WorldWideScience

Sample records for budding yeast meiosis

  1. How to halve ploidy: lessons from budding yeast meiosis.

    Science.gov (United States)

    Kerr, Gary William; Sarkar, Sourav; Arumugam, Prakash

    2012-09-01

    Maintenance of ploidy in sexually reproducing organisms requires a specialized form of cell division called meiosis that generates genetically diverse haploid gametes from diploid germ cells. Meiotic cells halve their ploidy by undergoing two rounds of nuclear division (meiosis I and II) after a single round of DNA replication. Research in Saccharomyces cerevisiae (budding yeast) has shown that four major deviations from the mitotic cell cycle during meiosis are essential for halving ploidy. The deviations are (1) formation of a link between homologous chromosomes by crossover, (2) monopolar attachment of sister kinetochores during meiosis I, (3) protection of centromeric cohesion during meiosis I, and (4) suppression of DNA replication following exit from meiosis I. In this review we present the current understanding of the above four processes in budding yeast and examine the possible conservation of molecular mechanisms from yeast to humans.

  2. A nutrient dependant switch explains mutually exclusive existence of meiosis and mitosis initiation in budding yeast.

    Science.gov (United States)

    Wannige, C T; Kulasiri, D; Samarasinghe, S

    2014-01-21

    Nutrients from living environment are vital for the survival and growth of any organism. Budding yeast diploid cells decide to grow by mitosis type cell division or decide to create unique, stress resistant spores by meiosis type cell division depending on the available nutrient conditions. To gain a molecular systems level understanding of the nutrient dependant switching between meiosis and mitosis initiation in diploid cells of budding yeast, we develop a theoretical model based on ordinary differential equations (ODEs) including the mitosis initiator and its relations to budding yeast meiosis initiation network. Our model accurately and qualitatively predicts the experimentally revealed temporal variations of related proteins under different nutrient conditions as well as the diverse mutant studies related to meiosis and mitosis initiation. Using this model, we show how the meiosis and mitosis initiators form an all-or-none type bistable switch in response to available nutrient level (mainly nitrogen). The transitions to and from meiosis or mitosis initiation states occur via saddle node bifurcation. This bidirectional switch helps the optimal usage of available nutrients and explains the mutually exclusive existence of meiosis and mitosis pathways.

  3. Commitment to meiosis: what determines the mode of division in budding yeast?

    Science.gov (United States)

    Simchen, Giora

    2009-02-01

    In budding yeast, commitment to meiosis is attained when meiotic cells cannot return to the mitotic cell cycle even if the triggering cue (nutrients deprivation) is withdrawn. Commitment is arrived at gradually, and different aspects of meiosis may be committed at different times. Cells become fully committed to meiosis at the end of Prophase I, long after DNA replication and just before the first meiotic division (M(I)). Whole-genome gene expression analysis has shown that committed cells have a distinct and rapid response to nutrients, and are not simply insulated from environmental signals. Thus becoming committed to meiosis is an active process. The cellular event most likely to be associated with commitment to meiosis is the separation of the duplicated spindle-pole bodies (SPBs) and the formation of the spindle. Commitment to the mitotic cell cycle is also associated with the separation of SPBs, although it occurs in G1, before DNA replication.

  4. Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast

    Science.gov (United States)

    2017-01-01

    Background Gametes are generated through a specialized cell division called meiosis, in which ploidy is reduced by half because two consecutive rounds of chromosome segregation, meiosis I and meiosis II, occur without intervening DNA replication. This contrasts with the mitotic cell cycle where DNA replication and chromosome segregation alternate to maintain the same ploidy. At the end of mitosis, CDKs are inactivated. This low CDK state in late mitosis/G1 allows for critical preparatory events for DNA replication and centrosome/spindle pole body (SPB) duplication. However, their execution is inhibited until S phase, where further preparatory events are also prevented. This “licensing” ensures that both the chromosomes and the centrosomes/SPBs replicate exactly once per cell cycle, thereby maintaining constant ploidy. Crucially, between meiosis I and meiosis II, centrosomes/SPBs must be re-licensed, but DNA re-replication must be avoided. In budding yeast, the Cdc14 protein phosphatase triggers CDK down regulation to promote exit from mitosis. Cdc14 also regulates the meiosis I to meiosis II transition, though its mode of action has remained unclear. Methods Fluorescence and electron microscopy was combined with proteomics to probe SPB duplication in cells with inactive or hyperactive Cdc14. Results We demonstrate that Cdc14 ensures two successive nuclear divisions by re-licensing SPBs at the meiosis I to meiosis II transition. We show that Cdc14 is asymmetrically enriched on a single SPB during anaphase I and provide evidence that this enrichment promotes SPB re-duplication. Cells with impaired Cdc14 activity fail to promote extension of the SPB half-bridge, the initial step in morphogenesis of a new SPB. Conversely, cells with hyper-active Cdc14 duplicate SPBs, but fail to induce their separation. Conclusion Our findings implicate reversal of key CDK-dependent phosphorylations in the differential licensing of cyclical events at the meiosis I to meiosis I

  5. Interorganelle interactions and inheritance patterns of nuclei and vacuoles in budding yeast meiosis.

    Science.gov (United States)

    Tsai, I-Ting; Lin, Jyun-Liang; Chiang, Yi-Hsuan; Chuang, Yu-Chien; Liang, Shu-Shan; Chuang, Chi-Ning; Huang, Tzyy-Nan; Wang, Ting-Fang

    2014-02-01

    Many of the mechanisms by which organelles are inherited by spores during meiosis are not well understood. Dramatic chromosome motion and bouquet formation are evolutionarily conserved characteristics of meiotic chromosomes. The budding yeast bouquet genes (NDJ1, MPS3, CSM4) mediate these movements via telomere attachment to the nuclear envelope (NE). Here, we report that during meiosis the NE is in direct contact with vacuoles via nucleus-vacuole junctions (NVJs). We show that in meiosis NVJs are assembled through the interaction of the outer NE-protein Nvj1 and the vacuolar membrane protein Vac8. Notably, NVJs function as diffusion barriers that exclude the nuclear pore complexes, the bouquet protein Mps3 and NE-tethered telomeres from the outer nuclear membrane and nuclear ER, resulting in distorted NEs during early meiosis. An increase in NVJ area resulting from Nvj1-GFP overexpression produced a moderate bouquet mutant-like phenotype in wild-type cells. NVJs, as the vacuolar contact sites of the nucleus, were found to undergo scission alongside the NE during meiotic nuclear division. The zygotic NE and NVJs were partly segregated into 4 spores. Lastly, new NVJs were also revealed to be synthesized de novo to rejoin the zygotic NE with the newly synthesized vacuoles in the mature spores. In conclusion, our results revealed that budding yeast nuclei and vacuoles exhibit dynamic interorganelle interactions and different inheritance patterns in meiosis, and also suggested that nvj1Δ mutant cells may be useful to resolve the technical challenges pertaining to the isolation of intact nuclei for the biochemical study of meiotic nuclear proteins.

  6. The nuclear exosome is active and important during budding yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Stephen Frenk

    Full Text Available Nuclear RNA degradation pathways are highly conserved across eukaryotes and play important roles in RNA quality control. Key substrates for exosomal degradation include aberrant functional RNAs and cryptic unstable transcripts (CUTs. It has recently been reported that the nuclear exosome is inactivated during meiosis in budding yeast through degradation of the subunit Rrp6, leading to the stabilisation of a subset of meiotic unannotated transcripts (MUTs of unknown function. We have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation, and we further report that the meiotic exosome complex contains Rrp6. Indeed Rrp6 over-expression is insufficient to suppress MUT transcripts, showing that the reduced amount of Rrp6 in meiotic cells does not directly cause MUT accumulation. Lack of TRAMP activity stabilises ∼ 1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC. CBC mutants display defects in the formation of meiotic double strand breaks (DSBs, and we see similar defects in TRAMP mutants, suggesting that a key function of the nuclear exosome is to prevent saturation of the CBC complex by CUTs. Together, our results show that the nuclear exosome remains active in meiosis and has an important role in facilitating meiotic recombination.

  7. The nuclear exosome is active and important during budding yeast meiosis.

    Science.gov (United States)

    Frenk, Stephen; Oxley, David; Houseley, Jonathan

    2014-01-01

    Nuclear RNA degradation pathways are highly conserved across eukaryotes and play important roles in RNA quality control. Key substrates for exosomal degradation include aberrant functional RNAs and cryptic unstable transcripts (CUTs). It has recently been reported that the nuclear exosome is inactivated during meiosis in budding yeast through degradation of the subunit Rrp6, leading to the stabilisation of a subset of meiotic unannotated transcripts (MUTs) of unknown function. We have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation, and we further report that the meiotic exosome complex contains Rrp6. Indeed Rrp6 over-expression is insufficient to suppress MUT transcripts, showing that the reduced amount of Rrp6 in meiotic cells does not directly cause MUT accumulation. Lack of TRAMP activity stabilises ∼ 1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC). CBC mutants display defects in the formation of meiotic double strand breaks (DSBs), and we see similar defects in TRAMP mutants, suggesting that a key function of the nuclear exosome is to prevent saturation of the CBC complex by CUTs. Together, our results show that the nuclear exosome remains active in meiosis and has an important role in facilitating meiotic recombination.

  8. Sequestration of mRNAs Modulates the Timing of Translation during Meiosis in Budding Yeast.

    Science.gov (United States)

    Jin, Liang; Zhang, Kai; Xu, Yifeng; Sternglanz, Rolf; Neiman, Aaron M

    2015-10-01

    Starvation of diploid cells of the budding yeast Saccharomyces cerevisiae induces them to enter meiosis and differentiate into haploid spores. During meiosis, the precise timing of gene expression is controlled at the level of transcription, and also translation. If cells are returned to rich medium after they have committed to meiosis, the transcript levels of most meiotically upregulated genes decrease rapidly. However, for a subset of transcripts whose translation is delayed until the end of meiosis II, termed protected transcripts, the transcript levels remain stable even after nutrients are reintroduced. The Ime2-Rim4 regulatory circuit controls both the delayed translation and the stability of protected transcripts. These protected mRNAs localize in discrete foci, which are not seen for transcripts of genes with different translational timing and are regulated by Ime2. These results suggest that Ime2 and Rim4 broadly regulate translational delay but that additional factors, such as mRNA localization, modulate this delay to tune the timing of gene expression to developmental transitions during sporulation.

  9. Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Tamara Goldfarb

    Full Text Available Recombination between homologous chromosomes of different parental origin (homologs is necessary for their accurate segregation during meiosis. It has been suggested that meiotic inter-homolog recombination is promoted by a barrier to inter-sister-chromatid recombination, imposed by meiosis-specific components of the chromosome axis. Consistent with this, measures of Holliday junction-containing recombination intermediates (joint molecules [JMs] show a strong bias towards inter-homolog and against inter-sister JMs. However, recombination between sister chromatids also has an important role in meiosis. The genomes of diploid organisms in natural populations are highly polymorphic for insertions and deletions, and meiotic double-strand breaks (DSBs that form within such polymorphic regions must be repaired by inter-sister recombination. Efforts to study inter-sister recombination during meiosis, in particular to determine recombination frequencies and mechanisms, have been constrained by the inability to monitor the products of inter-sister recombination. We present here molecular-level studies of inter-sister recombination during budding yeast meiosis. We examined events initiated by DSBs in regions that lack corresponding sequences on the homolog, and show that these DSBs are efficiently repaired by inter-sister recombination. This occurs with the same timing as inter-homolog recombination, but with reduced (2- to 3-fold yields of JMs. Loss of the meiotic-chromosome-axis-associated kinase Mek1 accelerates inter-sister DSB repair and markedly increases inter-sister JM frequencies. Furthermore, inter-sister JMs formed in mek1Δ mutants are preferentially lost, while inter-homolog JMs are maintained. These findings indicate that inter-sister recombination occurs frequently during budding yeast meiosis, with the possibility that up to one-third of all recombination events occur between sister chromatids. We suggest that a Mek1-dependent reduction in

  10. Sister kinetochores are mechanically fused during meiosis I in yeast.

    Science.gov (United States)

    Sarangapani, Krishna K; Duro, Eris; Deng, Yi; Alves, Flavia de Lima; Ye, Qiaozhen; Opoku, Kwaku N; Ceto, Steven; Rappsilber, Juri; Corbett, Kevin D; Biggins, Sue; Marston, Adèle L; Asbury, Charles L

    2014-10-10

    Production of healthy gametes requires a reductional meiosis I division in which replicated sister chromatids comigrate, rather than separate as in mitosis or meiosis II. Fusion of sister kinetochores during meiosis I may underlie sister chromatid comigration in diverse organisms, but direct evidence for such fusion has been lacking. We used laser trapping and quantitative fluorescence microscopy to study native kinetochore particles isolated from yeast. Meiosis I kinetochores formed stronger attachments and carried more microtubule-binding elements than kinetochores isolated from cells in mitosis or meiosis II. The meiosis I-specific monopolin complex was both necessary and sufficient to drive these modifications. Thus, kinetochore fusion directs sister chromatid comigration, a conserved feature of meiosis that is fundamental to Mendelian inheritance.

  11. Sociobiology of the budding yeast

    Indian Academy of Sciences (India)

    Dominika M Wloch-Salamon

    2014-04-01

    Social theory has provided a useful framework for research with microorganisms. Here I describe the advantages and possible risks of using a well-known model organism, the unicellular yeast Saccharomyces cerevisiae, for sociobiological research. I discuss the problems connected with clear classification of yeast behaviour based on the fitness-based Hamilton paradigm. Relevant traits include different types of communities, production of flocculins, invertase and toxins, and the presence of apoptosis.

  12. Analysis of Recombination and Chromosome Structure during Yeast Meiosis.

    Science.gov (United States)

    Börner, G Valentin; Cha, Rita S

    2015-11-02

    Meiosis is a diploid-specific differentiation program that consists of a single round of genome duplication followed by two rounds of chromosome segregation. These events result in halving of the genetic complement, which is a requirement for formation of haploid reproductive cells (i.e., spores in yeast and gametes in animals and plants). During meiosis I, homologous maternal and paternal chromosomes (homologs) pair and separate, whereas sister chromatids remain connected at the centromeres and separate during the second meiotic division. In most organisms, accurate homolog disjunction requires crossovers, which are formed as products of meiotic recombination. For the past two decades, studies of yeast meiosis have provided invaluable insights into evolutionarily conserved mechanisms of meiosis.

  13. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  14. Bipolar budding in yeasts - an electron microscope study

    NARCIS (Netherlands)

    Kreger-van Rij, N.J.W.; Veenhuis, M.

    1971-01-01

    Bud formation in yeasts with bipolar budding was studied by electron microscopy of thin sections. Budding in yeasts of the species Saccharomycodes ludwigii, Hanseniaspora valbyensis and Wickerhamia fluorescens resulted in concentric rings of scar ridges on the wall of the mother cell. The wall betwe

  15. Taxonomy Icon Data: Budding yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Budding yeast Saccharomyces cerevisiae Saccharomyces_cerevisiae_L.png Saccharomyces_cerevisiae_NL.png Saccha...romyces_cerevisiae_S.png Saccharomyces_cerevisiae_NS.png http://biosciencedbc.jp/ta...xonomy_icon/icon.cgi?i=Saccharomyces+cerevisiae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomyces...+cerevisiae&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomyces...+cerevisiae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomyces+cerevisiae&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=216 ...

  16. The selective elimination of messenger RNA underlies the mitosis–meiosis switch in fission yeast

    OpenAIRE

    Yamamoto, Masayuki

    2010-01-01

    The cellular programs for meiosis and mitosis must be strictly distinguished but the mechanisms controlling the entry to meiosis remain largely elusive in higher organisms. In contrast, recent analyses in yeast have shed new light on the mechanisms underlying the mitosis–meiosis switch. In this review, the current understanding of these mechanisms in the fission yeast Schizosaccharomyces pombe is discussed. Meiosis-inducing signals in this microbe emanating from environmental conditions inclu...

  17. Electrochemical regulation of budding yeast polarity.

    Directory of Open Access Journals (Sweden)

    Armin Haupt

    2014-12-01

    Full Text Available Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs, which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization.

  18. Measuring mitotic spindle dynamics in budding yeast

    Science.gov (United States)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  19. Ddb1 controls genome stability and meiosis in fission yeast

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Fleck, Oliver; Hansen, H. A.

    2005-01-01

    The human UV-damaged DNA-binding protein Ddb1 associates with cullin 4 ubiquitin ligases implicated in nucleotide excision repair (NER). These complexes also contain the signalosome (CSN), but NER-relevant ubiquitination targets have not yet been identified. We report that fission yeast Ddb1, Cul...... degradation becomes essential when cells differentiate into meiosis. These results suggest that Ddb1, along with Cullin 4 and the signalosome, constitute a major pathway controlling genome stability, repair, and differentiation via RNR regulation....

  20. Characterization of the metabolic requirements in yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Debjit Ray

    Full Text Available The diploid yeast Saccharomyces cerevisiae undergoes mitosis in glucose-rich medium but enters meiosis in acetate sporulation medium. The transition from mitosis to meiosis involves a remarkable adaptation of the metabolic machinery to the changing environment to meet new energy and biosynthesis requirements. Biochemical studies indicate that five metabolic pathways are active at different stages of sporulation: glutamate formation, tricarboxylic acid cycle, glyoxylate cycle, gluconeogenesis, and glycogenolysis. A dynamic synthesis of macromolecules, including nucleotides, amino acids, and lipids, is also observed. However, the metabolic requirements of sporulating cells are poorly understood. In this study, we apply flux balance analyses to uncover optimal principles driving the operation of metabolic networks over the entire period of sporulation. A meiosis-specific metabolic network is constructed, and flux distribution is simulated using ten objective functions combined with time-course expression-based reaction constraints. By systematically evaluating the correlation between computational and experimental fluxes on pathways and macromolecule syntheses, the metabolic requirements of cells are determined: sporulation requires maximization of ATP production and macromolecule syntheses in the early phase followed by maximization of carbohydrate breakdown and minimization of ATP production in the middle and late stages. Our computational models are validated by in silico deletion of enzymes known to be essential for sporulation. Finally, the models are used to predict novel metabolic genes required for sporulation. This study indicates that yeast cells have distinct metabolic requirements at different phases of meiosis, which may reflect regulation that realizes the optimal outcome of sporulation. Our meiosis-specific network models provide a framework for an in-depth understanding of the roles of enzymes and reactions, and may open new avenues

  1. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  2. Characterization of Septin Ultrastructure in Budding Yeast Using Electron Tomography

    Science.gov (United States)

    Bertin, Aurélie; Nogales, Eva

    2015-01-01

    Summary Septins are essential for the completion of cytokinesis. In budding yeast, Saccharomyces cerevisiae, septins are located at the bud neck during mitosis and are closely connected to the inner plasma membrane. In vitro, yeast septins have been shown to self-assemble into a variety of filamentous structures, including rods, paired filaments, bundles and rings [1–3]. Using electron tomography of freeze-substituted section and cryo-electron tomography of frozen sections, we determined the three dimensional organization of the septin cytoskeleton in dividing budding yeast with molecular resolution [4,5]. Here we describe the detailed procedures used for our characterization of the septin cellular ultrastructure. PMID:26519309

  3. Mechanical feedback stabilizes budding yeast morphogenesis

    Science.gov (United States)

    Banavar, Samhita; Trogdon, Michael; Petzold, Linda; Campas, Otger

    Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach values up to 10 atmospheres. This requires a tight and simultaneous regulation of cell wall assembly and mechanochemistry, but the underlying mechanisms by which this is achieved remain unclear. Using the growth of mating projections in budding yeast (S. cerevisiae) as a motivating example, we have developed a theoretical description that couples the mechanics of cell wall expansion and assembly via a mechanical feedback. In the absence of a mechanical feedback, cell morphogenesis is inherently unstable. The presence of a mechanical feedback stabilizes changes in cell shape and growth, and provides a mechanism to prevent cell lysis in a wide range of conditions. We solve for the dynamics of the system and obtain the different dynamical regimes. In particular, we show that several parameters affect the stability of growth, including the strength of mechanical feedback in the system. Finally, we compare our results to existing experimental data.

  4. Regulation of wee1(+) expression during meiosis in fission yeast.

    Science.gov (United States)

    Murakami-Tonami, Yuko; Ohtsuka, Hokuto; Aiba, Hirofumi; Murakami, Hiroshi

    2014-01-01

    In eukaryotes, the cyclin-dependent kinase Cdk1p (Cdc2p) plays a central role in entry into and progression through nuclear division during mitosis and meiosis. Cdk1p is activated during meiotic nuclear divisions by dephosphorylation of its tyrosine-15 residue. The phosphorylation status of this residue is largely determined by the Wee1p kinase and the Cdc25p phosphatase. In fission yeast, the forkhead-type transcription factor Mei4p is essential for entry into the first meiotic nuclear division. We recently identified cdc25(+) as an essential target of Mei4p in the control of entry into meiosis I. Here, we show that wee1(+) is another important target of Mei4p in the control of entry into meiosis I. Mei4p bound to the upstream region of wee1(+) in vivo and in vitro and inhibited expression of wee1(+), whereas Mei4p positively regulated expression of the adjacent pseudogene. Overexpression of Mei4p inhibited expression of wee1(+) and induced that of the pseudogene. Conversely, deletion of Mei4p did not decrease expression of wee1(+) but inhibited that of the pseudogene. In addition, deletion of Mei4p-binding regions delayed repression of wee1(+) expression as well as induction of expression of the pseudogene. These results suggest that repression of wee1(+) expression is primarily owing to Mei4p-mediated transcriptional interference.

  5. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    Science.gov (United States)

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  6. Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast.

    Science.gov (United States)

    Matsuhara, Hirotada; Yamamoto, Ayumu

    2016-01-01

    Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis.

  7. Regulation of homologous recombination at telomeres in budding yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2010-01-01

    Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms...... that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae....

  8. Apoptosis at inflection point in liquid culture of budding yeasts.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hagiwara

    Full Text Available Budding yeasts are highly suitable for aging studies, because the number of bud scars (stage proportionally correlates with age. Its maximum stages are known to reach at 20-30 stages on an isolated agar medium. However, their stage dynamics in a liquid culture is virtually unknown. We investigate the population dynamics by counting scars in each cell. Here one cell division produces one new cell and one bud scar. This simple rule leads to a conservation law: "The total number of bud scars is equal to the total number of cells." We find a large discrepancy: extremely fewer cells with over 5 scars than expected. Almost all cells with 6 or more scars disappear within a short period of time in the late log phase (corresponds to the inflection point. This discrepancy is confirmed directly by the microscopic observations of broken cells. This finding implies apoptosis in older cells (6 scars or more.

  9. Budding yeast colony growth study based on circular granular cell

    Science.gov (United States)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  10. The selective elimination of messenger RNA underlies the mitosis-meiosis switch in fission yeast.

    Science.gov (United States)

    Yamamoto, Masayuki

    2010-01-01

    The cellular programs for meiosis and mitosis must be strictly distinguished but the mechanisms controlling the entry to meiosis remain largely elusive in higher organisms. In contrast, recent analyses in yeast have shed new light on the mechanisms underlying the mitosis-meiosis switch. In this review, the current understanding of these mechanisms in the fission yeast Schizosaccharomyces pombe is discussed. Meiosis-inducing signals in this microbe emanating from environmental conditions including the nutrient status converge on the activity of an RRM-type RNA-binding protein, Mei2. This protein plays pivotal roles in both the induction and progression of meiosis and has now been found to govern the meiotic program in a quite unexpected manner. Fission yeast contains an RNA degradation system that selectively eliminates meiosis-specific mRNAs during the mitotic cell cycle. Mmi1, a novel RNA-binding protein of the YTH-family, is essential for this process. Mei2 tethers Mmi1 and thereby stabilizes the transcripts necessary for the progression of meiosis.

  11. Synchronized fission yeast meiosis using an ATP analog-sensitive Pat1 protein kinase

    OpenAIRE

    Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W.; Smith, Gerald R.; Gregan, Juraj

    2014-01-01

    Synchronous cultures are often indispensable for studying meiosis. Here, we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP-analog 1-NM-PP1 in G1-arrested cells allows induction of synchronous meiosis at optimal temperature (25 °C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34 °C) which...

  12. Dynamical Analysis of Protein Regulatory Network in Budding Yeast Nucleus

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Ting; JIA Xun

    2006-01-01

    @@ Recent progresses in the protein regulatory network of budding yeast Saccharomyces cerevisiae have provided a global picture of its protein network for further dynamical research. We simplify and modularize the protein regulatory networks in yeast nucleus, and study the dynamical properties of the core 37-node network by a Boolean network model, especially the evolution steps and final fixed points. Our simulation results show that the number of fixed points N(k) for a given size of the attraction basin k obeys a power-law distribution N(k)∝k-2.024. The yeast network is more similar to a scale-free network than a random network in the above dynamical properties.

  13. Control of the mitotic exit network during meiosis

    OpenAIRE

    Attner, Michelle A.; Amon, Angelika

    2012-01-01

    The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN c...

  14. The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation.

    Science.gov (United States)

    Chan, Yuen-Ling; Brown, M Scott; Qin, Daoming; Handa, Naofumi; Bishop, Douglas K

    2014-06-27

    During meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second intron that lies near the 3'-end. We show that both HOP2 introns are efficiently spliced during meiosis, forming a predominant transcript that codes for a protein with a C-terminal sequence different from that of the previously studied version of the protein. Using the newly identified HOP2 open reading frame to direct synthesis of wild type Hop2 protein, we show that the Hop2-Mnd1 heterodimer stimulated Dmc1 D-loop activity up to 30-fold, similar to the activity of mammalian Hop2-Mnd1. ScHop2-Mnd1 stimulated ScDmc1 activity in the presence of physiological (micromolar) concentrations of Ca(2+) ions, as long as Mg(2+) was also present at physiological concentrations, leading us to hypothesize that ScDmc1 protomers bind both cations in the active Dmc1 filament. Co-factor requirements and order-of-addition experiments suggested that Hop2-Mnd1-mediated stimulation of Dmc1 involves a process that follows the formation of functional Dmc1-ssDNA filaments. In dramatic contrast to mammalian orthologs, the stimulatory activity of budding yeast Hop2-Mnd1 appeared to be specific to Dmc1; we observed no Hop2-Mnd1-mediated stimulation of the other budding yeast strand exchange protein Rad51. Together, these results support previous genetic experiments indicating that Hop2-Mnd1 specifically stimulates Dmc1 during meiotic recombination in budding yeast.

  15. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  16. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  17. The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast.

    Science.gov (United States)

    Arata, Mayumi; Sato, Masamitsu; Yamashita, Akira; Yamamoto, Masayuki

    2014-03-01

    Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II.

  18. Synchronized fission yeast meiosis using an ATP analog-sensitive Pat1 protein kinase.

    Science.gov (United States)

    Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W; Smith, Gerald R; Gregan, Juraj

    2014-01-01

    Synchronous cultures are often indispensable for studying meiosis. Here we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP analog 1-NM-PP1 in G1-arrested cells allows the induction of synchronous meiosis at optimal temperature (25°C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34°C), which is required to inactivate the commonly used temperature-sensitive Pat1 kinase mutant (pat1-114). The addition of the mat-Pc gene to a mat1-M strain further improves chromosome segregation and spore viability. Thus, our protocol offers highly synchronous meiosis at optimal temperature, with most characteristics similar to those of wild-type meiosis. The synchronization protocol can be completed in 5 d (not including strain production, which may take as long as 2 or 3 months).

  19. Virtual nuclear envelope breakdown and its regulators in fission yeast meiosis

    Directory of Open Access Journals (Sweden)

    Haruhiko eAsakawa

    2016-02-01

    Full Text Available Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE formation. After NE breakdown (NEBD during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called open mitosis. In contrast, many fungi undergo a process termed closed mitosis in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called anaphase II when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC. This virtual nuclear envelope breakdown (vNEBD involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis.

  20. Characterization of dependencies between growth and division in budding yeast.

    Science.gov (United States)

    Mayhew, Michael B; Iversen, Edwin S; Hartemink, Alexander J

    2017-02-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1 Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G2/M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes.

  1. Identification of an amphipathic helix important for the formation of ectopic septin spirals and axial budding in yeast axial landmark protein Bud3p.

    Science.gov (United States)

    Guo, Jia; Gong, Ting; Gao, Xiang-Dong

    2011-03-08

    Correct positioning of polarity axis in response to internal or external cues is central to cellular morphogenesis and cell fate determination. In the budding yeast Saccharomyces cerevisiae, Bud3p plays a key role in the axial bud-site selection (axial budding) process in which cells assemble the new bud next to the preceding cell division site. Bud3p is thought to act as a component of a spatial landmark. However, it is not clear how Bud3p interacts with other components of the landmark, such as the septins, to control axial budding. Here, we report that overexpression of Bud3p causes the formation of small septin rings (∼1 µm in diameter) and arcs aside from previously reported spiral-like septin structures. Bud3p closely associates with the septins in vivo as Bud3p colocalizes with these aberrant septin structures and forms a complex with two septins, Cdc10p and Cdc11p. The interaction of Bud3p with the septins may involve multiple regions of Bud3p including 1-858, 850-1220, and 1221-1636 a.a. since they all target to the bud neck but exhibit different effects on septin organization when overexpressed. In addition, our study reveals that the axial budding function of Bud3p is mediated by the N-terminal region 1-858. This region shares an amphipathic helix (850-858) crucial for bud neck targeting with the middle portion 850-1103 involved in the formation of ectopic septin spirals and rings. Interestingly, the Dbl-homology domain located in 1-858 is dispensable for axial bud-site selection. Our findings suggest that multiple regions of Bud3p ensure efficient targeting of Bud3p to the bud neck in the assembly of the axial landmark and distinct domains of Bud3p are involved in axial bud-site selection and other cellular processes.

  2. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan

    2010-02-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

  3. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    Science.gov (United States)

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  4. 5'-end sequences of budding yeast full-length cDNA clones and quality scores - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Budding yeast cDNA sequencing project 5'-end sequences of budding yeast full-length cDNA clones and quality ...scores Data detail Data name 5'-end sequences of budding yeast full-length cDNA clones and quality scores De...from the budding yeast full-length cDNA library by the vector-capping method, the sequence quality score gen...s accession only. Sequence 5'-end sequence data of budding yeast full-length cDNA clones. FASTA format. Quality Phred's quality... Update History of This Database Site Policy | Contact Us 5'-end sequences of budding yeast full-length cDNA clones and quality

  5. Origin of irreversibility of cell cycle start in budding yeast.

    Directory of Open Access Journals (Sweden)

    Gilles Charvin

    2010-01-01

    Full Text Available Budding yeast cells irreversibly commit to a new division cycle at a regulatory transition called Start. This essential decision-making step involves the activation of the SBF/MBF transcription factors. SBF/MBF promote expression of the G1 cyclins encoded by CLN1 and CLN2. Cln1,2 can activate their own expression by inactivating the Whi5 repressor of SBF/MBF. The resulting transcriptional positive feedback provides an appealing, but as yet unproven, candidate for generating irreversibility of Start. Here, we investigate the logic of the Start regulatory module by quantitative single-cell time-lapse microscopy, using strains in which expression of key regulators is efficiently controlled by changes of inducers in a microfluidic chamber. We show that Start activation is ultrasensitive to G1 cyclin. In the absence of CLN1,2-dependent positive feedback, we observe that Start transit is reversible, due to reactivation of the Whi5 transcriptional repressor. Introduction of the positive feedback loop makes Whi5 inactivation and Start activation irreversible, which therefore guarantees unidirectional entry into S phase. A simple mathematical model to describe G1 cyclin turn on at Start, entirely constrained by empirically measured parameters, shows that the experimentally measured ultrasensitivity and transcriptional positive feedback are necessary and sufficient dynamical characteristics to make the Start transition a bistable and irreversible switch. Our study thus demonstrates that Start irreversibility is a property that arises from the architecture of the system (Whi5/SBF/Cln2 loop, rather than the consequence of the regulation of a single component (e.g., irreversible protein degradation.

  6. Origin of irreversibility of cell cycle start in budding yeast.

    Science.gov (United States)

    Charvin, Gilles; Oikonomou, Catherine; Siggia, Eric D; Cross, Frederick R

    2010-01-19

    Budding yeast cells irreversibly commit to a new division cycle at a regulatory transition called Start. This essential decision-making step involves the activation of the SBF/MBF transcription factors. SBF/MBF promote expression of the G1 cyclins encoded by CLN1 and CLN2. Cln1,2 can activate their own expression by inactivating the Whi5 repressor of SBF/MBF. The resulting transcriptional positive feedback provides an appealing, but as yet unproven, candidate for generating irreversibility of Start. Here, we investigate the logic of the Start regulatory module by quantitative single-cell time-lapse microscopy, using strains in which expression of key regulators is efficiently controlled by changes of inducers in a microfluidic chamber. We show that Start activation is ultrasensitive to G1 cyclin. In the absence of CLN1,2-dependent positive feedback, we observe that Start transit is reversible, due to reactivation of the Whi5 transcriptional repressor. Introduction of the positive feedback loop makes Whi5 inactivation and Start activation irreversible, which therefore guarantees unidirectional entry into S phase. A simple mathematical model to describe G1 cyclin turn on at Start, entirely constrained by empirically measured parameters, shows that the experimentally measured ultrasensitivity and transcriptional positive feedback are necessary and sufficient dynamical characteristics to make the Start transition a bistable and irreversible switch. Our study thus demonstrates that Start irreversibility is a property that arises from the architecture of the system (Whi5/SBF/Cln2 loop), rather than the consequence of the regulation of a single component (e.g., irreversible protein degradation).

  7. Download - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Budding yeast cDNA sequencing project Download First of all, please read the license of this database. Data ...names and data descriptions are about the downloadable data in this page. They might not correspond to the c...f the data. # Data name File Simple search and download 1 README README_e.html - 2 5'-end sequences of buddi...ng yeast full-length cDNA clones and quality scores yeast_seq_qual.zip (59.9MB) Simple search and download 3...Downlaod via FTP Joomla SEF URLs by Artio About This Database Database Description Download License Update H

  8. The budding yeast Dbf2 protein kinase localises to the centrosome and moves to the bud neck in late mitosis.

    Science.gov (United States)

    Frenz, L M; Lee, S E; Fesquet, D; Johnston, L H

    2000-10-01

    Dbf2 is a multifunctional protein kinase in Saccharomyces cerevisiae that functions in transcription, the stress response and as part of a network of genes in exit from mitosis. By analogy with fission yeast it seemed likely that these mitotic exit genes would be involved in cytokinesis. As a preliminary investigation of this we have used Dbf2 tagged with GFP to examine intracellular localisation of the protein in living cells. Dbf2 is found on the centrosomes/spindle pole bodies (SPBs) and also at the bud neck where it forms a double ring. The localisation of Dbf2 is cell cycle regulated. It is on the SPBs for much of the cell cycle and migrates from there to the bud neck in late mitosis, consistent with a role in cytokinesis. Dbf2 partly co-localises with septins at the bud neck. A temperature-sensitive mutant of dbf2 also blocks progression of cytokinesis at 37 degrees C. Following cytokinesis some Dbf2 moves into the nascent bud. Localisation to the bud neck depends upon the septins and also the mitotic exit network proteins Mob1, Cdc5, Cdc14 and Cdc15. The above data are consistent with Dbf2 acting downstream in a pathway controlling cytokinesis.

  9. The fission yeast heterochromatin protein Rik1 is required for telomere clustering during meiosis

    DEFF Research Database (Denmark)

    Tuzon, Creighton T; Borgstrøm, Britta; Weilguny, Dietmar

    2004-01-01

    Telomeres share the ability to silence nearby transcription with heterochromatin, but the requirement of heterochromatin proteins for most telomere functions is unknown. The fission yeast Rik1 protein is required for heterochromatin formation at centromeres and the mating-type locus, as it recrui...... meiosis. However, Rik1 is dispensable for the protective roles of telomeres in preventing chromosome end-fusion. Thus, a Swi6-independent heterochromatin function distinct from that at centromeres and the mating-type locus operates at telomeres during sexual differentiation....

  10. Study of budding yeast colony formation and its characterizations by using circular granular cell

    Science.gov (United States)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  11. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform

    NARCIS (Netherlands)

    Lee, Sung Sik; Avalos Vizcarra, Ima; Huberts, Daphne H E W; Lee, Luke P; Heinemann, Matthias

    2012-01-01

    Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field st

  12. Continuous High-resolution Microscopic Observation of Replicative Aging in Budding Yeast

    NARCIS (Netherlands)

    Huberts, Daphne H. E. W.; Janssens, Georges E.; Lee, Sung Sik; Vizcarra, Ima Avalos; Heinemann, Matthias

    2013-01-01

    We demonstrate the use of a simple microfluidic setup, in which single budding yeast cells can be tracked throughout their entire lifespan. The microfluidic chip exploits the size difference between mother and daughter cells using an array of micropads. Upon loading, cells are trapped underneath the

  13. Vector sequences - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...od - Number of data entries 7 entries - Joomla SEF URLs by Artio About This Database Database Description Download License Update His...tory of This Database Site Policy | Contact Us Vector sequences - Budding yeast cDNA sequencing project | LSDB Archive ...

  14. The Fission Yeast FANCM Ortholog Directs Non-Crossover Recombination During Meiosis

    Science.gov (United States)

    Lorenz, Alexander; Osman, Fekret; Sun, Weili; Nandi, Saikat; Steinacher, Roland; Whitby, Matthew C.

    2012-01-01

    The formation of healthy gametes depends on programmed DNA double strand breaks (DSBs), which are each repaired as a crossover (CO) or non-crossover (NCO) from a homologous template. Although most of these DSBs are repaired without giving COs, little is known about the genetic requirements of NCO-specific recombination. We show that Fml1, the Fanconi anemia complementation group M (FANCM)-ortholog of Schizosaccharomyces pombe, directs the formation of NCOs during meiosis in competition with the Mus81-dependent pro-CO pathway. We also define the Rad51/Dmc1-mediator Swi5-Sfr1 as a major determinant in biasing the recombination process in favour of Mus81, to ensure the appropriate amount of COs to guide meiotic chromosome segregation. The conservation of these proteins from yeast to Humans suggests that this interplay may be a general feature of meiotic recombination. PMID:22723423

  15. The fascinating and secret wild life of the budding yeast S. cerevisiae.

    Science.gov (United States)

    Liti, Gianni

    2015-03-25

    The budding yeast Saccharomyces cerevisiae has been used in laboratory experiments for over a century and has been instrumental in understanding virtually every aspect of molecular biology and genetics. However, it wasn't until a decade ago that the scientific community started to realise how little was known about this yeast's ecology and natural history, and how this information was vitally important for interpreting its biology. Recent large-scale population genomics studies coupled with intensive field surveys have revealed a previously unappreciated wild lifestyle of S. cerevisiae outside the restrictions of human environments and laboratories. The recent discovery that Chinese isolates harbour almost twice as much genetic variation as isolates from the rest of the world combined suggests that Asia is the likely origin of the modern budding yeast.

  16. The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast.

    Science.gov (United States)

    Takaine, Masak; Imada, Kazuki; Numata, Osamu; Nakamura, Taro; Nakano, Kentaro

    2014-10-15

    Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei.

  17. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    Science.gov (United States)

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism.

  18. DNA Replication Forks Pause at Silent Origins near the HML Locus in Budding Yeast

    OpenAIRE

    Wang, Yangzhou; Vujcic, Marija; Kowalski, David

    2001-01-01

    Chromosomal replicators in budding yeast contain an autonomously replicating sequence (ARS) that functions in a plasmid, but certain ARSs are silent as replication origins in their natural chromosomal context. In chromosome III, the HML ARS cluster (ARS302-ARS303-ARS320) and ARS301 flank the transcriptionally silent mating-type locus HML, and all of these ARSs are silent as replication origins. ARS301 and ARS302 function in transcriptional silencing mediated by the origin recognition complex ...

  19. Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast

    OpenAIRE

    Murray, Andrew W.; Lacefield, Soni; Lau, Tsz Cham Derek

    2009-01-01

    Accurate chromosome segregation depends on the kinetochore, the complex of proteins that link microtubules to centromeric DNA1. The budding yeast kinetochore consists of more than 80 proteins assembled on a 125bp region of DNA1. We studied the assembly and function of kinetochore components by fusing individual kinetochore proteins to the lactose repressor (LacI) and testing their ability to improve the segregation of a plasmid carrying tandem repeats of the lactose operator (LacO). Targeting...

  20. cDNA sequence quality data - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Budding yeast cDNA sequencing project cDNA sequence quality data Data detail Data name cDNA sequence quality... data Description of data contents Phred's quality score. PHD format, one file to a single cDNA data, and co...ription Download License Update History of This Database Site Policy | Contact Us cDNA sequence quality data - Budding yeast cDNA sequencing project | LSDB Archive ...

  1. The Malleable Nature of the Budding Yeast Nuclear Envelope: Flares, Fusion, and Fenestrations.

    Science.gov (United States)

    Meseroll, Rebecca A; Cohen-Fix, Orna

    2016-11-01

    In eukaryotes, the nuclear envelope (NE) physically separates nuclear components and activities from rest of the cell. The NE also provides rigidity to the nucleus and contributes to chromosome organization. At the same time, the NE is highly dynamic; it must change shape and rearrange its components during development and throughout the cell cycle, and its morphology can be altered in response to mutation and disease. Here we focus on the NE of budding yeast, Saccharomyces cerevisiae, which has several unique features: it remains intact throughout the cell cycle, expands symmetrically during interphase, elongates during mitosis and, expands asymmetrically during mitotic delay. Moreover, its NE is safely breached during mating and when large structures, such as nuclear pore complexes and the spindle pole body, are embedded into its double membrane. The budding yeast NE lacks lamins and yet the nucleus is capable of maintaining a spherical shape throughout interphase. Despite these eccentricities, studies of the budding yeast NE have uncovered interesting, and likely conserved, processes that contribute to NE dynamics. In particular, we discuss the processes that drive and enable NE expansion and the dramatic changes in the NE that lead to extensions and fenestrations. J. Cell. Physiol. 231: 2353-2360, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. Morphology of mitochondrial nucleoids, mitochondria, and nuclei during meiosis and sporulation of the yeast Saccharomycodes ludwigii.

    Science.gov (United States)

    Miyakawa, Isamu; Nakahara, Ayumi; Ito, Kohei

    2012-01-01

    The morphology of mitochondrial nucleoids (mt-nucleoids), mitochondria, and nuclei was investigated during meiosis and sporulation of the diploid cells of the ascosporogenic yeast Saccharomycodes ludwigii. The mt-nucleoids appeared as discrete dots uniformly distributed in stationary-phase cells as revealed by 4',6-diamidino-2-phenylindole (DAPI) staining. Throughout first and second meiotic divisions, the mt-nucleoids moved to be located close to the dividing nuclei with the appearance of dots. On the other hand, mitochondria, which had tubular or fragmented forms in stationary-phase cells, increasingly fused with each other to form elongated mitochondria during meiotic prophase as revealed by 3,3' -dihexyloxacarbocyanine iodide [DiOC(6)(3)] staining. Mitochondria assembled to be located close to dividing nuclei during first and second meiotic divisions, and were finally incorporated into spores. During the first meiotic division, nuclear division occurred in any direction parallel, diagonally, or perpendicular to the longitudinal axis of the cell. In contrast, the second meiotic division was exclusively parallel to the longitudinal axis of the cell. The behavior of dividing nuclei explains the formation of a pair of spores with opposite mating types at both ends of cells. In the course of this study, it was also found that ledges between two spores were specifically stained with DiOC(6)(3).

  3. Distinct temporal requirements for autophagy and the proteasome in yeast meiosis.

    Science.gov (United States)

    Wen, Fu-ping; Guo, Yue-shuai; Hu, Yang; Liu, Wei-xiao; Wang, Qian; Wang, Yuan-ting; Yu, Hai-Yan; Tang, Chao-ming; Yang, Jun; Zhou, Tao; Xie, Zhi-ping; Sha, Jia-hao; Guo, Xuejiang; Li, Wei

    2016-01-01

    Meiosis is a special type of cellular renovation that involves 2 successive cell divisions and a single round of DNA replication. Two major degradation systems, the autophagy-lysosome and the ubiquitin-proteasome, are involved in meiosis, but their roles have yet to be elucidated. Here we show that autophagy mainly affects the initiation of meiosis but not the nuclear division. Autophagy works not only by serving as a dynamic recycling system but also by eliminating some negative meiotic regulators such as Ego4 (Ynr034w-a). In a quantitative proteomics study, the proteasome was found to be significantly upregulated during meiotic divisions. We found that proteasomal activity is essential to the 2 successive meiotic nuclear divisions but not for the initiation of meiosis. Our study defines the roles of autophagy and the proteasome in meiosis: Autophagy mainly affects the initiation of meiosis, whereas the proteasome mainly affects the 2 successive meiotic divisions.

  4. Genome-wide studies of telomere biology in budding yeast

    Directory of Open Access Journals (Sweden)

    Yaniv Harari

    2014-03-01

    Full Text Available Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the “end-replication problem”, in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.

  5. Complete DNA sequence of Kuraishia capsulata illustrates novel genomic features among budding yeasts (Saccharomycotina).

    Science.gov (United States)

    Morales, Lucia; Noel, Benjamin; Porcel, Betina; Marcet-Houben, Marina; Hullo, Marie-Francoise; Sacerdot, Christine; Tekaia, Fredj; Leh-Louis, Véronique; Despons, Laurence; Khanna, Varun; Aury, Jean-Marc; Barbe, Valérie; Couloux, Arnaud; Labadie, Karen; Pelletier, Eric; Souciet, Jean-Luc; Boekhout, Teun; Gabaldon, Toni; Wincker, Patrick; Dujon, Bernard

    2013-01-01

    The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid-type strain of Kuraishia capsulata (CBS1993(T)), a nitrate-assimilating Saccharomycetales of uncertain taxonomy, isolated from tunnels of insect larvae underneath coniferous barks and characterized by its copious production of extracellular polysaccharides. The sequence is composed of seven scaffolds, one per chromosome, totaling 11.4 Mb and containing 6,029 protein-coding genes, ~13.5% of which being interrupted by introns. This GC-rich yeast genome (45.7%) appears phylogenetically related with the few other nitrate-assimilating yeasts sequenced so far, Ogataea polymorpha, O. parapolymorpha, and Dekkera bruxellensis, with which it shares a very reduced number of tRNA genes, a novel tRNA sparing strategy, and a common nitrate assimilation cluster, three specific features to this group of yeasts. Centromeres were recognized in GC-poor troughs of each scaffold. The strain bears MAT alpha genes at a single MAT locus and presents a significant degree of conservation with Saccharomyces cerevisiae genes, suggesting that it can perform sexual cycles in nature, although genes involved in meiosis were not all recognized. The complete absence of conservation of synteny between K. capsulata and any other yeast genome described so far, including the three other nitrate-assimilating species, validates the interest of this species for long-range evolutionary genomic studies among Saccharomycotina yeasts.

  6. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Molon, Mateusz; Zadrag-Tecza, Renata

    2016-04-01

    The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.

  7. Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Azad, Gajendra Kumar; Tomar, Raghuvir Singh

    2016-06-01

    The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast.

    Directory of Open Access Journals (Sweden)

    Bilge Argunhan

    Full Text Available Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs. The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI whereas no significant reduction was found in smaller chromosomes (III and VI. On the other hand, the absence of Rad17 (a critical component of the ATR pathway lead to an increase in DSB formation (chromosomes VII and II were tested. We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.

  9. Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast.

    Directory of Open Access Journals (Sweden)

    Mohammad Bani Ismail

    Full Text Available Epigenetic marks such as histone modifications play roles in various chromosome dynamics in mitosis and meiosis. Methylation of histones H3 at positions K4 and K79 is involved in the initiation of recombination and the recombination checkpoint, respectively, during meiosis in the budding yeast. Set1 promotes H3K4 methylation while Dot1 promotes H3K79 methylation. In this study, we carried out detailed analyses of meiosis in mutants of the SET1 and DOT1 genes as well as methylation-defective mutants of histone H3. We confirmed the role of Set1-dependent H3K4 methylation in the formation of double-strand breaks (DSBs in meiosis for the initiation of meiotic recombination, and we showed the involvement of Dot1 (H3K79 methylation in DSB formation in the absence of Set1-dependent H3K4 methylation. In addition, we showed that the histone H3K4 methylation-defective mutants are defective in SC elongation, although they seem to have moderate reduction of DSBs. This suggests that high levels of DSBs mediated by histone H3K4 methylation promote SC elongation.

  10. Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery.

    Science.gov (United States)

    Carballo, Jesús A; Panizza, Silvia; Serrentino, Maria Elisabetta; Johnson, Anthony L; Geymonat, Marco; Borde, Valérie; Klein, Franz; Cha, Rita S

    2013-06-01

    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks.

  11. Budding yeast ATM/ATR control meiotic double-strand break (DSB levels by down-regulating Rec114, an essential component of the DSB-machinery.

    Directory of Open Access Journals (Sweden)

    Jesús A Carballo

    2013-06-01

    Full Text Available An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs. Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks.

  12. Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis.

    Science.gov (United States)

    Chen, Xiangyu; Suhandynata, Ray T; Sandhu, Rima; Rockmill, Beth; Mohibullah, Neeman; Niu, Hengyao; Liang, Jason; Lo, Hsiao-Chi; Miller, Danny E; Zhou, Huilin; Börner, G Valentin; Hollingsworth, Nancy M

    2015-12-01

    Interhomolog crossovers promote proper chromosome segregation during meiosis and are formed by the regulated repair of programmed double-strand breaks. This regulation requires components of the synaptonemal complex (SC), a proteinaceous structure formed between homologous chromosomes. In yeast, SC formation requires the "ZMM" genes, which encode a functionally diverse set of proteins, including the transverse filament protein, Zip1. In wild-type meiosis, Zmm proteins promote the biased resolution of recombination intermediates into crossovers that are distributed throughout the genome by interference. In contrast, noncrossovers are formed primarily through synthesis-dependent strand annealing mediated by the Sgs1 helicase. This work identifies a conserved region on the C terminus of Zip1 (called Zip1 4S), whose phosphorylation is required for the ZMM pathway of crossover formation. Zip1 4S phosphorylation is promoted both by double-strand breaks (DSBs) and the meiosis-specific kinase, MEK1/MRE4, demonstrating a role for MEK1 in the regulation of interhomolog crossover formation, as well as interhomolog bias. Failure to phosphorylate Zip1 4S results in meiotic prophase arrest, specifically in the absence of SGS1. This gain of function meiotic arrest phenotype is suppressed by spo11Δ, suggesting that it is due to unrepaired breaks triggering the meiotic recombination checkpoint. Epistasis experiments combining deletions of individual ZMM genes with sgs1-md zip1-4A indicate that Zip1 4S phosphorylation functions prior to the other ZMMs. These results suggest that phosphorylation of Zip1 at DSBs commits those breaks to repair via the ZMM pathway and provides a mechanism by which the crossover/noncrossover decision can be dynamically regulated during yeast meiosis.

