CERN Document Server

    Polansky, Alan M

    2007-01-01

    Illustrating a simple, novel method for solving an array of statistical problems, Observed Confidence Levels: Theory and Application describes the basic development of observed confidence levels, a methodology that can be applied to a variety of common multiple testing problems in statistical inference. It focuses on the modern nonparametric framework of bootstrap-based estimates, allowing for substantial theoretical development and for relatively simple solutions to numerous interesting problems. After an introduction, the book develops the theory and application of observed confidence levels for general scalar parameters, vector parameters, and linear models. It then examines nonparametric problems often associated with smoothing methods, including nonparametric density estimation and regression. The author also describes applications in generalized linear models, classical nonparametric statistics, multivariate analysis, and survival analysis as well as compares the method of observed confidence levels to...

  16. Theory and Experience in Deliberative Democracy and Budget Review%协商民主与预算审议的理论与经验

    Institute of Scientific and Technical Information of China (English)

    顾维萌

    2012-01-01

    The theory of deliberative democracy emphasizes that through the way of rational dialogue in freedom and equality, debate, citizens should participate in public affairs consultation, deliberation, giving legitimacy to legislation and decision, which will be of great significance to the budget review. The practices of participatory budgeting in Brazil Porto Alegre and China Wenling are typical cases of deliberative democracy. Referring to the theory of deliberative democracy and participatory budgeting practice, China's regime improvement about budget review should start from consummating legal system; Structuring procedure mechanism and promoting citizens' autonomous ability in participation.%协商民主理论强调公民通过自由、平等的理性对话、辩论、协商、审议等方式来参与公共事务,赋予立法和决策以合法性,对预算审议有着重要意义。巴西阿雷格里港市和中国温岭的参与式预算实践是协商民主的典型体现。要想通过借鉴协商民主理论和参与式预算实践完善我国预算审议制度,就必须完善法律体系,构建程序机制,提升民众参与自治的能力。

  17. Contest Theory and its Applications in Sports

    OpenAIRE

    Helmut Dietl; Egon Franck; Martin Grossmann; Markus Lang

    2009-01-01

    This paper outlines how the theory of contests is applied to professional team sports leagues. In the first part, we present the traditional Tullock contest and explain some basic properties of the equilibrium. We will then extend this RePEc/iso contest to a two-period model in order to analyze dynamic aspects of contests. In the second part, we will present applications of contest theory in sports. In particular, we will show how the Tullock framework is applied to models of team sports leag...

  18. Control and optimal control theories with applications

    CERN Document Server

    Burghes, D N

    2004-01-01

    This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer fun

  19. Learning theories application in nursing education.

    Science.gov (United States)

    Aliakbari, Fatemeh; Parvin, Neda; Heidari, Mohammad; Haghani, Fariba

    2015-01-01

    Learning theories are the main guide for educational systems planning in the classroom and clinical training included in nursing. The teachers by knowing the general principles of these theories can use their knowledge more effectively according to various learning situations. In this study, Eric, Medline, and Cochrane databases were used for articles in English and for the Persian literature, Magiran, Iran doc, Iran medex, and Sid databases were used with the help of keywords including social cognitive learning, learning theory, behavioral theory, cognitive theory, constructive theory, and nursing education. The search period was considered from 1990 to 2012. Some related books were also studied about each method, its original vision, the founders, practical application of the training theory, especially training of nursing and its strengths and weaknesses. Behaviorists believe that learning is a change in an observable behavior and it happens when the communication occurs between the two events, a stimulus and a response. Among the applications of this approach is the influence on the learner's emotional reactions. Among the theories of this approach, Thorndike and Skinner works are subject to review and critique. Cognitive psychologists unlike the behaviorists believe that learning is an internal process objective and they focus on thinking, understanding, organizing, and consciousness. Fundamentalists believe that learners should be equipped with the skills of inquiry and problem solving in order to learn by the discovery and process of information. Among this group, we will pay attention to analyze Wertheimer, Brunner, Ausubel theories, Ganyeh information processing model, in addition to its applications in nursing education. Humanists in learning pay attention to the feelings and experiences. Carl Rogers support the retention of learning-centered approach and he is believed to a semantic continuum. At the other end of the continuum, experiential learning is

  20. Learning theories application in nursing education.

    Science.gov (United States)

    Aliakbari, Fatemeh; Parvin, Neda; Heidari, Mohammad; Haghani, Fariba

    2015-01-01

    Learning theories are the main guide for educational systems planning in the classroom and clinical training included in nursing. The teachers by knowing the general principles of these theories can use their knowledge more effectively according to various learning situations. In this study, Eric, Medline, and Cochrane databases were used for articles in English and for the Persian literature, Magiran, Iran doc, Iran medex, and Sid databases were used with the help of keywords including social cognitive learning, learning theory, behavioral theory, cognitive theory, constructive theory, and nursing education. The search period was considered from 1990 to 2012. Some related books were also studied about each method, its original vision, the founders, practical application of the training theory, especially training of nursing and its strengths and weaknesses. Behaviorists believe that learning is a change in an observable behavior and it happens when the communication occurs between the two events, a stimulus and a response. Among the applications of this approach is the influence on the learner's emotional reactions. Among the theories of this approach, Thorndike and Skinner works are subject to review and critique. Cognitive psychologists unlike the behaviorists believe that learning is an internal process objective and they focus on thinking, understanding, organizing, and consciousness. Fundamentalists believe that learners should be equipped with the skills of inquiry and problem solving in order to learn by the discovery and process of information. Among this group, we will pay attention to analyze Wertheimer, Brunner, Ausubel theories, Ganyeh information processing model, in addition to its applications in nursing education. Humanists in learning pay attention to the feelings and experiences. Carl Rogers support the retention of learning-centered approach and he is believed to a semantic continuum. At the other end of the continuum, experiential learning is

  1. A simple method for air/sea gas exchange measurement in mesocosms and its application in carbon budgeting

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2012-09-01

    Full Text Available Mesocosms as large experimental vessels principally provide the opportunity of performing elemental budget calculations e.g. to derive net biological turnover rates. However, the system is in most cases not closed at the water surface and gases can exchange with the atmosphere. Previous attempts to budget carbon pools in mesocosms relied on educated guesses concerning the exchange of CO2 with the atmosphere. Nevertheless, net primary production rates derived from these budget calculations were, despite large uncertainties in air/sea gas exchange, often more reasonable than cumulative extrapolations of bioassays. While bioassays have limitations representing the full spectrum of trophic levels and abiotic conditions inside the mesocosms, calculating dissolved inorganic carbon uptake inside the mesocosms has the potential to deliver net community production rates representative of the enclosed system. Here, we present a simple method for precise determination of air/sea gas exchange velocities in mesocosms using N2O as a deliberate tracer. Beside the application for carbon budgeting, exchange velocities can be used to calculate exchange rates of any gas of known concentration, e.g. to calculate aquatic production rates of climate relevant trace gases. Using an arctic (Kiel Off Shore Mesocosms for future Ocean Simulation mesocosm experiment as an exemplary dataset, it is shown that application of the presented method largely improves accuracy of carbon budget estimates. Methodology of manipulation, measurement, data processing and conversion to CO2 fluxes are explained. A theoretical discussion of prerequisites for precise gas exchange measurements provides a guideline for the applicability of the method under various experimental conditions.

  2. Applications of Derandomization Theory in Coding

    CERN Document Server

    Cheraghchi, Mahdi

    2011-01-01

    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals w...

  3. Application of Fuzzy Algebra in Automata theory

    Directory of Open Access Journals (Sweden)

    Kharatti Lal

    2016-06-01

    Full Text Available In our first application we consider strings of fuzzy singletons as input to a fuzzy finite state machine. The notion of fuzzy automata was introduced in [58]. There has been considerable growth in the area [18]. In this section present a theory of free fuzzy monoids and apply the results to the area of fuzzy automata. In fuzzy automata, the set of strings of input symbols can be considered to be a free monoid. We introduced the motion of fuzzy strings of input symbols, where the fuzzy strings from free fuzzy submonoids of the free monoids of input strings. We show that fuzzy automata with fuzzy input are equivalent to fuzzy automata with crisp input. Hence the result of fuzzy automata theory can be immediately applied to those of fuzzy automata theory with fuzzy input. The result are taken from [7] and [34].

  4. Continuous and distributed systems theory and applications

    CERN Document Server

    Sadovnichiy, Victor

    2014-01-01

    In this volume, the authors close the gap between abstract mathematical approaches, such as abstract algebra, number theory, nonlinear functional analysis, partial differential equations, methods of nonlinear and multi-valued analysis, on the one hand, and practical applications in nonlinear mechanics, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in hydromechanics, geophysics and mechanics of continua. This compilation will be of interest to mathematicians and engineers working at the interface of these field. It presents selected works of the open seminar series of Lomonosov Moscow State University and the National Technical University of Ukraine “Kyiv Polytechnic Institute”. The authors come from Germany, Italy, Spain, Russia, Ukraine, and the USA.

  5. Theory of magnetism application to surface physics

    CERN Document Server

    Diep, Hung T

    2014-01-01

    The book is intended for graduate students and researchers who wish to master the main properties of magnetic materials in the bulk state and at the nanometric scale such as for thin films and multilayers. This textbook provides the theories and methods of simulation to study and to understand these properties in an explicit manner. In the first part of the book, the quantum theory of magnetism is presented while the second part of the book is devoted to the application of the theory of magnetism to surface physics. Numerous examples covering typical cases in ferromagnets, antiferromagnets, ferrimagnets, helimagnets, and frustrated spin systems are all illustrated. Fundamental surface effects are shown and discussed. Lastly, the spin transport is described — in which the basic formulation of the Boltzmann's equation is recalled — and the recent methods of Monte Carlo simulation to deal with the spin resistivity are explained. This book contains a large number of detailed solutions for the problems given ...

  6. New results on averaging theory and applications

    Science.gov (United States)

    Cândido, Murilo R.; Llibre, Jaume

    2016-08-01

    The usual averaging theory reduces the computation of some periodic solutions of a system of ordinary differential equations, to find the simple zeros of an associated averaged function. When one of these zeros is not simple, i.e., the Jacobian of the averaged function in it is zero, the classical averaging theory does not provide information about the periodic solution associated to a non-simple zero. Here we provide sufficient conditions in order that the averaging theory can be applied also to non-simple zeros for studying their associated periodic solutions. Additionally, we do two applications of this new result for studying the zero-Hopf bifurcation in the Lorenz system and in the Fitzhugh-Nagumo system.

  7. Vacation queueing models theory and applications

    CERN Document Server

    Tian, Naishuo

    2006-01-01

    A classical queueing model consists of three parts - arrival process, service process, and queue discipline. However, a vacation queueing model has an additional part - the vacation process which is governed by a vacation policy - that can be characterized by three aspects: 1) vacation start-up rule; 2) vacation termination rule, and 3) vacation duration distribution. Hence, vacation queueing models are an extension of classical queueing theory. Vacation Queueing Models: Theory and Applications discusses systematically and in detail the many variations of vacation policy. By allowing servers to take vacations makes the queueing models more realistic and flexible in studying real-world waiting line systems. Integrated in the book's discussion are a variety of typical vacation model applications that include call centers with multi-task employees, customized manufacturing, telecommunication networks, maintenance activities, etc. Finally, contents are presented in a "theorem and proof" format and it is invaluabl...

  8. Noncommutative analysis, operator theory and applications

    CERN Document Server

    Cipriani, Fabio; Colombo, Fabrizio; Guido, Daniele; Sabadini, Irene; Sauvageot, Jean-Luc

    2016-01-01

    This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.

  9. The measurement of the earth's radiation budget as a problem in information theory - A tool for the rational design of earth observing systems

    Science.gov (United States)

    Barkstrom, B. R.

    1983-01-01

    The measurement of the earth's radiation budget has been chosen to illustrate the technique of objective system design. The measurement process is an approximately linear transformation of the original field of radiant exitances, so that linear statistical techniques may be employed. The combination of variability, measurement strategy, and error propagation is presently made with the help of information theory, as suggested by Kondratyev et al. (1975) and Peckham (1974). Covariance matrices furnish the quantitative statement of field variability.

  10. Wireless network security theories and applications

    CERN Document Server

    Chen, Lei; Zhang, Zihong

    2013-01-01

    Wireless Network Security Theories and Applications discusses the relevant security technologies, vulnerabilities, and potential threats, and introduces the corresponding security standards and protocols, as well as provides solutions to security concerns. Authors of each chapter in this book, mostly top researchers in relevant research fields in the U.S. and China, presented their research findings and results about the security of the following types of wireless networks: Wireless Cellular Networks, Wireless Local Area Networks (WLANs), Wireless Metropolitan Area Networks (WMANs), Bluetooth

  11. Water Waves The Mathematical Theory with Applications

    CERN Document Server

    Stoker, J J

    2011-01-01

    Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.

  12. Knowledge spaces theories, empirical research, and applications

    CERN Document Server

    Albert, Dietrich

    1999-01-01

    Based on the formal concept of ""knowledge structures"" originally proposed by Jean-Claude Falmagne and Jean-Paul Doignon, this book contains descriptions of methodological developments and experimental investigations as well as applications for various knowledge domains. The authors address three main topics: * theoretical issues and extensions of Doignon & Falmagne's theory of knowledge structures; * empirical validations of specific problem types and knowledge domains, such as sentence comprehension, problem solving in chess, inductive reasoning, elementary mathematical reasoning, and oth

  13. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  14. Theory and applications of numerical analysis

    CERN Document Server

    Phillips, G M

    1996-01-01

    This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions

  15. Multifrequency Electron Paramagnetic Resonance Theory and Applications

    CERN Document Server

    Misra, Sushil K

    2011-01-01

    Filling the gap for a systematic, authoritative, and up-to-date review of this cutting-edge technique, this book covers both low and high frequency EPR, emphasizing the importance of adopting the multifrequency approach to study paramagnetic systems in full detail by using the EPR method. In so doing, it discusses not only the underlying theory and applications, but also all recent advances -- with a final section devoted to future perspectives.

  16. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; H C Chiang; C Garcia Recio; S Hirenzaki; S S Kamalov; J Nieves; Y Okumura; A Ramos; H Toki; M J Vicente Vacas

    2001-08-01

    In this talk we briefly describe some basic elements of chiral perturbation theory, , and how the implementation of unitarity and other novel elements lead to a better expansion of the -matrix for meson–meson and meson–baryon interactions. Applications are then done to the interaction in nuclear matter in the scalar and vector channels, antikaons in nuclei and - atoms, and how the meson properties are changed in a nuclear medium.

  17. Random light beams theory and applications

    CERN Document Server

    Korotkova, Olga

    2013-01-01

    Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic par

  18. Lattice theory special topics and applications

    CERN Document Server

    Wehrung, Friedrich

    2014-01-01

    George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich W...

  19. Reliability theory with applications to preventive maintenance

    CERN Document Server

    Gertsbakh, Ilya

    2000-01-01

    The material in this book was first presented as a one-semester course in Relia­ bility Theory and Preventive Maintenance for M.Sc. students of the Industrial Engineering Department of Ben Gurion University in the 1997/98 and 1998/99 academic years. Engineering students are mainly interested in the applied part of this theory. The value of preventive maintenance theory lies in the possibility of its imple­ mentation, which crucially depends on how we handle statistical reliability data. The very nature of the object of reliability theory - system lifetime - makes it extremely difficult to collect large amounts of data. The data available are usu­ ally incomplete, e.g. heavily censored. Thus, the desire to make the course material more applicable led me to include in the course topics such as mod­ eling system lifetime distributions (Chaps. 1,2) and the maximum likelihood techniques for lifetime data processing (Chap. 3). A course in the theory of statistics is aprerequisite for these lectures. Stan­ dard...

  20. The special theory of relativity foundations, theory, verification, applications

    CERN Document Server

    Christodoulides, Costas

    2016-01-01

    This book offers a comprehensive, university-level introduction to Einstein’s Special Theory of Relativity. In addition to the purely theoretical aspect, emphasis is also given to its historical development as well as to the experiments that preceded the theory and those performed in order to test its validity. The main body of the book consists of chapters on Relativistic Kinematics and Dynamics and their applications, Optics and Electromagnetism. These could be covered in a one-semester course. A more advanced course might include the subjects examined in the other chapters of the book and its appendices. As a textbook, it has some unique characteristics: It provides detailed proofs of the theorems, offers abundant figures and discusses numerous examples. It also includes a number of problems for readers to solve, the complete solutions of which are given at the end of the book. It is primarily intended for use by university students of physics, mathematics and engineering. However, as the mathematics nee...

  1. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988......The budget forms the legal basis of government spending. If a budget is not in place at the beginning of the fiscal year, planning as well as current spending are jeopardized and government shutdown may result. This paper develops a continuous-time war-of-attrition model of budgeting...... in a presidential style-democracy to explain the duration of budget negotiations. We build our model around budget baselines as reference points for loss averse negotiators. We derive three testable hypotheses: there are more late budgets, and they are more late, when fiscal circumstances change; when such changes...

  2. Verification of uncertainty budgets

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Madsen, B.S.

    2005-01-01

    , and therefore it is essential that the applicability of the overall uncertainty budget to actual measurement results be verified on the basis of current experimental data. This should be carried out by replicate analysis of samples taken in accordance with the definition of the measurand, but representing......The quality of analytical results is expressed by their uncertainty, as it is estimated on the basis of an uncertainty budget; little effort is, however, often spent on ascertaining the quality of the uncertainty budget. The uncertainty budget is based on circumstantial or historical data...... the full range of matrices and concentrations for which the budget is assumed to be valid. In this way the assumptions made in the uncertainty budget can be experimentally verified, both as regards sources of variability that are assumed negligible, and dominant uncertainty components. Agreement between...

  3. Modeling and Optimization : Theory and Applications Conference

    CERN Document Server

    Terlaky, Tamás

    2015-01-01

    This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 13-15, 2014. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, healthcare, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.

  4. Rate-independent systems theory and application

    CERN Document Server

    Mielke, Alexander

    2015-01-01

    This monograph provides both an introduction to and a thorough exposition of the theory of rate-independent systems, which the authors have worked on with a number of collaborators over many years. The focus is mostly on fully rate-independent systems, first on an abstract level with or without a linear structure, discussing various concepts of solutions with full mathematical rigor. The usefulness of the abstract concepts is then demonstrated on the level of various applications primarily in continuum mechanics of solids, including suitable approximation strategies with guaranteed numerical stability and convergence. Particular applications concern inelastic processes such as plasticity, damage, phase transformations, or adhesive-type contacts both at small strains and at finite strains. Other physical systems such as magnetic or ferroelectric materials, and couplings to rate-dependent thermodynamic models are also considered. Selected applications are accompanied by numerical simulations illustrating both t...

  5. Electron microdiffraction and channeling: Theory and applications

    International Nuclear Information System (INIS)

    Three related topics in the theory of dynamical kilovolt electron diffraction are treated, and one practical application of the theory is provided. The first topic concerns the theory of coherent electron microdiffraction for atomic clusters and precipitates. The visibility of High Order Laue Zone (HOLZ) lines within the central-beam disk of coherent electron-microdiffraction patterns was studied using dynamical electron-diffraction theory. The electron source size is also shown to affect HOLZ line visibility. Coherent electron-microdiffraction patterns were obtained from a new crystalline precipitate found in silicon wafers annealed at 635 degree C for 256 h. The most likely structure is that of keatite (SiO2, tetragonal). The implications for the study of oxygen precipitation in silicon are discussed. The second theoretical topic concerns the possibilities for determining the sites of adatoms on surfaces by measurements of the x-ray or Auger electron yield as a function of diffraction conditions in the RHEED geometry. Finally, the effects of wave-function dimensionality and inelastic localization on ALCHEMI (Atom Location by Channeling Enhanced Microanalysis) has been studied. The original ALCHEMI equations are shown to hold for certain conditions

  6. Queuing theory and telecommunications networks and applications

    CERN Document Server

    Giambene, Giovanni

    2014-01-01

    This book provides a basic description of current networking technologies and protocols as well as important tools for network performance analysis based on queuing theory. The second edition adds selected contents in the first part of the book for what concerns: (i) the token bucket regulator and traffic shaping issues; (ii) the TCP protocol congestion control that has a significant part in current networking; (iii) basic satellite networking issues; (iv) adding details on QoS support in IP networks. The book is organized so that networking technologies and protocols (Part I) are first and are then followed by theory and exercises with applications to the different technologies and protocols (Part II). This book is intended as a textbook for master level courses in networking and telecommunications sectors.

  7. Introduction to soliton theory applications to mechanics

    CERN Document Server

    Munteanu, Ligia

    2005-01-01

    This monograph provides the application of soliton theory to solve certain problems selected from the fields of mechanics. The work is based of the authors' research, and on some specified, significant results existing in the literature. The present monograph is not a simple translation of its predecessor appeared in Publishing House of the Romanian Academy in 2002. Improvements outline the way in which the soliton theory is applied to solve some engineering problems. The book addresses concrete resolution methods of certain problems such as the motion of thin elastic rod, vibrations of initial deformed thin elastic rod, the coupled pendulum oscillations, dynamics of left ventricle, transient flow of blood in arteries, the subharmonic waves generation in a piezoelectric plate with Cantor-like structure, and some problems related to Tzitzeica surfaces. This comprehensive study enables the readers to make connections between the soliton physical phenomenon and some partical, engineering problems.

  8. Application of queuing theory in banking services

    Directory of Open Access Journals (Sweden)

    Vitor Costa de Lima

    2016-03-01

    Full Text Available Bearing in mind the intense competition in the current economy and the increasing necessity of having more customers and keeping them loyal, this paper aims to apply the well known Queuing Theory in a bank agency to identify improvement opportunities in customer waiting time, from the assumption that the analyzed lines follow the Poisson’s distribution. This assumption results from the comparison between such distribution to the customers' arrival data in all analyzed lines. It was also found that there are queues with seasonality in demand, while others showed a regular demand. From the study performed, improvements in the management of this bank agency may be made, for example, the reallocation of staff in certain periods for functions with higher demand. It was concluded, therefore, that the application of the theory is feasible and can help to increase the competitive advantages of the agency.

  9. Constructivism theory analysis and application to curricula.

    Science.gov (United States)

    Brandon, Amy F; All, Anita C

    2010-01-01

    Today's nursing programs are struggling to accommodate the changing needs of the health care environment and need to make changes in how students are taught. Using constructivism theory, whereby learning is an active process in which learners construct new ideas or concepts based upon their current or past knowledge, leaders in nursing education can make a paradigm shift toward concept-based curricula. This article presents a summary and analysis of constructivism and an innovative application of its active-learning principles to curriculum development, specifically for the education of nursing students.

  10. Thermodynamic Formalism and Applications to Dimension Theory

    CERN Document Server

    Barreira, Luis

    2011-01-01

    This self-contained monograph presents a unified exposition of the thermodynamic formalism and some of its main extensions, with emphasis on the relation to dimension theory and multifractal analysis of dynamical systems. In particular, the book considers three different flavors of the thermodynamic formalism, namely nonadditive, subadditive, and almost additive, and provides a detailed discussion of some of the most significant results in the area, some of them quite recent. It also includes a discussion of the most substantial applications of these flavors of the thermodynamic formalism to d

  11. Harmony Search Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    X. Z. Gao

    2015-01-01

    Full Text Available The Harmony Search (HS method is an emerging metaheuristic optimization algorithm, which has been employed to cope with numerous challenging tasks during the past decade. In this paper, the essential theory and applications of the HS algorithm are first described and reviewed. Several typical variants of the original HS are next briefly explained. As an example of case study, a modified HS method inspired by the idea of Pareto-dominance-based ranking is also presented. It is further applied to handle a practical wind generator optimal design problem.

  12. Multiphase lattice Boltzmann methods theory and application

    CERN Document Server

    Huang, Haibo; Lu, Xiyun

    2015-01-01

    Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference  on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the

  13. Gaussian Markov random fields theory and applications

    CERN Document Server

    Rue, Havard

    2005-01-01

    Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studies and, online, a c-library for fast and exact simulation. With chapters contributed by leading researchers in the field, this volume is essential reading for statisticians working in spatial theory and its applications, as well as quantitative researchers in a wide range of science fields where spatial data analysis is important.

  14. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  15. Heat pipes theory, design and applications

    CERN Document Server

    Reay, David; Kew, Peter

    2013-01-01

    Heat Pipes, 6th Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. Contains all informat

  16. Nonlinearity and disorder: Theory and applications

    DEFF Research Database (Denmark)

    Bang, Ole; Sørensen, Mads Peter

    Proceedings of the NATO Advanced Research Workshop (ARW) entitled Nonlinearity and Disorder: Theory and Applications, held in Tashkent, Uzbekistan, October 2-6, 2001. Phenomena of coherent structures in nonlinear systems and disorder are considered opposite in nature. For example one of the most...... photorefractive solitons. Another very fast growing area induced by the technological development is statistical phenomena in nonlinear pulse propagation in optical fibers. Intrinsic randomness of existing optical communication systems has an important impact on the performance of planned soliton communication...

  17. Compositional Data Analysis Theory and Applications

    CERN Document Server

    Pawlowsky-Glahn, Vera

    2011-01-01

    This book presents the state-of-the-art in compositional data analysis and will feature a collection of papers covering theory, applications to various fields of science and software. Areas covered will range from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. Key features:Provides the state-of-the-art text in compositional data analysisCovers a variety of subject areas, from geology to medicineWritten by leading researchers in the fieldIs supported by a website featuring R code

  18. Wireless sensor networks from theory to applications

    CERN Document Server

    El Emary, Ibrahiem M M

    2013-01-01

    Although there are many books available on WSNs, most are low-level, introductory books. The few available for advanced readers fail to convey the breadth of knowledge required for those aiming to develop next-generation solutions for WSNs. Filling this void, Wireless Sensor Networks: From Theory to Applications supplies comprehensive coverage of WSNs. In order to provide the wide-ranging guidance required, the book brings together the contributions of domain experts working in the various subfields of WSNs worldwide. This edited volume examines recent advances in WSN technologies and consider

  19. Evaluation of the Modern Era Retrospective-Analysis for Research and Applications (MERRA) Global Water and Energy Budgets

    Science.gov (United States)

    Bosilovich, Michael G.; Robertson, F. R.; Chen, J.

    2010-01-01

    The Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalyses has completed 27 years of data) soon to be caught up to present. Here) we present an evaluation of those years currently available) including comparisons with the existing long reanalyses (ERA40) JRA25 and NCEP I and II) as well as with global data sets for the water and energy cycle. Time series shows that the MERRA budgets can change with some of the variations in observing systems, but that the magnitude of energy imbalance in the system is improved with more observations. We will present all terms of the budgets in MERRA including the time rates of change and analysis increments (tendency due to the analysis of observations).

  20. Nested partitions method, theory and applications

    CERN Document Server

    Shi, Leyuan

    2009-01-01

    There is increasing need to solve large-scale complex optimization problems in a wide variety of science and engineering applications, including designing telecommunication networks for multimedia transmission, planning and scheduling problems in manufacturing and military operations, or designing nanoscale devices and systems. Advances in technology and information systems have made such optimization problems more and more complicated in terms of size and uncertainty. Nested Partitions Method, Theory and Applications provides a cutting-edge research tool to use for large-scale, complex systems optimization. The Nested Partitions (NP) framework is an innovative mix of traditional optimization methodology and probabilistic assumptions. An important feature of the NP framework is that it combines many well-known optimization techniques, including dynamic programming, mixed integer programming, genetic algorithms and tabu search, while also integrating many problem-specific local search heuristics. The book uses...

  1. Spherical radial basis functions, theory and applications

    CERN Document Server

    Hubbert, Simon; Morton, Tanya M

    2015-01-01

    This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...

  2. Theory and application of nonlinear river dynamics

    Institute of Scientific and Technical Information of China (English)

    Yu-chuan BAI; Zhao-yin WANG

    2014-01-01

    A theoretical model for river evolution including riverbed formation and meandering pattern formation is presented in this paper. Based on nonlinear mathematic theory, the nonlinear river dynamic theory is set up for river dynamic process. Its core content includes the stability and tropism characteristics of flow motion in river and river selves’ evolution. The stability of river dynamic process depends on the response of river selves to the external disturbance, if the disturbance and the resulting response will eventually attenuate, and the river dynamics process can be restored to new equilibrium state, the river dynamic process is known as stable;otherwise, the river dynamic process is unstable. The river dynamic process tropism refers to that the evolution tendency of river morphology after the disturbance. As an application of this theory, the dynamical stability of the constant curvature river bend is calculated for its coherent vortex disturbance and response. In addition, this paper discusses the nonlinear evolution of the river peristaltic process under a large-scale disturbance, showing the nonlinear tendency of river dynamic processes, such as river filtering and butterfly effect.

  3. Computational Unified Set Theory and Application

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiang; Li Xuewei; He Zhongxiong

    2006-01-01

    The computational unified set model (CUSM) as the latest progress of Unified Set theory is introduced in this paper. The model combines unified set theory, information granule, complex adaptive system and cognitive science to present a new approach to simulate the cognition of human beings that can be viewed as the evolutionary process through the automatic learning from data sets. The information granule, which is the unit of cognition in CUSM, can be synthesized and created by the basic operators. It also can form the granule network by linking with other granules. With the learning from database, the system can evolve under the pressure of selection. As the adaptive results, fuzzy sets, vague sets and rough sets, etc can emerge out spontaneously. The CUSM answers the question of the origin of the uncertainties in thinking process described by unified set theory, that is due to the emergent properties of a holistic system of multiple cognitive units. And also the CUSM creates a dynamic model that can adapt to the environment. As a result, the "closed world" limitation in machine learning may be broken. The paper also discusses the applications of CUSM in rules discovery, problem solving, clustering analysis and data mining etc. The main features of the model comparing with the classical approaches toward those problems are its adaptability, flexibility and robustness but not accuracy.

  4. From Dreams to Dollars: Joining the Theory of Planning with the Practicality of Budget to Maximize Both

    Science.gov (United States)

    Dorsey, Myrtle E. B.

