WorldWideScience

Sample records for budapest wwr-s reactor

  1. Safety report on WWR-S reactor

    International Nuclear Information System (INIS)

    The present Safety Report of the WWR-S reactor summarizes findings obtained during the trial and partially also permanent operation of the reactor after two stages of its reconstruction implemented between 1974 and 1976. Most data are presented necessary for assessing probable risks of possible accident conditions whose consequences pose health hazards to individuals of the population, radiation personnel and the facilities themselves. Attention is devoted to the description of the locality, to components and systems, heat removal from the core, design aspects, the quality of new and old parts of the technological circuits, the systems of protection and control, the emergency core cooling system, the problems of radiation safety, and to the safety analyses of the abnormal states envisaged. The Report was compiled with regard to IAEA and CMEA recommendations concerning safe operation of research reactors and to the recommendations and binding decisions of the Czechoslovak Atomic Energy Commission. (author)

  2. First stage of the WWR-S reactor reconstruction

    International Nuclear Information System (INIS)

    The technical development of the WWR-S reactor from its start-up in 1957 up to the present time is briefly described. The targets of the first stage of the facility reconstruction are formulated. This stage was accomplished in 1974. Attention is devoted to the description of refuelling and to some design details of the reactor core, of the control and protection system and finally to the experience with and the results of the reactor physical start-up. The volume of work carried out and described creates the pre-conditions for the successful materialization of the second stage of the reconstruction aimed at increasing of the reactor thermal output to 10 MW. (author)

  3. Safe decommissioning of WWR-S Romania research reactor

    International Nuclear Information System (INIS)

    WWR-S Romania research reactor was operated between 1957-1997, at 2 MW nominal power, for research and radioisotope production. The detailed decommissioning plan was developed between 1995-1998, in the frame of the International Atomic Energy Agency technical assistance project ROM/9/017. The proposed strategy agreed by the counterpart as well as international experts was a 2-stage plan (in IAEA definition). In 1997, an independent analysis performed by European Commission experts, in the frame of PHARE project PH/04.1/1994 dedicated to the 'Study of Soviet Design Research Reactors' had consolidated the development of the project emphasizing technical option of safe management for radioactive wastes and WWR-S spent fuel. The paper presents the main technical aspects as well as those of social impact, which lead to establishing of strategy for safe management of decommissioning. Technical analysis of WWR-S reactor and associated radwaste facilities (Radioactive Waste Treatment Plant - Magurele and National Repository Baita - Bihor) proved the possibility of classical method utilization for nuclear facility dismantling, treatment-conditioning-disposal of the arising wastes in safe conditions. The 2-stage IAEA decommissioning plan has been developed based on radiological safety assessment, evaluation of radwaste inventory (removed as well as preserved on site), cost analysis and environmental impact. Technical data were provided by R and D program including neutron calculation and experiments, radiological characterization (for facility and its influenced area), seismic analysis and environmental balance during the operation and after reactor shut down. A special chapter is dedicated to regulatory issues concerning development of decommissioning under nuclear safety. Based on the Fundamental Norms of Radiological Safety, Regulatory Body defined the clearance levels and safety criteria for the process. The development of National Norms for decommissioning of research

  4. WWR-S IFIN - HH research reactor decommissioning

    International Nuclear Information System (INIS)

    The paper presents the issues referring to the decommissioning of WWR-S research reactor, built in 1957 and shut down at the end of 1997. There are given: - General data; - Reactor characteristics; - Radioactive inventory in spent fuel (calculated at the and of 1999); - Radioactive inventory due to the neutron activation; - Results of contamination measurements for reactor components as well as technological areas; - The commissioning strategy development under international projects. There is also presented the list of components which will not be dismantled according to the established strategy. The radioactive waste arose in decommissioning are categorized as: - Wastes from dismantling of the primary circuit; - Historical wastes from research as well as reactor operation; Wastes from dismantling of control-command system; Wastes from dismantling of hot cells. Except for radwastes from reactor internals which are due to neutron activation, all the wastes are resulting from radioactive contamination. Other issues discussed are related to the treatment, conditioning and radwaste storage.The cost evaluation, planning of decommissioning as well as the funding arrangements are also given in this contribution. The documentation which can be used in the process is divided in two parts, one already worked out and the other which is to be developed. The management of the project and the relationships with civil society as beneficiary of the decommissioning of obsolete risky facilities are considered important. Romanian Government supported R-D works referring to this objective by: Funding from state - Budget of research for defining the decommissioning strategy, for developing the computational methods as well as for radiological characterization of facilities, waste routes and influence area; - Great support for international cooperation (IAEA Vienna, PHARE, bilateral agreements), by TAP ROM/9/017, ROM/9/017/EXTENDED, PH04.1/1994. A special place in the development of

  5. Technical glasses: electrical properties and behaviour in nuclear reactor WWR-S

    International Nuclear Information System (INIS)

    Samples of SIMAX, SIAL, PN, UNIHOST, KS-80 and KS-90 were irradiated in a WWR-S reactor and their electric conductivity was studied. A decrease in conductivity was found following the irradiation with thermal neutron fluence of 2.0x1023 n.m-2, which is characteristic of the individual types of glass. In the reactor channel heat generation was compared for glass containing boron (SIMAX, SUPREMAX) and boron-free glass (UNIHOST). Boron-free glass showed an increase within the limits of the temperature measurement error while both borosilicate types of glass showed a local increase of temperature of 39 K and 33 K, respectively, at temperatures of 350 to 390 degC. (author)

  6. Decommissioning of the nuclear research reactor WWR-S at Magurele-Bucharest, Romania

    International Nuclear Information System (INIS)

    The WWR-S Nuclear Research Reactor of Horia Hulubei National Institute of Physics and Nuclear Engineering at Magurele-Bucharest will be decommissioned. The strategy selected was the immediate dismantling. 2010 was the first year of the project. Duration of the decommissioning project will be 11 years. Three phases of decommissioning will be necessary for finalizing the entire project. In the first 4 years the planning is to repatriate to Russian Federation all the low enriched uranium nuclear fuel of type EK-10 irradiated assemblies, while in the framework of US Department of Energy - National Nuclear Security Administration Program concerning the Russian Research Reactor Fuel Return - RRRFR, all the highly enriched uranium spent fuel assemblies of type C-36 were repatriated from Magurele site to Russian Federation in June 2009. Also, in the first three years of the project, the Radioactive Waste Treatment Plant located at the same site as the WWR-S research reactor, will be up-graded to ensure the proper processing of the materials resulted from decommissioning activities. For executing the Dismantling and Decontamination activities there were selected, as best option, the participation the members team of operators and engineers from research reactor. End state of the decommissioning project will be reutilization of the buildings for sitting a new electron linear accelerator with maximum 10 MeV energy used in material sciences studies and applications. Commercial equipment obtained during deployment the IAEA Technical Cooperation Project (2004-2008), technical cooperation project with US Argonne National Laboratory (2003-2007), EU PHARE project (2008-2009), US RRRFR program (2004-2009) and national projects will be used in decommissioning project. Good practices in planning, organization, funding and logistics will be described in the paper. (authors)

  7. Dose rate time evolution for the activities of WWR-S IFIN - HH reactor internal structures

    International Nuclear Information System (INIS)

    This paper reports the results of a work, carried out under IAEA Vienna contract, aiming at getting information concerning the working conditions of the personnel involved in decommissioning and the decommissioning variant to be chosen. According to the decommissioning strategy for the WWR-S IFIN - HH reactor, the most of the reactor tank will remain on place except for some internal components which have to be extracted and disposed. Time behaviour of the dose rates for the reactor internal components is evaluated by means of the code MERCURE-3. The gamma activity was computed by means of ORIGEN code by using a neutron flux obtained from a 2-D calculation carried out with the TWOTRAN program. The reactor irradiation history as well as the 100 days, 6, 10, 25 and 50 years spans after reactor shutdown were taken into account. For the internal components situated near the horizontal channels and thermal column a reference system located at the component position was used in calculation. For large components like reactor vessels, iron and concrete shieldings, corrections were introduced to account for the influence of horizontal channels and thermal column. On the other hand for these latter components a sophisticated algorithm, correcting for photon sources was created. In order to obtain a configuration as real as possible detailed computation models were conceived using the point kernel method. Time dependences of the dose rates resulting from the computation of components' areas namely for surface area + 20 cm, + 100 cm, + 200 cm, + 800 cm, + 1000 cm are presented. The dose rates corresponding for the whole reactor vessel assembly show a rapid decrease in the first six years followed by a steep exponential decrease, while after six years a simple exponential decay remains due mainly to the predominant radioactive isotope 63 Ni. Measurement values for components from other WWR-S decommissioned reactors appear to be an order of magnitude lower than the values

  8. Preliminary decommissioning plan for research reactor WWR-S, Bucharest, Magurele

    International Nuclear Information System (INIS)

    Preliminary plan for WWR-S Bucharest reactor decommissioning was developed in the frame of Technical Assistance Project ROM/9/017, sustained by IAEA Vienna. This plan takes into account the IAEA recommendations and is built on the decommissioning methodology usually adopted in European Union. The plan is based on the research activity of our laboratory, the works performed together with international experts and the expertise knowledge acquired during the visits abroad and fellowships. Also, the plan contains the results of the PHARE Project PH 04.1/1994 referring to safety, health physics, management of wastes and spent fuel. We developed: - a calculation system for radioactive inventory; - methods for determination of impurities in structural materials of the reactor; - methods for radiological characterization of the technological areas of the reactor; - mapping methods for environmental characterization on the waste routes; - method for evaluation of the in-deep contamination for concrete used in the reactor. A cost analysis code was implemented in order to perform an estimation of the funds necessary for development of the project. Activities related with the decommissioning plan of this reactor have been developed in a cooperation with VKTA Rossendorf, Germany covering the following topics: - health physics and environmental surveillance; - spent fuel management; - wastes arising from decommissioning; - intercomparison of calculation methods. (author)

  9. The Waste Management Plan integration into Decommissioning Plan of the WWR-S research reactor from Romania

    International Nuclear Information System (INIS)

    The paper presents the progress of the Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor WWR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for WWR-S decommissioning was also developed. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are part of the radioactive waste management strategy. (authors)

  10. The structure of decommissioning plan for WWR-S research reactor

    International Nuclear Information System (INIS)

    The WWR-S IPNE reactor, situated in the village Magurele near Bucharest, has been put in operation at the 27th of July, 1957 and it was continuously operated without major events, up to present moments. During this period there were not made any modifications concerning the core and main circuits. The reactor operates with the original equipment and control instrumentation supplied by Soviets. The reactor is designed and built at the scientific and technological level of 50's. During the life-cycle of a nuclear facility, decommissioning is a definite phase which begins with the final closure of the facility and ends with the release of the site for unrestricted use. Regardless of why a facility is permanently shut down, the three commonly accepted stages in the decommissioning process are: - Stage 1, or storage under surveillance; - Stage 2, or restricted site use; - Stage 3, or unrestricted site use. In view of the present situation the recommendation of the IAEA Experts on strategy is: decommissioning to Stage 2 as a preferable and viable option. When reliable cost estimates and more complete radiological characterization are available, the strategy shall be reviewed because early decommissioning to the Stage 3 must not be entirely excluded. There is no obvious reasons to defer Stage 3 other than costs and waste management capability. (authors)

  11. Reconstruction of the WWR-S reactor. I. Switch-over to IRTM fuel

    International Nuclear Information System (INIS)

    The findings are briefly reviewed gained in the first stage of the WWR-S reactor reconstruction aimed at achieving a thermal output of 1O MW. The principle of the reconstruction consists in the use of a new type of fuel, IRT-M, in place of EK-10 used so far. The new fuel assembly consists of four fuel elements in the shape of rectangular cross-section concentric tubes having a wall thickness of 2 mm, the kernel consists of a uranium-aluminium alloy with 80% U 235 enrichment. With this type of fuel, the reactor core has high reactivity excess in spite of a relatively small number of fuel assemblies used (26 pcs) and may operate at high thermal load, which permits obtaining high neutron flux, i.e., 1014 n/cm2s for thermal neutrons. The number of regulating rods has been increased from 9 to 12, the reactor control and protection system has been entirely reconstructed and other necessary adaptations of the core have been made. During physical start-up criticality was verified of various core configurations, such as a configuration featuring a light-water moderator and a central beryllium neutron absorber, a compact configuration with a light-water moderator and an operating configuration with a light-water reflector and 4 loop channels in the peripheral region. In all these cases critical mass and reactivity excess was determined. So far, the reactor achieves an output of 2 MW; in stage two of the reconstruction, heat removal from the reactor including the emergency core cooling system is to be solved. (Z.M.)

  12. Decommissioning of research nuclear reactor WWR-S Bucharest. Analysis, justification and selection of decommissioning strategy

    International Nuclear Information System (INIS)

    The decommissioning of Research Nuclear Reactor WWR-S Bucharest involves the removal of the radioactive and hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. The National Institute of Physics and Nuclear Engineering has overall responsibilities in decommissioning including actions of contractors, submit a decommissioning plan to the regulatory body for approval and no decommissioning activities shall begin without the appropriate approval of the regulatory body. A very important aspect of decommissioning is analysis, justification and selection of decommissioning strategy. There are three strategies: Immediate Dismantling, Safe Enclosure, and Entombment. These strategies have been analyzed taking into account: - Future use of site and facilities; - Infrastructure of the specific site and facilities; - Waste storage and disposal options; - Financial aspects; - Geographical Location; - National, Local and International Legislation; - Facility characterization; Identification of decommissioning objectives; - Description of alternatives: scope, features, specific end points, release criteria, risks and safety issues, effectiveness, feasibility, nature and amount of waste of generated and disposal plans, material recycling/reusing opportunities, cost, schedule, comparative analysis; - Rationale for selecting the preferred alternative. (authors)

  13. Decommissioning of the research nuclear reactor WWR-S Magurele - Bucharest. General presentation of the project

    International Nuclear Information System (INIS)

    A decommissioning project was worked out concerning the nuclear facility research reactor WWR-S Magurele-Bucharest to remove the radioactive and hazardous materials and so to exclude any risk for human health and environment. The project involves the four phases named assessment, development, operations and closeout. There are two major parts to the assesment phase: preliminary characterisation and the review and decision-making process. Characterisation is needed to develop project baseline data, which should include sufficient chemical, physical, and radiological characterisation to meet planning needs. Based on the conclusions of these studies, possible decommissioning alternative will be analyzed and: the best alternative chosen, final goal identified, risk assessments are evaluated. Also, taken into account are: regulations supporting assessment, land use considerations, financial concerns, disposal availability, public involvement, technology developments. After a decommissioning alternative was chosen, detailed engineering will begin following appropriate regulatory guidance. The plan will include characterisation information, namely: review of decommissioning alternatives; justification for the selected alternative; provision for regulatory compliance; predictions of personnel exposure, radioactive waste volume, and cost. Other activities are: scheduling, preparation for decommissioning operations; coordination, documentation, characterization report, feasibility studies, Decommissioning Plan, project daily report, radiological survey, airborne sampling records, termination survey of the site. The operations imply: identification and sequencing the operations on contaminated materials, storing on site the wastes, awaiting processing or disposal, and packaging of materials for transport to processing or disposal facilities.The key operations are: worker protection, health and safety program, review of planing work, work area assessment, work area controls

  14. Stage of decommissioning of the WWR-S research nuclear reactor at Magurele-Bucharest

    International Nuclear Information System (INIS)

    Full text: A decommissioning project is performed on the nuclear facility research reactor WWR-S Magurele-Bucharest to remove the radioactive and hazardous materials to avoid any risk to human health and the environment. The project involves four phases, namely: assessment, development, activity implementation and closeout. There are two major parts of the assesment phase: preliminary characterisation and the review and decision-making process. Characterisation is needed to develop project baseline data, which should include sufficient chemical, physical, and radiological characterisation to meet planning needs. Based on the conclusions of these studies, possible decommissioning alternatives will be considered, the best alternative chosen, final goal identified, risk assessments evaluated, and issues of regulations supporting assessment, land use considerations, financial problems, disposal availability, public involvement, and technology developments will be appropriately solved. After a decommissioning alternative is chosen, detailed engineering will begin following appropriate regulatory guidance. The plan requires characterisation information, namely: review of decommissioning alternatives; justification for the selected alternative; provision for regulatory compliance; predictions of personnel exposure, radioactive waste volume, and cost. Other activities are the following: scheduling, preparation for decommissioning operations, coordination, documentation, characterization, report, feasibility studies, Decommissioning Plan, project report day to day, radiological survey, airborne sampling records, termination survey of the site. Key concerns in operations are worker protection, health and safety program, review of planing work, work area assessment, work area controls, personal protection and monitoring, environmental protection: air quality, surface water, ground water, shipments, effluent sampling and monitoring, environmental monitoring, site release

  15. Personnel training program for WWR-S Nuclear Research Reactor - on the radiological characterization and cleanup activities

    International Nuclear Information System (INIS)

    The aim of this program is the development of competence by training, acquiring, extending and maintaining competence, using fundamental or refreshment training courses. Progress and suited approach are established based on the list with tasks and subjects to be assimilated. According to 'graded approach to training' method the training process will be assessed from initial training-to-training evaluation at the working place. The program responsible of and participants will provide a detailed report that will describe the progress, achieved competence area and the future training necessities. Report form will be given to the participants at the beginning of the training, which will be completed during the program. It will be taken in account that the Nuclear Reactor WWR-S is in the conservation phase for the Nuclear Reactor and the exploitation of the Nuclear Spent Fuel Ponds (Away from Reactor-AFR) - both phases are authorized by the Regulatory Body (CNCAN), as transition phase from the operating-shut-down-conservation phase and the decommissioning preparing: clean-up, maintaining and improvement of the nuclear safety, technical documentation elaboration, maintenance activities. (authors)

  16. Study of the WWR-S-NIPNE-HH reactor main components state, after 40 years working, using non-destructive methods

    International Nuclear Information System (INIS)

    In the framework of periodical inspections and verifications of the nuclear research reactor WWR-S were established to be perform some tests and investigations destined to ensure that there are available concordances with the security requirements and that the security state of the reactor didn't decrease given the initial state. Their aim is to obtain information regarding the technical state and the ability of the components, systems and installations to work properly in conditions of high security level in accordance with the Safety Analysis Report of Nuclear Research Reactor WWR-S from NIPNE-HH, Bucharest (1997), and at the level guaranteed from the initial state. By initial state we mean the state of first commissioning. (author)

  17. Radiologic states of the WWR-S Bucharest Reactor following definitive shutdown

    International Nuclear Information System (INIS)

    The definitive shutdown of a reactor raises problems related to the management of the radioactive inventory. To define the radioactive inventory contained in the burned nuclear fuel and in the neutron activated structural materials computation methods are to be used. Besides the radioactive inventory contained in the main block of the reactor, the one due to the primary circuit contaminated mainly with fission products and corrosion products activated in the reactor core, transported and deposed on the components of the cooling primary circuit should be added. Also another component of the radioactive inventory intervenes, namely, the one due to the contamination of the technological rooms used for various operations the nuclear activities (hot cells, pump room, reactor hall, passage ways to the hot cells and for radioactive source, radioisotope and radioactive waste transport). The activities which made used of the neutron and gamma fluxes for radioisotope production, materials irradiation, research, component testing, resulted in radioactive waste, technological or accidental contaminations of the technological rooms of the reactor. Inspections and current repair interventions resulted also in radioactive waste an contaminations. Consequently systematic measurements with qualified equipment dedicated to alpha, beta, gamma contamination measurements as well as to dose rates determinations for the personnel exposed are necessary. Irrespective of the duration of the reactor conservation or shutdown, the radiologic monitoring should continue. This work presents the results obtained by the research group 'Restoration of Nuclear Sites', working with the IFIN-HH, regarding both the radioactive inventory calculation and measurements of contamination of technological rooms and environment in the reactor vicinity

  18. Study of the WWR-S IFIN-HH reactor main components stare, after 40 years working, using nondestructive methods

    International Nuclear Information System (INIS)

    The main goal of these investigations was to establish the security level after 40 years of working of the WWR-S research reactor of Horia Hulubei National Institute of Research and Development for Physics and Nuclear Engineering, Bucharest-Magurele. The purpose of these investigations was: checking the functionality and the physical integrity of the main components of the reactor. The physical integrity of the components is usually affected by slow processes, such as: corrosion, erosion, aging, deformations and initially hidden flaws with very slow evolutions. The methods used to determine the effects of these processes and to infer conclusions about the physical integrity of the facility are: visualizations by optical means (endoscopy and video camera), examination using ultrasounds and gammagraphy. The objective of the endoscopic checking was the view of the state of interior surfaces of the tubes and pipes, specially the inaccessible areas of the non-dismantling parts of the reactor. Big size components, such as reactor vessel, the biologic protection vessel and the main large diameter pipes of the primary cooling system, were investigated using a special device that contains a video camera connected to a PC. To obtain more information regarding the evolution of the corrosion spots, scratches and harmed areas on the investigated surfaces, their depth was checked by ultrasounds, and the welding seams structure was determined by gammagraphy. A table is given with some significant results obtained from ultrasound measurements in different points of reactor vessel, thermal column, horizontal tubes, etc. After these tests, the conclusions are: the maximum corrosion depth is 0.2 mm; - scratches are superficially, not exceeding 0.2-0.5 mm; - the traces of harmed areas are produced by the electromagnetic device utilization used for manipulation of aluminium capsules which contain irradiated substances. They are superficial, with maximum area of about 1 cm2; the

  19. Time behaviour evaluation of WWR-S IFIN-HH reactor spent fuel characteristics using the SCALE4.3 computational system

    International Nuclear Information System (INIS)

    The time evolution of the radioactive inventory, gamma and neutron sources, and thermal power of the WWR-S IFIN-HH reactor spent fuel is calculated in this work via SCALE4.3 computational system. The evaluation of these spent fuel characteristics needed for the storage variant analysis is based on a method previously established in IFIN-HH, Bucharest consisting in burnup calculations by means of ORIGEN-S code which applies specific problem dependent libraries defined for classes of fuel elements and processed with SAS2H, SCALE calculation module. The reliability of the calculations performed was tested by comparison against similar calculation, for same representative fuel elements, performed by ORIGEN-JR and HELIOS codes in VKTA Rossendorf. Four reference time of 5, 10, 25, and 50 years after the date 31st December, 1999 were taken into account. Detailed results for all 222 fuel assemblies of both types i.e., EK-10 and S36, irradiated in the reactor are presented and discussed into the paper. The WWR-S IFIN-HH Spent Fuel Archive System 'S.F.A.S' ACCESS Database that was achieved is also discussed. (authors)

  20. Advanced fuel in the Budapest research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Vidovsky, I. [KFKI Atomic Energy Research Inst., Budapest (Hungary)

    1997-07-01

    The Budapest Research Reactor, the first nuclear facility of Hungary, started to operate in 1959. The main goal of the reactor is to serve neutron research, but applications as neutron radiography, radioisotope production, pressure vessel surveillance test, etc. are important as well. The Budapest Research Reactor is a tank type reactor, moderated and cooled by light water. After a reconstruction and upgrading in 1967 the VVR-SM type fuel elements were used in it. These fuel elements provided a thermal power of 5 MW in the period 1967-1986 and 10 MW after the reconstruction from 1992. In the late eighties the Russian vendor changed the fuel elements slightly, i.e. the main parameters of the fuel remained unchanged, however a higher uranium content was reached. This new fuel is called VVR-M2. The geometry of VVR-SM and VVR-M2 are identical, allowing the use to load old and new fuel assemblies together to the active core. The first new type fuel assemblies were loaded to the Budapest Research Reactor in 1996. The present paper describes the operational experience with the new type of fuel elements in Hungary. (author)

  1. Upgrading of the Budapest reactor

    International Nuclear Information System (INIS)

    The increasing importance of neutron sources, high demand for irradiation and experimental facilities as well as improved safety requirements in the 'eighties, necessitate not only a technical modernization of the Reactor but an overall upgrade including instrumentation. Such a reconstruction was decided by the Hungarian governement in 1983

  2. Cold neutron source at the Budapest reactor

    International Nuclear Information System (INIS)

    The installation of a liquid hydrogen cold neutron source assembly with a single closed circuit feed by two cryogenerators and utilizing the thermosyphon principle is in progress at the reconstructed Budapest reactor. The end of the in-pile part is a nearly tangential horizontal channel with a moderator cell of 250 cm3 volume made of aluminium alloy located in a hole inside the Be-reflector. The cold neutrons will be directed to the user positions by three mirror guide tubes. (orig.)

  3. Refueling strategy at the Budapest research reactor

    International Nuclear Information System (INIS)

    Refueling strategy is very important for nuclear power plants and for highly utilized research reactors with power level in the megawatt range. New core design shall fulfill several demands and needs which can contradict each other sometimes. The loaded uranium quantity should assure the scheduled operation time (energy generation) and the maneuvering capability even at the end of the campaign. On the other hand the built in excess reactivity cannot be too high, because otherwise it would jeopardize the shutdown margin and reactor safety. Moreover the core arrangement should be optimum for in-core irradiation purposes and for the beam port experiments too. Sometimes this demand can be in contradiction with the desired burnup level. The achieved burnup level is very important from the fresh fuel consumption point of view, which has direct economic significance, however the generated spent fuel quantity is an important issue too. The refueling technique presented here allowed us at the Budapest Research Reactor to reach average burnup levels superseding 60%. (author)

  4. Experimental loop in the Nuclear Training Reactor Budapest

    Energy Technology Data Exchange (ETDEWEB)

    Csom, Gy.; Kocsis, E.; Zsolnay, E.M.; Szondi, E.J.; Szuecs, I. (Budapesti Mueszaki Egyetem (Hungary). Egyetemi Reaktor)

    1982-01-01

    The in-pile loop built into the Nuclear Training Reactor of the Technical University Budapest constructed jointly with the specialists of the Moscow Energetic Institute is used for thermoradiolitic investigations of irradiated solutions under conditions of 20-300 deg C temperature and max. 150 bar pressure. Therefore, the results of such experiments can provide valuable information on the kinetics and mechanisms of chemical processes occurring in the primary and secondary circuits of WWER-type power reactors. In order to obtain results applicable also to power plant conditions, the dose rate had to be increased. Therefore, some modifications of the reactor power were necessary. Preliminary test results are summarized.

  5. Liquid hydrogen cold moderator optimisation at the Budapest Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grosz, T.; Rosta, L. [KFKI Research Inst. for Solid State Physics, Budapest (Hungary); Mityukhlyaev, V.A.; Serebrov, A.P.; Zaharov, A.A. [St. Petersburg Nuclear Physics Institute, 188350 Gatchina, Leningrad district (Russian Federation)

    1997-06-01

    At the Budapest Research Reactor (BRR) the main functional element of the planned cold neutron source (CNS) is a special moderator cell filled with liquid hydrogen and placed at the end of a horizontal beam channel in the Be reflector close to the maximum of thermal neutron distribution. The moderator cell is inside an explosion proof vacuum case preventing the reactor itself from any damage even in the worst possible accident. Two versions of the moderator cell both directly cooled with cold He gas are compared. (orig.).

  6. Liquid hydrogen cold moderator optimisation at the Budapest Research Reactor

    International Nuclear Information System (INIS)

    At the Budapest Research Reactor (BRR) the main functional element of the planned cold neutron source (CNS) is a special moderator cell filled with liquid hydrogen and placed at the end of a horizontal beam channel in the Be reflector close to the maximum of thermal neutron distribution. The moderator cell is inside an explosion proof vacuum case preventing the reactor itself from any damage even in the worst possible accident. Two versions of the moderator cell both directly cooled with cold He gas are compared. (orig.)

  7. New possibilities of the utilization of the Budapest Research Reactor

    International Nuclear Information System (INIS)

    The Budapest Research Reactor is the first nuclear facility of Hungary. It was put into operation in 1959. The main purpose of the reactor is to serve neutron research; anyhow the isotope production is important as well. The reactor was extended by a liquid hydrogen type cold neutron source in 2000. The research possibilities are much improved by the CNS both in neutron scattering and neutron activation. This research possibility was offered to the entire user community of Europe (scientists active in member states and associated states of European Community) within the 5th Framework Programme. Eight instruments for neutron scattering, radiography and activation analyses are offered. The majority of these instruments got a much-improved utilization with the cold neutrons. The CNS sponsored partially by the Copernicus project of the EU and by the IAEA was installed at a tangential beam port of the reactor and it extended the use of the reactor, especially in the scientific field. The paper will describe the improved utilization of the reactor. (author)

  8. Instrumentation upgrade at the Training Reactor of Budapest University

    International Nuclear Information System (INIS)

    After more than 30 years of operation, parts of the instrumentation of the Training Reactor of Budapest University is still working with original circuit boards, components from the 70's. Nowadays, with the convenience of using integrated circuits and computers, it is expectable to change from the old technology to a newer, more up-to-date measurement system, with higher reliability and with services that cannot be made with current instrumentation. Our radiation control system will be soon upgraded to a new, self-developed hightech data acquisition system. Its heart is a microcontroller based, standalone circuit. With this change reliability will dramatically improve due to small number of components, to modular firmware witten in assembly, and to the simple power supply unit. We solved the problem of remote data access (data representation), data archivation, and on-line measurements using ethernet network connection, a linux based database system with automated data upload softwares, and common, off the shelf web browsers. Software reliability was maximized by using only commercial, proven software applications which was tested by million of people. Data security is made by storing collected data on more computers, in more formats (raw text file, database file), updating them minute by minute. Using only local network addresses, encrypted data transfers, and secure connections very good access security is achieved. This way of measurement system development helps us to save time, and to make cheap systems with high flexibility. In my presentation I will show these systems in detail, with all the novel and useful features we made and are using currently at our training reactor. (author)

  9. CERREX Software Application at Budapest Research Reactor (BRR). Appendix V

    International Nuclear Information System (INIS)

    The BRR is a Russian designed WWRS-M10 reactor. It is a tank type, light water cooled and moderated research reactor. Its main goal is radioisotope production and neutron physics research. The BRR went critical in 1959 and during 52 years of operation, two modernizations and one partial decommissioning were carried out. After the second modernization, the reactor restarted in 1993. The planned lifetime is 30 years, and final shutdown will be in 2023. After the final shutdown, there will be a 2 year transition period and then partial decommissioning. The final goal is to dismantle the reactor system, most of the auxiliary systems and subsystems and hand the reactor building over to the Hungarian Academy of Sciences as an unrestricted site. The organization operating BRR has, since 2004, participated in the IAEA regional TC project RER/3/009 on Support in Planning for the Decommissioning of Nuclear Power Plants and Research Reactors. The first Preliminary Decommissioning Plan (PDP) was developed in 2005 and followed IAEA recommendations. A revised PDP utilized IAEA guidance given. The IAEA Expert Mission to discuss the decommissioning planning of the BRR was organized in 2010. The PDP database and the study of earlier decommissioning is the basis of CERREX software 'Inventory' and 'ISDC' work-sheets, despite the fact that the PDP structure is different from the CERREX structure

  10. The Budapest research reactor as an advanced research facility for the early 21st century

    International Nuclear Information System (INIS)

    The Budapest Research Reactor, Hungary's first nuclear facility was originally put into operation in 1959. The reactor serves for: basic and applied research, technological and commercial applications, education and training. The main goal of the reactor is to serve neutron research. This unique research possibility is used by a broad user community of Europe. Eight instruments for neutron scattering, radiography and activation analyses are already used, others (e.g. time of flight spectrometer, neutron reflectometer) are being installed. The majority of these instruments will get a much improved utilization when the cold neutron source is put into operation. In 1999 the Budapest Research Reactor was operated for 3129 full power hours in 14 periods. The normal operation period took 234 hours (starting Monday noon and finishing Thursday morning). The entire production for the year 1999 was 1302 MW days. This is a slightly reduced value, due to the installation of the cold neutron source. For the year 2000 a somewhat longer operation is foreseen (near to 4000 hours), as the cold neutron source will be operational. The operation of the reactor is foreseen at least up to the end of the first decade of the 21st century. (author)

  11. Cold neutron source at the Budapest WWR-SM reactor

    International Nuclear Information System (INIS)

    Upgrading and complete reconstruction of the KFKI WWR-SM reactor includes the installation of a cold neutron source in order to improve neutron scattering facilities for condensed matter research. The principles of cold neutron moderators are given, and the operation as well as the main elements of a small size cell liquid hydrogen cold source planned to be installed are presented describing also the installation and testing procedures. The most important hazard factors and safety problems are analyzed. (author) 24 refs.; 8 figs.; 1 tab

  12. Neutron guide system at the Budapest Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rosta, L.; Cser, L.; Grosz, T.; Toeroek, G. [Research Inst. for Solid State Physics, Budapest (Hungary); Belgya, T.; Molnar, G.; Revai, Z. [Institute of Isotopes, 1525 Budapest, KFKI, Pf. 49 (Hungary); Kaszas, G. [MIRROTRON Co. 1025 Budapest, Ozgida ut 19/3 (Hungary)

    1997-06-01

    The 10 MW research reactor was restarted after a full-scale refurbishment in 1993. An important task of the upgrading was the construction of a new experimental hall and three neutron guides have been installed for the instruments located in this area. The in-pile plug contains 25 x 100 mm{sup 2} section float glass optical elements coated with {sup 58}Ni. The guides of the same cross section have the following destination: NV1 has an interruption for the monochromator of a three-axis spectrometer and the prompt gamma activation analysis station is installed in end position. The second guide serves only for the small-angle scattering device and the third one for a reflectometer being constructed. (orig.).