  13. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks.

    Science.gov (United States)

    Zhou, Chunshui; Elia, Andrew E H; Naylor, Maria L; Dephoure, Noah; Ballif, Bryan A; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M; Xavier, Ramnik J; Gygi, Steven P; Elledge, Stephen J

    2016-06-28

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.

  14. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility.

    Directory of Open Access Journals (Sweden)

    Elena Servienė

    Full Text Available BACKGROUND: Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. PRINCIPAL FINDINGS: We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. SIGNIFICANCE: Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action.

  15. License - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Standard License, as long as you comply with the following conditions: You must attribute this database in t...Budding yeast cDNA sequencing project License to Use This Database Last updated : 2010/02/15 You may use thi... of this database and the requirements you must follow in using this database. The Additional License specif...ecified in the Creative Commons Attribution-Share Alike 2.1 Japan . If you use data from this database, plea...n . The summary of the Creative Commons Attribution-Share Alike 2.1 Japan is found here . With regard to this database, you

  16. Budding yeast dma proteins control septin dynamics and the spindle position checkpoint by promoting the recruitment of the Elm1 kinase to the bud neck.

    Directory of Open Access Journals (Sweden)

    Laura Merlini

    Full Text Available The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC. This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling.

  17. Budding yeast dma proteins control septin dynamics and the spindle position checkpoint by promoting the recruitment of the Elm1 kinase to the bud neck.

    Science.gov (United States)

    Merlini, Laura; Fraschini, Roberta; Boettcher, Barbara; Barral, Yves; Lucchini, Giovanna; Piatti, Simonetta

    2012-01-01

    The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling.

  18. Confinement to Organelle-Associated Inclusion Structures Mediates Asymmetric Inheritance of Aggregated Protein in Budding Yeast

    Directory of Open Access Journals (Sweden)

    Rachel Spokoini

    2012-10-01

    Full Text Available The division of the S. cerevisiae budding yeast, which produces one mother cell and one daughter cell, is asymmetric with respect to aging. Remarkably, the asymmetry of yeast aging coincides with asymmetric inheritance of damaged and aggregated proteins by the mother cell. Here, we show that misfolded proteins are retained in the mother cell by being sequestered in juxtanuclear quality control compartment (JUNQ and insoluble protein deposit (IPOD inclusions, which are attached to organelles. Upon exposure to stress, misfolded proteins accumulate in stress foci that must be disaggregated by Hsp104 in order to be degraded or processed to JUNQ and IPOD. Cells that fail to deliver aggregates to an inclusion pass on aggregates to subsequent generations.

  19. EdU Incorporation for FACS and Microscopy Analysis of DNA Replication in Budding Yeast.

    Science.gov (United States)

    Talarek, Nicolas; Petit, Julie; Gueydon, Elisabeth; Schwob, Etienne

    2015-01-01

    DNA replication is a key determinant of chromosome segregation and stability in eukaryotes. The yeast Saccharomyces cerevisiae has been extensively used for cell cycle studies, yet simple but key parameters such as the fraction of cells in S phase in a population or the subnuclear localization of DNA synthesis have been difficult to gather for this organism. 5-ethynyl-2'-deoxyuridine (EdU) is a thymidine analogue that can be incorporated in vivo and later detected using copper-catalyzed azide alkyne cycloaddition (Click reaction) without prior DNA denaturation. This chapter describes a budding yeast strain and conditions that allow rapid EdU incorporation at moderate extracellular concentrations, followed by its efficient detection for the analysis of DNA replication in single cells by flow cytometry and fluorescence microscopy.

  20. The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription.

    Science.gov (United States)

    Mirón-García, María Carmen; Garrido-Godino, Ana Isabel; Martínez-Fernández, Verónica; Fernández-Pevida, Antonio; Cuevas-Bermúdez, Abel; Martín-Expósito, Manuel; Chávez, Sebastián; de la Cruz, Jesús; Navarro, Francisco

    2014-09-01

    Bud27, the yeast orthologue of human URI/RMP, is a member of the prefoldin-like family of ATP-independent molecular chaperones. It has recently been shown to mediate the assembly of the three RNA polymerases in an Rpb5-dependent manner. In this work, we present evidence of Bud27 modulating RNA pol II transcription elongation. We show that Bud27 associates with RNA pol II phosphorylated forms (CTD-Ser5P and CTD-Ser2P), and that its absence affects RNA pol II occupancy of transcribed genes. We also reveal that Bud27 associates in vivo with the Sth1 component of the chromatin remodeling complex RSC and mediates its association with RNA pol II. Our data suggest that Bud27, in addition of contributing to Rpb5 folding within the RNA polymerases, also participates in the correct assembly of other chromatin-associated protein complexes, such as RSC, thereby modulating their activity.

  1. The coordination of centromere replication, spindle formation, and kinetochore-microtubule interaction in budding yeast.

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2008-11-01

    Full Text Available The kinetochore is a protein complex that assembles on centromeric DNA to mediate chromosome-microtubule interaction. Most eukaryotic cells form the spindle and establish kinetochore-microtubule interaction during mitosis, but budding yeast cells finish these processes in S-phase. It has long been noticed that the S-phase spindle in budding yeast is shorter than that in metaphase, but the biological significance of this short S-phase spindle structure remains unclear. We addressed this issue by using ask1-3, a temperature-sensitive kinetochore mutant that exhibits partially elongated spindles at permissive temperature in the presence of hydroxyurea (HU, a DNA synthesis inhibitor. After exposure to and removal of HU, ask1-3 cells show a delayed anaphase entry. This delay depends on the spindle checkpoint, which monitors kinetochore-microtubule interaction defects. Overproduction of microtubule-associated protein Ase1 or Cin8 also induces spindle elongation in HU-arrested cells. The spindle checkpoint-dependent anaphase entry delay is also observed after ASE1 or CIN8 overexpression in HU-arrested cells. Therefore, the shorter spindle in S-phase cells is likely to facilitate proper chromosome-microtubule interaction.

  2. Ingression Progression Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast

    Science.gov (United States)

    Foltman, Magdalena; Molist, Iago; Arcones, Irene; Sacristan, Carlos; Filali-Mouncef, Yasmina; Roncero, Cesar; Sanchez-Diaz, Alberto

    2016-01-01

    Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named ‘ingression progression complexes’ (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role. PMID:26891268

  3. Ingression Progression Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast.

    Directory of Open Access Journals (Sweden)

    Magdalena Foltman

    2016-02-01

    Full Text Available Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named 'ingression progression complexes' (IPCs. In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role.

  4. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  5. Quantitative Analysis of Pac1/LIS1-mediated Dynein Targeting: Implications for Regulation of Dynein Activity in Budding Yeast

    OpenAIRE

    Markus, Steven M.; Plevock, Karen M.; St. Germain, Bryan J.; Punch, Jesse J.; Meaden, Christopher W.; Lee, Wei-Lih

    2011-01-01

    LIS1 is a critical regulator of dynein function during mitosis and organelle transport. Here, we investigated how Pac1, the budding yeast LIS1 homologue, regulates dynein targeting and activity during nuclear migration. We show that Pac1 and Dyn1 (dynein heavy chain) are dependent upon each other and upon Bik1 (budding yeast CLIP-170 homologue) for plus end localization, whereas Bik1 is independent of either. Dyn1, Pac1 and Bik1 interact in vivo at the plus ends, where an excess amount of Bik...

  6. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1.

    Directory of Open Access Journals (Sweden)

    Tracy L Callender

    2016-08-01

    Full Text Available During meiosis, programmed double strand breaks (DSBs are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i phosphorylation of Rad54 by Mek1 and (ii binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.

  7. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Maddox, P; Chin, E; Mallavarapu, A; Yeh, E; Salmon, E D; Bloom, K

    1999-03-08

    We have used time-lapse digital imaging microscopy to examine cytoplasmic astral microtubules (Mts) and spindle dynamics during the mating pathway in budding yeast Saccharomyces cerevisiae. Mating begins when two cells of opposite mating type come into proximity. The cells arrest in the G1 phase of the cell cycle and grow a projection towards one another forming a shmoo projection. Imaging of microtubule dynamics with green fluorescent protein (GFP) fusions to dynein or tubulin revealed that the nucleus and spindle pole body (SPB) became oriented and tethered to the shmoo tip by a Mt-dependent search and capture mechanism. Dynamically unstable astral Mts were captured at the shmoo tip forming a bundle of three or four astral Mts. This bundle changed length as the tethered nucleus and SPB oscillated toward and away from the shmoo tip at growth and shortening velocities typical of free plus end astral Mts (approximately 0.5 micrometer/min). Fluorescent fiduciary marks in Mt bundles showed that Mt growth and shortening occurred primarily at the shmoo tip, not the SPB. This indicates that Mt plus end assembly/disassembly was coupled to pushing and pulling of the nucleus. Upon cell fusion, a fluorescent bar of Mts was formed between the two shmoo tip bundles, which slowly shortened (0.23 +/- 0.07 micrometer/min) as the two nuclei and their SPBs came together and fused (karyogamy). Bud emergence occurred adjacent to the fused SPB approximately 30 min after SPB fusion. During the first mitosis, the SPBs separated as the spindle elongated at a constant velocity (0.75 micrometer/min) into the zygotic bud. There was no indication of a temporal delay at the 2-micrometer stage of spindle morphogenesis or a lag in Mt nucleation by replicated SPBs as occurs in vegetative mitosis implying a lack of normal checkpoints. Thus, the shmoo tip appears to be a new model system for studying Mt plus end dynamic attachments and much like higher eukaryotes, the first mitosis after haploid

  8. Ipl1/Aurora-B is necessary for kinetochore restructuring in meiosis I in Saccharomyces cerevisiae.

    Science.gov (United States)

    Meyer, Régis E; Chuong, Hoa H; Hild, Marrett; Hansen, Christina L; Kinter, Michael; Dawson, Dean S

    2015-09-01

    In mitosis, the centromeres of sister chromosomes are pulled toward opposite poles of the spindle. In meiosis I, the opposite is true: the sister centromeres move together to the same pole, and the homologous chromosomes are pulled apart. This change in segregation patterns demands that between the final mitosis preceding meiosis and the first meiotic division, the kinetochores must be restructured. In budding yeast, unlike mammals, kinetochores are largely stable throughout the mitotic cycle. In contrast, previous work with budding and fission yeast showed that some outer kinetochore proteins are lost in early meiosis. We use quantitative mass spectrometry methods and imaging approaches to explore the kinetochore restructuring process that occurs in meiosis I in budding yeast. The Ndc80 outer kinetochore complex, but not other subcomplexes, is shed upon meiotic entry. This shedding is regulated by the conserved protein kinase Ipl1/Aurora-B and promotes the subsequent assembly of a kinetochore that will confer meiosis-specific segregation patterns on the chromosome.

  9. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matuo, Youichirou [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Hase, Yoshihiro [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Sakamoto, Ayako [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Tanaka, Atsushi [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Shimizu, Kikuo [Radioisotope Research Center, Osaka University, Yamada-oka 2-4, Suita, Osaka 565-0871 (Japan)]. E-mail: shimizu@rirc.osaka-u.ac.jp

    2006-12-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of {gamma}-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by {gamma}-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C {sup {yields}} T:A, and all the transitions were G:C {sup {yields}} A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by {gamma}-ray irradiation were located uniformly throughout the gene.

  10. Update History of This Database - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...Budding yeast cDNA sequencing project Update History of This Database Date Update contents 2010/03/29 Buddin...tio About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Update History

  11. Sequential Feedback Induction Stabilizes the Phosphate Starvation Response in Budding Yeast

    Directory of Open Access Journals (Sweden)

    Noam Vardi

    2014-11-01

    Full Text Available Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that downregulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after 2 hr with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation.

  12. MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast.

    Science.gov (United States)

    Yeong, Foong May; Lim, Hong Hwa; Surana, Uttam

    2002-07-01

    Cellular events must be executed in a certain sequence during the cell division in order to maintain genome integrity and hence ensure a cell's survival. In M phase, for instance, chromosome segregation always precedes mitotic exit (characterized by mitotic kinase inactivation via cyclin destruction); this is then followed by cytokinesis. How do cells impose this strict order? Recent findings in budding yeast have suggested a mechanism whereby partitioning of chromosomes into the daughter cell is a prerequisite for the activation of mitotic exit network (MEN). So far, however, a regulatory scheme that would temporally link the initiation of cytokinesis to the execution of mitotic exit has not been determined. We propose that the requirement of MEN components for cytokinesis, their translocation to the mother-daughter neck and triggering of this translocation by inactivation of the mitotic kinase may be the three crucial elements that render initiation of cytokinesis dependent on mitotic exit.

  13. Unconventional genomic architecture in the budding yeast saccharomyces cerevisiae masks the nested antisense gene NAG1.

    Science.gov (United States)

    Ma, Jun; Dobry, Craig J; Krysan, Damian J; Kumar, Anuj

    2008-08-01

    The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukaryotes in that genes are spatially organized into discrete and nonoverlapping units. Inherent in this organizational model is the assumption that protein-coding sequences do not overlap completely. Here, we present evidence to the contrary, defining a previously overlooked yeast gene, NAG1 (for nested antisense gene) nested entirely within the coding sequence of the YGR031W open reading frame in an antisense orientation on the opposite strand. NAG1 encodes a 19-kDa protein, detected by Western blotting of hemagglutinin (HA)-tagged Nag1p with anti-HA antibodies and by beta-galactosidase analysis of a NAG1-lacZ fusion. NAG1 is evolutionarily conserved as a unit with YGR031W in bacteria and fungi. Unlike the YGR031WP protein product, however, which localizes to the mitochondria, Nag1p localizes to the cell periphery, exhibiting properties consistent with those of a plasma membrane protein. Phenotypic analysis of a site-directed mutant (nag1-1) disruptive for NAG1 but silent with respect to YGR031W, defines a role for NAG1 in yeast cell wall biogenesis; microarray profiling of nag1-1 indicates decreased expression of genes contributing to cell wall organization, and the nag1-1 mutant is hypersensitive to the cell wall-perturbing agent calcofluor white. Furthermore, production of Nag1p is dependent upon the presence of the cell wall integrity pathway mitogen-activated protein kinase Slt2p and its downstream transcription factor Rlm1p. Thus, NAG1 is important for two reasons. First, it contributes to yeast cell wall biogenesis. Second, its genomic context is novel, raising the possibility that other nested protein-coding genes may exist in eukaryotic genomes.

  14. Control of the mitotic exit network during meiosis.

    Science.gov (United States)

    Attner, Michelle A; Amon, Angelika

    2012-08-01

    The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division.

  15. Evidence for widespread adaptive evolution of gene expression in budding yeast.

    Science.gov (United States)

    Fraser, Hunter B; Moses, Alan M; Schadt, Eric E

    2010-02-16

    Changes in gene expression have been proposed to underlie many, or even most, adaptive differences between species. Despite the increasing acceptance of this view, only a handful of cases of adaptive gene expression evolution have been demonstrated. To address this discrepancy, we introduce a simple test for lineage-specific selection on gene expression. Applying the test to genome-wide gene expression data from the budding yeast Saccharomyces cerevisiae, we find that hundreds of gene expression levels have been subject to lineage-specific selection. Comparing these findings with independent population genetic evidence of selective sweeps suggests that this lineage-specific selection has resulted in recent sweeps at over a hundred genes, most of which led to increased transcript levels. Examination of the implicated genes revealed a specific biochemical pathway--ergosterol biosynthesis--where the expression of multiple genes has been subject to selection for reduced levels. In sum, these results suggest that adaptive evolution of gene expression is common in yeast, that regulatory adaptation can occur at the level of entire pathways, and that similar genome-wide scans may be possible in other species, including humans.

  16. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon-Seok; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr

    2013-09-13

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.

  17. A pathway of targeted autophagy is induced by DNA damage in budding yeast

    Science.gov (United States)

    Eapen, Vinay V.; Waterman, David P.; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G.; Loewith, Robbie J.; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J.; Haber, James E.

    2017-01-01

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response. PMID:28154131

  18. Ndc10 is a platform for inner kinetochore assembly in budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Uhn-Soo; Harrison, Stephen C. (Harvard-Med)

    2012-01-10

    Kinetochores link centromeric DNA to spindle microtubules and ensure faithful chromosome segregation during mitosis. In point-centromere yeasts, the CBF3 complex Skp1-Ctf13-(Cep3){sub 2}-(Ndc10){sub 2} recognizes a conserved centromeric DNA element through contacts made by Cep3 and Ndc10. We describe here the five-domain organization of Kluyveromyces lactis Ndc10 and the structure at 2.8 {angstrom} resolution of domains I-II (residues 1-402) bound to DNA. The structure resembles tyrosine DNA recombinases, although it lacks both endonuclease and ligase activities. Structural and biochemical data demonstrate that each subunit of the Ndc10 dimer binds a separate fragment of DNA, suggesting that Ndc10 stabilizes a DNA loop at the centromere. We describe in vitro association experiments showing that specific domains of Ndc10 interact with each of the known inner-kinetochore proteins or protein complexes in budding yeast. We propose that Ndc10 provides a central platform for inner-kinetochore assembly.

  19. Constitutive Activation of the Fission Yeast Pheromone-Responsive Pathway Induces Ectopic Meiosis and Reveals Ste11 as a Mitogen-Activated Protein Kinase Target

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Lautrup-Larsen, I.; Truelsen, S.

    2005-01-01

    In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase...... kinase (MAP3K) Byr2 can induce ectopic meiosis directly in haploid cells. We find that the Ste11 transcription factor becomes constitutively expressed in these cells and that the expression of pheromone-responsive genes no longer depends on nitrogen starvation. Epistasis analysis revealed...... that these conditions bypassed the requirement for the meiotic activator Mei3. Since Mei3 is normally needed for inactivation of the meiosis-repressing protein kinase Pat1, this finding suggests that the strong Byr2 signal causes inactivation of Pat1 by an alternative mechanism. Consistent with this possibility, we...

  20. Time scale and dimension analysis of a budding yeast cell cycle model

    Directory of Open Access Journals (Sweden)

    Novák Béla

    2006-11-01

    Full Text Available Abstract Background The progress through the eukaryotic cell division cycle is driven by an underlying molecular regulatory network. Cell cycle progression can be considered as a series of irreversible transitions from one steady state to another in the correct order. Although this view has been put forward some time ago, it has not been quantitatively proven yet. Bifurcation analysis of a model for the budding yeast cell cycle has identified only two different steady states (one for G1 and one for mitosis using cell mass as a bifurcation parameter. By analyzing the same model, using different methods of dynamical systems theory, we provide evidence for transitions among several different steady states during the budding yeast cell cycle. Results By calculating the eigenvalues of the Jacobian of kinetic differential equations we have determined the stability of the cell cycle trajectories of the Chen model. Based on the sign of the real part of the eigenvalues, the cell cycle can be divided into excitation and relaxation periods. During an excitation period, the cell cycle control system leaves a formerly stable steady state and, accordingly, excitation periods can be associated with irreversible cell cycle transitions like START, entry into mitosis and exit from mitosis. During relaxation periods, the control system asymptotically approaches the new steady state. We also show that the dynamical dimension of the Chen's model fluctuates by increasing during excitation periods followed by decrease during relaxation periods. In each relaxation period the dynamical dimension of the model drops to one, indicating a period where kinetic processes are in steady state and all concentration changes are driven by the increase of cytoplasmic growth. Conclusion We apply two numerical methods, which have not been used to analyze biological control systems. These methods are more sensitive than the bifurcation analysis used before because they identify those

  1. Nur1 dephosphorylation confers positive feedback to mitotic exit phosphatase activation in budding yeast.

    Directory of Open Access Journals (Sweden)

    Molly Godfrey

    2015-01-01

    Full Text Available Substrate dephosphorylation by the cyclin-dependent kinase (Cdk-opposing phosphatase, Cdc14, is vital for many events during budding yeast mitotic exit. Cdc14 is sequestered in the nucleolus through inhibitory binding to Net1, from which it is released in anaphase following Net1 phosphorylation. Initial Net1 phosphorylation depends on Cdk itself, in conjunction with proteins of the Cdc14 Early Anaphase Release (FEAR network. Later on, the Mitotic Exit Network (MEN signaling cascade maintains Cdc14 release. An important unresolved question is how Cdc14 activity can increase in early anaphase, while Cdk activity, that is required for Net1 phosphorylation, decreases and the MEN is not yet active. Here we show that the nuclear rim protein Nur1 interacts with Net1 and, in its Cdk phosphorylated form, inhibits Cdc14 release. Nur1 is dephosphorylated by Cdc14 in early anaphase, relieving the inhibition and promoting further Cdc14 release. Nur1 dephosphorylation thus describes a positive feedback loop in Cdc14 phosphatase activation during mitotic exit, required for faithful chromosome segregation and completion of the cell division cycle.

  2. Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast

    Science.gov (United States)

    Weinert, Ted

    2016-01-01

    DNA replication errors at certain sites in the genome initiate chromosome instability that ultimately leads to stable genomic rearrangements. Where instability begins is often unclear. And, early instability may form unstable chromosome intermediates whose transient nature also hinders mechanistic understanding. We report here a budding yeast model that reveals the genetic ontogeny of genome rearrangements, from initial replication error to unstable chromosome formation to their resolution. Remarkably, the initial error often arises in or near the telomere, and frequently forms unstable chromosomes. Early unstable chromosomes may then resolve to an internal "collection site" where a dicentric forms and resolves to an isochromosome (other outcomes are possible at each step). The initial telomere-proximal unstable chromosome is increased in mutants in telomerase subunits, Tel1, and even Rad9, with no known telomere-specific function. Defects in Tel1 and in Rrm3, a checkpoint protein kinase with a role in telomere maintenance and a DNA helicase, respectively, synergize dramatically to generate unstable chromosomes, further illustrating the consequence of replication error in the telomere. Collectively, our results suggest telomeric replication errors may be a common cause of seemingly unrelated genomic rearrangements located hundreds of kilobases away. PMID:27716774

  3. Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast.

    Science.gov (United States)

    Beyer, Tracey; Weinert, Ted

    2016-10-01

    DNA replication errors at certain sites in the genome initiate chromosome instability that ultimately leads to stable genomic rearrangements. Where instability begins is often unclear. And, early instability may form unstable chromosome intermediates whose transient nature also hinders mechanistic understanding. We report here a budding yeast model that reveals the genetic ontogeny of genome rearrangements, from initial replication error to unstable chromosome formation to their resolution. Remarkably, the initial error often arises in or near the telomere, and frequently forms unstable chromosomes. Early unstable chromosomes may then resolve to an internal "collection site" where a dicentric forms and resolves to an isochromosome (other outcomes are possible at each step). The initial telomere-proximal unstable chromosome is increased in mutants in telomerase subunits, Tel1, and even Rad9, with no known telomere-specific function. Defects in Tel1 and in Rrm3, a checkpoint protein kinase with a role in telomere maintenance and a DNA helicase, respectively, synergize dramatically to generate unstable chromosomes, further illustrating the consequence of replication error in the telomere. Collectively, our results suggest telomeric replication errors may be a common cause of seemingly unrelated genomic rearrangements located hundreds of kilobases away.

  4. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  5. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    Directory of Open Access Journals (Sweden)

    Erica M Hildebrand

    2016-03-01

    Full Text Available The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4 for degradation. To identify additional mechanisms that prevent CENP-A(Cse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4 is enriched at promoters that contain histone H2A.Z(Htz1 nucleosomes, but that H2A.Z(Htz1 is not required for CENP-A(Cse4 mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1 from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4. The down-regulated genes are enriched for CENP-A(Cse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation.

  6. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    Science.gov (United States)

    Hildebrand, Erica M; Biggins, Sue

    2016-03-01

    The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4) is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. To identify additional mechanisms that prevent CENP-A(Cse4) misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4) in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4) is enriched at promoters that contain histone H2A.Z(Htz1) nucleosomes, but that H2A.Z(Htz1) is not required for CENP-A(Cse4) mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1) from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4). Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4). The down-regulated genes are enriched for CENP-A(Cse4) mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation.

  7. The Budding Yeast “Saccharomyces cerevisiae” as a Drug Discovery Tool to Identify Plant-Derived Natural Products with Anti-Proliferative Properties

    Science.gov (United States)

    Qaddouri, Bouchra; Guaadaoui, Abdelkarim; Bellirou, Ahmed; Hamal, Abdellah; Melhaoui, Ahmed; Brown, Grant W.; Bellaoui, Mohammed

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable system to study cell-cycle regulation, which is defective in cancer cells. Due to the highly conserved nature of the cell-cycle machinery between yeast and humans, yeast studies are directly relevant to anticancer-drug discovery. The budding yeast is also an excellent model system for identifying and studying antifungal compounds because of the functional conservation of fungal genes. Moreover, yeast studies have also contributed greatly to our understanding of the biological targets and modes of action of bioactive compounds. Understanding the mechanism of action of clinically relevant compounds is essential for the design of improved second-generation molecules. Here we describe our methodology for screening a library of plant-derived natural products in yeast in order to identify and characterize new compounds with anti-proliferative properties. PMID:19596744

  8. The Budding Yeast “Saccharomyces cerevisiae” as a Drug Discovery Tool to Identify Plant-Derived Natural Products with Anti-Proliferative Properties

    Directory of Open Access Journals (Sweden)

    Bouchra Qaddouri

    2011-01-01

    Full Text Available The budding yeast Saccharomyces cerevisiae is a valuable system to study cell-cycle regulation, which is defective in cancer cells. Due to the highly conserved nature of the cell-cycle machinery between yeast and humans, yeast studies are directly relevant to anticancer-drug discovery. The budding yeast is also an excellent model system for identifying and studying antifungal compounds because of the functional conservation of fungal genes. Moreover, yeast studies have also contributed greatly to our understanding of the biological targets and modes of action of bioactive compounds. Understanding the mechanism of action of clinically relevant compounds is essential for the design of improved second-generation molecules. Here we describe our methodology for screening a library of plant-derived natural products in yeast in order to identify and characterize new compounds with anti-proliferative properties.

  9. Role of endocytosis in localization and maintenance of the spatial markers for bud-site selection in yeast.

    Science.gov (United States)

    Tuo, Shanshan; Nakashima, Kenichi; Pringle, John R

    2013-01-01

    The yeast Saccharomyces cerevisiae normally selects bud sites (and hence axes of cell polarization) in one of two distinct patterns, the axial pattern of haploid cells and the bipolar pattern of diploid cells. These patterns depend on distinct sets of cortical-marker proteins that transmit positional information through a common signaling pathway based on a Ras-type GTPase. It has been reported previously that various proteins of the endocytic pathway may be involved in determining the bipolar pattern but not the axial pattern. To explore this question systematically, we constructed and analyzed congenic haploid and diploid deletion mutants for 14 genes encoding proteins that are involved in endocytosis. The mutants displayed a wide range of severities in their overall endocytosis defects, as judged by their growth rates and abilities to take up the lipophilic dye FM 4-64. Consistent with the previous reports, none of the mutants displayed a significant defect in axial budding, but they displayed defects in bipolar budding that were roughly correlated with the severities of their overall endocytosis defects. Both the details of the mutant budding patterns and direct examination of GFP-tagged marker proteins suggested that both initial formation and maintenance of the normally persistent bipolar marks depend on endocytosis, as well as polarized exocytosis, in actively growing cells. Interestingly, maintenance of the bipolar marks in non-growing cells did not appear to require normal levels of endocytosis. In some cases, there was a striking lack of correlation between the overall severities of the general-endocytosis defect and the bud-site selection defect, suggesting that various endocytosis proteins may differ in their importance for the uptake of various plasma-membrane targets.

  10. Constitutive Activation of the Fission Yeast Pheromone-Responsive Pathway Induces Ectopic Meiosis and Reveals Ste11 as a Mitogen-Activated Protein Kinase Target

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Lautrup-Larsen, I.; Truelsen, S.;

    2005-01-01

    In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase...... kinase (MAP3K) Byr2 can induce ectopic meiosis directly in haploid cells. We find that the Ste11 transcription factor becomes constitutively expressed in these cells and that the expression of pheromone-responsive genes no longer depends on nitrogen starvation. Epistasis analysis revealed...... interact physically with Ste11 and also phosphorylate the transcription factor in vitro. Finally, we demonstrate that ste11 is required for pheromone-induced G1 arrest. Interestingly, when we mutated Ste11 in the sites for Pat1 and Spk1 phosphorylation simultaneously, the cells could still arrest in G1...

  11. The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis.

    Directory of Open Access Journals (Sweden)

    K T Nishant

    2010-09-01

    Full Text Available Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative lines underwent only mitotic divisions while the meiotic lines underwent a meiotic cycle every ∼20 vegetative divisions. Similar base substitution rates were estimated for both lines. Given our experimental design, these measures indicated that the meiotic mutation rate is within the range of being equal to zero to being 55-fold higher than the vegetative rate. Mutations detected in vegetative lines were all heterozygous while those in meiotic lines were homozygous. A quantitative analysis of intra-tetrad mating events in the meiotic lines showed that inter-spore mating is primarily responsible for rapidly fixing mutations to homozygosity as well as for removing mutations. We did not observe 1-2 nt insertion/deletion (in-del mutations in any of the sequenced lines and only one structural variant in a non-telomeric location was found. However, a large number of structural variations in subtelomeric sequences were seen in both vegetative and meiotic lines that did not affect viability. Our results indicate that the diploid yeast nuclear genome is remarkably stable during the vegetative and meiotic cell cycles and support the hypothesis that peripheral regions of chromosomes are more dynamic than gene-rich central sections where structural rearrangements could be deleterious. This work also provides an improved estimate for the mutational load carried by diploid organisms.

  12. Complete DNA sequence of Kuraishia capsulata illustrates novel genomic features among budding yeasts (Saccharomycotina)

    NARCIS (Netherlands)

    Morales, L.; Noel, B.; Porcel, B.; Marcet-Houben, M.; Hullo, M.F.; Sacerdot, C.; Tekaia, F.; Leh-Louis, V.; Despons, L.; Khanna, V.; Aury, J.M.; Barbe, V.; Couloux, A.; Labadie, K.; Pelletier, E.; Souciet, J.L.; Boekhout, T.; Gabaldon, T.; Wincker, P.; Dujon, B.

    2013-01-01

    The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics, but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid type strain

  13. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    Science.gov (United States)

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1.

  14. Isolation of a cdc28 mutation that abrogates the dependence of S phase on completion of M phase of the budding yeast cell cycle

    Indian Academy of Sciences (India)

    Santanu Kumar Ghosh; Pratima Sinha

    2000-01-01

    We have isolated a mutation in the budding yeast Saccharomyces cerevisisae CDC28 gene that allows cdc13 cells, carrying damaged DNA, to continue with the cell division cycle. While cdc13 mutant cells are arrested as large-budded cells at the nonpermissive temperature 37°C, the cdc13 cdc28 double mutant culture showed cells with one or more buds, most of which showed apical growth. The additional buds emerged without the intervening steps of nuclear division and cell separation. We suggest that the cdc28 mutation abrogates a checkpoint function and allows cells with damaged or incompletely replicated DNA an entry to another round of cell cycle and bypasses the mitotic phase of the cell cycle.

  15. Dicentric chromosome stretching during anaphase reveals roles of Sir2/Ku in chromatin compaction in budding yeast.

    Science.gov (United States)

    Thrower, D A; Bloom, K

    2001-09-01

    We have used mitotic spindle forces to examine the role of Sir2 and Ku in chromatin compaction. Escherichia coli lac operator DNA was placed between two centromeres on a conditional dicentric chromosome in budding yeast cells and made visible by expression of a lac repressor-green fluorescent fusion protein. Centromeres on the same chromatid of a dicentric chromosome attach to opposite poles approximately 50% of the time, resulting in chromosome bridges during anaphase. In cells deleted for yKU70, yKU80, or SIR2, a 10-kb region of the dicentric chromosome stretched along the spindle axis to a length of 6 microm during anaphase. On spindle disassembly, stretched chromatin recoiled to the bud neck and was partitioned to mother and daughter cells after cytokinesis and cell separation. Chromatin immunoprecipitation revealed that Sir2 localizes to the lacO region in response to activation of the dicentric chromosome. These findings indicate that Ku and Sir proteins are required for proper chromatin compaction within regions of a chromosome experiencing tension or DNA damage. The association of Sir2 with the affected region suggests a direct role in this process, which may include the formation of heterochromatic DNA.

  16. Meikin is a conserved regulator of meiosis-I-specific kinetochore function.

    Science.gov (United States)

    Kim, Jihye; Ishiguro, Kei-ichiro; Nambu, Aya; Akiyoshi, Bungo; Yokobayashi, Shihori; Kagami, Ayano; Ishiguro, Tadashi; Pendas, Alberto M; Takeda, Naoki; Sakakibara, Yogo; Kitajima, Tomoya S; Tanno, Yuji; Sakuno, Takeshi; Watanabe, Yoshinori

    2015-01-22

    The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.

  17. alpha-Synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress.

    Science.gov (United States)

    Sharma, Nijee; Brandis, Katrina A; Herrera, Sara K; Johnson, Brandon E; Vaidya, Tulaza; Shrestha, Ruja; Debburman, Shubhik K

    2006-01-01

    Parkinson's disease (PD) is a common neurodegenerative disorder that results from the selective loss of midbrain dopaminergic neurons. Misfolding and aggregation of the protein alpha-synuclein, oxidative damage, and proteasomal impairment are all hypotheses for the molecular cause of this selective neurotoxicity. Here, we describe a Saccharomyces cerevisiae model to evaluate the misfolding, aggregation, and toxicity-inducing ability of wild-type alpha-synuclein and three mutants (A30P, A53T, and A30P/A53T), and we compare regulation of these properties by dysfunctional proteasomes and by oxidative stress. We found prominent localization of wild-type and A53T alpha-synuclein near the plasma membrane, supporting known in vitro lipid-binding ability. In contrast, A30P was mostly cytoplasmic, whereas A30P/A53T displayed both types of fluorescence. Surprisingly, alpha-synuclein was not toxic to several yeast strains tested. When yeast mutants for the proteasomal barrel (doa3-1) were evaluated, delayed alpha-synuclein synthesis and membrane association were observed; yeast mutant for the proteasomal cap (sen3-1) exhibited increased accumulation and aggregation of alpha-synuclein. Both sen3-1and doa3-1 mutants exhibited synthetic lethality with alpha-synuclein. When yeasts were challenged with an oxidant (hydrogen peroxide), alpha-synuclein was extremely lethal to cells that lacked manganese superoxide dismutase Mn-SOD (sod2Delta) but not to cells that lacked copper, zinc superoxide dismutase Cu,Zn-SOD (sod1Delta). Despite the toxicity, sod2Delta cells never displayed intracellular aggregates of alpha-synuclein. We suggest that the toxic alpha-synuclein species in yeast are smaller than the visible aggregates, and toxicity might involve alpha-synuclein membrane association. Thus, yeasts have emerged effective organisms for characterizing factors and mechanisms that regulate alpha-synuclein toxicity.

  18. Improved statistical analysis of budding yeast TAG microarrays revealed by defined spike-in pools.

    Science.gov (United States)

    Peyser, Brian D; Irizarry, Rafael A; Tiffany, Carol W; Chen, Ou; Yuan, Daniel S; Boeke, Jef D; Spencer, Forrest A

    2005-09-15

    Saccharomyces cerevisiae knockout collection TAG microarrays are an emergent platform for rapid, genome-wide functional characterization of yeast genes. TAG arrays report abundance of unique oligonucleotide 'TAG' sequences incorporated into each deletion mutation of the yeast knockout collection, allowing measurement of relative strain representation across experimental conditions for all knockout mutants simultaneously. One application of TAG arrays is to perform genome-wide synthetic lethality screens, known as synthetic lethality analyzed by microarray (SLAM). We designed a fully defined spike-in pool to resemble typical SLAM experiments and performed TAG microarray hybridizations. We describe a method for analyzing two-color array data to efficiently measure the differential knockout strain representation across two experimental conditions, and use the spike-in pool to show that the sensitivity and specificity of this method exceed typical current approaches.

  19. Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I.

    Science.gov (United States)

    Sarkar, Sourav; Shenoy, Rajesh T; Dalgaard, Jacob Z; Newnham, Louise; Hoffmann, Eva; Millar, Jonathan B A; Arumugam, Prakash

    2013-01-01

    Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore.

  20. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Kazuyoshi, E-mail: kazum@nips.ac.jp [National Institute for Physiological Sciences, Okazaki, Aichi 444-8585 (Japan); Esaki, Masatoshi; Ogura, Teru [Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 (Japan); Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo [Ecotopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2014-11-15

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ∼3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. - Highlights: • High voltage TEM and STEM tomography were compared to visualize whole yeast cells. • 1-MeV STEM-BF tomography had significant improvements in image contrast and SNR. • 1-MeV STEM tomography showed less specimen shrinkage than the TEM tomography. • KMnO{sub 4} post-treatment permitted segmenting the major cellular components.

  1. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation.

    Science.gov (United States)

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J; Fox, Catherine A

    2016-04-07

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid

  2. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  3. iAID: an improved auxin-inducible degron system for the construction of a 'tight' conditional mutant in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tanaka, Seiji; Miyazawa-Onami, Mayumi; Iida, Tetsushi; Araki, Hiroyuki

    2015-08-01

    Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants.

  4. An in vivo detection system for transient and low-abundant protein interactions and their kinetics in budding yeast.

    Science.gov (United States)

    Brezovich, Andrea; Schuschnig, Martina; Ammerer, Gustav; Kraft, Claudine

    2015-03-01

    Methylation tracking (M-Track) is a protein-proximity assay in Saccharomyces cerevisiae, allowing the detection of transient protein-protein interactions in living cells. The bait protein is fused to a histone lysine methyl transferase and the prey protein to a methylation acceptor peptide derived from histone 3. Upon interaction, the histone 3 fragment is stably methylated on lysine 9 and can be detected by methylation-specific antibodies. Since methylation marking is irreversible in budding yeast and only takes place in living cells, the occurrence of artifacts during cell lysate preparation is greatly reduced, leading to a more accurate representation of native interactions. So far, this method has been limited to highly abundant or overexpressed proteins. However, many proteins of interest are low-abundant, and overexpression of proteins may interfere with their function, leading to an artificial situation. Here we report the generation of a toolbox including a novel cleavage-enrichment system for the analysis of very low-abundant proteins at their native expression levels. In addition, we developed a system for the parallel analysis of two prey proteins in a single cell, as well as an inducible methylation system. The inducible system allows precise control over the time during which the interaction is detected and can be used to determine interaction kinetics. Furthermore, we generated a set of constructs facilitating the cloning-free genomic tagging of proteins at their endogenous locus by homologous recombination, and their expression from centromeric plasmids.

  5. The budding yeast nuclear envelope adjacent to the nucleolus serves as a membrane sink during mitotic delay.

    Science.gov (United States)

    Witkin, Keren L; Chong, Yolanda; Shao, Sichen; Webster, Micah T; Lahiri, Sujoy; Walters, Alison D; Lee, Brandon; Koh, Judice L Y; Prinz, William A; Andrews, Brenda J; Cohen-Fix, Orna

    2012-06-19

    The mechanisms that dictate nuclear shape are largely unknown. Here we screened the budding yeast deletion collection for mutants with abnormal nuclear shape. A common phenotype was the appearance of a nuclear extension, particularly in mutants in DNA repair and chromosome segregation genes. Our data suggest that these mutations led to the abnormal nuclear morphology indirectly, by causing a checkpoint-induced cell-cycle delay. Indeed, delaying cells in mitosis by other means also led to the appearance of nuclear extensions, whereas inactivating the DNA damage checkpoint pathway in a DNA repair mutant reduced the fraction of cells with nuclear extensions. Formation of a nuclear extension was specific to a mitotic delay, because cells arrested in S or G2 had round nuclei. Moreover, the nuclear extension always coincided with the nucleolus, while the morphology of the DNA mass remained largely unchanged. Finally, we found that phospholipid synthesis continued unperturbed when cells delayed in mitosis, and inhibiting phospholipid synthesis abolished the formation of nuclear extensions. Our data suggest a mechanism that promotes nuclear envelope expansion during mitosis. When mitotic progression is delayed, cells sequester the added membrane to the nuclear envelope associated with the nucleolus, possibly to avoid disruption of intranuclear organization.

  6. Positive feedback promotes mitotic exit via the APC/C-Cdh1-separase-Cdc14 axis in budding yeast.

    Science.gov (United States)

    Hatano, Yuhki; Naoki, Koike; Suzuki, Asuka; Ushimaru, Takashi

    2016-10-01

    The mitotic inhibitor securin is degraded via the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C)-Cdc20 after anaphase onset. This triggers activation of the mitotic protease separase and thereby sister chromatid separation. However, only a proportion of securin molecules are degraded at metaphase-anaphase transition and the remaining molecules are still present in anaphase. The roles of securin and separase in late mitosis remain elusive. Here, we show that securin still inhibits separase to repress mitotic exit in anaphase in budding yeast. APC/C-Cdh1-mediated securin degradation at telophase further liberated separase, which promotes Cdc14 release and mitotic exit. Separase executed these events via its proteolytic action and that in the Cdc14 early release (FEAR) network. Cdc14 release further activated APC/C-Cdh1 in the manner of a positive feedback loop. Thus, the positive feedback promotes mitotic exit via the APC/C-Cdh1-separase-Cdc14 axis. This study shows the importance of the two-step degradation mode of securin and the role of separase in mitotic exit.

  7. Three Different Pathways Prevent Chromosome Segregation in the Presence of DNA Damage or Replication Stress in Budding Yeast.

    Directory of Open Access Journals (Sweden)

    Gloria Palou

    2015-09-01

    Full Text Available A surveillance mechanism, the S phase checkpoint, blocks progression into mitosis in response to DNA damage and replication stress. Segregation of damaged or incompletely replicated chromosomes results in genomic instability. In humans, the S phase checkpoint has been shown to constitute an anti-cancer barrier. Inhibition of mitotic cyclin dependent kinase (M-CDK activity by Wee1 kinases is critical to block mitosis in some organisms. However, such mechanism is dispensable in the response to genotoxic stress in the model eukaryotic organism Saccharomyces cerevisiae. We show here that the Wee1 ortholog Swe1 does indeed inhibit M-CDK activity and chromosome segregation in response to genotoxic insults. Swe1 dispensability in budding yeast is the result of a redundant control of M-CDK activity by the checkpoint kinase Rad53. In addition, our results indicate that Swe1 is an effector of the checkpoint central kinase Mec1. When checkpoint control on M-CDK and on Pds1/securin stabilization are abrogated, cells undergo aberrant chromosome segregation.

  8. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Sarit Smolikov

    2009-10-01

    Full Text Available The proper assembly of the synaptonemal complex (SC between homologs is critical to ensure accurate meiotic chromosome segregation. The SC is a meiotic tripartite structure present from yeast to humans, comprised of proteins assembled along the axes of the chromosomes and central region (CR proteins that bridge the two chromosome axes. Here we identify SYP-4 as a novel structural component of the SC in Caenorhabditis elegans. SYP-4 interacts in a yeast two-hybrid assay with SYP-3, one of components of the CR of the SC, and is localized at the interface between homologs during meiosis. SYP-4 is essential for the localization of SYP-1, SYP-2, and SYP-3 CR proteins onto chromosomes, thereby playing a crucial role in the stabilization of pairing interactions between homologous chromosomes. In the absence of SYP-4, the levels of recombination intermediates, as indicated by RAD-51 foci, are elevated in mid-prophase nuclei, and crossover recombination events are significantly reduced. The lack of chiasmata observed in syp-4 mutants supports the elevated levels of chromosome nondisjunction manifested in high embryonic lethality. Altogether our findings place SYP-4 as a central player in SC formation and broaden our understanding of the structure of the SC and its assembly.

  9. The dynamics of homologous pairing during mating type interconversion in budding yeast.

    Directory of Open Access Journals (Sweden)

    Peter L Houston

    2006-06-01

    Full Text Available Cells repair most double-strand breaks (DSBs that arise during replication or by environmental insults through homologous recombination, a high-fidelity process critical for maintenance of genomic integrity. However, neither the detailed mechanism of homologous recombination nor the specific roles of critical components of the recombination machinery-such as Bloom and Werner syndrome proteins-have been resolved. We have taken a novel approach to examining the mechanism of homologous recombination by tracking both a DSB and the template from which it is repaired during the repair process in individual yeast cells. The two loci were labeled with arrays of DNA binding sites and visualized in live cells expressing green fluorescent protein-DNA binding protein chimeras. Following induction of an endonuclease that introduces a DSB next to one of the marked loci, live cells were imaged repeatedly to determine the relative positions of the DSB and the template locus. We found a significant increase in persistent associations between donor and recipient loci following formation of the DSB, demonstrating DSB-induced pairing between donor and template. However, such associations were transient and occurred repeatedly in every cell, a result not predicted from previous studies on populations of cells. Moreover, these associations were absent in sgs1 or srs2 mutants, yeast homologs of the Bloom and Werner syndrome genes, but were enhanced in a rad54 mutant, whose protein product promotes efficient strand exchange in vitro. Our results indicate that a DSB makes multiple and reversible contacts with a template during the repair process, suggesting that repair could involve interactions with multiple templates, potentially creating novel combinations of sequences at the repair site. Our results further suggest that both Sgs1 and Srs2 are required for efficient completion of recombination and that Rad54 may serve to dissociate such interactions. Finally, these

  10. Identification of She3 as an SCF(Grr1 substrate in budding yeast.

    Directory of Open Access Journals (Sweden)

    Ruiwen Wang

    Full Text Available The highly orchestrated progression of the cell cycle depends on the degradation of many regulatory proteins at different cell cycle stages. One of the key cell cycle ubiquitin ligases is the Skp1-cullin-F-box (SCF complex. Acting in concert with the substrate-binding F-box protein Grr1, SCF(Grr1 promotes the degradation of cell cycle regulators as well as various metabolic enzymes. Using a yeast two-hybrid assay with a Grr1 derivative as the bait, we identified She3, which is an adaptor protein in the asymmetric mRNA transport system, as a novel Grr1 substrate. We generated stabilized She3 mutants, which no longer bound to Grr1, and found that the degradation of She3 is not required for regulating asymmetric mRNA transport. However, She3 stabilization leads to slower growth compared to wild-type cells in a co-culture assay, demonstrating that the degradation of She3 by Grr1 is required for optimal cell growth.

  11. Four linked genes participate in controlling sporulation efficiency in budding yeast.

    Directory of Open Access Journals (Sweden)

    Giora Ben-Ari

    2006-11-01

    Full Text Available Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four "high" sporulation alleles are derived from the "low" sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one "QTL region" that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes.

  12. Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance.

    Science.gov (United States)

    Chan, Yee-Hung M; Reyes, Lorena; Sohail, Saba M; Tran, Nancy K; Marshall, Wallace F

    2016-05-09

    It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model.

  13. Marshmallow Meiosis.

    Science.gov (United States)

    Soderberg, Patti

    1992-01-01

    Presents an activity in which students model the processes of meiosis, fertilization, development, and birth using model creatures called reebops. Students breed reebops to analyze chromosome combinations. Makes recommendations for activity utilization and identifies the strengths of the activity. (MDH)

  14. Intersection between the regulators of sister chromatid cohesion establishment and maintenance in budding yeast indicates a multi-step mechanism.

    Science.gov (United States)

    Noble, Daniel; Kenna, Margaret A; Dix, Melissa; Skibbens, Robert V; Unal, Elçin; Guacci, Vincent

    2006-11-01

    Sister chromatid cohesion is established during S phase and maintained until anaphase. The cohesin complex (Mcd1p/Scc1p, Smc1p, Smc3p Irr1p/Scc3p in budding yeast) serves a structural role as it is required at all times when cohesion exists. Pds5p colocalizes temporally and spatially with cohesin on chromosomes but is thought to serve as a regulator of cohesion maintenance during mitosis. In contrast, Ctf7p/Eco1p is required during S phase for establishment but is not required during mitosis. Here we provide genetic and biochemical evidence that the pathways of cohesion establishment and maintenance are intimately linked. Our results show that mutants in ctf7 and pds5 are synthetically lethal. Moreover, over-expression of either CTF7 or PDS5 exhibits reciprocal suppression of the other mutant's temperature sensitivity. The suppression by CTF7 is specific for pds5 mutants as CTF7 over-expression increases the temperature sensitivity of an mcd1 mutant but has no effect on smc1 or smc3 mutants. Three additional findings provide new insights into the process of cohesion establishment. First, over-expression of ctf7 alleles deficient in acetylase activity exhibit significantly reduced suppression of the pds5 mutant but exacerbated toxicity to the mcd1 mutant. Second, using chromosome spreads and chromatin immuno-precipitation, we find either cohesin complex or Pds5p chromosomal localization is altered in ctf7 mutants. Finally, biochemical analysis reveals that Ctf7p and Pds5p coimmunoprecipitate, which physically links these regulators of cohesion establishment and maintenance. We propose a model whereby Ctf7p and Pds5p cooperate to facilitate efficient establishment by mediating changes in cohesin complex on chromosomes after its deposition.

  15. The budding yeast amphiphysin complex is required for contractile actin ring (CAR assembly and post-contraction GEF-independent accumulation of Rho1-GTP.