    2008-01-01

    The integrated online planning and budget development system at Baton Rouge Community College is an innovative approach to systematically link college strategic priorities and unit plan objectives with financial resources. Using two industry standards (Microsoft Access and Sungard Banner), a user-friendly program was developed that has facilitated…

  5. Budgeting tool for Restaurant X

    OpenAIRE

    Nguyen, Uyen

    2014-01-01

    In order to improve profitability and advance a company’s commitment to organ-ize growth, details plans which are called budgets are required. A budgeting tool is a beneficial asset for a company because it helps the budgeting preparation process become easier and faster. Thus, the aim of this thesis is to create a budgeting tool for Restaurant X. This thesis is product-orientated. There are three tasks conducted in this thesis. First one is to cover all relevant theories about a budget. T...

  6. 24th International Workshop in Operator Theory and its Applications

    CERN Document Server

    Dritschel, Michael

    2015-01-01

    This volume gathers contributions from the International Workshop on Operator Theory and Its Applications (IWOTA) held in Bangalore, India, in December 2013. All articles were written by experts and cover a broad range of original material at the cutting edge of operator theory and its applications. Topics include multivariable operator theory, operator theory on indefinite metric spaces (Krein and Pontryagin spaces) and its applications, spectral theory with applications to differential operators, the geometry of Banach spaces, scattering and time varying linear systems, and wavelets and coherent states.

  7. Optical Analysis of a Linear-Array Thermal Radiation Detector for Geostationary Earth Radiation Budget Applications

    OpenAIRE

    Sanchez, Maria Cristina

    1998-01-01

    The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working to develop a new technology for thermal radiation detectors. The Group is also studying the viability of replacing current Earth Radiation Budget radiometers with this new concept. This next-generation detector consists of a thermopile linear array thermal radiation detector. The principal objective of t...

  8. Budget brief, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The FY DOE budge totals $12.6 billion in budget authority and $11.1 billion in budget outlays. The budget authority being requested consists of $10.3 billion in new authority and a $2.3 billion reappropriation of expiring funds for the Strategic Petroleum Reserve. Areas covered in the Energy budget are: energy conservation; research, development, and applications; regulation and information; direct energy production; strategic energy production; and energy security reserve. Other areas include: general science, defense activities; departmental administration; and legislative proposal - spent fuel. Budget totals are compared for 1980 and 1981. A detailed discussion of the FY 1981 activities to be undertaken to carry out these activities is provided. (MCW)

  9. Non-additive measures theory and applications

    CERN Document Server

    Narukawa, Yasuo; Sugeno, Michio; 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2012)

    2014-01-01

    This book provides a comprehensive and timely report in the area of non-additive measures and integrals. It is based on a panel session on fuzzy measures, fuzzy integrals and aggregation operators held during the 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2012) in Girona, Spain, November 21-23, 2012. The book complements the MDAI 2012 proceedings book, published in Lecture Notes in Computer Science (LNCS) in 2012. The individual chapters, written by key researchers in the field, cover fundamental concepts and important definitions (e.g. the Sugeno integral, definition of entropy for non-additive measures) as well some important applications (e.g. to economics and game theory) of non-additive measures and integrals. The book addresses students, researchers and practitioners working at the forefront of their field.  

  10. Linear canonical transforms theory and applications

    CERN Document Server

    Kutay, M; Ozaktas, Haldun; Sheridan, John

    2016-01-01

    This book provides a clear and accessible introduction to the essential mathematical foundations of linear canonical transforms from a signals and systems perspective. Substantial attention is devoted to how these transforms relate to optical systems and wave propagation. There is extensive coverage of sampling theory and fast algorithms for numerically approximating the family of transforms. Chapters on topics ranging from digital holography to speckle metrology provide a window on the wide range of applications. This volume will serve as a reference for researchers in the fields of image and signal processing, wave propagation, optical information processing and holography, optical system design and modeling, and quantum optics. It will be of use to graduate students in physics and engineering, as well as for scientists in other areas seeking to learn more about this important yet relatively unfamiliar class of integral transformations.

  11. Information theory applications for biological sequence analysis.

    Science.gov (United States)

    Vinga, Susana

    2014-05-01

    Information theory (IT) addresses the analysis of communication systems and has been widely applied in molecular biology. In particular, alignment-free sequence analysis and comparison greatly benefited from concepts derived from IT, such as entropy and mutual information. This review covers several aspects of IT applications, ranging from genome global analysis and comparison, including block-entropy estimation and resolution-free metrics based on iterative maps, to local analysis, comprising the classification of motifs, prediction of transcription factor binding sites and sequence characterization based on linguistic complexity and entropic profiles. IT has also been applied to high-level correlations that combine DNA, RNA or protein features with sequence-independent properties, such as gene mapping and phenotype analysis, and has also provided models based on communication systems theory to describe information transmission channels at the cell level and also during evolutionary processes. While not exhaustive, this review attempts to categorize existing methods and to indicate their relation with broader transversal topics such as genomic signatures, data compression and complexity, time series analysis and phylogenetic classification, providing a resource for future developments in this promising area.

  12. Nonlinear Ekman Layer Theories and Their Applications

    Institute of Scientific and Technical Information of China (English)

    TAN Zhemin; FANG Juan; WU Rongsheng

    2006-01-01

    Based on the classical Ekman theory, a series of intermediate boundary layer models, which retain the nonlinear advective process while discard embellishments, have been proposed with the intention to understand the complex nonlinear features of the atmospheric boundary layer and its interaction with the free atmosphere. In this paper, the recent advances in the intermediate boundary-layer dynamic models are reviewed. Several intermediate models such as the boundary-layer models incorporating geostrophic momentum approximation, Ekman momentum approximation, and the weak nonlinear Ekman-layer model are a major theme.With inspection of the theoretical frameworks, the physical meaning and the limitations of each intermediate model are discussed. It is found that the qualitative descriptions of the nonlinear nature in Ekman layer made by the intermediate models are fairly consistent though the details may be different. As the application of the intermediate models is concerned, the application of the intermediate models to the study of the topographic boundary layer, frontogenesis, low-level frontal structure, and low-level jet are especially summarized in this paper. It is shown that the intermediate boundary-layer models have great potential in illustrating the low-level structures of the weather and climate systems as they are coupled with the free atmospheric models.In addition, the important remaining scientific challenges and a prospectus for future research on the intermediate model are also discussed.

  13. Introduction to lattice theory with computer science applications

    CERN Document Server

    Garg, Vijay K

    2015-01-01

    A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author's intent

  14. Some Applications of Number Theory to 3-Manifold Theory

    CERN Document Server

    Sengun, Mehmet Haluk

    2012-01-01

    These are the extended notes of a talk I gave at the Geometric Topology Seminar of the Max Planck Institute for Mathematics in Bonn on January 30th, 2012. My goal was to familiarize the topologists with the basics of arithmetic hyperbolic 3-manifolds and sketch some interesting results in the theory of 3-manifolds (such as Labesse-Schwermer, Calegari-Dunfield, Dunfield-Ramakrishnan) that are obtained by exploiting the connections with number theory and automorphic forms. The overall intention was to stimulate interaction between the number theorists and the topologists present at the Institute.

  15. Participatory Budgeting

    OpenAIRE

    Innovation for Development and South-South Cooperation, IDEASS

    2007-01-01

    This book provides an overview of the principles underlying participatory budgeting. It analyzes the merits and demerits of participatory budgeting practices around the world with a view to guiding policy makers and practitioners on improving such practices in the interest of inclusive governance. This publication includes five regional surveys, and seven country case studies can be found ...

  16. Budget timetable

    Science.gov (United States)

    This is a timetable for congressional action under the Balanced Budget and Emergency Deficit Control Act of 1985 (Gramm-Rudman-Hollings). These deadlines apply to fiscal years (FY) 1987-1991. The Congress missed a number of these deadlines last year. The deficit reduction measures in Gramm-Rudman-Hollings would lead to a balanced budget in 1991.

  17. System Budgets

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1996-01-01

    The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....

  18. Application of Chaos Theory to Psychological Models

    Science.gov (United States)

    Blackerby, Rae Fortunato

    This dissertation shows that an alternative theoretical approach from physics--chaos theory--offers a viable basis for improved understanding of human beings and their behavior. Chaos theory provides achievable frameworks for potential identification, assessment, and adjustment of human behavior patterns. Most current psychological models fail to address the metaphysical conditions inherent in the human system, thus bringing deep errors to psychological practice and empirical research. Freudian, Jungian and behavioristic perspectives are inadequate psychological models because they assume, either implicitly or explicitly, that the human psychological system is a closed, linear system. On the other hand, Adlerian models that require open systems are likely to be empirically tenable. Logically, models will hold only if the model's assumptions hold. The innovative application of chaotic dynamics to psychological behavior is a promising theoretical development because the application asserts that human systems are open, nonlinear and self-organizing. Chaotic dynamics use nonlinear mathematical relationships among factors that influence human systems. This dissertation explores these mathematical relationships in the context of a sample model of moral behavior using simulated data. Mathematical equations with nonlinear feedback loops describe chaotic systems. Feedback loops govern the equations' value in subsequent calculation iterations. For example, changes in moral behavior are affected by an individual's own self-centeredness, family and community influences, and previous moral behavior choices that feed back to influence future choices. When applying these factors to the chaos equations, the model behaves like other chaotic systems. For example, changes in moral behavior fluctuate in regular patterns, as determined by the values of the individual, family and community factors. In some cases, these fluctuations converge to one value; in other cases, they diverge in

  19. Holographic applications of logarithmic conformal field theories

    NARCIS (Netherlands)

    Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.

    2013-01-01

    We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in vari

  20. Rolling Bearing Life Prediction, Theory, and Application

    Science.gov (United States)

    Zaretsky, Erwin V.

    2013-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg- Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application.

  1. Continuous-time Markov decision processes theory and applications

    CERN Document Server

    Guo, Xianping

    2009-01-01

    This volume provides the first book entirely devoted to recent developments on the theory and applications of continuous-time Markov decision processes (MDPs). The MDPs presented here include most of the cases that arise in applications.

  2. Inequalities Theory of Majorization and Its Applications

    CERN Document Server

    Marshall, Albert W; Arnold, Barry

    2011-01-01

    This book’s first edition has been widely cited by researchers in diverse fields. The following are excerpts from reviews. “Inequalities: Theory of Majorization and its Applications” merits strong praise. It is innovative, coherent, well written and, most importantly, a pleasure to read. … This work is a valuable resource!” (Mathematical Reviews). “The authors … present an extremely rich collection of inequalities in a remarkably coherent and unified approach. The book is a major work on inequalities, rich in content and original in organization.” (Siam Review). “The appearance of … Inequalities in 1979 had a great impact on the mathematical sciences. By showing how a single concept unified a staggering amount of material from widely diverse disciplines–probability, geometry, statistics, operations research, etc.–this work was a revelation to those of us who had been trying to make sense of his own corner of this material.” (Linear Algebra and its Applications). This greatly expanded...

  3. Shot peening: theory applications and recent development

    International Nuclear Information System (INIS)

    Shot peening is a surface treatment process by which the surface of an elastic-plastic target material is subjected to multiple impact by spherical shots made of glass or hard steel in a defined and controlled manner. The multiple impact produces a dynamic compressive stress at the surface of the target, thereby effectively improving its mechanical behavior and eliminates cracks and imperfections hence improving the fatigue life and strength. In this paper, the theory and practice of the shot peening process are reviewed. The main parameters involved in the process and their effects on shot peening are presented and discussed which include: shot material, size and geometry, shot pressure and shot velocity, projection angle, exposure time, table rotational speed, standoff distance coverage, saturation and peening intensity. Furthermore, the effect of shot peening on fatigue life and fatigue strength of ferrous and non-ferrous materials together with other different industrial applications of the process are given. Recent developments in utilizing the shot peening process with welded parts and hard chromium plating aiming at improvement of their fatigue strength and their resistance to stress corrosion cracking are also presented and discussed. Finally, future development of the process are outlined and discussed. (author)

  4. Exploring the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus using dynamic energy budget modeling

    Science.gov (United States)

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we conducted growth and bioaccumulation studies that contribute t...

  5. Applications of information theory in plant disease management

    OpenAIRE

    Hughes, Gareth

    2008-01-01

    Information theory is a branch of probability and statistics involving the analysis of communications. Information theory enables us to analyze and quantify the information content of predictions made in the context of plant disease management and related disciplines. In this article, some applications of information theory in plant disease management are outlined.

  6. Applications of Jungian Type Theory to Counselor Education.

    Science.gov (United States)

    Dilley, Josiah S.

    1987-01-01

    Describes Carl Jung's theory of psychological type and the Myers-Briggs Type Indicator (MBTI), an instrument to assess Jungian type. Cites sources of information on the research and application of the theory and the MBTI. Explores how knowledge of type theory can be useful to counselor educators. (Author)

  7. Elements of the theory of Markov processes and their applications

    CERN Document Server

    Bharucha-Reid, A T

    2010-01-01

    This graduate-level text and reference in probability, with numerous applications to several fields of science, presents nonmeasure-theoretic introduction to theory of Markov processes. The work also covers mathematical models based on the theory, employed in various applied fields. Prerequisites are a knowledge of elementary probability theory, mathematical statistics, and analysis. Appendixes. Bibliographies. 1960 edition.

  8. Molecular quantum dynamics. From theory to applications

    International Nuclear Information System (INIS)

    An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible introduction. Although the

  9. Light scattering by nonspherical particles theory, measurements, and applications

    CERN Document Server

    Mishchenko, Michael I; Travis, Larry D

    1999-01-01

    There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid part

  10. Processo Orçamentário: uma aplicação da análise substantiva com utilização da grounded theory [Budgeting: substantive analysis using grounded theory

    Directory of Open Access Journals (Sweden)

    Tânia Regina Sordi Relvas

    2011-09-01

    Full Text Available Diante da constatação de que os estudos sobre o orçamento exploram o fenômeno de forma reducionista, este artigo tem por objetivo propor uma teoria substantiva abrangente e fundamentada em dados empíricos para a análise do orçamento. Essa abordagem considera seus elementos constituintes e suas interdependências. Isso foi feito por meio da aplicação da abordagem indutiva fundamentada nos dados empíricos (grounded theory, sob o paradigma qualitativo. O foco de análise foi uma instituição financeira de grande porte e o trabalho de campo foi desenvolvido ao longo de dois anos, envolvendo vários níveis gerenciais. A contribuição do trabalho advém da disponibilização de framework para o tratamento do tema em um contexto amplo, o que permitiu entender aspectos que deixariam de ser considerados com uma abordagem de análise mais restrita e menos abrangente. Como produto da teoria substantiva, cinco proposições foram desenvolvidas com a perspectiva de serem aplicadas nas organizações. --- Budgeting: substantive analysis using grounded theory --- Abstract --- Considering the fact that studies into budgeting basically use a reductionist approach, this paper proposes a comprehensive substantive theory based on empirical data to be used in budget analysis. This approach takes into consideration its elements and interdependence by applying the inductive approach based on empirical data (grounded theory on a qualitative paradigm. The focus was an in-depth two-year study of a large Brazilian financial institution involving several management levels. The main contribution of the study is as a framework that treats all elements of the budget process in a comprehensive and coherent fashion, otherwise impossible using a reductionist approach. As products of the substantive theory, five propositions were developed to be applied in organizations.

  11. English 283: Rhetorical Theory and Applications--"Rhetorical Theory, Mass Media, and Public Discourse"

    Science.gov (United States)

    Grettano, Teresa

    2008-01-01

    This article presents a course design of English 283: Rhetorical Theory and Applications. The course is described in the undergraduate catalogue as offering a "critical and analytical examination of the nature and historical development of rhetorical theory and its applications to contemporary discourse." The course fulfills requirements for the…

  12. Noether's theorems applications in mechanics and field theory

    CERN Document Server

    Sardanashvily, Gennadi

    2016-01-01

    The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.

  13. Open Budget

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Government initiatives to publicize budgetary information allow for greater public supervision In an unprecedented move,four ministries under the Central Government recently posted their 2010 budgets on their official websites.

  14. Unified strength theory and its applications

    CERN Document Server

    Yu, Mao-Hong

    2004-01-01

    This is a completely new theory dealing with the yield and failure of materials under multi-axial stresses. It provides a system of yield and failure criteria adopted for most materials, from metallic materials to rocks, concretes, soils, polymers etc. The Unified Strength Theory has been applied successfully to analyse the elastic limit, plastic limit capacities, the dynamic response behavior for some structures under static and moderate impulsive load, and may be implemented in some elasto-plastic finite element computer codes. The Unified Strength Theory is described in detail and by using this theory a series of results can be obtained. The Unified Strength Theory can improve the conservative Mohr-Coulomb Theory, and since intermediate principal stress is not taken into account in the Mohr-Coulomb theory and most experimental data is not pertainable to the Mohr-Coulomb Theory, a considerable economic benefit may be obtained. The book can also increase the effect of most commercial finite element computer ...

  15. Behavioral Momentum Theory: Equations and Applications

    Science.gov (United States)

    Nevin, John A.; Shahan, Timothy A.

    2011-01-01

    Behavioral momentum theory provides a quantitative account of how reinforcers experienced within a discriminative stimulus context govern the persistence of behavior that occurs in that context. The theory suggests that all reinforcers obtained in the presence of a discriminative stimulus increase resistance to change, regardless of whether those…

  16. String theory applications in gravitational problems and gauge theories

    CERN Document Server

    Siampos, Konstadinos

    2010-01-01

    In this dissertation, we review the study of quark and monopole bound-state potentials within the gauge/gravity correspondence. Their behaviors often differ from what is expected on general physical grounds and field-theory considerations. We identify the configurations of physical interest by examining the stability of the string (brane) solutions dual to the flux tubes between the bound states. In particular, we formulate and prove several general statements concerning the perturbative stability of such string (brane) solutions, relevant for these configurations in a general class of backgrounds. We apply the results to N = 4 SYM and N = 1 at finite temperature and at generic points of the Coulomb branch. In all cases, the problematic regions are found to be unstable and hence physically irrelevant.

  17. Application of Relevance theory to translation

    Institute of Scientific and Technical Information of China (English)

    柯仁爱

    2014-01-01

    Within the framework of relevance theory, translation is regarded as a relevance-seeking communication. It involves three participant relationships:the source speaker, the translator and the target hearers. The translator is supposed to create a context that the target hearer can infer the intention of the source speaker. Comparing translation theories which fail to pay attention to the relevance between the source speakers and the target hearers, Relevance Theory is a relatively overall account of translation. For one thing, some points concerning the Relevance Theory are capable of facilitating the researches to the present translation field. For another, the information of the original text will be understood and comprehended accurately and promptly on the basis of the relevant theory.

  18. Catastrophe theory and its application status in mechanical engineering

    Directory of Open Access Journals (Sweden)

    Jinge LIU

    Full Text Available Catastrophe theory is a kind of mathematical method which aims to apply and interpret the discontinuous phenomenon. Since its emergence, it has been widely used to explain a variety of emergent phenomena in the fields of natural science, social science, management science and some other science and technology fields. Firstly, this paper introduces the theory of catastrophe in several aspects, such as its generation, radical principle, basic characteristics and development. Secondly, it summarizes the main applications of catastrophe theory in the field of mechanical engineering, focusing on the research progress of catastrophe theory in revealing catastrophe of rotor vibration state, analyzing friction and wear failure, predicting metal fracture, and so on. Finally, it advises that later development of catastrophe theory should pay more attention to the combination of itself with other traditional nonlinear theories and methods. This paper provides a beneficial reference to guide the application of catastrophe theory in mechanical engineering and related fields for later research.

  19. A study of the thermal and optical characteristics of radiometric channels for Earth radiation budget applications

    Science.gov (United States)

    Mahan, J. R.; Tira, Nour E.

    1991-01-01

    An improved dynamic electrothermal model for the Earth Radiation Budget Experiment (ERBE) total, nonscanning channels is formulated. This model is then used to accurately simulate two types of dynamic solar observation: the solar calibration and the so-called pitchover maneuver. Using a second model, the nonscanner active cavity radiometer (ACR) thermal noise is studied. This study reveals that radiative emission and scattering by the surrounding parts of the nonscanner cavity are acceptably small. The dynamic electrothermal model is also used to compute ACR instrument transfer function. Accurate in-flight measurement of this transfer function is shown to depend on the energy distribution over the frequency spectrum of the radiation input function. A new array-type field of view limiter, whose geometry controls the input function, is proposed for in-flight calibration of an ACR and other types of radiometers. The point spread function (PSF) of the ERBE and the Clouds and Earth's Radiant Energy System (CERES) scanning radiometers is computed. The PSF is useful in characterizing the channel optics. It also has potential for recovering the distribution of the radiative flux from Earth by deconvolution.

  20. Hedonic price theory: Concept and applications

    International Nuclear Information System (INIS)

    Direct and indirect techniques are being used to estimate economic consequences of proximity to existing or proposed public facilities. The hedonic price theory, an indirect technique, is the most logically suited, especially for capturing the shadow or implicit price of a characteristic such as proximity in the real estate market. While the theory is increasingly being used, there is also a growing tendency to draw inferences from the study of one or more hazards and situations and transfer the conclusions to a very different hazard and situation. The use of the hedonic price theory and the issue of transferability to radioactive waste facilities are addressed in this paper. 12 refs

  1. BEYOND BUDGETING

    Directory of Open Access Journals (Sweden)

    Edo Cvrkalj

    2015-12-01

    Full Text Available Traditional budgeting principles, with strictly defined business goals, have been, since 1998, slowly growing into more sophisticated and organization-adjusted alternative budgeting concepts. One of those alternative concepts is the “Beyond budgeting” model with an implemented performance effects measuring process. In order for the model to be practicable, budget planning and control has to be reoriented to the “bottom up” planning and control approach. In today’s modern business surroundings one has to take both present and future opportunities and threats into consideration, by valorizing them in a budget which would allow a company to realize a whole pallet of advantages over the traditional budgeting principles which are presented later in the article. It is essential to emphasize the importance of successfully implementing the new budgeting principles within an organization. If the implementation has been lacking and done without a higher goal in mind, it is easily possible that the process has been implemented without coordination, planning and control framework within the organization itself. Further in the article we present an overview of managerial techniques and instruments within the “Beyond budgeting” model such as balanced scorecard, rolling forecast, dashboard, KPI and other supporting instruments. Lastly we define seven steps for implementing the “Beyond budgeting” model and offer a comparison of “Beyond budgeting” model against traditional budgeting principles which lists twelve reasons why “Beyond budgeting” is better suited to modern and market-oriented organizations. Each company faces those challenges in their own characteristic way but implementing new dynamic planning models will soon become essential for surviving in the market.

  2. Application of Grey Theory in Operator Management

    International Nuclear Information System (INIS)

    Scientific and reasonable operator management is the basis of nuclear security. It was paid more attention after the three-mile island accident. The prediction of operators' basic behavior parameters is the premise and foundation of scientific and reasonable operator management. Grey theory happens to solve the dilemma encountered in prediction and decision-making of operator behavior in operator management of NPP. The procedure is divided into two steps: according to the history record of operators' behavior parameter, a differential equation model using grey theory is set up to predict the future behavior of operators and use grey theory to make decision for operator management. The calculation result is helpful for operator management and also useful for operators to find their shortcoming. Grey theory using in the study provides a new idea and method for future operator management in NPP

  3. Application of grey theory in operator management

    International Nuclear Information System (INIS)

    Scientific and reasonable operator management is the basis of nuclear safety. It is paid more attention after the three-mile island accident. The prediction of operators' basic behavior parameters is the premise and foundation of scientific and reasonable operator management. Grey theory happened to solve the dilemma encountered in prediction and decision-making of operator behavior in operator management of nuclear power plant. The procedure was divided into two steps: 1) According to the historical record of operators' behavior parameters, a differential equation model using grey theory was set up to predict the future behavior of operators; 2) operator management decision-making was made based on grey theory. The calculation result is not only helpful for operator management but also useful for operators to find their shortcomings. Grey theory used in the study provides a new idea and method for future operator management in nuclear power plant. (author)

  4. Spectral theory and nonlinear analysis with applications to spatial ecology

    CERN Document Server

    Cano-Casanova, S; Mora-Corral , C

    2005-01-01

    This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.

  5. On Applicability of Face--Saving Theory in China

    Institute of Scientific and Technical Information of China (English)

    刘倩雅

    2013-01-01

      Brown and Levinson’s face theory is a theory of interpersonal relationship. It has successfully explained the influence of“face”in people’s daily communications. The theory is built on the basis of western culture and ignores the cultural difference of“face”in China. It is not free from limitations the absoluteness of which exerts a checking effort on its universal applicability. This paper probes from the perspective of the influence of context and culture that the application of Face—Saving theory in actual com⁃munications in China, especially from those restrictions on the use of negative face in China.

  6. Introduction to probability theory with contemporary applications

    CERN Document Server

    Helms, Lester L

    2010-01-01

    This introduction to probability theory transforms a highly abstract subject into a series of coherent concepts. Its extensive discussions and clear examples, written in plain language, expose students to the rules and methods of probability. Suitable for an introductory probability course, this volume requires abstract and conceptual thinking skills and a background in calculus.Topics include classical probability, set theory, axioms, probability functions, random and independent random variables, expected values, and covariance and correlations. Additional subjects include stochastic process

  7. Generalized Elliptical Distributions: Theory and Applications

    OpenAIRE

    Frahm, Gabriel

    2004-01-01

    The thesis recalls the traditional theory of elliptically symmetric distributions. Their basic properties are derived in detail and some important additional properties are mentioned. Further, the thesis concentrates on the dependence structures of elliptical or even meta-elliptical distributions using extreme value theory and copulas. Some recent results concerning regular variation and bivariate asymptotic dependence of elliptical distributions are presented. Further, the traditional class ...

  8. Learning theories application in nursing education

    OpenAIRE

    Aliakbari, Fatemeh; Parvin, Neda; Heidari, Mohammad; HAGHANI, FARIBA

    2015-01-01

    Learning theories are the main guide for educational systems planning in the classroom and clinical training included in nursing. The teachers by knowing the general principles of these theories can use their knowledge more effectively according to various learning situations. In this study, Eric, Medline, and Cochrane databases were used for articles in English and for the Persian literature, Magiran, Iran doc, Iran medex, and Sid databases were used with the help of keywords including socia...

  9. Semigroups of Operators : Theory and Applications

    CERN Document Server

    Bobrowski, Adam; Lachowicz, Mirosław

    2015-01-01

    Many results, both from semigroup theory itself and from the applied sciences, are phrased in discipline-specific languages and hence are hardly known to a broader community. This volume contains a selection of lectures presented at a conference that was organised as a forum for all mathematicians using semigroup theory to learn what is happening outside their own field of research. The collection will help to establish a number of new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while the fundamental generation theorem of Hille and Yosida dates back to the forties. The theory was, from the very beginning, designed as a universal language for partial differential equations and stochastic processes, but at the same time it started to live as an independent branch of operator the...

  10. Is relevance theory applicable to proverbs’ translation?

    Directory of Open Access Journals (Sweden)

    Pegulescu Anca-Mariana

    2016-01-01

    Full Text Available Translation, viewed as a multi-faceted task, can arise different types of difficulties. Proverbs have been considered special patterns, displaying sometimes hidden meanings or suggesting morals issuing from a particular example. These paremic units - the proverbs - conveyed feelings, states of mind, behaviours or ‘metaphorical descriptions of certain situations’(Krikmann. Starting from Savory’s list of pair-wise contradictory translation principles, I intend to prove that the link between different ‘forms’ and their ‘contents’ lies in the principle of relevance when referring to proverbs. Even if relevance theory is not a theory of linguistic structure - and many translation problems imply structural mismatches - relevance theory offers insights about contextual information. Proverbs are seen as texts in themselves. My analysis will target the ethnofields of ‘to buy’ and ‘to sell’ in English proverbs and their Romanian corresponding versions.

  11. Matrix field theory: Applications to superconductivity

    Science.gov (United States)

    Zhou, Lubo

    In this thesis a systematic, functional matrix field theory is developed to describe both clean and disordered s-wave and d-wave superconductors and the quantum phase transitions associated with them. The thesis can be divided into three parts. The first part includes chapters 1 to 3. In chapter one a general physical introduction is given. In chapters two and three the theory is developed and used to compute the equation of state as well as the number-density susceptibility, spin-density susceptibility, the sound attenuation coefficient, and the electrical conductivity in both clean and disordered s-wave superconductors. The second part includes chapter four. In this chapter we use the theory to describe the disorder-induced metal - superconductor quantum phase transition. The key physical idea here is that in addition to the superconducting order-parameter fluctuations, there are also additional soft fermionic fluctuations that are important at the transition. We develop a local field theory for the coupled fields describing superconducting and soft fermionic fluctuations. Using simple renormalization group and scaling ideas, we exactly determine the critical behavior at this quantum phase transition. Our theory justifies previous approaches. The third part includes chapter five. In this chapter we study the analogous quantum phase transition in disordered d-wave superconductors. This theory should be related to high Tc superconductors. Surprisingly, we show that in both the underdoped and overdoped regions, the coupling of superconducting fluctuations to the soft disordered fermionic fluctuations is much weaker than that in the s-wave case. The net result is that the disordered quantum phase transition in this case is a strong coupling, or described by an infinite disordered fixed point, transition and cannot be described by the perturbative RG description that works so well in the s-wave case. The transition appears to be related to the one that occurs in

  12. Inequalities theory of majorization and its applications

    CERN Document Server

    Olkin, Ingram

    1980-01-01

    Although they play a fundamental role in nearly all branches of mathematics, inequalities are usually obtained by ad hoc methods rather than as consequences of some underlying ""theory of inequalities."" For certain kinds of inequalities, the notion of majorization leads to such a theory that is sometimes extremely useful and powerful for deriving inequalities. Moreover, the derivation of an inequality by methods of majorization is often very helpful both for providing a deeper understanding and for suggesting natural generalizations.Anyone wishing to employ majorization as a tool in applicati

  13. The Application of Gestalt Theory in Translation

    Institute of Scientific and Technical Information of China (English)

    于海

    2014-01-01

    The Gestalt theory is an important integral of integrated approach to translation, which tries to bridge the gap between linguistic oriented translation and literary oriented translation. The gestalt principle is a vertical stratificational model, which is proceeds from level A at the top to level F at the bottom. In other words, from the macro- level to the micro- level. Thus, from the perspective of gestalt theory, we can have a holistic understanding of the source text, and at the same time the translated texts would be more precise.