  13. A new PGAI-NT setup at the NIPS facility of the Budapest Research Reactor

    International Nuclear Information System (INIS)

    Prompt gamma activation analysis (PGAA) is a well known tool for non-destructive bulk elemental analysis of objects. The measured concentrations are only representative of the whole sample if it is homogenous; otherwise it provides only a sort of average composition of the irradiated part. In this latter case one has to scan the sample to obtain the spatial distribution of the elements. To test this idea we have constructed a prompt gamma activation imaging - neutron tomograph (PGAI-NT) setup at the NIPS station of the Budapest Research Reactor, consisting of a high-resolution neutron tomograph and a germanium gamma-spectrometer. The samples are positioned relative to the intersection of the collimated neutron beam and the projection of the gamma-collimator (isocenter) by using an xyzω-moving table. (author)

  14. The small angle neutron scattering spectrometer at the Budapest research reactor

    International Nuclear Information System (INIS)

    The reinstallation of the Small Angle Neutron Scattering spectrometer (named 'Yellow Submarine') at the Budapest Research Reactor has been finished in winter 2001. Parallel to the installation of a liquid hydrogen cold source, the guide system of the spectrometer was also rebuilt to a more optimized geometry. The old natural Ni-coated guide sections of 2.5x10 cm2 after the velocity selector have been replaced by a new supermirror coated curved neutron guide with 4x4 cm2 cross section. The neutron flux of the upgraded spectrometer is much higher. The beam is formed by a fixed length collimator tube and monitored by a fission chamber. (R.P.)

  15. The new cold neutron research facility at the Budapest Research Reactor

    International Nuclear Information System (INIS)

    The new cold neutron research facility is routinely operated at the Budapest Neutron Centre since February 2001. At the 10 MW research reactor a liquid hydrogen cold neutron source (CNS) has been installed. The commissioning of the CNS has been followed by the replacement of the old neutron guides by a new supermirror guide system both for the in-pile and out-of pile part. The ensemble of the CNS and new guides provides an intensity gain of the order of 30-60. The cold neutron channel has a take-off for three beams. The first guide serves for a triple axis spectrometer and a prompt gamma activation analysis station. A small angle scattering spectrometer is installed on the middle guide, and a reflectometer is operated on the third one. (author)

  16. Foil activity measurements for testing transport calculations in the Budapest Research Reactor

    International Nuclear Information System (INIS)

    The upgraded VVR-SM type (Russian design) Budapest Research Reactor serves both research and practical applications. As a by-product of the experimental methods used in the field of the neutron activation analysis a unique opportunity arose for benchmarking the neutron physical algorithms against measurements. As the original aim of the measurements was the determination of the concentrations and the necessary neutron flux characteristics, the measured primary data had to be reevaluated to verity the neutron physical calculations. The reaction rates of the following measured reactions were selected for the comparison: 94Zr(n,γ)95Zr, 96Zr(n,γ)97Zr/97mNb, 58Ni(n,p)58Co, 176Lu(n,γ)177Lu and 197Au(n,γ)198Au. For the sake of comparison, the multigroup cross section library of the MULTICELL code had been supplemented with the data of the above reactions by using the NJOY code. As the reaction rates are measured at the same positions (practically without shielding effects), the measured and calculated reaction rate ratios were compared on the level of the multigroup MULTICELL calculations. The accuracy of the MULTICELL code for the research reactor has been tested by comparative MCNP calculations. (author)

  17. Neutron-, gamma- and X-ray three-dimensional computed tomography at the Budapest research reactor site

    Energy Technology Data Exchange (ETDEWEB)

    Balasko, Marton [KFKI Atomic Energy Research Institute H-1525 Budapest P.O. Box 49 (Hungary)]. E-mail: balasko@sunserv.kfki.hu; Kuba, Attila [Department of Image Processing and Computer Graphics, University of Szeged, Arpad ter 2, Szeged, H-6720 (Hungary); Nagy, Antal [Department of Image Processing and Computer Graphics, University of Szeged, Arpad ter 2, Szeged, H-6720 (Hungary); Kiss, Zoltan [Department of Image Processing and Computer Graphics, University of Szeged, Arpad ter 2, Szeged, H-6720 (Hungary); Rodek, Lajos [Department of Image Processing and Computer Graphics, University of Szeged, Arpad ter 2, Szeged, H-6720 (Hungary); Rusko, Laszlo [Department of Image Processing and Computer Graphics, University of Szeged, Arpad ter 2, Szeged, H-6720 (Hungary)

    2005-04-21

    A new complex, neutron-, gamma- and X-ray three-dimensional computer tomography system suitable for experimental and industrial applications has been built at the 10-MW Budapest research reactor site. After the system was installed, a number of objects were investigated and tomographic projections were made. The evaluation relied on two reconstruction approaches. One of these is the classical, filtered back-projection method using 180 projected pictures, while the other is based on discrete tomography optimization algorithms where fewer projections were needed.

  18. Thermo-hydraulic test of the moderator cell of liquid hydrogen cold neutron source for the Budapest research reactor

    International Nuclear Information System (INIS)

    Thermo-hydraulic experiment was carried out in order to test performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center. Two electric hearers up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling he gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 w expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  19. Encapsulation of nuclear spent fuel for semi-dry storage at the Budapest research reactor

    International Nuclear Information System (INIS)

    In order to change the temporary underwater storage mode of nuclear spent fuel (NSF) from wet to semi-dry as a means of slowing down or even stopping the corrosion effects of the cladding and thereby ensuring safe storage conditions for further temporary storage, AEKI's experts elaborated a canning technology and canning equipment. Manufacturing of the canning equipment and the installation work at the AFR (away from reactor) pond of the Budapest Research Reactor (BRR) were completed, and the regulatory licence for NSF encapsulation was granted in March 2002. The canning technology uses a tube-type capsule as shown. The capsule is made of aluminium alloy, with a wall thickness of 3 mm. A bottom weight, consisting of an aluminium-clad iron disk is screwed to the bottom of the capsule to ensure sinking of the encapsulated NSF assembly as well as to provide sub-criticality. The capsule is capable of accommodating one EK-10 or one triple VVR type assembly or three single VVR assemblies. The EK- 10 assemblies are packaged 'as they are', apart from a small part of the aluminium leg of a VVR assembly (∼73 mm) being cropped off before canning. The overall dimensions of the canning tube are indicated in the drawing. Encapsulation utilizes a closed technology during which the capsule undergoes a powerful drying procedure (heated by an eddy current) and it is then filled with 2.5 bar nitrogen gas (the over-pressure is needed for leak detection purposes) after which it closed by a capsule head with shrink and welded sealing. Regarding the canning equipment, its operational part is a steal structure canning cask supplied with a revolver head having 5 operating positions and a vertical transfer pipe for sucking up and floating down the capsule. The inner cavity of the cask (operator cylinder) can be closed by vacuum-tight sealing and valves. The canning steps are controlled by a PLC system. The technology includes a cropping machine for cutting the fuel legs and in case of

  20. Generation of the problem-dependent data libraries for IFIN-HH WWR-S spent fuel storage criticality and dose calculation

    International Nuclear Information System (INIS)

    The methods used for the radioactivity inventory calculation and dose evaluation of the fuel elements irradiated in the WWR-S IFIN-HH reactor are discussed in this work. A particular attention is paid to the processed problem-dependent nuclear libraries. SAS2H, a complex sequence of the SCALE-4.3 code system containing the modules BONAMI - NITAWL - XSDRNPM - COUPLE - ORIGEN-S - XSDOSE, has been assimilated on the IFIN-HH computer and applied to update the ORIGEN-S libraries by producing problem-dependent processed data libraries needed to perform the depletion and shielding analysis. This sequence uses one of the eight associated data libraries of the SCALE-4.3 system according to the choice of the user. The method consists in the following analysis processes: i) lattice cell neutron analysis to produce the flux weighting spectrum for activation library updating; ii) update of the nuclear data constants of the ORIGEN-S libraries; iii) depletion and decay analysis for a specified fuel assembly and irradiation history in order to generate gamma and neutron source strength and spectra. iv) one-dimensional radial shielding calculation for the evaluation of the angular neutron and gamma flux at the surface of a spent fuel shipping cask and further calculation of the dose rates at various points outside the cask. An efficient alternative of the calculation sequence mentioned above is the ARP (Automatic Rapid Processing) method conceived in order to generate independently ORIGEN-S libraries and to reduce substantially the running time. The substance of this method is the generation of the problem-dependent libraries from basis libraries a priori created by SAS2H for specific fuel assembly type and further interpolation of two independent variables, enrichment and burnup. Specific applications concerning WWR-S spent fuel were performed: i) generation of three problem-dependent libraries for the S-36 fuel assembly taking into account the maximum value of the burnup of this

  1. Dark Tourism in Budapest

    OpenAIRE

    Shen, Cen; Li, Jin

    2011-01-01

    A new trend is developing in the tourism market nowadays – dark tourism. The main purpose of the study was to explore the marketing strategies of dark tourism sites in Budapest based on the theoretical overview of dark tourism and data gathering of quantitative research. The study started with a theoretical overview of dark tourism in Budapest. Then, the authors focused on the case study of House of Terror, one of the most important dark tourism sites in Budapest. Last, the research has ...

  2. Decommissioning of research reactors

    International Nuclear Information System (INIS)

    Research reactors of WWR-S type were built in countries under Soviet influence in '60, last century and consequently reached their service life. Decommissioning implies removal of all radioactive components, processing, conditioning and final disposal in full safety of all sources on site of radiological pollution. The WWR-S reactor at Bucuresti-Magurele was put into function in 1957 and operated until 1997 when it was stopped and put into conservation in view of decommissioning. Presented are three decommissioning variants: 1. Reactor shut-down for a long period (30-50 years) what would entail a substantial decrease of contamination with lower costs in dismantling, mechanical, chemical and physical processing followed by final disposal of the radioactive wastes. The drawback of this solution is the life prolongation of a non-productive nuclear unit requiring funds for personnel, control, maintenance, etc; 2. Decommissioning in a single stage what implies large funds for a immediate investment; 3. Extending the operation on a series of stages rather phased in time to allow a more convenient flow of funds and also to gather technical solutions, better than the present ones. This latter option seems to be optimal for the case of the WWR-S Research at Bucharest-Magurele Reactor. Equipment and technologies should be developed in order to ensure the technical background of the first operations of decommissioning: equipment for scarification, dismantling, dismemberment in a highly radioactive environment; cutting-to-pieces and disassembling technologies; decontamination modern technologies. Concomitantly, nuclear safety and quality assurance regulations and programmes, specific to decommissioning projects should be implemented, as well as a modern, coherent and reliable system of data acquisition, recording and storing. Also the impact of decommissioning must be thoroughly evaluated. The national team of specialists will be assisted by IAEA experts to ensure the

  3. Recent trends in urban renewal in Budapest

    Directory of Open Access Journals (Sweden)

    Gábor Csanádi

    2010-01-01

    Full Text Available This article outlines recent social processes in central Budapest, focusing on social sustainability and gentrification, and presents the potential social conflicts emerging in this area. We examine the recent history of the housing market and areas of gentrification in the city centre. The second part of the article presents the trends and possible long-term effects of real-estate development in the research area. The article concludes that the gentrification events in central Budapest could be a warning signal of future social displacement and social exclusion.

  4. Lessons learned from the spent fuel shipment Budapest - Mayak

    International Nuclear Information System (INIS)

    The largest shipment yet of Russian-origin spent nuclear fuel (about 130 kgs HEU and 100 kgs LEU) arrived to the Mayak facility on October 22, 2008. All 16 available Skoda VPVR/M type casks were used, in 8 20 feet ISO containers. The containers were transported on trucks, on rail and on sea. The nuclear fuel was used in the Budapest Research Reactor between 1959 and 2005. The preparations of the shipment started in 2004. Technical works progressed well all the time, the administrative part caused much more difficulties. The paper gives an overview of the activities and tries to find the points where more attention could be necessary. Future shipments can be prepared and performed easier based on the lessons learned. The paper is illustrated by pictures, the authors have taken during the events. (author)

  5. El turismo oscuro. Estudio de caso: Budapest

    OpenAIRE

    Rodríguez Cifuentes, Sara

    2016-01-01

    Este trabajo fin de grado trata de explicar que es el turismo oscuro y que engloba. Para ello, en primer lugar, se da una definición de turismo cultural y una razón de porqué el turismo oscuro pertenece al turismo cultural. Después, se centra en un periodo de la historia muy significativo: la segunda guerra mundial. A partir de ahí, se relaciona el turismo oscuro con el holocausto. Para finalizar el trabajo, se investigan todos los incentivos turísticos acerca del tema principal en Budapest (...

  6. Proceedings of the Budapest workshop on relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    This volume is the Proceedings of the Budapest workshop on relativistic heavy ion collisions held in Budapest, 10-13 Aug, 1992. The topics include experimental heavy ion physics, Bose-Einstein correlations, intermittency, relativistic transport theory, Quark-Gluon Plasma rehadronization, astronuclear physics and cosmology. All contributions were indexed and abstracted. (author)

  7. Recent developments of prompt gamma activation analysis at Budapest

    International Nuclear Information System (INIS)

    The PGAA facility at the Budapest Research Reactor has been continually upgraded and developed since its start-up in 1996, as a result of which its performance has improved considerably. The installation of the cold neutron source, the partial change to supermirror neutron guides and their realignment increased the flux by almost two orders of magnitude. The data acquisition has been modernized as well; digital spectrometers were tested and implemented in novel forms of gamma-ray spectrum collection. This year a higher-efficiency HPGe detector and a new data acquisition module were put into operation. Most recently all the neutron guides were changed to supermirror-coated ones to further increase the neutron flux. The improved evaluation software makes possible a more reliable elemental analysis of the samples. In this progress report these developments are critically reviewed. The characteristics of the latest system are also described. It is the first time that a set of new partial gamma-ray production cross sections are presented, which are based on the new intensity values of 14N(n,γ)15N calibration standard. (author)

  8. Realistic neutron spectra for radiation protection and other applications at AERI, Budapest

    CERN Document Server

    Pálfalvi, J; Sajo-Bohus, L

    2002-01-01

    The reconstruction of the Budapest Research Reactor (BRR) gave a good possibility to develop mixed neutron-gamma radiation fields for different applications like: simulation of operational spectra at power reactors, dosimeter development, neutron radiography, biological experiments. Recently, there are 3 horizontal channels available. In addition, isotopic neutron sources are in use in a separate laboratory. In a rotatable holder 4 different sources can be stored and automatically moved into irradiation position. There are changeable collimators and absorbers to modify the spectrum. In the large hall there are possibilities to study the room scatter, angular dependence of detectors, phantom albedo effect etc. Recently available sources are different Pu-Be (from 10 sup 5 -10 sup 7 n/s yield), Ra-Be and Cf. 76.

  9. Practice of Reactivity Measurement at Central Research Institute for Physics, Budapest

    International Nuclear Information System (INIS)

    At the Central Research Institute for Physics, Budapest /CRIP/ a series of critical assemblies has been built and investigated since 1960, namely: - ZR-1 and ZR-2 critical assemblies fueled by 10% enriched fuel pins /EK-lo type/ moderated and reflected by light water. Both assemblies had a highly variable lattice pitch. - ZE-3 system fueled by 36% enriched hexagonal-tubular fuel-assemblies /WWR-M type/ moderated by light water and reflected by Be. - ZR-4 solid homogeneous zero-power reactor fueled by 20 % enriched U3O8 dispersed in polyethylene/ and reflected by graphite. When investigating these systems the following methods have been chosen and applied routine for reactivity measurements

  10. Gain factors with the new supermirror guide system at the Budapest Neutron Centre

    CERN Document Server

    Rosta, L; Revay, Z

    2002-01-01

    In parallel with the installation of a cold-neutron source (CNS) at the 10-MW Budapest Research Reactor, the neutron-guide system has been redesigned and replaced by state of art neutron optical elements. Monte Carlo calculations have been used to determine the optimal conditions for the guide parameters. For the three cold-neutron beams nearly 100 m of new guides were installed; a great part is made of supermirrors. The new in-pile guide system and the individual shutters enable minimal losses at the starting sections. The out-of-pile part was optimized for the experimental stations. The neutron-flux measurements were compared with the simulated values. The combined effect of the CNS and the guide system yields a gain factor in the flux as high as 30-60. (orig.)

  11. Gain factors with the new supermirror guide system at the Budapest Neutron Centre

    Energy Technology Data Exchange (ETDEWEB)

    Rosta, L.; Cser, L. [Research Institute for Solid State Physics and Optics, 1525, P.O.B. 49, Budapest (Hungary); Budapest Neutron Centre, 1525, P.O.B. 49, Budapest (Hungary); Revay, Z. [CRC Institute of Isotope and Surface Chemistry, 1525, P.O.B. 49, Budapest (Hungary)

    2002-07-01

    In parallel with the installation of a cold-neutron source (CNS) at the 10-MW Budapest Research Reactor, the neutron-guide system has been redesigned and replaced by state of art neutron optical elements. Monte Carlo calculations have been used to determine the optimal conditions for the guide parameters. For the three cold-neutron beams nearly 100 m of new guides were installed; a great part is made of supermirrors. The new in-pile guide system and the individual shutters enable minimal losses at the starting sections. The out-of-pile part was optimized for the experimental stations. The neutron-flux measurements were compared with the simulated values. The combined effect of the CNS and the guide system yields a gain factor in the flux as high as 30-60. (orig.)

  12. Gain factors with the new supermirror guide system at the Budapest Neutron Centre

    International Nuclear Information System (INIS)

    In parallel with the installation of a cold-neutron source (CNS) at the 10-MW Budapest Research Reactor, the neutron-guide system has been redesigned and replaced by state of art neutron optical elements. Monte Carlo calculations have been used to determine the optimal conditions for the guide parameters. For the three cold-neutron beams nearly 100 m of new guides were installed; a great part is made of supermirrors. The new in-pile guide system and the individual shutters enable minimal losses at the starting sections. The out-of-pile part was optimized for the experimental stations. The neutron-flux measurements were compared with the simulated values. The combined effect of the CNS and the guide system yields a gain factor in the flux as high as 30-60. (orig.)

  13. Neutron Based Imaging and Element-mapping at the Budapest Neutron Centre

    Science.gov (United States)

    Kis, Z.; Szentmiklósi, L.; Belgya, T.; Balaskó, M.; Horváth, L. Z.; Maróti, B.

    The Budapest Neutron Centre (BNC) is a consortium of institutes to co-ordinate research activities carried out at the Budapest Research Reactor. It hosts two neutron imaging facilities (RAD and NORMA) operated by the Centre for Energy Research, Hungarian Academy of Sciences and offers access to this scientific infrastructure for the domestic and international users. The radiography station (RAD) at the thermal neutron beamline of the reactor gives a possibility to study relatively large objects by thermal neutron-, gamma- and X-ray radiography, and to benefit from the complementary features of the different radiations. RAD is being extended in 2014 with digital imaging and tomographic capabilities. The image detection is based on suitable converter screens. The static radiography and tomography images are acquired by a new, large area sCMOS camera, whereas the dynamic radiography is accomplished by a low-light-level TV camera and a frame grabber card. The NORMA facility is designed to perform neutron radiography and tomography on small samples using guided cold neutrons. Here two non-destructive techniques are coupled to determine the chemical composition and to visualize the internal structure of heterogeneous objects. The position-sensitive element analysis with prompt-gamma activation analysis (PGAA) and the imaging with neutron radiography/tomography (NR/NT) are integrated into a unique facility called NIPS-NORMA. The goal of such a combination of these methods is to save substantial beam time in the so-called NR/NT-driven PGAI (Prompt Gamma Activation Imaging) mode, in which the interesting regions are first visualized and located, and subsequently the time-consuming prompt-gamma measurements are made only where it is really needed. The paper will give an overview about the technical details of the facilities, and the latest results of selected applications from the fields of archaeometry, engineering and material science.

  14. A imagem do hiato: Budapeste* e a fotografia

    Directory of Open Access Journals (Sweden)

    Renato Cury Tardivo

    2010-12-01

    Full Text Available Este artigo propõe uma análise comparativa entre o romance Budapeste, de Chico Buarque, e a linguagem da fotografia. Inserido no âmbito interdisciplinar da psicologia da arte, vale-se de referenciais de crítica literária, estética, fenomenologia e psicanálise, a fim de analisar em que medida Budapeste e a fotografia correspondem-se. A partir da leitura do romance, levantamos algumas questões que, em seguida, procuramos problematizar e ampliar, articulando-as a elementos pertencentes à linguagem fotográfica. Tanto no romance analisado quanto na linguagem da fotografia, parece haver uma espécie de duplo movimento segundo o qual a realidade revela e é revelada

  15. Discrete level schemes sublibrary. Progress report by Budapest group

    International Nuclear Information System (INIS)

    An entirely new discrete levels file has been created by the Budapest group according to the recommended principles, using the Evaluated Nuclear Structure Data File, ENSDF as a source. The resulting library contains 96,834 levels and 105,423 gamma rays for 2,585 nuclei, with their characteristics such as energy, spin, parity, half-life as well gamma-ray energy and branching percentage

  16. The Budapest Reference Connectome Server v2.0

    OpenAIRE

    Szalkai, Balazs; Kerepesi, Csaba; Varga, Balint; Grolmusz, Vince

    2014-01-01

    The connectomes of different human brains are pairwise distinct: we cannot talk about an abstract "graph of the brain". Two typical connectomes, however, have quite a few common graph edges that may describe the same connections between the same cortical areas. The Budapest Reference Connectome Server Ver. 2.0 (http://connectome.pitgroup.org) generates the common edges of the connectomes of 96 distinct cortexes, each with 1015 vertices, computed from 96 MRI data sets of the Human Connectome P...

  17. BUDAPEST, BRATISLAVA AND VIENNA CONFERENCE FACILITIES, COMPARATIVE ANALYSIS

    OpenAIRE

    Endre György Bártfai

    2011-01-01

    The aim of this study is to give an overview of conference facilities in three capital cities in the Central European area, along the Danube, analyse and compare their possibilities and venues. The utilized data within the study was collected from different sources, like websites of the Hungarian, Slovakian and Austrian Convention Bureaus, books dealing with convention and event management and statistics, ICCA publications. Budapest is highly ranked between cities transacting conferences for ...

  18. Neighbourhood dynamics and socio-spatial change in Budapest

    OpenAIRE

    Földi, Zsuzsa; Kovács, Zoltán

    2014-01-01

    In this paper the socio-spatial differentiation that has taken place in the metropolitan region of Budapest since the change of regime is analysed. It is intended to show how local underlying structures and new regulatory contexts (e.g. free market, local urban policies) as well as legacies of the past work together in setting a diverse path of development within the city. In line with the objective in the analytical part of the paper the overall pattern of socio-spatial change in the metropo...

  19. The Budapest experience for installation of a liquid hydrogen moderator and guide equipment for neutron scattering research

    Energy Technology Data Exchange (ETDEWEB)

    Rosta, Laszlo [Research Institute for Solid State Physics, Budapest (Hungary)

    1997-07-01

    The 10 MW power Budapest Research Reactor serves various tasks, such as basic and applied research in physics, chemistry, biology, materials science as well as commercial utilization and education. It is open for the international user community. For neutron beam measurements different types of horizontal channels are available: seven thermal and two fast neutron channels; a tangential beam tube serves for the neutron guide system. A liquid hydrogen cold neutron source with cryogenic system of a direct cooling moderator assembly for enhanced performance and improved safety characteristics is under construction. The neutron guide system adjoining to the cold source is designed to be optimized for the specific experiments by providing the proper geometry and supermirror coating of the optical elements. A short description of the neutron guide equipment and examples from the related research activity are given.

  20. Modeling Comovement among Emerging Stock Markets: The Case of Budapest and Istanbul

    OpenAIRE

    Numan Ülkü

    2011-01-01

    A double world index model is proposed as an ideal way of characterizing the comovement among emerging stock markets, and applied to Budapest-Istanbul as an interesting case. An exclusive increase in the correlation between Budapest and Istanbul during the recent crisis period is documented. To decompose this correlation into information dynamics, a structural vector autoregression (SVAR) model is employed which controls for global indices that enter the system exogenously. Istanbul and Budap...

  1. Reactor neutron activation analysis of geological samples in the Training Reactor of Budapest Technical University

    International Nuclear Information System (INIS)

    A neutron activation analytical method has been elaborated for solving geochemical problems. The method is able to make serial tests. A flux of about 2.4x1011cm-2s-1 has been used. The spectrum has been detected by a Princeton Gamma-Tech type semi-conductor detector (25 cm3) and a NTA 512 B type analyser of 1024 channel. The spectrum has been evaluated by a computer. There has been a resolution of about 2 keV/channel at the 1332/4 keV peak of 60Co. 21 elements have been determined by non-destructive analysis in silicates (those which are in parenthesis only from given matrix materials). By short-time irradiation (about 10 minutes) and cooling time of 2-3 minutes Al, (V); 1-2 hours: Mn, (Ni), (Ga); of 24 hours: Na, K, (La), (Zr) have been determined. By long time irradiation (6-12

  2. The feasibility of using a Fourier RTOF spectrometer at a low-power research reactor

    International Nuclear Information System (INIS)

    The present situation of Fourier time-of-flight (TOF) spectrometry is discussed using the FSS spectrometer as example. The use of the Fourier reverse TOF spectrometry, as an efficient tool for studying condensed matter, at a 2 MW (WWR-S type) reactor is also assessed. The arrangement of the RTOF spectrometer, which could be successfully used at such type of reactor, is introduced. The suggested arrangement applies a neutron guide tube of 24 m length and allows for effective luminosity 2.4.106 at a flight path distance of 3.6 m. The number of neutrons scattered from a sample (5 cm3 in volume) and incident on the detector system, as estimated for the suggested arrangement, is ∝1.6.103 n/sec. Such high counting rate allows to measure a diffraction spectrum within less than an hour. (orig.) With 12 figs

  3. A journey through the pre-Budapest-2013 k0 Users Workshops

    International Nuclear Information System (INIS)

    A short survey is given of the five meetings preceding the 6th International k0 Users Workshop that was held from 22 to 27 September in Budapest/Hungary. These predecessors were the Workshops in: Gent/Belgium (1992), Ljubljana/Slovenia (1996), Bruges/Belgium (2001), Funchal-Madeira/Portugal (2005) and Belo Horizonte/Brazil (2009). (author)

  4. Some rare species of the genera Amphidelus and Aporcelaimellus (Nematoda: Dorylaimida) from Sas Hill, Budapest, Hungary

    OpenAIRE

    Kiss, M

    2009-01-01

    Four rare nematode species from Sas Hill in Budapest are described and illustrated. They are Amphidelus lagrecai Vinciguerra & De Francisci, 1973, Amphidelus coluber Andrássy, 1973, Aporcelaimellus alius Andrássy, 2002 and Apor¬ce¬laimellus amylovorus (Thorne & Swanger, 1936) Heyns, 1965. Of them, A. lagrecai is new to the fauna of Hungary.

  5. Some rare species of the genera Amphidelus and Aporcelaimellus (Nematoda: Dorylaimida from Sas Hill, Budapest, Hungary

    Directory of Open Access Journals (Sweden)

    Kiss, M.

    2009-06-01

    Full Text Available Four rare nematode species from Sas Hill in Budapest are described and illustrated. They are Amphidelus lagrecai Vinciguerra & De Francisci, 1973, Amphidelus coluber Andrássy, 1973, Aporcelaimellus alius Andrássy, 2002 and Apor¬ce¬laimellus amylovorus (Thorne & Swanger, 1936 Heyns, 1965. Of them, A. lagrecai is new to the fauna of Hungary.

  6. Origin of bank filtered groundwater on the Csepel Island (below Budapest)

    International Nuclear Information System (INIS)

    The drinking water for the Hungarian capitol is mainly covered from bank filter wells of the riparian aquifer system of the River Danube. A part of these wells are located on the Csepel Island (south of Budapest). The aquifer system is highly vulnerable for pollution coming either from the Danube or from the background shallow groundwater. Budapest contaminates continuously the Danube water with communal and industrial wastewater. The contamination can have an effect on the quality of the bank-filtered water on the Csepel Island. The knowledge of the flowing system in the alluvial aquifer is very important for providing high quality drinking water and for protecting the drinking water resources. The aims of this study are to determine the origin of the exploited water and the shallow groundwater, the ratio Danube water/background water, and the average transit time of the infiltrated Danube water for the observed wells

  7. Territorial consumption issues of urban sprawl in Central European capitals, especially in the Budapest metropolitan region

    OpenAIRE

    Viktória Szirmai; Zsuzsanna Váradi; Szilvia Kovács; Júlia Schuchmann; Nóra Baranyai

    2011-01-01

    The article presents the urban sprawl phenomena in Central European capitals and in the Budapest metropolitan region, based on statistical data and empirical survey analysis. The study concentrates on territorial consumption issues, which are determined by the suburbanisation processes, the changes of city and outskirt populations, and the transformation of land use patterns. It describes the negative environmental and social impacts (air pollution, spatial and social stratification phenomena...

  8. Zooplankton (Cladocera, Copepoda) dynamics in the River Danube upstream and downstream of Budapest, Hungary

    OpenAIRE

    Vadadi-Fülöp, Cs.