    Directory of Open Access Journals (Sweden)

    Michael John Cundell

    Full Text Available The late events of the budding yeast cell division cycle, cytokinesis and cell separation, require the assembly of a contractile actomyosin ring (CAR, primary and secondary septum formation followed by enzymatic degradation of the primary septum. Here we present evidence that demonstrates a role for the budding yeast amphiphysin complex, a heterodimer comprising Rvs167 and Rvs161, in CAR assembly and cell separation. The iqg1-1 allele is synthetically lethal with both rvs167 and rvs161 null mutations. We show that both Iqg1 and the amphiphysin complex are required for CAR assembly in early anaphase but cells are able to complete assembly in late anaphase when these activities are, respectively, either compromised or absent. Amphiphysin dependent CAR assembly is dependent upon the Rvs167 SH3 domain, but this function is insufficient to explain the observed synthetic lethality. Dosage suppression of the iqg1-1 allele demonstrates that endocytosis is required for the default cell separation pathway in the absence of CAR contraction but is unlikely to be required to maintain viability. The amphiphysin complex is required for normal, post-mitotic, localization of Chs3 and the Rho1 GEF, Rom2, which are responsible for secondary septum deposition and the accumulation of GTP bound Rho1 at the bud neck. It is concluded that a failure of polarity establishment in the absence of CAR contraction and amphiphysin function leads to loss of viability as a result of the consequent cell separation defect.

  16. IQGAP and mitotic exit network (MEN) proteins are required for cytokinesis and re-polarization of the actin cytoskeleton in the budding yeast, Saccharomyces cerevisiae.

    Science.gov (United States)

    Corbett, Mark; Xiong, Yulan; Boyne, James R; Wright, Daniel J; Munro, Ewen; Price, Clive

    2006-11-01

    In budding yeast the final stages of the cell division cycle, cytokinesis and cell separation, are distinct events that require to be coupled, both together and with mitotic exit. Here we demonstrate that mutations in genes of the mitotic exit network (MEN) prevent cell separation and are synthetically lethal in combination with both cytokinesis and septation defective mutations. Analysis of the synthetic lethal phenotypes reveals that Iqg1p functions in combination with the MEN components, Tem1p, Cdc15p Dbf20p and Dbf2p to govern the re-polarization of the actin cytoskeleton to either side of the bud neck. In addition phosphorylation of the conserved PCH protein, Hof1p, is dependent upon these activities and requires actin ring assembly. Recruitment of Dbf2p to the bud neck is dependent upon actin ring assembly and correlates with Hof1p phosphorylation. Failure to phosphorylate Hof1p results in the increased stability of the protein and its persistence at the bud neck. These data establish a mechanistic dependency of cell separation upon an intermediate step requiring actomyosin ring assembly.

  17. Microtubule-driven nuclear movements and linear elements as meiosis-specific characteristics of the fission yeasts Schizosaccharomyces versatilis and Schizosaccharomyces pombe.

    Science.gov (United States)

    Svoboda, A; Bähler, J; Kohli, J

    1995-11-01

    Meiotic prophase in Schizosaccharomyces pombe is characterized by striking nuclear movements and the formation of linear elements along chromosomes instead of tripartite synaptonemal complexes. We analysed the organization of nuclei and microtubules in cells of fission yeasts undergoing sexual differentiation. S. japonicus var. versatilis and S. pombe cells were studied in parallel, taking advantage of the better cytology in S. versatilis. During conjugation, microtubules were directed towards the mating projection. These microtubules seem to lead the haploid nuclei together in the zygote by interaction with the spindle pole bodies at the nuclear periphery. After karyogamy, arrays of microtubules emanating from the spindle pole body of the diploid nucleus extended to both cell poles. The same differentiated microtubule configuration was elaborated upon induction of azygotic meiosis in S. pombe. The cyclic movements of the elongated nuclei between the cell poles is reflected by a dynamic and coordinated shortening and lengthening of the two microtubule arrays. When the nucleus was at a cell end, one array was short while the other bridged the whole cell length. Experiments with inhibitors showed that microtubules are required for karyogamy and for the elongated shape and movement of nuclei during meiotic prophase. In both fission yeasts the SPBs and nucleoli are at the leading ends of the moving nuclei. Astral and cytoplasmic microtubules were also prominent during meiotic divisions and sporulation. We further show that in S. versatilis the linear elements formed during meiotic prophase are similar to those in S. pombe. Tripartite synaptonemal complexes were never detected. Taken together, these findings suggest that S. pombe and S. versatilis share basic characteristics in the organization of microtubules and the structure and behaviour of nuclei during their meiotic cell cycle. The prominent differentiations of microtubules and nuclei may be involved in the

  18. pkl1(+)and klp2(+): Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis.

    Science.gov (United States)

    Troxell, C L; Sweezy, M A; West, R R; Reed, K D; Carson, B D; Pidoux, A L; Cande, W Z; McIntosh, J R

    2001-11-01

    We have identified Klp2p, a new kinesin-like protein (KLP) of the KAR3 subfamily in fission yeast. The motor domain of this protein is 61% identical and 71% similar to Pkl1p, another fission yeast KAR3 protein, yet the two enzymes are different in behavior and function. Pkl1p is nuclear throughout the cell cycle, whereas Klp2p is cytoplasmic during interphase. During mitosis Klp2p enters the nucleus where it forms about six chromatin-associated dots. In metaphase-arrested cells these migrate back and forth across the nucleus. During early anaphase they segregate with the chromosomes into two sets of about three, fade, and are replaced by other dots that form on the spindle interzone. Neither klp2(+) nor pkl1(+) is essential, and the double deletion is also wild type for both vegetative and sexual reproduction. Each deletion rescues different alleles of cut7(ts), a KLP that contributes to spindle formation and elongation. When either or both deletions are combined with a dynein deletion, vegetative growth is normal, but sexual reproduction fails: klp2 Delta,dhc1-d1 in karyogamy, pkl1 Delta,dhc1-d1 in multiple phases of meiosis, and the triple deletion in both. Deletion of Klp2p elongates a metaphase-arrested spindle, but pkl1 Delta shortens it. The anaphase spindle of klp2 Delta becomes longer than the cell, leading it to curl around the cell's ends. Apparently, Klp2p promotes spindle disassembly and contributes to the behavior of mitotic chromosomes.

  19. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility.

    Science.gov (United States)

    Handel, Mary Ann; Schimenti, John C

    2010-02-01

    Meiosis is an essential stage in gamete formation in all sexually reproducing organisms. Studies of mutations in model organisms and of human haplotype patterns are leading to a clearer understanding of how meiosis has adapted from yeast to humans, the genes that control the dynamics of chromosomes during meiosis, and how meiosis is tied to gametic success. Genetic disruptions and meiotic errors have important roles in infertility and the aetiology of developmental defects, especially aneuploidy. An understanding of the regulation of meiosis, coupled with advances in genomics, may ultimately allow us to diagnose the causes of meiosis-based infertilities, more wisely apply assisted reproductive technologies, and derive functional germ cells.

  20. Spt10 and Swi4 Control the Timing of Histone H2A/H2B Gene Activation in Budding Yeast

    OpenAIRE

    Eriksson, Peter R.; Ganguli, Dwaipayan; Clark, David J.

    2010-01-01

    The expression of the histone genes is regulated during the cell cycle to provide histones for nucleosome assembly during DNA replication. In budding yeast, histones H2A and H2B are expressed from divergent promoters at the HTA1-HTB1 and HTA2-HTB2 loci. Here, we show that the major activator of HTA1-HTB1 is Spt10, a sequence-specific DNA binding protein with a putative histone acetyltransferase (HAT) domain. Spt10 binds to two pairs of upstream activation sequence (UAS) elements in the HTA1-H...

  1. Timely activation of budding yeast APCCdh1 involves degradation of its inhibitor, Acm1, by an unconventional proteolytic mechanism.

    Directory of Open Access Journals (Sweden)

    Michael Melesse

    Full Text Available Regulated proteolysis mediated by the ubiquitin proteasome system is a fundamental and essential feature of the eukaryotic cell division cycle. Most proteins with cell cycle-regulated stability are targeted for degradation by one of two related ubiquitin ligases, the Skp1-cullin-F box protein (SCF complex or the anaphase-promoting complex (APC. Here we describe an unconventional cell cycle-regulated proteolytic mechanism that acts on the Acm1 protein, an inhibitor of the APC activator Cdh1 in budding yeast. Although Acm1 can be recognized as a substrate by the Cdc20-activated APC (APCCdc20 in anaphase, APCCdc20 is neither necessary nor sufficient for complete Acm1 degradation at the end of mitosis. An APC-independent, but 26S proteasome-dependent, mechanism is sufficient for complete Acm1 clearance from late mitotic and G1 cells. Surprisingly, this mechanism appears distinct from the canonical ubiquitin targeting pathway, exhibiting several features of ubiquitin-independent proteasomal degradation. For example, Acm1 degradation in G1 requires neither lysine residues in Acm1 nor assembly of polyubiquitin chains. Acm1 was stabilized though by conditional inactivation of the ubiquitin activating enzyme Uba1, implying some requirement for the ubiquitin pathway, either direct or indirect. We identified an amino terminal predicted disordered region in Acm1 that contributes to its proteolysis in G1. Although ubiquitin-independent proteasome substrates have been described, Acm1 appears unique in that its sensitivity to this mechanism is strictly cell cycle-regulated via cyclin-dependent kinase (Cdk phosphorylation. As a result, Acm1 expression is limited to the cell cycle window in which Cdk is active. We provide evidence that failure to eliminate Acm1 impairs activation of APCCdh1 at mitotic exit, justifying its strict regulation by cell cycle-dependent transcription and proteolytic mechanisms. Importantly, our results reveal that strict cell

  2. Budding yeast greatwall and endosulfines control activity and spatial regulation of PP2A(Cdc55 for timely mitotic progression.

    Directory of Open Access Journals (Sweden)

    Maria Angeles Juanes

    Full Text Available Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2A(Cdc55 phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2 bind to PP2A(Cdc55 in a cell cycle-regulated manner upon Greatwall (Rim15-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2A(Cdc55 activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2A(Cdc55, timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2A(Cdc55, which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms.

  3. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast.

    Science.gov (United States)

    Paek, Andrew L; Kaochar, Salma; Jones, Hope; Elezaby, Aly; Shanks, Lisa; Weinert, Ted

    2009-12-15

    Large-scale changes (gross chromosomal rearrangements [GCRs]) are common in genomes, and are often associated with pathological disorders. We report here that a specific pair of nearby inverted repeats in budding yeast fuse to form a dicentric chromosome intermediate, which then rearranges to form a translocation and other GCRs. We next show that fusion of nearby inverted repeats is general; we found that many nearby inverted repeats that are present in the yeast genome also fuse, as does a pair of synthetically constructed inverted repeats. Fusion occurs between inverted repeats that are separated by several kilobases of DNA and share >20 base pairs of homology. Finally, we show that fusion of inverted repeats, surprisingly, does not require genes involved in double-strand break (DSB) repair or genes involved in other repeat recombination events. We therefore propose that fusion may occur by a DSB-independent, DNA replication-based mechanism (which we term "faulty template switching"). Fusion of nearby inverted repeats to form dicentrics may be a major cause of instability in yeast and in other organisms.

  4. Measurement of spatial proximity and accessibility of chromosomal loci in yeast using Cre/loxP site-specific recombination

    OpenAIRE

    Lui, Doris; Burgess, Sean M.

    2009-01-01

    Several methods have been developed to measure interactions between homologous chromosomes during meiosis in budding yeast. These include cytological analysis of fixed, spread nuclei using fluorescence in situ Hybridization (FISH) (1, 2), visualization of GFP-labeled chromosomal loci in living cells (3), and Chromosome-Conformation Capture (3C) (4). Here we describe a quantitative genetic assay that uses exogenous site-specific recombination to monitor the level of homolog associations betwee...

  5. Ca(2+) homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca(2+) storage.

    Science.gov (United States)

    D'hooge, Petra; Coun, Catherina; Van Eyck, Vincent; Faes, Liesbeth; Ghillebert, Ruben; Mariën, Lore; Winderickx, Joris; Callewaert, Geert

    2015-08-01

    Yeast has proven to be a powerful tool to elucidate the molecular aspects of several biological processes in higher eukaryotes. As in mammalian cells, yeast intracellular Ca(2+) signalling is crucial for a myriad of biological processes. Yeast cells also bear homologs of the major components of the Ca(2+) signalling toolkit in mammalian cells, including channels, co-transporters and pumps. Using yeast single- and multiple-gene deletion strains of various plasma membrane and organellar Ca(2+) transporters, combined with manipulations to estimate intracellular Ca(2+) storage, we evaluated the contribution of individual transport systems to intracellular Ca(2+) homeostasis. Yeast strains lacking Pmr1 and/or Cod1, two ion pumps implicated in ER/Golgi Ca(2+) homeostasis, displayed a fragmented vacuolar phenotype and showed increased vacuolar Ca(2+) uptake and Ca(2+) influx across the plasma membrane. In the pmr1Δ strain, these effects were insensitive to calcineurin activity, independent of Cch1/Mid1 Ca(2+) channels and Pmc1 but required Vcx1. By contrast, in the cod1Δ strain increased vacuolar Ca(2+) uptake was not affected by Vcx1 deletion but was largely dependent on Pmc1 activity. Our analysis further corroborates the distinct roles of Vcx1 and Pmc1 in vacuolar Ca(2+) uptake and point to the existence of not-yet identified Ca(2+) influx pathways.

  6. Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit.

    Directory of Open Access Journals (Sweden)

    Ilaria Scarfone

    2015-02-01

    Full Text Available The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck and the division axis (i.e., the mother-bud axis. A surveillance mechanism called spindle position checkpoint (SPOC delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1

  7. Functional characterization of kinetochore protein, Ctf19 in meiosis I: an implication of differential impact of Ctf19 on the assembly of mitotic and meiotic kinetochores in Saccharomyces cerevisiae.

    Science.gov (United States)

    Mehta, Gunjan D; Agarwal, Meenakshi; Ghosh, Santanu K

    2014-03-01

    Meiosis is a specialized cell division process through which chromosome numbers are reduced by half for the generation of gametes. Kinetochore, a multiprotein complex that connects centromeres to microtubules, plays essential role in chromosome segregation. Ctf19 is the key central kinetochore protein that recruits all the other non-essential proteins of the Ctf19 complex in budding yeast. Earlier studies have shown the role of Ctf19 complex in enrichment of cohesin around the centromeres both during mitosis and meiosis, leading to sister chromatid cohesion and meiosis II disjunction. Here we show that Ctf19 is also essential for the proper execution of the meiosis I specific unique events, such as non-homologous centromere coupling, homologue pairing, chiasmata resolution and proper orientation of homologues and sister chromatids with respect to the spindle poles. Additionally, this investigation reveals that proper kinetochore function is required for faithful chromosome condensation in meiosis. Finally, this study suggests that absence of Ctf19 affects the integrity of meiotic kinetochore differently than that of the mitotic kinetochore. Consequently, absence of Ctf19 leads to gross chromosome missegregation during meiosis as compared with mitosis. Hence, this study reports for the first time the differential impact of a non-essential kinetochore protein on the mitotic and meiotic kinetochore ensembles and hence chromosome segregation.

  8. The Arabidopsis MutS homolog AtMSH5 is required for normal meiosis

    Institute of Scientific and Technical Information of China (English)

    Xiaoduo Lu; Xiaolin Liu; Lizhe An; Wei Zhang; Jian Sun; Huijuan Pei; Hongyan Meng; Yunliu Fan; Chunyi Zhang

    2008-01-01

    MSH5,a member of the MutS homolog DNA mismatch repair protein family,has been shown to be required for proper homologous chromosome recombination in diverse organisms such as mouse,budding yeast and Caenorhabditis elegans.In this paper,we show that a mutant Arabidopsis plant carrying the putative disrupted AtMSH5 gene exhibits defects during meiotic division,producing a proportion of nonviable pollen grains and abnormal embryo sacs,and thereby leading to a decrease in fertility.AtMSH5 expression is confined to meiotic floral buds,which is consistent with a possible role during meiosis.Cytological analysis of male meiosis revealed the presence of numerous univalents from diplotene to metaphase I,which were associated with a great reduction in chiasma frequencies.The average number of residual chiasmata in the mutant is reduced to 2.54 per meiocyte,which accounts for~25% of the amount in the wild type.Here,quantitative cytogenetical analysis reveals that the residual chiasmata in Atmsh5 mutants are randomly distributed among meiocytes,suggesting that AtMSH5 has an essential role during interferencesensitive chiasma formation.Taken together,the evidence indicates that AtMSH5 promotes homologous recombination through facilitating chiasma formation during prophase I in Arabidopsis.

  9. SUMO meets meiosis: an encounter at the synaptonemal complex: SUMO chains and sumoylated proteins suggest that heterogeneous and complex interactions lie at the centre of the synaptonemal complex.

    Science.gov (United States)

    Watts, Felicity Z; Hoffmann, Eva

    2011-07-01

    Recent discoveries have identified the small ubiquitin-like modifier (SUMO) as the potential 'missing link' that could explain how the synaptonemal complex (SC) is formed during meiosis. The SC is important for a variety of chromosome interactions during meiosis and appears ladder-like. It is formed when 'axes' of the two homologous chromosomes become connected by the deposition of transverse filaments, forming the steps of the ladder. Although several components of axial and transverse elements have been identified, how the two are connected to form the SC has remained an enigma. Recent discoveries suggest that SUMO modification underlies protein-protein interactions within the SC of budding yeast. The versatility of SUMO in regulating protein-protein interactions adds an exciting new dimension to our understanding of the SC and suggests that SCs are not homogenous structures throughout the nucleus. We propose that this heterogeneity may allow differential regulation of chromosome structure and function.

  10. Exposure of ELF-EMF and RF-EMF Increase the Rate of Glucose Transport and TCA Cycle in Budding Yeast

    Science.gov (United States)

    Lin, Kang-Wei; Yang, Chuan-Jun; Lian, Hui-Yong; Cai, Peng

    2016-01-01

    In this study, we investigated the transcriptional response to 50 Hz extremely low frequency electromagnetic field (ELF-EMF) and 2.0 GHz radio frequency electromagnetic field (RF-EMF) exposure by Illumina sequencing technology using budding yeast as the model organism. The transcription levels of 28 genes were upregulated and those of four genes were downregulated under ELF-EMF exposure, while the transcription levels of 29 genes were upregulated and those of 24 genes were downregulated under RF-EMF exposure. After validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR), a concordant direction of change both in differential gene expression (DGE) and RT-qPCR was demonstrated for nine genes under ELF-EMF exposure and for 10 genes under RF-EMF exposure. The RT-qPCR results revealed that ELF-EMF and RF-EMF exposure can upregulate the expression of genes involved in glucose transportation and the tricarboxylic acid (TCA) cycle, but not the glycolysis pathway. Energy metabolism is closely related with the cell response to environmental stress including EMF exposure. Our findings may throw light on the mechanism underlying the biological effects of EMF. PMID:27630630

  11. H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast

    LENUS (Irish Health Repository)

    Shieh, Grace S.

    2011-12-22

    Abstract Background The packaging of DNA into chromatin regulates transcription from initiation through 3\\' end processing. One aspect of transcription in which chromatin plays a poorly understood role is the co-transcriptional splicing of pre-mRNA. Results Here we provide evidence that H2B monoubiquitylation (H2BK123ub1) marks introns in Saccharomyces cerevisiae. A genome-wide map of H2BK123ub1 in this organism reveals that this modification is enriched in coding regions and that its levels peak at the transcribed regions of two characteristic subgroups of genes. First, long genes are more likely to have higher levels of H2BK123ub1, correlating with the postulated role of this modification in preventing cryptic transcription initiation in ORFs. Second, genes that are highly transcribed also have high levels of H2BK123ub1, including the ribosomal protein genes, which comprise the majority of intron-containing genes in yeast. H2BK123ub1 is also a feature of introns in the yeast genome, and the disruption of this modification alters the intragenic distribution of H3 trimethylation on lysine 36 (H3K36me3), which functionally correlates with alternative RNA splicing in humans. In addition, the deletion of genes encoding the U2 snRNP subunits, Lea1 or Msl1, in combination with an htb-K123R mutation, leads to synthetic lethality. Conclusion These data suggest that H2BK123ub1 facilitates cross talk between chromatin and pre-mRNA splicing by modulating the distribution of intronic and exonic histone modifications.

  12. Divergent Evolution of the Transcriptional Network Controlled by Snf1-Interacting Protein Sip4 in Budding Yeasts.

    Directory of Open Access Journals (Sweden)

    Constance Mehlgarten

    Full Text Available Cellular responses to starvation are of ancient origin since nutrient limitation has always been a common challenge to the stability of living systems. Hence, signaling molecules involved in sensing or transducing information about limiting metabolites are highly conserved, whereas transcription factors and the genes they regulate have diverged. In eukaryotes the AMP-activated protein kinase (AMPK functions as a central regulator of cellular energy homeostasis. The yeast AMPK ortholog SNF1 controls the transcriptional network that counteracts carbon starvation conditions by regulating a set of transcription factors. Among those Cat8 and Sip4 have overlapping DNA-binding specificity for so-called carbon source responsive elements and induce target genes upon SNF1 activation. To analyze the evolution of the Cat8-Sip4 controlled transcriptional network we have compared the response to carbon limitation of Saccharomyces cerevisiae to that of Kluyveromyces lactis. In high glucose, S. cerevisiae displays tumor cell-like aerobic fermentation and repression of respiration (Crabtree-positive while K. lactis has a respiratory-fermentative life-style, respiration being regulated by oxygen availability (Crabtree-negative, which is typical for many yeasts and for differentiated higher cells. We demonstrate divergent evolution of the Cat8-Sip4 network and present evidence that a role of Sip4 in controlling anabolic metabolism has been lost in the Saccharomyces lineage. We find that in K. lactis, but not in S. cerevisiae, the Sip4 protein plays an essential role in C2 carbon assimilation including induction of the glyoxylate cycle and the carnitine shuttle genes. Induction of KlSIP4 gene expression by KlCat8 is essential under these growth conditions and a primary function of KlCat8. Both KlCat8 and KlSip4 are involved in the regulation of lactose metabolism in K. lactis. In chromatin-immunoprecipitation experiments we demonstrate binding of both, KlSip4 and

  13. Divergent Evolution of the Transcriptional Network Controlled by Snf1-Interacting Protein Sip4 in Budding Yeasts.

    Science.gov (United States)

    Mehlgarten, Constance; Krijger, Jorrit-Jan; Lemnian, Ioana; Gohr, André; Kasper, Lydia; Diesing, Anne-Kathrin; Grosse, Ivo; Breunig, Karin D

    2015-01-01

    Cellular responses to starvation are of ancient origin since nutrient limitation has always been a common challenge to the stability of living systems. Hence, signaling molecules involved in sensing or transducing information about limiting metabolites are highly conserved, whereas transcription factors and the genes they regulate have diverged. In eukaryotes the AMP-activated protein kinase (AMPK) functions as a central regulator of cellular energy homeostasis. The yeast AMPK ortholog SNF1 controls the transcriptional network that counteracts carbon starvation conditions by regulating a set of transcription factors. Among those Cat8 and Sip4 have overlapping DNA-binding specificity for so-called carbon source responsive elements and induce target genes upon SNF1 activation. To analyze the evolution of the Cat8-Sip4 controlled transcriptional network we have compared the response to carbon limitation of Saccharomyces cerevisiae to that of Kluyveromyces lactis. In high glucose, S. cerevisiae displays tumor cell-like aerobic fermentation and repression of respiration (Crabtree-positive) while K. lactis has a respiratory-fermentative life-style, respiration being regulated by oxygen availability (Crabtree-negative), which is typical for many yeasts and for differentiated higher cells. We demonstrate divergent evolution of the Cat8-Sip4 network and present evidence that a role of Sip4 in controlling anabolic metabolism has been lost in the Saccharomyces lineage. We find that in K. lactis, but not in S. cerevisiae, the Sip4 protein plays an essential role in C2 carbon assimilation including induction of the glyoxylate cycle and the carnitine shuttle genes. Induction of KlSIP4 gene expression by KlCat8 is essential under these growth conditions and a primary function of KlCat8. Both KlCat8 and KlSip4 are involved in the regulation of lactose metabolism in K. lactis. In chromatin-immunoprecipitation experiments we demonstrate binding of both, KlSip4 and KlCat8, to

  14. Osh proteins regulate COPII-mediated vesicular transport of ceramide from the endoplasmic reticulum in budding yeast.

    Science.gov (United States)

    Kajiwara, Kentaro; Ikeda, Atsuko; Aguilera-Romero, Auxiliadora; Castillon, Guillaume A; Kagiwada, Satoshi; Hanada, Kentaro; Riezman, Howard; Muñiz, Manuel; Funato, Kouichi

    2014-01-15

    Lipids synthesized at the endoplasmic reticulum (ER) are delivered to the Golgi by vesicular and non-vesicular pathways. ER-to-Golgi transport is crucial for maintaining the different membrane lipid composition and identities of organelles. Despite their importance, mechanisms regulating transport remain elusive. Here we report that in yeast coat protein complex II (COPII) vesicle-mediated transport of ceramide from the ER to the Golgi requires oxysterol-binding protein homologs, Osh proteins, which have been implicated in lipid homeostasis. Because Osh proteins are not required to transport proteins to the Golgi, these results indicate a specific requirement for the Osh proteins in the transport of ceramide. In addition, we provide evidence that Osh proteins play a negative role in COPII vesicle biogenesis. Together, our data suggest that ceramide transport and sphingolipid levels between the ER and Golgi are maintained by two distinct functions of Osh proteins, which negatively regulate COPII vesicle formation and positively control a later stage, presumably fusion of ceramide-enriched vesicles with Golgi compartments.

  15. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    Science.gov (United States)

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation.

  16. RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast.

    Science.gov (United States)

    Kessi-Pérez, Eduardo I; Araos, Sebastián; García, Verónica; Salinas, Francisco; Abarca, Valentina; Larrondo, Luis F; Martínez, Claudio; Cubillos, Francisco A

    2016-05-01

    Different natural yeast populations have faced dissimilar selective pressures due to the heterogeneous fermentation substrates available around the world; this increases the genetic and phenotypic diversity in Saccharomyces cerevisiae In this context, we expect prominent differences between isolates when exposed to a particular condition, such as wine or sake musts. To better comprehend the mechanisms underlying niche adaptation between two S. cerevisiae isolates obtained from wine and sake fermentation processes, we evaluated fermentative and fungicide resistance phenotypes and identify the molecular origin of such adaptive variation. Multiple regions were associated with fermentation rate under different nitrogen conditions and fungicide resistance, with a single QTL co-localizing in all traits. Analysis around this region identified RIM15 as the causative locus driving fungicide sensitivity, together with efficient nitrogen utilization and glycerol production in the wine strain. A null RIM15 variant confers a greater fermentation rate through the utilization of available glucose instead of its storage. However, this variant has a detrimental effect on fungicide resistance since complex sugars are not synthesized and transported into the membrane. Together, our results reveal the antagonist pleiotropic nature of a RIM15 null variant, positively affecting a series of fermentation related phenotypes, but apparently detrimental in the wild.

  17. The budding yeast Cdc48(Shp1 complex promotes cell cycle progression by positive regulation of protein phosphatase 1 (Glc7.

    Directory of Open Access Journals (Sweden)

    Stefanie Böhm

    Full Text Available The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48(Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48(Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.

  18. Role of Ctf3 and COMA subcomplexes in meiosis: Implication in maintaining Cse4 at the centromere and numeric spindle poles.

    Science.gov (United States)

    Agarwal, Meenakshi; Mehta, Gunjan; Ghosh, Santanu K

    2015-03-01

    During mitosis and meiosis, kinetochore, a conserved multi-protein complex, connects microtubule with the centromere and promotes segregation of the chromosomes. In budding yeast, central kinetochore complex named Ctf19 has been implicated in various functions and is believed to be made up of three biochemically distinct subcomplexes: COMA, Ctf3 and Iml3-Chl4. In this study, we aimed to identify whether Ctf3 and COMA subcomplexes have any unshared function at the kinetochore. Our data suggests that both these subcomplexes may work as a single functional unit without any unique functions, which we tested. Analysis of severity of the defects in the mutants suggests that COMA is epistatic to Ctf3 subcomplex. Interestingly, we noticed that these subcomplexes affect the organization of mitotic and meiotic kinetochores with subtle differences and they promote maintenance of Cse4 at the centromeres specifically during meiosis which is similar to the role of Mis6 (Ctf3 homolog) in fission yeast during mitosis. Interestingly, analysis of ctf3Δ and ctf19Δ mutants revealed a novel role of Ctf19 complex in regulation of SPB cohesion and duplication in meiosis.

  19. Tinkering with meiosis

    OpenAIRE

    Crismani, W.; Girard, C; Mercier, R

    2013-01-01

    Meiosis is at the heart of Mendelian heredity. Recently, much progress has been made in the understanding of this process, in various organisms. In the last fifteen years, the functional characterization of numerous genes involved in meiosis has dramatically deepened our knowledge of key events, including recombination, cell cycle and chromosome distribution. Through a constantly advancing tool set and knowledge base, a number of advances have been made that will allow manipulation of meiosis...

  20. Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery.

    OpenAIRE

    Carballo, Jesús A.; Panizza, Silvia; Serrentino, Maria Elisabetta; Anthony L Johnson; Geymonat, Marco; Borde, Valérie; Klein, Franz; Cha, Rita S.

    2013-01-01

    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, t...

  1. Arenavirus Budding

    Directory of Open Access Journals (Sweden)

    Shuzo Urata

    2011-01-01

    Full Text Available Several arenaviruses cause hemorrhagic fever disease in humans and pose a significant public health concern in their endemic regions. On the other hand, the prototypic arenavirus LCMV is a superb workhorse for the investigation of virus-host interactions and associated disease. The arenavirus small RING finger protein called Z has been shown to be the main driving force of virus budding. The budding activity of Z is mediated by late (L domain motifs, PT/SAP, and PPXY, located at the C-terminus of Z. This paper will present the current knowledge on arenavirus budding including the diversity of L domain motifs used by different arenaviruses. We will also discuss how improved knowledge of arenavirus budding may facilitate the development of novel antiviral strategies to combat human pathogenic arenaviruses.

  2. Doing the Meiosis Shuffle.

    Science.gov (United States)

    Krauskopf, Sara

    1999-01-01

    Presents a game called the Meiosis Shuffle that helps students simulate the process of meiosis in which homologous cards representing chromosomes pair up, line up, and split apart. Students respond well to the simulation and are better able to conceptualize what chromosomes do and how independent assortment causes genetic variation. (CCM)

  3. Chemical genetic induction of meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Guerra-Moreno, Angel; Alves-Rodrigues, Isabel; Hidalgo, Elena; Ayté, José

    2012-04-15

    In the fission yeast Schizosaccharomyces pombe, meiosis is inhibited by the protein kinase Pat1, which phosphorylates and inactivates Mei2, an RNA binding protein essential for the initiation of meiosis. When diploid cells are deprived of nutrients, they initiate a cascade of events leading to the inactivation of Pat1 and entry into meiosis. Strains carrying the temperature-sensitive pat1-114 allele are forced to enter into meiosis when shifted to the non-permissive temperature, independently of the ploidity of the cell. This system has been extensively used, since it is possible to achieve a highly synchronous meiosis, which is a must for any molecular or microscopic approach that aims to decipher the mechanisms governing meiosis. Here, we have designed a new system to obtain a similarly synchronous meiosis, but independently of temperature shifts. Thus, by introducing a mutation in the ATP pocket of Pat1, we have generated a protein kinase that, in the presence of small specific inhibitors, can be inactivated. This results in forced entry into meiosis without the need of a temperature shift, minimizing the introduction of heat shock or any other stress responses along the meiotic waves of transcription.

  4. Tinkering with meiosis.

    Science.gov (United States)

    Crismani, Wayne; Girard, Chloé; Mercier, Raphael

    2013-01-01

    Meiosis is at the heart of Mendelian heredity. Recently, much progress has been made in the understanding of this process, in various organisms. In the last 15 years, the functional characterization of numerous genes involved in meiosis has dramatically deepened our knowledge of key events, including recombination, the cell cycle, and chromosome distribution. Through a constantly advancing tool set and knowledge base, a number of advances have been made that will allow manipulation of meiosis from a plant breeding perspective. This review focuses on the aspects of meiosis that can be tinkered with to create and propagate new varieties. We would like to dedicate this review to the memory of Simon W. Chan (1974-2012) (http://www.plb.ucdavis.edu/labs/srchan/).

  5. Transcript profiling to analyse gene expression during male meiosis in Petunia hybrida

    NARCIS (Netherlands)

    Cnudde, Filip

    2004-01-01

    Meiosis is a key feature of eukaryotic sexual reproduction. So far, the molecular and functional analysis of meiosis is relatively underdeveloped in plants, but the flood of genomics data from yeast research and the availability of large mutant collections cause a growing interest in molecular studi

  6. Spindle assembly checkpoint and its regulators in meiosis.

    Science.gov (United States)

    Sun, Shao-Chen; Kim, Nam-Hyung

    2012-01-01

    BACKGROUND Meiosis is a unique form of cell division in which cells divide twice but DNA is duplicated only once. Errors in chromosome segregation during meiosis will result in aneuploidy, followed by loss of the conceptus during pregnancy or birth defects. During mitosis, cells utilize a mechanism called the spindle assembly checkpoint (SAC) to ensure faithful chromosome segregation. A similar mechanism has been uncovered for meiosis in the last decade, especially in the past several years. METHODS For this review, we included data and relevant information obtained through a PubMed database search for all articles published in English from 1991 through 2011 which included the term 'meiosis', 'spindle assembly checkpoint', or 'SAC'. RESULTS There are 91 studies included. Evidence for the existence of SAC functions in meiosis is provided by studies on the SAC proteins mitotic-arrest deficient-1 (Mad1), Mad2, budding uninhibited by benzimidazole-1 (Bub1), Bub3, BubR1 and Mps1; microtubule-kinetochore attachment regulators Ndc80 complex, chromosomal passenger complex, mitotic centromere-associated kinesin (MCAK), kinetochore null 1 (KNL1) and Mis12 complex and spindle stability regulators. CONCLUSIONS SAC and its regulators exist and function in meiosis, and their malfunctions may cause germ cell aneuploidy. However, species and sexual differences exist. Moreover, interaction of SAC components with other regulators is still poorly understood, which needs further study.

  7. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  8. Microscopic Procedures for Plant Meiosis.

    Science.gov (United States)

    Braselton, James P.

    1997-01-01

    Describes laboratory techniques designed to familiarize students with meiosis and how microscopic preparations of meiosis are made. These techniques require the use of fresh or fixed flowers. Contains 18 references. (DDR)

  9. The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene TDM1 during Male Meiosis in Arabidopsis.

    Science.gov (United States)

    Andreuzza, Sébastien; Nishal, Bindu; Singh, Aparna; Siddiqi, Imran

    2015-09-01

    Meiosis produces haploid cells essential for sexual reproduction. In yeast, entry into meiosis activates transcription factors which trigger a transcriptional cascade that results in sequential co-expression of early, middle and late meiotic genes. However, these factors are not conserved, and the factors and regulatory mechanisms that ensure proper meiotic gene expression in multicellular eukaryotes are poorly understood. Here, we report that DUET/MMD1, a PHD finger protein essential for Arabidopsis male meiosis, functions as a transcriptional regulator in plant meiosis. We find that DUET-PHD binds H3K4me2 in vitro, and show that this interaction is critical for function during meiosis. We also show that DUET is required for proper microtubule organization during meiosis II, independently of its function in meiosis I. Remarkably, DUET protein shows stage-specific expression, confined to diplotene. We identify two genes TDM1 and JAS with critical functions in cell cycle transitions and spindle organization in male meiosis, as DUET targets, with TDM1 being a direct target. Thus, DUET is required to regulate microtubule organization and cell cycle transitions during male meiosis, and functions as a direct transcription activator of the meiotic gene TDM1. Expression profiling showed reduced expression of a subset comprising about 12% of a known set of meiosis preferred genes in the duet mutant. Our results reveal the action of DUET as a transcriptional regulator during male meiosis in plants, and suggest that transcription of meiotic genes is under stagewise control in plants as in yeast.

  10. Multiple opposing constraints govern chromosome interactions during meiosis.

    Directory of Open Access Journals (Sweden)

    Doris Y Lui

    Full Text Available Homolog pairing and crossing over during meiosis I prophase is required for accurate chromosome segregation to form euploid gametes. The repair of Spo11-induced double-strand breaks (DSB using a homologous chromosome template is a major driver of pairing in many species, including fungi, plants, and mammals. Inappropriate pairing and crossing over at ectopic loci can lead to chromosome rearrangements and aneuploidy. How (or if inappropriate ectopic interactions are disrupted in favor of allelic interactions is not clear. Here we used an in vivo "collision" assay in budding yeast to test the contributions of cohesion and the organization and motion of chromosomes in the nucleus on promoting or antagonizing interactions between allelic and ectopic loci at interstitial chromosome sites. We found that deletion of the cohesin subunit Rec8, but not other chromosome axis proteins (e.g. Red1, Hop1, or Mek1, caused an increase in homolog-nonspecific chromosome interaction, even in the absence of Spo11. This effect was partially suppressed by expression of the mitotic cohesin paralog Scc1/Mdc1, implicating Rec8's role in cohesion rather than axis integrity in preventing nonspecific chromosome interactions. Disruption of telomere-led motion by treating cells with the actin polymerization inhibitor Latrunculin B (Lat B elevated nonspecific collisions in rec8Δ spo11Δ. Next, using a visual homolog-pairing assay, we found that the delay in homolog pairing in mutants defective for telomere-led chromosome motion (ndj1Δ or csm4Δ is enhanced in Lat B-treated cells, implicating actin in more than one process promoting homolog juxtaposition. We suggest that multiple, independent contributions of actin, cohesin, and telomere function are integrated to promote stable homolog-specific interactions and to destabilize weak nonspecific interactions by modulating the elastic spring-like properties of chromosomes.

  11. Evolutionary mysteries in meiosis

    NARCIS (Netherlands)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E.; Wijnker, Erik; Haag, Christoph R.

    2016-01-01

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these o

  12. Meiosis and SUMO

    DEFF Research Database (Denmark)

    Holm, Lærke Rebekka

    to target proteins can be catalyzed by the SUMO E3 ligase Pli1. In this study we investigate the role of Pli1 and Pmt3 during meiotic differentiation and at repetitive DNA during mitotic growth. Target proteins for Pmt3 are many; however, Pli1 has a meiosis-specic function regulating meiotic recombination...

  13. Reconstruction of the kinetochore: a prelude to meiosis

    Directory of Open Access Journals (Sweden)

    Haraguchi Tokuko

    2007-06-01

    Full Text Available Abstract In eukaryotic organisms, chromosomes are spatially organized within the nucleus. Such nuclear architecture provides a physical framework for the genetic activities of chromosomes, and changes its functional organization as the cell moves through the phases of the cell cycle. The fission yeast Schizosaccharomyces pombe provides a striking example of nuclear reorganization during the transition from mitosis to meiosis. In this organism, centromeres remain clustered at the spindle-pole body (SPB; a centrosome-equivalent structure in fungi during mitotic interphase. In contrast, during meiotic prophase, centromeres dissociate from the SPB and telomeres cluster to the SPB. Recent studies revealed that this repositioning of chromosomes is regulated by mating pheromone signaling. Some centromere proteins disappear from the centromere in response to mating pheromone, leading to dissociation of centromeres from the SPB. Interestingly, mating pheromone signaling is also required for monopolar orientation of the kinetochore which is crucial for proper segregation of sister chromatids during meiosis. When meiosis is induced in the absence of mating pheromone signaling, aberrant chromosome behaviors are observed: the centromere proteins remain at the centromere; the centromere remains associated with the SPB; and sister chromatids segregate precociously in the first meiotic division. These aberrant chromosome behaviors are all normalized by activating the mating pheromone signaling pathway. Thus, action of mating pheromone on the centromere is important for coherent behavior of chromosomes in meiosis. Here we discuss repositioning and reconstruction of the centromere during the transition from mitosis to meiosis, and highlight its significance for proper progression of meiosis.

  14. Inactivation of the budding yeast cohesin loader Scc2 alters gene expression both globally and in response to a single DNA double strand break

    OpenAIRE

    Lindgren, Emma; Hägg, Sara; Giordano, Fosco; Börkegren, Johan; Ström, Lena

    2014-01-01

    Genome integrity is fundamental for cell survival and cell cycle progression. Important mechanisms for keeping the genome intact are proper sister chromatid segregation, correct gene regulation and efficient repair of damaged DNA. Cohesin and its DNA loader, the Scc2/4 complex have been implicated in all these cellular actions. The gene regulation role has been described in several organisms. In yeast it has been suggested that the proteins in the cohesin network would effect transcription ba...

  15. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast

    DEFF Research Database (Denmark)

    Benghezal, Mohammed; Roubaty, Carole; Veepuri, Vijayanath

    2007-01-01

    Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal an......-phosphate O-acyltransferases but also be involved in fatty acid exchange at the sn-2-position of mature glycerophospholipids....

  16. Turning meiosis into mitosis.

    Directory of Open Access Journals (Sweden)

    Isabelle d'Erfurth

    2009-06-01

    Full Text Available Apomixis, or asexual clonal reproduction through seeds, is of immense interest due to its potential application in agriculture. One key element of apomixis is apomeiosis, a deregulation of meiosis that results in a mitotic-like division. We isolated and characterised a novel gene that is directly involved in controlling entry into the second meiotic division. By combining a mutation in this gene with two others that affect key meiotic processes, we created a genotype called MiMe in which meiosis is totally replaced by mitosis. The obtained plants produce functional diploid gametes that are genetically identical to their mother. The creation of the MiMe genotype and apomeiosis phenotype is an important step towards understanding and engineering apomixis.

  17. Inactivation of the budding yeast cohesin loader Scc2 alters gene expression both globally and in response to a single DNA double strand break.

    Science.gov (United States)

    Lindgren, Emma; Hägg, Sara; Giordano, Fosco; Björkegren, Johan; Ström, Lena

    2014-01-01

    Genome integrity is fundamental for cell survival and cell cycle progression. Important mechanisms for keeping the genome intact are proper sister chromatid segregation, correct gene regulation and efficient repair of damaged DNA. Cohesin and its DNA loader, the Scc2/4 complex have been implicated in all these cellular actions. The gene regulation role has been described in several organisms. In yeast it has been suggested that the proteins in the cohesin network would effect transcription based on its role as insulator. More recently, data are emerging indicating direct roles for gene regulation also in yeast. Here we extend these studies by investigating whether the cohesin loader Scc2 is involved in regulation of gene expression. We performed global gene expression profiling in the absence and presence of DNA damage, in wild type and Scc2 deficient G2/M arrested cells, when it is known that Scc2 is important for DNA double strand break repair and formation of damage induced cohesion. We found that not only the DNA damage specific transcriptional response is distorted after inactivation of Scc2 but also the overall transcription profile. Interestingly, these alterations did not correlate with changes in cohesin binding.

  18. Detection of Multiple Budding Yeast Cells and a Partial Sequence of 43-kDa Glycoprotein Coding Gene of Paracoccidioides brasiliensis from a Case of Lacaziosis in a Female Pacific White-Sided Dolphin (Lagenorhynchus obliquidens).

    Science.gov (United States)

    Minakawa, Tomoko; Ueda, Keiichi; Tanaka, Miyuu; Tanaka, Natsuki; Kuwamura, Mitsuru; Izawa, Takeshi; Konno, Toshihiro; Yamate, Jyoji; Itano, Eiko Nakagawa; Sano, Ayako; Wada, Shinpei

    2016-08-01

    Lacaziosis, formerly called as lobomycosis, is a zoonotic mycosis, caused by Lacazia loboi, found in humans and dolphins, and is endemic in the countries on the Atlantic Ocean, Indian Ocean and Pacific Ocean of Japanese coast. Susceptible Cetacean species include the bottlenose dolphin (Tursiops truncatus), the Indian Ocean bottlenose dolphin (T. aduncus), and the estuarine dolphin (Sotalia guianensis); however, no cases have been recorded in other Cetacean species. We diagnosed a case of Lacaziosis in a Pacific white-sided dolphin (Lagenorhynchus obliquidens) nursing in an aquarium in Japan. The dolphin was a female estimated to be more than 14 years old at the end of June 2015 and was captured in a coast of Japan Sea in 2001. Multiple, lobose, and solid granulomatous lesions with or without ulcers appeared on her jaw, back, flipper and fluke skin, in July 2014. The granulomatous skin lesions from the present case were similar to those of our previous cases. Multiple budding and chains of round yeast cells were detected in the biopsied samples. The partial sequence of 43-kDa glycoprotein coding gene confirmed by a nested PCR and sequencing, which revealed a different genotype from both Amazonian and Japanese lacaziosis in bottlenose dolphins, and was 99 % identical to those derived from Paracoccidioides brasiliensis; a sister fungal species to L. loboi. This is the first case of lacaziosis in Pacific white-sided dolphin.

  19. [Sex chromosomes and meiosis].

    Science.gov (United States)

    Guichaoua, M-R; Geoffroy-Siraudin, C; Tassistro, V; Ghalamoun-Slaimi, R; Perrin, J; Metzler-Guillemain, C

    2009-01-01

    Sex chromosome behaviour fundamentally differs between male and female meiosis. In oocyte, X chromosomes synapse giving a XX bivalent which is not recognizable in their morphology and behaviour from autosomal bivalents. In human male, X and Y chromosomes differ from one another in their morphology and their genetic content, leading to a limited pairing and preventing genetic recombination, excepted in homologous region PAR1. During pachytene stage of the first meiotic prophase, X and Y chromosomes undergo a progressive condensation and form a transcriptionally silenced peripheral XY body. The condensation of the XY bivalent during pachytene stage led us to describe four pachytene substages and to localize the pachytene checkpoint between substages 2 and 3. We also defined the pachytene index (PI=P1+P2/P1+P2+P3+P4) which is always less than 0.50 in normal meiosis. XY body undergoes decondensation at diplotene stage, but transcriptional inactivation of the two sex chromosomes or Meiotic Sex Chromosome Inactivation (MSCI) persists through to the end of spermatogenesis. Sex chromosome inactivation involves several proteins, some of them were now identified. Two isoforms of the HP1 protein, HP1beta and HP1gamma, are involved in the facultative heterochromatinization of the XY body, but the initiation of this process involves the phosphorylation of the protein H2AX by the kinase ATR whose recruitment depends on BRCA1. Extensive researches on the inactivation of the sex chromosomes during male meiosis will allow to a better understanding of some male infertilities.

  20. Global Identification of Genes Specific for Rice Meiosis.

    Science.gov (United States)

    Zhang, Bingwei; Xu, Meng; Bian, Shiquan; Hou, Lili; Tang, Ding; Li, Yafei; Gu, Minghong; Cheng, Zhukuan; Yu, Hengxiu

    2015-01-01

    The leptotene-zygotene transition is a major step in meiotic progression during which pairing between homologous chromosomes is initiated and double strand breaks occur. OsAM1, a homologue of maize AM1 and Arabidopsis SWI1, encodes a protein with a coiled-coil domain in its central region that is required for the leptotene-zygotene transition during rice meiosis. To gain more insight into the role of OsAM1 in rice meiosis and identify additional meiosis-specific genes, we characterized the transcriptomes of young panicles of Osam1 mutant and wild-type rice plants using RNA-Seq combined with bioinformatic and statistical analyses. As a result, a total of 25,750 and 28,455 genes were expressed in young panicles of wild-type and Osam1 mutant plants, respectively, and 4,400 differentially expressed genes (DEGs; log2 Ratio ≥ 1, FDR ≤ 0.05) were identified. Of these DEGs, four known rice meiosis-specific genes were detected, and 22 new putative meiosis-related genes were found by mapping these DEGs to reference biological pathways in the KEGG database. We identified eight additional well-conserved OsAM1-responsive rice meiotic genes by comparing our RNA-Seq data with known meiotic genes in Arabidopsis and fission yeast.

  1. The template choice decision in meiosis: is the sister important?

    Science.gov (United States)

    Pradillo, Mónica; Santos, Juan L

    2011-10-01

    Recombination between homologous chromosomes is crucial to ensure their proper segregation during meiosis. This is achieved by regulating the choice of recombination template. In mitotic cells, double-strand break repair with the sister chromatid appears to be preferred, whereas interhomolog recombination is favoured during meiosis. However, in the last year, several studies in yeast have shown the importance of the meiotic recombination between sister chromatids. Although this thinking seems to be new, evidences for sister chromatid exchange during meiosis were obtained more than 50 years ago in non-model organisms. In this mini-review, we comment briefly on the most recent advances in this hot topic and also describe observations which suggest the existence of inter-sister repair during meiotic recombination. For instance, the behaviour of mammalian XY bivalents and that of trivalents in heterozygotes for chromosomal rearrangements are cited as examples. The "rediscovering" of the requirement for the sister template, although it seems to occur at a low frequency, will probably prompt further investigations in organisms other than yeast to understand the complexity of the partner choice during meiosis.

  2. Meiosis: inducing variation by reduction

    NARCIS (Netherlands)

    Cnudde, F.; Gerats, A.G.M.

    2005-01-01

    A brief introduction is presented with some thought on the origin of meiosis. Subsequently, a sequential overview of the diverse processes that take place during meiosis is provided, with an eye to similarities and differences between the different eukaryotic systems. In the final part, we try to su

  3. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities

    Directory of Open Access Journals (Sweden)

    Jessica Patel

    2016-02-01

    Full Text Available The first meiotic division in human oocytes is highly error-prone and contributes to the uniquely high incidence of aneuploidy observed in human pregnancies. A successful meiosis I (MI division entails separation of homologous chromosome pairs and co-segregation of sister chromatids. For this to happen, sister kinetochores must form attachments to spindle kinetochore-fibres emanating from the same pole. In mouse and budding yeast, sister kinetochores remain closely associated with each other during MI, enabling them to act as a single unified structure. However, whether this arrangement also applies in human meiosis I oocytes was unclear. In this study, we perform high-resolution imaging of over 1900 kinetochores in human oocytes, to examine the geometry and architecture of the human meiotic kinetochore. We reveal that sister kinetochores in MI are not physically fused, and instead individual kinetochores within a pair are capable of forming independent attachments to spindle k-fibres. Notably, with increasing female age, the separation between kinetochores increases, suggesting a degradation of centromeric cohesion and/or changes in kinetochore architecture. Our data suggest that the differential arrangement of sister kinetochores and dual k-fibre attachments may explain the high proportion of unstable attachments that form in MI and thus indicate why human oocytes are prone to aneuploidy, particularly with increasing maternal age.