  14. TRADITIONAL BUDGETING VERSUS BEYOND BUDGETING: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    CARDOS ILDIKO REKA

    2014-07-01

    Full Text Available Budgets are an important part of the business environment since 1920 and are considered to be the key drivers and evaluators of managerial performance; and the key elements for planning and control. Budgets are the most powerful tool for management control; they can play an essential role in the organization’s power politics because it can increase the power and authority of top management and limit the autonomy of lower-level managers. Besides its advantages traditional budgeting presents disadvantages also. In recent years criticism towards traditional budgeting has increased. The basis of this criticism is that traditional budgeting is a relic of the past; it prevents reactions to changes in the market, it cannot keep up with the changes and requirements of today’s business world and it isn’t useful for business management. In order to eliminate criticism researchers and practitioners have developed more systematic and alternative concepts of budgeting that suits better for the needs of the modern business environment. Beyond budgeting, better budgeting, rolling forecasts, activity-based budgeting are the main alternatives developed in the last years. From the mentioned alternatives this article examines only beyond budgeting. Our paper discusses how budgeting has evolved into its current state, before examining why this universal technique has come under such heavy criticism of late. The paper is a literature analysis, it contributes to the existing managerial accounting literature and it is structured as follows. In the first part the background and evolution of budgeting is presented, followed by the analysis of related theories in traditional budgeting, emphasizing both the advantages and disadvantages of traditional budgeting. The second part of the paper continues with the discussion about alternative budgeting methods highlighting pros and cons of alternative methods, especially beyond budgeting. In the third part conducted

  15. Development and application of social learning theory.

    Science.gov (United States)

    Price, V; Archbold, J

    This article traces the development of social learning theory over the last 30 years, relating the developments to clinical nursing practice. Particular attention is focused on the contribution of Albert Bandura, the American psychologist, and his work on modelling. PMID:8574105

  16. Application of Schema Theory in Listening Comprehension

    Institute of Scientific and Technical Information of China (English)

    陈晴

    2014-01-01

    Listening comprehension is an active process,in which what the listener wants to get is an adequate understanding of what the speaker said and what the speaker meant. To attain this purpose,listeners should utilize schema theory and some listening activities will be used.

  17. The Nomad Model: Theory, Developments and Applications

    NARCIS (Netherlands)

    Campanella, M.; Hoogendoorn, S.P.; Daamen, W.

    2014-01-01

    This paper presents details of the developments of the Nomad model after being introduced more than 12 years ago. The model is derived from a normative theory of pedestrian behavior making it unique under microscopic models. Nomad has been successfully applied in several cases indicating that it ful

  18. Reducing Bullying: Application of Social Cognitive Theory

    Science.gov (United States)

    Swearer, Susan M.; Wang, Cixin; Berry, Brandi; Myers, Zachary R.

    2014-01-01

    Social cognitive theory (SCT) is an important heuristic for understanding the complexity of bullying behaviors and the social nature of involvement in bullying. Bullying has been heralded as a social relationship problem, and the interplay between the individual and his or her social environment supports this conceptualization. SCT has been used…

  19. Schemata Theory and its Application in Reading

    Institute of Scientific and Technical Information of China (English)

    杜瑞杰

    2008-01-01

    Recent years more and more attention is paid t o schemata theory.Many scholars have found its significant effects on reading comprehension through various experiments.It is essential for the Students to have both the formal schemata and content schemata in their brain when reading.

  20. Review of Research Applications: Kohlberg's Theories in Correctional Settings.

    Science.gov (United States)

    Carter, Dianne

    1986-01-01

    This article reviews the research applications of Dr. Lawrence Kohlberg's theory of moral development and moral education. Included are studies conducted in both juvenile and adult correctional settings. (Author/CT)

  1. Group theory and its applications in physics, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, T.H. (ed.)

    1980-01-01

    Lectures were presented in representation theory, elementary particle physics, nuclear physics, and modern applications in mathematical physics. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  2. 8th International Conference on Information Visualization Theory and Applications

    CERN Document Server

    2017-01-01

    The International Conference on Information Visualization Theory and Applications aims at becoming a major point of contact between researchers, engineers and practitioners in Information Visualization. The conference will be structured along several topics related to Information Visualization.

  3. Linear Transformation Theory of Quantum Field Operators and Its Applications

    Institute of Scientific and Technical Information of China (English)

    MA Lei

    2003-01-01

    We extend the linear quantum transformation theory to the case of quantum field operators. The corresponding general transformation expressions of CPT transformations and gauge field transformations are considered as its applications.

  4. A Short History of Probability Theory and Its Applications

    Science.gov (United States)

    Debnath, Lokenath; Basu, Kanadpriya

    2015-01-01

    This paper deals with a brief history of probability theory and its applications to Jacob Bernoulli's famous law of large numbers and theory of errors in observations or measurements. Included are the major contributions of Jacob Bernoulli and Laplace. It is written to pay the tricentennial tribute to Jacob Bernoulli, since the year 2013…

  5. Applicability of Complex Organization Theory to Small Organizations

    Science.gov (United States)

    Dolch, Norman A.; Heffernan, William D.

    1978-01-01

    Reviews research literature and describes a study concerning the applicability of complex organization theory to small organizations. Finds that organizational-structural properties can be measured in small organizations; complex organization theory can be used to better understand small organizations; and certain measurement techniques used in…

  6. Organization Theory and Its Application to Adult Education.

    Science.gov (United States)

    Geering, Adrian D.

    This paper surveys the field of organization theory and its application to adult education agencies. The paper first defines organization theory (the study of the structure and functioning of organizations and the behavior of groups and individuals within them), and discusses its historical development. It then presents four emerging trends of…

  7. Set Theory and its Applications : Conference held at York University

    CERN Document Server

    Watson, Stephen

    1989-01-01

    The Set Theory and Applications meeting at York University, Ontario, featured both contributed talks and a series of invited lectures on topics central to set theory and to general topology. These proceedings contain a selection of the resulting papers, mostly announcing new unpublished results.

  8. Optimization and Control of Bilinear Systems Theory, Algorithms, and Applications

    CERN Document Server

    Pardalos, Panos M

    2008-01-01

    Covers developments in bilinear systems theory Focuses on the control of open physical processes functioning in a non-equilibrium mode Emphasis is on three primary disciplines: modern differential geometry, control of dynamical systems, and optimization theory Includes applications to the fields of quantum and molecular computing, control of physical processes, biophysics, superconducting magnetism, and physical information science

  9. Application of Foreignization Theory in Translation of Movie Subtitles

    Institute of Scientific and Technical Information of China (English)

    周雪

    2013-01-01

    As a new branch of literary translation, movie translation has its own features. Domestication and foreignization, used as two translation strategies, play an important role in cultural fusion. On the basis of introducing the theory of foreignization, this paper mainly deals with the application of foreignization theory in translation of movie subtitles.

  10. A unified theory of cone metric spaces and its applications to the fixed point theory

    CERN Document Server

    Proinov, Petko D

    2011-01-01

    In this paper we develop a unified theory for cone metric spaces over a solid vector space. As an application of the new theory we present full statements of the iterated contraction principle and the Banach contraction principle in cone metric spaces over a solid vector space.

  11. Solid modeling and applications rapid prototyping, CAD and CAE theory

    CERN Document Server

    Um, Dugan

    2016-01-01

    The lessons in this fundamental text equip students with the theory of Computer Assisted Design (CAD), Computer Assisted Engineering (CAE), the essentials of Rapid Prototyping, as well as practical skills needed to apply this understanding in real world design and manufacturing settings. The book includes three main areas: CAD, CAE, and Rapid Prototyping, each enriched with numerous examples and exercises. In the CAD section, Professor Um outlines the basic concept of geometric modeling, Hermite and Bezier Spline curves theory, and 3-dimensional surface theories as well as rendering theory. The CAE section explores mesh generation theory, matrix notion for FEM, the stiffness method, and truss Equations. And in Rapid Prototyping, the author illustrates stereo lithographic theory and introduces popular modern RP technologies. Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product...

  12. Review of Industrial Applications of Structural Reliability Theory

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real practical applications is much smaller than what one would expect.......For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real practical applications is much smaller than what one would expect....

  13. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  14. Hyperspectral data exploitation theory and applications

    CERN Document Server

    Chang, Chein-I

    2007-01-01

    Authored by a panel of experts in the field, this book focuses on hyperspectral image analysis, systems, and applications. With discussion of application-based projects and case studies, this professional reference will bring you up-to-date on this pervasive technology, wether you are working in the military and defense fields, or in remote sensing technology, geoscience, or agriculture.

  15. Open Budget

    Institute of Scientific and Technical Information of China (English)

    LI LI

    2010-01-01

    @@ In an unprecedented move,four ministries under the Central Government recently posted their 2010 budgets on their official websites.This move has been greeted with mixed reactions,with some netizens complaining about a lack of details and explanations of different items.

  16. The phonon Hall effect: theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lifa; Wang Jiansheng; Li Baowen [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Ren Jie [NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456 (Singapore)

    2011-08-03

    We present a systematic theory of the phonon Hall effect in a ballistic crystal lattice system, and apply it on the kagome lattice which is ubiquitous in various real materials. By proposing a proper second quantization for the non-Hermitian in the polarization-vector space, we obtain a new heat current density operator with two separate contributions: the normal velocity responsible for the longitudinal phonon transport, and the anomalous velocity manifesting itself as the Hall effect of transverse phonon transport. As exemplified in kagome lattices, our theory predicts that the direction of Hall conductivity at low magnetic field can be reversed by tuning the temperatures, which we hope can be verified by experiments in the future. Three phonon-Hall-conductivity singularities induced by phonon-band-topology change are discovered as well, which correspond to the degeneracies at three different symmetric center points, {Gamma}, K, X, in the wavevector space of the kagome lattice.

  17. Cosmological applications in Kaluza-Klein theory

    Institute of Scientific and Technical Information of China (English)

    M. I. Wanas; Gamal G. L. Nashed; A. A. Nowaya

    2012-01-01

    The field equations of Kaluza-Klein (KK) theory have been applied in the domain of cosmology.These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t.We use Taylor's expansion of cosmological function,△(t),up to the first order of the time t.The cosmological parameters are calculated and some cosmological problems are discussed.

  18. Symmetry an introduction to group theory and its applications

    CERN Document Server

    McWeeny, R

    2013-01-01

    Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely w

  19. Bitopological spaces theory, relations with generalized algebraic structures and applications

    CERN Document Server

    Dvalishvili, Badri

    2005-01-01

    This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, a

  20. Theory and Applications of Robust Optimization

    OpenAIRE

    Bertsimas, Dimitris; BROWN, DAVID B.; Caramanis, Constantine

    2010-01-01

    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of d...

  1. An application of fisheries economics theory

    DEFF Research Database (Denmark)

    Frost, Hans Staby; Andersen, Peder; Hoff, Ayoe

    2011-01-01

    discrete-time model. The neo-classical concept of resource rent is maximized by use of various physical measures, such as fishing effort restrictions and fishing quotas, and economic measures, such as property or user rights and taxes. Although theory ranks economic measures above physical measures......This paper contributes to the state of the art within fisheries economics and management 100 years after Warming’s inaugurating 1911 article. The developments are briefly described with reference to and following Warming and are illuminated by use of a complex multi-species multi-fleet dynamic...

  2. Sound and recording applications and theory

    CERN Document Server

    Rumsey, Francis

    2014-01-01

    Providing vital reading for audio students and trainee engineers, this guide is ideal for anyone who wants a solid grounding in both theory and industry practices in audio, sound and recording. There are many books on the market covering ""how to work it"" when it comes to audio equipment-but Sound and Recording isn't one of them. Instead, you'll gain an understanding of ""how it works"" with this approachable guide to audio systems.New to this edition:Digital audio section revised substantially to include the latest developments in audio networking (e.g. RAVENNA, AES X-192, AVB), high-resolut

  3. Blind source separation theory and applications

    CERN Document Server

    Yu, Xianchuan; Xu, Jindong

    2013-01-01

    A systematic exploration of both classic and contemporary algorithms in blind source separation with practical case studies    The book presents an overview of Blind Source Separation, a relatively new signal processing method.  Due to the multidisciplinary nature of the subject, the book has been written so as to appeal to an audience from very different backgrounds. Basic mathematical skills (e.g. on matrix algebra and foundations of probability theory) are essential in order to understand the algorithms, although the book is written in an introductory, accessible style. This book offers

  4. Antennas in matter: Fundamentals, theory, and applications

    Science.gov (United States)

    King, R. W. P.; Smith, G. S.; Owens, M.; Wu, T. T.

    1981-01-01

    The volume provides an introduction to antennas and probes embedded within or near material bodies such as the earth, the ocean, or a living organism. After a fundamental analysis of insulated and bare antennas, an advanced treatment of antennas in various media is presented, including a detailed study of the electromagnetic equations in homogeneous isotropic media, the complete theory of the bare dipole in a general medium, and a rigorous analysis of the insulated antenna as well as bare and insulated loop antennas. Finally, experimental models and measuring techniques related to antennas and probes in a general dissipative or dielectric medium are examined.

  5. Sparse modeling theory, algorithms, and applications

    CERN Document Server

    Rish, Irina

    2014-01-01

    ""A comprehensive, clear, and well-articulated book on sparse modeling. This book will stand as a prime reference to the research community for many years to come.""-Ricardo Vilalta, Department of Computer Science, University of Houston""This book provides a modern introduction to sparse methods for machine learning and signal processing, with a comprehensive treatment of both theory and algorithms. Sparse Modeling is an ideal book for a first-year graduate course.""-Francis Bach, INRIA - École Normale Supřieure, Paris

  6. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus.

    Science.gov (United States)

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are developing growth and bioaccumulation studies that contrib...

  7. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus-presentation

    Science.gov (United States)

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are conducting growth and bioaccumulation studies that contrib...

  8. An information theory approach for evaluating earth radiation budget (ERB) measurements - Nonuniform sampling of diurnal longwave flux variations

    Science.gov (United States)

    Halyo, Nesim; Direskeneli, Haldun; Barkstrom, Bruce R.

    1991-01-01

    Satellite measurements are subject to a wide range of uncertainties due to their temporal, spatial, and directional sampling characteristics. An information-theory approach is suggested to examine the nonuniform temporal sampling of ERB measurements. The information (i.e., its entropy or uncertainty) before and after the measurements is determined, and information gain (IG) is defined as a reduction in the uncertainties involved. A stochastic model for the diurnal outgoing flux variations that affect the ERB is developed. Using Gaussian distributions for the a priori and measured radiant exitance fields, the IG is obtained by computing the a posteriori covariance. The IG for the monthly outgoing flux measurements is examined for different orbital parameters and orbital tracks, using the Earth Observing System orbital parameters as specific examples. Variations in IG due to changes in the orbit's inclination angle and the initial ascending node local time are investigated.

  9. Data clustering theory, algorithms, and applications

    CERN Document Server

    Gan, Guojun; Wu, Jianhong

    2007-01-01

    Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results. The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB® programming languages.

  10. Probabilistic composition of preferences, theory and applications

    CERN Document Server

    Parracho Sant'Anna, Annibal

    2015-01-01

    Putting forward a unified presentation of the features and possible applications of probabilistic preferences composition, and serving as a methodology for decisions employing multiple criteria, this book maximizes reader insights into the evaluation in probabilistic terms and the development of composition approaches that do not depend on assigning weights to the criteria. With key applications in important areas of management such as failure modes, effects analysis and productivity analysis – together with explanations about the application of the concepts involved –this book makes available numerical examples of probabilistic transformation development and probabilistic composition. Useful not only as a reference source for researchers, but also in teaching classes of graduate courses in Production Engineering and Management Science, the key themes of the book will be of especial interest to researchers in the field of Operational Research.

  11. Difference and differential equations with applications in queueing theory

    CERN Document Server

    Haghighi, Aliakbar Montazer

    2013-01-01

      A Useful Guide to the Interrelated Areas of Differential Equations, Difference Equations, and Queueing Models Difference and Differential Equations with Applications in Queueing Theory presents the unique connections between the methods and applications of differential equations, difference equations, and Markovian queues. Featuring a comprehensive collection of

  12. Advances in theory and applications of fuzzy clustering

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The summarization and evaluation of the advances in fuzzy clustering theory are made in the aspects including the criterion functions, algorithm implementations, validity measurements and applications. Several important directions for a further study and the application prospects are also pointed out.

  13. Conference on Extreme Value Theory and Applications

    CERN Document Server

    Lechner, James; Simiu, Emil

    1994-01-01

    It appears that we live in an age of disasters: the mighty Missis­ sippi and Missouri flood millions of acres, earthquakes hit Tokyo and California, airplanes crash due to mechanical failure and the seemingly ever increasing wind speeds make the storms more and more frightening. While all these may seem to be unexpected phenomena to the man on the street, they are actually happening according to well defined rules of science known as extreme value theory. We know that records must be broken in the future, so if a flood design is based on the worst case of the past then we are not really prepared against floods. Materials will fail due to fatigue, so if the body of an aircraft looks fine to the naked eye, it might still suddenly fail if the aircraft has been in operation over an extended period of time. Our theory has by now penetrated the so­ cial sciences, the medical profession, economics and even astronomy. We believe that our field has come of age. In or~er to fully utilize the great progress in the the...

  14. Application of sunscreen--theory and reality

    DEFF Research Database (Denmark)

    Petersen, Bibi; Wulf, Hans Christian

    2013-01-01

    for the discrepancy between the amounts of sunscreen applied during testing and in reality, and that sunscreen application can be improved by education of consumers. Missing areas and ultraviolet radiation exposure before sunscreen application are other pitfalls that reduce the protective effect of sunscreens...... considerably. Current sunscreen labelling overrates the protective effect of a given sunscreen when the reality of sunscreen use is taken into account. This may possibly mislead consumers to feel it is safe to extend sun exposure. Alternatively to educating people to use large amounts of sunscreen, we suggest...

  15. Conformal prediction for reliable machine learning theory, adaptations and applications

    CERN Document Server

    Balasubramanian, Vineeth; Vovk, Vladimir

    2014-01-01

    The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detecti

  16. ARP Budget Management Information System Application%ARP预算管理信息系统应用探索

    Institute of Scientific and Technical Information of China (English)

    王凤霞

    2016-01-01

    With the continuous development of national construction and information industry, Institute gets a rapid development in scope and diversification of business. In this process how to achieve reasonable and efficient budget management and control has become the core of the budget management. This project is based on ARP comprehensive financial and scientific research project system. According to the accounting system model in which subject section acts as the accounting core in the institute, ARP budget management system is established, linking the scientific project budget and actual outlay. Through the input of the project budget, the budget control of the claim payment and the real-time inquiry of the budget, the budget management model of budget making in advance, budget control during the project and budget analysis after the project is realized, which provides the implementation of the budget and expenditure details and other information services to the management and scientific research personnel in the institute.%随着国家建设和信息产业的不断发展,研究所在发展的同时业务范围也在逐步扩张和多元化,如何在这一过程中实现合理、高效的预算管理和监控,成为研究所预算管理的核心.本项目基于ARP综合财务和科研项目系统,根据研究所以课题为成本中心的核算体制模式,建立ARP预算管理系统,关联科研项目预算与实际支出,通过课题预算录入、报销预算控制及实时预算查询等业务流程,实现事前预算编制、事中预算控制和事后预算分析的预算管理模式,为研究所管理者和科研人员提供预算执行情况、收支明细查询等综合信息服务.

  17. On Dynamic Mode Decomposition: Theory and Applications

    CERN Document Server

    Tu, Jonathan H; Luchtenburg, Dirk M; Brunton, Steven L; Kutz, J Nathan

    2013-01-01

    Originally introduced in the fluid mechanics community, dynamic mode decomposition (DMD) has emerged as a powerful tool for analyzing the dynamics of nonlinear systems. However, existing DMD theory deals primarily with sequential time series for which the measurement dimension is much larger than the number of measurements taken. We present a theoretical framework in which we define DMD as the eigendecomposition of an approximating linear operator. This generalizes DMD to a larger class of datasets, including nonsequential time series. We demonstrate the utility of this approach by presenting novel sampling strategies that increase computational efficiency and mitigate the effects of noise, respectively. We also introduce the concept of linear consistency, which helps explain the potential pitfalls of applying DMD to rank-deficient datasets, illustrating with examples. Such computations are not considered in the existing literature, but can be understood using our more general framework. In addition, we show ...

  18. The application of piaget's theory to physiotherapy.

    Science.gov (United States)

    Sheppard, J L

    1977-12-01

    Jean Piaget is a Swiss psychologist who has presented an extensive theory of the growth of the human intellect from birth to maturity. For more than fifty years he has been producing books and articles on human development, conducting research studies on thousands of children, especially those in the schools of Geneva. He is recognized as the world's foremost authority on cognitive development, and his work has led to the publishing of thousands of studies by other research workers around the world, particularly in the U.S.A., Canada, U.K., Australia, France and Scandinavia. He was 80 years of age in 1976, and in retirement has been producing publications at a consistently high rate. PMID:25025198

  19. Business Process Management Theory and Applications

    CERN Document Server

    2013-01-01

    Business Process Management (BPM) has been in existence for decades. It  uses, complements, integrates and extends theories, methods and tools from  other scientific disciplines like: strategic management, information technology, managerial accounting, operations management etc. During this period the main focus themes of researchers and professionals in BPM  were: business process modeling, business process analysis, activity based costing, business process simulation, performance measurement, workflow management, the link between information technology and BPM for process automation etc. More recently the focus moved to subjects like Knowledge Management, Enterprise Resource Planning (ERP) Systems, Service Oriented Architectures (SOAs), Process Intelligence (PI) and even  Social Networks. In this collection of papers we present a review of the work and the outcomes achieved in the classic BPM fields as well as a deeper insight on recent advances in BPM. We present a review of business process modeling a...

  20. Twistor bundle theory and its application

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Over an oriented even dimensional Riemannian manifold (M2m, ds2), in terms of the Levi-Civita connection form Ω and the canonical form Θ on the bundle of positive or→ J+(M, ds2) → M. The integrability on an almost complex structure J compatible with the metric and the orientation, is shown to be equivalent to the fact that the corresponding cross section of the twistor bundle is holomorphic with respect to J and the canonical almost complex structure J1 on J+(M, ds2), by using moving frame theory. Moreover, for various metrics and a fixed orientation on M, a canonical bundle isomorphism is established. As a consequence, we generalize a celebrated theorem of LeBrun.

  1. Application of catastrophe theory to nuclear structure

    International Nuclear Information System (INIS)

    Three two-parameter models, one describing an A-body system (the atomic nucleus) and two describing many-body systems (the van der Waals gas and the ferroelectric (perovskite) system) are compared within the framework of catastrophe theory. It is shown that each has a critical point (second-order phase transition) when the two counteracting forces controlling it are in balance; further, each undergoes a first-order phase transition when one of the forces vanishes (the deforming force for the nucleus, the attractive force for the van der Waals gas, and the dielectric constant for the perovskite). Finally, when both parameters are kept constant, a kind of phase transition may occur at a critical angular momentum, critical pressure, and critical electric field. 3 figures, 1 table

  2. Normative pedestrian flow behavior theory and applications

    OpenAIRE

    Hoogendoorn, S.P.

    2001-01-01

    Gaining insights into pedestrian flow operations and assessment tools for pedestrian walking speeds and comfort is important in for instance planning and geometric design of infrastructural facilities. Additionally, management of pedestrian flows requires knowledge of pedestrian flow behavior. However, compared to vehicular traffic, pedestrian flow operations are very complex. This is why vehicular flow simulation modeling approaches are generally not applicable to pedestrian flows. Motivated...

  3. Pseudo random signal processing theory and application

    CERN Document Server

    Zepernick, Hans-Jurgen

    2013-01-01

    In recent years, pseudo random signal processing has proven to be a critical enabler of modern communication, information, security and measurement systems. The signal's pseudo random, noise-like properties make it vitally important as a tool for protecting against interference, alleviating multipath propagation and allowing the potential of sharing bandwidth with other users. Taking a practical approach to the topic, this text provides a comprehensive and systematic guide to understanding and using pseudo random signals. Covering theoretical principles, design methodologies and applications

  4. The power prior: theory and applications.

    Science.gov (United States)

    Ibrahim, Joseph G; Chen, Ming-Hui; Gwon, Yeongjin; Chen, Fang

    2015-12-10

    The power prior has been widely used in many applications covering a large number of disciplines. The power prior is intended to be an informative prior constructed from historical data. It has been used in clinical trials, genetics, health care, psychology, environmental health, engineering, economics, and business. It has also been applied for a wide variety of models and settings, both in the experimental design and analysis contexts. In this review article, we give an A-to-Z exposition of the power prior and its applications to date. We review its theoretical properties, variations in its formulation, statistical contexts for which it has been used, applications, and its advantages over other informative priors. We review models for which it has been used, including generalized linear models, survival models, and random effects models. Statistical areas where the power prior has been used include model selection, experimental design, hierarchical modeling, and conjugate priors. Frequentist properties of power priors in posterior inference are established, and a simulation study is conducted to further examine the empirical performance of the posterior estimates with power priors. Real data analyses are given illustrating the power prior as well as the use of the power prior in the Bayesian design of clinical trials. PMID:26346180

  5. The power prior: theory and applications.

    Science.gov (United States)

    Ibrahim, Joseph G; Chen, Ming-Hui; Gwon, Yeongjin; Chen, Fang

    2015-12-10

    The power prior has been widely used in many applications covering a large number of disciplines. The power prior is intended to be an informative prior constructed from historical data. It has been used in clinical trials, genetics, health care, psychology, environmental health, engineering, economics, and business. It has also been applied for a wide variety of models and settings, both in the experimental design and analysis contexts. In this review article, we give an A-to-Z exposition of the power prior and its applications to date. We review its theoretical properties, variations in its formulation, statistical contexts for which it has been used, applications, and its advantages over other informative priors. We review models for which it has been used, including generalized linear models, survival models, and random effects models. Statistical areas where the power prior has been used include model selection, experimental design, hierarchical modeling, and conjugate priors. Frequentist properties of power priors in posterior inference are established, and a simulation study is conducted to further examine the empirical performance of the posterior estimates with power priors. Real data analyses are given illustrating the power prior as well as the use of the power prior in the Bayesian design of clinical trials.

  6. 基于控制论的民办高校财务预算研究%Research on Financial Budget of Private Colleges Based on Control Theory

    Institute of Scientific and Technical Information of China (English)

    罗小兰

    2016-01-01

    The effectiveness of financial budget management of private colleges at least depending on two factors: First, the preparation of the financial budget should pay attention to the method, as far as possible to improve the accuracy of the budget; second, taking the strict control of the budget as the standard, focuses on the results of the implementation of the financial budget control. Budget execution control is the key to the success of budget management in private colleges, only attaches great importance to the financial budget implementation control link, can achieve the purpose of the financial budget management of private colleges. This paper mainly from the perspective of the financial budget implementation of private colleges, explores suitable financial budget management method for private colleges.%民办院校财务预算管理的成效至少取决于两个因素:一是财务预算编制要注意方法,尽量提高预算的准确性;二是以预算为标准进行严格控制,重点关注财务预算执行控制的结果。预算执行控制是民办高校预算管理成功的关键,只有高度重视财务预算执行控制环节,才能达到民办高校财务预算管理的目的。本文主要从民办高校财务预算执行角度出发,探求适合民办高校的财务预算管理方法。

  7. Finite element analysis theory and application with ANSYS

    CERN Document Server

    Moaveni, Saeed

    2015-01-01

    For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...

  8. Higgs Effective Field Theories - Systematics and Applications

    CERN Document Server

    Krause, Claudius

    2016-01-01

    We discuss effective field theories (EFTs) for the Higgs particle, which is not necessarily the Higgs of the Standard Model. We distinguish two different consistent expansions: EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, $\\mathcal{O}(f^{2}/\\Lambda^{2})=\\mathcal{O}(1/16\\pi^{2})$. We then compare the decoupling and the non-decoupling EFT. We also consider scenarios in which the new-physics sector is non-decoupling at a scale $f$, far above the electroweak-scale $v$. We discuss the relevance of the resulting double expansion in $\\xi=v^{2}/f^{2}$ and $f^{2}/\\Lambda^{2}$ for the data analys...

  9. Heavy charged particle dosimetry, theory and application

    International Nuclear Information System (INIS)

    Experiments were made to verify the theory of the transport of heavy particles through a medium using L-α-alaline for the detection of radiation. The dose response of L-α-alaline was measured for X-ray radiation of an energy of 4 to 16 MeV, electron radiation of an energy of 6, 10 and 20 MeV, low-LET radiation, 16 MeV and 6 MeV protons, 20 MeV particles and other charged particles. Of the measured dose responses RE values were experimentally obtained and compared with calculated results. Free and very stable radicals were obtained by radiation. Fading of low-LET and high-LET radiation was determined as induced by the said radicals. Using ESR spectra it was found that diverse chemical reactions take place in the track of high-LET particles. However, chemical reactions in the track of a heavy charged particle will be the same if the medium is homogeneously irradiated with low-LET radiation. (E.S.). 7 figs., 1 tab., 11 refs

  10. Radioreceptor assay: theory and applications to pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Perret, G. (U.E.R. de Medecine, Sante et Biologie Humaine, 93 - Bobigny (France)); Simon, P. (Faculte de Medecine Pitie-Salpetriere, 75 - Paris (France))

    The aim of the first part of this work is to present the theory of the radioreceptor assay and to compare it to the other techniques of radioanalysis (radioimmunoassay, competitive protein binding assays). The technology of the radioreceptor assay is then presented and its components (preparation of the receptors, radioligand, incubation medium) are described. The analytical characteristics of the radioreceptor assay (specificity, sensitivity, reproductibility, accuracy) and the pharmacological significance of the results are discussed. The second part is devoted to the description of the radioreceptor assays of some pharmacological classes (neuroleptics, tricyclic antidepressants, benzodiazepines, ..beta..-blockers, anticholinergic drugs) and to their use in therapeutic drug monitoring. In conclusion, by their nature, radioreceptor assays are highly sensitive, reliable, precise, accurate and simple to perform. Their chief disadvantage relates to specificity, since any substance having an appreciable affinity to the receptor site will displace the specifically bound radioligand. Paradoxically in some cases, this lack of specificity may be advantageous in that it allows for the detection of not only the apparent compound but of active metabolites and endogenous receptor agonists as well and in that radioreceptors assays can be devised for a whole pharmacological class and not only for one drug as it is the case for classical physico-chemical techniques. For all these reasons future of radioreceptor assay in pharmacology appears promising.