    2009-01-01

    The spatial distribution and seasonal dynamics of zooplankton (Cladocera, Copepoda) were studied in the River Danube near Budapest, Hungary. The investigated river section was relatively poor in plankton, nauplii dominated. A total of 36 species was recorded of which Acanthocyclops robustus, Thermocyclops crassus, Bosmina longirostris were the most abundant. There was a downstream increase in copepod densities, however, no other remarkable differences could be observed between the profiles up...

  9. Budapest Gay Pride og mødet med højreekstremismens grimme ansigt

    DEFF Research Database (Denmark)

    Ginnerskov Hansen, Mette

    2013-01-01

    Den årlige Gay Pride Parade i Ungarns hovedstad Budapest blev afholdt den 6. juli 2013, og med knap 8000 deltagere blev begivenheden den største i sin 16 årige levetid. Trods det imponerende opbud blev paraden dog ikke kun en fejring af menneskelig mangfoldighed, men bød også på et skræmmende møde...

  10. INJECTING EQUPMENT SHARING AND PERCEPTION OF HIV AND HEPATITIS RISK AMONG INJECTING DRUG USERS IN BUDAPEST

    OpenAIRE

    Rácz, József; Gyarmathy, V. Anna; Neaigus, Alan; Ujhelyi, Eszter

    2007-01-01

    In Central European states, rates of HIV among IDUs have been low although HCV infection is widespread. The goal of our study was to assess HIV infection, risk perceptions and injecting equipment sharing among injection drug users in Budapest, Hungary. Altogether 150 IDUs were interviewed (121 structured between 1999-2000 and 29 ethnographic between 2003-2004). The majority of them injected heroin (52% and 79%) and many injected amphetamines (51% and 35%). One person tested positive for HIV. ...

  11. Origin and quality of bank filtered groundwater near Budapest: An evaluation of isotope data

    International Nuclear Information System (INIS)

    The infiltration of the Danube water into the aquifers of the Szentendre and Csepel Islands was studied by stable oxygen isotope ratio measurements. On the Szentendre Island the Danube water component was identified in all the wells sampled. Although the ratio of the Danube water varies well-by-well the Danube 'flows' under the whole island. On the Csepel Island the infiltration of the Danube water is not so intensive. it could not be identified in the wells along the mid-line of the island. The δ18O values of the Danube at Vienna and Budapest differ by about 0.4-0.5 per mille so for isotope hydrological investigations of the riparian groundwater system nearby Budapest the δ18O data for Danube at Vienna are not recommended to use, they should be measured at Budapest. The transit time calculations made by time series analysis and 2-dimensional hydraulic modelling give fairly comparable results with isotope data for the Halasztelek-5 production well. Water stable isotope measurements through transit time and mixing ratio calculations can be used as an independent calibration of the hydraulic modelling. (author)

  12. Outlook on radioisotope production at TRIGA SSR 14 MW reactor

    International Nuclear Information System (INIS)

    INR Pitesti, endowed with a research nuclear reactor of TRIGA SSR 14 MW type, has developed activities of radioisotope production, being at present licensed for production and selling Ir-192 sources for industrial gamma radiography and Co-60 sources (2,000 Ci) for medical uses (cobalto therapy). A collaboration was initiated with the CPR Department of IFIN-HH Bucharest, particularly after the WWR-S reactor shutdown on December 21, 1997. In the frame of this program the INR Pitesti offers services of raw material irradiations followed by the radioisotope production performed subsequently at the Radioisotope Production Department (CPR) of IFIN-HH Bucharest which also deals with selling the product on internal market . The experimental facilities with the two TRIGA reactors (TRIGA SSR 14 MW and TRIGA ACPR) of INR Pitesti are described. The maximum neutron flux is 2.9 · 1014 n/cm2s. The irradiation channels are of two neutron spectra types. Also the neutron flux is characterized by radial and axial distribution which are taken into account when a given raw material is to be irradiated, to avoid perturbing non-homogeneities in the raw material activation. Five irradiation devices are presented. Preparations are currently under way for production of fission radioisotopes Mo-99, I-131 and Xe-133 and activation radioisotope I-125 for medical application

  13. Construction and testing of the instrument for neutron holographic study at the Budapest Research Reactor

    International Nuclear Information System (INIS)

    Neutron scattering device dedicated to neutron holography experiments is described. The device is operating at a constant wavelength prepared by a double focusing monochromator. It is equipped by highly efficient shielding, proper collimator, Eulerian cradle, monitor detector, gamma-ray, and neutron detectors as well. Relevant software serves as control for the measurement and data collection. The harmonized application of the components enumerated above makes our device extremely efficient and unparalleled. Two atomic resolution neutron holographic experiments carried out illustrate the efficiency and power of the instrument.

  14. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  15. First elemental imaging experiments on a combined PGAI and NT setup at the Budapest Research Reactor

    International Nuclear Information System (INIS)

    The European collaboration 'ANCIENT CHARM' (http://ancient-charm.neutron-eu.net/ach/) aims to develop new non-destructive neutron techniques to image the internal composition of complex archaeological objects in order to answer various archaeological questions. Among these techniques, prompt gamma activation imaging (PGAI) and neutron tomography (NT) form a unique combination which can determine the 3D distribution of most elements in objects with a non-destructive procedure. A spatial resolution better than 2 mm has already been achieved in a moderately scattering matrix material. (author)

  16. Nuclear Data Measurements at the PGAA-NIPS Facilities of the Budapest Research Reactor

    International Nuclear Information System (INIS)

    Description of the current status of our PGAA-NIPS experimental setup is presented. Methods, for calculations of thermal capture cross section from partial gamma ray production cross sections are described. High precision radiative capture cross section determination with AMS measurements and methods based on partial gamma ray production cross sections are given for 54Fe(n , γ)55Fe reaction. (author)

  17. Reactors

    International Nuclear Information System (INIS)

    Purpose: To provide a spray cooling structure wherein the steam phase in a bwr reactor vessel can sufficiently be cooled and the upper cap and flanges in the vessel can be cooled rapidly which kept from direct contaction with cold water. Constitution: An apertured shielding is provided in parallel spaced apart from the inner wall surface at the upper portion of a reactor vessel equipped with a spray nozzle, and the lower end of the shielding and the inner wall of the vessel are closed to each other so as to store the cooling water. Upon spray cooling, cooling water jetting out from the nozzle cools the vapor phase in the vessel and then hits against the shielding. Then the cooling water mostly falls as it is, while partially enters through the apertures to the back of the shielding plate, abuts against stoppers and falls down. The stoppers are formed in an inverted L shape so that the spray water may not in direct contaction with the inner wall of the vessel. (Horiuchi, T.)

  18. Reactor neutron activation analysis on reference materials from intercomparison runs

    International Nuclear Information System (INIS)

    A review of using the Instrumental Neutron Activation Analysis (INAA) technique in our laboratory to determine major, minor and trace elements in mineral and biological samples from international intercomparison runs organised by IAEA Vienna, IAEA-MEL Monaco, 'pb-anal' Kosice, INCT Warszawa and IPNT Krakow is presented. Neutron irradiation was carried out at WWR-S reactor in Bucharest (short and long irradiation) during 1982-1997 and at TRIGA reactor in Pitesti (long irradiation) during the later period. The following type of materials were analysed: soils, marine sediments, uranium phosphate ore, water sludge, copper flue dust, whey powder, yeast, cereal flour (rye and wheat), marine animal tissue (mussel, garfish and tuna fish), as well as vegetal tissue (seaweed, cabbage, spinach, alfalfa, algae, tea leaves and herbs). The following elements could be, in general, determined: Ag, As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Lu, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, W, Yb and Zn of long-lived radionuclides, as well as Al, Ca, Cl, Cu, Mg, Mn, and Ti of short-lived radionuclides. Data obtained in our laboratory for various matrix samples presented and compared with the intercomparison certified values. The intercomparison exercises offer to the participating laboratories the opportunity to test the accuracy of their analytical methods as well as to acquire valuable Reference Materials/ standards for future analytical applications. (authors)

  19. Computerized reactor monitor and control for nuclear reactors

    International Nuclear Information System (INIS)

    The analysis of a computerized process control system developed by Transelektro-KFKI-Videoton (Hangary) for a twenty-year-old research reactor in Budapest and or a new one in Tajura (Libya) is given. The paper describes the computer hardware (R-10) and the implemented software (PROCESS-24K) as well as their applications at nuclear reactors. The computer program provides for man-machine communication, data acquisition and processing, trend and alarm analysis, the control of the reactor power, reactor physical calculations and additional operational functions. The reliability and the possible further development of the computerized systems which are suitable for application at reactors of different design are also discussed. (Sz.J.)

  20. Urban modelling for Budapest using the Weather Research and Forecasting model

    Science.gov (United States)

    Göndöcs, Júlia; Breuer, Hajnalka; Pongrácz, Rita; Bartholy, Judit

    2016-04-01

    The population of Earth is continuously growing, and due to urbanisation it is quite concentrated in metropolitan areas. Overall, cities cover almost 2% of the global surface causing several environmental and social issues. These artificial surface covers significantly modify the surface energy exchange processes through modification of naturally covered lands resulting in altered local wind and temperature patterns because of the presence of buildings. The architectures' three-dimensional extensions certainly affect the incoming radiation, the sky-view factors as well, as the 3D wind fields, resulting in specific local microclimate at each metropolitan area. The increased temperature in the central built-up areas and the cooler surrounding of the cities lead to the urban heat island phenomenon, which is widely studied both with observations and numerical models. The Weather Research and Forecasting (WRF) mesoscale model coupled to multilayer urban canopy parameterisation is used to investigate this phenomenon for Budapest and its surroundings. Before starting the simulations, the detailed surface has to be set up according to the actual conditions, for which CORINE and OpenStreetMap databases are used, both including buildings, different land use categories, and waterbodies. The new land use distribution serving as input for WRF runs distinguishes three urban categories: (i) low-intensity residential, (ii) high-intensity residential, and (iii) commercial/industrial. For the simulations the initial meteorological fields are derived from the publicly available GFS (Global Forecast System) outputs. Simulations are completed for one-week-long periods in summer and winter in 2015, for which we selected periods with the atmospheric conditions of weak wind and clear sky. In order to keep the stability of the simulations, the entire downscaling is carried out in several steps using gradually smaller domains embedded to each other. Thus, three embedded target areas have

  1. Effects of land use on chemical water quality of three small streams in Budapest

    Science.gov (United States)

    Angyal, Zsuzsanna; Sárközi, Edit; Gombás, Ádám; Kardos, Levente

    2016-02-01

    The location and development of cities has been influenced basically by various environmental factors. However, the relationship is bilateral, because not only the environment can affect the city, but the city can affect the environment in different ways, depending on recovery. This is especially true in the case of large cities such as Budapest where the different geological, geomorphological, hydrological, soil and bio-geographical conditions can be changed in very small areas, which implies that land use can be also modified as well. The aim of our study was to determine the chemical water quality of three small streams in Budapest which have same water flow and compare the field and the laboratory test results. Between many natural characteristics of these streams similarity is evident, however, several differences were found between the watersheds in terms of human land use. Statistical data analysis was performed as well, which was the aim to explore the relationship between the parameters. Overall, according to our study it can be concluded, the small streams have similar water chemical properties, but some parameters need special attention in the future, because the investigated small streams can be categorized into polluted and sometimes heavily polluted category.

  2. Challenges and experiences of a participative green space development in Budapest-Józsefváros

    Directory of Open Access Journals (Sweden)

    Attila Csaba Kondor

    2008-01-01

    Full Text Available This article is an attempt to present the theoretical and practical backgrounds of a participative green space development in Hungary. The renewed green space, Mátyás square is located in District VIII of Budapest, known as Józsefváros. The neighbourhood of Mátyás square had a very negative image, neglected residential areas extended into the heart of the district suffered by different social problems. The local government of Józsefváros elaborated the so called Magdolna Quarter Programme, that contains the details of the social rehabilitation of surroundings of Mátyás square. In frame of this programme – co-financed by EU through GreenKeys Project – the square has been renewed, a collaborative and participative green space development has been fulfilled. The authors were engaged in this model programme, they attempt to summarize briefly the experiences of this unique project of Budapest. The local residents were successfully involved into the planning and the implementation of the project. The participation was considerably efficient, however the experience shows that a participative project may be shorter than the project leaders thought. As a result of this activities the Urban Green Space Strategy of Józsefváros and a computer program for monitoring of green spaces were compiled as well.

  3. Analysis of human thermal comfort and its tendencies in Budapest (Hungary)

    Science.gov (United States)

    Nemeth, Akos; Kovacs, Attila

    2013-04-01

    In spite of the fact that the evaluation of the thermal conditions in the urban areas is extremely important and timely, in Budapest (capital of Hungary) very few studies were performed in this direction until now. The aim of this paper is to analyze the differences and changes of the thermal comfort conditions in the last half century (1961-2010) by comparing measurements of two meteorological stations located in different environments of Budapest: one in the central urban area (Local Climate Zone 2 - 'compact midrise') and the other in the suburbs (between Local Climate Zones 6 - 'open lowrise' and A - 'dense trees'). The thermal comfort was characterized by two human bioclimatological comfort indices, the Physiologically Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI), for four characteristic times of the day in the examined period. Then the thermal comfort differences between the stations according to two climatic normal periods (1961-1990 and 1981-2010), and the tendencies detected among the periods were also under investigation. For the last decade, 2001-2010, hourly-resolution investigations were carried out. The results indicate that the central area is affected by a higher degree of hot stress and less cold stress. Additionally, the warm stress has become more frequent, however, the cold heat load decreased in both examined area at each time.

  4. District-level local measuring program of the urban environment in Budapest

    Science.gov (United States)

    Dian, Csenge; Pongrácz, Rita; Dezsö, Zsuzsanna; Bartholy, Judit

    2016-04-01

    The natural environment and thus, the climatic conditions are modified by the concentrated human presence of urban areas. In our research we aim to analyze the resulting urban climatic effects in a downtown district of Budapest, Hungary. For this purpose, we have started a measuring program of in-situ measurements in the southern central located district called Ferencváros, which can be found near the river Danube, and mainly consists of 3- and 4-storey older and newly built buildings. The newly built buildings are mainly the results of the Ferencváros local government's efforts to improve the environment for the citizens. Within the framework of the block rehabilitation program, inner parts of the old house blocks were demolished, and inside the blocks common green areas have been created. In our urban climate measurement program air temperature and relative humidity are recorded along a pre-defined path consisting of 22 measuring points, which covers the studied area. The measuring sites are located in different characteristical points of the district, such as green parks, narrow streets, paved squares and roads. In order to calculate the urban heat island intensity, temperature measurements are compared to the hourly recorded data of the Budapest synoptic station (ID number: 12843) located in the southeastern suburb district of the city. After completing an entire year of measurements, the seasonal cycle of temperature and relative humidity differences are analyzed as well, as the diurnal changes and the spatial structure within the study area.

  5. Visual examination program of the TRIGA Mark II reactor Vienna with the nuclear underwater telescope

    International Nuclear Information System (INIS)

    The visual inspection programm carried out during a three month shut-period at the TRIGA Mark II reactor Vienna is described. Optical inspection of all welds inside the reactor tank was carried out with an underwater telescope developed by the Central Research Institute of Physics, Budapest, Hungary. It is shown that even after 23 years of reactor operation all tank internals were found to be in good condition and minor defects can be easily repaired by remote handling tools. (Author)

  6. Proceedings of the 14. International cancer congress held at Budapest, Hungary, 21-27 Aug 1986 v. 2, v. 3

    International Nuclear Information System (INIS)

    The volumes contain abbreviated forms or abstracts of lectures and contributions delivered at the 14th International Cancer Congress held between 21-27 August, 1986 in Budapest, Hungary. Altogether, more than 5000 papers were presented. About 250 items falling in the INIS scope are indexed separately. Volumes 2 and 3 contain about 3000 titles with abstracts of the majority of papers. (author)

  7. Proceedings of the 14. International cancer congress held at Budapest, Hungary, 21-27 Aug 1986 v. 1

    International Nuclear Information System (INIS)

    The volume contains abbreviated forms or abstracts of lectures and contributions delivered at the 14th International Cancer Congress held between 21-27 August, 1986 in Budapest, Hungary. Altogether, more than 5000 papers were presented. About 250 items falling in the INIS scope are indexed separately. Volume 1 contains about 1840 titles with abstracts of the majority of papers. (R.P.)

  8. Hospitality, culture and regeneration: urban decay, entrepreneurship and the "ruin" bars of Budapest.

    Science.gov (United States)

    Lugosi, Peter; Bell, David; Lugosi, Krisztina

    2010-01-01

    This paper considers the relationships between hospitality, culture and urban regeneration through an examination of rom (ruin) venues, which operate in dilapidated buildings in Budapest, Hungary. The paper reviews previous work on culture and urban regeneration in order to locate the role of hospitality within emerging debates. It subsequently interrogates the evolution of the rom phenomenon and demonstrates how, in this context, hospitality thrives because of social and physical decay in urban locations, how operators and entrepreneurs exploit conflicts among various actors involved in regeneration and how hospitality may be mobilised purposefully in the regeneration process. The paper demonstrates how networked entrepreneurship maintains these operations and how various forms of cultural production are entangled and mobilised in the venues' hospitality propositions. PMID:21114092

  9. GENETICS OF THE RABBIT FOR MEAT PRODUCTION : WHAT'S NEW SINCE THE WORLD RABBIT CONGRESS HELD IN BUDAPEST IN 1988? l A REVIEW.

    OpenAIRE

    De Rochambeau, H

    1997-01-01

    Abstract not available. Rochambeau, HD. (1997). GENETICS OF THE RABBIT FOR MEAT PRODUCTION : WHAT'S NEW SINCE THE WORLD RABBIT CONGRESS HELD IN BUDAPEST IN 1988? l A REVIEW. http://hdl.handle.net/10251/10427.

  10. Berglund, Bruce R. and Brian Porter-Szűcs, eds. 2013. Christianity and Modernity in Eastern Europe. Budapest and New York: Central European University Press. 386 pp.

    OpenAIRE

    Dorottya Nagy

    2015-01-01

    Berglund, Bruce R. and Brian Porter-Szűcs, eds. 2013. Christianity and Modernity in Eastern Europe. Budapest and New York: Central European University Press. 386 pp.  Reviewed by Dorottya Nagy, University of South Africa, Helsinki, Finland.

  11. [Professor Frantisek Por MD and Professor Robert Klopstock MD, students at Budapest and Prague Faculties of Medicine].

    Science.gov (United States)

    Mydlík, M; Derzsiová, K

    2010-11-01

    Professor Frantisek Por MD and Professor Robert Klopstock MD were contemporaries, both born in 1899, one in Zvolen, the other in Dombovar, at the time of Austro-Hungarian Monarchy. Prof. Por attended the Faculty of Medicine in Budapest from 1918 to 1920, and Prof. Klopstock studied at the same place between 1917 and 1919. From 1920 until graduation on 6th February 1926, Prof. Por continued his studies at the German Faculty of Medicine, Charles University in Prague. Prof. Klopstock had to interrupt his studies in Budapest due to pulmonary tuberculosis; he received treatment at Tatranske Matliare where he befriended Franz Kafka. Later, upon Kafka's encouragement, he changed institutions and continued his studies at the German Faculty of Medicine, Charles University in Prague, where he graduated the first great go. It is very likely that, during their studies in Budapest and Prague, both professors met repeatedly, even though their life paths later separated. Following his graduation, Prof. Por practiced as an internist in Prague, later in Slovakia, and from 1945 in Kosice. In 1961, he was awarded the title of university professor of internal medicine at the Faculty of Medicine, Pavol Jozef Safarik University in Kosice, where he practiced until his death in 1980. Prof. Klopstock continued his studies in Kiel and Berlin. After his graduation in 1933, he practiced in Berlin as a surgeon and in 1938 left for USA. In 1962, he was awarded the title of university professor of pulmonary surgery in NewYork, where he died in 1972. PMID:21250499

  12. Mineral phases containing heavy metals in the suspended dust from Budapest, Hungary

    Directory of Open Access Journals (Sweden)

    Sipos P.

    2013-04-01

    Full Text Available The mineralogy, geochemistry and magnetic properties of total suspended particulate (TSP matter in Budapest, Hungary were studied to identify their heavy metal-bearing mineral phases. Amorphous organic matter, magnetite, salts as well as mineral phases characteristic of the surrounding geology are the main components of the TSP. They show significant enrichment in several heavy metals, such as Zn (up to 19 046 mg/kg, Pb (up to 3597 mg/kg, Cu (up to 699 mg/kg and Mo (up to 53 mg/kg. The most frequent heavy metal-bearing mineral phases are spherular or xenomorphic magnetite particles containing 2-3 wt% Pb and Zn. They often form aggregates and are closely associated with soot and/or clay minerals. The size of these particles is rarely below 30 nm. Cu and Mo could be associated to magnetite too. Clay minerals and mica particles may also contain significant amount of Zn (up to 5wt%. Additionally, ZnO and ZnCO3 particles were found in the sample with highest Zn content and our data suggest the potential association of Pb and carbonates, as well. Magnetite particles are resistant to weathering releasing its toxic components slowly to the environment, while layer silicates (and carbonates may be the potential source of mobile toxic metals in the TSP.

  13. Zooplankton (Cladocera, Copepoda dynamics in the River Danube upstream and downstream of Budapest, Hungary

    Directory of Open Access Journals (Sweden)

    Vadadi-Fülöp, Cs.

    2009-11-01

    Full Text Available The spatial distribution and seasonal dynamics of zooplankton (Cladocera, Copepoda were studied in the River Danube near Budapest, Hungary. The investigated river section was relatively poor in plankton, nauplii dominated. A total of 36 species was recorded of which Acanthocyclops robustus, Thermocyclops crassus, Bosmina longirostris were the most abundant. There was a downstream increase in copepod densities, however, no other remarkable differences could be observed between the profiles upstream and downstream of the capital. Generally, the streamline was characterized by lower densities and lower number of taxa as compared to the river bank; nevertheless, there were differences between the left and the right banks both upstream or downstream as well. Seasonal dynamics was defined by a marked late winter–spring aspect and abundance peaks were found to be characteristic for Danube with high densities in May–June and August–September. Examining the relationship between zooplankton density and the hydrological regime, it can be concluded that zooplankton production in the main channel is of minor importance, rather floodplain areas and adjacent water bodies seem to be important sources of plankton biomass.

  14. Book reviews. Kulturgeschichte der Physik by K. Simonyi, Akademiai Kindo, Budapest, 1990

    International Nuclear Information System (INIS)

    This review presents the German version of the 3rd edition of the book A fizika Kulturtoertenete, by professor K. Simonyi, issued in 1990 at Gondolat Kiado, Budapest. It contains 576 pp, 662 figs, 33 full-color plates and 26 tables. The book is designed for a broad spectrum of readers from laymen to professionals. This goal was achieved by resorting to two paralleled texts, one of general accessibility and a second one printed distinctly, addressed to more specialized readers like students, professors or physicists. It is build of 5 parts and presents the physics as a part of universal cultural evolution of humanity. The cultural and philosophical historical environment is created through an extremely rich illustration as images and pertinent excerpts from physics and mathematics, literature and philosophy of the time as well as through biographical sketches of the physicists as they entered the scene of history. In the reviewer's view the occurrence of this book is an important cultural event of these years. (Author)

  15. ANALYSING URBAN EFFECTS IN BUDAPEST USING THE WRF NUMERICAL WEATHER PREDICTION MODEL

    Directory of Open Access Journals (Sweden)

    JÚLIA GÖNDÖCS

    2016-03-01

    Full Text Available Continuously growing cities significantly modify the entire environment through air pollution and modification of land surface, resulting altered energy budget and land-atmosphere exchange processes over built-up areas. These effects mainly appear in cities or metropolitan areas, leading to the Urban Heat Island (UHI phenomenon, which occurs due to the temperature difference between the built-up areas and their cooler surroundings. The Weather Research and Forecasting (WRF mesoscale model coupled to multilayer urban canopy parameterisation is used to investigate this phenomenon for Budapest and its surroundings with actual land surface properties. In this paper the basic ideas of our research and the methodology in brief are presented. The simulation is completed for one week in summer 2015 with initial meteorological fields from Global Forecasting System (GFS outputs, under atmospheric conditions of weak wind and clear sky for the Pannonian Basin. Then, to improve the WRF model and its settings, the calculated skin temperature is compared to the remotely sensed measurements derived from satellites Aqua and Terra, and the temporal and spatial bias values are estimated.

  16. [Scientific activity of the University Urological Department in Budapest after WWII (1946-1956)].

    Science.gov (United States)

    Romics, I; Romics, M

    2016-04-01

    The authors studied the publications written by the staff of the University Department of Urology in Budapest, Hungary between 1946 and 1956. The collection was contributed on the occasion of Professor Babics's 10-year-long chairmanship. Over a period of 10 years, 214 papers were published by 15 urologists, including 3 books and 3 PhD theses; 16 papers were published in German, 22 in English, 2 in French, and 1 in Italian. The most frequent topic of the papers (26) was basic science (e.g., ureter motility, lymph circulation, intrarenal pressure condition). Other papers dealt with nephrology, artificial kidneys, TURP, and nephron-sparing renal surgery. Some articles examined various types of malignant tumors and benign prostatic hyperplasia, while 17 publications focused on the topic of andrology. Tuberculosis was also discussed by the authors. Despite political isolation, the communist dictatorship, poverty, the lack of health equipment, physicians educated before WWII with their work morality and hard work managed to perform contemporary clinical and basic scientific research. PMID:27000284

  17. Origin of bank filtered groundwater on the Csepel Island (below Budapest)

    International Nuclear Information System (INIS)

    The drinking water for the Hungarian capitol is mainly covered from bank filter wells of the riparian aquifer system of the River Danube. A part of these wells are located on the Csepel Island (south of Budapest). The aquifer system is highly vulnerable for pollution coming either from the Danube or from the background shallow groundwater. Budapest contaminates continuously the Danube water with communal and industrial wastewater. The contamination can have an effect on the quality of the bank-filtered water on the Csepel Island. The knowledge of the flowing system in the alluvial aquifer is very important for providing high quality drinking water and for protecting the drinking water resources. The aims of this study are to determine the origin of the exploited water and the shallow groundwater, the ratio Danube water/background water, and the average transit time of the infiltrated Danube water for the observed wells. For reaching of these purposes stable oxygen and radioactive tritium isotope measurements, water chemical and hydraulic data have been applied. These data are compared and built together with the hydraulic data in the modeling process that was made with the 3 dimensional variation of the model program MODFLOW. The origin of the water from production or observation wells can be determined on the basis of the significant difference between the δ18O values of the Danube water and the shallow groundwater (recharging from the infiltrating precipitation). The mean δ18O values in Hungary: -11.0 [per mille]VSMOW for the Danube water, -9.3 ± 0.4 [per mille]VSMOW for the locally infiltrated phreatic groundwater and -11.8 ± 0.8 [per mille]VSMOW for the deep old groundwater. From 1998 till 2002 in every quarter a year water samples were taken from several observation wells in the northern part of the island for stable oxygen isotope measurements. On the basis of the isotopic significance we could separate the middle area of the island, where the measured

  18. International round table meeting of the Nuclear Technology Dept. of the Economy Management Society (ETE). [Training course on the utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Szondi, E.J. (Budapesti Mueszaki Egyetem (Hungary). Egyetemi Reaktor)

    1984-09-01

    Experiences with the utilization possibilities of training reactors were discussed by the participants of an advanced training course organized by the IAEA at the Technical University, Budapest. Fields of activities of the Nuclear Technology Dept. of Energy Management Society of Hungary, and the national nuclear power programs of the Republic of Korea, Spain, Iran and Jamaica were reviewed in the course of short lectures.

  19. The association of syringe type and syringe cleaning with HCV infection among IDUs in Budapest, Hungary.

    Science.gov (United States)

    Gyarmathy, V Anna; Neaigus, Alan; Mitchell, Mary M; Ujhelyi, Eszter

    2009-03-01

    We assessed whether syringe type, syringe cleaning and distributive syringe sharing were associated with self-reported and laboratory-confirmed HCV infection among Hungarian IDUs. Injecting drug users (N=215) were recruited from non-treatment settings in Budapest, Hungary between October 2005 and December 2006. Multivariate logistic regression models identified correlates of self-report of being HCV infected and testing positive for HCV. While 37% tested positive for HCV, 14% of the total (39% of those who tested positive) self-reported being HCV infected. Using any two-piece syringes was significantly associated with self-reported HCV infection, while distributive syringe sharing was not associated with self-report of being HCV infected. Engaging in receptive sharing of only one-piece syringes but always cleaning before reuse was not associated with testing HCV positive, while any receptive sharing of only one-piece syringes and not always cleaning before reuse was significantly associated with testing HCV positive. Sharing cookers and squirting drugs from one syringe into another syringe were not associated with testing HCV positive. The high percent of those HCV infected who did not know they were infected highlights the need to provide better access to confidential testing and counseling services. Counseling should emphasize secondary prevention of HCV among HCV infected IDUs. Our findings also indicate that syringe type and syringe cleaning practices may play a role in HCV transmission. Ethnographic research should identify the reasons why IDUs may use two-piece syringes and suggest means to reduce their use. Thorough cleaning of one-piece syringes when sterile syringes are unavailable may be an efficient way to reduce the risk of HCV infection. PMID:19058925

  20. Study of the urban climatic effect for Budapest on district scale using satellite observations

    Science.gov (United States)

    Dezso, Zsuzsanna; Dian, Csenge; Molnar, Gergely; Fricke, Cathy; Bartholy, Judit; Pongracz, Rita

    2015-04-01

    About 1.7 million inhabitants are living in the Hungarian capital, Budapest, which consists of 23 districts altogether. The entire city is divided by the river Danube into a hilly, greener Buda side on the west, and the flat, more densely built-up Pest side on the east. Our study aims to analyse the urban effect on both sides. In case of the Buda side, the analysis focuses on the extended urban vegetation since most of the forested green area is located there. The effects of the past changing of these green areas are analyzed using surface temperature data calculated from satellite measurements in the infrared channels, and NDVI (Normalized Difference Vegetation Index) derived from visible and near-infrared satellite measurements. We aim to evaluate the relationship of surface temperature and NDVI in this urban environment with special focus on either increased or decreased vegetation cover, e.g., recently built shopping centers in previously vegetated area or brown industrial area where low quality vegetation appeared in the past decade. In case of the Pest side, several block rehabilitation programs have been started since the 1980s. Due to these programs functional and structural changes of special subsections of the districts occurred in the past few decades. Their consequent local climatic changes are evaluated in this poster on the basis of satellite measurements, namely, surface temperature fields derived from radiation data of seven different infrared channels measured by sensor MODIS (onboard satellites Terra and Aqua). Our main goal is to analyze whether the generally positive changes of the built environment can also be recognized in the urban heat island effect of this area.

  1. Parameterizable Consensus Connectomes from the Human Connectome Project: The Budapest Reference Connectome Server v3.0

    OpenAIRE

    Szalkai, Balázs; Kerepesi, Csaba; Varga, Bálint; Grolmusz, Vince

    2016-01-01

    Connections of the living human brain, on a macroscopic scale, can be mapped by a diffusion MR imaging based workflow. Since the same anatomic regions can be corresponded between distinct brains, one can compare the presence or the absence of the edges, connecting the very same two anatomic regions, among multiple cortices. Previously, we have constructed the consensus braingraphs on 1015 vertices first in five, then in 96 subjects in the Budapest Reference Connectome Server v1.0 and v2.0, re...