  4. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities.

    Science.gov (United States)

    Patel, Jessica; Tan, Seang Lin; Hartshorne, Geraldine M; McAinsh, Andrew D

    2015-12-30

    The first meiotic division in human oocytes is highly error-prone and contributes to the uniquely high incidence of aneuploidy observed in human pregnancies. A successful meiosis I (MI) division entails separation of homologous chromosome pairs and co-segregation of sister chromatids. For this to happen, sister kinetochores must form attachments to spindle kinetochore-fibres emanating from the same pole. In mouse and budding yeast, sister kinetochores remain closely associated with each other during MI, enabling them to act as a single unified structure. However, whether this arrangement also applies in human meiosis I oocytes was unclear. In this study, we perform high-resolution imaging of over 1900 kinetochores in human oocytes, to examine the geometry and architecture of the human meiotic kinetochore. We reveal that sister kinetochores in MI are not physically fused, and instead individual kinetochores within a pair are capable of forming independent attachments to spindle k-fibres. Notably, with increasing female age, the separation between kinetochores increases, suggesting a degradation of centromeric cohesion and/or changes in kinetochore architecture. Our data suggest that the differential arrangement of sister kinetochores and dual k-fibre attachments may explain the high proportion of unstable attachments that form in MI and thus indicate why human oocytes are prone to aneuploidy, particularly with increasing maternal age.

  5. Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles

    Directory of Open Access Journals (Sweden)

    Brodin David

    2010-03-01

    Full Text Available Abstract Background Gcn5 is a transcriptional coactivator with histone acetyltransferase activity that is conserved with regard to structure as well as its histone substrates throughout the eukaryotes. Gene regulatory networks within cells are thought to be evolutionarily diverged. The use of evolutionarily divergent yeast species, such as S. cerevisiae and S. pombe, which can be studied under similar environmental conditions, provides an opportunity to examine the interface between conserved regulatory components and their cellular applications in different organisms. Results We show that Gcn5 is important for a common set of stress responses in evolutionarily diverged yeast species and that the activity of the conserved histone acetyltransferase domain is required. We define a group of KCl stress response genes in S. cerevisiae that are specifically dependent on Gcn5. Gcn5 is localised to many Gcn5-dependent genes including Gcn5 repressed targets such as FLO8. Gcn5 regulates divergent sets of KCl responsive genes in S. cerevisiae and S. pombe. Genome-wide localization studies showed a tendency for redistribution of Gcn5 during KCl stress adaptation in S. cerevisiae from short genes to the transcribed regions of long genes. An analogous redistribution was not observed in S. pombe. Conclusions Gcn5 is required for the regulation of divergent sets of KCl stress-response genes in S. cerevisiae and S. pombe even though it is required a common group of stress responses, including the response to KCl. Genes that are physically associated with Gcn5 require its activity for their repression or activation during stress adaptation, providing support for a role of Gcn5 as a corepressor as well as a coactivator. The tendency of Gcn5 to re-localise to the transcribed regions of long genes during KCl stress adaptation suggests that Gcn5 plays a specific role in the expression of long genes under adaptive conditions, perhaps by regulating transcriptional

  6. The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast.

    Science.gov (United States)

    Gallego, C; Garí, E; Colomina, N; Herrero, E; Aldea, M

    1997-12-01

    Nutrients are among the most important trophic factors in all organisms. When deprived of essential nutrients, yeast cells use accumulated reserves to complete the current cycle and arrest in the following G1 phase. We show here that the Cln3 cyclin, which has a key role in the timely activation of SBF (Swi4-Swi6)- and MBF (Mbp1-Swi6)-dependent promoters in late G1, is down-regulated rapidly at a post-transcriptional level in cells deprived of the nitrogen source. In addition to the fact that Cln3 is degraded faster by ubiquitin-dependent mechanisms, we have found that translation of the CLN3 mRNA is repressed approximately 8-fold under nitrogen deprivation conditions. As a consequence, both SBF- and MBF-dependent expression is strongly down-regulated. Mainly because of their transcriptional dependence on SBF, and perhaps with the contribution of similar post-transcriptional mechanisms to those found for Cln3, the G1 cyclins Cln1 and 2 become undetectable in starved cells. The complete loss of Cln cyclins and the sustained presence of the Clb-cyclin kinase inhibitor Sic1 in starved cells may provide the molecular basis for the G1 arrest caused by nitrogen deprivation.

  7. The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast.

    Directory of Open Access Journals (Sweden)

    Richard C Silva

    Full Text Available The Saccharomyces cerevisiae protein Yih1, when overexpressed, inhibits the eIF2 alpha kinase Gcn2 by competing for Gcn1 binding. However, deletion of YIH1 has no detectable effect on Gcn2 activity, suggesting that Yih1 is not a general inhibitor of Gcn2, and has no phenotypic defect identified so far. Thus, its physiological role is largely unknown. Here, we show that Yih1 is involved in the cell cycle. Yeast lacking Yih1 displays morphological patterns and DNA content indicative of a delay in the G2/M phases of the cell cycle, and this phenotype is independent of Gcn1 and Gcn2. Accordingly, the levels of phosphorylated eIF2α, which show a cell cycle-dependent fluctuation, are not altered in cells devoid of Yih1. We present several lines of evidence indicating that Yih1 is in a complex with Cdc28. Yih1 pulls down endogenous Cdc28 in vivo and this interaction is enhanced when Cdc28 is active, suggesting that Yih1 modulates the function of Cdc28 in specific stages of the cell cycle. We also demonstrate, by Bimolecular Fluorescence Complementation, that endogenous Yih1 and Cdc28 interact with each other, confirming Yih1 as a bona fide Cdc28 binding partner. Amino acid substitutions within helix H2 of the RWD domain of Yih1 enhance Yih1-Cdc28 association. Overexpression of this mutant, but not of wild type Yih1, leads to a phenotype similar to that of YIH1 deletion, supporting the view that Yih1 is involved through Cdc28 in the regulation of the cell cycle. We further show that IMPACT, the mammalian homologue of Yih1, interacts with CDK1, the mammalian counterpart of Cdc28, indicating that the involvement with the cell cycle is conserved. Together, these data provide insights into the cellular function of Yih1/IMPACT, and provide the basis for future studies on the role of this protein in the cell cycle.

  8. Mal3, the Schizosaccharomyces pombe homolog of EB1, is required for karyogamy and for promoting oscillatory nuclear movement during meiosis.

    Science.gov (United States)

    Polakova, Silvia; Benko, Zsigmond; Zhang, Lijuan; Gregan, Juraj

    2014-01-01

    Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.

  9. Pch2 acts through Xrs2 and Tel1/ATM to modulate interhomolog bias and checkpoint function during meiosis.

    Directory of Open Access Journals (Sweden)

    Hsuan-Chung Ho

    2011-11-01

    Full Text Available Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA(+-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, maturation of the chromosome axis, crossover control, and synapsis. We demonstrate a role for Pch2 in promoting and regulating interhomolog bias and the meiotic recombination checkpoint in response to unprocessed DSBs through the activation of axial proteins Hop1 and Mek1 in budding yeast. We show that Pch2 physically interacts with the putative BRCT repeats in the N-terminal region of Xrs2, a member of the MRX complex that acts at sites of unprocessed DSBs. Pch2, Xrs2, and the ATM ortholog Tel1 function in the same pathway leading to the phosphorylation of Hop1, independent of Rad17 and the ATR ortholog Mec1, which respond to the presence of single-stranded DNA. An N-terminal deletion of Xrs2 recapitulates the pch2Δ phenotypes for signaling unresected breaks. We propose that interaction with Xrs2 may enable Pch2 to remodel chromosome structure adjacent to the site of a DSB and thereby promote accessibility of Hop1 to the Tel1 kinase. In addition, Xrs2, like Pch2, is required for checkpoint-mediated delay conferred by the failure to synapse chromosomes.

  10. From the Cover: Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins

    Science.gov (United States)

    Ito, Takashi; Tashiro, Kosuke; Muta, Shigeru; Ozawa, Ritsuko; Chiba, Tomoko; Nishizawa, Mayumi; Yamamoto, Kiyoshi; Kuhara, Satoru; Sakaki, Yoshiyuki

    2000-02-01

    Protein-protein interactions play pivotal roles in various aspects of the structural and functional organization of the cell, and their complete description is indispensable to thorough understanding of the cell. As an approach toward this goal, here we report a comprehensive system to examine two-hybrid interactions in all of the possible combinations between proteins of Saccharomyces cerevisiae. We cloned all of the yeast ORFs individually as a DNA-binding domain fusion ("bait") in a MATa strain and as an activation domain fusion ("prey") in a MATα strain, and subsequently divided them into pools, each containing 96 clones. These bait and prey clone pools were systematically mated with each other, and the transformants were subjected to strict selection for the activation of three reporter genes followed by sequence tagging. Our initial examination of ≈4 × 106 different combinations, constituting ≈10% of the total to be tested, has revealed 183 independent two-hybrid interactions, more than half of which are entirely novel. Notably, the obtained binary data allow us to extract more complex interaction networks, including the one that may explain a currently unsolved mechanism for the connection between distinct steps of vesicular transport. The approach described here thus will provide many leads for integration of various cellular functions and serve as a major driving force in the completion of the protein-protein interaction map.

  11. Black hole meiosis

    Science.gov (United States)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  12. Black Hole Meiosis

    CERN Document Server

    Van Herck, Walter

    2009-01-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, arXiv:0810.4301. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the `chromosomes' of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as `crossing-over in the meiosis of a D-particle'. Our results improve on hep-th/0702012, provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity...

  13. Hi-C in Budding Yeast.

    Science.gov (United States)

    Belton, Jon-Matthew; Dekker, Job

    2015-07-01

    Hi-C enables simultaneous detection of interaction frequencies between all possible pairs of restriction fragments in the genome. The Hi-C method is based on chromosome conformation capture (3C), which uses formaldehyde cross-linking to fix chromatin regions that interact in three-dimensional space, irrespective of their genomic locations. In the Hi-C protocol described here, cross-linked chromatin is digested with HindIII and the ends are filled in with a nucleotide mix containing biotinylated dCTP. These fragments are ligated together, and the resulting chimeric molecules are purified and sheared to reduce length. Finally, biotinylated ligation junctions are pulled down with streptavidin-coated beads, linked to high-throughput sequencing adaptors, and amplified via polymerase chain reaction (PCR). The resolution of the Hi-C data set will depend on the depth of sequencing and choice of restriction enzyme. When sufficient sequence reads are obtained, information on chromatin interactions and chromosome conformation can be derived at single restriction fragment resolution for complete genomes.

  14. Bioinformatic identification of Ustilago maydis meiosis genes.

    Science.gov (United States)

    Donaldson, Michael E; Saville, Barry J

    2008-08-01

    In the corn smut pathogen, Ustilago maydis, meiosis and teliospore germination are temporally linked. We review teliospore dormancy and germination in U. maydis and present an overview of meiosis in basidiomycetes. The relevant available expressed sequence tag data is discussed, the databases used in reciprocal best hit blastp analysis are presented and potential U. maydis meiosis genes are identified. The implications of identifying these genes are discussed and hypotheses are presented regarding the control of meiosis in U. maydis.

  15. Development of a Meiosis Concept Inventory

    Science.gov (United States)

    Kalas, Pamela; O'Neill, Angie; Pollock, Carol; Birol, Gulnur

    2013-01-01

    We have designed, developed, and validated a 17-question Meiosis Concept Inventory (Meiosis CI) to diagnose student misconceptions on meiosis, which is a fundamental concept in genetics. We targeted large introductory biology and genetics courses and used published methodology for question development, which included the validation of questions by…

  16. A FIBER APPARATUS IN THE NUCLEUS OF THE YEAST CELL

    Science.gov (United States)

    Robinow, C. F.; Marak, J.

    1966-01-01

    The structure and mode of division of the nucleus of budding yeast cells have been studied by phase-contrast microscopy during life and by ordinary microscopy after Helly fixation. The components of the nucleus were differentially stained by the Feulgen procedure, with Giemsa solution after hydrolysis, and with iron alum haematoxylin. New information was obtained in cells fixed in Helly's by directly staining them with 0.005% acid fuchsin in 1% acetic acid in water. Electron micrographs have been made of sections of cells that were first fixed with 3% glutaraldehyde, then divested of their walls with snail juice, and postfixed with osmium tetroxide. Light and electron microscopy have given concordant information about the organization of the yeast nucleus. A peripheral segment of the nucleus is occupied by relatively dense matter (the "peripheral cluster" of Mundkur) which is Feulgen negative. The greater part of the nucleus is filled with fine-grained Feulgen-positive matter of low density in which chromosomes could not be identified. Chromosomes become visible in this region under the light microscope at meiosis. In the chromatin lies a short fiber with strong affinity for acid fuchsin. The nucleus divides by elongation and constriction, and during this process the fiber becomes long and thin. Electron microscopy has resolved it into a bundle of dark-edged 150 to 180 A filaments which extends between "centriolar plaques" that are attached to the nuclear envelope. PMID:5331666

  17. Holocentric plant meiosis: first sisters, then homologues.

    Science.gov (United States)

    Heckmann, Stefan; Schubert, Veit; Houben, Andreas

    2014-01-01

    Meiosis is a crucial process of sexual reproduction by forming haploid gametes from diploid precursor cells. It involves 2 subsequent divisions (meiosis I and meiosis II) after one initial round of DNA replication. Homologous monocentric chromosomes are separated during the first and sister chromatids during the second meiotic division. The faithful segregation of monocentric chromosomes is realized by mono-orientation of fused sister kinetochores at metaphase I and by bi-orientation of sister kinetochores at metaphase II. Conventionally this depends on a 2-step loss of cohesion, along chromosome arms during meiosis I and at sister centromeres during meiosis II.

  18. Signal transduction during mating and meiosis in S. pombe

    DEFF Research Database (Denmark)

    Nielsen, O; Nielsen, Olaf

    1993-01-01

    When starved, the fission yeast Schizosaccharomyces pombe responds by producing mating factors or pheromones that signal to cells of the opposite sex to initiate mating. Like its distant relative Saccharomyces cerevisiae, cells of the two mating types of S. pombe each produce a distinct pheromone...... that binds to receptors on the opposite cell type to induce the morphological changes required for mating. While the pathways are basically very similar in the two yeasts, pheromone signalling in S. pombe differs in several important ways from that of the more familiar budding yeast. In this article, Olaf...... Nielsen describes the pheromones and their effects in S. pombe, and compares the signalling pathways of the two yeasts....

  19. Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis.

    Directory of Open Access Journals (Sweden)

    Mo Li

    Full Text Available In mitosis, the spindle assembly checkpoint (SAC prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad1-3, budding uninhibited by benzimidazole (Bub1, Bub3, and monopolar spindle 1(Mps1. During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes.

  20. Proteomic analysis of male 4C germ cell proteins involved in mouse meiosis.

    Science.gov (United States)

    Guo, Xuejiang; Zhang, Ping; Qi, Yujuan; Chen, Wen; Chen, Xiangxiang; Zhou, Zuomin; Sha, Jiahao

    2011-01-01

    Male meiosis is a specialized type of cell division that gives rise to sperm. Errors in this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Until now, there has been a lack of a large-scale identification of proteins involved in male meiosis in mammals. In this study, we report the high-confidence identification of 3625 proteins in mouse male germ cells with 4C DNA content undergoing meiosis I. Of these, 397 were found to be testis specific. Bioinformatics analysis of the proteome led to the identification of 28 proteins known to be essential for male meiosis in mice. We also found 172 proteins that had yeast orthologs known to be essential for meiosis. Chromosome distribution analysis of the proteome showed underrepresentation of the identified proteins on the X chromosome, which may be due to meiotic sex chromosome inactivation. Characterization of the proteome of 4C germ cells from mouse testis provides an inventory of proteins, which is useful for understanding meiosis and the mechanisms of male infertility.

  1. What Are Taste Buds?

    Science.gov (United States)

    ... your taste buds for letting you appreciate the saltiness of pretzels and the sweetness of ice cream. ... allow you to experience tastes that are sweet, salty, sour, and bitter. How exactly do your taste ...

  2. Fission Yeast Model Study for Dissection of TSC Pathway

    Science.gov (United States)

    2010-04-01

    have also generated two mutants, rhb1-DA4 and rhb1-DA8. In fission yeast, two events, induction of a meiosis initiating gene mei2+ and cell division... meiosis are less induced. Under the same condition, retrotransposons, G1-cyclin (pas1+) and inv1+ are more induced. We have also demonstrated that...responsible for rhb1-DA4, and Q52R I76F within the switch II domain for rhb1-DA8. In fission yeast, two events, induction of a meiosis initiating

  3. An actin-binding protein, CAP, is expressed in a subset of rat taste bud cells.

    Science.gov (United States)

    Ishimaru, Y; Yasuoka, A; Asano-Miyoshi, M; Abe, K; Emori, Y

    2001-02-12

    Single cell cDNA libraries were constructed from taste bud cells of rat circumvallate papillae. Using three steps of screening, including differential hybridization, sequence analyses and in situ hybridization, a clone encoding a rat homolog of yeast adenylyl cyclase-associated protein (CAP) was identified to be highly expressed in a subset of taste bud cells.

  4. Oocyte development, meiosis and aneuploidy.

    Science.gov (United States)

    MacLennan, Marie; Crichton, James H; Playfoot, Christopher J; Adams, Ian R

    2015-09-01

    Meiosis is one of the defining events in gametogenesis. Male and female germ cells both undergo one round of meiotic cell division during their development in order to reduce the ploidy of the gametes, and thereby maintain the ploidy of the species after fertilisation. However, there are some aspects of meiosis in the female germline, such as the prolonged arrest in dictyate, that appear to predispose oocytes to missegregate their chromosomes and transmit aneuploidies to the next generation. These maternally-derived aneuploidies are particularly problematic in humans where they are major contributors to miscarriage, age-related infertility, and the high incidence of Down's syndrome in human conceptions. This review will discuss how events that occur in foetal oocyte development and during the oocytes' prolonged dictyate arrest can influence meiotic chromosome segregation and the incidence of aneuploidy in adult oocytes.

  5. Chromosome segregation in plant meiosis

    Directory of Open Access Journals (Sweden)

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  6. Spermatogenesis: The Commitment to Meiosis.

    Science.gov (United States)

    Griswold, Michael D

    2016-01-01

    Mammalian spermatogenesis requires a stem cell pool, a period of amplification of cell numbers, the completion of reduction division to haploid cells (meiosis), and the morphological transformation of the haploid cells into spermatozoa (spermiogenesis). The net result of these processes is the production of massive numbers of spermatozoa over the reproductive lifetime of the animal. One study that utilized homogenization-resistant spermatids as the standard determined that human daily sperm production (dsp) was at 45 million per day per testis (60). For each human that means ∼1,000 sperm are produced per second. A key to this level of gamete production is the organization and architecture of the mammalian testes that results in continuous sperm production. The seemingly complex repetitious relationship of cells termed the "cycle of the seminiferous epithelium" is driven by the continuous commitment of undifferentiated spermatogonia to meiosis and the period of time required to form spermatozoa. This commitment termed the A to A1 transition requires the action of retinoic acid (RA) on the undifferentiated spermatogonia or prospermatogonia. In stages VII to IX of the cycle of the seminiferous epithelium, Sertoli cells and germ cells are influenced by pulses of RA. These pulses of RA move along the seminiferous tubules coincident with the spermatogenic wave, presumably undergoing constant synthesis and degradation. The RA pulse then serves as a trigger to commit undifferentiated progenitor cells to the rigidly timed pathway into meiosis and spermatid differentiation.

  7. Analysis of meiosis regulators in human gonads

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Jensen, Martin Blomberg

    2012-01-01

    The mitosis-meiosis switch is a key event in the differentiation of germ cells. In humans, meiosis is initiated in fetal ovaries, whereas in testes meiotic entry is inhibited until puberty. The purpose of this study was to examine the expression pattern of meiosis regulators in human gonads...... with their role in initiation and progression of meiosis. The putative meiosis inhibitors, CYP26B1 and NANOS2, were primarily expressed in Leydig cells and spermatocytes, respectively. In conclusion, the expression pattern of the investigated meiotic regulators is largely conserved in the human gonads compared...... with rodents, but with some minor differences, such as a stable expression of CYP26B1 in human fetal ovaries. The sexually dimorphic expression pattern of DMRT1 indicates a similar role in the mitosis-meiosis switch in human gonads as previously demonstrated in mice. The biological importance of the changes...

  8. Meiosis I: when chromosomes undergo extreme makeover.

    Science.gov (United States)

    Miller, Matthew P; Amon, Angelika; Ünal, Elçin

    2013-12-01

    The ultimate success of cell division relies on the accurate partitioning of the genetic material. Errors in this process occur in nearly all tumors and are the leading cause of miscarriages and congenital birth defects in humans. Two cell divisions, mitosis and meiosis, use common as well as unique mechanisms to ensure faithful chromosome segregation. In mitosis, alternating rounds of DNA replication and chromosome segregation preserve the chromosome complement of the progenitor cell. In contrast, during meiosis two consecutive rounds of nuclear division, meiosis I and meiosis II, follow a single round of DNA replication to reduce the chromosome complement by half. Meiosis likely evolved through changes to the mitotic cell division program. This review will focus on the recent findings describing the modifications that transform mitosis into meiosis.

  9. The molecular biology of meiosis in plants.

    Science.gov (United States)

    Mercier, Raphaël; Mézard, Christine; Jenczewski, Eric; Macaisne, Nicolas; Grelon, Mathilde

    2015-01-01

    Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.

  10. The yeast Golgi apparatus.

    Science.gov (United States)

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.

  11. Automated quantification of budding Saccharomyces cerevisiae using a novel image cytometry method.

    Science.gov (United States)

    Laverty, Daniel J; Kury, Alexandria L; Kuksin, Dmitry; Pirani, Alnoor; Flanagan, Kevin; Chan, Leo Li-Ying

    2013-06-01

    The measurements of concentration, viability, and budding percentages of Saccharomyces cerevisiae are performed on a routine basis in the brewing and biofuel industries. Generation of these parameters is of great importance in a manufacturing setting, where they can aid in the estimation of product quality, quantity, and fermentation time of the manufacturing process. Specifically, budding percentages can be used to estimate the reproduction rate of yeast populations, which directly correlates with metabolism of polysaccharides and bioethanol production, and can be monitored to maximize production of bioethanol during fermentation. The traditional method involves manual counting using a hemacytometer, but this is time-consuming and prone to human error. In this study, we developed a novel automated method for the quantification of yeast budding percentages using Cellometer image cytometry. The automated method utilizes a dual-fluorescent nucleic acid dye to specifically stain live cells for imaging analysis of unique morphological characteristics of budding yeast. In addition, cell cycle analysis is performed as an alternative method for budding analysis. We were able to show comparable yeast budding percentages between manual and automated counting, as well as cell cycle analysis. The automated image cytometry method is used to analyze and characterize corn mash samples directly from fermenters during standard fermentation. Since concentration, viability, and budding percentages can be obtained simultaneously, the automated method can be integrated into the fermentation quality assurance protocol, which may improve the quality and efficiency of beer and bioethanol production processes.

  12. Meiosis.

    Science.gov (United States)

    Henderson, Paula

    This autoinstructional lesson deals with the study of cytology (or cells) with emphasis placed on cell reproduction. Knowledge of the structure of the DNA molecule and of the stages of mitotic cell division are considered prerequisites for this lesson. Approximately 15 minutes is the established time set for the activity. The behavioral objectives…

  13. Homolog pairing and segregation in Drosophila meiosis.

    Science.gov (United States)

    McKee, B D

    2009-01-01

    Pairing of homologous chromosomes is fundamental to their reliable segregation during meiosis I and thus underlies sexual reproduction. In most eukaryotes homolog pairing is confined to prophase of meiosis I and is accompanied by frequent exchanges, known as crossovers, between homologous chromatids. Crossovers give rise to chiasmata, stable interhomolog connectors that are required for bipolar orientation (orientation to opposite poles) of homologs during meiosis I. Drosophila is unique among model eukaryotes in exhibiting regular homolog pairing in mitotic as well as meiotic cells. I review the results of recent molecular studies of pairing in both mitosis and meiosis in Drosophila. These studies show that homolog pairing is continuous between pre-meiotic mitosis and meiosis but that pairing frequencies and patterns are altered during the mitotic-meiotic transition. They also show that, with the exception of X-Y pairing in male meiosis, which is mediated specifically by the 240-bp rDNA spacer repeats, chromosome pairing is not restricted to specific sites in either mitosis or meiosis. Instead, virtually all chromosome regions, both heterochromatic and euchromatic, exhibit autonomous pairing capacity. Mutations that reduce the frequencies of both mitotic and meiotic pairing have been recently described, but no mutations that abolish pairing completely have been discovered, and the genetic control of pairing in Drosophila remains to be elucidated.

  14. The Chromosomes of Birds during Meiosis.

    Science.gov (United States)

    Pigozzi, María I

    2016-01-01

    The cytological analysis of meiotic chromosomes is an exceptional tool to approach complex processes such as synapsis and recombination during the division. Chromosome studies of meiosis have been especially valuable in birds, where naturally occurring mutants or experimental knock-out animals are not available to fully investigate the basic mechanisms of major meiotic events. This review highlights the main contributions of synaptonemal complex and lampbrush chromosome research to the current knowledge of avian meiosis, with special emphasis on the organization of chromosomes during prophase I, the impact of chromosome rearrangements during meiosis, and distinctive features of the ZW pair.

  15. Forskolin and the meiosis inducing substance synergistically initiate meiosis in fetal male germ cells

    DEFF Research Database (Denmark)

    Byskov, A G; Fenger, M; Westergaard, L

    1993-01-01

    We have shown that Meiosis Inducing Substance (MIS) and forskolin synergistically and dose dependently induce meiosis in germ cells of cultured fetal mouse testes. We used a bioassay which consists of fetal mouse testes and ovaries cultured for 6 days. In this study MIS media are spent culture...... are fixed, squashed, and DNA-stained. In these preparations germ cells and somatic cells can be distinguished, and the number of germ cells in the different stages of meiosis is counted as is the number of somatic cells in mitosis. MIS activity is defined to be present in a medium when meiosis is induced...... in male germ cells during culture. We found that MIS media as well as forskolin induced meiosis in fetal male germ cells in a dose-dependent manner. In addition, MIS media and forskolin acted synergistically by inducing meiosis. Female germ cells seem to be unaffected by the various culture media...

  16. Forskolin and the meiosis inducing substance synergistically initiate meiosis in fetal male germ cells

    DEFF Research Database (Denmark)

    Byskov, A G; Fenger, M; Westergaard, L;

    1993-01-01

    are fixed, squashed, and DNA-stained. In these preparations germ cells and somatic cells can be distinguished, and the number of germ cells in the different stages of meiosis is counted as is the number of somatic cells in mitosis. MIS activity is defined to be present in a medium when meiosis is induced......We have shown that Meiosis Inducing Substance (MIS) and forskolin synergistically and dose dependently induce meiosis in germ cells of cultured fetal mouse testes. We used a bioassay which consists of fetal mouse testes and ovaries cultured for 6 days. In this study MIS media are spent culture...... in male germ cells during culture. We found that MIS media as well as forskolin induced meiosis in fetal male germ cells in a dose-dependent manner. In addition, MIS media and forskolin acted synergistically by inducing meiosis. Female germ cells seem to be unaffected by the various culture media...

  17. Tradescantia: A Tool for Teaching Meiosis.

    Science.gov (United States)

    Hammersmith, Robert L.; Mertens, Thomas R.

    1997-01-01

    Describes a procedure for making slides of microsporogenesis in Tradescantia. Uses photographs to demonstrate that Tradescantia is an ideal organism for studying meiosis in the classroom. Contains 17 references. (JRH)

  18. The oxidative damage initiation hypothesis for meiosis.

    Science.gov (United States)

    Hörandl, Elvira; Hadacek, Franz

    2013-12-01

    The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.

  19. The SPR3 gene encodes a sporulation-specific homologue of the yeast CDC3/10/11/12 family of bud neck microfilaments and is regulated by ABFI.

    Science.gov (United States)

    Ozsarac, N; Bhattacharyya, M; Dawes, I W; Clancy, M J

    1995-10-16

    The SPR3 gene is selectively activated only during the sporulation phase of the Saccharomyces cerevisiae (Sc) life cycle. The predicted amino acid (aa) sequence has homology to microfilament proteins that are involved in cytokinesis and other proteins of unknown function. These include the products of Sc cell division cycle (CDC) genes involved in bud formation (Cdc3p, Cdc10p, Cdc11p and Cdc12p), Candida albicans proteins that accumulate in the hyphal phase (CaCdc3p and CaCdc10p), mouse brain-specific (H5p) and lymphocyte (Diff6p) proteins, Drosophila melanogaster (Dm) protein Pnutp (which is localized to the cleavage furrow of dividing cells), a Diff6p homologue (DmDiff6p), and the Sc septin protein (Sep1hp), a homologue of the 10-nm filament proteins of Sc. One strongly conserved region contains a potential ATP-GTP-binding domain. Primer extension analysis revealed six major transcription start points (tsp) beginning at -142 relative to the ATG start codon. The sequence immediately upstream from the tsp contains consensus binding sites for the HAP2/3/4 and ABFI transcription factors, a T-rich sequence and two putative novel elements for mid to late sporulation, termed SPR3 and PAL. Electrophoretic mobility shift assay (EMSA) and footprint analyses demonstrated that the ABFI protein binds to a region containing the putative ABFI site in vitro, and site-directed mutagenesis showed that the ABFI motif is essential for expression of SPR3 at the appropriate stage in sporulating cells.

  20. Meiosis and its deviations in polyploid animals.

    Science.gov (United States)

    Stenberg, P; Saura, A

    2013-01-01

    We review the different modes of meiosis and its deviations encountered in polyploid animals. Bisexual reproduction involving normal meiosis occurs in some allopolyploid frogs with variable degrees of polyploidy. Aberrant modes of bisexual reproduction include gynogenesis, where a sperm stimulates the egg to develop. The sperm may enter the egg but there is no fertilization and syngamy. In hybridogenesis, a genome is eliminated to produce haploid or diploid eggs or sperm. Ploidy can be elevated by fertilization with a haploid sperm in meiotic hybridogenesis, which elevates the ploidy of hybrid offspring such that they produce diploid gametes. Polyploids are then produced in the next generation. In kleptogenesis, females acquire full or partial genomes from their partners. In pre-equalizing hybrid meiosis, one genome is transmitted in the Mendelian fashion, while the other is transmitted clonally. Parthenogenetic animals have a very wide range of mechanisms for restoring or maintaining the mother's ploidy level, including gamete duplication, terminal fusion, central fusion, fusion of the first polar nucleus with the product of the first division, and premeiotic duplication followed by a normal meiosis. In apomictic parthenogenesis, meiosis is replaced by what is effectively mitotic cell division. The above modes have different evolutionary consequences, which are discussed. See also the sister article by Grandont et al. in this themed issue.

  1. Cis-acting determinants affecting centromere function, sister-chromatid cohesion and reciprocal recombination during meiosis in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D.D.; Hieter, P. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Shero, J.H. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Baylor College of Medicine, Houston, TX (United States); Hegemann, J.H. [Justus Liebig Universitaet, Giessen (Germany)

    1995-03-01

    We have employed a system that utilizes homologous pairs of human DNA-derived yeast artificial chromosomes (YACs) as marker chromosomes to assess the specific role(s) of conserved centromere DNA elements (CDEI, CDEII, and CDEIII) in meiotic chromosome disjunction fidelity. Thirteen different centromere (CEN) mutations were tested for their effects on meiotic centromere function. YACs containing a wild-type CEN DNA sequence segregate with high fidelity in meiosis I (99% normal segregation) and in meiosis II (96% normal segregation). YACs containing a 31-bp deletion mutation in centromere DNA element II (CDEII{Delta}31) in either a heterocentric (mutant/wild type), homocentric (mutant/mutant) or monosomic (mutant/-) YAC pair configuration exhibited high levels (16-28%) of precocious sister-chromatid segregation (PSS) and increased levels (1-6%) of nondisjunction meiosis I (NDI). YACs containing this mutation also exhibit high levels (21%) of meiosis II nondisjunction. Interestingly, significant alterations in homolog recombination frequency were observed in the exceptional PSS class of tetrads, suggesting unusual interactions between prematurely separated sister chromatids and their homologous nonsister chromatids. We also have assessed the meiotic segregation effects of rare gene conversion events occurring at sites located immediately adjacent to or distantly from the centromere region. Proximal gene conversion events were associated with extremely high levels (60%) of meiosis I segregation errors (including both PSS and NDI), whereas distal events had no apparent effect. Taken together, our results indicate a critical role for CDEII in meiosis and underscore the importance of maintaining sister-chromatid cohesion for proper recombination in meiotic prophase and for proper disjunction in meiosis I. 49 refs., 4 figs., 5 tabs.

  2. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation.

    Science.gov (United States)

    Sau, Soumitra; Conrad, Michael N; Lee, Chih-Ying; Kaback, David B; Dresser, Michael E; Jayaram, Makkuni

    2014-06-09

    The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid-telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.

  3. Assessing Understanding of Biological Processes: Elucidating Students' Models of Meiosis.

    Science.gov (United States)

    Kindfield, Ann C.

    1994-01-01

    Presents a meiosis reasoning problem that provides direct access to students' current models of chromosomes and meiosis. Also included in the article are tips for classroom implementation and a summary of the solution evaluation. (ZWH)

  4. Genetics of meiosis and recombination in mice.

    Science.gov (United States)

    Bolcun-Filas, Ewelina; Schimenti, John C

    2012-01-01

    Meiosis is one of the most critical developmental processes in sexually reproducing organisms. One round of DNA replication followed by two rounds of cell divisions results in generation of haploid gametes (sperm and eggs in mammals). Meiotic failure typically leads to infertility in mammals. In the process of meiotic recombination, maternal and paternal genomes are shuffled, creating new allelic combinations and thus genetic variety. However, in order to achieve this, meiotic cells must self-inflict DNA damage in the form of programmed double-strand breaks (DSBs). Complex processes evolved to ensure proper DSB repair, and to do so in a way that favors interhomolog reciprocal recombination and crossovers. The hallmark of meiosis, a structurally conserved proteinaceous structure called the synaptonemal complex, is found only in meiotic cells. Conversely, meiotic homologous recombination is an adaptation of the mitotic DNA repair process but involving specialized proteins. In this chapter, we summarize current developments in mammalian meiosis enabled by genetically modified mice.

  5. MeioBase: a comprehensive database for meiosis

    OpenAIRE

    Li, Hao; MENG, FANRUI; Guo, Chunce; Wang, Yingxiang; Xie, Xiaojing; Zhu, Tiansheng; Zhou, Shuigeng; Ma, Hong; Shan, Hongyan; Kong, Hongzhi

    2014-01-01

    Meiosis is a special type of cell division process necessary for the sexual reproduction of all eukaryotes. The ever expanding meiosis research calls for an effective and specialized database that is not readily available yet. To fill this gap, we have developed a knowledge database MeioBase (http://meiosis.ibcas.ac.cn), which is comprised of two core parts, Resources and Tools. In the Resources part, a wealth of meiosis data collected by curation and manual review from published literatures ...

  6. Anti-aging and anti-microbial effects of melleolide on various types of yeast.

    Science.gov (United States)

    Nakaya, Shigeru; Kobori, Hajime; Sekiya, Atsushi; Kawagishi, Hirokazu; Ushimaru, Takashi

    2014-01-01

    The chronological lifespan (CLS) of the budding yeast Saccharomyces cerevisiae is a model for the aging of post-mitotic cells in higher eukaryotes. In this study, we found that the sesquiterpene aryl ester melleolide expands the CLS of budding yeast. In contrast, melleolide compromised the CLS of the fission yeast Schizosaccharomyces pombe. This indicates that melleolide might have a potential anti-aging activity against some types of cell, and that it might be useful as a selective anti-fungal drug.

  7. Meiosis and its deviations in polyploid plants.

    Science.gov (United States)

    Grandont, L; Jenczewski, E; Lloyd, A

    2013-01-01

    Meiosis is a fundamental process in all sexual organisms that ensures fertility and genome stability and creates genetic diversity. For each of these outcomes, the exclusive formation of crossovers between homologous chromosomes is needed. This is more difficult to achieve in polyploid species which have more than 2 sets of chromosomes able to recombine. In this review, we describe how meiosis and meiotic recombination 'deviate' in polyploid plants compared to diploids, and give an overview of current knowledge on how they are regulated. See also the sister article focusing on animals by Stenberg and Saura in this themed issue.

  8. Rhn1, a nuclear protein, is required for suppression of meiotic mRNAs in mitotically dividing fission yeast.

    Science.gov (United States)

    Sugiyama, Tomoyasu; Sugioka-Sugiyama, Rie; Hada, Kazumasa; Niwa, Ryusuke

    2012-01-01

    In the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR)-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in meiotic mRNA suppression in vegetative fission yeast. Rhn1 is homologous to budding yeast Rtt103 and localizes to one or a few discrete nuclear dots in growing vegetative cells. Rhn1 colocalizes with a pre-mRNA 3'-end processing factor, Pcf11, and with the 5'-3' exoribonuclease, Dhp1; moreover, Rhn1 coimmunoprecipitates with Pcf11. Loss of rhn1 results in elevated sensitivity to high temperature, to thiabendazole (TBZ), and to UV. Interestingly, meiotic mRNAs--including moa1(+), mcp5(+), and mug96(+)--accumulate in mitotic rhn1Δ cells. Accumulation of meiotic mRNAs also occurs in strains lacking Lsk1, a kinase that phosphorylates serine 2 (Ser-2) in the C-terminal domain (CTD) of RNA polymerase II (Pol II), and in strains lacking Sen1, an ATP-dependent 5'-3' RNA/DNA helicase: notably, both Lsk1 and Sen1 have been implicated in termination of Pol II-dependent transcription. Furthermore, RNAi knockdown of cids-2, a Caenorhabditis elegans ortholog of rhn1(+), leads to elevated expression of a germline-specific gene, pgl-1, in somatic cells. These results indicate that Rhn1 contributes to the suppression of meiotic mRNAs in vegetative fission yeast and that the mechanism by which Rhn1 downregulates germline-specific transcripts may be conserved in unicellular and multicellular organisms.

  9. Rhn1, a nuclear protein, is required for suppression of meiotic mRNAs in mitotically dividing fission yeast.

    Directory of Open Access Journals (Sweden)

    Tomoyasu Sugiyama

    Full Text Available In the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in meiotic mRNA suppression in vegetative fission yeast. Rhn1 is homologous to budding yeast Rtt103 and localizes to one or a few discrete nuclear dots in growing vegetative cells. Rhn1 colocalizes with a pre-mRNA 3'-end processing factor, Pcf11, and with the 5'-3' exoribonuclease, Dhp1; moreover, Rhn1 coimmunoprecipitates with Pcf11. Loss of rhn1 results in elevated sensitivity to high temperature, to thiabendazole (TBZ, and to UV. Interestingly, meiotic mRNAs--including moa1(+, mcp5(+, and mug96(+--accumulate in mitotic rhn1Δ cells. Accumulation of meiotic mRNAs also occurs in strains lacking Lsk1, a kinase that phosphorylates serine 2 (Ser-2 in the C-terminal domain (CTD of RNA polymerase II (Pol II, and in strains lacking Sen1, an ATP-dependent 5'-3' RNA/DNA helicase: notably, both Lsk1 and Sen1 have been implicated in termination of Pol II-dependent transcription. Furthermore, RNAi knockdown of cids-2, a Caenorhabditis elegans ortholog of rhn1(+, leads to elevated expression of a germline-specific gene, pgl-1, in somatic cells. These results indicate that Rhn1 contributes to the suppression of meiotic mRNAs in vegetative fission yeast and that the mechanism by which Rhn1 downregulates germline-specific transcripts may be conserved in unicellular and multicellular organisms.

  10. High School Students' Use of Meiosis When Solving Genetics Problems.

    Science.gov (United States)

    Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy

    2001-01-01

    Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…

  11. Meiosis: an overview of key differences from mitosis.

    Science.gov (United States)

    Ohkura, Hiroyuki

    2015-01-20

    Meiosis is the specialized cell division that generates gametes. In contrast to mitosis, molecular mechanisms and regulation of meiosis are much less understood. Meiosis shares mechanisms and regulation with mitosis in many aspects, but also has critical differences from mitosis. This review highlights these differences between meiosis and mitosis. Recent studies using various model systems revealed differences in a surprisingly wide range of aspects, including cell-cycle regulation, recombination, postrecombination events, spindle assembly, chromosome-spindle interaction, and chromosome segregation. Although a great degree of diversity can be found among organisms, meiosis-specific processes, and regulation are generally conserved.

  12. The transcriptome landscape of early maize meiosis

    Science.gov (United States)

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  13. Mate choice among yeast gametes can purge deleterious mutations.

    Science.gov (United States)

    Tazzyman, S J; Seymour, R M; Pomiankowski, A; Greig, D

    2012-08-01

    Meiosis in Saccharomyces yeast produces four haploid gametes that usually fuse with each other, an extreme form of self-fertilization among the products of a single meiosis known as automixis. The gametes signal to each other with sex pheromone. Better-quality gametes produce stronger signals and are preferred as mates. We suggest that the function of this signalling system is to enable mate choice among the four gametes from a single meiosis and so to promote the clearance of deleterious mutations. To support this claim, we construct a mathematical model that shows that signalling during automixis (i) improves the long-term fitness of a yeast colony and (ii) lowers its mutational load. We also show that the benefit to signalling is greater with larger numbers of segregating mutations.

  14. Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Willer, M; Hoffmann, Ulla-Lisbeth; Styrkársdóttir, U

    1995-01-01

    The mat1 locus is a key regulator of both conjugation and meiosis in the fission yeast Schizosaccharomyces pombe. Two alternative DNA segments of this locus, mat1-P and mat1-M, specify the haploid cell types (Plus and Minus). Each segment includes two genes: mat1-P includes mat1-Pc and mat1-Pm......, while mat1-M includes mat1-Mc and mat1-Mm. The mat1-Pc and mat1-Mc genes are responsible for establishing the pheromone communication system that mediates conjugation between P and M cells, while all four mat1 genes are required for meiosis in diploid P/M cells. Our understanding of the initiation...... of meiosis is based largely on indirect observations, and a more precise investigation of these events was required to define the interaction between the mat1 genes. Here we resolve this issue using synthetic pheromones and P/M strains with mutations in either mat1-Pc or mat1-Mc. Our results suggest a model...

  15. 澳洲坚果花粉母细胞减数分裂观察%Microscopic Observation of Meiosis of Macadamia Pollen Mother Cells

    Institute of Scientific and Technical Information of China (English)

    孔广红; 柳觐; 倪书邦; 贺熙勇

    2013-01-01

    The complete process of meiosis of Macadamia pollen mother cells (PMC) was investigated, u-sing the squashing technique. Our results showed that meiosis of Macadamia started in December and the meiosis process was closely correlated with the bud length, and difference in the stages of meiosis was observed in same bud and in the same anther. Diplotene lasted for a long time and presented many shapes. The number and structure of Macadamia chromosome could be observed clearly in the stages of diakme-sis, metaphase Ⅰ, anaphase Ⅰ and anaphase Ⅱ. No variation in number and structure were detected of Macadamia chromosomes in meiosis, which was a typical division process of diploid species.%采用压片法观察了澳洲坚果花粉母细胞(PMC)减数分裂的完整过程,证实澳洲坚果PMC减数分裂始于12月份,其减数分裂进程与单花大小有密切关系,且同一花蕾甚至同一花药中表现不同步.减数分裂双线期历时时间长且形态多样,可于终变期、中期Ⅰ、后期Ⅰ以及后期Ⅱ观察到染色体数目和结构.澳洲坚果PMC减数分裂过程中无染色体结构和数目的变异,属二倍体的标准分裂进程.

  16. Initiating meiosis: the case for retinoic acid.

    Science.gov (United States)

    Griswold, Michael D; Hogarth, Cathryn A; Bowles, Josephine; Koopman, Peter

    2012-02-01

    The requirement for vitamin A in reproduction and development was first determined from studies of nutritional deficiencies. Subsequent research has shown that embryonic development and both male and female reproduction are modulated by retinoic acid (RA), the active form of vitamin A. Because RA is active in multiple developmental systems, its synthesis, transport, and degradation are tightly regulated in different tissues. A growing body of evidence implicates RA as a requirement for the initiation of meiosis in both male and female mammals, resulting in a mechanistic model involving the interplay of RA, RA synthesis enzymes, RA receptors, and degradative cytochrome P450 enzymes in this system. Recently, that model has been challenged, prompting a review of the established paradigm. While it remains possible that additional molecules may be involved in regulating entry into meiosis, the weight of evidence supporting a key role for RA is incontrovertible.

  17. Meiosis I: When Chromosomes Undergo Extreme Makeover

    OpenAIRE

    Miller, Matthew P; Amon, Angelika; Ünal, Elçin

    2013-01-01

    The ultimate success of cell division relies on the accurate partitioning of the genetic material. Errors in this process occur in nearly all tumors and are the leading cause of miscarriages and congenital birth defects in humans. Two cell divisions, mitosis and meiosis, use common as well as unique mechanisms to ensure faithful chromosome segregation. In mitosis, alternating rounds of DNA replication and chromosome segregation preserves the chromosome complement of the progenitor cell. In co...

  18. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    Science.gov (United States)

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production.

  19. Sister chromatid segregation in meiosis II: deprotection through phosphorylation.

    Science.gov (United States)

    Wassmann, Katja

    2013-05-01

    Meiotic divisions (meiosis I and II) are specialized cell divisions to generate haploid gametes. The first meiotic division with the separation of chromosomes is named reductional division. The second division, which takes place immediately after meiosis I without intervening S-phase, is equational, with the separation of sister chromatids, similar to mitosis. This meiotic segregation pattern requires the two-step removal of the cohesin complex holding sister chromatids together: cohesin is removed from chromosome arms that have been subjected to homologous recombination in meiosis I and from the centromere region in meiosis II. Cohesin in the centromere region is protected from removal in meiosis I, but this protection has to be removed--deprotected--for sister chromatid segregation in meiosis II. Whereas the mechanisms of cohesin protection are quite well understood, the mechanisms of deprotection have been largely unknown until recently. In this review I summarize our current knowledge on cohesin deprotection.

  20. Budding of Walnut ( Juglans regia L.

    Directory of Open Access Journals (Sweden)

    Majlind Kasmi

    2013-09-01

    Full Text Available The walnut is classified as a strategic species for human nutrition and is included in the FAO’s list of priority plants. Walnut, (Juglans regia L. propagation is more difficult, compared to most fruit species. Due to walnut heterozygosity, propagation by seeds does not lead to inheritance of all the characteristics of certain varieties. That is the reason why propagation technologies are being improved worldwide. The purpose of this experiment was to increase the success of inoculation of the walnut budding var. Franquete. Methods such as the patch budding and chip budding have been employed during the experiment. To establish the most appropriate season of inoculation, June budding on 28 June (with buds taken in the current season, autumn budding on 28 August (with buds taken in the current season and spring budding on 28 May (with buds collected from the winter dormant period, were tested. As rootstocks for the June and August budding, the seedlings of Juglans regia L. of the current year's growth have been employed. For the spring inoculation the one year old scions have been used. Patch budding resulted the most successful method for walnuts. However, the success of the method of patch budding depends on the season of inoculation. An 80 % of successful inoculation was achieved by June budding (on 28 June. Furthermore, cutting off the leaf 20 days before the buds being taken for budding, led to even higher results reaching 87% of successful inoculation. According to the results of the present study, the June budding of the patch method seems to be the best solution for the production of grafted young walnut trees.

  1. Cuf2 is a novel meiosis-specific regulatory factor of meiosis maturation.

    Directory of Open Access Journals (Sweden)

    Raphael Ioannoni

    Full Text Available BACKGROUND: Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors. PRINCIPAL FINDINGS: In this report a novel copper-fist-type regulator, Cuf2, is shown to be expressed exclusively during meiosis. The expression profile of the cuf2(+ mRNA revealed that it was induced during middle-phase meiosis. Both cuf2(+ mRNA and protein levels are unregulated by copper addition or starvation. The transcription of cuf2(+ required the presence of a functional mei4(+ gene encoding a key transcription factor that activates the expression of numerous middle meiotic genes. Microscopic analyses of cells expressing a functional Cuf2-GFP protein revealed that Cuf2 co-localized with both homologous chromosomes and sister chromatids during the meiotic divisions. Cells lacking Cuf2 showed an elevated and sustained expression of several of the middle meiotic genes that persisted even during late meiosis. Moreover, cells carrying disrupted cuf2Δ/cuf2Δ alleles displayed an abnormal morphology of the forespore membranes and a dramatic reduction of spore viability. SIGNIFICANCE: Collectively, the results revealed that Cuf2 functions in the timely repression of the middle-phase genes during meiotic differentiation.

  2. Is there evidence of sexual reproduction (meiosis) in Acanthamoeba?

    Science.gov (United States)

    Khan, Naveed A; Siddiqui, Ruqaiyyah

    2015-06-01

    Evolution of independently breeding species into males and females (gametes) has remained a puzzle. Given the significant advantages of sexual reproduction over asexual reproduction as a long-term species survival strategy; here, we pose the question whether there is some form of meiosis in Acanthamoeba species, which represents our ancient lineage. The recently available Acanthamoeba genome revealed several genes implicated in meiosis in sexual eukaryotes such as Spo11, Mre11, Rad50, Rad51, Rad52, Mnd1, Dmc1, Msh, and Mlh, suggesting that Acanthamoeba is capable of some form of meiosis, inferring the presence of sexual reproduction in Acanthamoeba, and that meiosis evolved early in eukaryotic evolution.

  3. Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis.

    Science.gov (United States)

    Dumont, Julien; Desai, Arshad

    2012-05-01

    The ability to reproduce relies in most eukaryotes on specialized cells called gametes. Gametes are formed by the process of meiosis in which, after a single round of replication, two successive cell divisions reduce the ploidy of the genome. Fusion of gametes at fertilization reconstitutes diploidy. In most animal species, chromosome segregation during female meiosis occurs on spindles assembled in the absence of the major microtubule-organizing center, the centrosome. In mammals, oocyte meiosis is error prone and underlies most birth aneuploidies. Here, we review recent work on acentrosomal spindle formation and chromosome alignment/separation during oocyte meiosis in different animal models.