  11. Mixed models theory and applications with R

    CERN Document Server

    Demidenko, Eugene

    2013-01-01

    Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models' statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. The new edition includes significant updating, over 300 exercises, stimulating chapter projects and model simulations, inclusion of R subroutines, and a revised text format. The target audience continues to be g

  12. Residue number systems theory and applications

    CERN Document Server

    Mohan, P V Ananda

    2016-01-01

    This new and expanded monograph improves upon Mohan's earlier book, Residue Number Systems (Springer, 2002) with a state of the art treatment of the subject. Replete with detailed illustrations and helpful examples, this book covers a host of cutting edge topics such as the core function, the quotient function, new Chinese Remainder theorems, and large integer operations. It also features many significant applications to practical communication systems and cryptography such as FIR filters and elliptic curve cryptography. Starting with a comprehensive introduction to the basics and leading up to current research trends that are not yet widely distributed in other publications, this book will be of interest to both researchers and students alike.

  13. Restricted Kalman Filtering Theory, Methods, and Application

    CERN Document Server

    Pizzinga, Adrian

    2012-01-01

    In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone. This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where th

  14. Seventh European Conference on Combinatorics, Graph Theory and Applications

    CERN Document Server

    Pellegrini, Marco

    2013-01-01

    In the tradition of EuroComb'01 (Barcelona), Eurocomb'03 (Prague), EuroComb'05 (Berlin), Eurocomb'07 (Seville), Eurocomb'09 (Bordeaux), and Eurocomb'11 (Budapest), this volume covers recent advances in combinatorics and graph theory including applications in other areas of mathematics, computer science and engineering. Topics include, but are not limited to: Algebraic combinatorics, combinatorial geometry, combinatorial number theory, combinatorial optimization, designs and configurations, enumerative combinatorics, extremal combinatorics, ordered sets, random methods, topological combinatorics.

  15. Biomimetic Pattern Recognition Theory and Its Applications

    Institute of Scientific and Technical Information of China (English)

    WANGShoujue; ZHAOXingtao

    2004-01-01

    Biomimetic pattern recogntion (BPR),which is based on “cognition” instead of “classification”,is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC),which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the “similarity” among homologous group members, rather than “division” in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.

  16. Chemical applications of molecular quantum theory

    International Nuclear Information System (INIS)

    Molecular systems of chemical interest are investigated with the aid of molecular quantum theory. The self-consistent field (SCF) method is used to predict the molecular structures of ClF2, ClF4 and Cl3 radicals, and the ions ClF2+, ClF2-, ClF4+ and ClF4-. The ClF2 and Cl3 radicals are predicted to be bent with bond angles of 145.20 and 158.60, respectively, while the ions ClF2+ and ClF2- are predicted to be bent with a bond angle of 97.40 and linear, respectively. The geometry predictions for the ClF4 radical and the ClF4+ ion are found to be notably basis set dependent. The ClF4- ion is predicted to be square-planar. Multi-configuration self-consistent field (MCSCF) calculations have yielded the dipole moment function for the 1sigma+ state of HI, which qualitatively confirms the experimental finding that the dipole derivative at R/sub e/ is negative. The 2sigma+ F + H2 potential energy surface is studied extensively with the configuration interaction (CI) method. The most complete calculations yield an activation energy of 2.74 kcal/mole and an exothermicity of 30.0 kcal/mole. The production of a potential energy surface of ''chemical accuracy'' for this system is found to be more difficult than previously believed. The simplest hydrophobic model, the water-methane system, is studied with the SCF method in order to determine the nature and magnitude of the interaction. The most favorable geometric arrangement corresponds to an attraction of 0.5 kcal/mole

  17. The theory of scintillation with applications in remote sensing

    CERN Document Server

    Rino, Charles

    2011-01-01

    "In order to truly understand data signals transmitted by satellite, one must understand scintillation theory in addition to well established theories of EM wave propagation and scattering. Scintillation is a nuisance in satellite EM communications, but it has stimulated numerous theoretical developments with science applications. This book not only presents a thorough theoretical explanation of scintillation, but it also offers a complete library of MATLAB codes that will reproduce the book examples. The library includes GPS coordinate manipulations, satellite orbit prediction, and earth mean magnetic field computations. The subect matter is for EM researchers; however, also theory is relevant to geophysics, acoustics, optics and astoronomy"--Provided by publisher.

  18. Projection Theory and Its Application into Media Discourse Analysis

    Institute of Scientific and Technical Information of China (English)

    邵宏

    2008-01-01

    Projection is a kind of logical-semantic relation which refers to the phenomenon that the secondary clause is projected through the primary clause, which instates it as a locution or an idea. Halliday conducts the basic research on projection from the functional perspective. Then Martin and Zeng try to develop Halliday's projection theory, resulting in a comprehensive framework of projection. Finally the projection theory is applied into the analysis of a sample media discourse. And projection theory is of great help in its application into media discourse analysis.

  19. Adaptive Networks Theory, Models and Applications

    CERN Document Server

    Gross, Thilo

    2009-01-01

    With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.

  20. Ubiquitous Commerce: Theories, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Liyi Zhang

    2009-06-01

    Full Text Available With the rapid development of ubiquitous computing and mobile communication technologies, the traditional business model will change drastically. As a logical extension of e-commerce and m-commerce, ubiquitous commerce (u-commerce research and application are currently under transition with a history of numerous tried and failed solutions, and a future of promising but yet uncertain possibilities with potential new technology innovations. At this point of the development, we propose a suitable framework and organize the u-commerce research under the proposed classification scheme. The current situation outlined by the scheme has been addressed by exploratory and early phase studies. We hope the findings of this research will provide useful insights for anyone who is interested in u-commerce. The paper also provides some future directions for research.

  1. Krichever-Novikov type algebras theory and applications

    CERN Document Server

    Schlichenmaier, Martin

    2014-01-01

    Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are

  2. Fourier transform resampling: Theory and application

    International Nuclear Information System (INIS)

    One of the most challenging problems in medical imaging is the development of reconstruction algorithms for nonstandard geometries. This work focuses on the application of Fourier analysis to the problem of resampling or rebinning. Conventional resampling methods utilizing some form of interpolation almost always result in a loss of resolution in the tomographic image. Fourier Transform Resampling (FTRS) offers potential improvement because the Modulation Transfer Function (MTF) of the process behaves like an ideal low pass filter. The MTF, however, is nonstationary if the coordinate transformation is nonlinear. FTRS may be viewed as a generalization of the linear coordinate transformations of standard Fourier analysis. Simulated MTF's were obtained by projecting point sources at different transverse positions in the flat fan beam detector geometry. These MTF's were compared to the closed form expression for FIRS. Excellent agreement was obtained for frequencies at or below the estimated cutoff frequency. The resulting FTRS algorithm is applied to simulations with symmetric fan beam geometry, an elliptical orbit and uniform attenuation, with a normalized root mean square error (NRME) of 0.036. Also, a Tc-99m point source study (1 cm dia., placed in air 10 cm from the COR) for a circular fan beam acquisition was reconstructed with a hybrid resampling method. The FWHM of the hybrid resampling method was 11.28 mm and compares favorably with a direct reconstruction (FWHM: 11.03 mm)

  3. Theory and applications of smart cameras

    CERN Document Server

    2016-01-01

    This book presents an overview of smart camera systems, considering practical applications but also reviewing fundamental aspects of the underlying technology.  It introduces in a tutorial style the principles of sensing and signal processing, and also describes topics such as wireless connection to the Internet of Things (IoT) which is expected to be the biggest market for smart cameras. It is an excellent guide to the fundamental of smart camera technology, and the chapters complement each other well as the authors have worked as a team under the auspice of GFP(Global Frontier Project), the largest-scale funded research in Korea.  This is the third of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improvements in information processi...

  4. International Conference on Frontiers of Intelligent Computing : Theory and Applications

    CERN Document Server

    Udgata, Siba; Biswal, Bhabendra

    2014-01-01

    This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc  for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.

  5. NATO Advanced Research Institute on Search Theory and Applications

    CERN Document Server

    Stone, Lawrence

    1980-01-01

    The NATO Advanced Research Institute on Search Theory and Appli­ cations was held at the Hotel Algarve in Praia Da Rocha, Portugal, from March 26 through March 30, 1979, and was sponsored by the NATO Special Programme Panel on Systems Science. There were forty-one participants representing a wide range of backgrounds and interests. The purpose of the institute was to bring together people working in search theory and applications with potential users of search techniques to stimulate the increased application of recent­ ly developed search technology to civilian problems such as search and rescue, mineral exploration, surveillance, and fishing. Con­ versely, it was felt that by exposing search analysts to potential applications and new problems, they would be stimulated to develop new techniques for these applications and problems. The exchange of ideas and problems necessary to accomplish these goals was provided in the meeting workshops. There were three workshops, Search and Rescue, Exploration, and Sur...

  6. On the algebraic theory of kink sectors: Application to quantum field theory models and collision theory

    International Nuclear Information System (INIS)

    Several two dimensional quantum field theory models have more than one vacuum state. An investigation of super selection sectors in two dimensions from an axiomatic point of view suggests that there should be also states, called soliton or kink states, which interpolate different vacua. Familiar quantum field theory models, for which the existence of kink states have been proven, are the Sine-Gordon and the φ42-model. In order to establish the existence of kink states for a larger class of models, we investigate the following question: Which are sufficient conditions a pair of vacuum states has to fulfill, such that an interpolating kink state can be constructed? We discuss the problem in the framework of algebraic quantum field theory which includes, for example, the P(φ)2-models. We identify a large class of vacuum states, including the vacua of the P(φ)2-models, the Yukawa2-like models and special types of Wess-Zumino models, for which there is a natural way to construct an interpolating kink state. In two space-time dimensions, massive particle states are kink states. We apply the Haag-Ruelle collision theory to kink sectors in order to analyze the asymptotic scattering states. We show that for special configurations of n kinks the scattering states describe n freely moving non interacting particles. (orig.)

  7. Optical Properties of Lanthanides in Condensed Phase, Theory and Applications

    OpenAIRE

    Renata Reisfeld

    2015-01-01

    The basic theories of electronic levels and transition probabilities of lanthanides are summarized. Their interpretation allows practical preparation of new materials having application in lighting, solar energy utilization, optoelectronics, biological sensors, active waveguides and highly sensitive bioassays for in vitro detection in medical applications. The ways by which the weak fluorescence arising from electronic transition within the four f-configurations can be intensified will be dis...

  8. Luminescence dosimetry: recent developments in theory and applications

    International Nuclear Information System (INIS)

    Thermally and optically stimulated luminescence have been used in applications in solid state physics, radiation dosimetry and geological dating for several decades. This paper gives a generalized description of these methods in terms of non-equilibrium thermodynamics and in doing so highlights similarities and differences between the methods. Recent advances in both the theory and application of the techniques are highlighted with numerous specific examples. (Author)

  9. Group theory Application to the physics of condensed matter

    CERN Document Server

    Dresselhauss, M S; Jorio, A

    2007-01-01

    Every process in physics is governed by selection rules that are the consequence of symmetry requirements. The beauty and strength of group theory resides in the transformation of many complex symmetry operations into a very simple linear algebra. This concise and class-tested book has been pedagogically tailored over 30 years MIT and 2 years at the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory in close connection with applications helps students to learn, understand and use it for their own needs. For this reason, the theoretical background is confined to the first 4 introductory chapters (6-8 classroom hours). From there, each chapter develops new theory while introducing applications so that the students can best retain new concepts, build on concepts learned the previous week, and see interrelations between topics as presented. Essential problem sets between the chapters also aid the retention of the new material and for the consolid...

  10. Scale relativity and fractal space-time: theory and applications

    CERN Document Server

    Nottale, Laurent

    2008-01-01

    In the first part of this contribution, we review the development of the theory of scale relativity and its geometric framework constructed in terms of a fractal and nondifferentiable continuous space-time. This theory leads (i) to a generalization of possible physically relevant fractal laws, written as partial differential equation acting in the space of scales, and (ii) to a new geometric foundation of quantum mechanics and gauge field theories and their possible generalisations. In the second part, we discuss some examples of application of the theory to various sciences, in particular in cases when the theoretical predictions have been validated by new or updated observational and experimental data. This includes predictions in physics and cosmology (value of the QCD coupling and of the cosmological constant), to astrophysics and gravitational structure formation (distances of extrasolar planets to their stars, of Kuiper belt objects, value of solar and solar-like star cycles), to sciences of life (log-p...

  11. Coding Theory and Applications : 4th International Castle Meeting

    CERN Document Server

    Malonek, Paula; Vettori, Paolo

    2015-01-01

    The topics covered in this book, written by researchers at the forefront of their field, represent some of the most relevant research areas in modern coding theory: codes and combinatorial structures, algebraic geometric codes, group codes, quantum codes, convolutional codes, network coding and cryptography. The book includes a survey paper on the interconnections of coding theory with constrained systems, written by an invited speaker, as well as 37 cutting-edge research communications presented at the 4th International Castle Meeting on Coding Theory and Applications (4ICMCTA), held at the Castle of Palmela in September 2014. The event’s scientific program consisted of four invited talks and 39 regular talks by authors from 24 different countries. This conference provided an ideal opportunity for communicating new results, exchanging ideas, strengthening international cooperation, and introducing young researchers into the coding theory community.

  12. Applicability of cable theory to vascular conducted responses

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Jensen, Lars Jørn; Sørensen, Preben Graae;

    2012-01-01

    Conduction processes in the vasculature have traditionally been described using cable theory, i.e., locally induced signals decaying passively along the arteriolar wall. The decay is typically quantified using the steady-state length-constant, ¿, derived from cable theory. However......, the applicability of cable theory to blood vessels depends on assumptions that are not necessarily fulfilled in small arteries and arterioles. We have employed a morphologically and electrophysiologically detailed mathematical model of a rat mesenteric arteriole to investigate if the assumptions hold and whether...... ¿ adequately describes simulated conduction profiles. We find that several important cable theory assumptions are violated when applied to small blood vessels. However, the phenomenological use of a length-constant from a single exponential function is a good measure of conduction length. Hence, ¿ should...

  13. Optical wireless communications: Theory and applications

    Science.gov (United States)

    Aminikashani, Mohammadreza

    on the potentials of currently used FSO systems. Furthermore, utilizing this new statistical channel model, closed-form expressions for the diversity gain and the error rate performance of FSO links with spatial diversity are derived. In addition to addressing ways to improve outdoor FSO communication sys- tems, this dissertation addresses some major challenges in indoor visible light communication (VLC). VLC is an advantageous technique that is proposed for wireless indoor communications. In VLC systems, the existence of multiple paths between the transmitter and receiver causes multipath distortion, particularly in links using non-directional transmitters and receivers, or in links relying upon non-line of-sight propagation. This multipath distortion can lead to intersymbol interference (ISI) at high bit rates. Multicarrier modulation usually implemented by orthogonal frequency division multiplexing (OFDM) can be used to mitigate ISI and multipath dispersion. Nevertheless, the performance of VLC systems employing OFDM modulation is significantly affected by nonlinear characteristic of light-emitting diode (LED) due to the large peak-to-average power ratio (PAPR) of OFDM signal. In other words, signal amplitudes below the LED turn-on-voltage and above the LED saturation point are clipped. This dissertation targets these important issues and successfully addresses them by developing some techniques to reduce high PAPR of optical OFDM signal and determining the optimum operating characteristics of LEDs for combined lighting and communications applications. VLC can also provide a practical solution for indoor positioning as global po- sitioning system (GPS) does not provide an accurate and rapid indoor positioning since GPS radio signals are attenuated and scattered by walls of large buildings and other objects. A practical VLC system would be likely to deploy the same configuration for both positioning and communication purposes where high speed data rates are desired

  14. Non-Ewald methods: theory and applications to molecular systems

    OpenAIRE

    Fukuda, Ikuo; Nakamura, Haruki

    2012-01-01

    Several non-Ewald methods for calculating electrostatic interactions have recently been developed, such as the Wolf method, the reaction field method, the pre-averaging method, and the zero-dipole summation method, for molecular dynamics simulations of various physical systems, including biomolecular systems. We review the theories of these approaches and their potential applications to molecular simulations, and discuss their relationships.

  15. Employee Motivation Theories and their Applications in Modern Organizations

    OpenAIRE

    Drogomyretska Mariana

    2013-01-01

    The essay is dedicated to the determination of the essence of employee motivation in today’s business environment. The main need-based and process-based theories of motivation and the possibility of their application in modern organizations are considered. The existence of the relationship between employee motivation and organizational effectiveness is proved by author.

  16. Some applications of the theory of harmonic integrals

    OpenAIRE

    Matsumura Shin-ichi

    2015-01-01

    In this survey, we present recent techniques on the theory of harmonic integrals to study the cohomology groups of the adjoint bundle with the multiplier ideal sheaf of singular metrics. As an application, we give an analytic version of the injectivity theorem.

  17. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    CHEN ShaoChun; XIAO LiuChao

    2008-01-01

    Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.

  18. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.

  19. 12th International Conference on Computer Graphics Theory and Applications

    CERN Document Server

    2017-01-01

    The International Conference on Computer Graphics Theory and Applications aims at becoming a major point of contact between researchers, engineers and practitioners in Computer Graphics. The conference will be structured along five main tracks, covering different aspects related to Computer Graphics, from Modelling to Rendering, including Animation, Interactive Environments and Social Agents In Computer Graphics.

  20. The thermodynamics of quantum Yang–Mills theory theory and applications

    CERN Document Server

    Hofmann, Ralf

    2012-01-01

    This book aims to provide advanced students and researchers with the text on a nonperturbative, thermodynamically grounded, and largely analytical approach to four-dimensional Quantum Gauge Theory. The terrestrial, astrophysical, and cosmological applications, mostly within the realm of low-temperature photon physics, are treated.

  1. The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer

    CERN Document Server

    Grachev, Andrey A; Fairall, Christopher W; Guest, Peter S; Persson, P Ola G

    2012-01-01

    Measurements of atmospheric turbulence made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to determine the limits of applicability of Monin-Obukhov similarity theory (in the local scaling formulation) in the stable atmospheric boundary layer. Based on spectral analysis of wind velocity and air temperature fluctuations, it is shown that when both gradient Richardson number, Ri, and flux Richardson number, Rf, exceed a 'critical value' about 0.20-0.25, the inertial subrange associated with the Kolmogorov cascade dies out and vertical turbulent fluxes become small. Some small-scale turbulence survives even in the supercritical regime, but this is non-Kolmogorov turbulence and it decays rapidly with further increasing stability. Similarity theory is based on the turbulent fluxes in the high-frequency part of the spectra that are associated with energy-containing/flux-carrying eddies. Spectral densities in this high-frequency band diminish as the Kolmogorov...

  2. International Conference on Frontiers of Intelligent Computing : Theory and Applications

    CERN Document Server

    Udgata, Siba; Biswal, Bhabendra

    2013-01-01

    The volume contains the papers presented at FICTA 2012: International Conference on Frontiers in Intelligent Computing: Theory and Applications held on December 22-23, 2012 in Bhubaneswar engineering College, Bhubaneswar, Odissa, India. It contains 86 papers contributed by authors from the globe. These research papers mainly focused on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc  for various engineering applications such as data mining, image processing, cloud computing, networking etc.

  3. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M

    2014-01-01

    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  4. International Conference Modern Stochastics: Theory and Applications III

    CERN Document Server

    Limnios, Nikolaos; Mishura, Yuliya; Sakhno, Lyudmyla; Shevchenko, Georgiy; Modern Stochastics and Applications

    2014-01-01

    This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a  great source of inspiration for designing new algorithms, modeling procedures, and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas, and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics, and economics. Contributions to this Work include those of selected speakers from the international conference entitled “Modern Stochastics: Theory and Applications III,”  held on September 10 –14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, st...

  5. An introduction to queueing theory modeling and analysis in applications

    CERN Document Server

    Bhat, U Narayan

    2015-01-01

    This introductory textbook is designed for a one-semester course on queueing theory that does not require a course on stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a wide interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. This edition includes additional topics in methodology and applications. Key features: • An introductory chapter including a historical account of the growth of queueing theory in more than 100 years. • A modeling-based approach with emphasis on identification of models. • Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. • Applications in manufacturing and, computer and communication systems. • A chapter on ...

  6. Multicomponent and multiscale systems theory, methods, and applications in engineering

    CERN Document Server

    Geiser, Juergen

    2016-01-01

    This book examines the latest research results from combined multi-component and multi-scale explorations. It provides theory, considers underlying numerical methods, and presents brilliant computational experimentation. Engineering computations featured in this monograph further offer particular interest to many researchers, engineers, and computational scientists working in frontier modeling and applications of multicomponent and multiscale problems. Professor Geiser gives specific attention to the aspects of decomposing and splitting delicate structures and controlling decomposition and the rationale behind many important applications of multi-component and multi-scale analysis. Multicomponent and Multiscale Systems: Theory, Methods, and Applications in Engineering also considers the question of why iterative methods can be powerful and more appropriate for well-balanced multiscale and multicomponent coupled nonlinear problems. The book is ideal for engineers and scientists working in theoretical and a...

  7. The "covariation method" for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach

    NARCIS (Netherlands)

    Lika, K.; Kearney, M.R.; Freitas, V.; van der Veer, H.W.; van der Meer, J.; Wijsman, J.W.M.; Pecquerie, L.; Kooijman, S.A.L.M.

    2011-01-01

    The Dynamic Energy Budget (DEB) theory for metabolic organisation captures the processes of development, growth, maintenance, reproduction and ageing for any kind of organism throughout its life-cycle. However, the application of DEB theory is challenging because the state variables and parameters a

  8. Energy Budget and the Virial Theorem in Interstellar Clouds

    OpenAIRE

    Vazquez-Semadeni, Enrique

    1997-01-01

    The Virial Thoerem is a mathematical expression obtained from the equation of motion for a fluid, which describes the energy budget of particular regions within the flow. This course reviews the basic theory leading to the Virial Theorem, discusses its applicability and limitations, and then summarizes observational results concerning the physical and statistical properties of interstellar clouds which are normally understood in terms of the Virial Theorem, in particular the so-called ``Larso...

  9. Metabolic programming of zebra fish Danio rerio uncovered. Physiological performance as explained by dynamic energy budget theory and life-cycle consequence of uranium induced perturbations

    International Nuclear Information System (INIS)

    The aim of this dissertation is to characterize the toxicity of uranium on the metabolism of zebra fish, nio rerio. The first three chapters of this manuscript are dedicated to characterizing the blank metabolism of zebra fish. I used the Dynamic Energy Budget (deb) theory for this characterisation; it is presently the only theory that covers the full life cycle of the organism and quantifies feeding, assimilation, growth, reproduction, maturation, maintenance and ageing. Any metabolic effect of uranium should appear as effects on one or more of these fundamental processes. Since the life span of zebra fish is some four and a half years, and larger individuals respond slower to chemical stress, the focus was on the early life stages. Considerable breakthroughs in the quantification of zebra fish development, growth and reproduction have been made. It turned out the zebra fish accelerates its metabolism after birth till metamorphosis, when acceleration ceases. This process is seen in some, but not all, species of fish. Another striking conclusion was that somatic maintenance was much higher than is typical for fish. We don't yet have an explanation for this funding. Further it turned out that the details of reproduction matter: allocation to reproduction (in adults) accumulates in a reproduction buffer and this buffer is used to prepare batches of eggs. We needed to detail this preparation process to understand how zebra fish can eliminate uranium via eggs. Deb theory specifies that a particular developmental stage (birth, metamorphosis, puberty) is reached at specified levels of maturity. For different temperatures and food levels, that can occur at different ages and body sizes. We extended this idea to include all the described morphologically defined developmental stages of the zebra fish in the literature; the observed variations in ages and body sizes can now be explained by deb theory. To test if deb theory can also explain perturbations of maturation, we

  10. The Riemann zeta-function theory and applications

    CERN Document Server

    Ivic, Aleksandar

    2003-01-01

    ""A thorough and easily accessible account.""-MathSciNet, Mathematical Reviews on the Web, American Mathematical Society. This extensive survey presents a comprehensive and coherent account of Riemann zeta-function theory and applications. Starting with elementary theory, it examines exponential integrals and exponential sums, the Voronoi summation formula, the approximate functional equation, the fourth power moment, the zero-free region, mean value estimates over short intervals, higher power moments, and omega results. Additional topics include zeros on the critical line, zero-density estim

  11. Applications of Jarzynski's relation in lattice gauge theories

    CERN Document Server

    Nada, Alessandro; Costagliola, Gianluca; Panero, Marco; Toniato, Arianna

    2016-01-01

    Jarzynski's equality is a well-known result in statistical mechanics, relating free-energy differences between equilibrium ensembles with fluctuations in the work performed during non-equilibrium transformations from one ensemble to the other. In this work, an extension of this relation to lattice gauge theory will be presented, along with numerical results for the $\\mathbb{Z}_2$ gauge model in three dimensions and for the equation of state in $\\mathrm{SU}(2)$ Yang-Mills theory in four dimensions. Then, further applications will be discussed, in particular for the Schr\\"odinger functional and for the study of QCD in strong magnetic fields.

  12. Equivalent sample theory of networked control systems and its application

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The equivalent sample theory and its application in analysis of networked control system (NCS) are presented. After analyzing NCS's scheduling in master-slave mode, the characteristics of time delay and sample are summarized. Looking on master station visiting the slave station as a special sample process, the theory of equivalent sample is presented. And based on it, the stability of a kind of NCS is analyzed. The criterion to determine the upper bound of transmission delay is introduced, which guarantees the stability. Finally, an example with simulation shows the availability and usability of this analysis method.

  13. Probability and information theory, with applications to radar

    CERN Document Server

    Woodward, P M; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Second Edition, Volume 3: Probability and Information Theory with Applications to Radar provides information pertinent to the development on research carried out in electronics and applied physics. This book presents the established mathematical techniques that provide the code in which so much of the mathematical theory of electronics and radar is expressed.Organized into eight chapters, this edition begins with an overview of the geometry of probability distributions in which moments play a significant role. This text then examines the mathematical methods in

  14. The Analysis on the Application of Pragmatic Theory in Translation

    Institute of Scientific and Technical Information of China (English)

    杜鑫

    2014-01-01

    Pragmatic research is the specific meaning of the language in the specific context.translation is a language communication activity, which is a sense of cross-cultural conversion,it aims to seek the balance of original language and the target language in different cultural contexts. to apply pragmatic theory in translation,it can effectively guide the practice of translation. And in the process of translation,the pragmatic theories are also been further tested and refined. In this paper, starting with the necessity and guidance in language translation process from pragmatic view.and start a further discussion about the application of pragmatic in translation .

  15. Application of Rough Set Theory in Fault Diagnostic Rules Acquisition

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rough set theory is a new mathematical tool to deal with vagueness and uncertainty. But original rough sets theory only generates deterministic rules and deals with data sets in which there is no noise. The variable precision rough set model (VPRSM) is presented to handle uncertain and noisy information. A method based on VPRSM is proposed to apply to fault diagnosis feature extraction and rules acquisition for industrial applications. An example for fault diagnosis of rotary machinery is given to show that the method is very effective.

  16. Impact of the Application Technique on Nitrogen Gas Emissions and Nitrogen Budgets in Case of Energy Maize Fertilized with Biogas Residues

    Science.gov (United States)

    Andres, Monique; Fränzke, Manuel; Schuster, Carola; Kreuter, Thomas; Augustin, Jürgen

    2014-05-01

    Despite an increasing cultivation of energy maize fertilized with ammonia-rich biogas residues (BR), little is known about the impact of the application technique on gaseous nitrogen (N) losses as well as N budgets, indicative of N use efficiency. To contribute to closing this knowledge gap we conducted a field experiment supplemented by a laboratory incubation study. The field experiment was carried out in Dedelow, located in the Northeastern German Lowlands and characterized by well-drained loamy sand (haplic luvisol). Two treatments with different application technique for BR fertilization - i) trail hoses and ii) injection - were compared to an unfertilized control (0% N). Seventy percent of the applied N-BR was assumed to be plant-available. In 2013, biweekly nitrous oxide (N2O) measurements were conducted during the time period between BR application and maize harvest (18.04.-11.09.2013; 147 days) using non-flow-through non-steady-state chamber measurements. To quantify soil Nmin status, soil samples were taken from 0-30 cm soil depth in the spring (before fertilization) and autumn (after maize harvest). Immediately after BR application, ammonia (NH3) volatilization was measured intensively using the open dynamic chamber Dräger-Tube method. Export of N due to harvest was determined via plant N content (Nharvest). Based on the measured N gas fluxes, N soil and plant parameters, soil N budgets were calculated using a simple difference approach. Values of N output (Nharvest, NN2O_cum and NNH3_cum) are subtracted from N input values (Nfertilizer and Nmin_autumnminus Nmin_spring). In order to correctly interpret N budgets, other N fluxes must be integrated into the budget calculation. Apart from soil-based mobilization and immobilization turnover processes and nitrate leaching, this applies specifically to N2 losses due to denitrification. Therefore, we measured the N2 emissions from laboratory-incubated undisturbed soil cores (250 cm3) by means of the helium

  17. Application of modern control theory to HTGR-plant

    International Nuclear Information System (INIS)

    The classical control theory approach to the multivariate control problem is to decouple the system intentionally and to treat each loop independently. As a result, final control system design is limited in complexity by the available mathematical techniques limitation and it's control performance is insufficient in many cases. The modern control theory approach based on the state variables to the problem provides far more powerful methods and more design flexibility than the classical control theory approach by the new mathematical formulation about the problem. The state variable feedback in formulating as an optimal regulator is the most effective way to obtain the desired control performance. In this report, some results of optimal regulator application to High Temperature Gas Cooled Reactor (HTGR) are shown. (author)

  18. Automated Budget System

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  19. Graph theory - recent developments of its application in geomorphology

    Science.gov (United States)

    Heckmann, Tobias; Schwanghart, Wolfgang; Pillips, Jonathan

    2014-05-01

    Graph theory has been widely applied across a range of disciplines as different as population and landscape ecology, sociology, economic and transportation geography, informatics and climatology - yet these disciplines have in common that they deal with systems consisting of multiple subsystems or compartments that are coupled by relations. Although geomorphic systems lend themselves to network representations (see e.g. Chorley and Kennedy's systems approach to physical geography, 1971), the application of the conceptional and methodological toolbox of graph theory has been quite rare and restricted. In the 1960ies, graph theory was used to study the topology of river networks; since the 1970ies, studies in geomorphometry have employed it to model the topological structure of topographic surfaces. The recent re-discovery and development of graph theory applications in geomorphology run on two lines. (a) The spatially explicit analysis of sediment cascades in geomorphic systems where nodes represent their compartments (depending on the spatial scale of the study the latter can be single landforms or larger terrain subunits up to whole catchments), and edges represent the linkage of system components through water or sediment flux. This approach is closely related to the analysis of hydrological and/or sediment connectivity. (b) The analysis of geomorphic systems whose properties are represented by graph nodes, and the relations between them by graph edges. Graph theoretical measures, derived e.g. by eigenvalue analysis of the adjacency matrix, have been shown to reflect system properties such as synchronization and scale relations. Our contribution reports on these recent developments. We present case studies and discuss future applications in geomorphology that could benefit from graph theory.