  2. Search and the City: Comparing the Use of WiFi in New York, Budapest and Montreal

    OpenAIRE

    Laura Forlano

    2009-01-01

    Over the past five years, the use of mobile and wireless technology in public spaces of cities around the country has grown exponentially. There has been little analysis of the ways in which the use of the wireless Internet via WiFi may differ from that of the wireline Internet. This paper compares the results from a six-month survey of the use of WiFi hotspots in New York, Budapest and Montreal. It is hoped that further analysis of these survey results will contribute to a more acute underst...

  3. CERN and the Wigner Research Centre for Physics inaugurate CERN data centre’s extension in Budapest, Hungary

    CERN Multimedia

    Wigner Research Centre for Physics, Hungary

    2013-01-01

    On 13 June 2013 CERN and the Wigner Research Centre for Physics inaugurated the Hungarian data centre in Budapest, marking the completion of the facility hosting the extension for CERN computing resources. About 500 servers, 20,000 computing cores, and 5.5 Petabytes of storage are already operational at the site. The dedicated and redundant 100 Gbit/s circuits connecting the two sites are functional since February 2013 and are among the first transnational links at this distance. The capacity at Wigner will be remotely managed from CERN, substantially extending the capabilities of the Worldwide LHC Computing Grid (WLCG) Tier-0 activities and bolstering CERN’s infrastructure business continuity.

  4. Innovatives Medizinstudium der Semmelweis Universität Budapest am Asklepios Campus Hamburg [Innovation in the Field of Medical Studies in Europe: Asklepios Campus Hamburg of Budapest's Semmelweis University

    Directory of Open Access Journals (Sweden)

    Weidenhammer, Jörg

    2010-05-01

    Full Text Available [english] In our article we present a pioneering and unique transnational European model of university education. We discuss the cooperation between Semmelweis University Budapest and Asklepios Campus Hamburg. After several years of negotiation, it is now possible for students who did their preliminary medical examination in Hungary to continue and finish their medical studies in Hamburg, Germany. We report on the background of this development, the historical ties and legal requirements. We also describe the status quo and the future plans for the project. [german] In diesem Artikel stellen wir ein neues bisher in Europa einzigartiges länderübergreifendes Hochschulbildungsmodell vor. Dargestellt wird die Zusammenarbeit der Semmelweis Universität Budapest mit dem Asklepios Campus Hamburg. Nach mehrjährigen Verhandlungen ist es nun möglich, dass Studenten, die in Ungarn ihr Physikum gemacht haben, in Hamburg ihre klinische Ausbildung fortsetzen und abschließen können. Wir berichten über die Hintergründe und historischen Zusammenhänge sowie die rechtlichen Voraussetzungen dieser Entwicklung und beschreiben den gegenwärtigen Stand sowie die zukünftigen Planungen dieses Projekts.

  5. A high resolution X-ray fluorescence facility and its use at the training reactor of the Budapest Polytechnical University

    International Nuclear Information System (INIS)

    The X-ray emission spectrometer is equipped with a Si(Li) detector and a special pre-amplifier of reduced noise. The signals are processed by amplifier, a ground-level recondition unit, a bias amplifier and a 1024 channel analyzer. β-radiation, which would increase background noise is eliminated by the application of a magnetic field. In the spectrum of a neutron-activated distillate, lubricating oil elements which cannot be indentified even in γ-spectrums, are recognized. (V.N.)

  6. Chemical durability of glaze on Zsolnay architectural ceramics (Budapest, Hungary) in acid solutions

    Science.gov (United States)

    Baricza, Ágnes; Bajnóczi, Bernadett; May, Zoltán; Tóth, Mária; Szabó, Csaba

    2015-04-01

    Zsolnay glazed architectural ceramics are among the most famous Hungarian ceramics, however, there is no profound knowledge about the deterioration of these building materials. The present study aims to reveal the influence of acidic solutions in the deterioration of Zsolnay ceramics. The studied ceramics are glazed roof tiles, which originate from two buildings in Budapest: one is located in the densely built-up city centre with high traffic rate and another one is in a city quarter with moderate traffic and more open space. The roof tiles represent the construction and the renovation periods of the buildings. The ceramics were mainly covered by lead glazes in the construction period and mainly alkali glazes in the renovation periods. The glaze of the tiles were coloured with iron (for yellow glaze) or chromium/copper/iron (for green glazes) in the case of the building located in the city centre, whereas cobalt was used as colorant and tin oxide as opacifier for the blue glaze of the ceramics of the other building. Six tiles were selected from each building. Sulphuric acid (H2SO4) solutions of pH2 and pH4 were used to measure the durability of the glazes up to 14 days at room temperature. The surfaces of the glazed ceramics after the treatment were measured by X-ray diffraction, Raman spectroscopy and SEM-EDS techniques to determine the precipitated phases on the surface of the glaze. Electron microprobe analysis was used to quantitatively characterise phases found and to determine the chemical composition of the treated glaze. The recovered sulphuric acid solutions were measured with ICP-OES technique in order to quantify the extent of the ion exchange between the glaze and the solutions. There is a significant difference in the dissolution rates in the treatments with sulphuric acid solutions of pH2 and pH4, respectively. The solution of pH2 induced greater ion exchange (approx. 7-10 times) from the glaze compared to the solution of pH4. Alkali and alkali earth

  7. Tourist Intensity in Capital Cities in Central Europe: Comparative Analysis of Tourism in Prague, Vienna and Budapest

    Directory of Open Access Journals (Sweden)

    Dumbrovská Veronika

    2014-12-01

    Full Text Available Urban tourism has become a significant phenomenon of tourism over the last decade. the importance of urban tourism has grown mainly due to the development of transport and information technologies. rapid advancement of low cost airlines and reduction of administrative barriers owing to the expansion of the schengen area caused not only the development of a number of urban destinations, including Prague, but also the growth of new source markets. this paper compares the development of urban tourism in Prague with the situation in Vienna and Budapest in the last decade. the aim of the paper is to describe the main trends of tourism development and the geographic distribution of tourism in Prague in comparison with culturally and historically similar cities - Vienna and Budapest. the analysis shows high load of tourism in Prague and its strong concentration in the old city. this causes congestion in the city centre and an extrusion of residential functions by the functions of tourism. As a result, a tourism ghetto has been formed in the centre of Prague and the urban society has been increasingly dualized.

  8. Differences between satellite- and ground-based urban heat island effect - Case study for the Budapest agglomeration area

    Science.gov (United States)

    Pongracz, R.; Bartholy, J.; Lelovics, E.; Dezso, Z. S.; Dobi, I.

    2012-04-01

    Urban heat island (UHI) is defined as the positive temperature anomaly occurring between built-in areas and their surroundings. For detailed analysis of UHI in a particular area, different approaches can be used. Here, two different techniques (ground-based and satellite-based) are applied to the Budapest agglomeration area and the results are compared. (1) Hourly recorded air temperature observations are available from six automatically operating climatological stations of the Hungarian Meteorological Service. Two stations are located in the downtown of Budapest (Kitaibel Pál street and Lágymányos); two stations can be found in the suburbs (Újpest and Pestszentlőrinc); and two stations are in the rural region (Penc - located to the northeast from the capital, and Kakucs - to the southeast from Budapest). These ground-based observations at the Budapest weather stations provide air temperature data at standard 2 m height above surface. However, due to the limited station number, this approach is not suitable for detailed evaluation of spatial UHI distribution. (2) Remotely sensed surface temperature values are available from seven thermal infrared channel measurements of the multi-spectral radiometer sensor called MODIS (Moderate Resolution Imaging Spectroradiometer), which is one of the sensors on-board satellites Terra and Aqua. They were launched to polar orbit as part of the NASA's Earth Observing System in December 1999, and in May 2002, respectively. Satellite Terra (Aqua) provides surface temperature fields around 09-10 UTC (12-13 UTC) and 20-21 UTC (02-03 UTC) with 1 km spatial resolution. The whole agglomeration has been divided into urban and rural pixels using the MODIS Land Cover Product categories, distance from the city centre, satellite images of the Google Earth, and GTOPO-30 global digital elevation model. However, the main disadvantage of this method is that for UHI analysis, data can be used only in case of clear sky conditions, which occurs

  9. Dose calculation for accident situations at WWR-S type spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Full text: The Spent Nuclear Fuel Repository at IFIN-HH Bucharest (SNFR IFIN-HH) consists in four pools, repository hall, radiological monitoring system, ventilation system and auxiliary systems. At the moment the remaining activity in the repository is about 3500 Ci. Despite of the small activity, for emergency preparedness purposes, several accident scenarios, with a non zero probability of occurrence during the repository lifetime, have been postulated. Evaluations of radiological consequences to personnel, general public and environment, for each accident scenario have been performed. The radioactive inventory was evaluated with ORIGEN code from SCALE computer code system and radiological consequences were evaluated with COSYMA computer code. Assumptions for the source term determination, meteorological conditions and release, are presented. The calculated values of doses and risk are also presented. The impact of these accident scenarios on population and environment is also discussed. (authors)

  10. SANS Facility at the Pitesti 14 MW TRIGA Reactor

    International Nuclear Information System (INIS)

    At the present time, an important not yet fully exploited potentiality is represented by the SANS instruments existent at lower power reactors and reactors in developing countries even if they are, generally, endowed with a simpler equipment and are characterized by the lack of infrastructure to maintain and repair high technology accessories. The application of SANS at lower power reactors and in developing countries nevertheless is possible in well selected topics where only a restricted Q range is required, when scattering power is expected to be sufficiently high or when the sample size can be increased at the expense of resolution. Examples of this type of applications are: 1) Phase separation and precipitates in material science, 2) Ultrafine grained materials (nanocrystals, ceramics), 3) Porous materials such as concretes and filter materials, 4) Conformation and entanglements of polymer-chains, 5) Aggregates of micelles in microemulsions, gels and colloids, 6) Radiation damage in steels and alloys. The need for the installation of a new SANS facility at the TRIGA Reactor of the Institute of Nuclear Research in Pitesti, Romania becomes actual especially after the shutting down of the WWR-S Reactor from Bucharest. A monochromatic neutron beam with 1.5 A ≤ λ ≤ 5 A is produced by a mechanical velocity selector with helical slots. The distance between sample and detectors plane is 5.2 m. The sample width may be fixed between 10 mm and 20 mm. The minimum value of the scattering vector is Qmin = 0.005 A-1 while the maximal value is Qmax = 0.5 A-1. The relative error is ΔQ/Qmin = 0.5. The cooperation partnership between advanced research centers and the smaller ones from developing countries could be fruitful. The formers act as mentors in solving specific problems. Such a partnership was established between INR Pitesti, Romania and JINR Dubna, Russia. The first step in this cooperation consists in the manufacturing at Dubna of a battery of gas filled

  11. Berglund, Bruce R. and Brian Porter-Szűcs, eds. 2013. Christianity and Modernity in Eastern Europe. Budapest and New York: Central European University Press. 386 pp.

    Directory of Open Access Journals (Sweden)

    Dorottya Nagy

    2015-01-01

    Full Text Available Berglund, Bruce R. and Brian Porter-Szűcs, eds. 2013. Christianity and Modernity in Eastern Europe. Budapest and New York: Central European University Press. 386 pp.  Reviewed by Dorottya Nagy, University of South Africa, Helsinki, Finland.

  12. The Budapest meeting 2005 intensified networking on ethics of science : the case of reproductive cloning, germline gene therapy and human dignity

    NARCIS (Netherlands)

    Steendam, van Guido; Dinnyes, Andras; Mallet, Jacques; Roosendaal, Hans E.

    2006-01-01

    This paper reports on the meeting of the Sounding Board of the EU Reprogenetics Project that was held in Budapest, Hungary, 6–9 November 2005. The Reprogenetics Project runs from 2004 until 2007 and has a brief to study the ethical aspects of human reproductive cloning and germline gene therapy. Dis

  13. Collection of scientific papers in collaboration with Joint Institute for Nuclear Research, Dubna, USSR and Central Research Institute for Physics, Budapest, Hungary Pt. 5

    International Nuclear Information System (INIS)

    The results of JINR (Dubna) - CRIP (Budapest) collaboration in the field of numerical and computer methods for solving physical problems are reported. The topics cover pure mathematical problems with applications in organization theory, numerical data handling, construction and simulation of physical devices and reinterpretation of current problems in mathematical physics. (D.Gy.)

  14. The First 24 Years of Reverse Monte Carlo Modelling, Budapest, Hungary, 20-22 September 2012

    Science.gov (United States)

    Keen, David A.; Pusztai, László

    2013-11-01

    This special issue contains a collection of papers reflecting the content of the fifth workshop on reverse Monte Carlo (RMC) methods, held in a hotel on the banks of the Danube in the Budapest suburbs in the autumn of 2012. Over fifty participants gathered to hear talks and discuss a broad range of science based on the RMC technique in very convivial surroundings. Reverse Monte Carlo modelling is a method for producing three-dimensional disordered structural models in quantitative agreement with experimental data. The method was developed in the late 1980s and has since achieved wide acceptance within the scientific community [1], producing an average of over 90 papers and 1200 citations per year over the last five years. It is particularly suitable for the study of the structures of liquid and amorphous materials, as well as the structural analysis of disordered crystalline systems. The principal experimental data that are modelled are obtained from total x-ray or neutron scattering experiments, using the reciprocal space structure factor and/or the real space pair distribution function (PDF). Additional data might be included from extended x-ray absorption fine structure spectroscopy (EXAFS), Bragg peak intensities or indeed any measured data that can be calculated from a three-dimensional atomistic model. It is this use of total scattering (diffuse and Bragg), rather than just the Bragg peak intensities more commonly used for crystalline structure analysis, which enables RMC modelling to probe the often important deviations from the average crystal structure, to probe the structures of poorly crystalline or nanocrystalline materials, and the local structures of non-crystalline materials where only diffuse scattering is observed. This flexibility across various condensed matter structure-types has made the RMC method very attractive in a wide range of disciplines, as borne out in the contents of this special issue. It is however important to point out that since

  15. A Coffin Dispersed: Case-study of 21st Dynasty Coffin Fragments (Timişoara 1142–1146, Budapest 51.325

    Directory of Open Access Journals (Sweden)

    Branislav Anđelković

    2016-02-01

    The lack of a name, the corrupt texts, unusual iconography, and the lack of varnish may reflect the lack of resources of the coffin’s owner. A fragment in Budapest (51.325 is shown to join the Timişoara coffin sections. The dismantling/sawing of an object to make it more portable and saleable reflects an established practice of late 1800s and early 1900s Egyptian antiquities market.

  16. Collection of scientific papers in collaboration with Joint Institute for Nuclear Research, Dubna, USSR and Central Research Institute for Physics, Budapest, Hungary Vol. 6

    International Nuclear Information System (INIS)

    Papers of collaboration of JINR, Dubna and CRIP, Budapest, are presented in the field of algorithms and computer programs for solution of physical problems. The topics include computer evaluation and calculation of functional integrals and Pade approximants, occurring in theoretical particle physics, field theory and statistical physics, error estimations for approximate solutions of quasilinear integrodifferential evolution equations, overview of protocol testing, improved random number generation methods and computer simulation methods in molecule physics. Computer codes are also presented. (D.G.)

  17. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015; Session “Pharmacology”

    OpenAIRE

    Various Authors

    2015-01-01

    Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN), European Society for Paediatric Research (ESPR), Union of European Neonatal & Perinatal Societies (UENPS), European Foundation for the Care of Newborn Infants (EFCNI), with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (...

  18. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015; Session “Brain & Development”

    OpenAIRE

    Various Authors

    2015-01-01

    Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN), European Society for Paediatric Research (ESPR), Union of European Neonatal & Perinatal Societies (UENPS), European Foundation for the Care of Newborn Infants (EFCNI), with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT), supp...

  19. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015; Session “Other”

    OpenAIRE

    Various Authors

    2015-01-01

    Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN), European Society for Paediatric Research (ESPR), Union of European Neonatal & Perinatal Societies (UENPS), European Foundation for the Care of Newborn Infants (EFCNI), with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT),...

  20. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015; Session “Pulmonology”

    OpenAIRE

    Various Authors

    2015-01-01

    Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN), European Society for Paediatric Research (ESPR), Union of European Neonatal & Perinatal Societies (UENPS), European Foundation for the Care of Newborn Infants (EFCNI), with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (...

  1. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015; Session “Epidemiology”

    OpenAIRE

    Various Authors

    2015-01-01

    Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN), European Society for Paediatric Research (ESPR), Union of European Neonatal & Perinatal Societies (UENPS), European Foundation for the Care of Newborn Infants (EFCNI), with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT),...

  2. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  3. Atmospheric aerosol sampling campaign in Budapest and K-puszta. Part 2. Application of Stochastic Lung Model

    International Nuclear Information System (INIS)

    Complete text of publication follows. The Stochastic Lung Model [1] is a new important tool for the investigation of the health impact of atmospheric aerosols. The obtained concentrations of urban and rural aerosols (see part 1) were applied for lung deposition calculations with this model. The health effects of the inhaled particles may strongly depend on the location of deposition within the lung. This model was applied in order to calculate the deposition efficiencies of the measured aerosols in the tracheobronchial and the acinar regions of human respiratory system. In the acinar regions takes place the gas-exchange. In this model a lot of parameters can be adjusted and changed. For example: tidal volume, aerosol diameter and density, time of breathing cycle, etc. So can be calculation some cases among others males, females or children, sleep, sitting, light or heavy exercise, etc. As example the Figure 1. demonstrates that the acinar deposition has a maximum at 1-3 μm aerosol size and above 10 μm the practically do not reach the acinar region at sitting breathing conditions for male person. In the part I. the elements have been grouped. The first group was composed of Fe, Si and Ca. These elements can be found in 2-8 m size range with the largest rate. The deposition of Fe, Si and Ca elements has the largest probability in acinar region. The elemental concentrations in Budapest are much larger than in K-puszta. Thus, the acinar deposition of aerosol containing Fe, Si and Ca is relatively more significant in Budapest than in K-puszta. The second group was composed of S, Pb and W. The majority of these elements was in the 0,25-1 μm size range. These elements also deposit in acinar region but with less probability. Because their particles have large concentration they can also deposit in large amount. This work was supported by the National Research and Development Program (NRDP 3/005/2001). (author)

  4. Nuclear energy: 21st century promise. 10 October 2005, Budapest, Hungary

    International Nuclear Information System (INIS)

    What role will nuclear energy play can not be can not be answered definitively, but IAEA projections for the coming decades are markedly higher than they were even five years ago. Nuclear reactors currently generate electricity for nearly 1 billion people, producing about 16% of the world's electricity. This percentage has held relatively steady for more than a decade, keeping pace with the steady expansion in the global electricity market. But in just the past few years, we have witnessed a significant change in attitudes towards nuclear power. Fast growing global energy demands, an increased emphasis on the security of energy supply, and the risk of climate change are driving a renewed consideration, in many quarters, towards investment in nuclear power. This past March, at an international ministerial conference in Paris, participants from 65 countries were upbeat regarding the role of nuclear power in meeting 21st century electricity and energy needs. Near term nuclear growth remains centred in Asia and Eastern Europe, which together account for 22 of the 24 units now under construction. The Russian Federation intends to double its nuclear generating capacity by 2020; China plans nearly a six-fold expansion in capacity by the same date; and India anticipates a ten-fold increase by 2022. Elsewhere, plans remain more modest, but it is clear that nuclear energy is regaining stature as a serious option. When Finland began pouring concrete for Olkiluoto-3 earlier this year, it was the first new nuclear construction in Western Europe since 1991. France will likely be next, with construction of a European Pressurized Water Reactor (EPR) at Flamanville scheduled to start in 2007. Some 'newcomer' developing countries, such as Indonesia and Vietnam, are also moving steadily forward with plans for nuclear power investment. And at last month's IAEA General Conference in Vienna, a host of countries were discussing plans and possibilities for initiating or expanding nuclear

  5. The validation of Kayzero-assisted NAA in Budapest, Rez, and Ljubljana via the analysis of three BCR certified reference materials.

    Science.gov (United States)

    De Corte, F; van Sluijs, R; Simonits, A; Kucera, J; Smodis, B; Byrne, A R; De Wispelaere, A; Bossus, D; Frána, J; Horák, Z; Jaćimović, R

    2001-05-01

    After installation and calibration of k0-assisted NAA in three Central European research institutes (AEKI-Budapest, NPI-Rez, and IJS, Ljubljana), its validation was established via the analysis of three BCR certified reference materials. The matrices of choice were: CRM 277 estuarine sediment, CRM 038 coal fly ash from pulverized coal, and CRM 101 spruce needles. For some elements, e.g. Zn, Cd, and Hg, the analyses were not only performed instrumentally (INAA), but also in the radiochemical mode (RNAA). The work was performed in the framework of a European Copernicus Project. PMID:11393234

  6. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  7. PREFACE: The First Fifteen Years of Reverse Monte Carlo Modelling, Budapest, Hungary (9--11 October 2003)

    Science.gov (United States)

    Keen, David A.; Pusztai, Laszlo; Dove, Martin T.

    2005-02-01

    This special issue contains a collection of papers reflecting the content of the second workshop on reverse Monte Carlo (RMC) methods, held in a hotel on hills overlooking Budapest in October 2003. Around forty participants gathered to hear talks and discuss a broad range of science based on the RMC technique in very convivial surroundings. Reverse Monte Carlo modelling is a method for producing three-dimensional disordered structural models in quantitative agreement with experimental data. The method was developed in the late 1980’s and has since achieved wide acceptance within the scientific community. It is particularly suitable for studies of the structures of liquid and amorphous materials, although it has also been used for a number of disordered crystalline systems. There is currently a great interest in the properties of disordered materials and this has produced a resurgence in methods for investigating their structures, with an increased number of high-quality instruments at central facilities for neutron and x-ray scattering from disordered materials. Methods such as RMC are currently in great demand for analysing the resulting total scattering and XAS data and the RMC methodology is actively being developed by a number of groups worldwide. Within this context, the RMC workshop was particularly timely, providing a forum for those workers in the field to take stock of past achievements and to look forward to future developments. It is our hope that the collection of papers within this special issue will also communicate this to the wider scientific community, by providing a balance between papers that have more of an introductory review flavour and those that concentrate on current state of the art research opportunities using the RMC method. The order of the papers within this special issue reflects this balance. The first two papers are introductory reviews of the RMC method in general and as applied specifically to crystalline systems, respectively

  8. Decommissioning of research nuclear reactor WWER-S Magurele-Bucharest

    International Nuclear Information System (INIS)

    A decommissioning project is performed on a nuclear facility, the WWR-S research reactor at Magurele-Bucharest to remove the radioactive and hazardous materials in order to avoid any risks to human health and the environment. The project involves four phases, namely: assessment, development, activities implementation and closeout. There are two major parts to the assesment phase: preliminary characterisation and the review and decision-making process. Characterisation is needed to develop the project baseline data, which should include sufficient chemical, physical, and radiological characterisation to meet planning needs. Based on the conclusions of these studies, possible decommissioning alternative will be analyzed and the best alternative chosen, final goal is identified, risk assessments are evaluated, regulations supporting assessment will be identified, land use will be considered as well as the financial sources, disposal availability, public involvement, and the technology developments. After the decommissioning alternative is chosen, detailed engineering issues will be approached under appropriate regulatory guidance. The plan will include characterisation information, review of decommissioning alternatives, justification for the selected alternative, provision for regulatory compliance, evaluations of personnel exposure, radioactive waste volume, and cost. Other activities are: scheduling, preparation for decommissioning operations, coordination, documentation, characterization, report, feasibility studies, decommissioning plan, daily project report, radiological survey, airborne sampling records, termination survey of the site. The key operations are: worker protection, health and safety program, review of planing work, work area assessment, work area controls, personal protection and monitoring, environmental protection: air quality, surface water, ground water, shipments, effluent sampling and monitoring, environmental monitoring, site release

  9. Budapest scientific a guidebook

    CERN Document Server

    Hargittai, István

    2015-01-01

    This guidebook introduces the reader—the scientific tourist and others—to the visible memorabilia of science and scientists in Budapest—statues, busts, plaques, buildings, and other artefacts. According to the Hungarian–American Nobel laureate Albert Szent-Györgyi, this metropolis at the crossroads of Europe has a special atmosphere of respect for science. It has been the venue of numerous scientific achievements and the cradle, literally, of many individuals who in Hungary, and even more beyond its borders became world-renowned contributors to science and culture. Six of the eight chapters of the book cover the Hungarian Nobel laureates, the Hungarian Academy of Sciences, the university, the medical school, agricultural sciences, and technology and engineering. One chapter is about selected gimnáziums from which seven Nobel laureates (Szent-Györgyi, de Hevesy, Wigner, Gabor, Harsanyi, Olah, and Kertész) and the five “Martians of Science” (von Kármán, Szilard, Wigner, von Neumann, and Teller...

  10. Performance of TOF powder diffractometers on reactor sources

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Judith [Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109 Berlin (Germany)]. E-mail: peters@hmi.de; Bleif, Hans-Juergen [Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109 Berlin (Germany); Kali, Gyoergy [Budapest Research Reactor, 1121 Budapest, Konkoly Thege ut 29-33 (Hungary); Rosta, Laszlo [Research Institute for Solid State Physics and Optics, 1525 Budapest, P.O.B. 49 (Hungary); Mezei, Ferenc [Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109 Berlin (Germany): LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2006-11-15

    In 1998, a prototype of a time-of-flight (TOF) powder diffractometer was built at KFKI in Budapest in collaboration with the Hahn-Meitner-Institut (HMI) in Berlin. At a reactor source the neutron pulses are produced by a chopper system, which allows for shorter pulses than those obtained at pulsed spallation sources in the wavelength range most relevant for diffraction work, i.e. {lambda}{>=}0.7 A. Furthermore, the chopper system provides an ideal symmetric line shape. First results proved the high potential of the approach, namely an excellent resolution of 1-5x10{sup -3} for {delta}d/d was achieved. The prototype is presently rebuilt as a user instrument at the Budapest Neutron Centre. At HMI Berlin a new much more complex TOF powder diffractometer (EXED=extreme environment diffractometer) with higher resolution is under construction. It will benefit from variable resolution to achieve either ultrahigh resolution or very high intensities at conventional resolutions. EXED is devoted to studies under extreme sample conditions, for instance the TOF technique permits the access of a broad range of Q-values or d-spacing domains under scattering angle access strongly restricted by the use of highest field magnets. The whole instrument was simulated by Monte Carlo (MC) technique, and the simulations yield promising results.

  11. Performance of TOF powder diffractometers on reactor sources

    International Nuclear Information System (INIS)

    In 1998, a prototype of a time-of-flight (TOF) powder diffractometer was built at KFKI in Budapest in collaboration with the Hahn-Meitner-Institut (HMI) in Berlin. At a reactor source the neutron pulses are produced by a chopper system, which allows for shorter pulses than those obtained at pulsed spallation sources in the wavelength range most relevant for diffraction work, i.e. λ≥0.7 A. Furthermore, the chopper system provides an ideal symmetric line shape. First results proved the high potential of the approach, namely an excellent resolution of 1-5x10-3 for Δd/d was achieved. The prototype is presently rebuilt as a user instrument at the Budapest Neutron Centre. At HMI Berlin a new much more complex TOF powder diffractometer (EXED=extreme environment diffractometer) with higher resolution is under construction. It will benefit from variable resolution to achieve either ultrahigh resolution or very high intensities at conventional resolutions. EXED is devoted to studies under extreme sample conditions, for instance the TOF technique permits the access of a broad range of Q-values or d-spacing domains under scattering angle access strongly restricted by the use of highest field magnets. The whole instrument was simulated by Monte Carlo (MC) technique, and the simulations yield promising results

  12. Research reactor activities in support of national nuclear programmes

    International Nuclear Information System (INIS)

    This report is the result of an IAEA Technical Committee Meeting on Research Reactor Activities in Support of National Nuclear Programmes held in Budapest, Hungary during 10-13 December 1985. The countries represented were Belgium, Finland, France, Federal Republic of Germany, German Democratic Republic, India, Poland, Spain, United Kingdom, United States, Yugoslavia and Hungary. The purpose of the meeting was to present information and details of several well-utilized research reactors and to discuss their contribution to national nuclear programmes. A related Agency activity, a Seminar on Applied Research and Service Activities for Research Reactor Operations was held in Copenhagen, Denmark during 9-13 September 1985. Selected papers from this Seminar relevant to the topic of research reactor support of national nuclear programmes have been included in this report. A separate abstract was prepared for each of 19 papers presented at the Technical Committee Meeting on Research Reactor Activities in Support of National Nuclear Programmes and for each of 15 papers selected from the presentations of the Seminar on Applied Research and Service Activities for Research Reactor Operations

  13. External audit on the clinical practice and medical decision-making at the departments of radiotherapy in Budapest and Vienna

    International Nuclear Information System (INIS)

    Purpose: To present an example of how to study and analyze the clinical practice and the quality of medical decision-making under daily routine working conditions in a radiotherapy department, with the aims of detecting deficiencies and improving the quality of patient care.Methods: Two departments, each with a divisional organization structure and an established internal audit system, the University Clinic of Radiotherapy and Radiobiology in Vienna (Austria), and the Department of Radiotherapy at the National Institute of Oncology in Budapest (Hungary), conducted common external audits. The descriptive parameters of the external audit provided information on the auditing (auditor and serial number of the audit), the cohorts (diagnosis, referring institution, serial number and intention of radiotherapy) and the staff responsible for the treatment (division and physician). During the ongoing external audits, the qualifying parameters were (1) the sound foundation of the indication of radiotherapy, (2) conformity to the institution protocol (3), the adequacy of the choice of radiation equipment, (4) the appropriateness of the treatment plan, and the correspondence of the latter with (5) the simulation and (6) verification films. Various degrees of deviation from the treatment principles were defined and scored on the basis of the concept of Horiot et al. (Horiot JC, Schueren van der E, Johansson KA, Bernier J, Bartelink H. The program of quality assurance of the EORTC radiotherapy group. A historical overview. Radiother. Oncol. 1993;29:81-84), with some modifications. The action was regarded as adequate (score 1) in the event of no deviation or only a small deviation with presumably no alteration of the desired end-result of the treatment. A deviation adversely influencing the result of the therapy was considered a major deviation (score 3). Cases involving a minor deviation (score 2) were those only slightly affecting the therapeutic end-results, with effects

  14. Isochron burial dating of Danube terraces in the course of an interlaboratory comparison on sample preparation in Vienna and Budapest

    Science.gov (United States)

    Neuhuber, Stephanie; Ruszkiczay-Rüdiger, Zsófia; Decker, Kurt; Braucher, Regis; Fiebig, Markus; Braun, Mihály; Häuselmann, Philipp; Aster Team

    2016-04-01

    -depositional history, but have different pre-exposure and transport histories [4]. The sandy gravel of the Haslau terrace was sampled in an active gravel pit. At this location, two major sedimentary units are separated by an erosional hiatus of unknown duration. The upper sequence was sampled at 5.5 m depth and the lower one was sampled at 11.8 m depth. From both depths six quartzite or quartz-bearing cobbles were taken together with a bulk sample from the matrix for isochron burial duration determination. Five samples were split after crushing and sieving and were processed at both the Cosmogenic Nuclide Sample Preparation Laboratory at Vienna and at Budapest (http://www.geochem.hu/kozmogen/Lab_en.html), in order to assess and compare the sample processing preocedures of these recently operating sample preparation laboratories. AMS measurements were performed at the French national facility ASTER (CEREGE (Aix-en-Provence, France). Thanks to OTKA PD83610, NKM-96/2014, NKM-31/2015; OMAA 90öu17; LP2012-27/2012. INSU/CNRS, the ANR through the program "EQUIPEX Investissement d'Avenir", IRD and CEA. [1] Decker et al., 2005. QSR 24, 307-322 [2] Hintersberger et al, 2013, EGU2013-12755 [3] Salcher et al. 2012. Tectonics, 31, TC3004, doi:10.1029/2011TC002979 [4] Balco and Rovey, 2008. AJS 908, 1083-1114 [5] Fuchs and Grill, 1984, Geologische Gebietskarte der Republik Österreich 1:200 000 Wien und Umgebung

  15. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  16. Therapy results of malignant tumors of the paranasal sinuses in patients treated at the Metropolitan Onco-Radiologic Centre of Budapest

    International Nuclear Information System (INIS)

    A report is given on the therapy of 301 patients with ethmoidomaxillary tumors treated at the Metropolitan Onco-Radiologic Centre of Budapest between 1946 und 1974. Most of these patients were in an advanced stage when the first diagnosis was established. The five-year survival rate of all stages was 27%, which does not strongly differ from the average falue of 30% mentioned in literature. The five-year survival rate of the patients submitted to a combined surgical and radiologic treatment was 33%, that of the patients treated by irradiations only was 16%. 81 patients received an intracavitary brachycurietherapy after having undergone a non-radical operation. The five-year survival rate of this group was 38%. The intracavitary brachycurietherapy is most favorable and should always be applied in case of this not very radiosensible, often even radioresistant tumor. (orig.)