  4. Geometry and force behind kinetochore orientation: lessons from meiosis.

    Science.gov (United States)

    Watanabe, Yoshinori

    2012-05-16

    During mitosis, replicated chromosomes (sister chromatids) become attached at the kinetochore by spindle microtubules emanating from opposite poles and segregate equationally. In the first division of meiosis, however, sister chromatids become attached from the same pole and co-segregate, whereas homologous chromosomes connected by chiasmata segregate to opposite poles. Disorder in this specialized chromosome attachment in meiosis is the leading cause of miscarriage in humans. Recent studies have elucidated the molecular mechanisms determining chromosome orientation, and consequently segregation, in meiosis. Comparative studies of meiosis and mitosis have led to the general principle that kinetochore geometry and tension exerted by microtubules synergistically generate chromosome orientation.

  5. Meiosis in flowering plants and other green organisms.

    Science.gov (United States)

    Harrison, C Jill; Alvey, Elizabeth; Henderson, Ian R

    2010-06-01

    Sexual eukaryotes generate gametes using a specialized cell division called meiosis that serves both to halve the number of chromosomes and to reshuffle genetic variation present in the parent. The nature and mechanism of the meiotic cell division in plants and its effect on genetic variation are reviewed here. As flowers are the site of meiosis and fertilization in angiosperms, meiotic control will be considered within this developmental context. Finally, we review what is known about the control of meiosis in green algae and non-flowering land plants and discuss evolutionary transitions relating to meiosis that have occurred in the lineages giving rise to the angiosperms.

  6. Defining the budding yeast chromatin-associated interactome

    OpenAIRE

    Lambert, Jean-Philippe; Fillingham, Jeffrey; Siahbazi, Mojgan; Greenblatt, Jack; Baetz, Kristin; Figeys, Daniel

    2010-01-01

    The maintenance of cellular fitness requires living organisms to integrate multiple signals into coordinated outputs. Central to this process is the regulation of the expression of the genetic information encoded into DNA. As a result, there are numerous constraints imposed on gene expression. The access to DNA is restricted by the formation of nucleosomes, in which DNA is wrapped around histone octamers to form chromatin wherein the volume of DNA is considerably reduced. As such, nucleosome ...

  7. Bub2 regulation of cytokinesis and septation in budding yeast

    Directory of Open Access Journals (Sweden)

    Park Su Young

    2009-06-01

    Full Text Available Abstract Background The mitotic exit network (MEN is required for events at the end of mitosis such as degradation of mitotic cyclins and cytokinesis. Bub2 and its binding partner Bfa1 act as a GTPase activating protein (GAP to negatively regulate the MEN GTPase Tem1. The Bub2/Bfa1 checkpoint pathway is required to delay the cell cycle in response to mispositioned spindles. In addition to its role in mitotic exit, Tem1 is required for actomyosin ring contraction. Results To test the hypothesis that the Bub2 pathway prevents premature actin ring assembly, we compared the timing of actin ring formation in wild type, bub2Δ, mad2Δ, and bub2Δmad2Δ cells both with and without microtubules. There was no difference in the timing of actin ring formation between wild type and mutant cells in a synchronized cell cycle. In the presence of nocodazole, both bub2Δ and mad2Δ cells formed rings after a delay of the same duration. Double mutant bub2Δmad2Δ and bfa1Δmad2Δ cells formed rings at the same time with and without nocodazole. To determine if Bub2 has an effect on actomyosin ring contraction through its regulation of Tem1, we used live cell imaging of Myo1-GFP in a bub2Δ strain. We found a significant decrease in the total time of contraction and an increase in rate of contraction compared to wild type cells. We also examined myosin contraction using Myo1-GFP in cells overexpressing an epitope tagged Bub2. Surprisingly, overexpression of Bub2 also led to a significant increase in the rate of contraction, as well as morphological defects. The chained cell phenotype caused by Bub2 overexpression could be rescued by co-overexpression of Tem1, and was not rescued by deletion of BFA1. Conclusion Our data indicate that the Bub2 checkpoint pathway does not have a specific role in delaying actin ring formation. The observed increase in the rate of myosin contraction in the bub2Δ strain provides evidence that the MEN regulates actomyosin ring contraction. Our data suggest that the overexpression of the Bub2 fusion protein acts as a dominant negative, leading to septation defects by a mechanism that is Tem1-dependent.

  8. Chromosome Conformation Capture Carbon Copy (5C) in Budding Yeast.

    Science.gov (United States)

    Belton, Jon-Matthew; Dekker, Job

    2015-06-01

    Chromosome conformation capture carbon copy (5C) is a high-throughput method for detecting ligation products of interest in a chromosome conformation capture (3C) library. 5C uses ligation-mediated amplification (LMA) to generate carbon copies of 3C ligation product junctions using single-stranded oligonucleotide probes. This procedure produces a 5C library of short DNA molecules which represent the interactions between the corresponding restriction fragments. The 5C library can be amplified using universal primers containing the Illumina paired-end adaptor sequences for subsequent high-throughput sequencing.

  9. Role of transcription at centromeres in budding yeast.

    Science.gov (United States)

    Ohkuni, Kentaro; Kitagawa, Katsumi

    2012-01-01

    Centromeres are specialized chromosomal loci that are essential for proper chromosome segregation. Recent data show that a certain level of active transcription, regulated by transcription factors Cbf1 and Ste12, makes a direct contribution to centromere function in Saccharomyces cerevisiae. Here, we discuss the requirement and function of transcription at centromeres.

  10. Budding yeast cDNA sequencing project: S03052-76_F01 [Budding yeast cDNA sequencing project

    Lifescience Database Archive (English)

    Full Text Available EST - Link to UCSC Genome Browser - Sequence >S03052-76_F01.phd NNNNNNNNNNNNNNNNNNNNNNNNNTNTAAAANNNNGANNNGANNNGTGGNTNTNTNTNT TNT...ANTTTNAANAAANAACNNNCCCTNNNNCNCNNNNNNNGAGNAAAAANNGGGTNTNNT NTTTTNNTNNTNTNTNNNNCNNN Qualit

  11. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  12. The Retention of Meaningful Understanding of Meiosis and Genetics.

    Science.gov (United States)

    Cavallo, Ann Liberatore

    This study investigated the retention of meaningful understanding of the biological topics of meiosis, the Punnett square method and the relations between these two topics. This study also explored the predictive influence of students' general tendency to learn meaningfully or by rote (meaningful learning orientation), prior knowledge of meiosis,…

  13. Complex regulation of sister kinetochore orientation in meiosis-I

    Indian Academy of Sciences (India)

    Amit Bardhan

    2010-09-01

    Kinetochores mediate chromosome movement during cell division by interacting with the spindle microtubules. Sexual reproduction necessitates the daunting task of reducing ploidy (number of chromosome sets) in the gametes, which depends upon the specialized properties of meiosis. Kinetochores have a central role in the reduction process. In this review, we discuss the complexity of this role of kinetochores in meiosis-I.

  14. Roles of MAP kinase signaling pathway in oocyte meiosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases expressed widely in eukaryotic cells. MAPK is activated by a cascade of protein kinase phosphorylation and plays pivotal roles in regulating meiosis process in oocytes. As an important physical substrate of MAPK, p90rsk mediates numerous MAPK functions. MAPK was activated at G2/M transition during meiosis. Its activity reached the peak at MⅠ stage and maintained at this level until the time before the pronuclear formation after fertilization. There is complex interplay between MAPK and MPF in the meiosis regulation. Furthermore, other intracellular signal transducers, such as cAMP, protein kinase C and protein phosphotase, ect., also regulated the activity of MAPK at different stages during meiosis in oocytes. In the present article, the roles of MAPK signaling pathway in oocyte meiosis are reviewed and discussed.

  15. Regulation of germ cell meiosis in the fetal ovary.

    Science.gov (United States)

    Spiller, Cassy M; Bowles, Josephine; Koopman, Peter

    2012-01-01

    Fertility depends on correct regulation of meiosis, the special form of cell division that gives rise to haploid gametes. In female mammals, germ cells enter meiosis during fetal ovarian development, while germ cells in males avoid entering meiosis until puberty. Decades of research have shown that meiotic entry, and germ cell sex determination, are not initiated intrinsically within the germ cells. Instead, meiosis is induced by signals produced by the surrounding somatic cells. More recently, retinoic acid (RA), the active derivative of vitamin A, has been implicated in meiotic induction during fetal XX and postnatal XY germ cell development. Evidence for an intricate system of RA synthesis and degradation in the fetal ovary and testis has emerged, explaining past observations of infertility in vitamin A-deficient rodents. Here we review how meiosis is triggered in fetal ovarian germ cells, paying special attention to the role of RA in this process.

  16. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    In fission yeast (Schizosaccharomyces pombe), the mat1-Pm gene, which is required for entry into meiosis, is expressed in response to a pheromone signal. Cells carrying a mutation in the ste8 gene are unable to induce transcription of mat1-Pm in response to pheromone, suggesting that the ste8 gene......, ste8 mutant cells will enter meiosis. This demonstrates that the meiotic defect of ste8 mutants is due to the absence of the mat1-Pm gene product....

  17. Cellular Factors Required for Lassa Virus Budding

    OpenAIRE

    Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Yokosawa, Hideyoshi; Yasuda, Jiro

    2006-01-01

    It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicula...

  18. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium.

    Directory of Open Access Journals (Sweden)

    Hua Liu

    Full Text Available Chrysanthemum morifolium is an important floral crop that is cultivated worldwide. However, due to a lack of genomic resources, very little information is available concerning the molecular mechanisms of flower development in chrysanthemum.The transcriptomes of chrysanthemum vegetative buds, floral buds and buds were sequenced using Illumina paired-end sequencing technology. A total of 15.4 Gb of reads were assembled into 91,367 unigenes with an average length of 739 bp. A total of 43,137 unigenes showed similarity to known proteins in the Swissprot or NCBI non-redundant protein databases. Additionally, 25,424, 24,321 and 13,704 unigenes were assigned to 56 gene ontology (GO categories, 25 EuKaryotic Orthologous Groups (KOG categories, and 285 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways, respectively. A total of 1,876 differentially expressed genes (DEGs (1,516 up-regulated, 360 down-regulated were identified between vegetative buds and floral buds, and 3,300 DEGs (1,277 up-regulated, 1,706 down-regulated were identified between floral buds and buds. Many genes encoding important transcription factors (e.g., AP2, MYB, MYC, WRKY, NAC and CRT as well as proteins involved in carbohydrate metabolism, protein kinase activity, plant hormone signal transduction, and the defense responses, among others, were considerably up-regulated in floral buds. Genes involved in the photoperiod pathway and flower organ determination were also identified. These genes represent important candidate genes for molecular cloning and functional analysis to study flowering regulation in chrysanthemum.This comparative transcriptome analysis revealed significant differences in gene expression and signaling pathway components between the vegetative buds, floral buds and buds of Chrysanthemum morifolium. A wide range of genes was implicated in regulating the phase transition from vegetative to reproductive growth. These results should aid researchers in the study of

  19. HIV Pol inhibits HIV budding and mediates the severe budding defect of Gag-Pol.

    Directory of Open Access Journals (Sweden)

    Xin Gan

    Full Text Available The prevailing hypothesis of HIV budding posits that the viral Gag protein drives budding, and that the Gag p6 peptide plays an essential role by recruiting host-cell budding factors to sites of HIV assembly. HIV also expresses a second Gag protein, p160 Gag-Pol, which lacks p6 and fails to bud from cells, consistent with the prevailing hypothesis of HIV budding. However, we show here that the severe budding defect of Gag-Pol is not caused by the absence of p6, but rather, by the presence of Pol. Specifically, we show that (i the budding defect of Gag-Pol is unaffected by loss of HIV protease activity and is therefore an intrinsic property of the Gag-Pol polyprotein, (ii the N-terminal 433 amino acids of Gag and Gag-Pol are sufficient to drive virus budding even though they lack p6, (iii the severe budding defect of Gag-Pol is caused by a dominant, cis-acting inhibitor of budding in the HIV Pol domain, and (iv Gag-Pol inhibits Gag and virus budding in trans, even at normal levels of Gag and Gag-Pol expression. These and other data support an alternative hypothesis of HIV budding as a process that is mediated by the normal, non-viral pathway of exosome/microvesicle biogenesis.

  20. From equator to pole: splitting chromosomes in mitosis and meiosis.

    Science.gov (United States)

    Duro, Eris; Marston, Adèle L

    2015-01-15

    During eukaryotic cell division, chromosomes must be precisely partitioned to daughter cells. This relies on a mechanism to move chromosomes in defined directions within the parental cell. While sister chromatids are segregated from one another in mitosis and meiosis II, specific adaptations enable the segregation of homologous chromosomes during meiosis I to reduce ploidy for gamete production. Many of the factors that drive these directed chromosome movements are known, and their molecular mechanism has started to be uncovered. Here we review the mechanisms of eukaryotic chromosome segregation, with a particular emphasis on the modifications that ensure the segregation of homologous chromosomes during meiosis I.

  1. Retinoic acid, meiosis and germ cell fate in mammals.

    Science.gov (United States)

    Bowles, Josephine; Koopman, Peter

    2007-10-01

    Although mammalian sex is determined genetically, the sex-specific development of germ cells as sperm or oocytes is initiated by cues provided by the gonadal environment. During embryogenesis, germ cells in an ovary enter meiosis, thereby committing to oogenesis. By contrast, germ cells in a testicular environment do not enter meiosis until puberty. Recent findings indicate that the key to this sex-specific timing of meiosis entry is the presence or absence of the signaling molecule retinoic acid. Although this knowledge clarifies a long-standing mystery in reproductive biology, it also poses many new questions, which we discuss in this review.

  2. [The pairing, synapsis and recombination of meiosis in plant].

    Science.gov (United States)

    Liu, Chun-Xia; He, Qun-Yan; Jin, Wei-Wei

    2010-12-01

    Meiosis is the crucial step for sexual reproduction, while the pairing, synapsis and recombination are the key events in this process and have become the hotspots in meiosis studies. In recent years, with the development of the molecular biology and cell biology, associated with the mutant screened from mutant libraries, much advances were achieved in pairing, synapsis and recombination of meiosis in plant. In this review, we have gave an overview of the genes identification in this field and further studies of its molecular mechanism in plant.

  3. Repellence of the red bud borer (Resseliella oculiperda) to grafted apple trees by impregnation of budding tape with essential oils

    NARCIS (Netherlands)

    Tol, van R.W.H.M.; Linden, van der A.; Swarts, H.J.; Visser, J.H.

    2007-01-01

    The red bud borer Resseliella oculiperda (Rübs.) is a pest insect of apple trees when rootstocks are grafted with scion buds by shield budding. The female midges are attracted to the wounds of the grafted buds where they lay their eggs. The larvae feed on the cambium and destroy the buds completely

  4. Paired arrangement of kinetochores together with microtubule pivoting and dynamics drive kinetochore capture in meiosis I.

    Science.gov (United States)

    Cojoc, Gheorghe; Florescu, Ana-Maria; Krull, Alexander; Klemm, Anna H; Pavin, Nenad; Jülicher, Frank; Tolić, Iva M

    2016-01-01

    Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3-4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells.

  5. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    Science.gov (United States)

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  6. The spindle checkpoint and chromosome segregation in meiosis.

    Science.gov (United States)

    Gorbsky, Gary J

    2015-07-01

    The spindle checkpoint is a key regulator of chromosome segregation in mitosis and meiosis. Its function is to prevent precocious anaphase onset before chromosomes have achieved bipolar attachment to the spindle. The spindle checkpoint comprises a complex set of signaling pathways that integrate microtubule dynamics, biomechanical forces at the kinetochores, and intricate regulation of protein interactions and post-translational modifications. Historically, many key observations that gave rise to the initial concepts of the spindle checkpoint were made in meiotic systems. In contrast with mitosis, the two distinct chromosome segregation events of meiosis present a special challenge for the regulation of checkpoint signaling. Preservation of fidelity in chromosome segregation in meiosis, controlled by the spindle checkpoint, also has a significant impact in human health. This review highlights the contributions from meiotic systems in understanding the spindle checkpoint as well as the role of checkpoint signaling in controlling the complex divisions of meiosis.

  7. Inverted meiosis: the true bugs as a model to study.

    Science.gov (United States)

    Viera, A; Page, J; Rufas, J S

    2009-01-01

    Most of the meiotic literature is based on species with monocentric chromosomes, however meiosis in protoctist, plant and animal species with holocentric chromosomes is less characterized. In some cases, an inverted meiotic sequence is claimed to occur, in which segregation of homologs is postponed until the second meiotic division. Additionally, other features also deserve interest, namely: (i) the different behavior of sex chromosomes if compared to that of the autosomes; (ii) the absence of a canonical kinetochore structure; (iii) the restriction of the kinetic activity to the chromosomal ends; (iv) the variations in the orientation of bivalents at the division plate, and (v) the possible occurrence of chiasma terminalization. Here we summarize the current knowledge on these topics in the meiosis of Hemiptera (Heteroptera) and present novel results that illustrate some of the special features mentioned above. We also point out the necessity of reviewing the term 'inverted meiosis' and propose some future prospects to study this peculiar meiosis.

  8. The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-19

    Aneuploidy, any deviation from an exact multiple of the haploid number of chromosomes, is a common occurrence in cancer and represents the most frequent chromosomal disorder in newborns. Eukaryotes have evolved mechanisms to assure the fidelity of chromosome segregation during cell division that include a multiplicity of checks and controls. One of the main cell division control mechanisms is the spindle assembly checkpoint (SAC) that monitors the proper attachment of chromosomes to spindle fibers and prevents anaphase until all kinetochores are properly attached. The mammalian SAC is composed by at least 14 evolutionary-conserved proteins that work in a coordinated fashion to monitor the establishment of amphitelic attachment of all chromosomes before allowing cell division to occur. Among the SAC proteins, the budding uninhibited by benzimidazole protein 1 (Bub1), is a highly conserved protein of prominent importance for the proper functioning of the SAC. Studies have revealed many roles for Bub1 in both mitosis and meiosis, including the localization of other SAC proteins to the kinetochore, SAC signaling, metaphase congression and the protection of the sister chromatid cohesion. Recent data show striking sex specific differences in the response to alterations in Bub1 activity. Proper Bub1 functioning is particularly important during oogenesis in preventing the generation of aneuploid gametes that can have detrimental effects on the health status of the fetus and the newborn. These data suggest that Bub1 is a master regulator of SAC and chromosomal segregation in both mitosis and meiosis. Elucidating its many essential functions in regulating proper chromosome segregation can have important consequences for preventing tumorigenesis and developmental abnormalities.

  9. Dissection and design of yeast prions.

    OpenAIRE

    Osherovich, Lev Z.; Cox, Brian S; Tuite, Mick F; Weissman, Jonathan S.

    2004-01-01

    Many proteins can misfold into beta-sheet-rich, self-seeding polymers (amyloids). Prions are exceptional among such aggregates in that they are also infectious. In fungi, prions are not pathogenic but rather act as epigenetic regulators of cell physiology, providing a powerful model for studying the mechanism of prion replication. We used prion-forming domains from two budding yeast proteins (Sup35p and New1p) to examine the requirements for prion formation and inheritance. In both proteins, ...

  10. Acentrosomal Spindle Assembly & Chromosome Segregation During Oocyte Meiosis

    OpenAIRE

    Dumont, Julien; Desai, Arshad

    2012-01-01

    The ability to reproduce relies in most eukaryotes on specialized cells called gametes. Gametes are formed by the process of meiosis in which, after a single round of replication, two successive cell divisions reduce the ploidy of the genome. Fusion of gametes at fertilization reconstitutes diploidy. In most animal species, chromosome segregation during female meiosis occurs on spindles assembled in the absence of the major microtubule-organizing center, the centrosome. In mammals, oocyte mei...

  11. Meiosis evolves: adaptation to external and internal environments.

    Science.gov (United States)

    Bomblies, Kirsten; Higgins, James D; Yant, Levi

    2015-10-01

    306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research.

  12. Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa.

    Science.gov (United States)

    Wright, Kevin M; Arnold, Brian; Xue, Katherine; Šurinová, Maria; O'Connell, Jeremy; Bomblies, Kirsten

    2015-04-01

    Meiotic chromosome segregation is critical for fertility across eukaryotes, and core meiotic processes are well conserved even between kingdoms. Nevertheless, recent work in animals has shown that at least some meiosis genes are highly diverse or strongly differentiated among populations. What drives this remains largely unknown. We previously showed that autotetraploid Arabidopsis arenosa evolved stable meiosis, likely through reduced crossover rates, and that associated with this there is strong evidence for selection in a subset of meiosis genes known to affect axis formation, synapsis, and crossover frequency. Here, we use genome-wide data to study the molecular evolution of 70 meiosis genes in a much wider sample of A. arenosa. We sample the polyploid lineage, a diploid lineage from the Carpathian Mountains, and a more distantly related diploid lineage from the adjacent, but biogeographically distinct Pannonian Basin. We find that not only did selection act on meiosis genes in the polyploid lineage but also independently on a smaller subset of meiosis genes in Pannonian diploids. Functionally related genes are targeted by selection in these distinct contexts, and in two cases, independent sweeps occurred in the same loci. The tetraploid lineage has sustained selection on more genes, has more amino acid changes in each, and these more often affect conserved or potentially functional sites. We hypothesize that Pannonian diploid and tetraploid A. arenosa experienced selection on structural proteins that mediate sister chromatid cohesion, the formation of meiotic chromosome axes, and synapsis, likely for different underlying reasons.

  13. Control of mammalian germ cell entry into meiosis.

    Science.gov (United States)

    Feng, Chun-Wei; Bowles, Josephine; Koopman, Peter

    2014-01-25

    Germ cells are unique in undergoing meiosis to generate oocytes and sperm. In mammals, meiosis onset is before birth in females, or at puberty in males, and recent studies have uncovered several regulatory steps involved in initiating meiosis in each sex. Evidence suggests that retinoic acid (RA) induces expression of the critical pre-meiosis gene Stra8 in germ cells of the fetal ovary, pubertal testis and adult testis. In the fetal testis, CYP26B1 degrades RA, while FGF9 further antagonises RA signalling to suppress meiosis. Failsafe mechanisms involving Nanos2 may further suppress meiosis in the fetal testis. Here, we draw together the growing knowledge relating to these meiotic control mechanisms, and present evidence that they are co-ordinately regulated and that additional factors remain to be identified. Understanding this regulatory network will illuminate not only how the foundations of mammalian reproduction are laid, but also how mis-regulation of these steps can result in infertility or germline tumours.

  14. Mastl is required for timely activation of APC/C in meiosis I and Cdk1 reactivation in meiosis II.

    Science.gov (United States)

    Adhikari, Deepak; Diril, M Kasim; Busayavalasa, Kiran; Risal, Sanjiv; Nakagawa, Shoma; Lindkvist, Rebecca; Shen, Yan; Coppola, Vincenzo; Tessarollo, Lino; Kudo, Nobuaki R; Kaldis, Philipp; Liu, Kui

    2014-09-29

    In mitosis, the Greatwall kinase (called microtubule-associated serine/threonine kinase like [Mastl] in mammals) is essential for prometaphase entry or progression by suppressing protein phosphatase 2A (PP2A) activity. PP2A suppression in turn leads to high levels of Cdk1 substrate phosphorylation. We have used a mouse model with an oocyte-specific deletion of Mastl to show that Mastl-null oocytes resume meiosis I and reach metaphase I normally but that the onset and completion of anaphase I are delayed. Moreover, after the completion of meiosis I, Mastl-null oocytes failed to enter meiosis II (MII) because they reassembled a nuclear structure containing decondensed chromatin. Our results show that Mastl is required for the timely activation of anaphase-promoting complex/cyclosome to allow meiosis I exit and for the rapid rise of Cdk1 activity that is needed for the entry into MII in mouse oocytes.

  15. Chiasmata promote monopolar attachment of sister chromatids and their co-segregation toward the proper pole during meiosis I.

    Directory of Open Access Journals (Sweden)

    Yukinobu Hirose

    2011-03-01

    Full Text Available The chiasma is a structure that forms between a pair of homologous chromosomes by crossover recombination and physically links the homologous chromosomes during meiosis. Chiasmata are essential for the attachment of the homologous chromosomes to opposite spindle poles (bipolar attachment and their subsequent segregation to the opposite poles during meiosis I. However, the overall function of chiasmata during meiosis is not fully understood. Here, we show that chiasmata also play a crucial role in the attachment of sister chromatids to the same spindle pole and in their co-segregation during meiosis I in fission yeast. Analysis of cells lacking chiasmata and the cohesin protector Sgo1 showed that loss of chiasmata causes frequent bipolar attachment of sister chromatids during anaphase. Furthermore, high time-resolution analysis of centromere dynamics in various types of chiasmate and achiasmate cells, including those lacking the DNA replication checkpoint factor Mrc1 or the meiotic centromere protein Moa1, showed the following three outcomes: (i during the pre-anaphase stage, the bipolar attachment of sister chromatids occurs irrespective of chiasma formation; (ii the chiasma contributes to the elimination of the pre-anaphase bipolar attachment; and (iii when the bipolar attachment remains during anaphase, the chiasmata generate a bias toward the proper pole during poleward chromosome pulling that results in appropriate chromosome segregation. Based on these results, we propose that chiasmata play a pivotal role in the selection of proper attachments and provide a backup mechanism that promotes correct chromosome segregation when improper attachments remain during anaphase I.

  16. Polo kinase Cdc5 is a central regulator of meiosis I.

    Science.gov (United States)

    Attner, Michelle A; Miller, Matthew P; Ee, Ly-sha; Elkin, Sheryl K; Amon, Angelika

    2013-08-27

    During meiosis, two consecutive rounds of chromosome segregation yield four haploid gametes from one diploid cell. The Polo kinase Cdc5 is required for meiotic progression, but how Cdc5 coordinates multiple cell-cycle events during meiosis I is not understood. Here we show that CDC5-dependent phosphorylation of Rec8, a subunit of the cohesin complex that links sister chromatids, is required for efficient cohesin removal from chromosome arms, which is a prerequisite for meiosis I chromosome segregation. CDC5 also establishes conditions for centromeric cohesin removal during meiosis II by promoting the degradation of Spo13, a protein that protects centromeric cohesin during meiosis I. Despite CDC5's central role in meiosis I, the protein kinase is dispensable during meiosis II and does not even phosphorylate its meiosis I targets during the second meiotic division. We conclude that Cdc5 has evolved into a master regulator of the unique meiosis I chromosome segregation pattern.

  17. Syncytes during male meiosis resulting in 2n pollen grain formation in Lindelofia longiflora var.falconeri

    Institute of Scientific and Technical Information of China (English)

    Vijay Kumar SINGHAL; Pawan Kumar RANA; Puneet KUMAR

    2011-01-01

    Lindelofia longiflora (Royle ex Benth.) Baill.var.falconeri (Cl.) Brand (Family:Boraginaceae) is investigated cytologically (n =12) for the first time from the cold deserts of Pangi Valley,Chamba District (Himachal Pradesh) in India.We report the formation of syncytes and 2n pollen grains in the species.During meiosis,the majority of the pollen mother cells (PMCs) exhibited 12 bivalents,equal segregation of chromosomes during anaphases,regular tetrads,and normal-sized pollen grain formation.Occasionally,two proximate PMCs fused during the early stages ofprophase-I and resulted in the formation of syncytes.The frequency of syncytes in the accession is rather low,at 25 out of 1866 (1.33%).Such syncyte PMCs are detectable during meiosis due to their larger size compared to typical PMCs.The syncytes or polyploid cells showed normal 24 bivalents and depicted perfectly regular meiotic course.But the products of such PMCs yield 2n or larger sized pollen grains that are almost double the size of typical normal or n pollen grains.The origin of syncytes as a consequence of the fusion of meiocytes during the early stages of meiosis-I could be attributed to low temperature stress conditions prevailing in the Pangi Valley,where temperature during May and June dip to below freezing,the time the plants enters the reproductive/flowering bud stage.It is possible that such apparently fertile 2n pollen grains originating from syncytes might play a role in the origin of intraspecific polyploids in the species.

  18. Off-Target Effects of Psychoactive Drugs Revealed by Genome-Wide Assays in Yeast

    OpenAIRE

    2008-01-01

    To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 comp...

  19. Meiosis in mice without a synaptonemal complex.

    Directory of Open Access Journals (Sweden)

    Anna Kouznetsova

    Full Text Available The synaptonemal complex (SC promotes fusion of the homologous chromosomes (synapsis and crossover recombination events during meiosis. The SC displays an extensive structural conservation between species; however, a few organisms lack SC and execute meiotic process in a SC-independent manner. To clarify the SC function in mammals, we have generated a mutant mouse strain (Sycp1(-/-Sycp3(-/-, here called SC-null in which all known SC proteins have been displaced from meiotic chromosomes. While transmission electron microscopy failed to identify any remnants of the SC in SC-null spermatocytes, neither formation of the cohesion axes nor attachment of the chromosomes to the nuclear membrane was perturbed. Furthermore, the meiotic chromosomes in SC-null meiocytes achieved pre-synaptic pairing, underwent early homologous recombination events and sustained a residual crossover formation. In contrast, in SC-null meiocytes synapsis and MLH1-MLH3-dependent crossovers maturation were abolished, whereas the structural integrity of chromosomes was drastically impaired. The variable consequences that SC inactivation has on the meiotic process in different organisms, together with the absence of SC in some unrelated species, imply that the SC could have originated independently in different taxonomic groups.

  20. MeioBase: a comprehensive database for meiosis

    Directory of Open Access Journals (Sweden)

    Hao eLi

    2014-12-01

    Full Text Available Meiosis is a special type of cell division process necessary for the sexual reproduction of all eukaryotes. The ever expanding meiosis research calls for an effective and specialized database that is not readily available yet. To fill this gap, we have developed a knowledge database MeioBase (http://meiosis.ibcas.ac.cn, which is comprised of two core parts, Resources and Tools. In the Resources part, a wealth of meiosis data collected by curation and manual review from published literatures and biological databases are integrated and organized into various sections, such as Cytology, Pathway, Species, Interaction, and Expression. In the Tools part, some commonly used tools have been integrated into MeioBase, such as Search, Download, Blast, Comparison, My Favorites, Submission, and Advice. With a simplified and efficient web interface, users are able to search against the database with gene model IDs or keywords, and batch download the data for local investigation. We believe that MeioBase can greatly facilitate the researches related to meiosis.

  1. Regulation of APC/C activators in mitosis and meiosis.

    Science.gov (United States)

    Pesin, Jillian A; Orr-Weaver, Terry L

    2008-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 ubiquitin ligase that triggers the degradation of multiple substrates during mitosis. Cdc20/Fizzy and Cdh1/Fizzy-related activate the APC/C and confer substrate specificity through complex interactions with both the core APC/C and substrate proteins. The regulation of Cdc20 and Cdh1 is critical for proper APC/C activity and occurs in multiple ways: targeted protein degradation, phosphorylation, and direct binding of inhibitory proteins. During the specialized divisions of meiosis, the activity of the APC/C must be modified to achieve proper chromosome segregation. Recent studies show that one way in which APC/C activity is modified is through the use of meiosis-specific APC/C activators. Furthermore, regulation of the APC/C during meiosis is carried out by both mitotic regulators of the APC/C as well as meiosis-specific regulators. Here, we review the regulation of APC/C activators during mitosis and the role and regulation of the APC/C during female meiosis.

  2. Assessment of pheromone production and response in fission yeast by a halo test of induced sporulation

    DEFF Research Database (Denmark)

    Egel, R; Willer, M; Kjaerulff, S

    1994-01-01

    We describe a rapid, sensitive and semi-quantitative plate assay for monitoring pheromone activity in the fission yeast Schizosaccharomyces pombe. It is based on the observation that meiosis requires stimulation by pheromone and exploits diploid strains that will only sporulate after addition...... of exogenous pheromone. The tester strains are heterozygous for mating type, are non-switching, and are mutated in one of the early subfunctions (either mat1-Mc or mat1-Pc), so that meiosis is only induced after exposure to exogenous pheromone (M-factor or P-factor, respectively). Pheromone activity...

  3. Development and Meiosis of Three Interspecific Hybrids with Cultivated Barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Von Bothmer, R.; Flink, J.; Linde-Laursen, Ib

    1986-01-01

    The development and meiosis of three interspecific hybrids between cultivated barley (Hordeum vulgare L.) and H. secalinum Schreb., H. tetraploidum Covas, and H. parodii Covas, respectively, were studied. All three hybrid combinations developed very slowly vegetatively. Meiosis of the hybrids...

  4. Heteromorphic sex chromosomes: navigating meiosis without a homologous partner.

    Science.gov (United States)

    Checchi, Paula M; Engebrecht, Joanne

    2011-09-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have been modified in many different ways to ensure segregation of heteromorphic sex chromosomes at the first meiotic division. Additionally, an almost universal feature of heteromorphic sex chromosomes during meiosis is transcriptional silencing, or meiotic sex chromosome inactivation, an essential process proposed to prevent expression of genes deleterious to meiosis in the heterogametic sex as well as to shield unpaired sex chromosomes from recognition by meiotic checkpoints. Comparative analyses of the meiotic behavior of sex chromosomes in nematodes, mammals, and birds reveal important conserved features as well as provide insight into sex chromosome evolution.

  5. Peculiarities of meiosis in radiomutants of the soft wheat

    Energy Technology Data Exchange (ETDEWEB)

    Shakaryan, Zh.O.; Avakyan, V.A. (Armyanskij Sel' skokhozyajstvennyj Inst.)

    1983-10-01

    The experiment is carried out using five constant mutant lines of soft wheat with a cylindrical ear. On the basis of the study of the dynamics and character of violations in 1 and 2 divisions of meiosis in the mutants and initial sorts a conclusion can be made that inspite of the morphological homogeneity in M/sub 8/, the mutants are characteristized by different degree of heterozygosis in translocations and micromutations. The presence of a comparatively large number of multivalents in MI of the meiosis did not cause violations in the final stage of meiosis. All the mutants have normal meiotic index and formed gametes, balanced as to genetic material, which points to the possibility of growing the economically-efficient wheat mutants with a high productivity and fertility using the method of radiation mutagenesis.

  6. Potential Role of Meiosis Proteins in Melanoma Chromosomal Instability

    Directory of Open Access Journals (Sweden)

    Scott F. Lindsey

    2013-01-01

    Full Text Available Melanomas demonstrate chromosomal instability (CIN. In fact, CIN can be used to differentiate melanoma from benign nevi. The exact molecular mechanisms that drive CIN in melanoma have yet to be fully elucidated. Cancer/testis antigens are a unique group of germ cell proteins that are found to be primarily expressed in melanoma as compared to benign nevi. The abnormal expression of these germ cell proteins, normally expected only in the testis and ovaries, in somatic cells may lead to interference with normal cellular pathways. Germ cell proteins that may be particularly critical in CIN are meiosis proteins. Here, we review pathways unique to meiosis with a focus on how the aberrant expression of meiosis proteins in normal mitotic cells “meiomitosis” could impact chromosomal instability in melanoma and other cancers.

  7. Genetic constitution of industrial yeast.

    Science.gov (United States)

    Benítez, T; Martínez, P; Codón, A C

    1996-09-01

    Saccharomyces cerevisiae industrial yeast strains are highly heterogeneous. These industrial strains, including bakers', wine, brewing and distillers', have been compared with respect to their DNA content, number and size of chromosomes, homologies between their genes and those of laboratory strains, and restriction fragment lengths of their mitDNA. A high variability, and the presence of multigenic families, were observed in some industrial yeast groups. The occurrence or the lack of chromosomal polymorphism, as well as the presence of multiple copies of some genes, could be related to a selective process occurring under specific industrial conditions. This polymorphism is generated by reorganization events, that take place mainly during meiosis and are mediated by repetitive Y' and Ty elements. These elements give rise to ectopic and asymmetric recombination and to gene conversion. The polymorphism displayed by the mitDNA could also result from specific industrial conditions. However, in enological strains the selective process is masked by the mutagenic effect that ethanol exerts on this DNA.

  8. The Reduction of Chromosome Number in Meiosis Is Determined by Properties Built into the Chromosomes

    OpenAIRE

    Paliulis, Leocadia V.; Nicklas, R. Bruce

    2000-01-01

    In meiosis I, two chromatids move to each spindle pole. Then, in meiosis II, the two are distributed, one to each future gamete. This requires that meiosis I chromosomes attach to the spindle differently than meiosis II chromosomes and that they regulate chromosome cohesion differently. We investigated whether the information that dictates the division type of the chromosome comes from the whole cell, the spindle, or the chromosome itself. Also, we determined when chromosomes can switch from ...

  9. Unravelling the proteomic profile of rice meiocytes during early meiosis

    Science.gov (United States)

    Collado-Romero, Melania; Alós, Enriqueta; Prieto, Pilar

    2014-01-01

    Transfer of genetic traits from wild or related species into cultivated rice is nowadays an important aim in rice breeding. Breeders use genetic crosses to introduce desirable genes from exotic germplasms into cultivated rice varieties. However, in many hybrids there is only a low level of pairing (if existing) and recombination at early meiosis between cultivated rice and wild relative chromosomes. With the objective of getting deeper into the knowledge of the proteins involved in early meiosis, when chromosomes associate correctly in pairs and recombine, the proteome of isolated rice meiocytes has been characterized by nLC-MS/MS at every stage of early meiosis (prophase I). Up to 1316 different proteins have been identified in rice isolated meiocytes in early meiosis, being 422 exclusively identified in early prophase I (leptotene, zygotene, or pachytene). The classification of proteins in functional groups showed that 167 were related to chromatin structure and remodeling, nucleic acid binding, cell-cycle regulation, and cytoskeleton. Moreover, the putative roles of 16 proteins which have not been previously associated to meiosis or were not identified in rice before, are also discussed namely: seven proteins involved in chromosome structure and remodeling, five regulatory proteins [such as SKP1 (OSK), a putative CDK2 like effector], a protein with RNA recognition motifs, a neddylation-related protein, and two microtubule-related proteins. Revealing the proteins involved in early meiotic processes could provide a valuable tool kit to manipulate chromosome associations during meiosis in rice breeding programs. The data have been deposited to the ProteomeXchange with the PXD001058 identifier. PMID:25104955

  10. Elevated mutation rate during meiosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rattray, Alison; Santoyo, Gustavo; Shafer, Brenda; Strathern, Jeffrey N

    2015-01-01

    Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold less accurate than S-phase synthesis. Since the process of meiosis involves many programmed DSBs, we reasoned that this repair might also be mutagenic. Indeed, in the early 1960's Magni and Von Borstel observed elevated reversion of recessive alleles during meiosis, and found that the revertants were more likely to be associated with a crossover than non-revertants, a process that they called "the meiotic effect." Here we use a forward mutation reporter (CAN1 HIS3) placed at either a meiotic recombination coldspot or hotspot near the MAT locus on Chromosome III. We find that the increased mutation rate at CAN1 (6 to 21 -fold) correlates with the underlying recombination rate at the locus. Importantly, we show that the elevated mutation rate is fully dependent upon Spo11, the protein that introduces the meiosis specific DSBs. To examine associated recombination we selected for random spores with or without a mutation in CAN1. We find that the mutations isolated this way show an increased association with recombination (crossovers, loss of crossover interference and/or increased gene conversion tracts). Polζ appears to contribute about half of the mutations induced during meiosis, but is not the only source of mutations for the meiotic effect. We see no difference in either the spectrum or distribution of mutations between mitosis and meiosis. The correlation of hotspots with elevated mutagenesis provides a mechanism for organisms to control evolution rates in a gene specific manner.

  11. Elevated mutation rate during meiosis in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Alison Rattray

    2015-01-01

    Full Text Available Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold less accurate than S-phase synthesis. Since the process of meiosis involves many programmed DSBs, we reasoned that this repair might also be mutagenic. Indeed, in the early 1960's Magni and Von Borstel observed elevated reversion of recessive alleles during meiosis, and found that the revertants were more likely to be associated with a crossover than non-revertants, a process that they called "the meiotic effect." Here we use a forward mutation reporter (CAN1 HIS3 placed at either a meiotic recombination coldspot or hotspot near the MAT locus on Chromosome III. We find that the increased mutation rate at CAN1 (6 to 21 -fold correlates with the underlying recombination rate at the locus. Importantly, we show that the elevated mutation rate is fully dependent upon Spo11, the protein that introduces the meiosis specific DSBs. To examine associated recombination we selected for random spores with or without a mutation in CAN1. We find that the mutations isolated this way show an increased association with recombination (crossovers, loss of crossover interference and/or increased gene conversion tracts. Polζ appears to contribute about half of the mutations induced during meiosis, but is not the only source of mutations for the meiotic effect. We see no difference in either the spectrum or distribution of mutations between mitosis and meiosis. The correlation of hotspots with elevated mutagenesis provides a mechanism for organisms to control evolution rates in a gene specific manner.

  12. The colocalization transition of homologous chromosomes at meiosis

    Science.gov (United States)

    Nicodemi, Mario; Panning, Barbara; Prisco, Antonella

    2008-06-01

    Meiosis is the specialized cell division required in sexual reproduction. During its early stages, in the mother cell nucleus, homologous chromosomes recognize each other and colocalize in a crucial step that remains one of the most mysterious of meiosis. Starting from recent discoveries on the system molecular components and interactions, we discuss a statistical mechanics model of chromosome early pairing. Binding molecules mediate long-distance interaction of special DNA recognition sequences and, if their concentration exceeds a critical threshold, they induce a spontaneous colocalization transition of chromosomes, otherwise independently diffusing.

  13. The meiosis-specific modification of mammalian telomeres.

    Science.gov (United States)

    Shibuya, Hiroki; Watanabe, Yoshinori

    2014-01-01

    During meiosis, rapid chromosome movements within the nucleus enable homologous chromosomes to acquire physical juxtaposition. In most organisms, chromosome ends, telomeres, tethered to the transmembrane LINC-complex mediate this movement by transmitting cytoskeletal forces to the chromosomes. While the majority of molecular studies have been performed using lower eukaryotes as model systems, recent studies have identified mammalian meiotic telomere regulators, including the LINC-complex SUN1/KASH5 and the meiosis-specific telomere binding protein TERB1. This review highlights the molecular regulations of mammalian meiotic telomeres in comparison with other model systems and discusses some future perspectives.

  14. Epigenetic transitions in germ cell development and meiosis.

    Science.gov (United States)

    Kota, Satya K; Feil, Robert

    2010-11-16

    Germ cell development is controlled by unique gene expression programs and involves epigenetic reprogramming of histone modifications and DNA methylation. The central event is meiosis, during which homologous chromosomes pair and recombine, processes that involve histone alterations. At unpaired regions, chromatin is repressed by meiotic silencing. After meiosis, male germ cells undergo chromatin remodeling, including histone-to-protamine replacement. Male and female germ cells are also differentially marked by parental imprints, which contribute to sex determination in insects and mediate genomic imprinting in mammals. Here, we review epigenetic transitions during gametogenesis and discuss novel insights from animal and human studies.

  15. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    Institute of Scientific and Technical Information of China (English)

    Yi-ke Li; Juan-mei Yang; Yi-bo Huang; Dong-dong Ren; Fang-lu Chi

    2015-01-01

    The morphological changes that occur in the taste buds after denervation are not well under-stood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups:control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection+lingual nerve transection. Rats were allowed up to 42 days of re-covery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantiifed and compared among groups. No signiifcant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection+lingual nerve transection groups. Taste bud counts, vol-umes and taste receptor cell numbers on the ipsilateral side all decreased signiifcantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  16. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    Directory of Open Access Journals (Sweden)

    Yi-ke Li

    2015-01-01

    Full Text Available The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  17. Understanding a Basic Biological Process: Expert and Novice Models of Meiosis.

    Science.gov (United States)

    Kindfield, Ann C. H.

    The results of a study of the meiosis models utilized by individuals at varying levels of expertise while reasoning about the process of meiosis are presented. Based on these results, the issues of sources of misconceptions/difficulties and the construction of a sound understanding of meiosis are discussed. Five individuals from each of three…

  18. Students as "Humans Chromosomes" in Role-Playing Mitosis and Meiosis

    Science.gov (United States)

    Chinnici, Joseph P.; Yue, Joyce W.; Torres, Kieron M.

    2004-01-01

    Students often find it challenging to understand mitosis and meiosis and determine their processes. To develop an easier way to understand these terms, students are asked to role-play mitosis and meiosis and students themselves act as human chromosomes, which help students to learn differences between mitosis and meiosis.

  19. Oxytocin signaling in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Michael S Sinclair

    Full Text Available BACKGROUND: The neuropeptide, oxytocin (OXT, acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout overconsume salty and sweet (i.e. sucrose, saccharin solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. METHODOLOGY/PRINCIPAL FINDINGS: Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM. OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II nor Presynaptic (Type III cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. CONCLUSIONS/SIGNIFICANCE: We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I taste bud cells modulate taste signaling and afferent

  20. Functional genomics in the study of yeast cell polarity: moving in the right direction.

    Science.gov (United States)

    Styles, Erin; Youn, Ji-Young; Mattiazzi Usaj, Mojca; Andrews, Brenda

    2013-01-01

    The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.

  1. Comparative live-cell imaging analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa reveal novel features of the filamentous fungal polarisome.

    Directory of Open Access Journals (Sweden)

    Alexander Lichius

    Full Text Available A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk, whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture.

  2. 响叶杨小孢子母细胞减数分裂及染色体行为的研究%Meiosis and Chromosome Behavior of Microsporocytes in Populus adenopoda Maxim

    Institute of Scientific and Technical Information of China (English)

    鲁敏; 王君; 王旭军; 吴际友; 康向阳

    2011-01-01

    The meiosis and chromosome behavior of microsporocytes in Populus adenopoda were studied by aceto-carmine squash technique. The meiosis of the pollen mother cells of P.adenopoda showed a high correlation to external characters of male flower buds/inflorescences and anther color. The normal behavior of chromosome indicated a high degree of homology among the homologous chromosomes of P. adenopoda. However, the appearance of paralleled spindles at metaphase Ⅱ may result in big pollen grains. The varied number of nucleoli during meiosis of microsporocytes was probably due to ancient polyploid origin of Populus. The differences in the processes of meiosis in P. adenopoda occurred not only in different buds, but also in different parts of the flower bud. This meiosis asynchronicity was an important character of evolution for environmental adaptation during sexual reproduction of the genus.%采用醋酸洋红压片法对响叶杨(Populus adenopoda)小孢子母细胞减数分裂进程中的染色体行为进行了研究.结果表明:响叶杨小孢子发生发育过程与其雄花芽/花序的外部特征和花药颜色有着密切关系;在其减数分裂进程中染色体行为正常,表明响叶杨同源染色体间表现出了较高的同源性,在中期Ⅱ平行纺锤体的出现与天然花粉中大花粉的存在可能有一定的联系;同时,减数分裂过程中核仁数目存在着动态变化,这种现象可能与杨属植物古多倍性起源有关.同一花芽的不同部位,减数分裂进程较不同步,这种不同步性是响叶杨适应环境的一种进化表现.

  3. Hormonal control of mammalian oocyte meiosis at diplotene stage.

    Science.gov (United States)

    Zhang, Meijia; Xia, Guoliang

    2012-04-01

    Mammalian oocytes grow and undergo meiosis within ovarian follicles. Fully grown oocytes are arrested at the first meiotic prophase by a mural granulosa origin "arrester" until a surge of luteinizing hormone (LH) from the pituitary at the mid-cycle stimulates the immature oocyte to resume meiosis. Recent evidence indicates that natriuretic peptide precursor type C (NPPC) produced by mural granulosa cells stimulates the generation of cyclic guanosine 3',5'-monophosphate (cGMP) by cumulus cell natriuretic peptide receptor 2 (NPR2), which diffuses into oocyte via gap junctions and inhibits oocyte phosphodiesterase 3A (PDE3A) activity and cyclic adenosine 3',5'-monophosphate (cAMP) hydrolysis and maintains meiotic arrest with a high intraoocyte cAMP level. This cAMP is generated through the activity of the Gs G-protein by the G-protein-coupled receptor, GPR3 and GPR12, and adenylyl cyclases (ADCY) endogenous to the oocyte. Further studies suggest that endocrine hormones, such as follicle-stimulating hormone (FSH), LH, 17β-estradiol (E2) and oocyte-derived paracrine factors (ODPFs), participate in oocyte meiosis possibly by the regulation of NPPC and/or NPR2. A detailed investigation of NPPC and NPR2 expression in follicle cells will elucidate the precise molecular mechanisms of gonadotropins, and control the arrest as well as resumption of meiosis.

  4. Role of compensatory meiosis mechanisms in human spermatogenesis.

    Science.gov (United States)

    Borgers, Mareike; Wolter, Martin; Hentrich, Anna; Bergmann, Martin; Stammler, Angelika; Konrad, Lutz

    2014-09-01

    Disturbances of checkpoints in distinct stages of spermatogenesis (mitosis, meiosis, and spermiogenesis) contribute to impaired spermatogenesis; however, the efficiency of meiotic entry has not been investigated in more detail. In this study, we analyzed azoospermic patients with defined spermatogenic defects by the use of octamer-binding protein 2 for type A spermatogonia, sarcoma antigen 1 for mitosis-meiosis transition and SMAD3 for pachytene spermatocytes. Especially patients with maturation arrest (MA) at the level of primary spermatocytes showed significantly reduced numbers of spermatogonia compared with patients with histologically intact spermatogenesis or patients with hypospermatogenesis (Hyp). For a detailed individual classification of the patients, we distinguished between 'high efficiency of meiotic entry' (high numbers of pachytene spermatocytes) and 'low efficiency of meiotic entry' (low numbers of pachytene spermatocytes). Only patients with histologically normal spermatogenesis (Nsp) and patients with Hyp showed normal numbers of spermatogonia and a high efficiency of meiotic entry. Of note, only patients with histologically Nsp or patients with Hyp could compensate low numbers of spermatogonia with a high efficiency of meiotic entry. In contrast, patients with MA always showed a low efficiency of meiotic entry. This is the first report on patients with impaired spermatogenesis, showing that half of the patients with Hyp but all patients with MA cannot compensate reduced numbers in spermatogonia with a highly efficient meiosis. Thus, we suggest that compensatory meiosis mechanisms in human spermatogenesis exist.