  20. Applications of the holographic principle in string theory

    Science.gov (United States)

    Button, Bradly Kevin

    The holographic principle has become an extraordinary tool in theoretical physics, most notably in the form of the Anti-deSitter Conformal Field Theory (AdS/CFT) correspondence, in which classical gravitational degrees of freedom in N-dimensions are related quantum field theory degrees of freedom in N -- 1 dimensions in the limit of a large number of fields. Here we present an account of the AdS/CFT correspondence, also known as the gauge/gravity duality, from its origins in the large N 'tHooft expansion, up to Maldacena's proposal that type IIB string theory in the presence of D-branes at low energy is dual to an N = 4, d = 4, U(N) super Yang-Mills on AdS5 . S5 . We begin with an extensive review of (super)string theory including D-branes. We then present the general formulation of the AdS/CFT in the supergravity background of AdS5 x S5 , along with several examples of how it is used in terms of the identification of bulk fields with operators on the boundary of a CFT. We move on to discuss two applications of the gauge/gravity duality. The first is the application of the holographic gauge/gravity correspondence to the QCD k-string. The second applies the AdS/CFT formalism to a Kerr black hole solution embedded in 10-dimensional heterotic sting theory. These two applications of the holographic gauge/gravity duality comprise the original work presented here. We follow with summaries and discussions of the background material, the original work, and future investigations.

  1. Marshall ̶ Olkin Distributions : Advances in Theory and Applications

    CERN Document Server

    Durante, Fabrizio; Mulinacci, Sabrina

    2015-01-01

    This book presents the latest advances in the theory and practice of Marshall-Olkin distributions. These distributions have been increasingly applied in statistical practice in recent years, as they make it possible to describe interesting features of stochastic models like non-exchangeability, tail dependencies and the presence of a singular component. The book presents cutting-edge contributions in this research area, with a particular emphasis on financial and economic applications. It is recommended for researchers working in applied probability and statistics, as well as for practitioners interested in the use of stochastic models in economics. This volume collects selected contributions from the conference “Marshall-Olkin Distributions: Advances in Theory and Applications,” held in Bologna on October 2-3, 2013.

  2. Mathematical theory of elasticity of quasicrystals and its applications

    CERN Document Server

    Fan, Tian-You

    2016-01-01

    This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket m...

  3. Review of game theory applications for situation awareness

    Science.gov (United States)

    Blasch, Erik; Shen, Dan; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Game theoretical methods have been used for spectral awareness, space situational awareness (SSA), cyber situational awareness (CSA), and Intelligence, Surveillance, and Reconnaissance situation awareness (ISA). Each of these cases, awareness is supported by sensor estimation for assessment and the situation is determined from the actions of multiple players. Game theory assumes rational actors in a defined scenario; however, variations in social, cultural and behavioral factors include the dynamic nature of the context. In a dynamic data-driven application system (DDDAS), modeling must include both the measurements but also how models are used by different actors with different priorities. In this paper, we highlight the applications of game theory by reviewing the literature to determine the current state of the art and future needs. Future developments would include building towards knowledge awareness with information technology (e.g., data aggregation, access, indexing); multiscale analysis (e.g., space, time, and frequency), and software methods (e.g., architectures, cloud computing, protocols).

  4. 8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications

    CERN Document Server

    Warnecke, Gerald

    2001-01-01

    The Eighth International Conference on Hyperbolic Problems - Theory, Nu­ merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con­ tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug­ gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computat...

  5. Global analysis theory of climate system and its applications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The idea and main theoretical results of the global analysis theory of climate system are briefly summarized in this paper. A theorem on the global behavior of climate system is given, i.e. there exists a global attractor in the dynamical equations of climate, any state of climate system will be evolved into the global attractor as time increases, indicating the nonlinear adjustment process of climate system to external forcing. The different effects of external forcing, dissipation and nonlinearity on the long-term behavior of solutions are pointed out, and some main applications of the global analysis theory are also introduced. Especially, three applications, the adjustment and evolution processes of climate, the principle of numerical model design and the optimally numerical integration, are discussed.

  6. Potential game theory applications in radio resource allocation

    CERN Document Server

    Lã, Quang Duy; Soong, Boon-Hee

    2016-01-01

    This book offers a thorough examination of potential game theory and its applications in radio resource management for wireless communications systems and networking. The book addresses two major research goals: how to identify a given game as a potential game, and how to design the utility functions and the potential functions with certain special properties in order to formulate a potential game. After proposing a unifying mathematical framework for the identification of potential games, the text surveys existing applications of this technique within wireless communications and networking problems found in OFDMA 3G/4G/WiFi networks, as well as next-generation systems such as cognitive radios and dynamic spectrum access networks. Professionals interested in understanding the theoretical aspect of this specialized field will find Potential Game Theory a valuable resource, as will advanced-level engineering students. It paves the way for extensive and rigorous research exploration on a topic whose capacity for...

  7. Complex Time-Delay Systems Theory and Applications

    CERN Document Server

    Atay, Fatihcan M

    2010-01-01

    Time delays in dynamical systems arise as an inevitable consequence of finite speeds of information transmission. Realistic models increasingly demand the inclusion of delays in order to properly understand, analyze, design, and control real-life systems. The goal of this book is to present the state-of-the-art in research on time-delay dynamics in the framework of complex systems and networks. While the mathematical theory of delay equations is quite mature, its application to the particular problems of complex systems and complexity is a newly emerging field, and the present volume aims to play a pioneering role in this perspective. The chapters in this volume are authored by renowned experts and cover both theory and applications in a wide range of fields, with examples extending from neuroscience and biology to laser physics and vehicle traffic. Furthermore, all chapters include sufficient introductory material and extensive bibliographies, making the book a self-contained reference for both students and ...

  8. Turbulence introduction to theory and applications of turbulent flows

    CERN Document Server

    Westerweel, Jerry; Nieuwstadt, Frans T M

    2016-01-01

    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.

  9. A Hub Matrix Theory and Applications to Wireless Communications

    Directory of Open Access Journals (Sweden)

    H. T. Kung

    2007-01-01

    Full Text Available This paper considers communications and network systems whose properties are characterized by the gaps of the leading eigenvalues of AHA for a matrix A. It is shown that a sufficient and necessary condition for a large eigen-gap is that A is a “hub” matrix in the sense that it has dominant columns. Some applications of this hub theory in multiple-input and multiple-output (MIMO wireless systems are presented.

  10. Editorial Viscoplastic fluids: From theory to application 2013

    OpenAIRE

    Chateau, Xavier; Wachs, A

    2015-01-01

    International audience q This issue of the Journal of Non-Newtonian Fluid Mechanics includes a series of papers based on work presented at the international workshop on Viscoplastic fluids: from theory to application, held Nov. 18–21, 2013 in Rueil Malmaison, France. A list of participants is provided in Table 1. This was the fifth biannual meeting on this subject. The previous meetings were held in Banff (Alberta, Canada), Monte Verita (Ascona, Switzerland), Limassol (Cyprus) and Rio de J...

  11. The Application of Input Theory to English Classroom Teaching

    Institute of Scientific and Technical Information of China (English)

    刘坤

    2015-01-01

    Early in the 1980s, Stephen Krashen has proposed a comprehensive and overall Input Theory that explains how the sec⁃ond language is acquired. It is still very referential to present English classroom teaching. In this essay, applications of Input Theo⁃ry to English classroom teaching are developed from six aspects, involving the nature of second language acquisition, comprehensi⁃ble input and so on.

  12. Passive Microwave Component Design Using Inverse Scattering: Theory and Applications

    OpenAIRE

    Israel Arnedo; Iván Arregui; Magdalena Chudzik; Fernando Teberio; Aintzane Lujambio; David Benito; Txema Lopetegi; Laso, Miguel A. G.

    2013-01-01

    We briefly review different synthesis techniques for the design of passive microwave components with arbitrary frequency response, developed by our group during the last decade. We provide the theoretical foundations based on inverse scattering and coupled-mode theory as well as several applications where the devices designed following those techniques have been successfully tested. The main characteristics of these synthesis methods are as follows. (a) They are direct, because it is not nece...

  13. Index Theory with Applications to Mathematics and Physics

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Bleecker, David

    Index Theory with Applications to Mathematics and Physics describes, explains, and explores the Index Theorem of Atiyah and Singer, one of the truly great accomplishments of twentieth-century mathematics whose influence continues to grow, fifty years after its discovery. The Index Theorem has given...... birth to many mathematical research areas and exposed profound connections between analysis, geometry, topology, algebra, and mathematical physics. Hardly any topic of modern mathematics stands independent of its influence....

  14. Weak Orlicz space and its applications to the martingale theory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,the weak Orlicz space wL Φ is introduced and its applications to the martingale theory are discussed.In particular,a series of martingale inequalities including the maximal function inequality in weak Orlicz spaces are established;the relationships between these spaces are investigated.Moreover,the boundedness of several sublinear operators from one weak Orlicz space to another is proved;their vector-valued analogues are also considered.

  15. Soliton Propagation in nonlinear optical fibers : theory and application

    OpenAIRE

    Goy, David A.

    1987-01-01

    A survey of research in nonlinear optical fibers is given. Important background concepts are introduced and explained. Present and future applications of nonlinear optical fibers arc reviewed. A mathematical model of a nonlinear optical fiber is developed using a coupled-mode theory approach, and methods of solving nonlinear partial differential equations arc discussed. A detailed history of research in the field is given, and recommendations for future research are made.

  16. Machine learning in radiation oncology theory and applications

    CERN Document Server

    El Naqa, Issam; Murphy, Martin J

    2015-01-01

    ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided rad

  17. Intelligent techniques in engineering management theory and applications

    CERN Document Server

    Onar, Sezi

    2015-01-01

    This book presents recently developed intelligent techniques with applications and theory in the area of engineering management. The involved applications of intelligent techniques such as neural networks, fuzzy sets, Tabu search, genetic algorithms, etc. will be useful for engineering managers, postgraduate students, researchers, and lecturers. The book has been written considering the contents of a classical engineering management book but intelligent techniques are used for handling the engineering management problem areas. This comprehensive characteristics of the book makes it an excellent reference for the solution of complex problems of engineering management. The authors of the chapters are well-known researchers with their previous works in the area of engineering management.

  18. Intelligent decision making in quality management theory and applications

    CERN Document Server

    Yanık, Seda

    2016-01-01

      This book presents recently developed intelligent techniques with applications and theory in the area of quality management. The involved applications of intelligence include techniques such as fuzzy sets, neural networks, genetic algorithms, etc. The book consists of classical quality management topics dealing with intelligent techniques for solving the complex quality management problems. The book will serve as an excellent reference for quality managers, researchers, lecturers and postgraduate students in this area. The authors of the chapters are well-known researchers in the area of quality management.  .

  19. Quantum Interferometry in Phase Space Theory and Applications

    CERN Document Server

    Suda, Martin

    2006-01-01

    Quantum Interferometry in Phase Space is primarily concerned with quantum-mechanical distribution functions and their applications in quantum optics and neutron interferometry. In the first part of the book, the author describes the phase-space representation of quantum optical phenomena such as coherent and squeezed states. Applications to interferometry, e.g. in beam splitters and fiber networks, are also presented. In the second part of the book, the theoretical formalism is applied to neutron interferometry, including the dynamical theory of diffraction, coherence properties of superposed beams, and dephasing effects.

  20. Thin film coated submicron gratings: theory, design, fabrication and application

    Energy Technology Data Exchange (ETDEWEB)

    Heine, C.

    1996-12-31

    The realization of new applications of submicron grating structures requires efficient theoretical methods and elaborate fabrication techniques. In this work rigorous diffraction theory for one-dimensional gratings has been investigated and optimization techniques, based on methods used in thin film optics, have been developed. Submicron gratings embossed in polycarbonate have been fabricated and characterized. This includes transmission measurements which are in good agreement with theoretical calculations. Designs for a wide range of optical filters, which lead to improved optical and mechanical properties, are presented. This has been demonstrated for broadband antireflection structures for solar energy applications, based on MgF{sub 2}-coated gratings. (author) figs., tabs., refs.

  1. Transformers and inductors for power electronics theory, design and applications

    CERN Document Server

    Hurley, WG

    2013-01-01

    Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transform

  2. Multivariate Bonferroni-type inequalities theory and applications

    CERN Document Server

    Chen, John

    2014-01-01

    Multivariate Bonferroni-Type Inequalities: Theory and Applications presents a systematic account of research discoveries on multivariate Bonferroni-type inequalities published in the past decade. The emergence of new bounding approaches pushes the conventional definitions of optimal inequalities and demands new insights into linear and Fréchet optimality. The book explores these advances in bounding techniques with corresponding innovative applications. It presents the method of linear programming for multivariate bounds, multivariate hybrid bounds, sub-Markovian bounds, and bounds using Hamil

  3. The circular electrical mobility spectrometer; theory, performances and applications

    International Nuclear Information System (INIS)

    A new type of electrical mobility spectrometer (S.M.E.C.) has been designed in the Service d'Etudes et de Recherches en Aerocontamination et en Confinement (CEA) laboratories. It differs from classical electrical mobility spectrometers in its plan circular geometry and its radial flow. This gives some advantages and the possibility of new applications. The theories that we derive for the different versions of this device are confirmed by experimental results obtained using aerosol particles with known electrical mobility. The S.M.E.C's performances are tested for several applications: - controlled surface contamination, - monodisperse aerosol production, - fine and ultrafine aerosol sizing. (author)

  4. Classification theory of topological insulators and superconductors and its application to topological crystalline insulators

    International Nuclear Information System (INIS)

    We review the classification theory of topological insulators and superconductors based on the K-theory and the Clifford algebras. We also review an application of the classification theory to the topological crystalline insulators with reflection symmetry. (author)

  5. BASIC THEORY AND APPLICATIONS OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    LI Junyue; XUE Haitao; LI Huan; SONG Yonglun

    2007-01-01

    Welding arc spectral information is a rising welding Information source. In some occasion, it can reflect many physical phenomena of welding process and solve many problems that cannot be done with arc electric information, acoustic information and other arc information. It is of important significance in developing automatic control technique of welding process and other similar process. Many years study work on welding arc spectral information of the anthor are discussed from three aspects of theory, method and application. Basic theory, view and testing methods of welding arc spectral information has been put forward. In application aspects, many applied examples, for example, monitoring of harmful gases in arc (such as hydrogen and nitrogen) with the method of welding arc spectral information; welding arc spectral imaging of thc welding pool which is used in automatic seam tracking; controlling of welding droplet transfer with welding arc spectral information and so on, are introduced. Especially, the successful application in real time controlling of welding droplet transfer in pulsed GMAW is introduced too. These application examples show that the welding arc spectral information has great applied significance and development potentialities. These content will play an important role in applying and spreading welding arc spectral information technology.

  6. Applications of self-consistent field theory in polymer systems

    Institute of Scientific and Technical Information of China (English)

    YANG; Yuliang; QIU; Feng; TANG; Ping; ZHANG; Hongdong

    2006-01-01

    The self-consistent field theory (SCFT) based upon coarse-grained model is especially suitable for investigating thermodynamic equilibrium morphology and the phase diagram of inhomogeneous polymer systems subjected to phase separation. The advantage of this model is that the details of the chain such as the architecture of the chain and the sequence of blocks can be considered. We present here an overview of SCFT approach and its applications in polymeric systems. In particular, we wish to focus on our group's achievements in applications of SCFT in such fields: simulation of microphase separation morphologies of multiblock copolymers with a complex molecular architecture, interactions between brush-coated sheets in a polymer matrix, mixtures of flexible polymers and small molecular liquid crystals at the interface, shapes of polymer-chain-anchored fluid vesicles, self-assembled morphologies of block copolymers in dilute solution, and so on. Finally, the further developments as well as the perspective applications of SCFT are discussed.

  7. The Modern Marine Ca-isotope Budget and its Application to the Phanerozoic Ca-isotope Record

    Science.gov (United States)

    Blattler, C. L.; Jenkyns, H. C.; Henderson, G. M.

    2011-12-01

    Variations in the calcium-isotope ratio (δ44/40Ca) of ancient seawater have been recorded in several studies using marine carbonate, barite, or apatite, but the causes of these variations have not been explored quantitatively. Seawater Ca-isotope ratios are affected by the average fractionation factor between seawater and the carbonate that precipitates from it, which is defined by the composition of the marine carbonate sink. To investigate possible changes in the fractionation factor of marine carbonate over the Phanerozoic, a Ca-isotope budget has been constructed for the modern oceans. Over 250 Ca-isotope measurements have been compiled from a wide variety of carbonate sources to describe the modern marine Ca-isotope budget. This dataset includes over 50 new measurements to characterize several components of the carbonate system, such as coral reefs, which are quantitatively important but have been undersampled, for example, relative to planktic foraminifera. δ44/40Ca values have been temperature-normalized using the relationship of +0.02% per °C, which permits observations and comparisons based on mineralogy, taxonomy, and locus of carbonate precipitation. A general offset of ~0.25%, increasing up to ~0.8% for certain taxa, is observed between subsets of aragonite and calcite samples; no statistical difference is observed between high-Mg calcite and low-Mg calcite. Additionally, within the data for calcite skeletons, two broad groups appear based on taxonomic patterns. Taxa with generally weak control over their biomineralization, such as sclerosponges, brachiopods, and calcareous red algae, are 0.4-0.5% heavier than organisms with more controlled calcification mechanisms, such as coccolithophores and planktic foraminifera. The patterns that emerge from this dataset for different clades demonstrate the usefulness of fossil carbonate for reconstructing the Ca-isotope ratio of ancient seawater. The composition of the modern Ca-isotope budget provides a basis

  8. Measurement-based load modeling: Theory and application

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Load model is one of the most important elements in power system operation and control. However, owing to its complexity, load modeling is still an open and very difficult problem. Summarizing our work on measurement-based load modeling in China for more than twenty years, this paper systematically introduces the mathematical theory and applications regarding the load modeling. The flow chart and algorithms for measurement-based load modeling are presented. A composite load model structure with 13 parameters is also proposed. Analysis results based on the trajectory sensitivity theory indicate the importance of the load model parameters for the identification. Case studies show the accuracy of the presented measurement-based load model. The load model thus built has been validated by field measurements all over China. Future working directions on measurement- based load modeling are also discussed in the paper.

  9. The application of information theory to biochemical signaling systems.

    Science.gov (United States)

    Rhee, Alex; Cheong, Raymond; Levchenko, Andre

    2012-08-01

    Cell signaling can be thought of fundamentally as an information transmission problem in which chemical messengers relay information about the external environment to the decision centers within a cell. Due to the biochemical nature of cellular signal transduction networks, molecular noise will inevitably limit the fidelity of any messages received and processed by a cell's signal transduction networks, leaving it with an imperfect impression of its environment. Fortunately, Shannon's information theory provides a mathematical framework independent of network complexity that can quantify the amount of information that can be transmitted despite biochemical noise. In particular, the channel capacity can be used to measure the maximum number of stimuli a cell can distinguish based upon the noisy responses of its signaling systems. Here, we provide a primer for quantitative biologists that covers fundamental concepts of information theory, highlights several key considerations when experimentally measuring channel capacity, and describes successful examples of the application of information theoretic analysis to biological signaling.

  10. Multi-point cooperative communication systems theory and applications

    CERN Document Server

    Ding, Ming

    2013-01-01

    Multi-point Cooperative Communication Systems: Theory and Applications mainly discusses multi-point cooperative communication technologies which are used to overcome the long-standing problem of limited transmission rate caused by the inter-point interference. Instead of combating the interference, recent progress in both academia and industrial standardizations has evolved to adopt the philosophy of “exploiting” the interference to improve the transmission rate by cooperating among multiple points. This book addresses the multi-point cooperative communication system systematically giving  the readers a clear picture of the technology map and where the discussed schemes may fit. This book includes not only the theories of the paradigm-shifting multi-point cooperative communication, but also the designs of sub-optimal cooperative communication schemes for practical systems. Ming Ding is a senior researcher at Sharp Laboratories of China; Hanwen Luo is a professor at Shanghai Jiao Tong University.

  11. Continuous and distributed systems II theory and applications

    CERN Document Server

    Zgurovsky, Mikhail

    2015-01-01

    As in the previous volume on the topic, the authors close the gap between abstract mathematical approaches, such as applied methods of modern algebra and analysis, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems, on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in biochemistry, geophysics, biology and climatology. This compilation will be of interest to mathematicians and engineers working at the interface of these fields. It presents selected works of the joint seminar series of Lomonosov Moscow State University and the Institute for Applied System Analysis at National Technical University of Ukraine “Kyiv Polytechnic Institute”. The authors come from Brazil, Germany, France, Mexico, Spain, Poland, Russia, Ukraine, and the USA. ...

  12. Nuclear spin relaxation in liquids theory, experiments, and applications

    CERN Document Server

    Kowalewski, Jozef

    2006-01-01

    Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find.Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems.Avoiding ove...

  13. 23rd International Workshop in Operator Theory and its Applications

    CERN Document Server

    Dritschel, Michael; Elst, AFM; Portal, Pierre; Potapov, Denis

    2014-01-01

    This book comprises the proceedings of the Mathematical Physics and MathematicsIII International Workshop on Operator Theory and its Applications (IWOTA 2012), which was held at the University of New South Wales (Sydney, Australia) from 16 July to 20 July 2012. It includes twelve articles presenting both surveys of current research in operator theory and original results. The contributors are A. Amenta P. Auscher and S. Stahlhut W. Bauer C. Herrera Yañez and N. Vasilevski C.C. Cowen, S. Jung and E. Ko R.E. Curto, I.S. Hwang and W.Y. Lee S. Dey and K.J. Haria F. Gesztesy and R. Weikard G. Godefroy B. Jefferies S. Patnaik and G. Weiss W.J. Ricker A. Skripka

  14. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  15. Elements of quantum computing history, theories and engineering applications

    CERN Document Server

    Akama, Seiki

    2015-01-01

    A quantum computer is a computer based on a computational model which uses quantum mechanics, which is a subfield of physics to study phenomena at the micro level. There has been a growing interest on quantum computing in the 1990's, and some quantum computers at the experimental level were recently implemented. Quantum computers enable super-speed computation, and can solve some important problems whose solutions were regarded impossible or intractable with traditional computers. This book provides a quick introduction to quantum computing for readers who have no backgrounds of both theory of computation and quantum mechanics. “Elements of Quantum Computing” presents the history, theories, and engineering applications of quantum computing. The book is suitable to computer scientists, physicist, and software engineers.

  16. The theory and applications of complex matrix scalings

    Directory of Open Access Journals (Sweden)

    Pereira Rajesh

    2014-01-01

    Full Text Available We generalize the theory of positive diagonal scalings of real positive definite matrices to complex diagonal scalings of complex positive definite matrices. A matrix A is a diagonal scaling of a positive definite matrix M if there exists an invertible complex diagonal matrix D such that A = D*MD and where every row and every column of A sums to one. We look at some of the key properties of complex diagonal scalings and we conjecture that every n by n positive definite matrix has at most 2n−1 scalings and prove this conjecture for certain special classes of matrices.We also use the theory of complex diagonal matrix scalings to formulate a van der Waerden type question on the permanent function; we show that the solution of this question would have applications to finding certain maximally entangled quantum states.

  17. String theory and applications to phenomenology and cosmology

    International Nuclear Information System (INIS)

    This thesis treats applications of String Theory to problems of cosmology and high energy phenomenology. In particular, we investigate problems related to the description of the initial state of the universe, using the methods of perturbative String Theory. After a review of the string-theoretic tools that will be employed, we discuss a novel degeneracy symmetry between the bosonic and fermionic massive towers of states (MSDS symmetry), living at particular points of moduli space. We study the marginal deformations of MSDS vacua and exhibit their natural thermal interpretation, in connection with the resolution of the Hagedorn divergences of string thermodynamics. The cosmological evolution of a special, 2-dimensional thermal 'Hybrid' model is presented and the correct implementation of the full stringy degrees of freedom leads to the absence of gravitational singularities, within a fully perturbative treatment. (author)

  18. FY 1996 Congressional budget request: Budget highlights

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The FY 1996 budget presentation is organized by the Department`s major business lines. An accompanying chart displays the request for new budget authority. The report compares the budget request for FY 1996 with the appropriated FY 1995 funding levels displayed on a comparable basis. The FY 1996 budget represents the first year of a five year plan in which the Department will reduce its spending by $15.8 billion in budget authority and by $14.1 billion in outlays. FY 1996 is a transition year as the Department embarks on its multiyear effort to do more with less. The Budget Highlights are presented by business line; however, the fifth business line, Economic Productivity, which is described in the Policy Overview section, cuts across multiple organizational missions, funding levels and activities and is therefore included in the discussion of the other four business lines.

  19. Molecular Modeling of Lipid Aggregates: Theory and Application

    Science.gov (United States)

    Fenner, Joel Stewart

    The ability of cell membranes to perform a wide variety of biological functions stems from the organization and composition of its molecular constituents. There are many engineering applications, such as liposome drug delivery carriers, whose functionality takes advantage of the structure to function relationship of lipid membranes. The fundamental understanding of the relationship between the thermodynamic behavior and structure of lipid membranes and the molecular properties of their lipid constituents is crucial to the successful design of lipid related applications. However, information about how the local microscopic composition of lipid membranes responds to the presence of proteins and nanomaterials is challenging given the intrinsic experimental and theoretical difficulties of studying such small-scale systems. The present work generalizes a self consistent mean field theory for the study of the thermodynamic and structural behavior of lipid bilayers as a function of its molecular composition and physicochemical environments. This novel molecular theory provides with the ability of performing systematic thermodynamic calculations at relatively low computational costs while considering a detailed molecular description of the system under study. The competition of all relevant molecular interactions, such as electrostatics, vdW and chemical equilibria, in the membrane system is described. The developed molecular theory is applied to study how the protonation state of pH-sensitive amphiphiles in a membrane system affects the membrane's morphology. The molecular theory results demonstrate that the protonation state of ionizable groups within amphiphilic membranes shows a highly complex non-monotonic dependence on bulk salt concentration and pH strength. This result suggests that information about the pKa of the molecules is not sufficient to predict the protonation state of the ionizable groups in the membrane system. The molecular theory is also applied to

  20. Quantum field theory on toroidal topology: Algebraic structure and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)

    2014-06-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu

  1. Tilted axis cranking covariant density functional theory and its applications

    International Nuclear Information System (INIS)

    Recent progress on tilted axis cranking covariant density functional theory (CDFT) and its applications to nuclear magnetic and antimagnetic rotation are briefly presented. In particular, the magnetic rotation band in 198Pb and the antimagnetic rotational band in 105Cd are discussed. Without any additional parameter, the experimental relation between angular momentum and rotational frequency for the magnetic rotation band in 198Pb as well as the data of B(E2) values for the antimagnetic rotation band in 105Cd are reproduced very well

  2. The structure of complex networks theory and applications

    CERN Document Server

    Estrada, Ernesto

    2012-01-01

    This book deals with the analysis of the structure of complex networks by combining results from graph theory, physics, and pattern recognition. The book is divided into two parts. 11 chapters are dedicated to the development of theoretical tools for the structural analysis of networks, and 7 chapters are illustrating, in a critical way, applications of these tools to real-world scenarios. The first chapters provide detailed coverage of adjacency and metric and topologicalproperties of networks, followed by chapters devoted to the analysis of individual fragments and fragment-based global inva

  3. Optimal control theory applications to management science and economics

    CERN Document Server

    Sethi, Suresh P

    2006-01-01

    Optimal control methods are used to determine the best ways to control a dynamic system. This book applies theoretical work to business management problems developed from the authors' research and classroom instruction. The thoroughly revised new edition has been refined with careful attention to the text and graphic material presentation. Chapters cover a range of topics including finance, production and inventory problems, marketing problems, machine maintenance and replacement, problems of optimal consumption of natural resources, and applications of control theory to economics. The book in

  4. Statistical Analysis of Designed Experiments Theory and Applications

    CERN Document Server

    Tamhane, Ajit C

    2012-01-01

    A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the

  5. Theory and applications of artificial endocrine system-an overview

    Institute of Scientific and Technical Information of China (English)

    CUI Wei; QIANG Sheng; GAO X Z

    2006-01-01

    Inspired by the biological endocrine system, the Artificial Endocrine System (AES) has been proposed and investigated during the past decade. As a novel branch of computational intelligence methods, it has its unique and distinguishing features. This paper intends to give an overview of the current research work in the AES. The preliminary theory of the AES, which is based on the simplified mathematic models of natural endocrine system, is first introduced here. Some typical AES algorithms and their applications are also briefly discussed. Finally, a few remarks and conclusions are made.