  17. TOF powder diffractometer on a reactor source

    International Nuclear Information System (INIS)

    Complete text of publication follows. The performance of time-of-flight (TOF) methods on Long Pulse Spallation Sources can be studied at a reactor source. For this purpose a prototype TOF monochromator instrument will be installed at the KFKI reactor in Budapest. The initial setup will be a powder diffractometer with a resolution of δd/d down to 2 x 10-3 at a wavelength of 1 A. The instrument uses choppers to produce neutron pulses of down to 10 μs FWHM. The optimal neutron source for a chopper instrument is a Long Pulse Spallation Source, but even on a continuous source simulations have shown that this instrument outperforms a conventional crystal monochromator powder diffractometer at high resolution. The main components of the TOF instrument are one double chopper defining the time resolution and two single choppers to select the wavelength range and to prevent frame overlap. For inelastic experiments a further chopper can be added in front of the sample. The neutron guide has a super-mirror coating and a curvature of 3500m. The total flight path is 20m and there are 24 single detectors in backscattering geometry. (author)

  18. Reactor Physics

    International Nuclear Information System (INIS)

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  19. Reactor Physics

    International Nuclear Information System (INIS)

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  20. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  1. A central European training course on reactor physics and kinetics - The 'Eugene Wigner Course' - Organisers view

    International Nuclear Information System (INIS)

    Full text: Initiated by the 5th Framework Programme of the European Commission, the European Nuclear Engineering Network (ENEN) is preparing the future European Nuclear Education schemes, degrees and requirements. To fully utilise the benefits of international co-operation and to promote the knowledge of students in nuclear engineering a 2,5 weeks course has been organised starting in spring 2003 and 2004. The main emphasis of the course is to perform reactor physics and kinetics experiments on three different research- and training reactors in three different locations (Vienna, Prague, Budapest). The experimental work is preceded by theoretical lectures aiming to prepare the students for the experiments (Bratislava). The students' work will be evaluated, and upon success the students will get a certificate. The finally accepted credit (ECTS) value will be determined by the students' home university. The ENEN-recommended value is between 6 and 8 ECTS. The more detailed description of the course will be given in the full paper. These courses are an upgraded result of a long-standing similar cooperation between the above-mentioned four institutions in Vienna, Prague, Bratislava and Budapest. The participation was opened to students of any European university, however, basic knowledge of reactor physics theory is requested, and this knowledge has to be attested by a professor of the student's home university. The number of participants is limited to 20. The application is subject of a selection procedure, and may be refused, if the course is already fully booked, or if the selection committee decides so, due to any reason. The quality control and accreditation of ENEN assures that the acquired knowledge of the participants will fulfil the requirements of the European Nuclear Education and fits in the European ECTS system. The cost of the 18 days course is in the range of 2000 Euros, which includes the tuition fee (utilization of 3 research reactors), textbooks, the

  2. Power Excursion Accident Analysis of Research Water Reactor

    International Nuclear Information System (INIS)

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  3. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  4. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  5. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015; Session “Nutrition and gastroenterology”

    OpenAIRE

    Various Authors

    2015-01-01

    Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN), European Society for Paediatric Research (ESPR), Union of European Neonatal & Perinatal Societies (UENPS), European Foundation for the Care of Newborn Infants (EFCNI), with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT),...

  6. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015; Session “Circulation, O2 Transport and Haematology”

    OpenAIRE

    Various Authors

    2015-01-01

    Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015); Budapest (Hungary); September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN), European Society for Paediatric Research (ESPR), Union of European Neonatal & Perinatal Societies (UENPS), European Foundation for the Care of Newborn Infants (EFCNI), with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT),...

  7. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  8. A central European training course on reactor physics and kinetics - the 'Eugene Wigner Course' - Organisers view

    International Nuclear Information System (INIS)

    Initiated by the 5th Framework Program of the European Commission, the European Nuclear Engineering Network (ENEN) is preparing the future European Nuclear Education schemes, degrees and requirements. To fully utilize the benefits of international cooperation and to promote the knowledge of students in nuclear engineering a 2.5 weeks course has been held, both in spring 2003 and 2004. The main emphasis of the course is to perform reactor physics and kinetics experiments on three different research- and training reactors in three different locations (Vienna, Prague, Budapest). The experimental work is preceded by theoretical lectures aiming to prepare the students for the experiments (Bratislava). The students' work will be evaluated, and upon success the students will get a certificate. The finally accepted credit (ECTS) value will be determined by the students' home university. The ENEN-recommended value is between 6 and 8 ECTS. The more detailed description of the course will be given in the full paper. (author)

  9. NIPS–NORMA station—A combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Zoltán, E-mail: kis.zoltan@energia.mta.hu; Szentmiklósi, László; Belgya, Tamás

    2015-04-11

    Neutron attenuation, scattering or radiative capture are used in various non-destructive methods to gain morphological, structural, elemental or isotopic information about the sample under study. The combined use of position-sensitive prompt gamma-ray detection (i.e. prompt gamma-ray activation imaging, PGAI) and neutron radiography/tomography (NR/NT) makes it possible to determine the 3D distribution of major elements and to visualize internal structures of heterogeneous objects in a non-destructive way. Based on earlier experience, the first ever permanent facility for this purpose, NIPS–NORMA, was constructed at the Budapest Neutron Centre, Hungary in 2012. The installation consists of a well-shielded, Compton-suppressed HPGe detector; a CCD-camera based imaging equipment and a motorized positioning system with sample support. Conventional PGAA measurements and NR/NT imaging using guided cold neutrons are the basic methods that form the basis of the more sophisticated experimental method called NR/NT-driven PGAI. The current status of the experimental station and its characteristics are described in the present paper.

  10. Elemental characterization of PM2.5 urban aerosol samples collected in Budapest (Hungary) by sector-field inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Nowadays, the investigation of PM10 urban aerosols in the EU member countries has become a daily routine task. The real challenge represents the characterization of aerosol particles with lower aerodynamic diameter than 10 micrometers as they do not deposit in the upper respiratory system and can even cause neoplasms. Considering the possible health effects, present investigation focuses on the PM2.5 fractions. This finer fraction is more characteristic for the anthropogenic pollutants originating from high temperature combustion processes. Therefore, PM2.5 urban aerosols were collected monthly for 96 consecutive hours on Whatmam QM-A quartz filters in a 3-month-long sampling campaign from three different representative points of Budapest (Szena Square, Gilice Square, nearby the urban waste incinerator of Kaposztasmegyer) with a Greenlab DHA-80 high-volume sampler at 500 m3/min. Twenty-three elements (Ag, Bi, Cd, Co, Cr, Cu, Fe, Ga, Li, Mn, Ni, Pt, Pb, Rb, Sb, Sn, Sr, Te, Tl, U, Mo, V, Zn) were determined after microwave-assisted aqua regia digestion by an Element2 sector-field inductively coupled plasma mass spectrometer (SF-ICP-MS). Since the bioavailability of elements is an important factor by studying their health effects, the water soluble part of the elements was also determined by SF-ICP-MS after sonication in a water bath. In addition, the TOC and TIC content of these urban aerosol fractions were determined with an TOC/N Analytik Jena equipment.

  11. NIPS–NORMA station—A combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre

    International Nuclear Information System (INIS)

    Neutron attenuation, scattering or radiative capture are used in various non-destructive methods to gain morphological, structural, elemental or isotopic information about the sample under study. The combined use of position-sensitive prompt gamma-ray detection (i.e. prompt gamma-ray activation imaging, PGAI) and neutron radiography/tomography (NR/NT) makes it possible to determine the 3D distribution of major elements and to visualize internal structures of heterogeneous objects in a non-destructive way. Based on earlier experience, the first ever permanent facility for this purpose, NIPS–NORMA, was constructed at the Budapest Neutron Centre, Hungary in 2012. The installation consists of a well-shielded, Compton-suppressed HPGe detector; a CCD-camera based imaging equipment and a motorized positioning system with sample support. Conventional PGAA measurements and NR/NT imaging using guided cold neutrons are the basic methods that form the basis of the more sophisticated experimental method called NR/NT-driven PGAI. The current status of the experimental station and its characteristics are described in the present paper

  12. NIPS-NORMA station-A combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre

    Science.gov (United States)

    Kis, Zoltán; Szentmiklósi, László; Belgya, Tamás

    2015-04-01

    Neutron attenuation, scattering or radiative capture are used in various non-destructive methods to gain morphological, structural, elemental or isotopic information about the sample under study. The combined use of position-sensitive prompt gamma-ray detection (i.e. prompt gamma-ray activation imaging, PGAI) and neutron radiography/tomography (NR/NT) makes it possible to determine the 3D distribution of major elements and to visualize internal structures of heterogeneous objects in a non-destructive way. Based on earlier experience, the first ever permanent facility for this purpose, NIPS-NORMA, was constructed at the Budapest Neutron Centre, Hungary in 2012. The installation consists of a well-shielded, Compton-suppressed HPGe detector; a CCD-camera based imaging equipment and a motorized positioning system with sample support. Conventional PGAA measurements and NR/NT imaging using guided cold neutrons are the basic methods that form the basis of the more sophisticated experimental method called NR/NT-driven PGAI. The current status of the experimental station and its characteristics are described in the present paper.

  13. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  14. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  15. Research reactors

    International Nuclear Information System (INIS)

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world's research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted

  16. Reactor container

    International Nuclear Information System (INIS)

    Object: To provide a jet and missile protective wall of a configuration being inflated toward the center of a reactor container on the inside of a body of the reactor container disposed within a biological shield wall to thereby increase safety of the reactor container. Structure: A jet and missile protective wall comprised of curved surfaces internally formed with a plurality of arch inflations filled with concrete between inner and outer iron plates and shape steel beam is provided between a reactor container surrounded by a biological shield wall and a thermal shield wall surrounding the reactor pressure vessel, and an adiabatic heat insulating material is filled in space therebetween. (Yoshino, Y.)

  17. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  18. Heterogeneous reactors

    International Nuclear Information System (INIS)

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author)

  19. The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary

    International Nuclear Information System (INIS)

    Concentrations of As, Al, Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Sb, Sn, Sr, Tl, V and Zn were analyzed by inductively coupled mass spectrometry (ICP-MS) in the intestinal helminth Pomphorhynchus laevis and its host Barbus barbus. The fish were caught in the Danube river downstream of the city of Budapest (Hungary). Ten out of twenty one elements analyzed were found at higher concentrations in the acanthocephalan than in different tissues (muscle, intestine, liver and kidney) of barbel. Considering the fish tissues, most of the elements were present at highest concentrations in liver, followed by kidney, intestine and muscle. Spearman correlation analyses indicate that there is competition for metals between the parasites and the host. The negative relationships between parasite number and metal levels in organs of the barbel support this hypothesis. The bioconcentration factors for Ag, As, Ba, Bi, Cu, Ga, Mn, Pb, Sr, Tl, and Zn showed that the parasites concentrated metals to a higher degree than the fish tissues. They accumulated the metals As, Cd, Cu, Fe, Ni, Pb, Sr and Zn even better than established bioindicators such as the mussel Dreissena polymorpha as revealed by data from the literature. The results presented here emphasize that acanthocephalans of fish are very useful as sentinels for metal pollution in aquatic ecosystems. Ratio of metal concentrations in the parasites and the host tissues provide additional information. Not including acanthocephalans in accumulation bioindication studies with fishes (as still customarily done) may lead to false results. - Acanthocephalans of fish may be useful as sentinels of metal pollution in aquatic systems

  20. The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, F.; Zimmermann, S.; Baska, F.; Taraschewski, H.; Sures, B

    2004-06-01

    Concentrations of As, Al, Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Sb, Sn, Sr, Tl, V and Zn were analyzed by inductively coupled mass spectrometry (ICP-MS) in the intestinal helminth Pomphorhynchus laevis and its host Barbus barbus. The fish were caught in the Danube river downstream of the city of Budapest (Hungary). Ten out of twenty one elements analyzed were found at higher concentrations in the acanthocephalan than in different tissues (muscle, intestine, liver and kidney) of barbel. Considering the fish tissues, most of the elements were present at highest concentrations in liver, followed by kidney, intestine and muscle. Spearman correlation analyses indicate that there is competition for metals between the parasites and the host. The negative relationships between parasite number and metal levels in organs of the barbel support this hypothesis. The bioconcentration factors for Ag, As, Ba, Bi, Cu, Ga, Mn, Pb, Sr, Tl, and Zn showed that the parasites concentrated metals to a higher degree than the fish tissues. They accumulated the metals As, Cd, Cu, Fe, Ni, Pb, Sr and Zn even better than established bioindicators such as the mussel Dreissena polymorpha as revealed by data from the literature. The results presented here emphasize that acanthocephalans of fish are very useful as sentinels for metal pollution in aquatic ecosystems. Ratio of metal concentrations in the parasites and the host tissues provide additional information. Not including acanthocephalans in accumulation bioindication studies with fishes (as still customarily done) may lead to false results. - Acanthocephalans of fish may be useful as sentinels of metal pollution in aquatic systems.

  1. Plasma reactor

    OpenAIRE

    Molina Mansilla, Ricardo; Erra Serrabasa, Pilar; Bertrán Serra, Enric

    2008-01-01

    [EN] A plasma reactor that can operate in a wide pressure range, from vacuum and low pressures to atmospheric pressure and higher pressures. The plasma reactor is also able to regulate other important settings and can be used for processing a wide range of different samples, such as relatively large samples or samples with rough surfaces.

  2. Reactor physics

    International Nuclear Information System (INIS)

    Progress in research on reactor physics in 1997 at the Belgian Nuclear Research Centre SCK/CEN is described. Activities in the following four domains are discussed: core physics, ex-core neutron transport, experiments in Materials Testing Reactors, international benchmarks

  3. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  4. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  5. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  6. Nuclear reactors

    International Nuclear Information System (INIS)

    This draft chart contains graphical symbols from which the type of (nuclear) reactor can be seen. They will serve as illustrations for graphical sketches. Important features of the individual reactor types are marked out graphically. The user can combine these symbols to characterize a specific reactor type. The basic graphical symbol is a square with a point in the centre. Functional groups can be depicted for closer specification. If two functional groups are not clearly separated, this is symbolized by a dotted line or a channel. Supply and discharge lines for coolant, moderator and fuel are specified in accordance with DIN 2481 and can be further specified by additional symbols if necessary. The examples in the paper show several different reactor types. (orig./AK)

  7. Multifunctional reactors

    OpenAIRE

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much emphasis in research in the last decade. A survey is given of modern developments and the first successful applications on a large scale. It is explained why their application in many instances is ...

  8. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  9. Nuclear reactor

    International Nuclear Information System (INIS)

    In order to reduce neutron embrittlement of the pressue vessel of an LWR, blanked off elements are fitted at the edge of the reactor core, with the same dimensions as the fuel elements. They are parallel to each other, and to the edge of the reactor taking the place of fuel rods, and are plates of neutron-absorbing material (stainless steel, boron steel, borated Al). (HP)

  10. Breeder reactors

    International Nuclear Information System (INIS)

    The reasons for the development of fast reactors are briefly reviewed (a propitious neutron balance oriented towards a maximum uranium burnup) and its special requirements (cooling, fissile material density and reprocessing) discussed. The three stages in the French program of fast reactor development are outlined with Rapsodie at Cadarache, Phenix at Marcoule, and Super Phenix at Creys-Malville. The more specific features of the program of research and development are emphasized: kinetics and the core, the fuel and the components

  11. Condition of research reactor spent nuclear fuel in wet storage

    International Nuclear Information System (INIS)

    is high, the pool liner should be replaced, as was done at the WWR-SM reactor in Budapest in 1986. (author)

  12. Condition of research reactor spent nuclear fuels in wet storage

    International Nuclear Information System (INIS)

    FSP failure is high, the pool liner should be replaced, as was done at the WWR-SM reactor in Budapest in 1986

  13. Research reactors - an overview

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  14. EERRI Coalition as a Platform for Close Cooperation - An Enhanced Utilization of Research Reactors in Central and Eastern Europe

    International Nuclear Information System (INIS)

    One the most visible trend in nuclear education and training which became visible during the last few years is networking and closer co-operation between universities at national and international level in nuclear education. Research reactors, which are mainly part of a research institute or university, had the same evolution in networking as universities but with a few years delay - research reactors started to create reactor coalitions. The first impulse towards reactor coalitions was done at the IAEA International Conference on Research Reactors: Safe Management and Effective Utilization, held in Sydney in November 2007, where research reactor coalitions and centres of excellence were two of the key topics of the conference. At this conference functioning and future sustainability of such reactor coalitions were widely discussed. As a result of those discussions, the first reactor coalition was established three months later. In the January 2008 the Eastern European Research Reactor Initiative (EERRI) was born in Budapest, Hungary. The EERRI reactor coalition now covers nine research reactors from seven European countries. The main purpose why reactor coalitions have been born is the chance to offer complex services in a wide range of activities which a single reactor cannot offer and synergy benefits from joint efforts of the coalition. The next reasons for coalitions cover sharing the irradiation and experimental capacities, coordination of the reactor operation for potential shutdown one of the coalition reactors, etc. A good example how the reactor coalition could work is the oldest coalition - EERRI. Wide power range and various reactors' use allow EERRI to offer to solve any type of the experimental work usually performed at research reactors from beam experiments through various types of neutron activation analysis, fuel investigation, material science, radioisotope production to education and training. All EERRI activities are focused in the four main

  15. Small angle neutron scattering study of radiation damage in reactor vessel materials

    International Nuclear Information System (INIS)

    Complete text of publication follows. Nuclear radiation provides important changes in the microstructure of metallic components of nuclear power plant and research reactors, influencing their mechanical properties. The investigation of this problem has primary interest for the safety and life-time of such nuclear installations. For the characterisation of this kind of nanostructures small angle neutron scattering technique is a very useful tool. Experiments were carried out on samples of irradiated reactor vessel material and welded components of VVER-440 type reactors on the SANS instrument at the Budapest Research Reactor. In these measurements irradiated as well as non-irradiated samples were compared and magnetic field was applied for viewing the magnetic structure effects of the materials. A clear modification of the structure due to irradiation was obtained. The data sets were processed with the ITP92 code, the inverse Fourier transform programme of O. Glatter [1]. Our microstructural observations fit well to the hardness test results. [2]. (author) [1] O. Glatter (1997) J. Appl. Cryst. 10, 415-421.; [2] M. Grosse, J. Boehmert, H.W. Viehrig (1994) Journal of Nuclear Materials 211, 177-180

  16. Reactor utilization

    International Nuclear Information System (INIS)

    In 1962, the RA reactor was operated almost three times more than in 1961, producing total of 25 555 MWh. Diagram containing comparative data about reactor operation for 1960, 1961, and 1962, percent of fuel used and U-235 burnup shows increase in reactor operation. Number of samples irradiated was 659, number of experiments done was 16. mean powered level was 5.93 MW. Fuel was added into the core twice during the reporting year. In fact the core was increased from 56 to 68 fuel channels and later to 84 fuel channels. Fuel was added to the core when the reactivity worth decreased to the minimum operation level due to burnup. In addition to this 5 central fuel channels were exchanged with fresh fuel in february for the purpose of irradiation in the VISA-2 channel

  17. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  18. Nuclear reactors

    International Nuclear Information System (INIS)

    A nuclear reactor has a large prompt negative temperature coefficient of reactivity. A reactor core assembly of a plurality of fluid-tight fuel elements is located within a water-filled tank. Each fuel element contains a solid homogeneous mixture of 50-79 w/o zirconium hydride, 20-50 w/o uranium and 0.5-1.5 W erbium. The uranium is not more than 20 percent enriched, and the ratio of hydrogen atoms to zirconium atoms is between 1.5:1 and 7:1. The core has a long lifetime, E.G., at least about 1200 days

  19. Nuclear reactors

    International Nuclear Information System (INIS)

    In a liquid cooled nuclear reactor, the combination is described for a single-walled vessel containing liquid coolant in which the reactor core is submerged, and a containment structure, primarily of material for shielding against radioactivity, surrounding at least the liquid-containing part of the vessel with clearance therebetween and having that surface thereof which faces the vessel make compatible with the liquid, thereby providing a leak jacket for the vessel. The structure is preferably a metal-lined concrete vault, and cooling means are provided for protecting the concrete against reaching a temperature at which damage would occur. (U.S.)

  20. PREFACE: The first 21 years of reverse Monte Carlo modelling—a workshop held in Budapest, Hungary (1-3 October 2009) The first 21 years of reverse Monte Carlo modelling—a workshop held in Budapest, Hungary (1-3 October 2009)

    Science.gov (United States)

    Keen, David A.; Pusztai, László

    2010-10-01

    This special issue contains a collection of papers reflecting the content of the fourth workshop on reverse Monte Carlo (RMC) methods, held in a hotel on hills overlooking Budapest at the start of October 2009. At this meeting around sixty participants gathered to hear talks and discuss a broad range of science based on the RMC technique in very convivial surroundings. Reverse Monte Carlo modelling is a method for producing three-dimensional disordered structural models in quantitative agreement with experimental data. The method was developed in the late 1980s and has since achieved wide acceptance within the scientific community [1], producing on average over seventy papers and 1000 citations per year in the last five years. It is particularly suitable for studies of the structures of liquid and amorphous materials, as well as the structural analysis of disordered crystalline systems. The principal experimental data that are modelled are obtained from total x-ray or neutron scattering experiments, using the reciprocal space structure factor and/or the real space pair distribution function (PDF). Additional data might be included from extended x-ray absorption fine structure (EXAFS) spectroscopy, Bragg peak intensities or indeed any measured data that can be calculated from a three-dimensional atomistic model. It is this use of total scattering (diffuse and Bragg), rather than just the Bragg peak intensities more commonly used for crystalline structure analysis, which enables RMC modelling to probe the often important deviations from the average crystal structure, to probe the structures of poorly crystalline materials, and the local structures of non-crystalline materials where only diffuse scattering is observed. This flexibility across various condensed matter structure-types has made the RMC method very attractive in a wide range of disciplines, as borne out in the contents of this special issue. It is, however, important to point out that since the method is

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    In an improved reactor core for a high conversion BWR reactor, Pu-breeding type BWR type reactor, Pu-breeding type BWR type rector, FEBR type reactor, etc., two types of fuel assemblies are loaded such that fuel assemblies using a channel box of a smaller irradiation deformation ratio are loaded in a high conversion region, while other fuel assemblies are loaded in a burner region. This enables to suppress the irradiation deformation within an allowable limit in the high conversion region where the fast neutron flux is high and the load weight from the inside of the channel box due to the pressure loss is large. At the same time, the irradiation deformation can be restricted within an allowable limit without deteriorating the neutron economy in the burner region in which fast neutron flux is low and the load weight from the inside of the channel box is small since a channel box with smaller neutron absorption cross section or reduced wall thickness is charged. As a result, it is possible to prevent structural deformations such as swelling of the channel box, bending of the entire assemblies, bending of fuel rods, etc. (K.M.)

  2. Un nuovo periodico di studi italiani «Nuova Corvina», Rivista di Italianistica dell'Istituto Italiano di Cultura per l'Ungheria, num. 1, Budapest 1993, 144 pagine.

    Directory of Open Access Journals (Sweden)

    Pavao Tekavčić

    2015-09-01

    Full Text Available Siamo lieti di poter presentare ai lettori di «Linguistica» la nuova rivista dilin­ gua, letteratura e cultura italiana, «Nuova Corvina», apparsa nella vicina Ungheria.Inapertura del primo numero si legge che ilperiodico «intende promuovere gli studidiitalianistica,favorendol'interscambioelacircolazionedelpensierotragliitalianistiungheresi ed i colleghi operanti negli altri paesi» [p. 2].  Prevista per adesso come anuale,con la speranza che possa diventare per lo meno semestrale [p.7],«Nuova Corvina» èl' organo del citato Ente culturale, ed il comitato di redazione è costituito da quat­tro eminenti studiosi ungheresi: Lajos Antal (Istituto Superiore di Magistero di Szom­bathely,Gyula Herczeg (Università di Pécs, József Pál(Università di Szeged e Győző Szabó (Università di Budapest.

  3. Reactor container

    International Nuclear Information System (INIS)

    A reactor container has a suppression chamber partitioned by concrete side walls, a reactor pedestal and a diaphragm floor. A plurality of partitioning walls are disposed in circumferential direction each at an interval inside the suppression chamber, so that independent chambers in a state being divided into plurality are formed inside the suppression chamber. The partition walls are formed from the bottom portion of the suppression chamber up to the diaphragm floor to isolate pool water in a divided state. Operation platforms are formed above the suppression chamber and connected to an access port. Upon conducting maintenance, inspection or repairing, a pump is disposed in the independent chamber to transfer pool water therein to one or a plurality of other independent chambers to make it vacant. (I.N.)

  4. Reactor building

    International Nuclear Information System (INIS)

    The present invention concerns a structure of ABWR-type reactor buildings, which can increase the capacity of a spent fuel storage area at a low cost and improved earthquake proofness. In the reactor building, the floor of a spent fuel pool is made flat, and a depth of the pool water satisfying requirement for shielding is ensured. In addition, a depth of pool water is also maintained for a equipment provisionally storing pool for storing spent fuels, and a capacity for a spent fuel storage area is increased by utilizing surplus space of the equipment provisionally storing pool. Since the flattened floor of the spent fuel pool is flushed with the floor of the equipment provisionally storing pool, transfer of horizontal loads applied to the building upon occurrence of earthquakes is made smooth, to improve earthquake proofness of the building. (T.M.)

  5. Nuclear reactors

    International Nuclear Information System (INIS)

    Disclosed is a nuclear reactor cooled by a freezable liquid has a vessel for containing said liquid and comprising a structure shaped as a container, and cooling means in the region of the surface of said structure for effecting freezing of said liquid coolant at and for a finite distance from said surface for providing a layer of frozen coolant on and supported by said surface for containing said liquid coolant. In a specific example, where the reactor is sodium-cooled, the said structure is a metal-lined concrete vault, cooling is effected by closed cooling loops containing NaK, the loops extending over the lined surface of the concrete vault with outward and reverse pipe runs of each loop separated by thermal insulation, and air is flowed through cooling pipes embedded in the concrete behind the metal lining. 7 claims, 3 figures

  6. Computer-assisted reactor NAA of geological and other reference materials, using the ksub(o)-standardization method

    International Nuclear Information System (INIS)

    USGS BCR-1 and G-2, NBS 1633a Coal Fly-Ash and a 7-element synthetic standard for biological materials were analyzed by reactor NAA, using the ksub(o)-standardization method. The analyses were performed independently in the analytical laboratories of the Institute for Nuclear Sciences (INW), Gent, and the Central Research Institute for Physics (KFKI), Budapest. This procedure allowed not only a comparison with the specified data or with other published values, but enabled a check of the consistency of our own results obtained in largely different experimental conditions. As concluded, the ksub(o)-standardization method combines general versatility (with respect to irradiation and counting conditions) with good accuracy, while the experimental work remains as simple as possible. Since the ksub(o) method is a computer-oriented technique, a FORTRAN IV program was designed and applied on a VAX 11/780 machine. (author)

  7. NEUTRONIC REACTORS

    Science.gov (United States)

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    The liquid metal (sodium) cooled fast breeder reactor has got fuel subassemblies which are bundled and enclosed by a common can. In order to reduce bending of the sides of the can because of the load caused by the coolant pressure the can has got a dodecagon-shaped crosssection. The surfaces of the can may be of equal width. One out of two surfaces may also be convex towards the center. (RW)

  9. Nuclear reactor

    International Nuclear Information System (INIS)

    A detector having high sensitivity to fast neutrons and having low sensitivity to thermal neutrons is disposed for reducing influences of neutron detector signals on detection values of neutron fluxes when the upper end of control rod pass in the vicinity of the neutron flux detector. Namely, the change of the neutron fluxes is greater in the thermal neutron energy region while it is smaller in the fast neutron energy region. This is because the neutron absorbing cross section of B-10 used as neutron absorbers of control rods is greater in the thermal neutron region and it is smaller in the fast neutron region. As a result, increase of the neutron detection signals along with the local neutron flux change can be reduced, and detection signals corresponding to the reactor power can be obtained. Even when gang withdrawal of operating a plurality of control rods at the same time is performed, the reactor operation cycle can be measured accurately, thereby enabling to shorten the reactor startup time. (N.H.)

  10. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    In a BWR type nuclear reactor, the number of first fuel assemblies (uranium) loaded in a reactor core is smaller than that of second fuel assemblies (mixed oxide), the average burnup degree upon take-out of the first fuel assemblies is reduced to less than that of the second fuel assemblies, and the number of the kinds of the fuel rods constituting the first fuel assemblies is made smaller than that of the fuel rods constituting the second fuel assemblies. As a result, the variety of the plutonium enrichment degree is reduced to make the distribution of the axial enrichment degree uniform, thereby enabling to simplify the distribution of the enrichment degree. Then the number of molding fabrication steps for MOX fuel assemblies can be reduced, thereby enabling to reduce the cost for molding and fabrication. (N.H.)