  5. Piwil1 mediates meiosis during spermatogenesis in chicken.

    Science.gov (United States)

    Xu, Lu; Chang, Guobin; Ma, Teng; Wang, Hongzhi; Chen, Jing; Li, Zhiteng; Guo, Xiaomin; Wan, Fang; Ren, Lichen; Lu, Wei; Chen, Guohong

    2016-03-01

    Piwil1 mediates spermatogenesis and ensures stable cell division rates in germline cells in mammals. However, the involvement of Piwil1 in poultry spermatogenesis and meiosis is poorly understood. In the present study, we used TaqMan RT-qPCR to characterize Piwil1 mRNA expression in different types of spermatogenic cells, including primordial germ cells (PGCs), spermatogonial stem cells (SSCs), spermatogonia cells (Sa), tetraploid cells (Tp), round sperm cells (Rs), mature sperm, and in PGCs treated with retinoic acid. Our results revealed that Piwil1 is differentially expressed during spermatogenesis in chicken. Compared to PGCs, SSCs, Tp, and Sa, Rs cells presented the highest Piwil1 mRNA expression levels. Retinoic acid significantly upregulated Piwil1 and Stra8 mRNA expression as well as Piwil1 levels in chicken PGCs. In addition, retinoic acid induced PGCs to progress through all the meiotic stages, eventually leading to haploid cell formation, which was determined using flow cytometry and western blot analysis. Taken together, our results showed that during spermatogenesis, Piwil1 was first expressed at low levels in germ stem cells, PGCs, and SSCs. Its expression levels increased during later meiosis stages. Finally, no expression was detected in mature sperm after meiosis. Treatment of PGCs with retinoic acid further demonstrated that Piwil1 plays a key role in meiosis during chicken spermatogenesis.

  6. Comparative transcriptomics of early meiosis in Arabidopsis and maize.

    Science.gov (United States)

    Dukowic-Schulze, Stefanie; Harris, Anthony; Li, Junhua; Sundararajan, Anitha; Mudge, Joann; Retzel, Ernest F; Pawlowski, Wojciech P; Chen, Changbin

    2014-03-20

    Though sexually reproductive plants share the same principle and most processes in meiosis, there are distinct features detectable. To address the similarities and differences of early meiosis transcriptomes from the dicot model system Arabidopsis and monocot model system maize, we performed comparative analyses of RNA-seq data of isolated meiocytes, anthers and seedlings from both species separately and via orthologous genes. Overall gene expression showed similarities, such as an increased number of reads mapping to unannotated features, and differences, such as the amount of differentially expressed genes. We detected major similarities and differences in functional annotations of genes up-regulated in meiocytes, which point to conserved features as well as unique features. Transcriptional regulation seems to be quite similar in Arabidopsis and maize, and we could reveal known and novel transcription factors and cis-regulatory elements acting in early meiosis. Taken together, meiosis between Arabidopsis and maize is conserved in many ways, but displays key distinctions that lie in the patterns of gene expression.

  7. Sperm should evolve to make female meiosis fair.

    Science.gov (United States)

    Brandvain, Yaniv; Coop, Graham

    2015-04-01

    Genomic conflicts arise when an allele gains an evolutionary advantage at a cost to organismal fitness. Oögenesis is inherently susceptible to such conflicts because alleles compete for inclusion into the egg. Alleles that distort meiosis in their favor (i.e., meiotic drivers) often decrease organismal fitness, and therefore indirectly favor the evolution of mechanisms to suppress meiotic drive. In this light, many facets of oögenesis and gametogenesis have been interpreted as mechanisms of protection against genomic outlaws. That females of many animal species do not complete meiosis until after fertilization, appears to run counter to this interpretation, because this delay provides an opportunity for sperm-acting alleles to meddle with the outcome of female meiosis and help like alleles drive in heterozygous females. Contrary to this perceived danger, the population genetic theory presented herein suggests that, in fact, sperm nearly always evolve to increase the fairness of female meiosis in the face of genomic conflicts. These results are consistent with the apparent sperm dependence of the best characterized female meiotic driversin animals. Rather than providing an opportunity for sperm collaboration in female meiotic drive, the "fertilization requirement" indirectly protects females from meiotic drivers by providing sperm an opportunity to suppress drive.

  8. "Dropping Your Genes." A Genetics Simulation in Meiosis, Fertilization & Reproduction.

    Science.gov (United States)

    Atkins, Thomas; Roderick, Joyce MacFall

    1991-01-01

    An activity that introduces students to the concepts of independent assortment of alleles during meiosis and gametogenesis, the richness of the variation that occurs as a result of allele recombination, and the unique phenotypes of offspring. Reproducible handouts with the directions and model chromosomes are provided. (KR)

  9. Reverse breeding: a novel breeding approach based on engineered meiosis

    NARCIS (Netherlands)

    Dirks, R.; Dun, van K.P.M.; Snoo, de B.; Berg, van den M.; Lelivelt, C.L.C.; Voermans, W.; Woudenberg, L.; Wit, de J.P.C.; Reinink, K.; Schut, J.W.; Jong, de J.H.S.G.M.; Wijnker, T.G.

    2009-01-01

    Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on re

  10. Meiosis in cereal crops: the grasses are back.

    Science.gov (United States)

    Martinez-perez, E

    2009-01-01

    A major goal of breeding programs is to increase and manipulate the genetic diversity of crops. The incorporation of beneficial genes from wild relatives into crops is achieved by producing hybrid plants in which meiotic recombination events occur between the two genomes. Furthering our understanding of meiosis in the cereals could enable the manipulation of homolog pairing and recombination, significantly enhancing the efficiency of breeding programs. The main obstacle to the genetic analysis of meiosis in cereal crops has been the complex organization of most cereal genomes, many of which are polyploid. However, the recent sequencing of the rice genome, the use of insertional mutagenesis and reverse genetics approaches has opened the door for the genetic and genomic analysis of cereal meiosis. The goal of this review is to show how these new resources, as well as the use of three-dimensional microscopy, are rapidly providing insights into the mechanisms that control pairing, recombination and segregation of homologous chromosomes during meiosis in four major cereal crops: wheat, rice, maize and rye.

  11. The spatial and mechanical challenges of female meiosis.

    Science.gov (United States)

    Evans, Janice P; Robinson, Douglas N

    2011-01-01

    Recent work shows that cytokinesis and other cellular morphogenesis events are tuned by an interplay among biochemical signals, cell shape, and cellular mechanics. In cytokinesis, this includes cross-talk between the cortical cytoskeleton and the mitotic spindle in coordination with cell cycle control, resulting in characteristic changes in cellular morphology and mechanics through metaphase and cytokinesis. The changes in cellular mechanics affect not just overall cell shape, but also mitotic spindle morphology and function. This review will address how these principles apply to oocytes undergoing the asymmetric cell divisions of meiosis I and II. The biochemical signals that regulate cell cycle timing during meiotic maturation and egg activation are crucial for temporal control of meiosis. Spatial control of the meiotic divisions is also important, ensuring that the chromosomes are segregated evenly and that meiotic division is clearly asymmetric, yielding two daughter cells - oocyte and polar body - with enormous volume differences. In contrast to mitotic cells, the oocyte does not undergo overt changes in cell shape with its progression through meiosis, but instead maintains a relatively round morphology with the exception of very localized changes at the time of polar body emission. Placement of the metaphase-I and -II spindles at the oocyte periphery is clearly important for normal polar body emission, although this is likely not the only control element. Here, consideration is given to how cellular mechanics could contribute to successful mammalian female meiosis, ultimately affecting egg quality and competence to form a healthy embryo.

  12. Using pool noodles to teach mitosis and meiosis.

    Science.gov (United States)

    Locke, John; McDermid, Heather E

    2005-05-01

    Although mitosis and meiosis are fundamental to understanding genetics, students often find them difficult to learn. We suggest using common "pool noodles" as teaching aids to represent chromatids in classroom demonstrations. Students use these noodles to demonstrate the processes of synapsis, segregation, and recombination. Student feedback has been overwhelmingly positive.

  13. Kif4 Is Essential for Mouse Oocyte Meiosis

    Science.gov (United States)

    Camlin, Nicole J.; McLaughlin, Eileen A.; Holt, Janet E.

    2017-01-01

    Progression through the meiotic cell cycle must be strictly regulated in oocytes to generate viable embryos and offspring. During mitosis, the kinesin motor protein Kif4 is indispensable for chromosome condensation and separation, midzone formation and cytokinesis. Additionally, the bioactivity of Kif4 is dependent on phosphorylation via Aurora Kinase B and Cdk1, which regulate Kif4 function throughout mitosis. Here, we examine the role of Kif4 in mammalian oocyte meiosis. Kif4 localized in the cytoplasm throughout meiosis I and II, but was also observed to have a dynamic subcellular distribution, associating with both microtubules and kinetochores at different stages of development. Co-localization and proximity ligation assays revealed that the kinetochore proteins, CENP-C and Ndc80, are potential Kif4 interacting proteins. Functional analysis of Kif4 in oocytes via antisense knock-down demonstrated that this protein was not essential for meiosis I completion. However, Kif4 depleted oocytes displayed enlarged polar bodies and abnormal metaphase II spindles, indicating an essential role for this protein for correct asymmetric cell division in meiosis I. Further investigation of the phosphoregulation of meiotic Kif4 revealed that Aurora Kinase and Cdk activity is critical for Kif4 kinetochore localization and interaction with Ndc80 and CENP-C. Finally, Kif4 protein but not gene expression was found to be upregulated with age, suggesting a role for this protein in the decline of oocyte quality with age. PMID:28125646

  14. Using a meiosis detection toolkit to investigate ancient asexual "scandals" and the evolution of sex.

    Science.gov (United States)

    Schurko, Andrew M; Logsdon, John M

    2008-06-01

    Sexual reproduction is the dominant reproductive mode in eukaryotes but, in many taxa, it has never been observed. Molecular methods that detect evidence of sex are largely based on the genetic consequences of sexual reproduction. Here we describe a powerful new approach to directly search genomes for genes that function in meiosis. We describe a "meiosis detection toolkit", a set of meiotic genes that represent the best markers for the presence of meiosis. These genes are widely present in eukaryotes, function only in meiosis and can be isolated by degenerate PCR. The presence of most, or all, of these genes in a genome would suggest they have been maintained for meiosis and, implicitly, sexual reproduction. In contrast, their absence would be consistent with the loss of meiosis and asexuality. This approach will help to understand both meiotic gene evolution and the capacity for meiosis and sex in putative obligate asexuals.

  15. HSC90 is required for nascent hepatitis C virus core protein stability in yeast cells.

    Science.gov (United States)

    Kubota, Naoko; Inayoshi, Yasutaka; Satoh, Naoko; Fukuda, Takashi; Iwai, Kenta; Tomoda, Hiroshi; Kohara, Michinori; Kataoka, Kazuhiro; Shimamoto, Akira; Furuichi, Yasuhiro; Nomoto, Akio; Naganuma, Akira; Kuge, Shusuke

    2012-07-30

    Hepatitis C virus core protein (Core) contributes to HCV pathogenicity. Here, we demonstrate that Core impairs growth in budding yeast. We identify HSP90 inhibitors as compounds that reduce intracellular Core protein level and restore yeast growth. Our results suggest that HSC90 (Hsc82) may function in the protection of the nascent Core polypeptide against degradation in yeast and the C-terminal region of Core corresponding to the organelle-interaction domain was responsible for Hsc82-dependent stability. The yeast system may be utilized to select compounds that can direct the C-terminal region to reduce the stability of Core protein.

  16. Cyclin A2 is required for sister chromatid segregation, but not separase control, in mouse oocyte meiosis.

    Science.gov (United States)

    Touati, Sandra A; Cladière, Damien; Lister, Lisa M; Leontiou, Ioanna; Chambon, Jean-Philippe; Rattani, Ahmed; Böttger, Franziska; Stemmann, Olaf; Nasmyth, Kim; Herbert, Mary; Wassmann, Katja

    2012-11-29

    In meiosis, two specialized cell divisions allow the separation of paired chromosomes first, then of sister chromatids. Separase removes the cohesin complex holding sister chromatids together in a stepwise manner from chromosome arms in meiosis I, then from the centromere region in meiosis II. Using mouse oocytes, our study reveals that cyclin A2 promotes entry into meiosis, as well as an additional unexpected role; namely, its requirement for separase-dependent sister chromatid separation in meiosis II. Untimely cyclin A2-associated kinase activity in meiosis I leads to precocious sister separation, whereas inhibition of cyclin A2 in meiosis II prevents it. Accordingly, endogenous cyclin A is localized to kinetochores throughout meiosis II, but not in anaphase I. Additionally, we found that cyclin B1, but not cyclin A2, inhibits separase in meiosis I. These findings indicate that separase-dependent cohesin removal is differentially regulated by cyclin B1 and A2 in mammalian meiosis.

  17. [Novel bioconversion systems using a yeast molecular display system].

    Science.gov (United States)

    Shibasaki, Seiji

    2010-11-01

    The budding yeast Saccharomyces cerevisiae has been used for the process of fermentation as well as for studies in biochemistry and molecular biology as a eukaryotic model cell or tool for the analysis of gene functions. Thus, yeast is essential in industries and researches. Yeast cells have a cell wall, which is one characteristic that helps distinguish yeast cells from other eukaryotic cells such as mammalian cells. We have developed a molecular display system using the protein of the yeast cell wall as an anchor for foreign proteins. Yeast cells have been designed for use in sensing and metal adsorption, and have been used in vaccines and for screening novel proteins. Currently, yeast is used not only as a tool for analyzing gene or protein function but also in molecular display technology. The phage display system, which is at the forefront of molecular display technologies, is a powerful tool for screening ligands bound to a target molecule and for analyzing protein-protein interactions; however, in some cases, eukaryotic proteins are not easily expressed by this system. On the other hand, yeast cells have the ability to express eukaryotic proteins and proliferate; thus, these cells display various proteins. Yeast cells are more appropriate for white biotechnology. In this review, displays of enzymes that are important in bioconversion, such as lipases and β-glucosidases, are going to be introduced.

  18. Identification and Quality Assessment of Chrysanthemum Buds by CE Fingerprinting

    Directory of Open Access Journals (Sweden)

    Xiaoping Xing

    2015-01-01

    Full Text Available A simple and efficient fingerprinting method for chrysanthemum buds was developed with the aim of establishing a quality control protocol based on biochemical makeup. Chrysanthemum bud samples were successively extracted by water and alcohol. The fingerprints of the chrysanthemum buds samples were obtained using capillary electrophoresis and electrochemical detection (CE-ED employing copper and carbon working electrodes to capture all of the chemical information. 10 batches of chrysanthemum buds were collected from different regions and various factories to establish the baseline fingerprint. The experimental data of 10 batches electropherogram buds by CE were analyzed by correlation coefficient and the included angle cosine methods. A standard chrysanthemum bud fingerprint including 24 common peaks was established, 12 from each electrode, which was successfully applied to identify and distinguish between chrysanthemum buds from 2 other chrysanthemum species. These results demonstrate that fingerprint analysis can be used as an important criterion for chrysanthemum buds quality control.

  19. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles.

  20. COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing Ku-mediated non-homologous end joining.

    Science.gov (United States)

    Lemmens, Bennie B L G; Johnson, Nicholas M; Tijsterman, Marcel

    2013-01-01

    Successful completion of meiosis requires the induction and faithful repair of DNA double-strand breaks (DSBs). DSBs can be repaired via homologous recombination (HR) or non-homologous end joining (NHEJ), yet only repair via HR can generate the interhomolog crossovers (COs) needed for meiotic chromosome segregation. Here we identify COM-1, the homolog of CtIP/Sae2/Ctp1, as a crucial regulator of DSB repair pathway choice during Caenorhabditis elegans gametogenesis. COM-1-deficient germ cells repair meiotic DSBs via the error-prone pathway NHEJ, resulting in a lack of COs, extensive chromosomal aggregation, and near-complete embryonic lethality. In contrast to its yeast counterparts, COM-1 is not required for Spo11 removal and initiation of meiotic DSB repair, but instead promotes meiotic recombination by counteracting the NHEJ complex Ku. In fact, animals defective for both COM-1 and Ku are viable and proficient in CO formation. Further genetic dissection revealed that COM-1 acts parallel to the nuclease EXO-1 to promote interhomolog HR at early pachytene stage of meiotic prophase and thereby safeguards timely CO formation. Both of these nucleases, however, are dispensable for RAD-51 recruitment at late pachytene stage, when homolog-independent repair pathways predominate, suggesting further redundancy and/or temporal regulation of DNA end resection during meiotic prophase. Collectively, our results uncover the potentially lethal properties of NHEJ during meiosis and identify a critical role for COM-1 in NHEJ inhibition and CO assurance in germ cells.

  1. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  2. Mechanisms of frost adaptation and freeze damage in grapevine buds

    OpenAIRE

    Badulescu Valle, Radu Virgil

    2002-01-01

    Mechanisms of frost hardening in compound (latent) buds of the grapevine cultivar ?Bacchus? were tested with different methods during three winters. The investigated parameters were LTE/HTE (low temperature exotherm/high temperature exotherm), water content, starch, sugar- and anions combination and bud histology. Water content from wood and buds was determined regularly every 2 weeks from March 1998 until Mai 2000. The lowest water content in wood and buds (about 40 %) was found ...

  3. Yeast Lab

    OpenAIRE

    Lewis, Matt; Powell, Jim

    2016-01-01

    Yeast are grown in a small, capped ask, generating carbon dioxide which is trapped in an inverted jar full of colored water. The volume of carbon dioxide produced can either be measured directly or using time-lapse imagery on an iPad or similar. Students are then challenged to model the resulting data. From this exercise students gain greater understand- ing of ODE compartment models, parameter estimation, population dynamics and limiting factors.

  4. The pat1 protein kinase controls transcription of the mating-type genes in fission yeast

    DEFF Research Database (Denmark)

    Nielsen, O; Egel, R; Nielsen, Olaf

    1990-01-01

    The developmental programme of fission yeast brings about a transition from mitotic cell division to the dormant state of ascospores. In response to nitrogen starvation, two cells of opposite mating type conjugate to form a diploid zygote, which then undergoes meiosis and sporulation. This differ......The developmental programme of fission yeast brings about a transition from mitotic cell division to the dormant state of ascospores. In response to nitrogen starvation, two cells of opposite mating type conjugate to form a diploid zygote, which then undergoes meiosis and sporulation...... entry into meiosis. We have analysed transcriptional induction of mating-type genes in various strains--with and without a pat1-ts allele. In wild-type cells of P-mating type derepression occurs in two rounds. First, the mat1-Pc gene is induced in response to nitrogen starvation. Mutants in the map1...... of the mating-type genes in the zygote leads to complete loss of pat1 protein kinase activity causing entry into meiosis. Thus, pat1 can promote its own inactivation. We suggest a model according to which a stepwise inactivation of pat1 leads to sequential derepression of the processes of conjugation...

  5. Genome-wide identification of pheromone-targeted transcrption in fission yeast

    DEFF Research Database (Denmark)

    Xue-Franzen, Y.; Kjærulff, S.; Holmberg, C.

    2006-01-01

    Background Fission yeast cells undergo sexual differentiation in response to nitrogen starvation. In this process haploid M and P cells first mate to form diploid zygotes, which then enter meiosis and sporulate. Prior to mating, M and P cells communicate with diffusible mating pheromones that act......Background Fission yeast cells undergo sexual differentiation in response to nitrogen starvation. In this process haploid M and P cells first mate to form diploid zygotes, which then enter meiosis and sporulate. Prior to mating, M and P cells communicate with diffusible mating pheromones...... that activate a signal transduction pathway in the opposite cell type. The pheromone signalling orchestrates mating and is also required for entry into meiosis. Results Here we use DNA microarrays to identify genes that are induced by M-factor in P cells and by P-factor in M-cells. The use of a cyr1 genetic....... Conclusion We found that the pheromone response was very similar in M and P cells. Surprisingly, pheromone control extended to genes fulfilling their function well beyond the point of entry into meiosis, including numerous genes required for meiotic recombination. Our results suggest that the Ste11...

  6. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  7. Recombination, Pairing, and Synapsis of Homologs during Meiosis.

    Science.gov (United States)

    Zickler, Denise; Kleckner, Nancy

    2015-05-18

    Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.

  8. DNA strand exchange and RecA homologs in meiosis.

    Science.gov (United States)

    Brown, M Scott; Bishop, Douglas K

    2014-12-04

    Homology search and DNA strand-exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand-exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand-exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved.

  9. SmSak, the second Polo-like kinase of the helminth parasite Schistosoma mansoni: conserved and unexpected roles in meiosis.

    Directory of Open Access Journals (Sweden)

    Thavy Long

    Full Text Available Polo-like kinases (Plks are a family of conserved regulators of a variety of events throughout the cell cycle, expanded from one Plk in yeast to five Plks in mammals (Plk1-5. Plk1 is the best characterized member of the Plk family, homolog to the founding member Polo of Drosophila, and plays a major role in cell cycle progression by triggering G2/M transition. Plk4/Sak (for Snk (Serum-inducible kinase akin kinase is a unique member of the family, structurally distinct from other Plk members, with essential functions in centriole duplication. The genome of the trematode parasite Schistosoma mansoni contains only two Plk genes encoding SmPlk1 and SmSak. SmPlk1 has been shown already to be required for gametogenesis and parasite reproduction. In this work, in situ hybridization indicated that the structurally conserved Plk4 protein, SmSak, was largely expressed in schistosome female ovary and vitellarium. Expression of SmSak in Xenopus oocytes confirmed its Plk4 conserved function in centriole amplification. Moreover, analysis of the function of SmSak in meiosis progression of G2-blocked Xenopus oocytes indicated that, in contrast to SmPlk1, SmSak cannot induce G2/M transition in the absence of endogenous Plk1 (Plx1. Unexpectedly, meiosis progression was spontaneously observed in Plx1-depleted oocytes co-expressing SmSak and SmPlk1. Molecular interaction between SmSak and SmPlk1 was confirmed by co-immunoprecipitation of both proteins. These data indicate that Plk1 and Plk4 proteins have the potential to interact and cross-activate in cells, thus attributing for the first time a potential role of Plk4 proteins in meiosis/mitosis entry. This unexpected role of SmSak in meiosis could be relevant to further consider the function of this novel Plk in schistosome reproduction.

  10. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Winter, Edward

    2012-03-01

    Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.

  11. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  12. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response.

    Science.gov (United States)

    Alvaro, Christopher G; Thorner, Jeremy

    2016-04-08

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeastSaccharomyces cerevisiaewere isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview.

  13. MRE11 is required for homologous synapsis and DSB processing in rice meiosis.

    Science.gov (United States)

    Ji, Jianhui; Tang, Ding; Wang, Mo; Li, Yafei; Zhang, Lei; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2013-10-01

    Mre11, a conserved protein found in organisms ranging from yeast to multicellular organisms, is required for normal meiotic recombination. Mre11 interacts with Rad50 and Nbs1/Xrs2 to form a complex (MRN/X) that participates in double-strand break (DSB) ends processing. In this study, we silenced the MRE11 gene in rice and detailed its function using molecular and cytological methods. The OsMRE11-deficient plants exhibited normal vegetative growth but could not set seed. Cytological analysis indicated that in the OsMRE11-deficient plants, homologous pairing was totally inhibited, and the chromosomes were completely entangled as a formation of multivalents at metaphase I, leading to the consequence of serious chromosome fragmentation during anaphase I. Immunofluorescence studies further demonstrated that OsMRE11 is required for homologous synapsis and DSB processing but is dispensable for meiotic DSB formation. We found that OsMRE11 protein was located on meiotic chromosomes from interphase to late pachytene. This protein showed normal localization in zep1, Oscom1 and Osmer3, as well as in OsSPO11-1(RNAi) plants, but not in pair2 and pair3 mutants. Taken together, our results provide evidence that OsMRE11 performs a function essential for maintaining the normal HR process and inhibiting non-homologous recombination during meiosis.

  14. Regulation of meiosis in the foetal mouse gonad.

    Science.gov (United States)

    Evans, C W; Robb, D I; Tuckett, F; Challoner, S

    1982-04-01

    In vitro culture of male and female gonads was found to have significant effects on gonadal structure and development. Culture resulted in a reduction of testicular cord diameter and a reduction in the number of Sertoli cells lining each cord in cross section. In the female, culture increased the percentage of pyknotic oocytes and fewer germ cells per unit of ovary volume reached diplotene. Mixed sex co-culture using different culture methods showed that day 14 p.c. testes inhibited meiosis in day 14 p.c. ovaries when the cultures were continued until the equivalent of day 21 p.c. Day 15 p.c. and mixed age co-cultures of mixed sex provided more equivocal data since meiosis was inhibited in some preparations but not in others. The possibility is suggested that prophase I may proceed irrevocably to diplotene after about day 15 p.c. and thus the inhibitory effects of foetal testes may be a function of female gonadal age. No evidence was found to support the hypothesis that mixed sex co-culture may stimulate meiosis precociously in foetal testes.

  15. Meiosis and retrotransposon silencing during germ cell development in mice.

    Science.gov (United States)

    Ollinger, Rupert; Reichmann, Judith; Adams, Ian R

    2010-03-01

    In mammals, germ cells derive from the pluripotent cells that are present early in embryogenesis, and then differentiate into male sperm or female eggs as development proceeds. Fusion between an egg and a sperm at fertilization allows genetic information from both parents to be transmitted to the next generation, and produces a pluripotent zygote to initiate the next round of embryogenesis. Meiosis is a central event in this self-perpetuating cycle that creates genetic diversity by generating new combinations of existing genetic alleles, and halves the number of chromosomes in the developing male and female germ cells to allow chromosome number to be maintained through successive generations. The developing germ cells also help to maintain genetic and chromosomal stability through the generations by protecting the genome from excessive de novo mutation. Several mouse mutants have recently been characterised whose germ cells exhibit defects in silencing the potentially mutagenic endogenous retroviruses and other retrotransposons that are prevalent in mammalian genomes, and these germ cells also exhibit defects in progression through meiosis. Here we review how mouse germ cells develop and proceed through meiosis, how mouse germ cells silence endogenous retroviruses and other retrotransposons, and discuss why silencing of endogenous retroviruses and other retrotransposons may be required for meiotic progression in mice.

  16. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fision yeast to humans.

    NARCIS (Netherlands)

    S. Parisi; M.J. McKay (Michael); M. Molnar; M.A. Thompson (Anne); P.J. van der Spek (Peter); E. van Drunen-Schoenmaker; R. Kanaar (Roland); E. Lehmann; J.H.J. Hoeijmakers (Jan); J. Kohli

    1999-01-01

    textabstractOur work and that of others defined mitosis-specific (Rad21 subfamily) and meiosis-specific (Rec8 subfamily) proteins involved in sister chromatid cohesion in several eukaryotes, including humans. Mutation of the fission yeast Schizosaccharomyces pombe rec8 gene was previously shown to c

  17. Microcompartments within the yeast plasma membrane.

    Science.gov (United States)

    Merzendorfer, Hans; Heinisch, Jürgen J

    2013-02-01

    Recent research in cell biology makes it increasingly clear that the classical concept of compartmentation of eukaryotic cells into different organelles performing distinct functions has to be extended by microcompartmentation, i.e., the dynamic interaction of proteins, sugars, and lipids at a suborganellar level, which contributes significantly to a proper physiology. As different membrane compartments (MCs) have been described in the yeast plasma membrane, such as those defined by Can1 and Pma1 (MCCs and MCPs), Saccharomyces cerevisiae can serve as a model organism, which is amenable to genetic, biochemical, and microscopic studies. In this review, we compare the specialized microcompartment of the yeast bud neck with other plasma membrane substructures, focusing on eisosomes, cell wall integrity-sensing units, and chitin-synthesizing complexes. Together, they ensure a proper cell division at the end of mitosis, an intricately regulated process, which is essential for the survival and proliferation not only of fungal, but of all eukaryotic cells.

  18. Roles of cohesin and condensin in chromosome dynamics during mammalian meiosis.

    Science.gov (United States)

    Lee, Jibak

    2013-10-01

    Meiosis is a key step for sexual reproduction in which chromosome number is halved by two successive meiotic divisions after a single round of DNA replication. In the first meiotic division (meiosis I), homologous chromosomes pair, synapse, and recombine with their partners in prophase I. As a result, homologous chromosomes are physically connected until metaphase I and then segregated from each other at the onset of anaphase I. In the subsequent second meiotic division (meiosis II), sister chromatids are segregated. Chromosomal abnormality arising during meiosis is one of the major causes of birth defects and congenital disorders in mammals including human and domestic animals. Hence understanding of the mechanism underlying these unique chromosome behavior in meiosis is of great importance. This review focuses on the roles of cohesin and condensin, and their regulation in chromosome dynamics during mammalian meiosis.

  19. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants

    OpenAIRE

    Chung-Ju Rachel Wang; Ching-Chih eTseng

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduc...

  20. Mechanism of supercooling in flower bud of Camellia oleifea

    Institute of Scientific and Technical Information of China (English)

    苏维埃; 潘良文

    1995-01-01

    It is the first time for MRI to be used in the research of flower buds supercooling. Directobservation on freezing course of living flower buds of Camellia yuhsienensis by MRI and tissue browning test showed that freezing order of the flower organs is bud axis, scale, petal, pistil and stamen. It is coincident with the direction of ice development from bud axes to flower organs upwards. The corresponding results from MRI and freezing-fixation showed that the water translocation from flower organs to axes and scales is carried on in the course of bud freezing. ’H spectral measurement of NMR was used to follow the decrease of unfrozen water in the buds during the cooling.

  1. The fission yeast inhibitor of growth (ING) protein Png1p functions in response to DNA damage.

    Science.gov (United States)

    Chen, Jian-Qiang; Li, Yang; Pan, Xian; Lei, Bing-Kun; Chang, Cheng; Liu, Zheng-Xun; Lu, Hong

    2010-05-21

    In budding yeast and human cells, ING (inhibitor of growth) tumor suppressor proteins play important roles in response to DNA damage by modulating chromatin structure through collaborating with histone acetyltransferase or histone deacetylase complexes. However, the biological functions of ING family proteins in fission yeast are poorly defined. Here, we report that Png1p, a fission yeast ING homolog protein, is required for cell growth under normal and DNA-damaged conditions. Png1p was further confirmed to regulate histone H4 acetylation through collaboration with the MYST family histone acetyltransferase 1 (Mst1). Additionally, both fission yeast PNG1 and MST1 can functionally complement their budding yeast correspondence homologs YNG2 and ESA1, respectively. These results suggest that ING proteins in fission yeast might also conserve function, similar to ING proteins in budding yeast and human cells. We also showed that decreased acetylation in Deltapng1 cells resulted in genome-wide down-regulation of 756 open reading frames, including the central DNA repair gene RAD22. Overexpression of RAD22 partially rescued the png1 mutant phenotype under both normal and DNA-damaged conditions. Furthermore, decreased expression of RAD22 in Deltapng1 cells was confirmed to be caused by decreased H4 acetylation at its promoter. Altogether, these results indicate that Png1p is required for histone H4 acetylation and functions upstream of RAD22 in the DNA damage response pathway.

  2. Nociceptin and meiosis during spermatogenesis in postnatal testes.

    Science.gov (United States)

    Eto, Ko

    2015-01-01

    Phosphorylated Rec8, a key component of cohesin, mediates the association and disassociation, "dynamics," of chromosomes occurring in synaptonemal complex formation, crossover recombination, and sister chromatid cohesion during meiosis in germ cells. Yet, the extrinsic factors triggering meiotic chromosome dynamics remained unclear. In postnatal testes, follicle-stimulating hormone (FSH) acts directly on somatic Sertoli cells to activate gene expression via an intracellular signaling pathway composed of cAMP, cAMP-dependent protein kinase (PKA), and cAMP-response element-binding protein (CREB), and promotes germ cell development and spermatogenesis indirectly. Yet, the paracrine factors mediating the FSH effects to germ cells remained elusive. We have shown that nociceptin, known as a neuropeptide, is upregulated by FSH signaling through cAMP/PKA/CREB pathway in Sertoli cells of postnatal murine testes. Chromatin immunoprecipitation from Sertoli cells demonstrated that CREB phosphorylated at Ser133 associates with prepronociceptin gene encoding nociceptin. Analyses with Sertoli cells and testes revealed that both prepronociceptin mRNA and the nociceptin peptide are induced after FSH signaling is activated. In addition, the nociceptin peptide is induced in testes after 9 days post partum following FSH surge. Thus, our findings may identify nociceptin as a novel paracrine mediator of the FSH effects in the regulation of spermatogenesis; however, very little has known about the functional role of nociceptin in spermatogenesis. We have shown that nociceptin induces Rec8 phosphorylation, triggering chromosome dynamics, during meiosis in spermatocytes of postnatal murine testes. The nociceptin receptor Oprl-1 is exclusively expressed in the plasma membrane of testicular germ cells, mostly spermatocytes. Treatment of testes with nociceptin resulted in a rapid phosphorylation of Rec8. Injection of nociceptin into mice stimulated Rec8 phosphorylation and meiotic chromosome

  3. Possible Role of Aurora-C in Meiosis

    Directory of Open Access Journals (Sweden)

    Kuo-Tai eYang

    2015-08-01

    Full Text Available The meiotic generation of haploid gametes with equal contents of genetic material is important for sexual reproduction in mammals. Errors in the transmission of chromosomes during meiosis may lead to aneuploidy, which is the leading cause of miscarriage and congenital birth defects in humans. The Aurora kinases, which include Aurora-A, Aurora-B, and Aurora-C, are highly conserved serine-threonine kinases that play essential roles in centrosome function, chromosome segregation, and cytokinesis during mitosis and meiosis. While Aurora-A and Aurora-B have been extensively studied in mitosis, the role of Aurora-C in meiosis is only now starting to be revealed. For example, the perturbation of Aurora-C kinase activity by microinjection of Aurora-C-kinase-dead mutant mRNAs into mouse oocytes induced multiple defects, including chromosome misalignment, abnormal kinetochore-microtubule attachment, premature chromosome segregation, and failure of cytokinesis during meiotic division. However, the analysis of such defects is complicated by the possibility that Aurora-B may be present in mammalian germ cells. Interestingly, a homozygous mutation of Aurora-C in humans leads to the production of large-headed polyploid spermatozoa and causes male infertility, but homozygous females are fertile. Mouse studies regarding the roles of Aurora-B and Aurora-C in female meiotic divisions have yielded inconsistent results, and it has proven difficult to explain why homozygous human females have no significant clinical phenotype. In this review, we will discuss the controversial status of Aurora-B in oocytes and the possible role of Aurora-C during meiotic division.

  4. Restarting life: fertilization and the transition from meiosis to mitosis.

    Science.gov (United States)

    Clift, Dean; Schuh, Melina

    2013-09-01

    Fertilization triggers a complex cellular programme that transforms two highly specialized meiotic germ cells, the oocyte and the sperm, into a totipotent mitotic embryo. Linkages between sister chromatids are remodelled to support the switch from reductional meiotic to equational mitotic divisions; the centrosome, which is absent from the egg, is reintroduced; cell division shifts from being extremely asymmetric to symmetric; genomic imprinting is selectively erased and re-established; and protein expression shifts from translational control to transcriptional control. Recent work has started to reveal how this remarkable transition from meiosis to mitosis is achieved.

  5. Mammalian ovary differentiation - a focus on female meiosis.

    Science.gov (United States)

    Baillet, Adrienne; Mandon-Pepin, Béatrice

    2012-06-05

    Over the past 50 years, the ovary development has been subject of fewer studies as compare to the male pathway. Nevertheless due to the advancement of genetics, mouse ES cells and the development of genetic models, studies of ovarian differentiation was boosted. This review emphasizes some of new progresses in the research field of the mammalian ovary differentiation that have occurred in recent years with focuses of the period around prophase I of meiosis and of recent roles of small non-RNAs in the ovarian gene expression.

  6. 5'-end sequences of budding yeast full-length cDNA clones - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...a entries 83,706 entries - Joomla SEF URLs by Artio About This Database Database Description Download License Update

  7. Yeast Interacting Proteins Database: YMR124W, YLR031W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available in localizes to the cell periphery, cytoplasm, bud, and bud neck; interacts with Crm1p in two-hybrid assay; ... periphery, cytoplasm, bud, and bud neck; interacts with Crm1p in two-hybrid assay

  8. Regeneration of Blue Honeysuckle via Dormant Axillary Buds

    Institute of Scientific and Technical Information of China (English)

    QU Guiqin; HUANG Longshuang; HUO Junwei

    2008-01-01

    The optimum medium for dormant axillary buds culture of blue honeysuckle was screened according to the growth rate and elongation rate by inoculating the buds on culture medium with various 6-BA and iron-salt concentration. About 35 days, the stretched stem buds were divided into strong root system after inoculated on 1/2 MS+1.0 mg·L-1 IBA rooting medium. Amount of qualified tissue-cultured young plants could be obtained by the stretched stem buds reproduction.

  9. Development Correlations of the Buds of Grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Liliana ROTARU

    2010-06-01

    Full Text Available The development characteristics of different buds of the grapevine are mainly related by stimulation and/or inhibition effects, the action of which is still inexplicable. The present study examines the development dynamics of the buds of a one-year old branch after excision of different buds and the application of ?-naphtyl acetic acid (ANA, as well as the growth capacity of each bud individually. We verified the effects of acrotony cited previously by various researchers. These effects are due to different developmental characteristics of which could to lay the groundwork for the improvement of different productions methods.

  10. First-Year Biology Students' Understandings of Meiosis: An Investigation Using a Structural Theoretical Framework

    Science.gov (United States)

    Quinn, Frances; Pegg, John; Panizzon, Debra

    2009-01-01

    Meiosis is a biological concept that is both complex and important for students to learn. This study aims to explore first-year biology students' explanations of the process of meiosis, using an explicit theoretical framework provided by the Structure of the Observed Learning Outcome (SOLO) model. The research was based on responses of 334…

  11. Meiosis I chromosome segregation is established through regulation of microtubule-kinetochore interactions.

    Science.gov (United States)

    Miller, Matthew P; Unal, Elçin; Brar, Gloria A; Amon, Angelika

    2012-12-18

    During meiosis, a single round of DNA replication is followed by two consecutive rounds of nuclear divisions called meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate, while sister chromatids remain together. Determining how this unusual chromosome segregation behavior is established is central to understanding germ cell development. Here we show that preventing microtubule-kinetochore interactions during premeiotic S phase and prophase I is essential for establishing the meiosis I chromosome segregation pattern. Premature interactions of kinetochores with microtubules transform meiosis I into a mitosis-like division by disrupting two key meiosis I events: coorientation of sister kinetochores and protection of centromeric cohesin removal from chromosomes. Furthermore we find that restricting outer kinetochore assembly contributes to preventing premature engagement of microtubules with kinetochores. We propose that inhibition of microtubule-kinetochore interactions during premeiotic S phase and prophase I is central to establishing the unique meiosis I chromosome segregation pattern.DOI:http://dx.doi.org/10.7554/eLife.00117.001.

  12. An Interactive Modeling Lesson Increases Students' Understanding of Ploidy during Meiosis

    Science.gov (United States)

    Wright, L. Kate; Newman, Dina L.

    2011-01-01

    Chromosome structure is confusing to students at all levels, and chromosome behavior during meiosis is a notoriously difficult topic. Undergraduate biology majors are exposed to the process of meiosis numerous times during their presecondary and postsecondary education, yet understanding of key concepts, such as the point at which haploidy is…

  13. TACC3 Is Important for Correct Progression of Meiosis in Bovine Oocytes

    NARCIS (Netherlands)

    Mahdipour, Mahdi; Leitoguinho, Ana Rita Canhoto; Zacarias Silva, Ricardo A; van Tol, Helena T A; Stout, Tom A E; Rodrigues, Gabriela; Roelen, Bernard A J

    2015-01-01

    Transforming acidic coiled-coil (TACC) proteins are key players during mitosis via stabilization of the spindle. The roles of TACCs during meiosis are however less clear. We used bovine oocytes to study the expression and function of TACC3 during meiosis. TACC3 mRNA was detected in bovine oocytes du

  14. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes

    Directory of Open Access Journals (Sweden)

    May Gregory D

    2010-12-01

    Full Text Available Abstract Background Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster, the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes. Results A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE genes (1,036 were also found to have up-regulated expression levels in meiocytes. Conclusion These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.

  15. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age.

    Science.gov (United States)

    Jones, Keith T

    2008-01-01

    Mammalian oocytes begin meiosis in the fetal ovary, but only complete it when fertilized in the adult reproductive tract. This review examines the cell biology of this protracted process: from entry of primordial germ cells into meiosis to conception. The defining feature of meiosis is two consecutive cell divisions (meiosis I and II) and two cell cycle arrests: at the germinal vesicle (GV), dictyate stage of prophase I and at metaphase II. These arrests are spanned by three key events, the focus of this review: (i) passage from mitosis to GV arrest during fetal life, regulated by retinoic acid; (ii) passage through meiosis I and (iii) completion of meiosis II following fertilization, both meiotic divisions being regulated by cyclin-dependent kinase (CDK1) activity. Meiosis I in human oocytes is associated with an age-related high rate of chromosomal mis-segregation, such as trisomy 21 (Down's syndrome), resulting in aneuploid conceptuses. Although aneuploidy is likely to be multifactorial, oocytes from older women may be predisposed to be becoming aneuploid as a consequence of an age-long decline in the cohesive ties holding chromosomes together. Such loss goes undetected by the oocyte during meiosis I either because its ability to respond and block division also deteriorates with age, or as a consequence of being inherently unable to respond to the types of segregation defects induced by cohesion loss.

  16. Lipid raft involvement in yeast cell growth and death.

    Science.gov (United States)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na(+), K(+), and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  17. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  18. Genomewide identification of pheromone-targeted transcription in fission yeast

    Directory of Open Access Journals (Sweden)

    Wright Anthony

    2006-11-01

    Full Text Available Abstract Background Fission yeast cells undergo sexual differentiation in response to nitrogen starvation. In this process haploid M and P cells first mate to form diploid zygotes, which then enter meiosis and sporulate. Prior to mating, M and P cells communicate with diffusible mating pheromones that activate a signal transduction pathway in the opposite cell type. The pheromone signalling orchestrates mating and is also required for entry into meiosis. Results Here we use DNA microarrays to identify genes that are induced by M-factor in P cells and by P-factor in M-cells. The use of a cyr1 genetic background allowed us to study pheromone signalling independently of nitrogen starvation. We identified a total of 163 genes that were consistently induced more than two-fold by pheromone stimulation. Gene disruption experiments demonstrated the involvement of newly discovered pheromone-induced genes in the differentiation process. We have mapped Gene Ontology (GO categories specifically associated with pheromone induction. A direct comparison of the M- and P-factor induced expression pattern allowed us to identify cell-type specific transcripts, including three new M-specific genes and one new P-specific gene. Conclusion We found that the pheromone response was very similar in M and P cells. Surprisingly, pheromone control extended to genes fulfilling their function well beyond the point of entry into meiosis, including numerous genes required for meiotic recombination. Our results suggest that the Ste11 transcription factor is responsible for the majority of pheromone-induced transcription. Finally, most cell-type specific genes now appear to be identified in fission yeast.

  19. Dysregulation of the mitosis-meiosis switch in testicular carcinoma in situ

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Almstrup, Kristian

    2013-01-01

    neoplasms arise frequently in undervirilized and dysgenetic gonads and the striking physiological difference between meiotic entry in ovaries (fetal life) versus testes (at puberty), this study aimed to investigate whether errors in regulation of meiosis may be implicated in the pathogenesis of CIS or its...... invasive progression to TGCT. The main focus was on a key sex differentiation and meiosis regulator, DMRT1, which has also been linked to TGCT risk in recent genetic association studies. Expression patterns of DMRT1 and other meiosis regulators (SCP3, DMC1, STRA8, CYP26B1, NANOS2, NANOS3) were investigated...... in pre- and post-pubertal CIS samples and TGCT by quantitative RT-PCR and immunohistochemistry. The results demonstrated that meiosis markers and meiosis inhibitors were simultaneously expressed in CIS cells, in both pre- and post-pubertal testis samples. DMRT1 was present in a restricted subset of CIS...

  20. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip

    Science.gov (United States)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L.; Huissoon, Jan P.

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  1. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip.

    Science.gov (United States)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L; Huissoon, Jan P

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  2. Tumor budding in upper gastrointestinal carcinomas

    Directory of Open Access Journals (Sweden)

    Viktor Hendrik Koelzer

    2014-08-01

    Full Text Available The basis of personalized medicine in oncology is the prediction of an individual’s risk of relapse and death from disease. The presence of tumor budding (TB at the tumor-host interface of gastrointestinal cancers has been recognized as a hallmark of unfavorable disease biology. TB is defined as the presence of dedifferentiated cells or small clusters of up to five cells at the tumor invasive front and can be observed in aggressive carcinomas of the esophagus, stomach, pancreas, ampulla, colon and rectum. Presence of TB reproducibly correlates with advanced tumor stage, frequent lymphovascular invasion, nodal and distant metastasis. The UICC has officially recognized TB as additional independent prognostic factor in cancers of the colon and rectum. Recent studies have also characterized TB as a promising prognostic indicator for clinical management of esophageal squamous cell carcinoma, adenocarcinoma of the gastro-esophageal junction and gastric adenocarcinoma. However, several important issues have to be addressed for application in daily diagnostic practice: 1 Validation of prognostic scoring systems for tumor budding in large, multi-center studies 2 Consensus on the optimal assessment method 3 Inter-observer reproducibility. This review provides a comprehensive analysis of TB in cancers of the upper gastrointestinal tract including critical appraisal of perspectives for further study.

  3. Molecular mechanism of arenavirus assembly and budding.

    Science.gov (United States)

    Urata, Shuzo; Yasuda, Jiro

    2012-10-10

    Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2.

  4. Molecular Mechanism of Arenavirus Assembly and Budding

    Directory of Open Access Journals (Sweden)

    Shuzo Urata

    2012-10-01

    Full Text Available Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2.

  5. Retinoic acid activates two pathways required for meiosis in mice.

    Directory of Open Access Journals (Sweden)

    Jana Koubova

    2014-08-01

    Full Text Available In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid (RA, the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for chromosome synapsis and segregation. This RA induction of Rec8 occurs in parallel with the induction of Stra8, and independently of Stra8 function, and it is conserved between the sexes. Further, RA induction of Rec8, like that of Stra8, requires the germ-cell-intrinsic competence factor Dazl. Our findings strengthen the importance of RA and Dazl in the meiotic transition, provide important details about the Stra8 pathway, and open avenues to investigate early meiosis through analysis of Rec8 induction and function.

  6. Whole-mount immunolocalization to study female meiosis in Arabidopsis.

    Science.gov (United States)

    Escobar-Guzmán, Rocio; Rodríguez-Leal, Daniel; Vielle-Calzada, Jean-Philippe; Ronceret, Arnaud

    2015-10-01

    Here we describe a whole-mount immunolocalization protocol to follow the subcellular localization of proteins during female meiosis in Arabidopsis thaliana, a model species that is used to study sexual reproduction in flowering plants. By using confocal microscopy, the procedure allows one to follow megasporogenesis at all stages before differentiation of the functional megaspore. This in particular includes stages that occur during prophase I, such as the installation of the axial and central elements of the synaptonemal complex along the meiotic chromosomes. In contrast to procedures that require microtome sectioning or enzymatic isolation and smearing to separate female meiocytes from neighboring cells, this 3-day protocol preserves the constitution of the developing primordium and incorporates the architecture of the ovule to provide a temporal and spatial context to meiotic divisions. This opens up the possibility to systematically compare the dynamics of protein localization during female and male meiosis. Steps describe tissue collection and fixation, preparation of slides and polyacrylamide embedding, tissue permeabilization, antibody incubation, propidium iodide staining, and finally image acquisition by confocal microscopy. The procedure adds an essential technique to the toolkit of plant meiotic analysis, and it represents a framework for technical adaptations that could soon allow the analysis of plant reproductive alternatives to sexual reproduction.

  7. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    Science.gov (United States)

    Shin, Yong-Hyun; Choi, Youngsok; Erdin, Serpil Uckac; Yatsenko, Svetlana A; Kloc, Malgorzata; Yang, Fang; Wang, P Jeremy; Meistrich, Marvin L; Rajkovic, Aleksandar

    2010-11-04

    Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/) (-)) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/) (-) testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/) (-) ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/) (-) oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing.

  8. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    Directory of Open Access Journals (Sweden)

    Yong-Hyun Shin

    2010-11-01

    Full Text Available Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/ (- testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/ (- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/ (- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/ (- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing.

  9. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum.

    Science.gov (United States)

    Kebrom, Tesfamichael H; Mullet, John E

    2015-08-01

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Bud outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h post-defoliation of the second leaf. At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.

  10. Cell to cell signalling during vertebrate limb bud development

    NARCIS (Netherlands)

    Panman, Lia

    2004-01-01

    Communication between cells is essential during embryonic development. The vertebrate limb bud provides us a model to study signalling interactions between cells during patterning of embryonic tissues and organogenesis. In chapter 1 I give an introduction about limb bud development that is focussed

  11. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.

  12. Genome-wide identification of pheromone-targeted transcrption in fission yeast

    DEFF Research Database (Denmark)

    Xue-Franzen, Y.; Kjærulff, S.; Holmberg, C.;

    2006-01-01

    Background Fission yeast cells undergo sexual differentiation in response to nitrogen starvation. In this process haploid M and P cells first mate to form diploid zygotes, which then enter meiosis and sporulate. Prior to mating, M and P cells communicate with diffusible mating pheromones that act......Background Fission yeast cells undergo sexual differentiation in response to nitrogen starvation. In this process haploid M and P cells first mate to form diploid zygotes, which then enter meiosis and sporulate. Prior to mating, M and P cells communicate with diffusible mating pheromones...... that activate a signal transduction pathway in the opposite cell type. The pheromone signalling orchestrates mating and is also required for entry into meiosis. Results Here we use DNA microarrays to identify genes that are induced by M-factor in P cells and by P-factor in M-cells. The use of a cyr1 genetic...... background allowed us to study pheromone signalling independently of nitrogen starvation. We identified a total of 163 genes that were consistently induced more than two-fold by pheromone stimulation. Gene disruption experiments demonstrated the involvement of newly discovered pheromone-induced genes...