  6. Fringe pattern analysis for optical metrology theory, algorithms, and applications

    CERN Document Server

    Servin, Manuel; Padilla, Moises

    2014-01-01

    The main objective of this book is to present the basic theoretical principles and practical applications for the classical interferometric techniques and the most advanced methods in the field of modern fringe pattern analysis applied to optical metrology. A major novelty of this work is the presentation of a unified theoretical framework based on the Fourier description of phase shifting interferometry using the Frequency Transfer Function (FTF) along with the theory of Stochastic Process for the straightforward analysis and synthesis of phase shifting algorithms with desired properties such

  7. Models and applications of chaos theory in modern sciences

    CERN Document Server

    Zeraoulia, Elhadj

    2011-01-01

    This book presents a select group of papers that provide a comprehensive view of the models and applications of chaos theory in medicine, biology, ecology, economy, electronics, mechanical, and the human sciences. Covering both the experimental and theoretical aspects of the subject, it examines a range of current topics of interest. It considers the problems arising in the study of discrete and continuous time chaotic dynamical systems modeling the several phenomena in nature and society-highlighting powerful techniques being developed to meet these challenges that stem from the area of nonli

  8. Wavelets an elementary treatment of theory and applications

    CERN Document Server

    Koornwinder, T H

    1993-01-01

    Nowadays, some knowledge of wavelets is almost mandatory for mathematicians, physicists and electrical engineers. The emphasis in this volume, based on an intensive course on Wavelets given at CWI, Amsterdam, is on the affine case. The first part presents a concise introduction of the underlying theory to the uninitiated reader. The second part gives applications in various areas. Some of the contributions here are a fresh exposition of earlier work by others, while other papers contain new results by the authors. The areas are so diverse as seismic processing, quadrature formulae, and wavelet

  9. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    CERN Document Server

    Kolev, Tsonko

    2011-01-01

    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  10. Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Craig A. Grimes

    2011-03-01

    Full Text Available Thick-film magnetoelastic sensors vibrate mechanically in response to a time varying magnetic excitation field. The mechanical vibrations of the magnetostrictive magnetoelastic material launch, in turn, a magnetic field by which the sensor can be monitored. Magnetic field telemetry enables contact-less, remote-query operation that has enabled many practical uses of the sensor platform. This paper builds upon a review paper we published in Sensors in 2002 (Grimes, C.A.; et al. Sensors 2002, 2, 294-313, presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology.

  11. Time-dependent density-functional theory concepts and applications

    CERN Document Server

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  12. Stigma in abortion care: application to a grounded theory study.

    Science.gov (United States)

    Lipp, Allyson

    2011-02-01

    A recent research study found that being more directly involved in medical abortion places greater demands on the nurses. The demands required by nurses working in abortion care may be increased by the stigma attached to such an antisocial action. This paper presents an application of stigma theory, as espoused by Goffman, based on a qualitative research study on abortion. It is argued that women attending for abortion are stigmatised and nurses, although 'wise', have an affiliate stigma through their close association with the procedure. It is proposed that the situation can be ameliorated by addressing stigma at policy, local and personal levels. Examples from other areas of practice are outlined for possible application to practice.

  13. THEORY OF OPPOSITE ACUPOINTS AND ITS CLINICAL APPLICATION

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-xin

    2006-01-01

    In the light of the position character, acupoints situating on the corresponding medial and lateral sides of the limbs or in the front and back parts of the body trunk are called as "opposite acupoints". In the present paper, the author expounds its theoretical basis from yin-yang theory, investigates its origin from the location of acupoints and ancient clinical application, and introduces its current application in clinical practice. In addition, the author lists 4 typical cases about treatment of hysteric convulsion, pregnant hypertension, child bed-wetting and leucorrhagia with opposite acupoints. Clinical practice demonstrates that opposite acupoints therapy is fewer in taking acupoints for one session of treatment, simple in operation, and good in the therapeutic effect for treatment of various diseases of different systems in the human body.

  14. Optical Properties of Lanthanides in Condensed Phase, Theory and Applications

    Directory of Open Access Journals (Sweden)

    Renata Reisfeld

    2015-04-01

    Full Text Available The basic theories of electronic levels and transition probabilities of lanthanides are summarized. Their interpretation allows practical preparation of new materials having application in lighting, solar energy utilization, optoelectronics, biological sensors, active waveguides and highly sensitive bioassays for in vitro detection in medical applications. The ways by which the weak fluorescence arising from electronic transition within the four f-configurations can be intensified will be discussed. This includes the intermixing of the four f-states with ligands of the host matrix, excitation to higher d-electronic states. Additional intensification of luminescence by plasmonic interaction with gold, silver and copper nanoparticles will be discussed. A short history of the time development of the research and the names of the scientists who made the major contribution of our understanding of lanthanides spectroscopy are presented.

  15. Fifth international conference on hyperbolic problems -- theory, numerics, applications: Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The conference demonstrated that hyperbolic problems and conservation laws play an important role in many areas including industrial applications and the studying of elasto-plastic materials. Among the various topics covered in the conference, the authors mention: the big bang theory, general relativity, critical phenomena, deformation and fracture of solids, shock wave interactions, numerical simulation in three dimensions, the level set method, multidimensional Riemann problem, application of the front tracking in petroleum reservoir simulations, global solution of the Navier-Stokes equations in high dimensions, recent progress in granular flow, and the study of elastic plastic materials. The authors believe that the new ideas, tools, methods, problems, theoretical results, numerical solutions and computational algorithms presented or discussed at the conference will benefit the participants in their current and future research.

  16. Applications of large-scale density functional theory in biology.

    Science.gov (United States)

    Cole, Daniel J; Hine, Nicholas D M

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality. PMID:27494095

  17. Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes

    CERN Document Server

    Hack, Thomas-Paul

    2015-01-01

    This monograph provides a largely self--contained and broadly accessible exposition of two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology and a fundamental study of the perturbations in Inflation. The two central sections of the book dealing with these applications are preceded by sections containing a pedagogical introduction to the subject as well as introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation. The target reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but does not need to have a background in QFT on curved spacetimes or the algebraic approach to QFT. In particul...

  18. Cosmological applications of algebraic quantum field theory in curved spacetimes

    CERN Document Server

    Hack, Thomas-Paul

    2016-01-01

    This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.

  19. Applications of large-scale density functional theory in biology

    Science.gov (United States)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  20. Einstein's general theory of relativity with modern applications in cosmology

    CERN Document Server

    Grøn, Øyvind

    2007-01-01

    Many of us have experienced the same; fallen and broken something. Yet supposedly, gravity is the weakest of the fundamental forces; it is claimed to be 10-15 times weaker than electromagnetism. Still, every one of us has more or less had a personal relationship with gravity. Einstein’s General Theory of Relativity: With Modern Applications in Cosmology by Oyvind Gron and Sigbjorn Hervik is about gravity and the concept of gravity as Albert Einstein saw it- curved spaces, four-dimensional manifolds and geodesics. The book starts with the 1st principals of relativity and an introduction to Einstein’s field equations. Next up are the three classical tests of the relativity theory and an introduction to black holes. The book contains several topics not found in other textbooks, such as Kaluza-Klein theory, anisotropic models of the universe, and new developments involving brane cosmology. Gron and Hervik have included a part in the book called "Advanced Topics." These topics range from the very edge of resea...

  1. An application of queuing theory to waterfowl migration

    Science.gov (United States)

    Sojda, Richard S.; Cornely, John E.; Fredrickson, Leigh H.; Rizzoli, A.E.; Jakeman, A.J.

    2002-01-01

    There has always been great interest in the migration of waterfowl and other birds. We have applied queuing theory to modelling waterfowl migration, beginning with a prototype system for the Rocky Mountain Population of trumpeter swans (Cygnus buccinator) in Western North America. The queuing model can be classified as a D/BB/28 system, and we describe the input sources, service mechanism, and network configuration of queues and servers. The intrinsic nature of queuing theory is to represent the spatial and temporal characteristics of entities and how they move, are placed in queues, and are serviced. The service mechanism in our system is an algorithm representing how swans move through the flyway based on seasonal life cycle events. The system uses an observed number of swans at each of 27 areas for a breeding season as input and simulates their distribution through four seasonal steps. The result is a simulated distribution of birds for the subsequent year's breeding season. The model was built as a multiagent system with one agent handling movement algorithms, with one facilitating user interface, and with one to seven agents representing specific geographic areas for which swan management interventions can be implemented. The many parallels in queuing model servers and service mechanisms with waterfowl management areas and annual life cycle events made the transfer of the theory to practical application straightforward.

  2. Quantum theory of many-body systems techniques and applications

    CERN Document Server

    Zagoskin, Alexandre

    2014-01-01

    This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals. This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems.   Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum...

  3. Applications of nonlinear dynamic systems theory in developmental psychology: Motor and cognitive development

    OpenAIRE

    Metzger, Mary Ann

    1997-01-01

    Applications of nonlinear dynamical systems theory to psychology have led to recent advances in understanding neuromotor development and advances in theories of cognitive development. This article reviews published findings associated with a specific coherent and influential application from which a theory of adaptive, self-organized cognition has been derived and related to a theory of developmental dynamics of the neuromotor system. The review focuses on implications of two theories for q...

  4. Recent advances in percolation theory and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Abbas Ali, E-mail: ab.saberi@ut.ac.ir

    2015-05-24

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin–Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  5. Recent advances in percolation theory and its applications

    International Nuclear Information System (INIS)

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin–Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  6. Multiple-scattering theory. New developments and applications

    International Nuclear Information System (INIS)

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  7. Multiple-scattering theory. New developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Arthur

    2007-12-04

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  8. A new formulation of the atmospheric spectral energy budget, with application to two high-resolution general circulation models

    CERN Document Server

    Augier, Pierre

    2012-01-01

    A new formulation of the spectral energy budget of kinetic and available potential energies of the atmosphere is derived, with spherical harmonics as base functions. Compared to previous formulations, there are three main improvements: (i) the topography is taken into account, (ii) the exact three-dimensional advection terms are considered and (iii) the vertical flux is separated from the energy transfer between different spherical harmonics. Using this formulation, results from two different high resolution GCMs are analyzed: the AFES T639L24 and the ECMWF IFS T1279L91. The spectral fluxes show that the AFES, which reproduces realistic horizontal spectra with a $k^{-5/3}$ inertial range at the mesoscales, simulates a strong downscale energy cascade. % In contrast, neither the $k^{-5/3}$ vertically integrated spectra nor the downscale energy cascade are produced by the ECMWF IFS.

  9. 2017 Budget Outlays

    Data.gov (United States)

    Executive Office of the President — This dataset includes three data files that contain an extract of the Office of Management and Budget (OMB) budget database. These files can be used to reproduce...

  10. 2017 Budget Receipts

    Data.gov (United States)

    Executive Office of the President — This dataset includes three data files that contain an extract of the Office of Management and Budget (OMB) budget database. These files can be used to reproduce...

  11. Fiscal Year 2015 Budget

    Data.gov (United States)

    Montgomery County of Maryland — This dataset includes the Fiscal Year 2015 Council-approved operating budget for Montgomery County. The dataset does not include revenues and detailed agency budget...

  12. Bayesian Decision Theory Guiding Educational Decision-Making: Theories, Models and Application

    Science.gov (United States)

    Pan, Yilin

    2016-01-01

    Given the importance of education and the growing public demand for improving education quality under tight budget constraints, there has been an emerging movement to call for research-informed decisions in educational resource allocation. Despite the abundance of rigorous studies on the effectiveness, cost, and implementation of educational…

  13. The Application of Conceptual Metaphor Theory in English Polysemy Teaching

    Institute of Scientific and Technical Information of China (English)

    刘璨

    2014-01-01

    Conceptual Metaphor Theory advanced by Lakoff and Johnson is a systematic and complete theory of metaphor.This paper discusses some methods to apply the Conceptual Metaphor Theory to English polysemy teaching.

  14. Federal budget timetable

    Science.gov (United States)

    This is the federal budget timetable under the Balanced Budget and Emergency Deficit Control Act of 1985 (Gramm-Rudman-Hollings). These deadlines apply to fiscal years (FY) 1987-1991. The deficit reduction measures in Gramm-Rudman-Hollings would lead to a balanced budget in 1991.

  15. Budgeting and Beyond

    DEFF Research Database (Denmark)

    Rohde, Carsten

    Budgets and budget control has been known since the early 19th century1. However the use of budget control was until the beginning of the 1920ies in US primarily related to governmental units and states and to a minor extent to business units in practice. At that time James McKinsey describes...

  16. Exact two-component relativistic energy band theory and application

    International Nuclear Information System (INIS)

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results

  17. Fixed Orientation Interconnection Problems: Theory, Algorithms and Applications

    DEFF Research Database (Denmark)

    Zachariasen, Martin

    that electrically independent nets do not intersect each other. Traditional manufacturing technology limits the orientations of the wires to be either horizontal or vertical — and is known as Manhattan architecture. Over the last decade there has been a growing interest in general architectures, where more than two...... perpendicular orientations can be used for routing. This development has made fixed orientation interconnection problems (where an arbitrary set of fixed orientations can be used) interesting from a research point of view. In particular, the problem of computing minimum length networks with fixed orientations...... a significant step forward, both concerning theory and algorithms, for the fixed orientation Steiner tree problem. In addition, the work maintains a close link to applications and generalizations motivated by chip design....

  18. Exact two-component relativistic energy band theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwj@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.

  19. Information theory of quantum systems with some hydrogenic applications

    CERN Document Server

    Dehesa, J S; Sánchez-Moreno, P S; Yáñez, R J

    2010-01-01

    The information-theoretic representation of quantum systems, which complements the familiar energy description of the density-functional and wave-function-based theories, is here discussed. According to it, the internal disorder of the quantum-mechanical non-relativistic systems can be quantified by various single (Fisher information, Shannon entropy) and composite (e.g. Cramer-Rao, LMC shape and Fisher-Shannon complexity) functionals of the Schr\\"odinger probability density. First, we examine these concepts and its application to quantum systems with central potentials. Then, we calculate these measures for hydrogenic systems, emphasizing their predictive power for various physical phenomena. Finally, some recent open problems are pointed out.

  20. The implicit function theorem history, theory, and applications

    CERN Document Server

    Krantz, Steven G

    2003-01-01

    The implicit function theorem is part of the bedrock of mathematics analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for Ck functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth function, (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash-Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present volume. The history of the implicit function theorem is a lively and complex store, and intimately bound up with the development of fundamental ideas in a...

  1. Application of portfolio theory in decision tree analysis.

    Science.gov (United States)

    Galligan, D T; Ramberg, C; Curtis, C; Ferguson, J; Fetrow, J

    1991-07-01

    A general application of portfolio analysis for herd decision tree analysis is described. In the herd environment, this methodology offers a means of employing population-based decision strategies that can help the producer control economic variation in expected return from a given set of decision options. An economic decision tree model regarding the use of prostaglandin in dairy cows with undetected estrus was used to determine the expected return of the decisions to use prostaglandin and breed on a timed basis, use prostaglandin and then breed on sign of estrus, or breed on signs of estrus. The risk attributes of these decision alternatives were calculated from the decision tree, and portfolio theory was used to find the efficient decision combinations (portfolios with the highest return for a given variance). The resulting combinations of decisions could be used to control return variation.

  2. Theory and Application of Dissociative Electron Capture in Molecular Identification

    CERN Document Server

    Havey, C D; Jones, T; Voorhees, K J; Laramee, J A; Cody, R B; Clougherty, D P; Eberhart, Mark; Voorhees, Kent J.; Laramee, James A.; Cody, Robert B.; Clougherty, Dennis P.

    2006-01-01

    The coupling of an electron monochromator (EM) to a mass spectrometer (MS) has created a new analytical technique, EM-MS, for the investigation of electrophilic compounds. This method provides a powerful tool for molecular identification of compounds contained in complex matrices, such as environmental samples. EM-MS expands the application and selectivity of traditional MS through the inclusion of a new dimension in the space of molecular characteristics--the electron resonance energy spectrum. However, before this tool can realize its full potential, it will be necessary to create a library of resonance energy scans from standards of the molecules for which EM-MS offers a practical means of detection. Here, an approach supplementing direct measurement with chemical inference and quantum scattering theory is presented to demonstrate the feasibility of directly calculating resonance energy spectra. This approach makes use of the symmetry of the transition-matrix element of the captured electron to discriminat...

  3. Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anzhong [Baylor Univ., Waco, TX (United States). Department of Physics

    2014-08-14

    This final report describes the activities of the Baylor University Gravity, Cosmology and Astroparticle Physics (GCAP) group on the project: Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics, during the time, August 15, 2010 - August 14, 2014. We are grateful for the financial support provided by the U.S. Department of Energy for this research, which leads to our exceptional success. We are very proud to say that we have achieved all the goals set up in our project and made significant contributions to the understanding of the field. In particular, with this DOE support, we have published 38 articles in the prestigious national/international journals, which have already received about 1000 citations so far.

  4. Theory and application of stability for stochastic reaction diffusion systems

    Institute of Scientific and Technical Information of China (English)

    LUO Qi; DENG FeiQi; MAO XueRong; BAO JunDong; ZHANG YuTian

    2008-01-01

    So far, the Lyapunov direct method is still the moat effective technique in the study of stability for ordinary differential equations and stochastic differential equations. Due to the shortage of the corresponding Ito formula, this useful method has not been popularized in stochastic partial differential equations. The aim of this work is to try to extend the Lyapunov direct method to the Ito stochastic reaction diffusion systems and to establish the corresponding Lyapunov stability theory, including stability in probablity, asymptotic stability in probablity, end exponential stability in mean square. As the application of the obtained theorems, this paper addresses the stability of the Hopfield neural network and points out that the main results ob-tained by Holden Helge and Liao Xiaoxin et al. can be all regarded as the corollaries of the theorems presented in this paper.

  5. Theory and application of experimental model analysis in earthquake engineering

    Science.gov (United States)

    Moncarz, P. D.

    The feasibility and limitations of small-scale model studies in earthquake engineering research and practice is considered with emphasis on dynamic modeling theory, a study of the mechanical properties of model materials, the development of suitable model construction techniques and an evaluation of the accuracy of prototype response prediction through model case studies on components and simple steel and reinforced concrete structures. It is demonstrated that model analysis can be used in many cases to obtain quantitative information on the seismic behavior of complex structures which cannot be analyzed confidently by conventional techniques. Methodologies for model testing and response evaluation are developed in the project and applications of model analysis in seismic response studies on various types of civil engineering structures (buildings, bridges, dams, etc.) are evaluated.

  6. Optimal interconnection trees in the plane theory, algorithms and applications

    CERN Document Server

    Brazil, Marcus

    2015-01-01

    This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.  Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees.  The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, ...

  7. Application Of Extreme Value Theory To Bursts Prediction

    Directory of Open Access Journals (Sweden)

    Abas bin Md Said

    2009-10-01

    Full Text Available Bursts and extreme events in quantities such as connection durations, file sizes, throughput, etc. may produce undesirable consequences in computer networks. Deterioration in the quality of service is a major consequence. Predicting these extreme events and burst is important. It helps in reserving the right resources for a better quality of service. We applied Extreme value theory (EVT to predict bursts in network traffic. We took a deeper look into the application of EVT by using EVT based Exploratory Data Analysis. We found that traffic is naturally divided into two categories, Internal and external traffic. The internal traffic follows generalized extreme value (GEV model with a negative shape parameter, which is also the same as Weibull distribution. The external traffic follows a GEV with positive shape parameter, which is Frechet distribution. These findings are of great value to the quality of service in data networks, especially when included in service level agreement as traffic descriptor parameters.

  8. International Conference on Dynamical Systems : Theory and Applications

    CERN Document Server

    2016-01-01

    The book is the second volume of a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.

  9. International Conference on Dynamical Systems : Theory and Applications

    CERN Document Server

    2016-01-01

    The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.

  10. Improvement and Primary Application of Theory of Fuel Specific Consumption

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The high efficiency utilization of energy conversion systems has been regarded as one of the most effective ways to cope with the everincreasing depletion of fossil fuel and the greenhouse gas effect. The design, optimization and refurbishment of thermal systems definitely need the help of proper application of energy conservation theory, especially exergy analysis. Conventional exergy analysis only considers the energy consumption of each device in isolation without taking the interactions among devices into consideration. In addition, the exergy destruction and exergetic efficiency are always the criterion for the evaluation of the device performances; however, great controversies exist. This paper presents the development of fuel specific consumption analysis considering the interactions among devices to provide more information for energy-savings of thermal systems.

  11. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications

    CERN Document Server

    Plakida, Nikolay Maksimilianovich

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...

  12. Application of Neutrosophic Set Theory in Generalized Assignment Problem

    Directory of Open Access Journals (Sweden)

    Supriya Kar

    2015-09-01

    Full Text Available This paper presents the application of Neutrosophic Set Theory (NST in solving Generalized Assignment Problem (GAP. GAP has been solved earlier under fuzzy environment. NST is a generalization of the concept of classical set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set. Elements of Neutrosophic set are characterized by a truth-membership function, falsity and also indeterminacy which is a more realistic way of expressing the parameters in real life problem. Here the elements of the cost matrix for the GAP are considered as neutrosophic elements which have not been considered earlier by any other author. The problem has been solved by evaluating score function matrix and then solving it by Extremum Difference Method (EDM [1] to get the optimal assignment. The method has been demonstrated by a suitable numerical example.

  13. Inventory control based on advanced probability theory, an application

    CERN Document Server

    Krever, Maarten; Schorr, Bernd; Wunderink, S

    2005-01-01

    Whenever stock is placed as a buffer between consumption and supply the decision when to replenish the stock is based on uncertain values of future demand and supply variables. Uncertainty exists about the replenishment lead time, about the number of demands and the quantities demanded during this period. We develop a new analytical expression for the reorder point, which is based on the desired service level and three distributions: the distribution of the quantity of single demands during lead time, the distribution of the lengths of time intervals between successive demands, and the distribution of the lead time itself. The distribution of lead time demand is derived from the distributions of individual demand quantities and not from the demand per period. It is not surprising that the resulting formulae for the mean and variance are different from those currently used. The theory developed is also applicable to periodic review systems. The system has been implemented at CERN and enables a significant enha...

  14. Cryotribology: Development of cryotribological theories and application to cryogenic devices

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Y.; Michael, P. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Rabinowicz, E. (Massachusetts Inst. of Tech., Cambridge, MA (United States) Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab.)

    1992-09-15

    High-performance superconducting solenoids are susceptible to premature quenches, or superconducting to normal state transitions, due to abrupt conductor movements within the winding. Abrupt motions involving 5{approximately}10{mu}m conductor displacements dissipate sufficient energy to trigger a quench. Sliding and mechanical behaviors of materials at cryogenic temperatures have been experimentally examined. After accounting for changes in the sliding materials' low-temperature strength properties, we have found that the adhesion theory of friction and wear remains applicable at cryogenic temperatures. The adhesion friction theory suggests two methods for controlling unsteady sliding motions. The first involves the selection of sliding materials whose friction coefficients increase with increasing sliding speed. A number of material pairs have been examined for positive friction-velocity characteristics. This materials-based approach to frictional stabilization does not seem a viable option at 4.2 K. The second altemative is to preprogram the force conditions within high-risk regions of the winding to regulate the occurrence of unsteady sliding motions. Structural models are proposed to account for unsteady conductor motions on a variety of dimensional scales. The models are used to design a small superconducting solenoid. Performance of this solenoid suggests that force-based motion control is a potentially viable design approach for achieving successful dry-wound magnets.

  15. The thermodynamics of quantum Yang-Mills theory theory and applications

    CERN Document Server

    Hofmann, Ralf

    2016-01-01

    This latest edition enhances the material of the first edition with a derivation of the value of the action for each of the Harrington-Shepard calorons/anticalorons that are relevant for the emergence of the thermal ground state. Also included are discussions of the caloron center versus its periphery, the role of the thermal ground state in U(1) wave propagation, photonic particle-wave duality, and calculational intricacies and book-keeping related to one-loop scattering of massless modes in the deconfining phase of an SU(2) Yang-Mills theory. Moreover, a derivation of the temperature-redshift relation of the CMB in deconfining SU(2) Yang-Mills thermodynamics and its application to explaining an apparent early re-ionization of the Universe are given. Finally, a mechanism of mass generation for cosmic neutrinos is proposed.

  16. Application and development of multiconfigurational localized perturbation theory

    Science.gov (United States)

    Dunietz, Barry D.; Friesner, Richard A.

    2001-12-01

    Generalization of localized perturbation theory, which results with a method able to span the spin space correctly, is presented. This generalization is achieved by using a multiconfigurational (MC) wave function as the reference. This is the most comprehensive expansion used within MC-LMP2 approach to date, with, however, low computational cost [computational scaling with system size (N) of the new method is O(N3)]. Recently, we have reported the successful Jaguar2 (J2) model for calculating atomization energies. Within the MC-LMP2 framework, the J2 model for calculating heats of formation is based on the generalized valence bond-perfect pairing (GVB-PP) wave function. The J2 model was applied only to closed shell cases because of the perfect pairing (PP) restriction in the reference function. In order to describe other systems, the PP restriction needs to be lifted. This work describes efforts in that direction. The PP restriction can be lifted by a restricted configuration interaction (RCI) procedure applied to the GVB-PP wave function. In this paper, the equations describing the application of LMP2 theory to self-consistent RCI wave function are derived and explained. The RCI wave function is a "true" MC expansion as opposed to the GVB-PP, which uses only a single spin eigenfunction (SEF). We also present the self-consistent (SC) optimization of the RCI wave function. The SC-RCI-LMP2 is the first MC-LMP2 method where the spin space is spanned in the reference. This is important for describing the nondynamical correlation (near degeneracy) effects associated, for example, with bond breaking processes. The SC-RCI-LMP2 is an efficient method applicable to large systems; it is shown to reproduce the potential energy surfaces calculated by the complete active space-second order perturbation (CAS-SCF-PT2) method. This is demonstrated, for the first time, on some widely used test cases.

  17. Theory based design and optimization of materials for spintronics applications

    Science.gov (United States)

    Xu, Tianyi

    The Spintronics industry has developed rapidly in the past decade. Finding the right material is very important for Spintronics applications, which requires good understanding of the physics behind specific phenomena. In this dissertation, we will focus on two types of perpendicular transport phenomena, the current-perpendicular-to-plane giant-magneto-resistance (CPP-GMR) phenomenon and the tunneling phenomenon in the magnetic tunnel junctions. The Valet-Fert model is a very useful semi-classical approach for understanding the transport and spin-flip process in CPP-GMR. We will present a finite element based implementation for the Valet-Fert model which enables a practical way to calculate the electron transport in real CPP-GMR spin valves. It is very important to find high spin polarized materials for CPP-GMR spin valves. The half-metal, due to its full spin polarization, is of interest. We will propose a rational way to find half-metals based on the gap theorem. Then we will focus on the high-MR TMR phenomenon. The tunneling theory of electron transport in mesoscopic systems will be covered. Then we will calculate the transport properties of certain junctions with the help of Green's function under the Landauer-Buttiker formalism, also known as the scattering formalism. The damping constant determines the switching rate of a device. We can calculate it using a method based on the Extended Huckel Tight-Binding theory (EHTB). The symmetry filtering effect is very helpful for finding materials for TMR junctions. Based upon which, we find a good candidate material, MnAl, for TMR applications.

  18. Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding

    Indian Academy of Sciences (India)

    P SHYAM VINOD KUMAR; V RAGHAVENDRA; V SUBRAMANIAN

    2016-10-01

    In this perspective article, the basic theory and applications of the “Quantum Theory of Atoms in Molecules” have been presented with examples from different categories of weak and hydrogen bonded molecular systems.

  19. Some applications of thermal field theory to quark-gluon plasma

    Indian Academy of Sciences (India)

    Munshi G Mustafa

    2006-04-01

    We briefly introduce the thermal field theory within imaginary time formalism, the hard thermal loop perturbation theory and some of its applications to the physics of the quark-gluon plasma, possibly created in relativistic heavy-ion collisions.

  20. The Application of Motivational Theories to Business and Industry.

    Science.gov (United States)

    Clements, Paul; Farrar, Lochia A.

    This workshop, designed to use motivational theories in understanding work behaviors and to increase job satisfaction and performance, deals with cognitive theories in motivation, need theories, and the Equity Theory within the Expectancy Valence Model. Counseling technique areas of communication skills and rational thinking that facilitate the…

  1. Improvement of the competitiveness of the budget hotels in China based on customer value innovation theory%基于顾客价值创新的本土经济型酒店竞争力的提升

    Institute of Scientific and Technical Information of China (English)

    裴沛

    2015-01-01

    近几年,许多本土经济型酒店收入增速放缓,甚至出现亏损现象. 想要扭转这种局面,吸引客源提高竞争力,必须改变传统思维方式,为顾客创造酒店新价值. 本文结合顾客价值创新理论,对本土经济型酒店的顾客需求进行深入分析,针对十个维度绘出一条新的经济型酒店顾客价值曲线,提出了若干提升本土经济型酒店竞争力的对策,以客房为中心保证产品质量,注重服务细节提升服务质量,重视酒店网络点评等.%In recent years,many of the budget hotels in China appeared the phenomenon that revenue growth slowed down and even lost.To improve this condition,the budget hotels should change the traditional way of thinking and create a new hotel value for customers in order to attract customers and improve competitiveness. Based on customer value innovation theory,this paper analyzes the value of customers of the budget hotels in China,draws a new curve of customer value,and puts forward some countermeasures to improve the competi-tiveness,such as the room as the center to ensure product quality,pay attention to detail and the hotel network reviews.

  2. THE REAL OPTIONS OF CAPITAL BUDGET

    Directory of Open Access Journals (Sweden)

    Antonio Lopo Martins

    2008-07-01

    Full Text Available The traditional techniques of capital budget, as the deducted cash flow and the net value present, do not incorporate existing flexibilities in an investment project, they tend to distort the value of certain investments, mainly those that are considered in scenes of uncertainty and risk. Therefore, this study intends to demonstrate that the Real Options Theory (TOR is a useful methodology to evaluate and to indicate the best option for project of expansion investment. To reach the considered objective the procedure method was used a case study, having as unit of case the Resort Praia Hotel do Litoral Norte of Salvador. This study was developed of the following form: first it identified the traditional net value present and later it was incorporated the volatileness of each analyzed uncertainty. Second, as the real options are analogous to the financial options, it was necessary to identify elements that composed the terminologies of the financial options with intention to get the value of the real option. For this model of options pricing of Black & Scholes jointly with a computational simulator was used (SLS to get the expanded net value present. As a result of this study it was possible to evidence that using the traditional tool of capital budget Net Value Present (VPL is negative, therefore the project of expansion of the Hotel would be rejected. While for the application of methodology TOR the project presents positive Expanded Present Value which would represent an excellent chance of investment. Key-word: Capital budget, Real options, Analysis of investments.