  11. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015; Session “Pulmonology”

    Directory of Open Access Journals (Sweden)

    Various Authors

    2015-09-01

    Full Text Available Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN, European Society for Paediatric Research (ESPR, Union of European Neonatal & Perinatal Societies (UENPS, European Foundation for the Care of Newborn Infants (EFCNI, with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT, supported by Council of International Neonatal Nurses (COINN, organizing secretariat MCA Scientific EventsPROGRAMME COMMITTEEArtúr Beke (Hungarian Society, Morten Breindahl (ESN, Giuseppe Buonocore (UENPS, Pierre Gressens (ESPR, Silke Mader (EFCNI, Manuel Sánchez Luna (UENPS, Miklós Szabó (Hungarian Society of Perinatology, Luc Zimmermann (ESPR Session “Pulmonology”ABS 1. URINE NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN AS A MARKER OF BRONCHOPULMONARY DYSPLASIA AND RETINOPATHY OF PREMATURITY IN PRETERM NEONATES • H. Ergin, T. Atilgan, M. Dogan, O.M.A. Ozdemir, C. YeniseyABS 2. LUNG COMPLIANCE AND LUNG ULTRASOUND DURING POSTNATAL ADAPTATION IN HEALTHY NEWBORN INFANTS • L. Süvari, L. Martelius, C. Janér, A. Kaskinen, O. Pitkänen, T. Kirjavainen, O. Helve, S. AnderssonABS 3. PRE-DISCHARGE RESPIRATORY OUTCOMES IN SMALL-FOR-GESTATIONAL-AGE AND APPROPRIATE-FOR-GESTATIONAL-AGE VERY PRETERM INFANTS • A. Matic, A. RistivojevicABS 4. THE EFFECT OF CHANGING OXYGEN SATURATION TARGET RANGE ON COMPLIANCE IN OXYGEN SATURATION TARGETING IN THE NEONATAL INTENSIVE CARE UNIT • H.A. van Zanten, S. Pauws, E.C.H. Beks, B.J. Stenson, E. Lopriore, A.B. te PasABS 5. BINASAL PRONG VERSUS NASAL MASK FOR APPLYING CPAP TO PRETERM INFANTS: RANDOMIZED CONTROLLED TRIAL • B. Say, G. Kanmaz, S.S. OguzABS 6. TRAINING AND RAISING AWARENESS IMPROVES COMPLIANCE IN OXYGEN SATURATION TARGETING IN THE NEONATAL INTENSIVE CARE UNIT • H.A. van Zanten, S. Pauws, E.C.H. Beks, B.J. Stenson, E

  12. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015; Session “Pharmacology”

    Directory of Open Access Journals (Sweden)

    Various Authors

    2015-09-01

    Full Text Available Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN, European Society for Paediatric Research (ESPR, Union of European Neonatal & Perinatal Societies (UENPS, European Foundation for the Care of Newborn Infants (EFCNI, with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT, supported by Council of International Neonatal Nurses (COINN, organizing secretariat MCA Scientific EventsPROGRAMME COMMITTEEArtúr Beke (Hungarian Society, Morten Breindahl (ESN, Giuseppe Buonocore (UENPS, Pierre Gressens (ESPR, Silke Mader (EFCNI, Manuel Sánchez Luna (UENPS, Miklós Szabó (Hungarian Society of Perinatology, Luc Zimmermann (ESPR Session “Pharmacology”ABS 1. BABY SKIN CARE PRODUCTS • P. Doro, R. Abraham, D. Agoston, J. Balog, R.Z. CsomaABS 2. MATHEMATICAL MODELING TO PREDICT IN-HOSPITAL NATURAL WEIGHT CHANGES IN TERM NEONATES • S. Kasser, M. Wilbaux, C. De Angelis, H. Rickenbacher, N. Klarer, J.N. Van Den Anker, M. Pfister, S. WellmannABS 3. IMPROVING PARENTERAL NUTRITION IN THE NEONATE – A PRACTICAL GUIDELINE • H. Reigstad, D. Moster, I. Grønlie, A. BlystadABS 4. INVOLUTION OF RETINOPATHY OF PREMATURITY AND NEURODEVELOPMENTAL OUTCOME AFTER BEVACIZUMAB TREATMENT • Y.-S. Chang, P.-N. Tsao, C.-Y. Chen, H.-C. Chou, W.-S. Hsieh, P.-T. YehABS 5. RELATIONSHIP BETWEEN ADVERSE DRUG REACTIONS AND OFF-LABEL/UNLICENSED DRUG USE IN HOSPITALISED CHILDREN. EREMI STUDY • K.A. Nguyen, Y. Mimouni, A. Lajoinie, N. Paret, S. Malik, L. El-Amrani, L. Milliat-Guittard, C. Carcel, A. Portefaix, A.M. Schott, T. Vial, B. KassaiABS 6. A SYSTEMATIC REVIEW OF OFF-LABEL AND UNLICENSED DRUGS USE AND ADVERSE DRUG REACTIONS IN HOSPITALIZED CHILDREN • N. David, K.A. Nguyen, Y. Mimouni, A. Lajoinie, S. Malik, B. KassaiABS 7. EFFICACY AND SAFETY OF PROPOFOL SEDATION

  13. Types of Nuclear Reactors

    International Nuclear Information System (INIS)

    The presentation is based on the following areas: Types of Nuclear Reactors, coolant, moderator, neutron spectrum, fuel type, pressurized water reactor (PWR), boiling water reactor (BWR) reactor pressurized heavy water (PHWR), gas-cooled reactor, RBMK , Nuclear Electricity Generation,Challenges in Nuclear Technology Deployment,EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR.

  14. Nuclear reactor

    International Nuclear Information System (INIS)

    A nuclear reactor is described in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assemblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters in the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters in the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance

  15. Nuclear research reactors

    International Nuclear Information System (INIS)

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.)

  16. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  17. Nuclear reactor

    International Nuclear Information System (INIS)

    Cover gas spaces for primary coolant vessel, such as a reactor container, a pump vessel and an intermediate heat exchanger vessel are in communication with each other by an inverted U-shaped pressure conduit. A transmitter and a receiver are disposed to the pressure conduit at appropriate positions. If vibration frequencies (pressure vibration) from low frequency to high frequency are generated continuously from the transmitter to the inside of the communication pipe, a resonance phenomenon (air-column resonance oscillation) is caused by the inherent frequency or the like of the communication pipe. The frequency of the air-column resonance oscillation is changed by the inner diameter and the clogged state of the pipelines. Accordingly, by detecting the change of the air-column oscillation characteristics by the receiver, the clogged state of the flow channels in the pipelines can be detected even during the reactor operation. With such procedures, steams of coolants flowing entrained by the cover gases can be prevented from condensation and coagulation at a low temperature portion of the pipelines, otherwise it would lead clogging in the pipelines. (I.N.)

  18. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015; Session “Other”

    Directory of Open Access Journals (Sweden)

    Various Authors

    2015-09-01

    Full Text Available Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN, European Society for Paediatric Research (ESPR, Union of European Neonatal & Perinatal Societies (UENPS, European Foundation for the Care of Newborn Infants (EFCNI, with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT, supported by Council of International Neonatal Nurses (COINN, organizing secretariat MCA Scientific EventsPROGRAMME COMMITTEEArtúr Beke (Hungarian Society, Morten Breindahl (ESN, Giuseppe Buonocore (UENPS, Pierre Gressens (ESPR, Silke Mader (EFCNI, Manuel Sánchez Luna (UENPS, Miklós Szabó (Hungarian Society of Perinatology, Luc Zimmermann (ESPR Session “Other”ABS 1. TELEMEDICINE IN NEONATAL HOMECARE • K.G. Holm, A. Brodsgaard, G. Zachariassen, J. ClemensenABS 2. ACCEPTABILITY OF PARENT REPORT QUESTIONNAIRES FOR ROUTINE FOLLOW-UP IN LATE/MODERATELY PRETERM INFANTS • N. Armstrong, S. Johnson, E.M. BoyleABS 3. INTERNATIONAL CARE PRACTICES AROUND AN INFANT’S DEATH IN THE NICU; A SURVEY STUDY • C.M.C. van den Berg, K. Alferink, J.M. Latour, N. Valkenburg, M. van DijkABS 4. ANXIETY AND DEPRESSION OVER TIME, IN MOTHERS OF VERY PRETERM BORN CHILDREN • M. Jeukens-Visser, M. Husson, D. Meijssen, M. Flierman, P. van Schie, K. Koldewijn, A. Wassenaer-van LeemhuisABS 5. LONGITUDINAL CHANGE OF HEALTH-RELATED QUALITY OF LIFE EXPERIENCED OVER TIME BY MOTHER WITH LATE PRETERM INFANT • L.Y. Tsai, S.C. Mu, Y.L. Chen, Y.L. Guo, P.C. ChenABS 6. RELATIONSHIP BETWEEN ANXIETY LEVELS AND CLINICAL PRACTICE SKILLS AMONG STUDENTS OF PEDIATRIC NURSING LECTURE • A.S. Kurt, F.T. Arslan, S. Özkan, R. Çelen, D.A. ÇakırABS 7. ACCURACY OF SMARTPHONES FOR REVIEWING TRANSMITTED IMAGES OF NEONATAL X-RAYS • T. Vasko, M. Westberg, J.A. Dawson, L.S. Owen, M. Thio, R. Bhatia, S. Donath

  19. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015; Session “Epidemiology”

    Directory of Open Access Journals (Sweden)

    Various Authors

    2015-09-01

    Full Text Available Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN, European Society for Paediatric Research (ESPR, Union of European Neonatal & Perinatal Societies (UENPS, European Foundation for the Care of Newborn Infants (EFCNI, with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT, supported by Council of International Neonatal Nurses (COINN, organizing secretariat MCA Scientific EventsPROGRAMME COMMITTEEArtúr Beke (Hungarian Society, Morten Breindahl (ESN, Giuseppe Buonocore (UENPS, Pierre Gressens (ESPR, Silke Mader (EFCNI, Manuel Sánchez Luna (UENPS, Miklós Szabó (Hungarian Society of Perinatology, Luc Zimmermann (ESPR Session “Epidemiology”ABS 1. A PERFORMANCE INDICATOR FOR THE PROLONGATION OF GESTATIONAL AGE • N. LackABS 2. LATE PRETERM NEONATES AND CAUSES OF ADMISSION TO THE NICU • S. Arayici, G. Kadioglu Simsek, B. Say, E. Alyamac Dizdar, N. Uras, F.E. Canpolat, S.S. OguzABS 3. INCIDENCE AND OUTCOMES OF METABOLIC DISORDERS IN VERY PRETERM INFANTS • O. Dobush, D. Dobryanskyy, Z. Salabay, O. Detsyk, O. Novikova, Y. KuzminovABS 4. MATERNAL FACTORS INFLUENCE INFANT’S VITAMIN D STATUS • H. Hauta-alus, E. Holmlund-Suila, M. Enlund-Cerullo, J. Rosendahl, S. Valkama, O. Helve, H-M. Surcel, O. Mäkitie, S. Andersson, H. ViljakainenABS 5. THE HIGH PREVALENCE OF VITAMIN D DEFICIENCY IN A LARGE NUMBER OF PREGNANT WOMEN AND RELATED FACTORS IN ANKARA, TURKEY • G. Kadioglu Simsek, F. E. Canpolat, S. Arayici, G. Kanmaz Kutman, H.I. Yakut, Ö. Moraloğlu, B. ÖzkanABS 6. SNAPPE-II: A VALUABLE PREDICTOR OF ADVERSE OUTCOMES IN PREMATURITY • P. Costa-Reis, R. Monteiro, M. Abrantes, P. Costa, A. Graça, C. MonizABS 7. THE ASSOCIATION BETWEEN MATERNAL AND FETAL 25OHD AND INFANT SIZE AND ADIPOSITY AT BIRTH, 6 MONTHS AND 2 YEARS OF AGE • M

  20. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  1. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  2. Reactor container

    International Nuclear Information System (INIS)

    Purpose: To prevent shocks exerted on a vent head due to pool-swell caused within a pressure suppression chamber (disposed in a torus configuration around the dry well) upon loss of coolant accident in BWR type reactors. Constitution: The following relationship is established between the volume V (m3) of a dry well and the ruptured opening area A (m2) at the boundary expected upon loss of coolant accident: V >= 30340 (m) x A Then, the volume of the dry well is made larger than the ruptured open area, that is, the steam flow rate of leaking coolants upon loss of coolant accident to decrease the pressure rise in the dry well at the initial state where loss of coolant accident is resulted. Accordingly, the pressure of non-compressive gases jetted out from the lower end of the downcomer to the pool water is decreased to suppress the pool-swell. (Ikeda, J.)

  3. Mandler, David. 2014. Kelet és nyugat mezsgyéjén – Vámbéry Ármin és a Brit Birodalom ('On the Border between East and West – Arminius Vámbéry and the British Empire'). Budapest: Múlt és Jövő Kiadó. 223 pp.

    OpenAIRE

    Anna Szalai

    2016-01-01

    Mandler, David. 2014. Kelet és nyugat mezsgyéjén – Vámbéry Ármin és a Brit Birodalom ('On the Border between East and West – Arminius Vámbéry and the British Empire'). Budapest: Múlt és Jövő Kiadó. 223 pp. Reviewed by Anna Szalai, Independent Scholar, Israel

  4. Survey of research reactors

    International Nuclear Information System (INIS)

    A survey of reasearch reactors based on the IAEA Nuclear Research Reactor Data Base (RRDB) was done. This database includes information on 273 operating research reactors ranging in power from zero to several hundred MW. From these 273 operating research reactors 205 reactors have a power level below 5 MW, the remaining 68 reactors range from 5 MW up to several 100 MW thermal power. The major reactor types with common design are: Siemens Unterrichtsreaktors, 1.2 Argonaut reactors, Slowpoke reactors, the miniature neutron source reactors, TRIGA reactors, material testing reactors and high flux reactors. Technical data such as: power, fuel material, fuel type, enrichment, maximum neutron flux density and experimental facilities for each reactor type as well as a description of their utilization in physics and chemistry, medicine and biology, academic research and teaching, training purposes (students and physicists, operating personnel), industrial application (neutron radiography, silicon neutron transmutation doping facilities) are provided. The geographically distribution of these reactors is also shown. As conclusions the author discussed the advantages (low capital cost, low operating cost, low burn up, simple to operate, safe, less restrictive containment and sitting requirements, versatility) and disadvantages (lower sensitivity for NAA, limited radioisotope production, limited use of neutron beams, limited access to the core, licensing) of low power research reactors. 24 figs., refs. 15, Tab. 1 (nevyjel)

  5. Department of reactor technology

    International Nuclear Information System (INIS)

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  6. RB reactor noise analysis

    International Nuclear Information System (INIS)

    Statistical fluctuations of reactivity represent reactor noise. Analysis of reactor noise enables determining a series of reactor kinetic parameters. Fluctuations of power was measured by ionization chamber placed next to the tank of the RB reactor. The signal was digitized by an analog-digital converter. After calculation of the mean power, 3000 data obtained by sampling were analysed

  7. The Analysis of the Carrier’s Obligations during the Movement of Goods in Terms of Dual Perspective of the Budapest Convention and the Settlement of the New Civil Code

    Directory of Open Access Journals (Sweden)

    Ion IORGA

    2012-08-01

    Full Text Available In the present study we have analyzed one of the most important, but at the same time conflicting, the carrier’s obligations arise under the contract of carriage, that is the compliance of the itinerary while traveling goods to their destination, safely without delay. Using content analysis, through a descriptive documentary research and jurisprudence analysis, this study aims at identifying both the content of the obligation of complying the itinerary established in the contract or the usages that derive from, and particular aspects of this obligation which modifies the original terms of the carriage contract. Also, the paper discusses the texts of the New Civil Code and the Budapest Convention on the carriage contract on inland waterways. To what extent the carrier is entitled to invoke the exemption causes of liability? What are these causes? The paper is in the interest of legal practitioners that confront with the compliance issue of the carrier’s obligations and attracting the liability of the carrier for all damages of the goods, during and after the route deviation from the itinerary in given situation.

  8. New studies of the natural convection around a fuel rod of the BME training reactor with PIV/LIF technique

    International Nuclear Information System (INIS)

    In this paper the model of a fuel pin of the Training Reactor of Budapest University of Technology and Economics was investigated with Particle Image Velocimetry and Laser Induced Fluorescence measurement methods. An experimental setup was designed, built and optimized to investigate the natural convection around a model of a fuel pin of the Training Reactor. The processes were analysed using an electrically heated rod, which models the geometry of the fuel rods in the Training Reactor. The heated length of the model is the same as the active length of the real fuel rods. The rod is placed in a glass tank with a shape of a square-based prism. An additional cooling system ensures constant flow conditions around the rod. The setup consists of an additional flow channel box, the equivalent diameter of which is equal to the equivalent diameter of the real fuel assembly. Simultaneous measurements of velocity and temperature fields were performed in different vertical positions for both cases of natural convection with and without the flow channel box. The effect of the presence of the channel was analyzed, and a laminarizating influence was observed. The local heat transfer coefficient was calculated for every measurement. The two dimensional measurement techniques gave extensive results, the structure of the hydraulic and thermal boundary layer were fully analyzed. (Authors)

  9. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  10. Reactor Physics Training

    International Nuclear Information System (INIS)

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  11. Introduction of Nuclear Reactor Engineering

    International Nuclear Information System (INIS)

    This book introduces development, status, supply and demand and resource of nuclear reactor. It deals with basic knowledge of nuclear reactor, which are reactor system, heat recovery in reactor core, structural feature in reactor, materials of structure in reactor, shielding of gamma ray, shielding of reactor, safety and environmental problem of nuclear power plant, nuclear fuel and economical efficiency of nuclear energy.

  12. Effect of the RPV cladding properties on the WWER-440 reactors lifetime

    International Nuclear Information System (INIS)

    The RPV cladding generally not involved into the stress and strain analysis, even it is considered in structural integrity assessment only as a layer in the heat transfer models. The IAEA PTS guide of WWER-440 RPV-s allows to consider only underclad hypothetic cracks if the RPV cladding is free of defects and ductile.The cladding is a welded structure. According to the chemical composition it is austenitic, but due to the welding it has 5-10% delta ferrite. The delta ferrite changes the material behavior, it shown transition properties of ferrite and austenitic material. Irradiation increases the strength of it, and decreases the toughness.To evaluate the ductility and mechanical properties of the WWER reactor's cladding test blocks have been cut from the Zarnowiec and Greifswald 8 units. Both reactors were manufactured at Skoda Works (Czech Republic) but they never operated. Cladding specimens have been irradiated, annealed and re-irradiated in the Budapest Research Reactor and tested. Several mechanical tests (tensile and fracture properties) and metallographic samples have been studied to evaluate the properties of the irradiated cladding. Database of irradiated cladding properties have been collected to allow elastic plastic analysis of the reactor pressure vessels during transient thermal stresses. The data have been used for PTS evaluation of WWER-440 V-213 type units. Calculation have been performed by traditional elastic stress analyses using surface and sub-cladding hypothetical cracks, and by elasticplastic finite element code using sub-clad hypothetical defects according to the IAEA PTS guide and the VERLIFE guide. The calculated safe lifetime is doubled in the case of the critical transients. (author)

  13. Safeguarding research reactors

    International Nuclear Information System (INIS)

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  14. Research nuclear reactors

    International Nuclear Information System (INIS)

    Since the divergence of the first nuclear reactor in 1942, about 600 research or test reactors have been built throughout the world. Today 255 research reactors are operating in 57 countries and about 70% are over 25 years old. Whereas there are very few reactor types for power plants because of rationalization and standardisation, there is a great diversity of research reactors. We can divide them into 2 groups: heavy water cooled reactors and light water moderated reactors. Heavy water cooled reactors are dedicated to the production of high flux of thermal neutrons which are extracted from the core by means of neutronic channels. Light water moderated reactors involved pool reactors and slightly pressurized closed reactors, they are polyvalent but their main purposes are material testing, technological irradiations, radionuclide production and neutron radiography. At the moment 8 research reactors are being built in Canada, Germany, Iran, Japan, Kazakhstan, Morocco, Russia and Slovakia and 8 others are planned in 7 countries (France, Indonesia, Nigeria, Russia, Slovakia, Thailand and Tunisia. Different research reactors are described: Phebus, Masurca, Phenix and Petten HFR. The general principles of nuclear safety applied to test reactors are presented. (A.C.)

  15. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015; Session “Brain & Development”

    Directory of Open Access Journals (Sweden)

    Various Authors

    2015-09-01

    Full Text Available Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN, European Society for Paediatric Research (ESPR, Union of European Neonatal & Perinatal Societies (UENPS, European Foundation for the Care of Newborn Infants (EFCNI, with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT, supported by Council of International Neonatal Nurses (COINN, organizing secretariat MCA Scientific EventsPROGRAMME COMMITTEEArtúr Beke (Hungarian Society, Morten Breindahl (ESN, Giuseppe Buonocore (UENPS, Pierre Gressens (ESPR, Silke Mader (EFCNI, Manuel Sánchez Luna (UENPS, Miklós Szabó (Hungarian Society of Perinatology, Luc Zimmermann (ESPR Session “Brain & Development”ABS 1. SEPARATE EFFECTS OF LOW PATERNAL AND MATERNAL EDUCATIONAL LEVEL ON RISK OF DEVELOPMENTAL DELAY IN 4-YEAR-OLD BOYS AND GIRLS • S. de Jong, M.R. Potijk, A.E. den Heijer, S.A. Reijneveld, A.F. Bos, J.M. KerstjensABS 2. THE ASSOCIATION BETWEEN PATERNAL EDUCATIONAL LEVEL AND DEVELOPMENTAL DELAY IN PRETERM AND TERM-BORN CHILDREN AT AGE 4 • S. de Jong, J.M. Kerstjens, A.E. den Heijer, A.F. Bos, S.A. Reijneveld, M.R. PotijkABS 3. NEUROPROTECTION BY NEURONAL OVEREXPRESSION OF THE SMALL GTPase-Ras IN HYPEROXIA-INDUCED NEONATAL BRAIN INJURY • M. Serdar, K. Kempe, J. Herz, R. Herrmann, B.S. Reinboth, R. Heumann, A. Ehrkamp, U. Felderhoff-Mueser, I. BendixABS 4. REFERENCE RANGES FOR CEREBRAL TISSUE OXYGEN INDEX (cTOI IN NEONATES DURING IMMEDIATE NEONATAL TRANSITION AFTER BIRTH • N. Baik, B. Urlesberger, B. Schwaberger, G. Schmölzer, A. Avian, L. Mileder, G. PichlerABS 4. REFERENCE RANGES FOR CEREBRAL TISSUE OXYGEN INDEX (cTOI IN NEONATES DURING IMMEDIATE NEONATAL TRANSITION AFTER BIRTH • N. Baik, B. Urlesberger, B. Schwaberger, G. Schmölzer, A. Avian, L. Mileder, G. PichlerABS 6. N

  16. Nuclear reactor building

    International Nuclear Information System (INIS)

    Purpose: To prevent seismic vibrations of external buildings from transmitting to the side walls of a reactor container in a tank type FBR reactor building. Constitution: The reactor building is structured such that the base mat for a reactor container chamber and a reactor container is separated from the base mat for the walls of building, and gas-tight material such as silicon rubber is filled in the gap therebetween. With such a constitution, even if the crane-supporting wall vibrates violently upon occurrence of earthqualkes, the seismic vibrations do not transmit toward the reactor container chamber. (Horiuchi, T.)

  17. Reactor Physics Programme

    International Nuclear Information System (INIS)

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  18. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  19. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  20. Process heat reactors

    International Nuclear Information System (INIS)

    The consumption of heat, for industrial and domestic needs, takes up half of the national energy supply; direct utilization of the heat produced by nuclear reactors could therefore contribute to reduce the deficit in the energetic results. The restraints proper to heat consumption (dispersal and variety of consumers, irregular demand) involve the development of the heat transport system structures and adequate nuclear reactors. With this in view, the Commissariat a l'Energie Atomique and Technicatome are developing the CAS reactor series, pressurized water reactors (PWR), (CAS 3G reactor with a power of 420 MW.th.), and the Thermos reactor (100 MW.th.), directly conceived to produce heat at 1200C and whose technology derives from the experimental pool reactors type. In order to prove the value of the Thermos design, an experimental reactor should soon be constructed in the Saclay nuclear research centre

  1. Reactor System Design

    International Nuclear Information System (INIS)

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  2. Nuclear Reactor RA Safety Report, Vol. 11, Reactor operation

    International Nuclear Information System (INIS)

    This volume includes the following chapters describing: Organisation of reactor operation (including operational safety, fuel management, and regulatory rules for RA reactor operation); Control and maintenance of reactor components (reactor core, nuclear fuel, heavy water and cover gas systems, mechanical structures, electric power supply system, reactor instrumentation); Quality assurance and Training of the reactor personnel

  3. The Chernobylsk reactor accident

    International Nuclear Information System (INIS)

    The construction, the safety philosophy, the major reactor physical parameters of RBMK-1000 type reactor units and the detailed description of the Chernobylsk-4 reactor accident, its causes and conclusions, the efforts to reduce the consequences on the reactor site and in the surroundings are discussed based on different types of Soviet documents including the report presented to the IAEA by the Soviet Atomic Energy Agency in August 1986. (V.N.)

  4. Zero energy reactor 'RB'

    International Nuclear Information System (INIS)

    In 1958 the zero energy reactor RB was built with the purpose of enabling critical experiments with various reactor systems to be carried out. The first core assembly built in this reactor consists of heavy water as moderator and natural uranium metal as fuel. In order to be able to obtain very accurate results when measuring the main characteristics of the assembly the reactor was built as a completely bare system. (author)

  5. High solids fermentation reactor

    Science.gov (United States)

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  6. Fossil nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Maurette, M.

    1976-01-01

    The discussion of fossil nuclear reactors (the Oklo phenomenon) covers the earth science background, neutron-induced isotopes and reactor operating conditions, radiation-damage studies, and reactor modeling. In conclusion possible future studies are suggested and the significance of the data obtained in past studies is summarized. (JSR)

  7. Fusion reactor studies

    International Nuclear Information System (INIS)

    A review is given of fusion reactor systems studies, the objectives of these studies are outlined and some recent conceptual reactor designs are described. The need for further studies in greater depth is indicated so that progress towards a commercial fusion reactor may be consolidated. (U.K.)

  8. Reactor power measuring device

    International Nuclear Information System (INIS)

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  9. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  10. Nuclear reactor repairing device

    International Nuclear Information System (INIS)

    Purpose: To enable free repairing of an arbitrary position in an LMFBR reactor. Constitution: A laser light emitted from a laser oscillator installed out of a nuclear reactor is guided into a portion to be repaired in the reactor by using a reflecting mirror, thereby welding or cutting it. The guidance of the laser out of the reactor into the reactor is performed by an extension tube depending into a through hole of a rotary plug, and the guidance of the laser light into a portion to be repaired is performed by the transmitting and condensing action of the reflecting mirror. (Kamimura, M.)

  11. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  12. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  13. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPRTM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENATM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENATM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  14. The Maple reactor project

    International Nuclear Information System (INIS)

    MDS Nordion supplies the majority of the world's reactor-produced medical isotopes. These isotopes are currently produced in the NRU reactor at AECL's Chalk River Laboratories (CRL). Medical isotopes and related technology are relied upon around the world to prevent, diagnose and treat disease. The NRU reactor, which has played a key role in supplying medical isotopes to date, has been in operation for over 40 years. Replacing this aging reactor has been a priority for MDS Nordion to assure the global nuclear medicine community that Canada will continue to be a dependable supplier of medical isotopes. MDS Nordion contracted AECL to construct two MAPLE reactors dedicated to the production of medical isotopes. The MDS Nordion Medical Isotope Reactor (MMIR) project started in September 1996. This paper describes the MAPLE reactors that AECL has built at its CRL site, and will operate for MDS Nordion. (author)

  15. High temperature reactors

    International Nuclear Information System (INIS)

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements

  16. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  17. New European initiatives in colorectal cancer screening: Budapest Declaration. Official appeal during the Hungarian Presidency of the Council of the European Union under the Auspices of the United European Gastroenterology Federation, the European Association for Gastroenterology and Endoscopy and the Hungarian Society of Gastroenterology.

    Science.gov (United States)

    Wittmann, Tibor; Stockbrugger, Reinhold; Herszényi, László; Jonkers, Daisy; Molnár, Béla; Saurin, Jean-Christophe; Regula, Jaroslaw; Malesci, Alberto; Laghi, Luigi; Pintér, Tamás; Teleky, Béla; Dítě, Petr; Tulassay, Zsolt

    2012-01-01

    Colorectal cancer (CRC) is the second most common newly diagnosed cancer and the second most common cause of death in the European Union (EU). CRC is an enormous health and economic burden. Early detection and prevention have the possibility of reducing this burden significantly. Many cancer-associated deaths can be avoided through early detection by high-quality colorectal screening programs followed by appropriate treatment. Under the auspices of the United European Gastroenterology Federation (UEGF), the European Association for Gastroenterology and Endoscopy, the Hungarian Society of Gastroenterology and the Hungarian College of Gastroenterology, the 'Budapest Declaration' (2011) was an accepted official scientific program during the Hungarian Presidency of the Council of the European Union. The Budapest Declaration follows the Munich Declaration (2001), the Brussels Declaration (2007), the Transatlantic Declaration (2009), the Barcelona Declaration (2010), the written declaration of CRC screening, a joint initiative with European Parliamentarians coordinated by the UEGF, and finally, the 'European Guidelines for Quality Assurance in Colorectal Cancer Screening and Diagnosis'. The 'Budapest Declaration' together with previous declarations aims to urge the national and supranational healthcare decision makers to launch new Europe-wide initiatives to establish high-quality CRC programs to achieve optimal efficiency in CRC screening. In case of implementation of the proposals, actions and conditions recommended, we can achieve that one of the basic principles of the EU - the chance of equal access - be realized in member states with respect to the prevention of CRC and reduction of cancer-related mortality. To better achieve this goal, we propose to establish an UEGF joint committee, with one participant representing each EU member state to coordinate and supervise the implementation of CRC screening. PMID:22722559

  18. Reactor Safety: Introduction

    International Nuclear Information System (INIS)

    The programme of the Reactor Safety Division focuses on the development of expertise on materials behaviour under irradiation for fission and fusion oriented applications. Furthermore, as nuclear energy needs international public acceptance with respect to safety and efficient management of natural resources and wants to reduce the burden of nuclear waste, the Reactor Safety Division enhanced its efforts to develop the MYRRHA project. MYRRHA, an accelerator driven sub-critical system, might have the potential to cope in Europe with the above mentioned constraints on acceptability and might serve as a technological platform for GEN IV reactor development, in particular the Liquid Metal Fast Reactor.The Reactor Safety Division gathers three research entities that are internationally recognised: the Reactor Materials Research department, the Reactor Physics and MYRRHA department and the Instrumentation department.The objectives of Reactor Materials Research are: to evaluate the integrity and behaviour of structural materials and nuclear fuels used in present and future nuclear power industry; to perform research to unravel and understand the parameters that determine the material and fuel behaviour under or after irradiation; to contribute to the interpretation and modelling of the materials and fuels behaviour in order to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the Reactor Materials Research department concentrate on four distinct disciplines: Reactor Pressure Vessel Steel embrittlement Stress corrosion cracking in reactor coolant environment, including Irradiation Assisted Stress Corrosion Cracking; Nuclear Fuel characterisation and development of new fuel types for commercial and test reactors. Development of materials for Fusion and advanced nuclear fission reactors. The safe operation of present nuclear power plants relies primarily on the integrity of the reactor pressure vessel

  19. Recent results of three-dimensional CFD simulations of coolant mixing in VVER-440/213 reactor pressure vessel

    International Nuclear Information System (INIS)

    The Budapest University of Technology and Economics, Institute of Nuclear Techniques has been working since 2001 on the three-dimensional CFD model of the reactor pressure vessel of the VVER-440 type reactor. During this time period - due to the development of the available computational capacity - a very complex and detailed model of the RPV has been developed. The aim of the construction of the new model is to describe further internal structures of the RPV (e.g. correct modeling of brake tubes, or internals in the upper mixing chamber) and to perform an extensive sensitivity analysis on the different modeling and calculation parameters (e.g. porous region models vs. detailed modeling, or n different turbulence models). The new model can be applied for steady state calculation during normal operational condition and for different transient analyses as well. One interesting application is the participation in a planned benchmark exercise on the start-up of the sixth main coolant pump, which is aimed to compare the capabilities of mixing models of one-dimensional system codes with the results of CFD simulation. (authors)

  20. Research reactors in Argentina

    International Nuclear Information System (INIS)

    Argentine Nuclear Development started in early fifties. In 1957, it was decided to built the first a research reactor. RA-1 reactor (120 kw, today licensed to work at 40 kW) started operation in January 1958. Originally RA-1 was an Argonaut (American design) reactor. In early sixties, the RA-1 core was changed. Fuel rods (20% enrichment) was introduced instead the old Argonaut core design. For that reason, a critical facility named RA-0 was built. After that, the RA-3 project started, to build a multipurpose 5 MW nuclear reactor MTR pool type, to produce radioisotopes and research. For that reason and to define the characteristics of the RA-3 core, another critical facility was built, RA-2. Initially RA-3 was a 90 % enriched fuel reactor, and started operation in 1967. When Atucha I NPP project started, a German design Power Reactor, a small homogeneous reactor was donated by the German Government to Argentina (1969). This was RA-4 reactor (20% enrichment, 1W). In 1982, RA-6 pool reactor achieved criticality. This is a 500 kW reactor with 90% enriched MTR fuel elements. In 1990, RA-3 started to operate fueled by 20% enriched fuel. In 1997, the RA-8 (multipurpose critical facility located at Pilcaniyeu) started to operate. RA-3 reactor is the most important CNEA reactor for Argentine Research Reactors development. It is the first in a succession of Argentine MTR reactors built by CNEA (and INVAP SE ) in Argentina and other countries: RA-6 (500 kW, Bariloche-Argentina), RP-10 (10MW, Peru), NUR (500 kW, Algeria), MPR (22 MW, Egypt). The experience of Argentinian industry permits to compete with foreign developed countries as supplier of research reactors. Today, CNEA has six research reactors whose activities have a range from education and promotion of nuclear activity, to radioisotope production. For more than forty years, Argentine Research Reactors are working. The experience of Argentine is important, and argentine firms are able to compete in the design and

  1. Thai research reactor

    International Nuclear Information System (INIS)

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  2. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  3. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.)