  13. Cell Biological Characterization of Male Meiosis and Pollen Development in Rice

    Institute of Scientific and Technical Information of China (English)

    Chang-Bin CHEN; Yun-Yuan XU; Hong MA; Kang CHONG

    2005-01-01

    Little systematic analysis has been undertaken in rice (Oryza sativa L.) on the stages of male meiosis from leptotene to telophase Ⅱ or of pollen development from microspores to mature pollen grains.The present study describes multiple stages in detail from analysis of rice chromosome spreading with staining of 4',6-diamidino-2-phenylindole. The description of normal wild-type male meiosis provides an important morphological reference for analyses of meiotic mutants. Meiosis in rice is largely similar to those of the well characterizing model plants Arabidopsis thaliana L. and Zea mays L. However, rice meiosis differs from that in Arabidopsis in that rice meiosis I is followed by the formation of a cell plate, instead of an organelle band that forms between the two nuclei and persist through meiosis Ⅱ. This suggests a difference in the control of organelle biogenesis and distribution and cytokinesis. Our results should facilitate studies of rice meiosis and pollen development using molecular genetic and cell biological approaches.

  14. Dma1-dependent degradation of SIN proteins during meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Krapp, Andrea; Simanis, Viesturs

    2014-07-15

    The Schizosaccharomyces pombe septation initiation network (SIN) is required for cytokinesis during vegetative growth and for spore formation during meiosis. Regulation of the SIN during mitosis has been studied extensively, but less is known about its meiotic regulation. Here, we show that several aspects of SIN regulation differ between mitosis and meiosis. First, the presence of GTP-bound Spg1p is not the main determinant of the timing of Cdc7p and Sid1p association with the spindle pole body (SPB) during meiosis. Second, the localisation dependencies of SIN proteins differ from those in mitotic cells, suggesting a modified functional organisation of the SIN during meiosis. Third, there is stage-specific degradation of SIN components in meiosis; Byr4p is degraded after meiosis I, whereas the degradation of Cdc7p, Cdc11p and Sid4p occurs after the second meiotic division and depends upon the ubiquitin ligase Dma1p. Finally, Dma1p-dependent degradation is not restricted to the SIN, as we show that Dma1p is needed for the degradation of Mcp6p (also known as Hrs1p) during meiosis I. Taken together, these data suggest that stage-specific targeted proteolysis plays an important role in regulating meiotic progression.

  15. Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells.

    Science.gov (United States)

    Mu, Xinyi; Wen, Jing; Guo, Meng; Wang, Jianwei; Li, Ge; Wang, Zhengpin; Wang, Yijing; Teng, Zhen; Cui, Yan; Xia, Guoliang

    2013-03-01

    Meiotic initiation of germ cells at 13.5 dpc (days post-coitus) indicates female sex determination in mice. Recent studies reveal that mesonephroi-derived retinoic acid (RA) is the key signal for induction of meiosis. However, whether the mesonephroi is dispensable for meiosis is unclear and the role of the ovary in this meiotic process remains to be clarified. This study provides data that RA derived from fetal ovaries is sufficient to induce germ cell meiosis in a fetal ovary culture system. When fetal ovaries were collected from 11.5 to 13.5 dpc fetuses, isolated and cultured in vitro, germ cells enter meiosis in the absence of mesonephroi. To exclude RA sourcing from mesonephroi, 11.5 dpc urogenital ridges (UGRs; mesonephroi and ovary complexes) were treated with diethylaminobenzaldehyde (DEAB) to block retinaldehyde dehydrogenase (RALDH) activity in the mesonephros and the ovary. Meiosis occurred when DEAB was withdrawn and the mesonephros was removed 2 days later. Furthermore, RALDH1, rather than RALDH2, serves as the major RA synthetase in UGRs from 12.5 to 15.5 dpc. DEAB treatment to the ovary alone was able to block germ cell meiotic entry. We also found that exogenously supplied RA dose-dependently reduced germ cell numbers in ovaries by accelerating the entry into meiosis. These results suggest that ovary-derived RA is responsible for meiosis initiation.

  16. Exposure to Brefeldin A promotes initiation of meiosis in murine female germ cells.

    Science.gov (United States)

    Zhang, Lian-Jun; Chen, Bo; Feng, Xin-Lei; Ma, Hua-Gang; Sun, Li-Lan; Feng, Yan-Min; Liang, Gui-Jin; Cheng, Shun-Feng; Li, Lan; Shen, Wei

    2015-01-01

    In mammals, ontogenesis starts from a fusion of spermatozoon and oocyte, which are produced by reductive nuclear division of a diploid germ cell in a specialised but complex biological process known as meiosis. However, little is known about the mechanism of meiotic initiation in germ cells, although many factors may be responsible for meiosis both in male and female gonads. In this study, 11.5 days post coitum (dpc) female fetal mouse genital ridges were cultured in vitro with exposure to Brefeldin A (BFA) for 6h, and the changes in meiosis were detected. Synaptonemal-complex analysis implied that BFA played a positive role in meiosis initiation and this hypothesis was confirmed by quantitative PCR of meiosis-specific genes: stimulated by retinoic acid gene 8 (Stra8) and deleted in a zoospermia-like (DAZL). At the same time, mRNA expression of retinoic acid synthetase (Raldh2) and retinoic acid (RA) receptors increased in female gonads with in vitro exposure to BFA. Transplanting genital ridges treated with BFA into the kidney capsule of immunodeficient mice demonstrated that the development capacity of female germ cells was normal, while formation of primordial follicles was seen to be a result of accelerated meiosis after exposure to BFA. In conclusion, the study indicated that BFA stimulated meiosis initiation partly by RA signalling and then promoted the development of follicles.

  17. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants

    Directory of Open Access Journals (Sweden)

    Chung-Ju Rachel Wang

    2014-09-01

    Full Text Available Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation.

  18. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants.

    Science.gov (United States)

    Wang, Chung-Ju R; Tseng, Ching-Chih

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation.

  19. Ipl1/Aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis.

    Directory of Open Access Journals (Sweden)

    Louise Newnham

    Full Text Available Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics.

  20. Decellularized Tooth Bud Scaffolds for Tooth Regeneration.

    Science.gov (United States)

    Zhang, W; Vazquez, B; Oreadi, D; Yelick, P C

    2017-01-01

    Whole tooth regeneration approaches currently are limited by our inability to bioengineer full-sized, living replacement teeth. Recently, decellularized organ scaffolds have shown promise for applications in regenerative medicine by providing a natural extracellular matrix environment that promotes cell attachment and tissue-specific differentiation leading to full-sized organ regeneration. We hypothesize that decellularized tooth buds (dTBs) created from unerupted porcine tooth buds (TBs) can be used to guide reseeded dental cell differentiation to form whole bioengineered teeth, thereby providing a potential off-the-shelf scaffold for whole tooth regeneration. Porcine TBs were harvested from discarded 6-mo-old pig jaws, and decellularized by successive sodium dodecyl sulfate/Triton-X cycles. Four types of replicate implants were used in this study: 1) acellular dTBs; 2) recellularized dTBs seeded with porcine dental epithelial cells, human dental pulp cells, and human umbilical vein endothelial cells (recell-dTBs); 3) dTBs seeded with bone morphogenetic protein (BMP)-2 (dTB-BMPs); and 4) freshly isolated nondecellularized natural TBs (nTBs). Replicate samples were implanted into the mandibles of host Yucatan mini-pigs and grown for 3 or 6 mo. Harvested mandibles with implanted TB constructs were fixed in formalin, decalcified, embedded in paraffin, sectioned, and analyzed via histological methods. Micro-computed tomography (CT) analysis was performed on harvested 6-mo samples prior to decalcification. All harvested constructs exhibited a high degree of cellularity. Significant production of organized dentin and enamel-like tissues was observed in dTB-recell and nTB implants, but not in dTB or dTB-BMP implants. Micro-CT analyses of 6-mo implants showed the formation of organized, bioengineered teeth of comparable size to natural teeth. To our knowledge, these results are the first to describe the potential use of dTBs for functional whole tooth regeneration.

  1. The Chromosomal Courtship Dance-homolog pairing in early meiosis.

    Science.gov (United States)

    Klutstein, Michael; Cooper, Julia Promisel

    2014-02-01

    The intermingling of genomes that characterizes sexual reproduction requires haploid gametes in which parental homologs have recombined. For this, homologs must pair during meiosis. In a crowded nucleus where sequence homology is obscured by the enormous scale and packaging of the genome, partner alignment is no small task. Here we review the early stages of this process. Chromosomes first establish an initial docking site, usually at telomeres or centromeres. The acquisition of chromosome-specific patterns of binding factors facilitates homolog recognition. Chromosomes are then tethered to the nuclear envelope (NE) and subjected to nuclear movements that 'shake off' inappropriate contacts while consolidating homolog associations. Thereafter, homolog connections are stabilized by building the synaptonemal complex or its equivalent and creating genetic crossovers. Recent perspectives on the roles of these stages will be discussed.

  2. Effective chromosome pairing requires chromatin remodeling at the onset of meiosis

    Science.gov (United States)

    Colas, Isabelle; Shaw, Peter; Prieto, Pilar; Wanous, Michael; Spielmeyer, Wolfgang; Mago, Rohit; Moore, Graham

    2008-01-01

    During meiosis, homologous chromosomes (homologues) recognize each other and then intimately associate. Studies exploiting species with large chromosomes reveal that chromatin is remodeled at the onset of meiosis before this intimate association. However, little is known about the effect the remodeling has on pairing. We show here in wheat that chromatin remodeling of homologues can only occur if they are identical or nearly identical. Moreover, a failure to undergo remodeling results in reduced pairing between the homologues. Thus, chromatin remodeling at the onset of meiosis enables the chromosomes to become competent to pair and recombine efficiently. PMID:18417451

  3. Genetic regulation of meiosis in polyploid species: new insights into an old question.

    Science.gov (United States)

    Cifuentes, Marta; Grandont, Laurie; Moore, Graham; Chèvre, Anne Marie; Jenczewski, Eric

    2010-04-01

    Precise chromosome segregation is vital for polyploid speciation. Here, we highlight recent findings that revitalize the old question of the genetic control of diploid-like meiosis behaviour in polyploid species. We first review new information on the genetic control of autopolyploid and allopolyploid cytological diploidization, notably in wheat and Brassica. These major advances provide new opportunities for speculating about the adaptation of meiosis during polyploid evolution. Some of these advances are discussed, and it is suggested that research on polyploidy and on meiosis should no longer be unlinked.

  4. Aurora kinase A controls meiosis I progression in mouse oocytes.

    Science.gov (United States)

    Saskova, Adela; Solc, Petr; Baran, Vladimir; Kubelka, Michal; Schultz, Richard M; Motlik, Jan

    2008-08-01

    Aurora kinase A (AURKA), which is a centrosome-localized serine/threonine kinase crucial for cell cycle control, is critically involved in centrosome maturation and spindle assembly in somatic cells. Active T288 phosphorylated AURKA localizes to the centrosome in the late G(2) and also spreads to the minus ends of mitotic spindle microtubules. AURKA activates centrosomal CDC25B and recruits cyclin B1 to centrosomes. We report here functions for AURKA in meiotic maturation of mouse oocytes, which is a model system to study the G(2) to M transition. Whereas AURKA is present throughout the entire GV-stage oocyte with a clear accumulation on microtubule organizing centers (MTOC), active AURKA becomes entirely localized to MTOCs shortly before germinal vesicle breakdown. In contrast to somatic cells in which active AURKA is present at the centrosomes and minus ends of microtubules, active AURKA is mainly located on MTOCs at metaphase I (MI) in oocytes. Inhibitor studies using Roscovitine (CDK1 inhibitor), LY-294002 (PI3K inhibitor) and SH-6 (PKB inhibitor) reveal that activation of AURKA localized on MTOCs is independent on PI3K-PKB and CDK1 signaling pathways and MOTC amplification is observed in roscovitine- and SH-6-treated oocytes that fail to undergo nuclear envelope breakdown. Moreover, microinjection of Aurka mRNA into GV-stage oocytes cultured in 3-isobutyl-1-methyl xanthine (IBMX)-containing medium to prevent maturation also results in MOTC amplification in the absence of CDK1 activation. Overexpression of AURKA also leads to formation of an abnormal MI spindle, whereas RNAi-mediated reduction of AURKA interferes with resumption of meiosis and spindle assembly. Results of these experiments indicate that AURKA is a critical MTOC-associated component involved in resumption of meiosis, MTOC multiplication, proper spindle formation and the metaphase I-metaphase II transition.

  5. Development of Crystalline Peroxisomes in Methanol-Grown Cells of the Yeast Hansenula polymorpha and Its Relation to Environmental Conditions

    NARCIS (Netherlands)

    Veenhuis, M.; Dijken, J.P. van; Pilon, S.A.F.; Harder, W.

    1978-01-01

    The development of peroxisomes has been studied in cells of the yeast Hansenula polymorpha during growth on methanol in batch and chemostat cultures. During bud formation, new peroxisomes were generated by the separation of small peroxisomes from mature organelles in the mother cells. The number of

  6. Yeast That Smell

    Directory of Open Access Journals (Sweden)

    Eugenia Y Xu

    2008-08-01

    Full Text Available The fundamental mechanism of olfactory receptor activation has been conserved from yeast to humans. Engineered yeast cells can smell some of the same odorants as humans can, which makes yeast an ideal model system for studying human olfaction. Furthermore, if engineered yeast cells are incorporated into sensory arrays, they can be used as biosensors or artificial noses.Keywords: Yeast, olfactory receptor, G protein-coupled receptor, biosensor, smellReceived: 31 July 2008 / Received in revised form: 6 August 2008, Accepted: 13 August 2008, Published online: 17 August 2008

  7. A permeability barrier surrounds taste buds in lingual epithelia.

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste.

  8. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.

    Science.gov (United States)

    Muller, Nicolas; Piel, Matthieu; Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-04-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other.

  9. Genotyping 1000 yeast strains by next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Wilkening Stefan

    2013-02-01

    Full Text Available Abstract Background The throughput of next-generation sequencing machines has increased dramatically over the last few years; yet the cost and time for library preparation have not changed proportionally, thus representing the main bottleneck for sequencing large numbers of samples. Here we present an economical, high-throughput library preparation method for the Illumina platform, comprising a 96-well based method for DNA isolation for yeast cells, a low-cost DNA shearing alternative, and adapter ligation using heat inactivation of enzymes instead of bead cleanups. Results Up to 384 whole-genome libraries can be prepared from yeast cells in one week using this method, for less than 15 euros per sample. We demonstrate the robustness of this protocol by sequencing over 1000 yeast genomes at ~30x coverage. The sequence information from 768 yeast segregants derived from two divergent S. cerevisiae strains was used to generate a meiotic recombination map at unprecedented resolution. Comparisons to other datasets indicate a high conservation of recombination at a chromosome-wide scale, but differences at the local scale. Additionally, we detected a high degree of aneuploidy (3.6% by examining the sequencing coverage in these segregants. Differences in allele frequency allowed us to attribute instances of aneuploidy to gains of chromosomes during meiosis or mitosis, both of which showed a strong tendency to missegregate specific chromosomes. Conclusions Here we present a high throughput workflow to sequence genomes of large number of yeast strains at a low price. We have used this workflow to obtain recombination and aneuploidy data from hundreds of segregants, which can serve as a foundation for future studies of linkage, recombination, and chromosomal aberrations in yeast and higher eukaryotes.

  10. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    Science.gov (United States)

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast

  11. Meiosis I in Xenopus oocytes is not error-prone despite lacking spindle assembly checkpoint.

    Science.gov (United States)

    Liu, Dandan; Shao, Hua; Wang, Hongmei; Liu, X Johné

    2014-01-01

    The spindle assembly checkpoint, SAC, is a surveillance mechanism to control the onset of anaphase during cell division. SAC prevents anaphase initiation until all chromosome pairs have achieved bipolar attachment and aligned at the metaphase plate of the spindle. In doing so, SAC is thought to be the key mechanism to prevent chromosome nondisjunction in mitosis and meiosis. We have recently demonstrated that Xenopus oocyte meiosis lacks SAC control. This prompted the question of whether Xenopus oocyte meiosis is particularly error-prone. In this study, we have karyotyped a total of 313 Xenopus eggs following in vitro oocyte maturation. We found no hyperploid egg, out of 204 metaphase II eggs with countable chromosome spreads. Therefore, chromosome nondisjunction is very rare during Xenopus oocyte meiosis I, despite the lack of SAC.

  12. The subtelomeric region is important for chromosome recognition and pairing during meiosis

    Science.gov (United States)

    Calderón, María del Carmen; Rey, María-Dolores; Cabrera, Adoración; Prieto, Pilar

    2014-01-01

    The process of meiosis results in the formation of haploid daughter cells, each of which inherit a half of the diploid parental cells' genetic material. The ordered association of homologues (identical chromosomes) is a critical prerequisite for a successful outcome of meiosis. Homologue recognition and pairing are initiated at the chromosome ends, which comprise the telomere dominated by generic repetitive sequences, and the adjacent subtelomeric region, which harbours chromosome-specific sequences. In many organisms telomeres are responsible for bringing the ends of the chromosomes close together during early meiosis, but little is known regarding the role of the subtelomeric region sequence during meiosis. Here, the observation of homologue pairing between a pair of Hordeum chilense chromosomes lacking the subtelomeric region on one chromosome arm indicates that the subtelomeric region is important for the process of homologous chromosome recognition and pairing. PMID:25270583

  13. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hidekazu, E-mail: hidetakahashi@riken.jp [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Suzuki, Takehiro [Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan); Shirai, Atsuko; Matsuyama, Akihisa [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Dohmae, Naoshi [Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan); Yoshida, Minoru, E-mail: yoshidam@riken.jp [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan)

    2011-03-04

    Research highlights: {yields} Fission yeast manganese superoxide dismutase (MnSOD) is acetylated. {yields} The mitochondrial targeting sequence (MTS) is required for the acetylation of MnSOD. {yields} The MTS is not crucial for MnSOD activity, but is important for respiratory growth. {yields} Posttranslational regulation of MnSOD differs between budding and fission yeast. -- Abstract: Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

  14. Yeast as a model system for mammalian seven-transmembrane segment receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jeansonne, N.E. [East Carolina Univ. Medical School, Greenville, NC (United States)

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomal location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.

  15. Yeast Interacting Proteins Database: YDR446W, YDR510W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDR446W ECM11 Non-essential protein apparently involved in meiosis, GFP fusion protein is present in discret...description Non-essential protein apparently involved in meiosis, GFP fusion protein is present in discrete

  16. Dynamics of DNA Replication during Premeiosis and Early Meiosis in Wheat

    Science.gov (United States)

    Rey, María-Dolores; Prieto, Pilar

    2014-01-01

    Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat. PMID:25275307

  17. Dynamics of DNA replication during premeiosis and early meiosis in wheat.

    Directory of Open Access Journals (Sweden)

    María-Dolores Rey

    Full Text Available Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat.

  18. Dynamics of DNA replication during premeiosis and early meiosis in wheat.

    Science.gov (United States)

    Rey, María-Dolores; Prieto, Pilar

    2014-01-01

    Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat.

  19. Sequential steps in DNA replication are inhibited to ensure reduction of ploidy in meiosis.

    Science.gov (United States)

    Hua, Hui; Namdar, Mandana; Ganier, Olivier; Gregan, Juraj; Méchali, Marcel; Kearsey, Stephen E

    2013-03-01

    Meiosis involves two successive rounds of chromosome segregation without an intervening S phase. Exit from meiosis I is distinct from mitotic exit, in that replication origins are not licensed by Mcm2-7 chromatin binding, but spindle disassembly occurs during a transient interphase-like state before meiosis II. The absence of licensing is assumed to explain the block to DNA replication, but this has not been formally tested. Here we attempt to subvert this block by expressing the licensing control factors Cdc18 and Cdt1 during the interval between meiotic nuclear divisions. Surprisingly, this leads only to a partial round of DNA replication, even when these factors are overexpressed and effect clear Mcm2-7 chromatin binding. Combining Cdc18 and Cdt1 expression with modulation of cyclin-dependent kinase activity, activation of Dbf4-dependent kinase, or deletion of the Spd1 inhibitor of ribonucleotide reductase has little additional effect on the extent of DNA replication. Single-molecule analysis indicates this partial round of replication results from inefficient progression of replication forks, and thus both initiation and elongation replication steps may be inhibited in late meiosis. In addition, DNA replication or damage during the meiosis I-II interval fails to arrest meiotic progress, suggesting absence of checkpoint regulation of meiosis II entry.

  20. The molecular features of chromosome pairing at meiosis: the polyploid challenge using wheat as a reference.

    Science.gov (United States)

    Yousafzai, Faridoon K; Al-Kaff, Nadia; Moore, Graham

    2010-05-01

    During meiosis, chromosome numbers are halved, leading to haploid gametes, a process that is crucial for the maintenance of a stable genome through successive generations. The process for the accurate segregation of the homologues starts in pre-meiosis as each homologue is replicated and the respective products are held together as two sister chromatids via specific cohesion proteins. At the start of meiosis, each chromosome must recognise its homologue from amongst all the chromosomes present in the nucleus and then associate or pair with that homologue. This process of homologue recognition in meiosis is more complicated in polyploids because of the greater number of related chromosomes. Despite the presence of these related chromosomes, for polyploids such as wheat to produce viable gametes, they must behave as diploids during meiosis with only true homologues pairing. In this review, the relationship between the Ph1 cyclin-dependent kinase (CDK)-like genes in wheat and the CDK2 genes in mammals and their involvement in controlling this process at meiosis is examined.

  1. Signal transduction during mating and meiosis in S. pombe

    DEFF Research Database (Denmark)

    Nielsen, O; Nielsen, Olaf

    1993-01-01

    When starved, the fission yeast Schizosaccharomyces pombe responds by producing mating factors or pheromones that signal to cells of the opposite sex to initiate mating. Like its distant relative Saccharomyces cerevisiae, cells of the two mating types of S. pombe each produce a distinct pheromone...

  2. Micropropagation of Helleborus through axillary budding.

    Science.gov (United States)

    Beruto, Margherita; Viglione, Serena; Bisignano, Alessandro

    2013-01-01

    Helleborus genus, belonging to the Ranunculaceae family, has 20 species of herbaceous perennial flowering plants. The commercial exploitation of this plant is dependent on the selection and propagation of appropriate lines. High propagation rate could be accomplished by using a suitable tissue culture method enabling the rapid introduction of valuable selections in the market. However, in vitro cultivation of Helleborus is still very difficult. Thereby the development of reliable in vitro propagation procedures is crucial for future production systems. Axillary buds cultured on agar-solidified Murashige and Skoog medium supplemented with 1 mg/L benzyladenine, 0.1 mg/L β-naphthoxyacetic acid, and 2 mg/L isopentenyl adenine develop shoots after 16 weeks of culture under 16 h light regime, 50-60 μmol/s/m(2), and 19 ± 1°C. The multiplication rate ranges from 1.4 to 2.1. However, the genotype and the number of subcultures affect the efficiency of the micropropagation process. The rooting of shoots is about 80% in solidified MS medium containing 1 mg/L 1-naphthaleneacetic acid and 3 mg/L indole-3-butyric acid. The described protocol provides information which can contribute to the commercial production of Helleborus plants.

  3. Flower Bud Differentiation in Quercus suber L.

    Directory of Open Access Journals (Sweden)

    Maria Carolina Varela

    2016-06-01

    Full Text Available Background and Purpose: Cork oak (Quercus suber L. is one of the most important forest species growing in the Western Mediterranean region. This investigation intends to assess the timing of flowering differentiation of cork oak and contribute to the deepening of the knowledge about the process of the sexual reproduction of the species. Materials and Methods: In 2010 four trees were selected (9, 14, 24, 25 from a plot of 25 trees located at Quinta da Serra, Portugal. A total of 240 buds were collected from these four trees, on three days (8, 14 and 23 March, from 4 branches per tree and 5 positions per branch for the assessment of meristem differentiation. Results: Meristem differentiation analysed on the sampling days revealed there were only vegetative structures by 8 March; a few male and female primordia on 14 March; and fully differentiated reproductive structures on 23 March. Conclusions: Flowering sex determination of cork oak occurs about one month before the flowering onset.

  4. Grapevine bud break prediction for cool winter climates

    Science.gov (United States)

    Nendel, Claas

    2010-05-01

    Statistical analysis of bud break data for grapevine ( Vitis vinifera L. cvs. Riesling and Müller-Thurgau) at 13 sites along the northern boundary of commercial grapevine production in Europe revealed that, for all investigated sites, the heat summation method for bud break prediction can be improved if the starting date for the accumulation of heat units is specifically determined. Using the coefficient of variance as a criterion, a global minimum for each site can be identified, marking the optimum starting date. Furthermore, it was shown that the application of a threshold temperature for the heat summation method does not lead to an improved prediction of bud break. Using site-specific parameters, bud break of grapevine can be predicted with an accuracy of ± 2.5 days. Using average parameters, the prediction accuracy is reduced to ± 4.5 days, highlighting the sensitivity of the heat summation method to the quality and the representativeness of the driving temperature data.

  5. Factors influencing axillary shoot proliferation and adventitious budding in cedar.

    Science.gov (United States)

    Renau-Morata, Begoña; Ollero, Javier; Arrillaga, Isabel; Segura, Juan

    2005-04-01

    We developed procedures for in vitro cloning of Cedrus atlantica Manetti and C. libani A. Rich explants from juvenile and mature plants. Explant size was one determinant of the frequency of axillary bud break in both species. Shoot tips and nodal explants mainly developed calli, whereas bud sprouting occurred in defoliated microcuttings cultured on a modified Murashige and Skoog medium without growth regulators. Isolation and continuous subculture of sprouted buds on the same medium allowed cloning of microcuttings from C. atlantica and C. libani seedlings and bicentennial C. libani trees, thus providing a desirable alternative for multiplying mature trees that have demonstrated superior characteristics. We also report adventitious bud differentiation from isolated embryos of C. atlantica. Neither auxin treatments nor other methods tested, including infection with Agrobacterium rhizogenes, were effective in inducing root initiation.

  6. Recent advances in yeast organelle and membrane proteomics.

    Science.gov (United States)

    Premsler, Thomas; Zahedi, René Peiman; Lewandrowski, Urs; Sickmann, Albert

    2009-10-01

    Yeast proteome research comprises two different aspects: with respect to systemic fungal infections (fungemias), invasive candidiasis, for instance by Candida albicans, is among the most common causes of morbidity and mortality particularly in the expanding population of immunocompromised patients, which rises a high medical and pharmaceutical interest in this facultative pathogenic organism. Apart from its clinical relevance, yeast research moreover provides an indispensable source of knowledge regarding fundamental biochemical processes of eukaryotic cells. In this context, the budding yeast Saccharomyces cerevisiae is, in addition to its multiple industrial applications, one of the most extensively used microorganisms and serves as the best understood eukaryotic model system so far. Consequently, numerous studies have focused on gaining insight into the yeast proteome, with protein MS providing a very efficient technology to cope with this task since it enables both protein identification and differential quantification of cellular material. In this review we present an overview of recent advances in yeast organelle and membrane proteomics focusing on the cell wall, plasma membrane, mitochondria and vacuole.

  7. Functional cell types in taste buds have distinct longevities.

    Directory of Open Access Journals (Sweden)

    Isabel Perea-Martinez

    Full Text Available Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  8. A buckling mechanism for ESCRT-III budding

    CERN Document Server

    Lenz, Martin; Joanny, Jean-François

    2009-01-01

    The ESCRT-III protein complex binds to the membrane of eukaryotic cells, causing it to bud into long tubes. Here we propose that this budding is akin to a buckling instability. We analyze the linear stability of flat ESCRT-III-dressed membranes and account for the formation of long tubes. We study strongly deformed dressed membranes and their bifurcation diagram numerically. Our mechanism is compatible with reasonable in vivo parameter values and we propose an experiment allowing its validation.

  9. Cryptococcus friedmannii, a new species of yeast from the Antarctic

    Science.gov (United States)

    Vishniac, H. S.

    1985-01-01

    Cryptococcus friedmannii Vishniac sp. nov. from an Antarctic cryptoendolithic community is a psychrophilic basidioblastomycete characterized by cream-colored colonies of cells with smooth, layered walls, budding monopolarly, producing amylose and extracellular proteinase, utilizing nitrate and D-alanine (inter alia) as nitrogen sources and L-arabinose, arbutin, cellobiose, D-glucuronate, maltose, melezitose, salicin, soluble starch, trehalose, and D-xylose as carbon sources. This species differs from all other basidiomycetous yeasts in possessing the following combination of characters: amylose production (positive), assimilation of cellobiose (positive), D-galactose (negative), myo-inositol (negative), D-mannitol (negative), and sucrose (negative).

  10. Distinct differences in chromatin structure at subtelomeric X and Y' elements in budding yeast.

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhu

    Full Text Available In Saccharomyces cerevisiae, all ends of telomeric DNA contain telomeric repeats of (TG(1-3, but the number and position of subtelomeric X and Y' repeat elements vary. Using chromatin immunoprecipitation and genome-wide analyses, we here demonstrate that the subtelomeric X and Y' elements have distinct structural and functional properties. Y' elements are transcriptionally active and highly enriched in nucleosomes, whereas X elements are repressed and devoid of nucleosomes. In contrast to X elements, the Y' elements also lack the classical hallmarks of heterochromatin, such as high Sir3 and Rap1 occupancy as well as low levels of histone H4 lysine 16 acetylation. Our analyses suggest that the presence of X and Y' elements govern chromatin structure and transcription activity at individual chromosome ends.

  11. Database Description - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ap/download.html Referenced database - Entry list - Query search Not available Web services... Not available URL of Web services - Need for user registration - Joomla SEF URLs by Artio About T

  12. Coevolution trumps pleiotropy: carbon assimilation traits are independent of metabolic network structure in budding yeast.

    Science.gov (United States)

    Opulente, Dana A; Morales, Christopher M; Carey, Lucas B; Rest, Joshua S

    2013-01-01

    Phenotypic traits may be gained and lost together because of pleiotropy, the involvement of common genes and networks, or because of simultaneous selection for multiple traits across environments (multiple-trait coevolution). However, the extent to which network pleiotropy versus environmental coevolution shapes shared responses has not been addressed. To test these alternatives, we took advantage of the fact that the genus Saccharomyces has variation in habitat usage and diversity in the carbon sources that a given strain can metabolize. We examined patterns of gain and loss in carbon utilization traits across 488 strains of Saccharomyces to investigate whether the structure of metabolic pathways or selection pressure from common environments may have caused carbon utilization traits to be gained and lost together. While most carbon sources were gained and lost independently of each other, we found four clusters that exhibit non-random patterns of gain and loss across strains. Contrary to the network pleiotropy hypothesis, we did not find that these patterns are explained by the structure of metabolic pathways or shared enzymes. Consistent with the hypothesis that common environments shape suites of phenotypes, we found that the environment a strain was isolated from partially predicts the carbon sources it can assimilate.

  13. Coevolution trumps pleiotropy: carbon assimilation traits are independent of metabolic network structure in budding yeast.

    Directory of Open Access Journals (Sweden)

    Dana A Opulente

    Full Text Available Phenotypic traits may be gained and lost together because of pleiotropy, the involvement of common genes and networks, or because of simultaneous selection for multiple traits across environments (multiple-trait coevolution. However, the extent to which network pleiotropy versus environmental coevolution shapes shared responses has not been addressed. To test these alternatives, we took advantage of the fact that the genus Saccharomyces has variation in habitat usage and diversity in the carbon sources that a given strain can metabolize. We examined patterns of gain and loss in carbon utilization traits across 488 strains of Saccharomyces to investigate whether the structure of metabolic pathways or selection pressure from common environments may have caused carbon utilization traits to be gained and lost together. While most carbon sources were gained and lost independently of each other, we found four clusters that exhibit non-random patterns of gain and loss across strains. Contrary to the network pleiotropy hypothesis, we did not find that these patterns are explained by the structure of metabolic pathways or shared enzymes. Consistent with the hypothesis that common environments shape suites of phenotypes, we found that the environment a strain was isolated from partially predicts the carbon sources it can assimilate.

  14. High-resolution transcription atlas of the mitotic cell cycle in budding yeast

    DEFF Research Database (Denmark)

    Granovskaia, Marina V; Jensen, Lars J; Ritchie, Matthew E

    2010-01-01

    Extensive transcription of non-coding RNAs has been detected in eukaryotic genomes and is thought to constitute an additional layer in the regulation of gene expression. Despite this role, their transcription through the cell cycle has not been studied; genome-wide approaches have only focused on...

  15. The role of replication bypass pathways in dicentric chromosome formation in budding yeast.

    Science.gov (United States)

    Paek, Andrew L; Jones, Hope; Kaochar, Salma; Weinert, Ted

    2010-12-01

    Gross chromosomal rearrangements (GCRs) are large scale changes to chromosome structure and can lead to human disease. We previously showed in Saccharomyces cerevisiae that nearby inverted repeat sequences (∼20-200 bp of homology, separated by ∼1-5 kb) frequently fuse to form unstable dicentric and acentric chromosomes. Here we analyzed inverted repeat fusion in mutants of three sets of genes. First, we show that genes in the error-free postreplication repair (PRR) pathway prevent fusion of inverted repeats, while genes in the translesion branch have no detectable role. Second, we found that siz1 mutants, which are defective for Srs2 recruitment to replication forks, and srs2 mutants had opposite effects on instability. This may reflect separate roles for Srs2 in different phases of the cell cycle. Third, we provide evidence for a faulty template switch model by studying mutants of DNA polymerases; defects in DNA pol delta (lagging strand polymerase) and Mgs1 (a pol delta interacting protein) lead to a defect in fusion events as well as allelic recombination. Pol delta and Mgs1 may collaborate either in strand annealing and/or DNA replication involved in fusion and allelic recombination events. Fourth, by studying genes implicated in suppression of GCRs in other studies, we found that inverted repeat fusion has a profile of genetic regulation distinct from these other major forms of GCR formation.

  16. Cell mass and cell cycle dynamics of an asynchronous budding yeast population

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Carlquist, Magnus; Lundin, Luisa

    2013-01-01

    consumption observed during batch cultivation. The good agreement between the proposed multi-scale model (a population balance model [PBM] coupled to an unstructured model) and experimental data (both the overall physiology and cell size and cell cycle distributions) indicates that a mechanistic model...... of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate......Despite traditionally regarded as identical, cells in a microbial cultivation present a distribution of phenotypic traits, forming a heterogeneous cell population. Moreover, the degree of heterogeneity is notably enhanced by changes in micro-environmental conditions. A major development...

  17. Rfc5p regulates alternate RFC complex functions in sister chromatid pairing reactions in budding yeast

    OpenAIRE

    Maradeo, Marie E.; Garg, Anisha; Skibbens, Robert V.

    2010-01-01

    Sister chromatid pairing reactions, termed cohesion establishment, occur during S phase and appear to be regulated by replication factor C (RFC) complexes. For instance, RFCs that contain Ctf18p exhibit pro-establishment activities while those that contain Elg1p exhibit anti-establishment activities. It remains unknown whether Ctf18p-RFC and Elg1p-RFC functions are simply opposing or instead reveal complicated and non-parallel regulatory mechanisms. To better understand the nature of these no...

  18. Rfc5p regulates alternate RFC complex functions in sister chromatid pairing reactions in budding yeast.

    Science.gov (United States)

    Maradeo, Marie E; Garg, Anisha; Skibbens, Robert V

    2010-11-01

    Sister chromatid pairing reactions, termed cohesion establishment, occur during S-phase and appear to be regulated by Replication Factor C (RFC) complexes. For instance, RFCs that contain Ctf18p exhibit pro-establishment activities while those that contain Elg1p exhibit anti-establishment activities. It remains unknown whether Ctf18p-RFC and Elg1p-RFC functions are simply opposing or instead reveal complicated and non-parallel regulatory mechanisms. To better understand the nature of these novel pathways, we analyzed the small RFC subunit Rfc5p that is common to both Ctf18p-RFC and Elg1p-RFC. Despite this commonality, the data show that diminished Rfc5p function rescues ctf7/eco1 mutant cell phenotypes, revealing that Rfc5p promotes anti-establishment activities. This rescue is specific to establishment pathways in that rfc5-1 greatly accentuates growth defects when expressed in scc2 (deposition), mcd1/scc1 or smc3 (cohesion maintenance) mutated cells. Our results reveal for the first time a role for small RFC subunits in directing RFC complex functions-in this case towards anti-establishment pathways. We further report that Pds5p exhibits both establishment and anti-establishment functions in cohesion. This duality suggests that categorizations of establishment and anti-establishment activities require further examination.

  19. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres.

    Directory of Open Access Journals (Sweden)

    Ariane C Blattner

    2016-04-01

    Full Text Available Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.

  20. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres.

    Science.gov (United States)

    Blattner, Ariane C; Chaurasia, Soumya; McKee, Bruce D; Lehner, Christian F

    2016-04-01

    Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.

  1. Meiosis of anther culture regenerants in asparagus (Asparagus officinalis L.

    Directory of Open Access Journals (Sweden)

    Leonardo Galli

    1998-03-01

    Full Text Available Pollen mother cells obtained from regenerated plants of asparagus (Asparagus officinalis L., in a population composed exclusively of male plants, through the process of anther culture from the hybrid G27 X 22-8, were analyzed during meiosis. It was observed that, during theprocess of anther culture by organogenesis, the pollen mother cells of the regenerants had great genomic instability, as evidenced by disturbances in all the meiotic phases of the first and second division. Furthermore, structural chromosomal abnormalities, in addition to aneuploidy and polyploidy, were observed.Foi analisada a meiose em células mãe de pólen de plantas de aspargo (Asparagus officinalis L. de uma população composta exclusivamente de plantas masculinas, obtidas através do processo de cultura de anteras do híbrido G27 X 22-8. Foi observado que, durante o processo de cultura de anteras, via calogênese, as células mãe de pólen dos regenerantes apresentaram grande instabilidade genômica, evidenciada por irregularidades nas fases de diacinese, assim como de metáfase, anáfase, telófase da primeira e segunda divisão meiótica. Além disto, o processo originou anormalidades cromossômicas estruturais em adição às aneuploidias e poliploidias.

  2. Inna Golubovskaya: the life of a geneticist studying meiosis.

    Science.gov (United States)

    Cande, W Zacheus; Freeling, Michael

    2011-07-01

    Maize, with its excellent forward genetics and male sterility screens, was used to identify >50 meiotic mutants representing at least 35 genes that affect key prophase processes such as pairing, synapsis, and homologous recombination. Most of these mutants were found by Inna Golubovskaya during the course of her remarkable career as a cytogeneticist. In addition to undertaking general cytological surveys to classify mutant phenotypes, Golubovskaya focused her efforts on characterizing several key regulatory mutants: ameiotic1 (am1), required to establish the meiotic cell cycle in maize; absence of first division (afd1), required for proper prophase chromosome morphology and for meiotic sister-chromatid cohesion leading to a reductive chromosome segregation at the first meiotic division; and plural abnormalities of meiosis (pam1), required for the clustering of telomeres on the nuclear envelope needed for pairing and synapsis. Her dramatic childhood in Leningrad during its siege in World War II, her fortuitous education in genetics at Leningrad State University, her continued research at the forward-looking Institute of Cytology and Genetics of the USSR Academy of Science Siberian branch, her plight at the fall of the Soviet Union, and her work in America helped engender a unique and valuable plant geneticist. Inna Golubovskaya related this personal history to the authors in conversation.

  3. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis

    Directory of Open Access Journals (Sweden)

    Tamara Potapova

    2017-02-01

    Full Text Available Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.

  4. Developing a biomimetic tooth bud model.

    Science.gov (United States)

    Smith, Elizabeth E; Zhang, Weibo; Schiele, Nathan R; Khademhosseini, Ali; Kuo, Catherine K; Yelick, Pamela C

    2017-01-08

    A long-term goal is to bioengineer, fully functional, living teeth for regenerative medicine and dentistry applications. Biologically based replacement teeth would avoid insufficiencies of the currently used dental implants. Using natural tooth development as a guide, a model was fabricated using post-natal porcine dental epithelial (pDE), porcine dental mesenchymal (pDM) progenitor cells, and human umbilical vein endothelial cells (HUVEC) encapsulated within gelatin methacrylate (GelMA) hydrogels. Previous publications have shown that post-natal DE and DM cells seeded onto synthetic scaffolds exhibited mineralized tooth crowns composed of dentin and enamel. However, these tooth structures were small and formed within the pores of the scaffolds. The present study shows that dental cell-encapsulated GelMA constructs can support mineralized dental tissue formation of predictable size and shape. Individually encapsulated pDE or pDM cell GelMA constructs were analysed to identify formulas that supported pDE and pDM cell attachment, spreading, metabolic activity, and neo-vasculature formation with co-seeded endothelial cells (HUVECs). GelMa constructs consisting of pDE-HUVECS in 3% GelMA and pDM-HUVECs within 5% GelMA supported dental cell differentiation and vascular mineralized dental tissue formation in vivo. These studies are the first to demonstrate the use of GelMA hydrogels to support the formation of post-natal dental progenitor cell-derived mineralized and functionally vascularized tissues of specified size and shape. These results introduce a novel three-dimensional biomimetic tooth bud model for eventual bioengineered tooth replacement teeth in humans. Copyright © 2017 John Wiley & Sons, Ltd.

  5. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis.

    Science.gov (United States)

    Ramesh, Marilee A; Malik, Shehre-Banoo; Logsdon, John M

    2005-01-26

    Sexual reproduction in eukaryotes is accomplished by meiosis, a complex and specialized process of cell division that results in haploid cells (e.g., gametes). The stereotypical reductive division in meiosis is a major evolutionary innovation in eukaryotic cells, and delineating its history is key to understanding the evolution of sex. Meiosis arose early in eukaryotic evolution, but when and how meiosis arose and whether all eukaryotes have meiosis remain open questions. The known phylogenetic distribution of meiosis comprises plants, animals, fungi, and numerous protists. Diplomonads including Giardia intestinalis (syn. G. lamblia) are not known to have a sexual cycle; these protists may be an early-diverging lineage and could represent a premeiotic stage in eukaryotic evolution. We surveyed the ongoing G. intestinalis genome project data and have identified, verified, and analyzed a core set of putative meiotic genes-including five meiosis-specific genes-that are widely present among sexual eukaryotes. The presence of these genes indicates that: (1) Giardia is capable of meiosis and, thus, sexual reproduction, (2) the evolution of meiosis occurred early in eukaryotic evolution, and (3) the conserved meiotic machinery comprises a large set of genes that encode a variety of component proteins, including those involved in meiotic recombination.

  6. RALDH2, the enzyme for retinoic acid synthesis, mediates meiosis initiation in germ cells of the female embryonic chickens.

    Science.gov (United States)

    Yu, Minli; Yu, Ping; Leghari, Imdad H; Ge, Chutian; Mi, Yuling; Zhang, Caiqiao

    2013-02-01

    Meiosis is a process unique to the differentiation of germ cells and exhibits sex-specific in timing. Previous studies showed that retinoic acid (RA) as the vitamin A metabolite is crucial for controlling Stra8 (Stimulated by retinoic acid gene 8) expression in the gonad and to initiate meiosis; however, the mechanism by which retinoid-signaling acts has remained unclear. In the present study, we investigated the role of the enzyme retinaldehyde dehydrogenase 2 (RALDH2) which catalyzes RA synthesizes by initiating meiosis in chicken ovarian germ cells. Meiotic germ cells were first detected at day 15.5 in chicken embryo ovary when the expression of synaptonemal complex protein 3 (Scp3) and disrupted meiotic cDNA 1 homologue (Dmc1) became elevated, while Stra8 expression was specifically up-regulated at day 12.5 before meiosis onset. It was observed from the increase in Raldh2 mRNA expression levels and decreases in Cyp26b1 (the enzyme for RA catabolism) expression levels during meiosis that requirement for RA accumulation is essential to sustain meiosis. This was also revealed by RA stimulation of the cultured ovaries with the initiation of meiosis response, and the knocking down of the Raldh2 expression during meiosis, leading to abolishment of RA-dependent action. Altogether, these studies indicate that RA synthesis by the enzyme RALDH2 and signaling through its receptor is crucial for meiosis initiation in chicken embryonic ovary.

  7. Live longer on MARS: a yeast paradigm of mitochondrial adaptive ROS signaling in aging

    Directory of Open Access Journals (Sweden)

    Gerald S. Shadel

    2014-04-01

    Full Text Available Adaptive responses to stress, including hormesis, have been implicated in longevity, but their mechanisms and out comes are not fully understood. Here, I briefly summarize a longevity mechanism elucidated in the budding yeast chronological lifespan model by which Mitochondrial Adaptive ROS Signaling (MARS promotes beneficial epigenetic and metabolic remodeling. The potential relevance of MARS to the human disease Ataxia-Telangiectasia and as a potential anti-aging target is discussed.

  8. [Bud population dynamics of Phragmites australis in heterogeneous habitats of Northeast grassland, China].

    Science.gov (United States)

    2015-02-01

    To adapt ecological environment, typical clonal plants can occur continuously by means of buds. The changes in the bud bank and bud flow in the heterogeneous habitats become the foundation for deep understanding the characteristics of vegetative propagation. By sampling soil from the unit area, a comparative analysis was performed for rhizome bud population dynamics of Phragmites australis community in both meadow soil and saline-alkali soil habitats in meadow grassland of Northeast China. The one-age class rhizome buds formed in the current year were used as input, with the other age classes rhizome buds as output, counting the dormancy buds and death buds. The results showed that the storage, input, output, dormancy, death and the input rates of P. australis rhizome bud populations in meadow soil habitat were significantly higher than that in saline-alkali habitat. There was no significant difference in output rate between the two habitats. The dormant rate in saline-alkali habitat was significantly greater than that in meadow soil habitat. The death rates remained at relatively low levels in both, less than 2%. With the going of growing season, the input buds and input rate of bud bank increased in the two habitats, while the output buds remained relatively stable. The output rate increased first and decreased later, the dormancy buds and dormant rate decreased. Bud bank and bud flow were positively related to soil moisture, soil organic matter and soil available nitrogen content. However, they were negatively related to soil pH value and soil available phosphorus content. Bud bank and bud flow had a similar seasonal variation. Constantly for both habitats, P. australis populations generated new rhizome buds supplied to the bud bank and kept a stable output to maintain their vegetative propagation.

  9. Reduced recombination in maternal meiosis coupled with non-disjunction at meiosis II leading to recurrent 47,XXX.

    Science.gov (United States)

    Reish, Orit; Berryman, Todd; Cunningham, Thomas R; Sher, Carron; Oetting, William S

    2004-01-01

    We determined the meiotic origin and the stage of non-disjunction of the extra X chromosomes in two sisters with 47,XXX chromosomal complements. Segregation of the X chromosomes in all family members was analyzed using X-linked short tandem repeat polymorphic (STRP) markers. Densitometric analysis of two STRP markers confirmed that both sisters had three copies of the X chromosome and the extra X chromosomes were maternally derived. Both sisters did not share the same maternal homologue suggesting that the recurrent trisomy is non-homologous X chromosome-specific. Haplotype analysis demonstrated a reduction to homozygosity for markers examined, covering most of the length of the X chromosomes in both sisters. These findings suggested that the extra X chromosomes have derived from meiotic II non-disjunction following a nullitransitional meiosis I (MI). A lack of recombination in the X chromosomes of both sisters suggests a possible maternal genetic defect leading to an erratic recombination at MI. This information may contribute to further understanding of mechanisms leading to X chromosome non-disjunction and may assist in counseling of families with this chromosomal rearrangement.

  10. FEAR but not MEN genes are required for exit from meiosis I.

    Science.gov (United States)

    Kamieniecki, Rebecca J; Liu, Li; Dawson, Dean S

    2005-08-01

    Exit from mitosis is regulated by Cdc14, which plays an essential role in triggering cyclin-dependent kinase inactivation. Throughout most of the cell cycle, Cdc14 is sequestered in the nucleolus where it remains inactive. After the completion of anaphase, an essential signaling cascade, named the Mitotic Exit Network, or MEN, promotes Cdc14 release. Cdc14 is also released from the nucleolus in early anaphase by another, nonessential, pathway called FEAR (CdcFourteen Early Anaphase Release). Separase (Esp1), polo kinase (Cdc5), the kinetochore protein Slk19, and Spo12, whose molecular function remains unknown, have been identified as members of the FEAR pathway. In meiosis, mutations in CDC14 and its FEAR pathway regulators, CDC5, SLK19, and SPO12, all result it asci that contain only two diploid spores because of a defect in the ability to exit meiosis I. Thus although the FEAR pathway is dispensible for mitotic exit, it is essential for meiosis I exit. The way that the genes of the Mitotic Exit Network contribute to coordinating meiotic progression is less clear. Here, we explore this issue. Our results demonstrate that the orderly transition from meiosis I to meiosis II is accomplished by eliminating MEN function and using the FEAR pathway to modulate cyclin dependent kinase activity, in part through the actions of SIC1.

  11. Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules

    Directory of Open Access Journals (Sweden)

    Elliott Estella

    2011-01-01

    Full Text Available Abstract Background Genetically unreduced (2n embryo sacs (ES form in ovules of gametophytic apomicts, the 2n eggs of which develop into embryos parthenogenetically. In many apomicts, 2n ES form precociously during ovule development. Whether meiosis and sexual ES formation also occur precociously in facultative apomicts (capable of apomictic and sexual reproduction has not been studied. We determined onset timing of meiosis and sexual ES formation for 569 Sorghum bicolor genotypes, many of which produced 2n ES facultatively. Results Genotype differences for onset timing of meiosis and sexual ES formation, relative to ovule development, were highly significant. A major source of variation in timing of sexual germline development was presence or absence of apomictic ES, which formed from nucellar cells (apospory in some genotypes. Genotypes that produced these aposporous ES underwent meiosis and sexual ES formation precociously. Aposporous ES formation was most prevalent in subsp. verticilliflorum and in breeding lines of subsp. bicolor. It was uncommon in land races. Conclusions The present study adds meiosis and sexual ES formation to floral induction, apomictic ES formation, and parthenogenesis as processes observed to occur precociously in apomictic plants. The temporally diverse nature of these events suggests that an epigenetic memory of the plants' apomixis status exists throughout its life cycle, which triggers, during multiple life cycle phases, temporally distinct processes that accelerate reproduction.