  3. Acoustic black holes: recent developments in the theory and applications.

    Science.gov (United States)

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air.

  4. Passive Microwave Component Design Using Inverse Scattering: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Israel Arnedo

    2013-01-01

    Full Text Available We briefly review different synthesis techniques for the design of passive microwave components with arbitrary frequency response, developed by our group during the last decade. We provide the theoretical foundations based on inverse scattering and coupled-mode theory as well as several applications where the devices designed following those techniques have been successfully tested. The main characteristics of these synthesis methods are as follows. (a They are direct, because it is not necessary to use lumped-element circuit models; just the target frequency response is the starting point. (b They are exact, as there is neither spurious bands nor degradation in the frequency response; hence, there is no bandwidth limitation. (c They are flexible, because they are valid for any causal, stable, and passive transfer function; only inviolable physical principles must be guaranteed. A myriad of examples has been presented by our group in many different technologies for very relevant applications such as harmonic control of amplifiers, directional coupler with enhanced directivity and coupling, transmission-type dispersive delay lines for phase engineering, compact design of high-power spurious free low-pass waveguide filters for satellite payloads, pulse shapers for advanced UWB radar and communications and for novel breast cancer detection systems, transmission-type Nth-order differentiators for tunable pulse generation, and a robust filter design tool.

  5. Acoustic black holes: recent developments in the theory and applications.

    Science.gov (United States)

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air. PMID:25073137

  6. Energy return on investment: Theory and application to biophysical economics

    Science.gov (United States)

    Murphy, David J.

    This dissertation is comprised of an introduction and five manuscripts split into two main sections: theory and application. Manuscripts one and four have been published, manuscript three has been accepted for publication, and manuscripts two and five are currently in review for publication. The theory sections contains the first two manuscripts. The first manuscript is a review of the literature on Energy Return on Investment (EROI) analysis. I cover five areas in this manuscript, including: (1) EROI and corn ethanol, (2) EROI for most major fuels, (3) alternative EROI applications, (4) EROI and the economy, and (5) the minimum EROI for society. The second manuscript provides a methodological framework for performing EROI analysis. I cover the following areas in this manuscript: (1) boundaries of analysis, (2) energy quality corrections, (3) energy intensity values, and lastly (4) alternative EROI statistics. The applications section contains manuscripts three through five. The third manuscript provides a biophysical model of economic growth indicating that the feedback mechanisms between oil supply and oil price have created a growth paradox: maintaining business as usual economic growth will require the production of new sources of oil, yet the only sources of oil remaining require high oil prices, thus hampering economic growth. The fourth manuscript is a study on the geographic variability of corn ethanol production. The main conclusions of this study were: (1) the statistical error associated with calculating the EROI of corn ethanol was enough to cast doubt as to whether corn ethanol yields net energy, and (2) failure to account for the geographic variation in corn yields and fertilizer inputs artificially inflated previous estimates of the EROI or corn ethanol. In the fifth manuscript I measure the impact of the Urban Heat Island within the metropolitan area of San Juan, Puerto Rico, on the electricity demand within the city. I calculated that the UHI

  7. New applications of neutron noise theory in power reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  8. EDITORIAL: Bio-dielectrics: theories, mechanisms and applications

    Science.gov (United States)

    Pethig, Ronald

    2007-01-01

    This special cluster in Journal of Physics D: Applied Physics comprises papers submitted by participants at the 2006 conference of the Institute of Physics Dielectrics Group, held at the University of Leicester during 10-12 April 2006. The conference focused on the interaction of non-ionizing electromagnetic (EM) fields with biological materials at all scales (tissues down to molecules) and at all frequencies. The use of dielectric techniques and theories in biological studies and in the pharmaceutical and biotechnology industries is increasing, and we hope that this conference helped to facilitate this trend and to further an understanding of the value of dielectric studies in biology—both in science and in applications in industry and medicine. An important policy of the Dielectrics Group is to promote the multidisciplinary nature of dielectric studies, and so we welcomed and received papers and posters from biologists, chemists, engineers, industrialists, medical professionals and physicists in the biotechnology and health care fields. The programme comprised 32 oral presentations, including the keynote opening address `Bio-dielectrics and bio-impedance' by Dr Ø G Martinson of the University of Oslo, and 7 papers given by invited speakers. 27 high-quality posters were also exhibited. The Mansel Davies Award, for the best presentation by a young researcher under the age of 30, was bestowed on Mr Sun Tao from the University of Southampton. His work, describing time domain analysis applied to dielectric spectroscopy of single cells, forms the subject matter of the first paper in this cluster. The remaining papers are presented in order of the session themes, namely Dielectric Spectroscopy and Techniques, Theory and Modelling, and Electrokinetics. On behalf of the Dielectrics Group, I thank the authors for their contributions, and the Institute of Physics for excellent administrative and editorial assistance.

  9. Application of Multiple-intelligence Theory in Classroom Teaching

    Institute of Scientific and Technical Information of China (English)

    王珺

    2009-01-01

    Since Howard Gardener introduced the theory of multiple-intelligence, there have been attempts to apply it in the real classroom teaching. The essay has formulated a teaching plan and explored the possibility to put this theory into practice.

  10. Lyapunov analysis: from dynamical systems theory to applications

    Science.gov (United States)

    Cencini, Massimo; Ginelli, Francesco

    2013-06-01

    mathematical development and only provide access to partial pieces of information. Moreover, the scattered state of the present literature, with key contributions published in journals read by different communities (mathematicians, nonlinear and statistical physicists, fluid dynamicists and geophysicists), makes it difficult to develop a general picture. This special issue aims to offer an up-to-date view of current research on Lyapunov analysis, discussing both its mathematical theory and its applications to a number of different problems. Moreover, in order to facilitate the comparison and exchange of ideas and tools among different fields of research, contributions (either original or topical reviews) from researchers working in different disciplines have been selected for this issue. After the compact review of the basic mathematical results on Lyapunov exponents by Lai-Sang Young, the special issue is organized into nine sections broadly focused on the following topics: Large deviations and rare trajectories. Lyapunov exponents are mean quantities which characterize the sensitivity to initial conditions of typical trajectories. A large deviation theory of their finite time fluctuations, however, is relevant for the construction of a thermodynamic formalism of deterministic chaos. Moreover, the weighted sampling of extreme fluctuations allows one to access rare trajectories and phase-space topological structures. Random matrices. Lyapunov exponents are suitable quantities to statistically characterize products of random matrices, with a number of applications to transfer matrix methods and, more generally, to the statistical mechanics of disordered systems. In particular, Lyapunov exponents have long played a central role in the theory of Anderson localization. These aspects are reviewed here, together with an original application to the transfer matrix. Covariant Lyapunov vectors: theory and applications. CLVs constitute an intrinsic tangent space decomposition into

  11. Exploring the Application of Multiple Intelligences Theory to Career Counseling

    Science.gov (United States)

    Shearer, C. Branton; Luzzo, Darrell Anthony

    2009-01-01

    This article demonstrates the practical value of applying H. Gardner's (1993) theory of multiple intelligences (MI) to the practice of career counseling. An overview of H. Gardner's MI theory is presented, and the ways in which educational and vocational planning can be augmented by the integration of MI theory in career counseling contexts are…

  12. Improving the Pedagogy of Capital Structure Theory: An Excel Application

    Science.gov (United States)

    Baltazar, Ramon; Maybee, Bryan; Santos, Michael R.

    2012-01-01

    This paper uses Excel to enhance the pedagogy of capital structure theory for corporate finance instructors and students. We provide a lesson plan that utilizes Excel spreadsheets and graphs to develop understanding of the theory. The theory is introduced in three scenarios that utilize Modigliani & Miller's Propositions and…

  13. An application specific informal logic for interest prohibition theory

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2011-01-01

    Interest prohibition theory concerns theoretical aspects of interest prohibition. We attempt to lay down some aspects of interest prohibition theory wrapped in a larger framework of informal logic. The reason for this is that interest prohibition theory has to deal with a variety of arguments which

  14. A Nonvolume Preserving Plasticity Theory with Applications to Powder Metallurgy

    Science.gov (United States)

    Cassenti, B. N.

    1983-01-01

    A plasticity theory has been developed to predict the mechanical response of powder metals during hot isostatic pressing. The theory parameters were obtained through an experimental program consisting of hydrostatic pressure tests, uniaxial compression and uniaxial tension tests. A nonlinear finite element code was modified to include the theory and the results of themodified code compared favorably to the results from a verification experiment.

  15. Applications of Balance Theory to Faculty Effectiveness: An Assessment

    Science.gov (United States)

    Peterson, Robin T.; Limbu, Yam B.; Xu, Bing; Fischbach, Sarah

    2012-01-01

    This paper provides a critical examination of the potential role of balance theory and student liking (affect) of instructors as tools for marketing professors in assisting student learning. The nature of balance theory and evidence of the learning impact of affect toward instructors are discussed. An empirical test of the theory is provided, and…

  16. The annual ammonia budget of fertilised cut grassland – Part 1: Micrometeorological flux measurements and emissions after slurry application

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2010-02-01

    Full Text Available Two commercial ammonia (NH3 analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland by application of the aerodynamic gradient method. The measurements from July 2006 to October 2007 covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during unstable and near-neutral conditions was 20% and the detection limit was 10 ng NH3 m−2 s−1. Hence the flux measurements are considered sufficiently accurate for studying typical NH3 deposition rates over growing vegetation. Quantifying the overall emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during broadspreading of liquid manure. The emissions were also calculated with a mass balance method yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN varied between 4 and 19%, which is roughly a factor of three lower than the values for broadspreading of liquid manure in emission inventories. The comparatively low emission factors appear to be a consequence of the low dry matter content of the applied slurry and soil properties favouring ammonium adsorption.

  17. The annual ammonia budget of fertilised cut grassland – Part 1: Micrometeorological flux measurements and emissions after slurry application

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2009-10-01

    Full Text Available Two commercial ammonia (NH3 analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland by application of the aerodynamic gradient method (AGM. The semi-continuous measurements during 1.5 years covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during conditions of well established turbulence was 20% and the detection limit 10 ng NH3 m−2 s−1, hence sufficient for studying the background exchange of NH3. Quantifying emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during manure spreading in some parts of the experiments. The emissions were also calculated with a mass balance method (MBM yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN varied between 4 and 19%, which is lower than typical values for broadspreading of liquid manure. The comparatively low emission factors appear to be a consequence of the rather thin slurry applied here and soil properties favouring ammonium adsorption.

  18. Theory and Applications of Ignition with Variable Activation Energy

    Institute of Scientific and Technical Information of China (English)

    G.C.Wake; X.D.Chen; 等

    1992-01-01

    The determination of critical conditions for thermal ingition of combustible materials has been traditionally studied by the use of one overall reaction with bounded parameter values for the activation energy and other chemical constants.Significant errors can occur in the values of the threshold parameters for ignition when there are two(or more)simultaneous reactions present with distinct values of the chemical ocnstantsRecent work with simultaneous parallel reactions showed the thresholds for ignition could be lowered in this case.In this paper,motivated by experimental results for forest litter and cola,it is shown that for sequential reactions (different values of parameters in different temperature ranges)that the threshold conditions are changed(safer for lower ambient temperatures and less safe for higher ambient temperatures).The mathematical analysis is summarised and a detailed analysis is given for the forest litter and crushed coal applications,The experimental results show that variable activation energy dose occur and that this extension of the classical Frank-Kamenetskii theory is needed.Here the analysis is confined to the slab geometry only but the ideas developed can easily be extended to more general systems,including those involving mass transport,consumption and phase changes.

  19. New Trends in Model Coupling Theory, Numerics and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coquel, F. [CMAP Ecole Polytech, CNRS, UMR 7641, F-91128 Palaiseau (France); Godlewski, E. [UPMC Univ Paris 6, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris (France); Herard, J. M. [EDF RD, F-78400 Chatou (France); Segre, J. [CEA Saclay, DEN, DM2S, F-91191 Gif Sur Yvette (France)

    2010-07-01

    This special issue comprises selected papers from the workshop New Trends in Model Coupling, Theory, Numerics and Applications (NTMC'09) which took place in Paris, September 2 - 4, 2009. The research of optimal technological solutions in a large amount of industrial systems requires to perform numerical simulations of complex phenomena which are often characterized by the coupling of models related to various space and/or time scales. Thus, the so-called multi-scale modelling has been a thriving scientific activity which connects applied mathematics and other disciplines such as physics, chemistry, biology or even social sciences. To illustrate the variety of fields concerned by the natural occurrence of model coupling we may quote: meteorology where it is required to take into account several turbulence scales or the interaction between oceans and atmosphere, but also regional models in a global description, solid mechanics where a thorough understanding of complex phenomena such as propagation of cracks needs to couple various models from the atomistic level to the macroscopic level; plasma physics for fusion energy for instance where dense plasmas and collisionless plasma coexist; multiphase fluid dynamics when several types of flow corresponding to several types of models are present simultaneously in complex circuits; social behaviour analysis with interaction between individual actions and collective behaviour. (authors)

  20. Theory and measurement of emittance properties for radiation thermometry applications.

    Science.gov (United States)

    Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    Some basic concepts of radiation physics are briefly reviewed to provide an introduction to the radiative properties - including emittance, reflectance, absorptance, and transmittance - their definitions, interrelations, theory and methods of measurement. Analyzed data showing typical characteristics of temperature and wavelength dependence, surface effects and environmental influences on the radiation properties of selected classes of materials are presented. Emphasis is placed on those emittance properties of particular interest to conventional radiation thermometry applications, but sufficient generality on all properties is presented to be useful for new or unusual techniques where a more detailed understanding of the behavior of materials is desirable. Data sources are identified to assist the reader in locating property information. It is the intention of the paper to give the reader a background to become more fully aware of the pitfalls, limitations, but of course, advantages in the use of data from the literature. The paper is written in the form of an abbreviated review fully documenting the more important topics and concepts which can only be treated briefly.

  1. The Theory of Caustics and Wave Front Singularities with Physical Applications

    OpenAIRE

    Ehlers, J.; Newman, E.

    2000-01-01

    This is intended as an introduction to and review of the theory of Lagrangian and Legendrian submanifolds and their associated maps developed by Arnold and his collaborators. The theory is illustrated by applications to Hamilton–Jacobi theory and the eikonal equation, with an emphasis on null surfaces and wave fronts and their associated caustics and singularities.

  2. The application of theory in childhood asthma self-help programs.

    Science.gov (United States)

    Bruhn, J G

    1983-11-01

    Theories from research in health education and compliance (adherence) behavior are reviewed and examined for their applicability to studies of self-management of childhood asthma. Specific theories discussed include: (1) the health belief model, (2) models of health, illness, and sick-role behavior, (3) social learning theory, (4) models of physician-patient relationships, (5) self-regulation model, (6) communication theory, (7) attribution, control, and decision-making theory, (8) grounded theory, (9) ecologic theory, and (10) family and social systems theories. A scheme to guide development and testing of theories in children's health and illness behavior is presented. The key common elements in the examined theories on adherence behavior are integrated and organized into a paradigm for the family determinants of the self-management of chronic illness.

  3. Fluctuation theory of solutions applications in chemistry, chemical engineering, and biophysics

    CERN Document Server

    Smith, Paul E

    2013-01-01

    There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications

  4. POLITICAL BUDGET CYCLES: EVIDENCE FROM TURKEY

    Directory of Open Access Journals (Sweden)

    FİLİZ ERYILMAZ

    2015-04-01

    Full Text Available The theorical literature on “Political Business Cycles” presents important insights on the extent to which politicians attempt to manipulate government monetary and fiscal policies to influence electoral outcomes, in particular, with the aim of re-election. In recent years “Political Budget Cycles” is the one of the most important topics in Political Business Cycles literature. According to Political Budget Cycles Theory, some components of the government budget are influenced by the electoral cycle and consequently an increase in government spending or decrease in taxes in an election year, leading to larger fiscal deficit. This incumbent’s fiscal manipulation is a tool that governments possess to increase their changes for re-election. In this paper we investigate the presence of Political Budget Cycles using a data set of budget balance, total expenditure and total revenue over the period 1994–2012. Our findings suggest that incumbents in Turkey use fiscal policy to increase their popularity and win elections, therefore fiscal manipulation was rewarded rather than punished by Turkish voters. The meaning of this result is that Political Budget Cycles Theory is valid for Turkey between 1994 and 2012.

  5. Adjustment with Climate Change: Application of Grounded Theory

    Directory of Open Access Journals (Sweden)

    Taher Azizi-Khalkheili

    2014-11-01

    The study place is Marvdasht in Fars Province that is one of the leading regions in the agriculture sector and is confronted with serious drought as well as reducing the precipitation in recent years. This qualitative study used grounded theory principles to collect and analyze data and provide a paradigmatic model. Research sample includes two villages, which were selected purposefully: Esmaeilabad with highest climate changes and Chamesohrabkhani with lowest climate changes in Marvdasht. In order to gather the required data field observations and in depth focus group interviews were used. Nine farmers in Esmaeilabad as well as eight farmers in Chamsohrabkhani attended in interview sessions. Questions were grouped into 4 categories: 1 Farmers’ perceptions about climate changes, the situation of agriculture and their properties; 2 farmers’ behavior toward adaptation, their future decisions and existed problems and obstacles; 3 farmers’ resources for climate information and consultation to farm management decisions; and 4 farmers’ perception about future of agriculture sector in this region. Discussion of Results & Conclusions The analytical process in grounded theory involves coding strategies: Open coding is the process of breaking down interviews, observations and other forms of appropriate data into distinct units of meaning which are labeled to generate concepts. The focus of axial coding is to create a model that details the specific conditions of phenomenon’s occurrence. Selective coding is the process of selecting the central or core category, systematically relating it to other categories, validating those relationships, and complete categories that need further refinement and development. Some major research results in this study according to the above coding system include: Farmers' perception about reduction in precipitation and warmer environment, decreasing in quantity and quality of crops, increasing crop pests and diseases, reduction of

  6. Application of Rough Set Theory in Data Mining

    OpenAIRE

    Thabet Slimani

    2013-01-01

    Rough set theory is a new method that deals with vagueness and uncertainty emphasized in decision making. Data mining is a discipline that has an important contribution to data analysis, discovery of new meaningful knowledge, and autonomous decision making. The rough set theory offers a viable approach for decision rule extraction from data.This paper, introduces the fundamental concepts of rough set theory and other aspects of data mining, a discussion of data representation with rough set t...

  7. The Application of the Interpretive Theory of Translation

    Institute of Scientific and Technical Information of China (English)

    TAN Ning

    2014-01-01

    The interpretive theory of translation (ITT) is a school of theory originated in the late 1960s in France, focusing on the discussion of the theory and teaching of interpreting and non-literary translation. ITT believes that what the translator should convey is not the meaning of linguistic notation, but the non-verbal sense. In this paper, the author is going to briefly introduce ITT and analyze several examples to show different situations where ITT is either useful or unsuitable.

  8. Mittag-Leffler functions, related topics and applications theory and applications

    CERN Document Server

    Gorenflo, Rudolf; Mainardi, Francesco; Rogosin, Sergei V

    2014-01-01

    As a result of researchers’ and scientists’ increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have recently caught the interest of the scientific community. Focusing on the theory of the Mittag-Leffler functions, the present volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to the applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In particular the Mittag-Leffler functions allow us to describe phenomena in processes that progress or decay too slowly to be represented by classical functions like the exponential function and its successors. The book is intended for a broad audience, comprising graduate students, university instructors and scientists in t...

  9. Nonabelian sine-Gordon theory and its application to nonlinear optics

    CERN Document Server

    Park, Q H; Park, Q Han

    1996-01-01

    Using a field theory generalization of the spinning top motion, we construct nonabelian generalizations of the sine-Gordon theory according to each symmetric spaces. A Lagrangian formulation of these generalized sine-Gordon theories is given in terms of a deformed gauged Wess-Zumino-Witten action which also accounts for integrably perturbed coset conformal field theories. As for physical applications, we show that they become precisely the effective field theories of self-induced transparency in nonlinear optics. This provides a dictionary between field theory and nonlinear optics.

  10. N-person game theory concepts and applications

    CERN Document Server

    Rapoport, Anatol

    2013-01-01

    N-person game theory provides a logical framework for analyzing contests in which there are more than two players or sets of conflicting interests-anything from a hand of poker to the tangled web of international relations. In this sequel to his Two-Person Game Theory, Dr. Rapoport provides a fascinating and lucid introduction to the theory, geared towards readers with little mathematical background but with an appetite for rigorous analysis.Following an introduction to the necessary mathematical notation (mainly set theory), in Part I the author presents basic concepts and models, including

  11. Electronic absorption spectra and geometry of organic molecules an application of molecular orbital theory

    CERN Document Server

    Suzuki, Hiroshi

    1967-01-01

    Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory focuses on electronic absorption spectra of organic compounds and molecules. The book begins with the discussions on molecular spectra, electronic absorption spectra of organic compounds, and practical measures of absorption intensity. The text also focuses on molecular orbital theory and group theory. Molecular state functions; fundamental postulates of quantum theory; representation of symmetry groups; and symmetry operations and symmetry groups are described. The book also dis

  12. Theory of sampling and its application in tissue based diagnosis

    Directory of Open Access Journals (Sweden)

    Kayser Gian

    2009-02-01

    Full Text Available Abstract Background A general theory of sampling and its application in tissue based diagnosis is presented. Sampling is defined as extraction of information from certain limited spaces and its transformation into a statement or measure that is valid for the entire (reference space. The procedure should be reproducible in time and space, i.e. give the same results when applied under similar circumstances. Sampling includes two different aspects, the procedure of sample selection and the efficiency of its performance. The practical performance of sample selection focuses on search for localization of specific compartments within the basic space, and search for presence of specific compartments. Methods When a sampling procedure is applied in diagnostic processes two different procedures can be distinguished: I the evaluation of a diagnostic significance of a certain object, which is the probability that the object can be grouped into a certain diagnosis, and II the probability to detect these basic units. Sampling can be performed without or with external knowledge, such as size of searched objects, neighbourhood conditions, spatial distribution of objects, etc. If the sample size is much larger than the object size, the application of a translation invariant transformation results in Kriege's formula, which is widely used in search for ores. Usually, sampling is performed in a series of area (space selections of identical size. The size can be defined in relation to the reference space or according to interspatial relationship. The first method is called random sampling, the second stratified sampling. Results Random sampling does not require knowledge about the reference space, and is used to estimate the number and size of objects. Estimated features include area (volume fraction, numerical, boundary and surface densities. Stratified sampling requires the knowledge of objects (and their features and evaluates spatial features in relation to

  13. Budgeting Based on Results

    Science.gov (United States)

    Cooper, Kelt L.

    2011-01-01

    Every program in a school or school district has, or once had, a purpose. The purpose was most likely promoted, argued and debated among school constituencies--parents, teachers, administrators and school board members--before it was eventually approved. This process occurs year after year, budget after budget. In itself, this is not necessarily a…

  14. Learning From Low Budgets

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Chinese filmmakers turn small-budget productions into box-office successes Organizers of China’s upcoming film festivals are finally giving recognition to the little guys—low budget films—to encourage a generation of young,talented directors.

  15. Reading Institutional Budgets.

    Science.gov (United States)

    Chabot, Barry

    2001-01-01

    Prepares two tables to illustrate how it is helpful to place worries about much smaller sums in the context of Miami University's overall academic budget; One table summarizes the academic budgets for every department during the 1997-98 academic year and a second contains the income-expense ratios for all Oxford departments over a five-year…

  16. Application of Relevance Translation Theory in Humor Translation

    Institute of Scientific and Technical Information of China (English)

    赵秀丽

    2013-01-01

    This thesis,aiming to investigate the process of English-Chinese translation of humor from the perspective of RT theory(relevance translation theory),endeavors to apply its principles and methods to the re-construction of humor in the target language.

  17. Multiple Intelligences Theory and Its Application in English Teaching

    Institute of Scientific and Technical Information of China (English)

    Yang; Xuming

    2015-01-01

    The Theory of Multiple Intelligences holds tha learners’individual learning intelligence varies a lot and everyone has their strengths intelligence and weaknesse intelligence.Nowadays,more and more scholars share the common understanding that students should be taught according to thei own advantages and disadvantages.The paper intends to apply the Multiple Intelligences Theory into English Teaching.

  18. Multiple Intelligences Theory and Its Application in English Teaching

    Institute of Scientific and Technical Information of China (English)

    Yang Xuming

    2015-01-01

    The Theory of Multiple Intelligences holds that learners’ individual learning intelligence varies a lot and everyone has their strengths intelligence and weaknesses intelligence.Nowadays,more and more scholars share the common understanding that students should be taught according to their own advantages and disadvantages.The paper intends to apply the Multiple Intelligences Theory into English Teaching.

  19. APPLICABILITY OF THE BEND DEVELOPMENT THEORY IN NATURAL ALLUVIAL RIVERS

    Institute of Scientific and Technical Information of China (English)

    M.M.RAHMAN; M.A.HAQUE; M.M.HOQUE

    2002-01-01

    The theoretical conditions for the bend development or attenuation have been reviewed and tested for a study reach of the Meghna river.The field observations in the natural alluvial meander do not support the theories developed for bend development.The limitations of the theory to apply in the natural meandering river are discussed.

  20. The Application of Layer Theory to Design: The Control Layer

    Science.gov (United States)

    Gibbons, Andrew S.; Langton, Matthew B.

    2016-01-01

    A theory of design layers proposed by Gibbons ("An Architectural Approach to Instructional Design." Routledge, New York, 2014) asserts that each layer of an instructional design is related to a body of theory closely associated with the concerns of that particular layer. This study focuses on one layer, the control layer, examining…

  1. Practical improvements on photon diffusion theory : application to isotropic scattering

    NARCIS (Netherlands)

    Graaff, R; Rinzema, K

    2001-01-01

    Based on the analysis of an isotropic point source in an infinite, isotropically scattering turbid medium, we suggest several modifications to the well-known diffusion theory. Compared with standard diffusion theory these modifications, which require very little extra mathematics, lead to a substant

  2. Applications of Social Cognitive Theory to Gifted Education

    Science.gov (United States)

    Burney, Virginia H.

    2008-01-01

    Social cognitive theory emphasizes a dynamic interactive process to explain human functioning. This theory ascribes a central role to cognitive processes in which the individual can observe others and the environment, reflect on that in combination with his or her own thoughts and behaviors, and alter his or her own self-regulatory functions…

  3. Practical Application of Theory-Driven Intervention to Extension Programming

    Science.gov (United States)

    Bird, Carolyn; McClelland, Jacquelyn

    2010-01-01

    For education to be effective, educators need to understand pertinent theories concerning behavior change and to apply them in programming. The study reported here sought to determine if the Theory of Planned Behavior (TPB) could be used to design, implement, and evaluate a brief educational session. Results show a significant increase in…

  4. Clinical Application of the Spleen-stomach Theory

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-feng

    2004-01-01

    @@ The spleen-stomach theory is a very valuablecomposition of the TCM. It is originated from Neijing (), initiated in Jin-Yuan periods and the idea "spleen and stomach is the postnatal base of life" in Piweilun () written by LI Dong-yuan established its theoretical basis. Directed by this theory, the author cured several cases, and it is now reported below.

  5. Budget 2011: A budget lacking in ambition

    OpenAIRE

    Dolphin, Tony

    2011-01-01

    Growth is key to the government’s plans for the recovery. Tony Dolphin, Senior Economist at the Institute for Public Policy Research looks at this year’s budget and finds that while it may promote growth now, a broader strategy may be needed in the long term.

  6. Study on Applications of Supply and Demand Theory of Microeconomics and Physics Field Theory to Central Place Theory

    OpenAIRE

    Nien, Benjamin Chih-Chien

    2006-01-01

    This paper attempts to analyze “central place theory” of spatial economics based on “supply and demand theory” in microeconomics and “field theory” in physics, and also discuss their relationship. Three most important research findings are described below. Firstly, the concept of market equilibrium could be expressed in the mathematical form of physics field theory under proper hypothesis. That is because the most important aspect of field theory model is that complex analysis is taken as a k...

  7. Theory of simple liquids with applications to soft matter

    CERN Document Server

    Hansen, Jean-Pierre

    2013-01-01

    Comprehensive coverage of topics in the theory of classical liquids Widely regarded as the standard text in its field, Theory of Simple Liquids gives an advanced but self-contained account of liquid state theory within the unifying framework provided by classical statistical mechanics. The structure of this revised and updated Fourth Edition is similar to that of the previous one but there are significant shifts in emphasis and much new material has been added. Major changes and Key Features in content include: Expansion of existing sections on simulation methods, liquid-vapour coexisten

  8. Applications of chiral perturbation theory to lattice QCD

    CERN Document Server

    Golterman, Maarten

    2011-01-01

    These notes contain the written version of lectures given at the 2009 Les Houches Summer School "Modern perspectives in lattice QCD: Quantum field theory and high performance computing." The goal is to provide a pedagogical introduction to the subject, and not a comprehensive review. Topics covered include a general introduction, the inclusion of scaling violations in chiral perturbation theory, partial quenching and mixed actions, chiral perturbation theory with heavy kaons, and the effects of finite volume, both in the p- and epsilon-regimes.

  9. Microwave field-efffect transistors theory, design, and application

    CERN Document Server

    Pengelly, Raymond

    1994-01-01

    This book covers the use of devices in microwave circuits and includes such topics as semiconductor theory and transistor performance, CAD considerations, intermodulation, noise figure, signal handling, S-parameter mapping, narrow- and broadband techniques, packaging and thermal considerations.