  4. TRIGA reactor main systems

    International Nuclear Information System (INIS)

    This module describes the main systems of low power (<2 MW) and higher power (≥2 MW) TRIGA reactors. The most significant difference between the two is that forced reactor cooling and an emergency core cooling system are generally required for the higher power TRIGA reactors. However, those TRIGA reactors that are designed to be operated above 3 MW also use a TRIGA fuel that is specifically designed for those higher power outputs (3 to 14 MW). Typical values are given for the respective systems although each TRIGA facility will have unique characteristics that may only be determined by the experienced facility operators. Due to the inherent wide scope of these research reactor facilities construction and missions, this training module covers those systems found at most operating TRIGA reactor facilities but may also discuss non-standard equipment that was found to be operationally useful although not necessarily required. (author)

  5. Evaluation of research reactors

    International Nuclear Information System (INIS)

    The present status of research reactors with highly enriched (93%) uranium fuel at JAERI, JRR-2 and JMTR is described. JRR-2 is a heterogeneous type of reactor, using heavy water as moderator and coolant. It uses both MTR type and cylindrical type of fuel elements. The maximum thermal power and the thermal neutron flux are 10 MW and 2x1014 n/cm2 see respectively. The reactor has been used for various experiments such as solid state physics, material irradiation, reactor fuel irradiation and radioisotope production. The JMTR is a multi-purpose tank type material testing reactor, and light water moderator and coolant, operated at 50 MW. The evaluation of lower enriched fuel and its consequences for both reactors is considered more especially

  6. Multipurpose research reactors

    International Nuclear Information System (INIS)

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  7. The nuclear soliton reactor

    International Nuclear Information System (INIS)

    The basic reactor physics of a completely novel nuclear fission reactor design - the soliton-reactor - is presented on the basis of a simple model. In such a reactor, the neutrons in the critical region convert either fertile material in the adjacent layers into fissile material or reduce the poisoning of fissile material in such a manner that successively new critical regions emerge. The result is an autocatalytically driven burn-up wave which propagates throughout the reactor. Thereby, the relevant characteristic spatial distributions (neutron flux, specific power density and the associated particle densities) are solitons - wave phenomena resulting from non-linear partial differential equations which do not change their shape during propagation. A qualitativley new kind of harnessing nuclear fission energy may become possible with fuel residence times comparable with the useful lifetime of the reactor system. In the long run, fast breeder systems which exploit the natural uranium and thorium resources, without any reprocessing capacity are imaginable. (orig.)

  8. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  9. Fusion reactor research

    International Nuclear Information System (INIS)

    This work covers four separate areas: (1) development of technology for processing liquid lithium from blankets, (2) investigation of hydrogen isotope permeation in candidate structural metals and alloys for near-term fusion reactors, (3) analytical studies encompassing fusion reactor thermal hydraulics, tritium facility design, and fusion reactor safety, and (4) studies involving dosimetry and damage analysis. Recent accomplishments in each of these areas are summarized

  10. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  11. The replacement research reactor

    International Nuclear Information System (INIS)

    As a consequences of the government decision in September 1997. ANSTO established a replacement research reactor project to manage the procurement of the replacement reactor through the necessary approval, tendering and contract management stages This paper provides an update of the status of the project including the completion of the Environmental Impact Statement. Prequalification and Public Works Committee processes. The aims of the project, management organisation, reactor type and expected capabilities are also described

  12. PFBR reactor protection

    International Nuclear Information System (INIS)

    Design philosophy adopted for Prototype Fast breeder Reactor (PFBR) is a classical one and has the following features: triplicated sensors for measuring important safety parameters; two independent reactor protection Logic Systems based on solid state devices; reactivity control achieved by control rods; gas equipped modules at the core blanket interface providing negative reactivity. Design verification of these features showed that safety of the reactor can be achieved by a traditional approach since the inherent features of LMFBR make this easy

  13. Reactor BR2

    International Nuclear Information System (INIS)

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  14. TRIGA reactor characteristics

    International Nuclear Information System (INIS)

    This module describes the general design, characteristics and parameters of TRIGA reactors and fuels. It is recommended that most of this information should be incorporated into any reactor operator training program and, in many cases, the facility Safety Analysis Report. It is oriented to teach the basics of the physics and mechanical design of the TRIGA fuel as well as its unique operational characteristics and the differences between TRIGA fuels and others more traditional reactor fuels. (nevyjel)

  15. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  16. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1984 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, safeguards technology, and activities of the Committee on Reactor Physics. (author)

  17. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  18. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1979 are described. The work of the Division is closely related to development of multi-purpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committees on Reactor Physics and on Decomissioning of Nuclear Facilities. (author)

  19. New reactor concepts

    International Nuclear Information System (INIS)

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost

  20. Reactor construction steels

    International Nuclear Information System (INIS)

    The basic functions of light water reactor components are shown on the example of a pressurized water reactor and the requirements resulting therefrom for steel, the basic structural material, are derived. A detailed analysis of three main groups of reactor steels is presented and the applications are indicated of low-alloyed steels, high-alloyed austenitic steels, and steels with a high content of Ni and of alloying additions for steam generator pipes. An outline is given of prospective fast breeder reactor steels. (J.K.)

  1. Commercialization of fast reactors

    International Nuclear Information System (INIS)

    Comparative analysis has been performed of capital and fuel cycle costs for fast BN-type and pressurized light water VVER-type reactors. As a result of materials demand and components costs comparison of NPPs with VVER-1000 and BN-600 reactors, respectively, conclusion was made, that under equal conditions of the comparison, NPP with fast reactor had surpassed the specific capital cost of NPP with VVER by about 30 - 40 %. Ways were determined for further decrease of this difference, as well as for the fuel cycle cost reduction, because at present it is higher than that of VVER-type reactors. (author)

  2. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  3. Natural convection type reactor

    International Nuclear Information System (INIS)

    In a natural convection type nuclear reactor, a reactor core is disposed such that the top of the reactor core is always situated in a flooded position even if pipelines connected to the pressure vessel are ruptured and the level at the inside of the reactor vessel is reduced due to flashing. Further, a lower dry well situated below the pressure vessel is disposed such that it is in communication with a through hole to a pressure suppression chamber situated therearound and the reactor core is situated at the level lower than that of the through hole. If pipelines connected to the pressure vessel are ruptured to cause loss of water, although the water level is lowered after the end of the flashing, the reactor core is always flooded till the operation of a pressure accummulation water injection system to prevent the top of the reactor core even from temporary exposure. Further, injected water is discharged to the outside of the pressure vessel, transferred to the lower dry well, and flows through the through hole to the pressure control chamber and cools the surface of the reactor pressure vessel from the outside. Accordingly, the reactor core is cooled to surely and efficiently remove the after-heat. (N.H.)

  4. INVAP's Research Reactor Designs

    International Nuclear Information System (INIS)

    INVAP, an Argentine company founded more than three decades ago, is today recognized as one of the leaders within the research reactor industry. INVAP has participated in several projects covering a wide range of facilities, designed in accordance with the requirements of our different clients. For complying with these requirements, INVAP developed special skills and capabilities to deal with different fuel assemblies, different core cooling systems, and different reactor layouts. This paper summarizes the general features and utilization of several INVAP research reactor designs, from subcritical and critical assemblies to high-power reactors IAEA safety

  5. Reactor power control device

    International Nuclear Information System (INIS)

    The present invention provides a control device which can conduct scram and avoid lowering of the power of a nuclear power plant upon occurrence of earthquakes. Namely, the device of the present invention comprises, in addition to an existent power control device, (1) an earthquake detector for detecting occurrence and annihilation of earthquakes and (2) a reactor control device for outputting control rod operation signals and reactor core flow rate control signals depending on the earthquake detection signals from the detector, and reactor and plant information. With such a constitution, although the reactor is vibrated by earthquakes, the detector detects slight oscillations of the reactor by initial fine vibration waves as premonitory symptoms of serious earthquakes. The earthquake occurrence signals are outputted to the reactor control device. The reactor control device, receiving the signals, changes the position of control rods by way of control rod driving mechanisms to make the axial power distribution in the reactor core to a top peak type. As a result, even if the void amount in the reactor core is reduced by the subsequent actual earthquakes, since the void amount is moved, effects on the increase of neutron fluxes by the actual earthquakes is small. (I.S.)

  6. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  7. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  8. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  9. One piece reactor removal

    International Nuclear Information System (INIS)

    Japan Research Reactor No.3 (JRR-3) was the first reactor consisting of 'Japanese-made' components alone except for fuel and heavy water. After reaching its initial critical state in September 1962, JRR-3 had been in operation for 21 years until March 1983. It was decided that the reactor be removed en-bloc in view of the work schedule, cost and management of the reactor following the removal. In the special method developed jointly by the Japanese Atomic Energy Research Institute and Shimizu Construction Co., Ltd., the reactor main unit was cut off from the building by continuous core boring, with its major components bound in the block with biological shield material (heavy concrete), and then conveyed and stored in a large waste store building constructed near the reactor building. Major work processes described in this report include the cutting off, lifting, horizontal conveyance and lowering of the reactor main unit. The removal of the JRR-3 reactor main unit was successfully carried out safely and quickly by the en-block removal method with radiation exposure dose of the workers being kept at a minimum. Thus the high performance of the en-bloc removal method was demonstrated and, in addition, valuable knowhow and other data were obtained from the work. (Nogami, K.)

  10. Reactor Materials Research

    International Nuclear Information System (INIS)

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  11. The fusion reactor

    International Nuclear Information System (INIS)

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  12. Polymerization Reactor Engineering.

    Science.gov (United States)

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  13. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  14. Gas-cooled reactors

    International Nuclear Information System (INIS)

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  15. Light water reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  16. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  17. Light water type reactor

    International Nuclear Information System (INIS)

    The nuclear reactor of the present invention prevents disruption of a reactor core even in a case of occurrence of entire AC power loss event, and even if a reactor core disruption should occur, it prevents a rupture of the reactor container due to excess heating. That is, a high pressure water injection system and a low pressure water injection system operated by a diesel engine are disposed in the reactor building in addition to an emergency core cooling system. With such a constitution, even if an entire AC power loss event should occur, water can surely be injected to the reactor thereby enabling to prevent the rupture of the reactor core. Even if it should be ruptured, water can be sprayed to the reactor container by the low pressure water injection system. Further, if each of water injection pumps of the high pressure water injection system and the low pressure water injection system can be driven also by motors in addition to the diesel engine, the pump operation can be conducted more certainly and integrally. (I.S.)

  18. Organizing a Business Russian course in Budapest

    OpenAIRE

    Zykova, Anastasia

    2013-01-01

    This thesis describes organization of a Business Russian course in Hungary. As a base for the course designing event management theory is used. Event management has grown into dynamic industry and discipline, and embraced various aspects of lives. Its theory can be applied to administering of diverse projects. The work is written in a form of a practice-based thesis. The author also uses a "sandwich" model for visual clarity and better readability of the material.

  19. The Budapest initiative for Open Access

    OpenAIRE

    Guédon, Jean-Claude

    2003-01-01

    "Scholarly publication is in a crisis : partially dominated by commercial interests in the form of oligopolies which don't have a great concern for scientists needs, the Republic of Sciences has been transformed into a scientific plutocracy where different forms of elitism and exclusion reign. The cost of scientific journals is by now out of range of the great part of the world and the less rich institutions in rich Countries. There are some palliative efforts like OSI eIFL. But against the ...

  20. Naval propulsion reactors

    International Nuclear Information System (INIS)

    This article deals with the design and exploitation of naval propulsion reactors, mainly of PWR-type. The other existing or conceivable types of reactors are also presented: 1 - specificities of nuclear propulsion (integration in the ship, marine environment, maneuverability, instantaneous availability, conditions of exploitation-isolation, nuclear safety, safety authority); 2 - PWR-type reactor (stable operation, mastered technology, general design, radiation protection); 3 - other reactor types; 4 - compact or integrated loops architecture; 5 - radiation protection; 6 - reactor core; 7 - reactivity control (core lifetime, control means and mechanisms); 8 - core cooling (natural circulation, forced circulation, primary flow-rate program); 9 - primary loop; 10 - pressurizer; 11 - steam generators and water-steam secondary loop; 12 - auxiliary and safety loops; 13 - control instrumentation; 14 - operation; 15 - nuclear wastes and dismantling. (J.S.)

  1. Iris reactor conceptual design

    International Nuclear Information System (INIS)

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  2. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 1014 n/cm2/sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  3. Reactor core monitoring method

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Michitsugu [Tokyo Electric Power Co., Inc. (Japan); Kanemoto, Shigeru; Enomoto, Mitsuhiro; Ebata, Shigeo

    1998-05-06

    The present invention provides a method of monitoring the state of coolant flow in a reactor of a BWR power plant. Namely, a plurality of local power region monitors (LPRM) are disposed to the inside of the reactor core for monitoring a power distribution. Signals of at least two optional LPRM detectors situated at positions different in axial or radial positions of the reactor core are obtained. General fluctuation components which nuclear hydrothermally fluctuate in overall reactor core are removed from the components of the signals. Then, correlational functions between these signals are determined. The state of coolant flow in the reactor is monitored based on the correlational function. When the axial flowing rate and radial flow interference are monitored, the accuracy upon monitoring axial and radial local behaviors of coolants can be improved by thus previously removing the general fluctuation components from signals of LPRM detectors and extracting local void information near to LPRM detectors at high accuracy. (I.S.)

  4. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    This manual covers all the aspects of the science of neutron transport in nuclear reactors and can be used with great advantage by students, engineers or even reactor experts. It is composed of 18 chapters: 1) basis of nuclear physics, 2) the interactions of neutrons with matter, 3) the interactions of electromagnetic radiations and charged-particles with matter, 4) neutron slowing-down, 5) resonant absorption, 6) Doppler effect, 7) neutron thermalization, 8) Boltzmann equation, 9) calculation methods in neutron transport theory, 10) neutron scattering, 11) reactor reactivity, 12) theory of the critical homogenous pile, 13) the neutron reflector, 14) the heterogeneous reactor, 15) the equations of the fuel cycle, 16) neutron counter-reactions, 17) reactor kinetics, and 18) calculation methods in neutron scattering

  5. Mirror reactor surface study

    International Nuclear Information System (INIS)

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  6. FBR type reactor

    International Nuclear Information System (INIS)

    A circular neutron reflector is disposed vertically movably so as to surround the outer circumference of a reactor core barrel. A reflector driving device comprises a driving device main body attracted to the outer wall surface of the reactor barrel by electromagnetic attraction force and an inertia body disposed above the driving device main body vertically movably. A reflector is connected below the reactor driving device. At the initial stage, a spontaneous large current is supplied to upper electromagnetic repulsion coils of the reflector driving device, impact electromagnetic repulsion force is caused between the inertia body and the reflector driving device, so that the driving device main body moves downwardly by a predetermined distance and stopped. The reflector driving device can be lowered in a step-like manner to an appropriate position suitable to restart the reactor during stoppage of the reactor core by conducting spontaneous supply of current repeatedly to the upper electromagnetic repulsion coils. (I.N.)

  7. TRIGA research reactors

    International Nuclear Information System (INIS)

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  8. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  9. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  10. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  11. Multi-purpose reactor

    International Nuclear Information System (INIS)

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MWth, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co60) production capacity is 50000 Ci/yr, 200Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  12. The CAREM reactor and present currents in reactor design

    International Nuclear Information System (INIS)

    INVAP has been working on the CAREM project since 1983. It concerns a very low power reactor for electrical energy generation. The design of the reactor and the basic criteria used were described in 1984. Since then, a series of designs have been presented for reactors which are similar to CAREM regarding the solutions presented to reduce the chance of major nuclear accidents. These designs have been grouped under different names: Advanced Reactors, Second Generation Reactors, Inherently Safe Reactors, or even, Revolutionary Reactors. Every reactor fabrication firm has, at least, one project which can be placed in this category. Presently, there are two main currents of Reactor Design; Evolutionary and Revolutionary. The present work discusses characteristics of these two types of reactors, some revolutionary designs and common criteria to both types. After, these criteria are compared with CAREM reactor design. (Author)

  13. Multipurpose Utilisation of a Medium Flux Research Reactor. Benefit for the Society

    International Nuclear Information System (INIS)

    The Budapest Research Reactor (BRR) was restarted after a major refurbishment and increase in power to 10 MW in 1992. Basically, the experience gained with the utilization of this multipurpose facility during the past 20 years is described here. The utilization aims for 3 major activities: i) Research and development base for the energy sector: scientific and safety support for the Paks NPP; research in energy saving and production. ii) A complex source of irradiations for materials testing and modification, diagnostics in nanotechnologies, engineering, healthcare etc. iii) Neutron beams from the horizontal channels of the reactor serve for exploratory as well as for applied research in a very wide range of disciplines. Graduate and professional training is also in the scope of our activity. The reactor went critical first in 1959. It served nearly 3 decades as a home base for learning nuclear sciences and technologies, to development nuclear energetics, which resulted in launching four power plant blocks in the eighties, as well as to establish neutron beam research in our country. Nearly 20 years passed now that the decision was made - after the falling of the Iron Curtain'' - the practically brand new 10 megawatt reactor should be commissioned and opened for the international user community. The reactor reached its nominal power in May 1993 and neutron beam experiments were available on 4 instruments at that time. Thanks to a continuous development the number of experimental stations now is 15, the research staffs has grown from 10 to nearly 50 scientists and research facilities have been improved considerably. A few important milestones should be mentioned: a liquid hydrogen cold source was installed and the neutron guide system was replaced by a supermirror guide configuration, yielding a factor of 50-80 gain in neutron intensity; a second guide hall was constructed to house a new time-of-flight instrument; BRR became a member of the European neutron

  14. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  15. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  16. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  17. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  18. Fourth Generation Reactor Concepts

    International Nuclear Information System (INIS)

    Concerns over energy resources availability, climate changes and energy supply security suggest an important role for nuclear energy in future energy supplies. So far nuclear energy evolved through three generations and is still evolving into new generation that is now being extensively studied. Nuclear Power Plants are producing 16% of the world's electricity. Today the world is moving towards hydrogen economy. Nuclear technologies can provide energy to dissociate water into oxygen and hydrogen and to production of synthetic fuel from coal gasification. The introduction of breeder reactors would turn nuclear energy from depletable energy supply into an unlimited supply. From the early beginnings of nuclear energy in the 1940s to the present, three generations of nuclear power reactors have been developed: First generation reactors: introduced during the period 1950-1970. Second generation: includes commercial power reactors built during 1970-1990 (PWR, BWR, Candu, Russian RBMK and VVER). Third generation: started being deployed in the 1990s and is composed of Advanced LWR (ALWR), Advanced BWR (ABWR) and Passive AP600 to be deployed in 2010-2030. Future advances of the nuclear technology designs can broaden opportunities for use of nuclear energy. The fourth generation reactors are expected to be deployed by 2030 in time to replace ageing reactors built in the 1970s and 1980s. The new reactors are to be designed with a view of the following objectives: economic competitiveness, enhanced safety, minimal radioactive waste production, proliferation resistance. The Generation IV International Forum (GIF) was established in January 2000 to investigate innovative nuclear energy system concepts. GIF members include Argentina, Brazil, Canada, Euratom, France Japan, South Africa, South Korea, Switzerland, United Kingdom and United States with the IAEA and OECD's NEA as permanent observers. China and Russia are expected to join the GIF initiative. The following six systems

  19. Safety of research reactors

    International Nuclear Information System (INIS)

    The number of research reactors that have been constructed worldwide for civilian applications is about 651. Of the reactors constructed, 284 are currently in operation, 258 are shut down and 109 have been decommissioned. More than half of all operating research reactors worldwide are over thirty years old. During this long period of time national priorities have changed. Facility ageing, if not properly managed, has a natural degrading effect. Many research reactors face concerns with the obsolescence of equipment, lack of experimental programmes, lack of funding for operation and maintenance and loss of expertise through ageing and retirement of the staff. Other reactors of the same vintage maintain effective ageing management programmes, conduct active research programmes, develop and retain high calibre personnel and make important contributions to society. Many countries that operate research reactors neither operate nor plan to operate power reactors. In most of these countries there is a tendency not to create a formal regulatory body. A safety committee, not always independent of the operating organization, may be responsible for regulatory oversight. Even in countries with nuclear power plants, a regulatory regime differing from the one used for the power plants may exist. Concern is therefore focused on one tail of a continuous spectrum of operational performance. The IAEA has been sending missions to review the safety of research reactors in Member States since 1972. Some of the reviews have been conducted pursuant to the IAEA' functions and responsibilities regarding research reactors that are operated within the framework of Project and Supply Agreements between Member States and the IAEA. Other reviews have been conducted upon request. All these reviews are conducted following procedures for Integrated Safety Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety

  20. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  1. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  2. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  3. FBR type reactor

    International Nuclear Information System (INIS)

    The present invention provides an FBR type reactor in which the combustion of reactor core fuels is controlled by reflectors, and the position of a reflector driving device can be controlled even during shut down of the reactor. Namely, the reflector driving device is attracted to the outer wall surface of a reactor core barrel by electromagnetic attraction force. An inertia body is disposed vertically movably to the upper portion of the reflector driving device. Magnetic repulsive coils generate instantaneous magnetic repulsive force between the inertia body and the reflector driving device. With such a constitution, the reflector driving device can be driven by using magnetic repulsion of the electromagnetic repulsive coils and inertia of the inertia body. As a result, not only the reflectors can be elevated at an ultraslow speed during normal reactor operation, but also fine position adjustment for the reflector driving device, as well as fine position adjustment of the reflectors required upon restart of the reactor can be conducted by lowering the reflector driving device during shut down of the reactor. (I.S.)

  4. Reactor water sampling device

    International Nuclear Information System (INIS)

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  5. Test reactor technology

    International Nuclear Information System (INIS)

    The Reactor Development Program created a need for engineering testing of fuels and materials. The Engineering Test Reactors were developed around the world in response to this demand. The design of the test reactors proved to be different from that of power reactors, carrying the fuel elements closer to the threshold of failure, requiring more responsive instrumentation, more rapid control element action, and inherent self-limiting behavior under accident conditions. The design of the experimental facilities to exploit these reactors evolved a new, specialized, branch of engineering, requiring a very high-lvel scientific and engineering team, established a meticulous concern with reliability, the provision for recovery from their own failures, and detailed attention to possible interactions with the test reactors. This paper presents this technology commencing with the Materials Testing Reactor (MTR) through the Fast Flux Test Facility, some of the unique experimental facilities developed to exploit them, but discusses only cursorily the experiments performed, since sample preparation and sample analyses were, and to some extent still are, either classified or proprietary. The Nuclear Engineering literature is filled with this information

  6. Advanced reactor licensing issues

    International Nuclear Information System (INIS)

    In July 1986 the US Nuclear Regulatory Commission issued a Policy Statement on the Regulation of Advanced Nuclear Power Plants. As part of this policy advanced reactor designers were encouraged to interact with NRC early in the design process to obtain feedback regarding licensing requirements for advanced reactors. Accordingly, the staff has been interacting with the Department of Energy (DOE) and its contractors on the review of three advanced reactor conceptual designs: one modular High Temperature Gas-Cooled Reactor (MHTGR) and two Liquid Metal Reactors (LMRs). As a result of these interactions certain safety issues associated with these advanced reactor designs have been identified as key to the licensability of the designs as proposed by DOE. The major issues in this regard are: (1) selection and treatment of accident scenarios; (2) selection of siting source term; (3) performance and reliability of reactor shutdown and decay heat removal systems; (4) need for conventional containment; (5) need for conventional emergency evacuation; (6) role of the operator; (7) treatment of balance of plant; and (8) modular approach. This paper provides a status of the NRC review effort, describes the above issues in more detail and provides the current status and approach to the development of licensing guidance on each

  7. Nuclear reactor power monitor

    International Nuclear Information System (INIS)

    The device of the present invention monitors phenomena occurred in a nuclear reactor more accurately than usual case. that is, the device monitors a reactor power by signals sent from a great number of neutron monitors disposed in the reactor. The device has a means for estimating a phenomenon occurred in the reactor based on the relationship of a difference of signals between each of the great number of neutron monitors to the positions of the neutron monitors disposed in the reactor. The estimation of the phenomena is conducted by, for example, conversion of signals sent from the neutron monitors to a code train. Then, a phenomenon is estimated rapidly by matching the code train described above with a code train contained in a data base. Further. signals sent from the neutron monitors are processed statistically to estimate long term and periodical phenomena. As a result, phenomena occurred in the reactor are monitored more accurately than usual case, thereby enabling to improve reactor safety and operationability. (I.S.)

  8. Reactor Sharing Program

    International Nuclear Information System (INIS)

    Support utilization of the RINSC reactor for student and faculty instructions and research. The Department of Energy award has provided financial assistance during the period 9/29/1995 to 5/31/2001 to support the utilization of the Rhode Island Nuclear Science Center (RINSC) reactor for student and faculty instruction and research by non-reactor owning educational institutions within approximately 300 miles of Narragansett, Rhode Island. Through the reactor sharing program, the RINSC (including the reactor and analytical laboratories) provided reactor services and laboratory space that were not available to the other universities and colleges in the region. As an example of services provided to the users: Counting equipment, laboratory space, pneumatic and in-pool irradiations, demonstrations of sample counting and analysis, reactor tours and lectures. Funding from the Reactor Sharing Program has provided the RINSC to expand student tours and demonstration programs that emphasized our long history of providing these types of services to the universities and colleges in the area. The funding have also helped defray the cost of the technical assistance that the staff has routinely provided to schools, individuals and researchers who have called on the RINSC for resolution of problems relating to nuclear science. The reactor has been featured in a Public Broadcasting System documentary on Pollution in the Arctic and how a University of Rhode Island Professor used Neutron Activation Analysis conducted at the RINSC to discover the sources of the ''Arctic Haze''. The RINSC was also featured by local television on Earth Day for its role in environmental monitoring

  9. Determination of research reactor safety parameters by reactor calculations

    International Nuclear Information System (INIS)

    Main research reactor safety parameters such as power density peaking factors, shutdown margin and temperature reactivity coefficients are treated. Reactor physics explanation of the parameters is given together with their application in safety evaluation performed as part of research reactor operation. Reactor calculations are presented as a method for their determination assuming use of widely available computer codes. (author)

  10. Reactor de plasma

    OpenAIRE

    Erra Serrabasa, Pilar; Molina Mansilla, Ricardo; Beltrán Serra, Eric

    2008-01-01

    Reactor de plasma. Se trata de un reactor de plasma que puede trabajar en un amplio rango de presión, desde el vacío y presiones reducidas hasta la presión atmosférica y presiones superiores. Adicionalmente el reactor de plasma tiene la capacidad de regular otros parámetros importantes y permite su uso para el tratamiento de muestras de tipología muy diversa, como por ejemplo las de tamaño relativamente grande o de superficie rugosa.

  11. Integral nuclear reactor

    International Nuclear Information System (INIS)

    The invention deals with an inprovement of the design of an integral pressurized water nuclear reactor. A typical embodyment of the invention includes a generally cylindrical pressure vessel that is assembled from three segments which are bolted together at transverse joints to form a pressure tight unit that encloses the steam generator and the reactor. The new construction permits primary to secondary coolant heat exchange and improved control rod drive mecanisms which can be exposed for full service access during reactor core refueling, maintenance and inspection

  12. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  13. Licensed operating reactors

    International Nuclear Information System (INIS)

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  14. First Algerian research reactor

    International Nuclear Information System (INIS)

    In 1985, both the Algerian Commissariat of New Energies and the Argentine National Atomic Energy Commission plus the firm INVAP S.E., started a series of mutual visits aimed at defining the mechanisms for cooperation in the nuclear field. Within this framework, a commercial contract was undersigned covering the supply of a low-power reactor (RUN), designed for basic and applied research in the fields of reactor physics and nuclear engineering. The reactor may also be used for performing experiences with neutron beams, for the irradiation of several materials and for the training of technicians, scientists and operators

  15. Course on reactor physics

    International Nuclear Information System (INIS)

    In Germany only few students graduate in nuclear technology, therefore the NPP operating companies are forced to develop their own education and training concepts. AREVA NP has started together with the Technical University of Dresden a one-week course ''reactor physics'' that includes the know-how of the nuclear power plant construction company. The Technical University of Dresden has the training reactor AKR-2 that is retrofitted by modern digital instrumentation and control technology that allows the practical training of reactor control.