  12. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes.

    Science.gov (United States)

    Pfender, Sybille; Kuznetsov, Vitaliy; Pasternak, Michał; Tischer, Thomas; Santhanam, Balaji; Schuh, Melina

    2015-08-13

    During fertilization, an egg and a sperm fuse to form a new embryo. Eggs develop from oocytes in a process called meiosis. Meiosis in human oocytes is highly error-prone, and defective eggs are the leading cause of pregnancy loss and several genetic disorders such as Down's syndrome. Which genes safeguard accurate progression through meiosis is largely unclear. Here we develop high-content phenotypic screening methods for the systematic identification of mammalian meiotic genes. We targeted 774 genes by RNA interference within follicle-enclosed mouse oocytes to block protein expression from an early stage of oocyte development onwards. We then analysed the function of several genes simultaneously by high-resolution imaging of chromosomes and microtubules in live oocytes and scored each oocyte quantitatively for 50 phenotypes, generating a comprehensive resource of meiotic gene function. The screen generated an unprecedented annotated data set of meiotic progression in 2,241 mammalian oocytes, which allowed us to analyse systematically which defects are linked to abnormal chromosome segregation during meiosis, identifying progression into anaphase with misaligned chromosomes as well as defects in spindle organization as risk factors. This study demonstrates how high-content screens can be performed in oocytes, and allows systematic studies of meiosis in mammals.

  13. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    Science.gov (United States)

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis.

  14. Role of Securin, Separase and Cohesins in female meiosis and polar body formation in Drosophila.

    Science.gov (United States)

    Guo, Zhihao; Batiha, Osamah; Bourouh, Mohammed; Fifield, Eric; Swan, Andrew

    2016-02-01

    Chromosome segregation in meiosis is controlled by a conserved pathway that culminates in Separase-mediated cleavage of the α-kleisin Rec8, leading to dissolution of cohesin rings. Drosophila has no gene encoding Rec8, and the absence of a known Separase target raises the question of whether Separase and its regulator Securin (Pim in Drosophila) are important in Drosophila meiosis. Here, we investigate the role of Securin, Separase and the cohesin complex in female meiosis using fluorescence in situ hybridization against centromeric and arm-specific sequences to monitor cohesion. We show that Securin destruction and Separase activity are required for timely release of arm cohesion in anaphase I and centromere-proximal cohesion in anaphase II. They are also required for release of arm cohesion on polar body chromosomes. Cohesion on polar body chromosomes depends on the cohesin components SMC3 and the mitotic α-kleisin Rad21 (also called Vtd in Drosophila). We provide cytological evidence that SMC3 is required for arm cohesion in female meiosis, whereas Rad21, in agreement with recent findings, is not. We conclude that in Drosophila meiosis, cohesion is regulated by a conserved Securin-Separase pathway that targets a diverged Separase target, possibly within the cohesin complex.

  15. Genetic and epigenetic factors affecting meiosis induction in eukaryotes revealed in paramecium research.

    Science.gov (United States)

    Prajer, Małgorzata

    2008-01-01

    This review presents studies of the induction of meiosis undertaken on the ciliate Paramecium, a unicellular model eukaryotic organism. Meiosis in Paramecium, preceding the process of fertilization, appears in starved cells after passing a defined number of divisions (cell generations), starting from the last fertilization. Investigations were performed on clones of cells entering autogamy, a self-fertilization process. Genetic as well as epigenetic factors, i.e. endo- and exogenous factors, affecting the induction ofmeiosis and changing the duration of the interautogamous interval (IAI), were analyzed. The results show that: (1) Meiosis induction is controlled genetically by the somatic macronucleus. However, besides the nuclear factors, the cytoplasmic protein immaturin also affects this process (Haga & Hiwatashi 1981); (2) Epigenetic factors, such as non-genetically disturbed cytoskeleton structures and changes in the cell architecture observed in doublet Paramecium cells, exert internal mechanical stress (Ingber 2003), which constitutes the endogenous impulse accelerating meiosis; (3) Mild osmotic stress, acting as an exogenous factor, can initiate the specific MAP kinases signaling pathway resulting in earlier meiosis induction, as in other unicellular eukaryotes (Seet & Pawson 2004).

  16. Electron tomography reveals the steps in filovirus budding.

    Directory of Open Access Journals (Sweden)

    Sonja Welsch

    2010-04-01

    Full Text Available The filoviruses, Marburg and Ebola, are non-segmented negative-strand RNA viruses causing severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. The sequence of events that leads to release of filovirus particles from cells is poorly understood. Two contrasting mechanisms have been proposed, one proceeding via a "submarine-like" budding with the helical nucleocapsid emerging parallel to the plasma membrane, and the other via perpendicular "rocket-like" protrusion. Here we have infected cells with Marburg virus under BSL-4 containment conditions, and reconstructed the sequence of steps in the budding process in three dimensions using electron tomography of plastic-embedded cells. We find that highly infectious filamentous particles are released at early stages in infection. Budding proceeds via lateral association of intracellular nucleocapsid along its whole length with the plasma membrane, followed by rapid envelopment initiated at one end of the nucleocapsid, leading to a protruding intermediate. Scission results in local membrane instability at the rear of the virus. After prolonged infection, increased vesiculation of the plasma membrane correlates with changes in shape and infectivity of released viruses. Our observations demonstrate a cellular determinant of virus shape. They reconcile the contrasting models of filovirus budding and allow us to describe the sequence of events taking place during budding and release of Marburg virus. We propose that this represents a general sequence of events also followed by other filamentous and rod-shaped viruses.

  17. Electron tomography reveals the steps in filovirus budding.

    Science.gov (United States)

    Welsch, Sonja; Kolesnikova, Larissa; Krähling, Verena; Riches, James D; Becker, Stephan; Briggs, John A G

    2010-04-29

    The filoviruses, Marburg and Ebola, are non-segmented negative-strand RNA viruses causing severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. The sequence of events that leads to release of filovirus particles from cells is poorly understood. Two contrasting mechanisms have been proposed, one proceeding via a "submarine-like" budding with the helical nucleocapsid emerging parallel to the plasma membrane, and the other via perpendicular "rocket-like" protrusion. Here we have infected cells with Marburg virus under BSL-4 containment conditions, and reconstructed the sequence of steps in the budding process in three dimensions using electron tomography of plastic-embedded cells. We find that highly infectious filamentous particles are released at early stages in infection. Budding proceeds via lateral association of intracellular nucleocapsid along its whole length with the plasma membrane, followed by rapid envelopment initiated at one end of the nucleocapsid, leading to a protruding intermediate. Scission results in local membrane instability at the rear of the virus. After prolonged infection, increased vesiculation of the plasma membrane correlates with changes in shape and infectivity of released viruses. Our observations demonstrate a cellular determinant of virus shape. They reconcile the contrasting models of filovirus budding and allow us to describe the sequence of events taking place during budding and release of Marburg virus. We propose that this represents a general sequence of events also followed by other filamentous and rod-shaped viruses.

  18. Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes.

    Science.gov (United States)

    Shao, Hua; Ma, Chunqi; Zhang, Xuan; Li, Ruizhen; Miller, Ann L; Bement, William M; Liu, X Johné

    2012-07-15

    Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine(122) is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity.

  19. Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus

    Science.gov (United States)

    Biswas, Siddhartha; Blissard, Gary W.

    2016-01-01

    ABSTRACT The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are

  20. Observation on Meiosis of Pollen Mother Cells in Apium graveolens%芹菜花粉母细胞减数分裂观察

    Institute of Scientific and Technical Information of China (English)

    赵冬; 张蜀宁; 张宇; 李俊星; 刘惠吉

    2011-01-01

    The flower buds of celery (Apium graveolens ) were used to study the mitosis in pollen mother cells with enzyme - dye -squash technique.The results showed that the pollen mother cells carried on their meiosis and cytokinesis simultaneously and their tetrads were tetrahedral or decussate type; at metaphases Ⅰ and Ⅱ there showed a small number of chromosomes scattered outside their equatorial plate; at anaphases Ⅰ and Ⅱ there appeared chromosome bridges and lagged chromosomes in some pollen mother cells.%以中国芹品种铁杆芹花蕾为材料,采用改良卡宝染色压片法对芹菜花粉母细胞减数分裂进行了细胞学研究.结果表明:花粉母细胞减数分裂为胞质同时型,四分体为正四面体型或十字交叉型,中期Ⅰ和中期Ⅱ细胞可见赤道板外染色体,后期Ⅰ和后期Ⅱ部分细胞出现染色体桥及落后染色体.

  1. Repellence of the red bud borer Resseliella oculiperda from grafted apple trees by impregnation of rubber budding strips with essential oils.

    Science.gov (United States)

    van Tol, Rob W H M; Swarts, Henk J; van der Linden, Anton; Visser, J H

    2007-05-01

    The red bud borer Resseliella oculiperda (Rübs.) is a pest insect of apple trees when rootstocks are grafted with scion buds by 'shield budding'. The female midges are attracted to the wounds of the grafted buds where they lay their eggs. The larvae feed on the cambium and destroy the buds completely or partially, leading to bad union of the buds with the rootstocks. Budding strips are used very often by growers to bind scion buds to rootstocks. These strips cannot prevent midges from reaching the damaged tissue. Chemical treatments applied to the grafts and other types of strip do not provide better protection against the pest and may cause other risks for growers. In orchard experiments in 2000 and 2001, the authors evaluated the repellent action provided by three essential oils and five compounds of plant origin against the midges by impregnating budding strips with them. The essential oils of lavender, Lavandula angustifolia (P. Mill.), and alpha-terpineol decreased the infestation of buds by more than 95 and 80% respectively. The other potential repellents tested [the essential oil of Juniperus virginiana (L.), citronellal, the essential oil of Cinnamomum camphora (L.) J. Presl, R-carvone, linalool and R-fenchone] decreased infestation by 67, 66, 51, 45, 37 and 25% respectively. The formulation and commercial development of budding strips impregnated with lavender oil is discussed.

  2. Unidirectional P-body transport during the yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    Cecilia Garmendia-Torres

    Full Text Available P-bodies belong to a large family of RNA granules that are associated with post-transcriptional gene regulation, conserved from yeast to mammals, and influence biological processes ranging from germ cell development to neuronal plasticity. RNA granules can also transport RNAs to specific locations. Germ granules transport maternal RNAs to the embryo, and neuronal granules transport RNAs long distances to the synaptic dendrites. Here we combine microfluidic-based fluorescent microscopy of single cells and automated image analysis to follow p-body dynamics during cell division in yeast. Our results demonstrate that these highly dynamic granules undergo a unidirectional transport from the mother to the daughter cell during mitosis as well as a constrained "hovering" near the bud site half an hour before the bud is observable. Both behaviors are dependent on the Myo4p/She2p RNA transport machinery. Furthermore, single cell analysis of cell size suggests that PBs play an important role in daughter cell growth under nutrient limiting conditions.

  3. Analysis of aging in lager brewing yeast during serial repitching.

    Science.gov (United States)

    Bühligen, Franziska; Lindner, Patrick; Fetzer, Ingo; Stahl, Frank; Scheper, Thomas; Harms, Hauke; Müller, Susann

    2014-10-10

    Serial repitching of brewing yeast inoculates is an important economic factor in the brewing industry, as their propagation is time and resource intensive. Here, we investigated whether replicative aging and/or the population distribution status changed during serial repitching in three different breweries with the same brewing yeast strain but different abiotic backgrounds and repitching regimes with varying numbers of reuses. Next to bud scar numbers the DNA content of the Saccharomyces pastorianus HEBRU cells was analyzed. Gene expression patterns were investigated using low-density microarrays with genes for aging, stress, storage compound metabolism and cell cycle. Two breweries showed a stable rejuvenation rate during serial repitching. In a third brewery the fraction of virgin cells varied, which could be explained with differing wort aeration rates. Furthermore, the number of bud scars per cell and cell size correlated in all 3 breweries throughout all runs. Transcriptome analyses revealed that from the 6th run on, mainly for the cells positive gene expression could be seen, for example up-regulation of trehalose and glycogen metabolism genes. Additionally, the cells' settling in the cone was dependent on cell size, with the lowest and the uppermost cone layers showing the highest amount of dead cells. In general, cells do not progressively age during extended serial repitching.

  4. The Mechanism of Budding of Retroviruses from Cell Membranes

    Directory of Open Access Journals (Sweden)

    Andrew Pincetic

    2009-01-01

    Full Text Available Retroviruses have evolved a mechanism for the release of particles from the cell membrane that appropriates cellular protein complexes, referred to as ESCRT-I, -II, -III, normally involved in the biogenesis of multivesicular bodies. Three different classes of late assembly (L domains encoded in Gag, with core sequences of PPXY, PTAP, and YPXL, recruit different components of the ESCRT machinery to form a budding complex for virus release. Here, we highlight recent progress in identifying the role of different ESCRT complexes in facilitating budding, ubiquitination, and membrane targeting of avian sarcoma and leukosis virus (ASLV and human immunodeficiency virus, type 1 (HIV-1. These findings show that retroviruses may adopt parallel budding pathways by recruiting different host factors from common cellular machinery for particle release.

  5. Adventitious bud regeneration from the stigma of Sinapis alba L.

    Directory of Open Access Journals (Sweden)

    Elżbieta Zenkteler

    2012-12-01

    Full Text Available Stigmas isolated from flower buds of 'Nakielska' variety of Sinapis alba were used to develop a micropropagation method suitable for breeding of new cultivars. The origin of adventitious bud regeneration was studied on MS medium, under stimulation by bezylaminopurine (BAP in combination with 2,4-D - dichlorophenoxyacetic acid (2,4-D. Histological analysis showed the structure of Sinapis stigma (composed from four types of tissue: papillae, transmitting tissue, parenchyma and vascular bundles and revealed that numerous meristematic centers developed from parenchyma cells in close vicinity of vascular bundles. Buds very quickly appeared on the surface of initial explants and later formed multiplantlets that were easily rooted in the soil.

  6. Respiratory Response of Dormant Nectarine Floral Buds on Chilling Deficiency

    Institute of Scientific and Technical Information of China (English)

    TAN Yue; GAO Dong-sheng; LI Ling; CHEN Xiu-de; XU Ai-hong

    2010-01-01

    Changes in main biochemical respiratory pathways in dormant nectarine floral buds were studied with nectarine trees (Prunus persica.var,nectariana cv.Shuguang) in order to determine the function of respiration in dormancy release.Oxygen-electrode system and respiratory inhibitors were used to measure total respiratory rates and rates of respiratory pathways.Results showed that chilling deficiency blocked the transition of respiratory mode,and made buds stay in a state of high level pentose phosphate pathway (PPP) and low level tricarboxylic acid cycle (TCA).The decline of PPP and activation of TCA occurred synchronously with the release of dormancy.In addition,the inhibition of PPP stimulated a respiration increase related with TCA.It could be concluded that the function of PPP activation in dormancy release might be limited and PPP declination inducing TCA activation might be part of respiration mode transition mechanism during bud sprouting.

  7. Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells In Vitro.

    Science.gov (United States)

    Zhou, Quan; Wang, Mei; Yuan, Yan; Wang, Xuepeng; Fu, Rui; Wan, Haifeng; Xie, Mingming; Liu, Mingxi; Guo, Xuejiang; Zheng, Ying; Feng, Guihai; Shi, Qinghua; Zhao, Xiao-Yang; Sha, Jiahao; Zhou, Qi

    2016-03-03

    In vitro generation of functional gametes is a promising approach for treating infertility, although faithful replication of meiosis has proven to be a substantial obstacle to deriving haploid gamete cells in culture. Here we report complete in vitro meiosis from embryonic stem cell (ESC)-derived primordial germ cells (PGCLCs). Co-culture of PGCLCs with neonatal testicular somatic cells and sequential exposure to morphogens and sex hormones reproduced key hallmarks of meiosis, including erasure of genetic imprinting, chromosomal synapsis and recombination, and correct nuclear DNA and chromosomal content in the resulting haploid cells. Intracytoplasmic injection of the resulting spermatid-like cells into oocytes produced viable and fertile offspring, showing that this robust stepwise approach can functionally recapitulate male gametogenesis in vitro. These findings provide a platform for investigating meiotic mechanisms and the potential generation of human haploid spermatids in vitro.

  8. A new Speedy/RINGO protein may help regulate male meiosis

    Institute of Scientific and Technical Information of China (English)

    Yukiko Yamazaki; W Steven Ward

    2011-01-01

    @@ Reproductive biology, although seen as a specialty study area, has many unique biology models that offer insight into the regulation of cellular processes that are shared by many different cell types.The most celebrated example of this was the discovery of the cyclins and their role in cell cycle regulation in Xenopus oocytes.1-4 Meiosis is one such aspect of this field that presents an important window for the study of both cell cycle regulation and chromatin structure.Meiosis only occurs in the testis and ovaries, and only in the germ cells that eventually produce sper-matogonia and oocytes.5 In this issue, Cheng and colleagues6 present data to suggest that a novel protein they originally identified in the rat testis, called LM23, is crucial for the regulation of meiosis in spermatogenesis.It is perhaps fitting that LM23 is a member of a family of proteins called Speedy/RINGO that regulate cyclins.7

  9. Male meiosis in Crustacea: synapsis, recombination, epigenetics and fertility in Daphnia magna.

    Science.gov (United States)

    Gómez, Rocío; Van Damme, Kay; Gosálvez, Jaime; Morán, Eugenio Sánchez; Colbourne, John K

    2016-09-01

    We present the first detailed cytological study of male meiosis in Daphnia (Crustacea: Branchiopoda: Cladocera)-an aquatic microcrustacean with a cyclical parthenogenetic life cycle. Using immunostaining of the testes in Daphnia magna for baseline knowledge, we characterized the different stages of meiotic division and spermiogenesis in relation to the distribution of proteins involved in synapsis, early recombination events and sister chromatid cohesion. We also studied post-translational histone modifications in male spermatocytes, in relation to the dynamic chromatin progression of meiosis. Finally, we applied a DNA fragmentation test to measure sperm quality of D. magna, with respect to levels of inbreeding. As a proxy for fertility, this technique may be used to assess the reproductive health of a sentinel species of aquatic ecosystems. Daphnia proves to be a model species for comparative studies of meiosis that is poised to improve our understanding of the cytological basis of sexual and asexual reproduction.

  10. Coordinating cohesion, co-orientation, and congression during meiosis: lessons from holocentric chromosomes.

    Science.gov (United States)

    Schvarzstein, Mara; Wignall, Sarah M; Villeneuve, Anne M

    2010-02-01

    Organisms that reproduce sexually must reduce their chromosome number by half during meiosis to generate haploid gametes. To achieve this reduction in ploidy, organisms must devise strategies to couple sister chromatids so that they stay together during the first meiotic division (when homologous chromosomes separate) and then segregate away from one another during the second division. Here we review recent findings that shed light on how Caenorhabditis elegans, an organism with holocentric chromosomes, deals with these challenges of meiosis by differentiating distinct chromosomal subdomains and remodeling chromosome structure during prophase. Furthermore, we discuss how features of chromosome organization established during prophase affect later chromosome behavior during the meiotic divisions. Finally, we illustrate how analysis of holocentric meiosis can inform our thinking about mechanisms that operate on monocentric chromosomes.

  11. A Paper-and-Pencil Strategy for Teaching Mitosis and Meiosis, Diagnosing Learning Problems and Predicting Examination Performance.

    Science.gov (United States)

    Mertens, Thomas R.; Walker, Julie O.

    1992-01-01

    Describes the Bajema strategy for teaching meiosis and how it is used in the general genetics course at Ball State University and can be used to identify students who have misconceptions of meiosis that can interfere with their learning the basics of Mendelian inheritance. (Contains 11 references.) (MDH)

  12. "Chromoseratops Meiosus": A Simple, Two-Phase Exercise to Represent the Connection between Meiosis & Increased Genetic Diversity

    Science.gov (United States)

    Eliyahu, Dorit

    2014-01-01

    I present an activity to help students make the connection between meiosis and genetic variation. The students model meiosis in the first phase of the activity, and by that process they produce gametes of a fictitious reptilobird species, "Chromoseratops meiosus." Later on, they will "mate" their gametes and produce a zygote…

  13. CDC25A phosphatase controls meiosis I progression in mouse oocytes.

    Science.gov (United States)

    Solc, Petr; Saskova, Adela; Baran, Vladimir; Kubelka, Michal; Schultz, Richard M; Motlik, Jan

    2008-05-01

    CDK1 is a pivotal regulator of resumption of meiosis and meiotic maturation of oocytes. CDC25A/B/C are dual-specificity phosphatases and activate cyclin-dependent kinases (CDKs). Although CDC25C is not essential for either mitotic or meiotic cell cycle regulation, CDC25B is essential for CDK1 activation during resumption of meiosis. Cdc25a -/- mice are embryonic lethal and therefore a role for CDC25A in meiosis is unknown. We report that activation of CDK1 results in a maturation-associated decrease in the amount of CDC25A protein, but not Cdc25a mRNA, such that little CDC25A is present by metaphase I. In addition, expression of exogenous CDC25A overcomes cAMP-mediated maintenance of meiotic arrest. Microinjection of Gfp-Cdc25a and Gpf-Cdc25b mRNAs constructs reveals that CDC25A is exclusively localized to the nucleus prior to nuclear envelope breakdown (NEBD). In contrast, CDC25B localizes to cytoplasm in GV-intact oocytes and translocates to the nucleus shortly before NEBD. Over-expressing GFP-CDC25A, which compensates for the normal maturation-associated decrease in CDC25A, blocks meiotic maturation at MI. This MI block is characterized by defects in chromosome congression and spindle formation and a transient reduction in both CDK1 and MAPK activities. Lastly, RNAi-mediated reduction of CDC25A results in fewer oocytes resuming meiosis and reaching MII. These data demonstrate that CDC25A behaves differently during female meiosis than during mitosis, and moreover, that CDC25A has a function in resumption of meiosis, MI spindle formation and the MI-MII transition. Thus, both CDC25A and CDC25B are critical for meiotic maturation of oocytes.

  14. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    Science.gov (United States)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  15. alpha-Synuclein fission yeast model: concentration-dependent aggregation without plasma membrane localization or toxicity.

    Science.gov (United States)

    Brandis, Katrina A; Holmes, Isaac F; England, Samantha J; Sharma, Nijee; Kukreja, Lokesh; DebBurman, Shubhik K

    2006-01-01

    Despite fission yeast's history of modeling salient cellular processes, it has not yet been used to model human neurodegeneration-linked protein misfolding. Because alpha-synuclein misfolding and aggregation are linked to Parkinson's disease (PD), here, we report a fission yeast (Schizosaccharomyces pombe) model that evaluates alpha-synuclein misfolding, aggregation, and toxicity and compare these properties with those recently characterized in budding yeast (Saccharomyces cerevisiae). Wild-type alpha-synuclein and three mutants (A30P, A53T, and A30P/A53T) were expressed with thiamine-repressible promoters (using vectors of increasing promoter strength: pNMT81, pNMT41, and pNMT1) to test directly in living cells the nucleation polymerization hypothesis for alpha-synuclein misfolding and aggregation. In support of the hypothesis, wild-type and A53T alpha-synuclein formed prominent intracellular cytoplasmic inclusions within fission yeast cells in a concentration- and time-dependent manner, whereas A30P and A30P/A53T remained diffuse throughout the cytoplasm. A53T alpha-synuclein formed aggregates faster than wild-type alpha-synuclein and at a lower alpha-synuclein concentration. Unexpectedly, unlike in budding yeast, wild-type and A53T alpha-synuclein did not target to the plasma membrane in fission yeast, not even at low alpha-synuclein concentrations or as a precursor step to forming aggregates. Despite alpha-synuclein's extensive aggregation, it was surprisingly nontoxic to fission yeast. Future genetic dissection might yield molecular insight into this protection against toxicity. We speculate that alpha-synuclein toxicity might be linked to its membrane binding capacity. To conclude, S. pombe and S. cerevisiae model similar yet distinct aspects of alpha-synuclein biology, and both organisms shed insight into alpha-synuclein's role in PD pathogenesis.

  16. Gradual meiosis-to-mitosis transition in the early mouse embryo.

    Science.gov (United States)

    Courtois, Aurélien; Hiiragi, Takashi

    2012-01-01

    The transition from meiosis to mitosis is a fundamental process to guarantee the successful development of the embryo. In the mouse, the transition includes extensive reorganisation of the division machinery, centrosome establishment and changes in spindle proprieties and characteristic. Recent findings indicate that this transition is gradual and lasts until the late blastocyst stage. In-depth knowledge of the mechanisms underlying the transition would provide new insight into de novo centrosome formation and regulation of spindle size and proprieties. Here, we review recent advances in the understanding of acentrosomal spindle formation, centriole establishment and the meiosis-to-mitosis transition in the mouse pre-implantation embryo.

  17. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.

    Science.gov (United States)

    Katou, Taku; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2008-11-01

    Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small-scale sake-brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour.

  18. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  19. Vaginal Yeast Infections

    Science.gov (United States)

    ... infection caused by a type of fungus called candida albicans . Yeast infections usually happen in warm, moist parts of the body, like the mouth, or vagina. We all have candida in our bodies, but usually it's kept in ...

  20. Modeling brewers' yeast flocculation

    Science.gov (United States)

    van Hamersveld EH; van der Lans RG; Caulet; Luyben

    1998-02-01

    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

  1. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  2. RESEARCH OF SOPHORA JAPONICA L. FLOWER BUDS VOLATILE COMPOUNDS WITH GAS-CHROMATOGRAPHY/MASS- SPECTROMETRY METHOD

    Directory of Open Access Journals (Sweden)

    Cholak I.S.

    2013-10-01

    Full Text Available This work represents the results of the research ofessential oil contained in Sophora japonica L. flowerbuds volatile compounds collected during the nextstages of their development: green flower buds, formedflower buds and the beginning of flower buds opening.Essential oil assay content in Sophora japonica L.flower buds was determined with hydrodistillationmethod. Content of essential oil in the raw material isless than 0,1%. Qualitative composition and assaycontent of Sophora japonica L. flower buds essential oilconstituents were determined with chromato-massspectrometry method. In consequence of the research 80constituents were identified in Sophora japonica L.flower buds out of which 61 substances are during thegreen flower buds and beginning of flower budsopening stages, 66 substances are during formed flowerbuds stage. Substances are represented by aliphatic andcyclic terpenoids, their alcohols and ketones. Mostvolatile substances were extracted on the stage offormed buds.

  3. Forces in yeast flocculation.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-07

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  4. Yeast Interacting Proteins Database: YGR218W, YMR124W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ry, cytoplasm, bud, and bud neck; interacts with Crm1p in two-hybrid assay; YMR12...bud, and bud neck; interacts with Crm1p in two-hybrid assay; YMR124W is not an essential gene Rows with this

  5. Quantitative resistance to peanut bud necrosis tospovirus in groudnut.

    NARCIS (Netherlands)

    Buiel, A.A.M.

    1996-01-01

    Quantitative resistance to peanut bud necrosis virus (PBNV) is expressed as a reduced disease incidence (percentage of infected plants) in the groundnut crop. An increased plant density reduced this incidence, but the number of infected plants per unit area increased, maintaining high levels of PBNV

  6. A New Compound from the Bud of Chrysanthemum indicum L.

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new bicyclic spiroketone was isolated from the bud of Chrysanthemum indicum L.The chemical structure was elucidated as (1R, 9S, 10S)-10-hydroxyl-8 (2', 4'-diynehexylidene)-9-isovaleryloxy-2, 7-dioxaspiro [5, 4] decane based on the X-ray crystallography.

  7. Axillary Bud Proliferation Approach for Plant Biodiversity Conservation and Restoration

    Directory of Open Access Journals (Sweden)

    F. Ngezahayo

    2014-01-01

    Full Text Available Due to mainly human population pressure and activities, global biodiversity is getting reduced and particularly plant biodiversity is becoming at high risk of extinction. Consequently, many efforts have been deployed to develop conservation methods. Because it does not involve cell dedifferentiation of differentiated cells but rather the development and growth of new shoots from preexisting meristems, the axillary bud proliferation approach is the method offering least risk of genetic instability. Indeed, meristems are more resistant to genetic changes than disorganized tissues. The present review explored through the scientific literature the axillary bud proliferation approach and the possible somaclonal variation that could arise from it. Almost genetic stability or low level of genetic variation is often reported. On the contrary, in a few cases studied to date, DNA methylation alterations often appeared in the progenies, showing epigenetic variations in the regenerated plants from axillary bud culture. Fortunately, epigenetic changes are often temporary and plants may revert to the normal phenotype. Thus, in the absence of genetic variations and the existence of reverting epigenetic changes over time, axillary bud culture can be adopted as an alternative nonconventional way of conserving and restoring of plant biodiversity.

  8. Small molecule inhibitors of the Candida albicans budded-to-hyphal transition act through multiple signaling pathways.

    Directory of Open Access Journals (Sweden)

    John Midkiff

    Full Text Available The ability of the pathogenic yeast Candida albicans to interconvert between budded and hyphal growth states, herein termed the budded-to-hyphal transition (BHT, is important for C. albicans development and virulence. The BHT is under the control of multiple cell signaling pathways that respond to external stimuli, including nutrient availability, high temperature, and pH. Previous studies identified 21 small molecules that could inhibit the C. albicans BHT in response to carbon limitation in Spider media. However, the studies herein show that the BHT inhibitors had varying efficacies in other hyphal-inducing media, reflecting their varying abilities to block signaling pathways associated with the different media. Chemical epistasis analyses suggest that most, but not all, of the BHT inhibitors were acting through either the Efg1 or Cph1 signaling pathways. Notably, the BHT inhibitor clozapine, a FDA-approved drug used to treat atypical schizophrenia by inhibiting G-protein-coupled dopamine receptors in the brain, and several of its functional analogs were shown to act at the level of the Gpr1 G-protein-coupled receptor. These studies are the first step in determining the target and mechanism of action of these BHT inhibitors, which may have therapeutic anti-fungal utility in the future.

  9. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    Science.gov (United States)

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation.

  10. File list: ALL.Pan.05.AllAg.Pancreatic_bud [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreatic_bud hg19 All antigens Pancreas Pancreatic bud ERX629395...,ERX629396,ERX629399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.05.AllAg.Pancreatic_bud.bed ...

  11. File list: ALL.Pan.50.AllAg.Pancreatic_bud [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreatic_bud hg19 All antigens Pancreas Pancreatic bud ERX629395...,ERX629396,ERX629399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.50.AllAg.Pancreatic_bud.bed ...

  12. File list: ALL.Pan.20.AllAg.Pancreatic_bud [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.Pancreatic_bud hg19 All antigens Pancreas Pancreatic bud ERX629395...,ERX629396,ERX629399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.20.AllAg.Pancreatic_bud.bed ...

  13. File list: NoD.Pan.20.AllAg.Pancreatic_bud [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.20.AllAg.Pancreatic_bud hg19 No description Pancreas Pancreatic bud ERX6293...95,ERX629396,ERX629399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Pan.20.AllAg.Pancreatic_bud.bed ...

  14. File list: NoD.Pan.05.AllAg.Pancreatic_bud [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.05.AllAg.Pancreatic_bud hg19 No description Pancreas Pancreatic bud ERX6293...95,ERX629396,ERX629399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Pan.05.AllAg.Pancreatic_bud.bed ...

  15. File list: ALL.Pan.10.AllAg.Pancreatic_bud [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Pancreatic_bud hg19 All antigens Pancreas Pancreatic bud ERX629395...,ERX629396,ERX629399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.10.AllAg.Pancreatic_bud.bed ...

  16. File list: NoD.Pan.10.AllAg.Pancreatic_bud [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.10.AllAg.Pancreatic_bud hg19 No description Pancreas Pancreatic bud ERX6293...95,ERX629396,ERX629399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Pan.10.AllAg.Pancreatic_bud.bed ...

  17. File list: NoD.Pan.50.AllAg.Pancreatic_bud [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.50.AllAg.Pancreatic_bud hg19 No description Pancreas Pancreatic bud ERX6293...95,ERX629396,ERX629399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Pan.50.AllAg.Pancreatic_bud.bed ...

  18. Non-homologous chromosome synapsis during mouse meiosis: consequences for male fertility and survival of progeny.

    NARCIS (Netherlands)

    Peters, A.H.F.M.

    1997-01-01

    In the mouse, heterozygosity for several reciprocal and Robertsonian translocations is associated with impairment of chromosome synapsis and suppression of crossover formation in segments near the points of exchange during prophase of meiosis. This thesis describes the analysis of the consequences o

  19. Centromeres cluster de novo at the beginning of meiosis in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Ruoyu Wen

    Full Text Available In most eukaryotes that have been studied, the telomeres cluster into a bouquet early in meiosis, and in wheat and its relatives and in Arabidopsis the centromeres pair at the same time. In Arabidopsis, the telomeres do not cluster as a typical telomere bouquet on the nuclear membrane but are associated with the nucleolus both somatically and at the onset of meiosis. We therefore assessed whether Brachypodium distachyon, a monocot species related to cereals and whose genome is approximately twice the size of Arabidopsis thaliana, also exhibited an atypical telomere bouquet and centromere pairing. In order to investigate the occurrence of a bouquet and centromere pairing in B distachyon, we first had to establish protocols for studying meiosis in this species. This enabled us to visualize chromosome behaviour in meiocytes derived from young B distachyon spikelets in three-dimensions by fluorescent in situ hybridization (FISH, and accurately to stage meiosis based on chromatin morphology in relation to spikelet size and the timing of sample collection. Surprisingly, this study revealed that the centromeres clustered as a single site at the same time as the telomeres also formed a bouquet or single cluster.

  20. Kinetics of meiosis in azoospermic males: a joint histological and cytological approach

    NARCIS (Netherlands)

    Boer, de P.; Giele, M.; Lock, M.T.W.T.; Rooij, de D.G.; Giltay, J.; Hochstenbach, R.; Velde, ter E.R.

    2004-01-01

    We have developed a protocol for the identification of aberrant chromosome behavior during human male meiosis up to metaphase of the secondary spermatocyte. Histological evaluation by the Johnsen score of a testicular biopsy was combined with immunofluorescence of first meiotic prophase spermatocyte

  1. Students' Meaningful Learning Orientation and Their Meaningful Understandings of Meiosis and Genetics.

    Science.gov (United States)

    Cavallo, Ann Liberatore

    This 1-week study explored the extent to which high school students (n=140) acquired meaningful understanding of selected biological topics (meiosis and the Punnett square method) and the relationship between these topics. This study: (1) examined "mental modeling" as a technique for measuring students' meaningful understanding of the…

  2. Creating a Double-Spring Model to Teach Chromosome Movement during Mitosis & Meiosis

    Science.gov (United States)

    Luo, Peigao

    2012-01-01

    The comprehension of chromosome movement during mitosis and meiosis is essential for understanding genetic transmission, but students often find this process difficult to grasp in a classroom setting. I propose a "double-spring model" that incorporates a physical demonstration and can be used as a teaching tool to help students understand this…

  3. Silencing of meiosis-critical genes for engineering male sterility in plants

    Science.gov (United States)

    Engineering sterile traits in plants through the tissue-specific expression of a cytotoxic gene provides an effective way for containing transgene flow; however, the microbial origin of cytotoxic genes has raised concerns. In an attempt to develop a safe alternative, we have chosen the meiosis-crit...

  4. Cell type-specific translational repression of Cyclin B during meiosis in males.

    Science.gov (United States)

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I.

  5. E-type cyclins modulate telomere integrity in mammalian male meiosis.

    Science.gov (United States)

    Manterola, Marcia; Sicinski, Piotr; Wolgemuth, Debra J

    2016-06-01

    We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.

  6. Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella Graminicola

    Science.gov (United States)

    Meiosis in the plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs an...

  7. Dance of the Chromosomes: A Kinetic Learning Approach to Mitosis and Meiosis

    Science.gov (United States)

    Kreiser, Brian; Hairston, Rosalina

    2007-01-01

    Understanding mitosis and meiosis is fundamental to understanding the basics of Mendelian inheritance, yet many students find these concepts challenging or confusing. Here we present a visually and physically stimulating activity using minimal supplies to supplement traditional instruction in order to engage the students and facilitate…

  8. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers.

    Science.gov (United States)

    Jeong, Hee-Jin; Kang, Jin-Ho; Zhao, Meiai; Kwon, Jin-Kyung; Choi, Hak-Soon; Bae, Jung Hwan; Lee, Hyun-Ah; Joung, Young-Hee; Choi, Doil; Kang, Byoung-Cheorl

    2014-12-01

    Male fertility in flowering plants depends on proper cellular differentiation in anthers. Meiosis and tapetum development are particularly important processes in pollen production. In this study, we showed that the tomato male sterile (ms10(35)) mutant of cultivated tomato (Solanum lycopersicum) exhibited dysfunctional meiosis and an abnormal tapetum during anther development, resulting in no pollen production. We demonstrated that Ms10(35) encodes a basic helix-loop-helix transcription factor that is specifically expressed in meiocyte and tapetal tissue from pre-meiotic to tetrad stages. Transgenic expression of the Ms10(35) gene from its native promoter complemented the male sterility of the ms10(35) mutant. In addition, RNA-sequencing-based transcriptome analysis revealed that Ms10(35) regulates 246 genes involved in anther development processes such as meiosis, tapetum development, cell-wall degradation, pollen wall formation, transport, and lipid metabolism. Our results indicate that Ms10(35) plays key roles in regulating both meiosis and programmed cell death of the tapetum during microsporogenesis.

  9. Homologous recombination, sister chromatid cohesion, and chromosome condensation in mammalian meiosis

    NARCIS (Netherlands)

    Eijpe, M.

    2002-01-01

    In the life cycle of sexually reproducing eukaryotes, haploid and diploid generations of cells alternate. Two types of cell division occur in such a life cycle: mitosis and meiosis. They are compared in chapter 1 . Haploid and diploid cells can multiply by mitoses.

  10. Nicotinamide impairs entry into and exit from meiosis I in mouse oocytes.

    Science.gov (United States)

    Riepsamen, Angelique; Wu, Lindsay; Lau, Laurin; Listijono, Dave; Ledger, William; Sinclair, David; Homer, Hayden

    2015-01-01

    Following exit from meiosis I, mammalian oocytes immediately enter meiosis II without an intervening interphase, accompanied by rapid reassembly of a bipolar spindle that maintains condensed chromosomes in a metaphase configuration (metaphase II arrest). Here we study the effect of nicotinamide (NAM), a non-competitive pan-sirtuin inhibitor, during meiotic maturation in mouse oocytes. Sirtuins are a family of seven NAD+-dependent deacetylases (Sirt1-7), which are involved in multiple cellular processes and are emerging as important regulators in oocytes and embryos. We found that NAM significantly delayed entry into meiosis I associated with delayed accumulation of the Cdk1 co-activator, cyclin B1. GVBD was also inhibited by the Sirt2-specific inhibitor, AGK2, and in a very similar pattern to NAM, supporting the notion that as in somatic cells, NAM inhibits sirtuins in oocytes. NAM did not affect subsequent spindle assembly, chromosome alignment or the timing of first polar body extrusion (PBE). Unexpectedly, however, in the majority of oocytes with a polar body, chromatin was decondensed and a nuclear structure was present. An identical phenotype was observed when flavopiridol was used to induce Cdk1 inactivation during late meiosis I prior to PBE, but not if Cdk1 was inactivated after PBE when metaphase II arrest was already established, altogether indicating that NAM impaired establishment rather than maintenance of metaphase II arrest. During meiosis I exit in NAM-treated medium, we found that cyclin B1 levels were lower and inhibitory Cdk1 phosphorylation was increased compared with controls. Although activation of the anaphase-promoting complex-Cdc20 (APC-Cdc20) occurred on-time in NAM-treated oocytes, Cdc20 levels were higher in very late meiosis I, pointing to exaggerated APC-Cdc20-mediated proteolysis as a reason for lower cyclin B1 levels. Collectively, therefore, our data indicate that by disrupting Cdk1 regulation, NAM impairs entry into meiosis I and

  11. Towards a new understanding on the regulation of mammalian oocyte meiosis resumption.

    Science.gov (United States)

    Sun, Qing-Yuan; Miao, Yi-Liang; Schatten, Heide

    2009-09-01

    Mammalian oocytes reach prophase of first meiosis around the time of birth, and remain at this stage for months or years, depending on the species. Only after puberty will the fully-grown oocytes begin to resume meiosis which is stimulated by gonadotropin surge. It has long been known that a high level of intra-oocyte cyclic adenosine 3',5'-monophosphate (cAMP) prevents oocyte meiosis resumption as indicated by germinal vesicle breakdown (GVBD). Recently, guanosine triphosphate-binding (G) protein-coupled receptors/G proteins/adenyl cyclase pathway endogenous to the oocyte as well as cAMP diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that prevent oocytes from resuming meiosis. Another second messager molecule, guanosine 3',5'-cyclic monophosphate (cGMP), has also recently been found to play important roles in maintaining oocyte meiosis arrest. cGMP in the follicular somatic cells diffuses into the oocyte and causes an increase in oocyte cAMP, presumably by acting on phosphodiesterase 3 (PDE3). The cGMP level in the somatic compartment of the follicle decreases in response to luteinizing hormone (LH), and this change may be mediated through the epidermal growth factor (EGF)-like factors and specific cGMP-phosphodiesterase subtype activity. It is well known that gonadotropic stimulation of meiotic resumption depends on mitogen-activated protein kinase (MAPK) activation in the somatic compartment of the follicle; recent studies show that LH, through cAMP/protein kinase A (PKA) and protein kinase C (PKC) pathways, induces the synthesis of paracine factors such as EGF-like facors and meiosis activating sterol (MAS) to regulate oocyte GVBD via the MAPK pathway in follicle cells. A recent granulosa cell-specific knockout study has for the first time provided in vivo evidence for the important role of extracellular regulated kinase 1 and 2 (ERK1/2), two main forms of MAPK, and their downstream molecules in

  12. Genome scale models of yeast: towards standardized evaluation and consistent omic integration

    DEFF Research Database (Denmark)

    Sanchez, Benjamin J.; Nielsen, Jens

    2015-01-01

    Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published...... and are currently used for metabolic engineering and elucidating biological interactions. Here we review the history of yeast's GEMs, focusing on recent developments. We study how these models are typically evaluated, using both descriptive and predictive metrics. Additionally, we analyze the different ways...... in which all levels of omics data (from gene expression to flux) have been integrated in yeast GEMs. Relevant conclusions and current challenges for both GEM evaluation and omic integration are highlighted....

  13. The PP2A inhibitor I2PP2A is essential for sister chromatid segregation in oocyte meiosis II.

    Science.gov (United States)

    Chambon, Jean-Philippe; Touati, Sandra A; Berneau, Stéphane; Cladière, Damien; Hebras, Céline; Groeme, Rachel; McDougall, Alex; Wassmann, Katja

    2013-03-18

    Haploid gametes are generated through two consecutive meiotic divisions, with the segregation of chromosome pairs in meiosis I and sister chromatids in meiosis II. Separase-mediated stepwise removal of cohesion, first from chromosome arms and later from the centromere region, is a prerequisite for maintaining sister chromatids together until their separation in meiosis II [1]. In all model organisms, centromeric cohesin is protected from separase-dependent removal in meiosis I through the activity of PP2A-B56 phosphatase, which is recruited to centromeres by shugoshin/MEI-S332 (Sgo) [2-5]. How this protection of centromeric cohesin is removed in meiosis II is not entirely clear; we find that all the PP2A subunits remain colocalized with the cohesin subunit Rec8 at the centromere of metaphase II chromosomes. Here, we show that sister chromatid separation in oocytes depends on a PP2A inhibitor, namely I2PP2A. I2PP2A colocalizes with the PP2A enzyme at centromeres at metaphase II, independently of bipolar attachment. When I2PP2A is depleted, sister chromatids fail to segregate during meiosis II. Our findings demonstrate that in oocytes I2PP2A is essential for faithful sister chromatid segregation by mediating deprotection of centromeric cohesin in meiosis II.

  14. Molecular tools and protocols for engineering the acid-tolerant yeast Zygosaccharomyces bailii as a potential cell factory.

    Science.gov (United States)

    Branduardi, Paola; Dato, Laura; Porro, Danilo

    2014-01-01

    Microorganisms offer a tremendous potential as cell factories, and they are indeed used by humans for centuries for biotransformations. Among them, yeasts combine the advantage of unicellular state with a eukaryotic organization, and, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycetales budding yeast, is widely known for its peculiar tolerance to various stresses, among which are organic acids. Despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here, we describe in detail protocols for transformation, for target gene disruption or gene integration, and for designing episomal expression plasmids helpful for developing and further studying the yeast Z. bailii.

  15. Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse.

    Science.gov (United States)

    Feng, Yan-Min; Liang, Gui-Jin; Pan, Bo; Qin, Xun-Si; Zhang, Xi-Feng; Chen, Chun-Lei; Li, Lan; Cheng, Shun-Feng; De Felici, Massimo; Shen, Wei

    2014-01-01

    A critical process of early oogenesis is the entry of mitotic oogonia into meiosis, a cell cycle switch regulated by a complex gene regulatory network. Although Notch pathway is involved in numerous important aspects of oogenesis in invertebrate species, whether it plays roles in early oogenesis events in mammals is unknown. Therefore, the rationale of the present study was to investigate the roles of Notch signaling in crucial processes of early oogenesis, such as meiosis entry and early oocyte growth. Notch receptors and ligands were localized in mouse embryonic female gonads and 2 Notch inhibitors, namely DAPT and L-685,458, were used to attenuate its signaling in an in vitro culture system of ovarian tissues from 12.5 days post coitum (dpc) fetus. The results demonstrated that the expression of Stra8, a master gene for germ cell meiosis, and its stimulation by retinoic acid (RA) were reduced after suppression of Notch signaling, and the other meiotic genes, Dazl, Dmc1, and Rec8, were abolished or markedly decreased. Furthermore, RNAi of Notch1 also markedly inhibited the expression of Stra8 and SCP3 in cultured female germ cells. The increased methylation status of CpG islands within the Stra8 promoter of the oocytes was observed in the presence of DAPT, indicating that Notch signaling is probably necessary for maintaining the epigenetic state of this gene in a way suitable for RA stimulation. Furthermore, in the presence of Notch inhibitors, progression of oocytes through meiosis I was markedly delayed. At later culture periods, the rate of oocyte growth was decreased, which impaired subsequent primordial follicle assembly in cultured ovarian tissues. Taken together, these results suggested new roles of the Notch signaling pathway in female germ cell meiosis progression and early oogenesis events in mammals.

  16. Mapping yeast transcriptional networks.

    Science.gov (United States)

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  17. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].

    Science.gov (United States)

    Du, Zhiqiang; Li, Liming

    2014-06-01

    Multiple prion elements, which are transmitted as heritable protein conformations and often linked to distinct phenotypes, have been identified in the budding yeast, Saccharomyces cerevisiae. It has been shown that overproduction of a prion protein Swi1 can promote the de novo conversion of another yeast prion [PSI(+)] when Sup35 is co-overproduced. However, the mechanism underlying this Pin(+) ([PSI(+)] inducible) activity is not clear. Moreover, how the Swi1 prion ([SWI(+)]) interacts with other yeast prions is unknown. Here, we demonstrate that the Pin(+) activity associated with Swi1 overproduction is independent of Rnq1 expression or [PIN(+)] conversion. We also show that [SWI(+)] enhances the appearance of [PSI(+)] and [PIN(+)]. However, [SWI(+)] significantly compromises the Pin(+) activity of [PIN(+)] when they coexist. We further demonstrate that a single yeast cell can harbor three prions, [PSI(+)], [PIN(+)], and [SWI(+)], simultaneously. However, under this condition, [SWI(+)] is significantly destabilized. While the propensity to aggregate underlies prionogenesis, Swi1 and Rnq1 aggregates resulting from overproduction are usually nonheritable. Conversely, prion protein aggregates formed in nonoverexpressing conditions or induced by preexisting prion(s) are more prionogenic. For [PSI(+)] and [PIN(+)] de novo formation, heterologous "facilitators," such as preexisting [SWI(+)] aggregates, colocalize only with the newly formed ring-/rod-shaped Sup35 or Rnq1 aggregates, but not with the dot-shaped mature prion aggregates. Their colocalization frequency is coordinated with their prion inducibility, indicating that prion-prion interactions mainly occur at the early initiation stage. Our results provide supportive evidence for the cross-seeding model of prionogenesis and highlight a complex interaction network among prions in yeast.

  18. The yeast telomerase RNA, TLC1, participates in two distinct modes of TLC1-TLC1 association processes in vivo

    OpenAIRE

    Tet Matsuguchi; Elizabeth Blackburn

    2016-01-01

    Telomerase core enzyme minimally consists of the telomerase reverse transcriptase domain-containing protein (Est2 in budding yeast S. cerevisiae) and telomerase RNA, which contains the template specifying the telomeric repeat sequence synthesized. Here we report that in vivo, a fraction of S. cerevisiae telomerase RNA (TLC1) molecules form complexes containing at least two molecules of TLC1, via two separable modes: one requiring a sequence in the 3′ region of the immature TLC1 precursor and ...

  19. Site-specific phosphorylation of Tau protein is associated with deacetylation of microtubules in mouse spermatogenic cells during meiosis.

    Science.gov (United States)

    Inoue, Hiroki; Hiradate, Yuuki; Shirakata, Yoshiki; Kanai, Kenta; Kosaka, Keita; Gotoh, Aina; Fukuda, Yasuhiro; Nakai, Yutaka; Uchida, Takafumi; Sato, Eimei; Tanemura, Kentaro

    2014-05-29

    Tau is one of the microtubule-associated proteins and a major component of paired helical filaments, a hallmark of Alzheimer's disease. Its expression has also been indicated in the testis. However, its function and modification in the testis have not been established. Here, we analyzed the dynamics of phosphorylation patterns during spermatogenesis. The expression of Tau protein and its phosphorylation were shown in the mouse testis. Immunohistochemistry revealed that the phosphorylation was strongly detected during meiosis. Correspondingly, the expression of acetylated tubulin was inversely weakened during meiosis. These results suggest that phosphorylation of Tau protein contributes to spermatogenesis, especially in meiosis.

  20. [Fructose transporter in yeasts].

    Science.gov (United States)

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.