  10. Hyperbolicity of physical theories with application to general relativity

    Science.gov (United States)

    Hilditch, David; Richter, Ronny

    2016-08-01

    We consider gauge theories from the free evolution point of view, in which initial data satisfying constraints of a theory are given, and because the constraints satisfy a closed evolution system, they remain so. We study a model constrained Hamiltonian theory and identify a particular structure in the equations of motion which we call the standard gauge freedom. The pure gauge subsystem of this model theory is identified, and the manner in which the gauge variables couple to the field equations is presented. We demonstrate that the set of gauge choices that can be coupled to the field equations to obtain a strongly hyperbolic formulation is exactly the set of strongly hyperbolic pure gauges. Consequently we analyze a parametrized family of formulations of general relativity. The generalization of the harmonic gauge formulation to a five parameter family of gauge conditions is obtained.

  11. Scale-covariant theory of gravitation and astrophysical applications

    Science.gov (United States)

    Canuto, V.; Adams, P. J.; Hsieh, S.-H.; Tsiang, E.

    1977-01-01

    A scale-covariant theory of gravitation is presented which is characterized by a set of equations that are complete only after a choice of the scale function is made. Special attention is given to gauge conditions and units which allow gravitational phenomena to be described in atomic units. The generalized gravitational-field equations are derived by performing a direct scale transformation, by extending Riemannian geometry to Weyl geometry through the introduction of the notion of cotensors, and from a variation principle. Modified conservation laws are provided, a set of dynamical equations is obtained, and astrophysical consequences are considered. The theory is applied to examine certain homogeneous cosmological solutions, perihelion shifts, light deflections, secular variations of planetary orbital elements, stellar structure equations for a star in quasi-static equilibrium, and the past thermal history of earth. The possible relation of the scale-covariant theory to gauge field theories and their predictions of cosmological constants is discussed.

  12. General aspects of effective field theories and few-body applications

    CERN Document Server

    Hammer, H -W

    2016-01-01

    Effective field theory provides a powerful framework to exploit a separation of scales in physical systems. In these lectures, we discuss some general aspects of effective field theories and their application to few-body physics. In particular, we consider an effective field theory for non-relativistic particles with resonant short-range interactions where certain parts of the interaction need to be treated nonperturbatively. As an application, we discuss the so-called pionless effective field theory for low-energy nuclear physics. The extension to include long-range interactions mediated by photon and pion-exchange is also addressed.

  13. Discussion on Application of Budget Pole Management in Coal enterprise%煤炭企业预算标杆管理应用探讨

    Institute of Scientific and Technical Information of China (English)

    张五星

    2012-01-01

    文章通过分析煤炭企业预算管理和成本管理现状,提出应以全面预算为载体,以标杆管理为手段,以成本管理为中心,以先进的绩效评价为导向,强化业务预算与财务预算结合、预算管理与降本增效结合,建立动态、协调的全面预算标杆管理模型。%With the analysis on the budget management and cost management status of coal enterprises,base on the overall budget as a carrier,the pole management as a means,the cost management as a center and the advanced performance valuation as a guidance,with strengthening the combination with the business budget and the financial budget and the combination with the budget management and the cost-reduction and benefit improvement,a dynamic and coordinative overall budget pole management model was established.

  14. Theory of bending waves with applications to disk galaxies

    International Nuclear Information System (INIS)

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way

  15. MULTI-FLEXIBLE SYSTEM DYNAMIC MODELING THEORY AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    仲昕; 周兵; 杨汝清

    2001-01-01

    The flexible body modeling theory was demonstrated. An example of modeling a kind of automobile's front suspension as a multi-flexible system was shown. Finally, it shows that the simulation results of multi-flexible dynamic model more approach the road test data than those of multi-rigid dynamic model do. Thus, it is fully testified that using multi-flexible body theory to model is necessary and effective.

  16. Theory of bending waves with applications to disk galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J.W.K.

    1982-01-01

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way.

  17. Application of E-infinity theory to biology

    International Nuclear Information System (INIS)

    Albert Einstein combined continuous space and time into his special relativity, El-Naschie discovered the transfinite discontinuity of space-time in his E-infinity theory where infinity of dimensions was created. We find a partner of both space-time and E-infinity in biology. In our theory, the number of cells in an organism endows an additional dimension in biology, leading to explanation of many complex phenomena

  18. LOCAL C-COSINE FAMILY THEORY AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    HUANGFALUN; HUANGTINGWEN

    1995-01-01

    This paper introduces the concept of local C-cosins-family and inverstigate its basic properties,In particular,a characterization of the complete infinitesimal generator of a local C-cosine family is obtained,As an applieation of this theory to the second order sbstract Cauchy problems,a characterization of the local C-well-posedness of these problems is given in terms of the local C-cosine family theory.

  19. Who needs budgets?

    Science.gov (United States)

    Hope, Jeremy; Fraser, Robin

    2003-02-01

    Budgeting, as most corporations practice it, should be abolished. That may sound radical, but doing so would further companies' long-running efforts to transform themselves into developed networks that can nimbly adjust to market conditions. Most other building blocks are in place, but companies continue to restrict themselves by relying on inflexible budget processes and the command-and-control culture that budgeting entails. A number of companies have rejected the foregone conclusions embedded in budgets, and they've given up the self-interested wrangling over what the data indicate. In the absence of budgets, alternative goals and measures--some financial, such as cost-to-income ratios, and some nonfinancial, such as time to market-move to the foreground. Companies that have rejected budgets require employees to measure themselves against the performance of competitors and against internal peer groups. Because employees don't know whether they've succeeded until they can look back on the results of a given period, they must use every ounce of energy to ensure that they beat the competition. A key feature of many companies that have rejected budgets is the use of rolling forecasts, which are created every few months and typically cover five to eight quarters. Because the forecasts are regularly revised, they allow companies to continuously adapt to market conditions. The forecasting practices of two such companies, both based in Sweden, are examined in detail: the bank Svenska Handelsbanken and the wholesaler Ahlsell. Though the first companies to reject budgets were located in Northern Europe, organizations that have gone beyond budgeting can be found in a range of countries and industries. Their practices allow them to unleash the power of today's management tools and realize the potential of a fully decentralized organization.

  20. FY 1997 congressional budget request: Budget highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This is an overview of the 1997 budget request for the US DOE. The topics of the overview include a policy overview, the budget by business line, business lines by organization, crosswalk from business line to appropriation, summary by appropriation, energy supply research and development, uranium supply and enrichment activities, uranium enrichment decontamination and decommissioning fund, general science and research, weapons activities, defense environmental restoration and waste management, defense nuclear waste disposal, departmental administration, Office of the Inspector General, power marketing administrations, Federal Energy Regulatory commission, nuclear waste disposal fund, fossil energy research and development, naval petroleum and oil shale reserves, energy conservation, economic regulation, strategic petroleum reserve, energy information administration, clean coal technology and a Department of Energy Field Facilities map.

  1. Application of Tomita-Takesaki theory in algebraic euclidean field theories

    CERN Document Server

    Schlingemann, D

    1999-01-01

    The construction of the known interacting quantum field theory models is mostly based on euclidean techniques. The expectation values of interesting quantities are usually given in terms of euclidean correlation functions from which one should be able to extract information about the behavior of the correlation functions of the Minkowskian counterpart. We think that the C*-algebraic approach to euclidean field theory gives an appropriate setup in order to study structural aspects model independently. A previous paper deals with a construction scheme which relates to each euclidean field theory a Poincaré covariant quantum field theory model in the sense of R. Haag and D. Kastler. Within the framework of R. Haag and D. Kastler, the physical concept of PCT symmetry and spin and statistics is related to the Tomita-Takesaki theory of von Neumann algebras and this important aspects has been studied by several authors. We express the PCT symmetry in terms of euclidean reflexions and we explicitly identify the corr...

  2. Dealing with food budget constraints in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Annemette Ljungdalh; Lund, Thomas Bøker; Holm, Lotte

    2015-01-01

    How does an economic crisis influence food related practices? This study explored how shopping, storing, cooking and eating practices changed in Danish households as a consequence of experienced restraints on food budgets. The study applied a mixed method design. The qualitative data source...... consisted of interviews with 30 individuals from Danish households with different socio-economic characteristics, who experienced food budget constraint. The quantitative data consists of a survey among 1650 members of a household consumer panel. The quantitative results revealed how differences in terms...... of application of various types of strategies are related to different levels of food budget restrictions. Strategies applied to storing and cooking food in more efficient manners were widely practiced across all groups. Strategies which affected eating experiences, first seemed to appear when food budget...

  3. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  4. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-01-01

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  5. Applications Of Chiral Perturbation Theory To Lattice Qcd

    CERN Document Server

    Van de Water, R S

    2005-01-01

    Quantum chromodynamics (QCD) is the fundamental theory that describes the interaction of quarks and gluons. Thus, in principle, one should be able to calculate all properties of hadrons from the QCD Lagrangian. It turns out, however, that such calculations can only be performed numerically on a computer using the nonperturbative method of lattice QCD, in which QCD is simulated on a discrete spacetime grid. Because lattice simulations use unphysically heavy quark masses (for computational reasons), lattice results must be connected to the real world using expressions calculated in chiral perturbation theory (χPT), the low-energy effective theory of QCD. Moreover, because real spacetime is continuous, they must be extrapolated to the continuum using an extension of χPT that includes lattice discretization effects, such as staggered χPT. This thesis is organized as follows. We motivate the need for lattice QCD and present the basic methodology in Chapter 1. We describe a common approximat...

  6. The Mathematical Statistics Theory Application on the Price Fluctuation Analysis

    Directory of Open Access Journals (Sweden)

    Jintao Meng

    2013-01-01

    Full Text Available Grain price and output fluctuation are the normal state of market economy. It is one of the most important economic researches to understand grain price and output fluctuation law, which provides theory basis for the macroeconomic regulation and control. According to the cobweb model theory, the relationship between citrus production and price is accord with the divergence type of cobweb model .This means that simply relying on market regulation can make fluctuation between production and price bigger, go against citrus production and cultivation, thus, affecting the interests of farmers. It is well-known most farmers are concerned about the future price trend and the probability of price fluctuation. This paper uses mathematical statistics theory to study the citrus price changes, and the corresponding change trend, providing a theoretical basis for majority of farmers to better estimate citrus price change trend.

  7. THEORY OF NONFLUIDIZED GAS SOLIDS FLOW AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Hongzhong Li

    2005-01-01

    A theory of nonfluidized gas-solids flow, which combines the theory of multiphase flow with the mechanics of particulate media, was proposed on the basis of understanding that the particles contact each other, solids and gas are in movement, and the drag force on the particles caused by interstitial gas flow is similar to gravity force having the property of mass force. Then this theory was verified by experiments on vertical and inclined moving beds, and was applied to calculation and design of equipment and devices with moving beds, such as pneumatic moving bed transport,dipleg, V-value, L-valve, orifice flow, and arching prevention. It can be used to guide the design and operation of moving beds and fixed beds.

  8. Quantum Kinetic Theory and Applications Electrons, Photons, Phonons

    CERN Document Server

    Vasko, Fedir T

    2006-01-01

    This lecture-style monograph is addressed to several categories of readers. First, it will be useful for graduate students studying theory. Second, the topics covered should be interesting for postgraduate students of various specializations. Third, the researchers who want to understand the background of modern theoretical issues in more detail can find a number of useful results here. The phenomena covered involve kinetics of electron, phonon, and photon systems in solids. The dynamical properties and interactions of electrons, phonons, and photons are briefly described in Chapter 1. Further, in Chapters 2-8, the authors present the main theoretical methods: linear response theory, various kinetic equations for the quasiparticles under consideration, and diagram technique. The presentation of the key approaches is always accompanied by solutions of concrete problems to illustrate ways to apply the theory. The remaining chapters are devoted to various manifestations of quantum transport in solids. The choice...

  9. Reduction of Couplings in Quantum Field Theories with applications in Finite Theories and the MSSM

    CERN Document Server

    Heinemeyer, S; Tracas, N; Zoupanos, G

    2014-01-01

    We apply the method of reduction of couplings in a Finite Unified Theory and in the MSSM. The method consists on searching for renormalization group invariant relations among couplings of a renormalizable theory holding to all orders in perturbation theory. It has a remarkable predictive power since, at the unification scale, it leads to relations between gauge and Yukawa couplings in the dimensionless sectors and relations involving the trilinear terms and the Yukawa couplings, as well as a sum rule among the scalar masses and the unified gaugino mass in the soft breaking sector. In both the MSSM and the FUT model we predict the masses of the top and bottom quarks and the light Higgs in remarkable agreement with the experiment. Furthermore we also predict the masses of the other Higgses, as well as the supersymmetric spectrum, both being in very confortable agreement with the LHC bounds on Higgs and supersymmetric particles.

  10. Budget Automation System

    Data.gov (United States)

    U.S. Environmental Protection Agency — BAS is the central Agency system used to integrate strategic planning, annual planning, budgeting and financial management. BAS contains resource (dollars and FTE),...

  11. Application of viability theory for road vehicle active safety during cornering manoeuvres

    Science.gov (United States)

    Vandanjon, P.-O.; Coiret, A.; Lorino, T.

    2014-02-01

    Viability theory proposes geometric metaphors in addition to classical ordinary differential equation analysis. In this paper, advantages of applying viability theory to road safety domain are presented. The exact issue is to determine if, from an initial state of a vehicle/road/driver system, a soft controls strategy is compatible with a safe driving sequence. The case of a car negotiating a curve is considered. The application of the viability theory to this issue offers the advantage to avoid classical full computing of the system. Instead of that, it consists on verifying that the states and the controls belong to a subset called the viability kernel. The construction and the use of the viability kernel for a vehicle system dynamic is proposed by using support vector machines algorithm. Then, the applicability of this theory is demonstrated through experimental tests. This innovative application of the viability theory to vehicle dynamics with road safety concerns could benefit to robust embedded warning systems.

  12. An Application of Heterogeneous Reactor Theory to Substitution Experiments

    International Nuclear Information System (INIS)

    An interpretation of substitution experiments by heterogeneous theory avoids many difficulties which are typical of the homogenized treatment (as, for example, the determination of the coupling coefficients of the two zones). As a consequence it seems feasible to reduce sensibly the-number of substitutions necessary for many experiments. A suitable method for the determination of the fuel element parameters which enter into the heterogeneous theory will be discussed. There exists a direct relationship between these parameters and some quantities that can be measured in oscillation experiments. (author)

  13. The Application of Big-Neuron Theory in Expert Systems

    Institute of Scientific and Technical Information of China (English)

    李涛

    2001-01-01

    With a new way of knowledge representation and acquirement, inference, and building an expert system based on big-neurons composed of different field expert knowledge presented, the fundamental theory and architecture of expert system based upon big-neuron theory has thus been built. It is unnecessary to organize a large number of production rules when using big-neurons to build an expert system. The facts and rules of an expert system have already been hidden in big-neurons. And also, it is unnecessary to do a great quantity of tree searching when using this method to do logic reasoning. Machine can do self-organizing and self-learning.

  14. Application of fractal theory to size effect of disordered materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For disordered materials it is impossible to measure constantmaterial properties using the Euclidian geometrical dimension of the test specimens. Based on the theory of fractal geometry, the fractal dimension of the damaged microstructure is applied to measure the strength and fracture toughness of imitation marbles, which turn out to be scale-invariant material constants. In this paper, the experimental data are treated and interpreted by the theory of fractal geometry. Reasonable results are obtained and the size effects on strength and fracture energy are observed.

  15. Lattice field theory applications in high energy physics

    CERN Document Server

    Gottlieb, Steven

    2016-01-01

    Lattice gauge theory was formulated by Kenneth Wilson in 1974. In the ensuing decades, improvements in actions, algorithms, and computers have enabled tremendous progress in QCD, to the point where lattice calculations can yield sub-percent level precision for some quantities. Beyond QCD, lattice methods are being used to explore possible beyond the standard model (BSM) theories of dynamical symmetry breaking and supersymmetry. We survey progress in extracting information about the parameters of the standard model by confronting lattice calculations with experimental results and searching for evidence of BSM effects.

  16. The Application of Sociolinguistics Theory in Language Learning and Teaching

    Institute of Scientific and Technical Information of China (English)

    LIU Zi-wei

    2014-01-01

    It is universally acknowledged that language is used for the purposes of communication. However, in traditional class language learning is treated as a process of acquiring knowledge, ignoring the most significant goal of language acquisition. Con-sidering this situation, this paper mainly focuses on the theory which has shed some new light on language teaching and learning. In the beginning, the significance of the socio-cultural theory in language teaching will be introduced and then comes the main characteristics, finally, the implication of it on language learning and teaching.

  17. APPLICATION OF INFORMATION THEORY AND A.S.C. ANALYSIS FOR EXPERIMENTAL RESEARCH IN NUMBER THEORY

    Directory of Open Access Journals (Sweden)

    Lutsenko Y. V.

    2014-03-01

    Full Text Available Is it possible to automate the study of the properties of numbers and their relationship so that the results of this study can be formulated in the form of statements, indicating the specific quantity of information stored in them? To answer this question it is offered to apply the same method that is widely tested and proved in studies of real objects and their relations in various fields to study the properties of numbers in the theory of numbers namely - the automated system-cognitive analysis (A.S.C. analysis, based on information theory

  18. Cyclical budget balance measurement

    OpenAIRE

    C. AUDENIS; C. PROST

    2000-01-01

    Government balances are often adjusted for changes in economic activity in order to draw a clearer picture of the underlying fiscal situation and to use this as a guide to fiscal policy analysis. International organisations estimate the cyclical component of economic activity by the current level of the output gap. Using elasticities of tax and public expenditures to GDP, they compute the cyclical part of budget balance. The structural budget balance is defined as the remainder. Our approach ...

  19. Learning From Low Budgets

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2011-01-01

    Organizers of China's upcoming film festivals are finally giving recognition to the little guys-low budget films-to encourage a generation of young,talented directors.Several nominees were announced on September 10 to compete for the Small-and Medium-Budget Film Prize of the annual Golden Rooster and Hundred Flowers Film Festival,which will kick off on October 19.

  20. Gender budget pilot project

    OpenAIRE

    Barry, Ursula; Pillinger, Jane; Quinn, Sheila; Cashman, Aileen

    2004-01-01

    This Report presents the findings of the first Irish research project on gender budgeting. It explores recent international and Irish experiences of strategies towards greater gender equality and develops a template for applying a gender budget approach in selected local development organisations. The research was funded by the Gender Equality Unit of the Department of Justice, Equality and Law Reform who have responsibility for promoting and monitoring gender mainstreaming in the Irish Natio...

  1. Polymer solution and lattice theory applications for modeling of asphaltene precipitation in petroleum mixtures

    OpenAIRE

    S. A. Mousavi-Dehghani; Mirzayi, B.; M. Vafaie-Sefti

    2008-01-01

    Here asphaltene precipitation in petroleum reservoirs during natural depletion and miscible gas injection is modeled via two distinct and new methods (polymer solution and lattice theories). The first model is based on the polymer solution theory, which is a combination of Miller's combinatorial term with a modified residual term of the original Flory-Huggins theory. The second one is the application of the well-known Sanchez-Lacombe equation of state (SL EOS) to describe the phase behavior o...

  2. Recent progress in random metric theory and its applications to conditional risk measures

    OpenAIRE

    Tiexin Guo

    2010-01-01

    The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures. This paper includes eight sections. Section 1 is a longer introduction, which gives a brief introduction to random metric theory, risk measures and conditional risk measures. Section 2 gives the central framework in random metric theory, topological structures, important examples, the notions of a random conjugate space and the Hahn-Banach theor...

  3. OPTIMIZING LOCAL BUDGET BALANCING IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Gyorgy Adina Crsitina

    2011-07-01

    Full Text Available The importance of the local public finance is growing in accordance with the increasing proportion of the decentralization process. The mechanism of resource allocation, and especially the allocation criteria used, constitutes subjects of debate. Our objective pursued is to assess whether the avoidance of the first step for balancing the allocation of funds can provide enhanced fairness in balancing the local budgets across the country. Local budgets in Romania receive significant resources from the state budget in the form of amounts and quotas distributed from certain taxes, which are revenues for the state budget. Some of these amounts are designed to balance the local budgets. The distribution of funds from the state budget to the local budgets requires two steps. Firstly, the amounts are divided by county, secondly, these amounts are directed within the county especially towards localities which have a lower financial standing. Given the significant disparities between counties, we believe that this mechanism does not ensure fairness in the allocation because the funds distributed according to the first step may not use fair criteria to meet the requirements for balanced local budgets. Therefore, we intend to simulate a balanced allocation of national funds for eliminating the first step that produces the most significant inequities. Direct application of the second step of allocation, with its two phases, will provide more funds serving those local administrative units for the income tax per capita is lower than the national average. Comparing the values allocated for the year 2011 with those obtained in the simulation we will examine changes that occur after the application of this method which seems to be more equitable and appropriate. This work was supported by CNCSISUEFISCSU, project number PNII-IDEI 1780/2008

  4. Stress Analysis in Managing the Region’s Budget Risks

    Directory of Open Access Journals (Sweden)

    Natalya Pavlovna Pazdnikova

    2014-09-01

    Full Text Available The article addresses the implementation of budget risk management methods into the practices of governmental authorities. Drawing on the example of a particular region the article aims to demonstrate the possible methods of budget risk management. The authors refine the existing approaches to the notion of risk in its relation to budget system by introducing the notion of “budget risk.” Here the focus is the risk of default of budget spending in full which causes underfunding of territories and decrease in quality of life in the region. The authors have particularized the classification of budget risks and grouped together the criteria and factors which significantly influence the assessment and choice of method to manage budget risks. They hypothesize that budget risk is a financial risk. Therefore, the methods of financial risks management can be applied to budget risks management. The authors suggest a methodological approach to risk assessment based on correlation and regression analysis of program financing. The application of Kendall rank correlation coefficient allowed to assess the efficiency of budget spending on the implementation of state programs in Perm Krai. Two clusters — “Nature management and infrastructure” and “Public security” — turned out to be in the zone of high budget risk. The method of stress analysis, which consists in calculating Value at Risk (VaR, was applied to budget risks that in terms of probability are classified as critical. In order to assess risk as probability rate, the amount of Perm Krai deficit budget was calculated as induced variable from budget revenues and spending. The results demonstrate that contemporary management of public resources in the regions calls for the implementation of new management tools of higher quality and budget risk management is one of them.

  5. An Application of General System Theory (GST) to Group Therapy.

    Science.gov (United States)

    Matthews, Charles O.

    1992-01-01

    Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)

  6. Potential Applications of Social Norms Theory to Academic Advising

    Science.gov (United States)

    Demetriou, Cynthia

    2005-01-01

    Since the mid-1990s, social norms theory has become prevalent in student development literature and research. Subsequently, social norms interventions to change student behavior have spread across campuses nationwide through marketing campaigns. Theorists and practitioners have applied the social norms approach to primarily health-related student…

  7. Design Theory of Intellectualized Computer Aided Instruction and Its Applications

    Institute of Scientific and Technical Information of China (English)

    CUI Hong-bin; WANG Ai-min; YU Dong-mei

    2001-01-01

    This paper presents design theory and method of the intellectualized CAI. which includes the organization and expression of the teaching content and the teaching requirement determination in teaching process, and develops a highly intellectualized CA1 software. LA-CAI, to use for liner arithmetic teaching program.

  8. Evolutionary Theories in Environmental and Resource Economics: Approaches and Applications

    OpenAIRE

    Bergh, van den, E.; Gowdy, J.

    1998-01-01

    Recent advances in evolutionary theory have important implications for environmental economics. A short overview is offered of evolutionarythinking in economics. Subsequently, major concepts and approaches inevolutionary biology and evolutionary economics are presented andcompared. Attention is devoted, among others, to Darwinian selection,punctuated equilibrium, sorting mechanisms, Lamarckian evolution,coevolution and self-organization. Basic features of evolution, such assustained change, i...

  9. Theory of Deviation and Its Application in College English Teaching

    Institute of Scientific and Technical Information of China (English)

    Xu Yanqiu

    2008-01-01

    Deviation is an important concept in stylistics.Besides Shklovskij and Mukarovsky,who made a theoreti cal generalization of deviational phenomena,Leech is the one who studies deviation systematically and catego rizes it into groups.To apply the theory of deviation to College English teaching is an effective way to culti rate students' interest in and aesthetic ability of English texts.

  10. Engaging Gender: Student Application of Theory through Digital Storytelling

    Science.gov (United States)

    Coventry, Michael

    2008-01-01

    Enabling students' engagement with gender theory can be a difficult task. One of the best ways to help students learn difficult conceptual material, such as theoretical texts, is to provide them with opportunities to state and restate those ideas in multiple ways and through multiple means. Digital storytelling provides an effective pedagogy that…

  11. Supporting Alternative Strategies for Learning Chemical Applications of Group Theory

    Science.gov (United States)

    Southam, Daniel C.; Lewis, Jennifer E.

    2013-01-01

    A group theory course for chemists was taught entirely with process oriented guided inquiry learning (POGIL) to facilitate alternative strategies for learning. Students completed a test of one aspect of visuospatial aptitude to determine their individual approaches to solving spatial tasks, and were sorted into groups for analysis on the basis of…

  12. Learning Theories 101: Application to Everyday Teaching and Scholarship

    Science.gov (United States)

    Kay, Denise; Kibble, Jonathan

    2016-01-01

    Shifts in educational research, in how scholarship in higher education is defined, and in how funding is appropriated suggest that educators within basic science fields can benefit from increased understanding of learning theory and how it applies to classroom practice. This article uses a mock curriculum design scenario as a framework for the…

  13. The Application of Catastrophe Theory to Medical Image Analysis

    NARCIS (Netherlands)

    Kuijper, Arjan; Florack, L.M.J.

    2002-01-01

    In order to investigate the deep structure of Gaussian scale space images, one needs to understand the behaviour of critical points under the influence of blurring. We show how the mathematical framework of catastrophe theory can be used to describe the various different types of annihilations and c

  14. The Application of Catastrophe Theory to Image Analysis

    NARCIS (Netherlands)

    Kuijper, Arjan; Florack, L.M.J.

    2002-01-01

    In order to investigate the deep structure of Gaussian scale space images, one needs to understand the behaviour of critical points under the in flence of blurring. We show how the mathematical framework of catastrophe theory can be used to describe the various different types of annihilations and t

  15. Applications of Bayesian Decision Theory to Sequential Mastery Testing.

    Science.gov (United States)

    Vos, Hans J.

    1999-01-01

    Formulates optimal sequential rules for mastery testing using an approach derived from Bayesian sequential decision theory to consider both threshold and linear loss structures. Adopts the binomial probability distribution as the psychometric model. Provides an empirical example for concept-learning in medicine. (SLD)

  16. Maslov P-Index Theory for a Symplectic Path with Applications

    Institute of Scientific and Technical Information of China (English)

    Chungen LIU

    2006-01-01

    The Maslov P-index theory for a symplectic path is defined. Various properties of this index theory such as homotopy invariant, symplectic additivity and the relations with other Morse indices are studied. As an application, the non-periodic problem for some asymptotically linear Hamiltonian systems is considered.

  17. A Summary of Schema Theory Application in Reading——Readers analysis and schema activation

    Institute of Scientific and Technical Information of China (English)

    王琰

    2006-01-01

    This paper attempts to discuss some issues in the application of schema theory in reading instruction.It focuses on consideration of the difference of readers,knowledge preparation in the using schema theory in reading instruction and provides some examples of activating readers’schema.

  18. Ethical Decision Making in Academic Dishonesty with Application of Modified Theory of Planned Behavior: A Review

    Science.gov (United States)

    Meng, Chan Ling; Othman, Jamilah; D'Silva, Jeffrey Lawrence; Omar, Zoharah

    2014-01-01

    This conceptual paper studies the application of the Theory of Planned Behavior (TBP) in academic dishonesty with the mediating variable of ethical ideologies. The study reviews literature on the Theory of Planned Behavior and past studies pertaining to academic dishonesty. The paper analyses the relationship of the variables of TPB on academic…

  19. Why is an Application of Multiple Intelligences Theory Important for Language Learning and Teaching Speaking Ability?

    Directory of Open Access Journals (Sweden)

    Malai Boonma

    2014-10-01

    Full Text Available This article calls for a strong need to propose the theoretical framework of the Multiple Intelligences theory (MI and provide a suitable answer of the doubt in part of foreign language teaching. The article addresses the application of MI theory following various sources from Howard Gardner and the authors who revised this theory for using in the field of the English speaking improvement domain. In other word, this article combines and summarizes appropriate elements for the person on how to start teaching with this theory. The article also describes sequences and implication of the theory into practice. MI theory with the description of eight intelligences characteristic is presented. Following is the parts of activities catering and the processes of teaching with MI are provided. This article ends with the reviews of the ways for assessment and examples of lesson plan integrated with MI theory.

  20. BUDGET AND PUBLIC DEBT

    Directory of Open Access Journals (Sweden)

    Morar Ioan Dan

    2014-12-01

    Full Text Available The issue of public budgeting is an important issue for public policy of the state, for the simple reason that no money from the state budget can not promote public policy. Budgetary policy is official government Doctrine vision mirror and also represents a starting point for other public policies, which in turn are financed by the public budget. Fiscal policy instruments at its disposal handles the public sector in its structure, and the private sector. Tools such as grant, budgetary allocation, tax, welfare under various forms, direct investments and not least the state aid is used by the state through their budgetary policies to directly and indirectly infuence sector, and the private. Fiscal policies can be grouped according to the structure of the public sector in these components, namely fiscal policy, budgeting and resource allocation policies for financing the budget deficit. An important issue is the financing of the budget deficit budgetary policies. There are two funding possibilities, namely, the higher taxes or more axles site and enter the second call to public loans. Both options involve extra effort from taxpayers in the current fiscal year when they pay higher taxes or a future period when public loans will be repaid. We know that by virtue of "fiscal pact" structural deficits of the member countries of the EU are limited by the European Commission, according to the macro structural stability and budget of each Member State. This problem tempers to some extent the governments of the Member States budgetary appetite, but does not solve the problem of chronic budget deficits. Another issue addressed in this paper is related to the public debt, the absolute amount of its relative level of public datoriri, about the size of GDP, public debt financing and its repayment sources. Sources of public debt issuance and monetary impact on the budget and monetary stability are variables that must underpin the justification of budgetary