  16. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  17. Nuclear reactor theory

    International Nuclear Information System (INIS)

    This textbook is composed of two parts. Part 1 'Elements of Nuclear Reactor Theory' is composed of only elements but the main resource for the lecture of nuclear reactor theory, and should be studied as common knowledge. Much space is therefore devoted to the history of nuclear energy production and to nuclear physics, and the material focuses on the principles of energy production in nuclear reactors. However, considering the heavy workload of students, these subjects are presented concisely, allowing students to read quickly through this textbook. (J.P.N.)

  18. PWR type reactor

    International Nuclear Information System (INIS)

    From a PWR with a primary circuit, consisting of a reactor pressure vessel, a steam generator and a reactor coolant pump, hot coolant is removed by means of an auxiliary system containing h.p. pumps for feeding water into the primary circuit and being connected with a pipe, originating at the upper part, which has got at least one isolating value. This is done by opening an outlet in a part of the auxiliary system that has got a lower pressure than the reactor vessel. Preferably a water jet pump is used for mixing with the water of the auxiliary system. (orig.)

  19. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  20. International tokamak reactor

    International Nuclear Information System (INIS)

    Since 1978, the US, the European Communities, Japan, and the Soviet Union have collaborated on the definition, conceptual design, data base assessment, and analysis of critical technical issues for a tokamak engineering test reactor, called the International Tokamak Reactor (INTOR). During 1985-1986, this activity has been expanded in scope to include evaluation of concept innovations that could significantly improve the tokamak as a commercial reactor. The purposes of this paper are to summarize the present INTOR design concept and to summarize the work on concept innovations

  1. Joyo experimental reactor tour

    International Nuclear Information System (INIS)

    JAEA cooperation in remote monitoring focuses on the Joyo Experimental Reactor at the O'arai Research and Development Center. Joyo performs irradiation of test fuels to support development of the fast reactor cycle in Japan, both in international cooperation and in support of the Monju fast reactor, which is now undergoing reconstruction. The tour included an introduction at the model, a visit to the control room, entry into the containment vessel, and viewing of remote monitoring equipment in the Fresh Fuel Storage and at one of the Spent Fuel Ponds. (author)

  2. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  3. nuclear reactor design calculations

    International Nuclear Information System (INIS)

    In this work , the sensitivity of different reactor calculation methods, and the effect of different assumptions and/or approximation are evaluated . A new concept named error map is developed to determine the relative importance of different factors affecting the accuracy of calculations. To achieve this goal a generalized, multigroup, multi dimension code UAR-DEPLETION is developed to calculate the spatial distribution of neutron flux, effective multiplication factor and the spatial composition of a reactor core for a period of time and for specified reactor operating conditions. The code also investigates the fuel management strategies and policies for the entire fuel cycle to meet the constraints of material and operating limitations

  4. Nuclear reactor internal structures

    International Nuclear Information System (INIS)

    The upper internal structures of the reactor are connected to the closing head so as to be readily removed with the latter and a skirt connected to the lower portion of said upper structures so as to surround the latter, extends under the control rods when they are removed from the reactor core. Through such an arrangement the skirt protects the control rods and supports the vessel closing-head and the core upper structures, whenever the head is severed from the vessel and put beside the latter in order to discharge the reactor

  5. Reactor monitoring system

    International Nuclear Information System (INIS)

    The present invention concerns a device for monitoring the inside of an FBR type reactor which can not be monitored by a usual optical camera. An ultrasonic camera having an excellent propagating property in a liquid metal sodium is scanned, and reflected waves of the ultrasonic waves are received as signals. The signals are processed by using a virtual realistic feeling (VR) technique such as a head mounting type image display (HMD) and a three dimensional pointing device. With such procedures, the inside of the FBR type reactor can be observed with such a realistic feeling that the inside of the FBR type reactor were seen directly. (I.S.)

  6. Research reactor support

    International Nuclear Information System (INIS)

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  7. Study of power reactor dynamics by stochastic reactor oscillator method

    International Nuclear Information System (INIS)

    Stochastic reactor oscillator and cross correlation method were used for determining reactor dynamics characteristics. Experimental equipment, fast reactor oscillator (BOR-1) was activated by random pulses from the GBS-16 generator. Tape recorder AMPEX-SF-300 and data acquisition tool registered reactor response to perturbations having different frequencies. Reactor response and activation signals were cross correlated by digital computer for different positions of stochastic oscillator and ionization chamber

  8. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    An improved nuclear power reactor fuel element is described which consists of fuel rods, rod guide tubes and an end plate. The system allows direct access to an end of each fuel rod for inspection purposes. (U.K.)

  9. Reactor power control device

    International Nuclear Information System (INIS)

    The present invention concerns a method of controlling reactor power to shift it into a partial power operation upon occurrence of recycling pump tripping or loss of generator load. Operation state of a reactor is classified into a plurality of operation states based on values of the reactor core flow rate and the reactor power. Different insertion patterns for selected control rods are determined on every classified operation states. Then, an insertion pattern corresponding to the operation state upon occurrence of recycling pump tripping or loss of power generator load is carried out to shift into partial power operation. The operation is shifted to a load operation solely in the station while avoiding risks such as TPM scram. Then neutron fluxes are suppressed upon transient to increase margin of fuel integrity. Selected control rod pattern of the optimum reactivity is set to each of operation regions, thereby enabling to conduct flexible countermeasure so as to attain optimum operationability. (N.H.)

  10. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  11. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  12. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  13. Reactor parameter simulation system

    International Nuclear Information System (INIS)

    A reactor parameter simulation system (RPSS) has been built with the capability of analyzing any reactor signals, decomposing those signals into their deterministic and stochastic components, then reconstructing new, simulated signals that possess the same statistical and correlation structure as the original plant variables. Important uses of the RPSS are for integration with reactor simulation software to provide tools for plant control strategy development, and for safety-study investigations of scenarios that can arise involving signal faults generated from degraded sensors. A third use of the RPSS is for frequency-domain filtering of reactor process variables contaminated with serially correlated noise, which is important for our ongoing development of expert systems for sensor-operability surveillance. 5 refs., 4 figs., 3 tabs

  14. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  15. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  16. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly construction for liquid metal cooled fast breeder reactors is described in which the sub-assemblies carry a smaller proportion of parasitic material than do conventional sub-assemblies. (U.K.)

  17. Ageing of research reactors

    International Nuclear Information System (INIS)

    Historically, many of the research institutions were centred on a research reactor facility as main technological asset and major source of neutrons for research. Important achievements were made in time in these research institutions for development of nuclear materials technology and nuclear safety for nuclear energy. At present, ageing of nuclear research facilities among these research reactors and ageing of staff are considerable factors of reduction of competence in research centres. The safe way of mitigation of this trend deals with ageing management by so called, for power reactors, Plant Life Management and new investments in staff as investments in research, or in future resources of competence. A programmatic approach of ageing of research reactors in correlation with their actual and future utilisation, will be used as a basis for safety evaluation and future spending. (author)

  18. Experience with Kamini reactor

    International Nuclear Information System (INIS)

    Kamini is a 233U fuelled, 30 kW(th) research reactor. It is one of the best neutron source facility with a core average flux of 1012 n/cm2/s in IGCAR used for neutron radiography of active and nonradioactive objects, activation analysis and radiation physics research. The core consists of nine plate type fuel elements with a total fuel inventory of 590 g of 233U. Two safety control plates made of cadmium are used for start up and shutdown of the reactor. Three beam tubes, two-thimble irradiation site outside reflector and one irradiation site nearer to the core constitute the testing facilities of Kamini. Kamini attained first criticality on 29th October 96 and nominal power of 30 kW in September 1997. This paper covers the design features of the reactor, irradiation facilities and their utilities and operating experience of the reactor. (author)

  19. Dossier: research reactors

    International Nuclear Information System (INIS)

    Research reactors are used at the CEA (the French atomic energy commission) since many years. Their number has been reduced but they remain unique tools that CEA valorize continuously. The results of the programs involving such reactors are of prime importance for the operation of Electricite de France (EdF) park of existing power plants but also for the design of future nuclear power plants and future research reactors. This dossier presents three examples of research reactors in use at the CEA: Osiris and Orphee (CEA-Saclay), devoted to nuclear energy and fundamental research, respectively, and the critical mockups Eole, Minerve and Masurca (CEA-Cadarache) devoted to nuclear data libraries and neutronic calculation. (J.S.)

  20. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  1. Future Reactor Experiments

    CERN Document Server

    He, Miao

    2013-01-01

    The measurement of the neutrino mixing angle $\\theta_{13}$ opens a gateway for the next generation experiments to measure the neutrino mass hierarchy and the leptonic CP-violating phase. Future reactor experiments will focus on mass hierarchy determination and the precision measurement of mixing parameters. Mass hierarchy can be determined from the disappearance of reactor electron antineutrinos based on the interference effect of two separated oscillation modes. Relative and absolute measurement techniques have been explored. A proposed experiment JUNO, with a 20 kton liquid scintillator detector of $3%/$$\\sqrt{E(MeV)}$ energy resolution, $\\sim$ 53 km far from reactors of $\\sim$ 36 GW total thermal power, can reach to a sensitivity of $\\Delta\\chi^{2}>16$ considering the spread of reactor cores and uncertainties of the detector response. Three of mixing parameters are expected to be measured to better than 1% precision. There are multiple detector options for JUNO under investigation. The technical challenges...

  2. Reactor hot spot analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R.B.

    1985-08-01

    The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

  3. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  4. Research Reactor Benchmarks

    International Nuclear Information System (INIS)

    A criticality benchmark experiment performed at the Jozef Stefan Institute TRIGA Mark II research reactor is described. This experiment and its evaluation are given as examples of benchmark experiments at research reactors. For this reason the differences and possible problems compared to other benchmark experiments are particularly emphasized. General guidelines for performing criticality benchmarks in research reactors are given. The criticality benchmark experiment was performed in a normal operating reactor core using commercially available fresh 20% enriched fuel elements containing 12 wt% uranium in uranium-zirconium hydride fuel material. Experimental conditions to minimize experimental errors and to enhance computer modeling accuracy are described. Uncertainties in multiplication factor due to fuel composition and geometry data are analyzed by sensitivity analysis. The simplifications in the benchmark model compared to the actual geometry are evaluated. Sample benchmark calculations with the MCNP and KENO Monte Carlo codes are given

  5. Nuclear reactor (1960)

    International Nuclear Information System (INIS)

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author)

  6. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  7. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  8. Reactor fueling of BWR type reactors

    International Nuclear Information System (INIS)

    Purpose: To enable the pattern exchange for control rods during burning in Control Cell Core type BWR reactors. Constitution: A plurality of control cells are divided into a plurality of groups such that the control cells is aparted from each other by way of at least two fuel assemblies other than the control cells with respect to the vertical and lateral directions of the reactor core cross section, as well as they are in adjacent with control cells of other groups with respect to the orthogonal direction. This enables to perform the pattern exchange for the control rods during burning in the control cell core with ease, and the control blade and the story effect harmful to the mechanical soundness of fuels can thus be suppressed. (Moriyama, K.)

  9. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in fiscal 1974 in Reactor Engineering Division of eight laboratories and computing center are described. Works in the division are closely related with the development of a multi-purpose High-temperature Gas Cooled Reactor, the development of a Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation, and engineering of thermonuclear fusion reactors. They cover nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and aspects of the computing center. (auth.)

  10. Special lecture on nuclear reactor

    International Nuclear Information System (INIS)

    This book gives a special lecture on nuclear reactor, which is divided into two parts. The first part has explanation on nuclear design of nuclear reactor and analysis of core with theories of integral transports, diffusion Nodal, transports Nodal and Monte Carlo skill parallel computer and nuclear calculation and speciality of transmutation reactor. The second part deals with speciality of nuclear reactor and control with nonlinear stabilization of nuclear reactor, nonlinear control of nuclear reactor, neural network and control of nuclear reactor, control theory of observer and analysis method of Adomian.

  11. The replacement research reactor

    International Nuclear Information System (INIS)

    The contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000. This was followed by the completion of the detailed design and an application for a construction licence was made in May 2001. This paper will describe the main elements of the design and their relation to the proposed applications of the reactor. The future stages in the project leading to full operation are also described

  12. OECD Halden reactor project

    International Nuclear Information System (INIS)

    This report summarizes the activities of the OECD Halden Reactor Project for the year 1976. The main items reported on are: a) the process supervision and control which have focused on core monitoring and control, and operator-process communication; b) the fuel performance and safety behavior which have provided data and analytical descriptions of the thermal, mechanical and chemical behavior of fuel under various operating conditions; c) the reactor operations and d) the administration and finance

  13. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  14. Small reactor return

    International Nuclear Information System (INIS)

    Current state of the development of present-day small reactors in different countries is performed. Various designs of low and middle power reactors, among which are CAREM (25 MW, PWR), KLT-40 (40 MW, PWR), MRX (30 MW, PWR), IRIS (50 MW, PWR), SMART (1000 MW, PWR), Modular SBWR (50 MW, BWR), PBMR (120 MW, HTGR), GT-HMR (285 MW, HTGR), are discussed

  15. Reactor lattice transport calculations

    International Nuclear Information System (INIS)

    The present lecture is a continuation of the lecture on Introduction to the Neutron Transport Phenomena. It comprises three aspects of lattice calculations. First the idea of a reactor lattice is introduced. Then the main definitions used in reactor lattice analysis are given, and finally two basic methods applied for solution of the transport equations are defined. Several remarks on secondary results from lattice transport calculations are added. (author)

  16. Thermal or epithermal reactor

    International Nuclear Information System (INIS)

    In a thermal or epithermal heavy-water reactor of the pressure tube design the reactivity is to be increased by different means: replacement of the moderator by additional rods with heavy metal in the core or in the reflector; separation of the moderator (heavy water) from the coolant (light water) by means of shroud tubes. In light-water reactor types neutron losses are to be influenced by using the heavy elements in different configurations. (orig./PW)

  17. Future reactor experiments

    International Nuclear Information System (INIS)

    The non-zero neutrino mixing angle θ13 has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper

  18. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    The description is given of a water cooled nuclear reactor comprising a core, cooling water that rises through the core, vertical guide tubes located inside the core and control rods vertically mobile in the guide tubes. In this reactor the cooling water is divided into a first part introduced at the bottom end of the core and rising through it and a second part introduced at the top end of the guide tubes so as to drop in them

  19. Jet-Stirred Reactors

    OpenAIRE

    Herbinet, Olivier; Guillaume, Dayma

    2013-01-01

    The jet-stirred reactor is a type of ideal continuously stirred-tank reactor which is well suited for gas phase kinetic studies. It is mainly used to study the oxidation and the pyrolysis of hydrocarbon and oxygenated fuels. These studies consist in recording the evolution of the conversion of the reactants and of the mole fractions of reaction products as a function of different parameters such as reaction temperature, residence time, pressure and composition of the inlet gas. Gas chromatogr...

  20. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  1. Future reactor experiments

    Science.gov (United States)

    Wen, Liangjian

    2015-07-01

    The non-zero neutrino mixing angle θ13 has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper.

  2. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  3. AVR reactor physics

    International Nuclear Information System (INIS)

    A process for reactivity control was developed and used for fuelling the AVR reactor core, which is largely based on experimentally determined values. By adding fuel elements with different quantities of heavy metals paired with various experimental requirements, great demands were made of reactivity control. Although only a small range of control was available, this was sufficient to operate the reactor and to shut it down safely in the required power and temperature range. (orig.)

  4. Homogeneous Catalytic Transfer Hydrogenation in Microfluidic Flow System

    Czech Academy of Sciences Publication Activity Database

    Pavlorková, Jana; Křišťál, Jiří; Klusoň, Petr

    Budapest: Budapest University of Technology and Economics, 2014, s. 207-208. ISBN 978-963-05-9518-6. [International Conference on Microreactor Technology IMRET /13./. Budapest (HU), 23.06.2014-25.06.2014] Institutional support: RVO:67985858 Keywords : homogeneous catalysis * transfer hydrogenation * micro structured reactor systems Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  5. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  6. BWR type nuclear reactor

    International Nuclear Information System (INIS)

    Purpose: To simplify the structure of an emergency core cooling system while suppressing the flow out of coolants upon rapture accidents in a coolant recycling device of BWR type reactors. Constitution: Recirculation pumps are located at a position higher than the reactor core in a pressure vessel, and the lower plenum is bisected vertically by a partition plate. Further, a gas-liquid separator is surrounded with a wall and the water level at the outer side of the wall is made higher than the water level in the inside of the wall. In this structure, coolants are introduced from the upper chamber in the lower plenum into the reactor core, and the steams generated in the reactor core are separated in the gas-liquid separator, whereby the separated liquid is introduced as coolants by way of the inner chamber into the lower chamber of the lower plenum and further sent by way of the outer chamber into the reactor core. Consequently, idle rotation of the recycling pumps due to the flow-in of saturated water is prevented and loss of coolants in the reactor core can also be prevented upon raptures in the pipeway and the driving section of the pump connected to the pressure vessel and in the bottom of the pressure vessel. (Horiuchi, T.)

  7. Emergency reactor scram system

    International Nuclear Information System (INIS)

    The present invention provides an emergency reactor scram system capable of shut down a reactor safely upon occurrence of pump trip by improving a passive scram performance for an FBR-type reactor. Namely, a driving motor and an electric generator are connected to a main pump of a primary system. An AC/DC convertor is connected to the electric generator. A shielding plug is disposed to the upper end opening of a reactor container, a control rod drive mechanism is erected on the shielding plug, and an extension pipe is attached to scram magnets of the control rod drive mechanism. The extension pipe is connected to a control rod. The rotation of the shaft of the pump is used as a direct rotator to provide an integrated-type electric generator. The electric generator is electrically connected with the power source of a scram magnet of the emergency scram system. Accordingly, the control rod of the emergency scram system is automatically and rapidly inserted to the reactor core using the power source of the electric generator upon trip of the main pump thereby enabling to scram the reactor safely. (I.S.)

  8. A modular reactor plant

    International Nuclear Information System (INIS)

    This paper describes a new concept in liquid metal reactors that is being developed by General Electric under contract to the Department of Energy. This concept is called the Modular Reactor Plant. While this effort is not expected to have a near-term impact, it is directed toward three principal issues currently affecting nuclear power in the United States. First, plant costs have escalated to the point where the startup of new plants require large electric rate increases. Second, the cost of new plants coming on-line today vary by as much as a factor of three. And, third, nuclear construction times often exceed the utilities prudent planning cycle. This paper describes how General Electric's Modular Reactor Plant addreses these issues through shop fabrication and assembly, rail shipment to the site for rapid installation of nuclear components and inherent reactor protection. In addition, it is expected the modular reactor plant will reduce the current cost of development and demonstration of liquid metal reactors to an affordable level

  9. New fission reactor designs

    International Nuclear Information System (INIS)

    A number of critical challenges to the expanded or continued use of nuclear power have developed. These can be categorized as: regulatory restrictions and complications; negative public attitudes; plant complexity; plant life, operations, and maintenance; uncertain load growth, financing; waste management. Solutions to these challenges through advanced reactor design centre around four key technical responses. Passive safety systems are being introduced which use the laws of physics to provide emergency reactor coding, control and shutdown thus eliminating the possibility of human error. Modular construction promises cuts in costs and construction time by shifting the major part of component manufacture from the site to the factory. Standardization also cuts capital costs and in addition operations and repair costs and expedites reactor licensing. Improvements to the fuel cycle include improved fuel types, designs and fabrication, and the reprocessing of and recycling spent fuel back into energy production, thus extending uranium resources and offering a partial solution to the problem of waste disposal. Examples of evolutionary and advanced water-cooled reactors, modular high temperature gas-cooled reactors, and advanced liquid metal cooled fast breeder reactors which are being developed round the world are presented. (author)

  10. OECD Halden reactor project

    International Nuclear Information System (INIS)

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  11. Reactor power measuring device

    International Nuclear Information System (INIS)

    The device of the present invention efficiently calibrates a fixed type gamma ray thermometer of a reactor power measuring device of a BWR type reactor. Namely, the device of the present invention calculates peripheral fuel rod power distribution by calibrating the reactor power distribution by heat generation amount, the reactor power distribution being obtained by a calculation based on a reactor model for converting the signals of a plurality of the gamma ray thermometers in the reactor core based on a conversion formula. In this case, the conversion formula is a relational formula between the power of a thermocouple of the gamma ray thermometer, gamma ray heat generation amount, thermocouple zero power sensitivity relative to a temperature coefficient. A conversion efficient calculation means makes a calibration heater to generate heat at a predetermined power, and the thermocouple zero power sensitivity and the temperature coefficient are obtained based on the output of the gamma ray thermometer in this case. The calibration means updates to conversion type thermocouple zero power sensitivity and temperature coefficient. A calibration execution means executes the operations described above successively, and when the thermocouple zero power sensitivity and the temperature coefficient are out of an allowable range, the means informs it and eliminates the corresponding gamma ray thermometer from the measuring meters. (I.S.)

  12. Reactor safety engineering

    International Nuclear Information System (INIS)

    The concept of the work is such that the basic safety philosophy for nuclear power plants as well as the safety features of both types of light water reactors, pressurized and boiling water reactors, and of the fast breeder reactor are dealt with. With the pressurized and boiling water reactors also variations, due to different supplies are mentioned. The state of development considered is characterized by the results of the American reactor safety study having very much influenced the way of presentation and the validity of the information contained. In the introduction the attentive reader is made familiar with the basic traits of safety engineering, the traditional deterministic way of proceeding being supplemented by a detailed illustration of probabilistic means used in the safety analysis. Added to this are comparative descriptions of the individual safety features, their design and mode of operation. There are, e.g., detailed discussion of the emergency core cooling systems, the power supply systems, the reactor protection system, and the containment. Special chapters are attributed to transients with and without the fast shutdown system working and to loss of coolant. The so-called external events are treated somewhat shortly whereas much space is given to core melting problems. The treatment of important events from the safety point of view, including the section on Harrisburg added for reasons of immediate interest, is limited to phenomenological description. (orig.)

  13. Computerized reactor protection and safety related systems in nuclear power plants. Proceedings of a specialists' meeting. Working material

    International Nuclear Information System (INIS)

    Though the majority of existing control and protection systems in nuclear power plants use old analogue technology and design philosophy, the use of computers in safety and safety related systems is becoming a current practice. The Specialists Meeting on ''Computerized Reactor Protection and Safety Related Systems in Nuclear Power Plants'' was organized by IAEA (jointly by the Division of Nuclear Power and the Fuel Cycle and the Division of Nuclear Installation Safety), in co-operation with Paks Nuclear Power Plant in Hungary and was held from 27-29 October 1997 in Budapest, Hungary. The meeting focused on computerized safety systems under refurbishment, software reliability issues, licensing experiences and experiences in implemented computerized safety and safety related systems. Within a meeting programme a technical visit to Paks NPP was organized. The objective of the meeting was to provide an international forum for the presentation and discussion on R and D, in-plant experiences in I and C important to safety, backfits and arguments for and reservations against the digital safety systems. The meeting was attended by 70 participants from 16 countries representing NPPs and utility organizations, design/engineering, research and development, and regulatory organizations. In the course of 4 sessions 25 technical presentations were made. The present volume contains the papers presented by national delegates and the conclusions drawn from the final general discussion

  14. Regulations for RA reactor operation

    International Nuclear Information System (INIS)

    Regulations for RA reactor operation are written in accordance with the legal regulations defined by the Law about radiation protection and related legal acts, as well as technical standards according to the IAEA recommendations. The contents of this book include: fundamental data about the reactor; legal regulations for reactor operation; organizational scheme for reactor operation; general and detailed instructions for operation, behaviour in the reactor building, performing experiments; operating rules for operation under steady state and accidental conditions

  15. The reactor Cabri

    International Nuclear Information System (INIS)

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m3/h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  16. REACTOR GROUT THERMAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  17. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  18. Reactor physics and economic aspects of the CANDU reactor system

    International Nuclear Information System (INIS)

    A history of the development of the CANDU system is given along with a fairly detailed description of the 600 MW(e) CANDU reactor. Reactor physics calculation methods are described, as well as comparisons between calculated reactor physics parameters and those measured in research and power reactors. An examination of the economics of CANDU in the Ontario Hydro system and a comparison between fossil fuelled and light water reactors is presented. Some physics, economics and resources aspects are given for both low enriched uranium and thorium-fuelled CANDU reactors. Finally the RβD program in Advanced Fuel Cycles is briefly described

  19. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  20. Fast breeder reactor research

    International Nuclear Information System (INIS)

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  1. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3He, 6Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  2. Reactor coolant cleanup facility

    International Nuclear Information System (INIS)

    A depressurization device is disposed in pipelines upstream of recycling pumps of a reactor coolant cleanup facility to reduce a pressure between the pressurization device and the recycling pump at the downstream, thereby enabling high pressure coolant injection from other systems by way of the recycling pumps. Upon emergency, the recycling pumps of the coolant cleanup facility can be used in common to an emergency reactor core cooling facility and a reactor shutdown facility. Since existent pumps of the emergency reactor core cooling facility and the reactor shutdown facility which are usually in a stand-by state can be removed, operation confirmation test and maintenance for equipments in both of facilities can be saved, so that maintenance and reliability of the plant are improved and burdens on operators can also be mitigated. Moreover, low pressure design can be adopted for a non-regenerative heat exchanger and recycling coolant pumps, which enables to improve the reliability and economical property due to reduction of possibility of leakage. (N.H.)

  3. HTGR type reactor

    International Nuclear Information System (INIS)

    A reactor core is disposed at the center of a reactor container, a reflector is disposed on the outer side thereof, a steam generator is disposed further outer side thereof coaxially, and they are constituted as an integrated one container. A gas circulator and control rod drives are protruded at the outer side of the lower portion of the integrated container. Heat insulators are disposed on the inner side of the container wall in the upper portion of the reactor container. Helium gas risen in the reactor core and heated to a high temperature descends in a circular steam generator and undergoes heat exchange with water, and is then pressurized in the gas circulator after the lowering of the temperature, and returned to the inlet of the reactor core from the lower central portion of the container. With such procedures, the helium gas as primary coolants circulates only in the container to improve confinement. The device can be reduced in the size and the cost. (I.N.)

  4. Reactor container spray device

    International Nuclear Information System (INIS)

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  5. PROTEUS research reactor

    International Nuclear Information System (INIS)

    The PROTEUS zero power reactor at the Paul Scherrer Institute (PSI) in Switzerland achieved first criticality in 1968 and since then has been operated as an experimental tool for reactor physics research on test lattices representative of a wide range of reactor concepts. Reactor design codes and their associated data libraries are validated on the basis of the experimental results obtained. PROTEUS is normally configured as a driven system, in which a subcritical test zone is made critical by the surrounding driver zones. The advantages of driven systems can be summarized as follows: - Smaller amount of test fuel is required; - Large range of test zone conditions (including k∞ < 1 states) can be investigated by changes in the driver loading alone, thus avoiding undesirable perturbations to the test zone which would influence the measurement conditions and thus affect the interpretability of the results; - Necessary reactor control and instrumentation equipment (usually perturbing from the experimental viewpoint) can be located in the outer driver regions, thereby avoiding disturbance of the test lattice

  6. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  7. China experimental fast reactor

    International Nuclear Information System (INIS)

    The Chinese experimental fast reactor (CEFR) is a pool-type sodium-cooled fast reactor whose short term purposes are: -) the validation of computer codes, -) the check of the relevance of standards, and -) the gathering of experimental data on fast reactors. On the long term the expectations will focus on: -) gaining experience in fast reactor operations, -) the testing of nuclear fuels and materials, and -) the study of sodium compounds. The main technical features of CEFR are: -) thermal power output: 65 MW (electrical power output: 20 MW), -) size of the core: height: 45 cm, diameter: 60 cm, -) maximal linear output: 430 W/cm, -) neutron flux: 3.7*1015 n/cm2/s, -) input/output sodium temperature: 360 / 530 Celsius degrees, -) 2 loops for the primary system and 2 loops for the secondary system. The temperature coefficient and the power coefficient are settled to stay negative for any change in the values of the core parameters. The installation of the reactor vessel will be completed by mid 2007. The first criticality of CEFR is expected during the first semester of 2010. (A.C.)

  8. EBT reactor analysis

    International Nuclear Information System (INIS)

    This report summarizes the results of a recent ELMO Bumpy Torus (EBT) reactor study that includes ring and core plasma properties with consistent treatment of coupled ring-core stability criteria and power balance requirements. The principal finding is that constraints imposed by these coupling and other physics and technology considerations permit a broad operating window for reactor design optimization. Within this operating window, physics and engineering systems analysis and cost sensitivity studies indicate that reactors with approx. 6 to 10%, P approx. 1200 to 1700 MW(e), wall loading approx. 1.0 to 2.5 MW/m2, and recirculating power fraction (including ring-sustaining power and all other reactors auxiliaries) approx. 10 to 15% are possible. A number of concept improvements are also proposed that are found to offer the potential for further improvement of the reactor size and parameters. These include, but are not limited to, the use of: (1) supplementary coils or noncircular mirror coils to improve magnetic geometry and reduce size, (2) energetic ion rings to improve ring power requirements, (3) positive potential to enhance confinement and reduce size, and (4) profile control to improve stability and overall fusion power density

  9. Modern research reactors in the world and RA research reactor

    International Nuclear Information System (INIS)

    This paper covers the following topics: fundamentals of research reactors, thermal neutron flux density, classification of research reactors in the world, properties of research reactors of higher power in the world according to IAEA data for 1995, their application, and trend of development, experimental feasibility and status of RA reactor. Trend of research reactors development in the world (after 1980) is directed towards increasing the neutron production quality factor, i.e. ratio between thermal neutron flux density and reactor power, which is achieved by designing compact reactor cores. With the aim of renewal of RA reactor (without analysis of reactor components and staff aging, possibility of restart and commercialization), according to the analysis in this paper, it can be concluded: there is very few reactors under construction in the world, all the important countries in Europe have research reactors; RA reactor is not very interesting for development of reactor physics; nowadays RA reactor is in the group of reactors which are 30-40 years old; its inventories of fuel and heavy water are enough for about 20 years of operation; it has achieved high quality factor of neutron production with low and highly enriched fuel; core transfer from low highly enriched to low enriched fuel should be carefully studies from operation, experimental and economical point of view; it is necessary to use the advantages of RA reactor (minimum investment): volume of the core and reflector which enables availability of neutron flux for the users (numerous experimental loops), fuel in shape of slugs enabling efficient fuel management and flexible neutron flux distribution in the core in the reflector, reactor operation should be directed towards commercial applications. Bibliography of more than 140 relevant papers used is included in this paper

  10. Sodium-cooled nuclear reactors

    International Nuclear Information System (INIS)

    This book first explains the choice of sodium-cooled reactors by outlining the reasons of the choice of fast neutron reactors (fast neutrons instead of thermal neutrons, recycling opportunity for plutonium, full use of natural uranium, nuclear waste optimization, flexibility of fast neutron reactors in nuclear material management, fast neutron reactors as complements of water-cooled reactors), and by outlining the reasons for the choice of sodium as heat-transfer material. Physical, chemical, and neutron properties of sodium are presented. The second part of the book first presents the main design principles for sodium-cooled fast neutron reactors and their core. The third part proposes an historical overview and an assessment of previously operated sodium-cooled fast neutron reactors (French reactors from Rapsodie to Superphenix, other reactors in the world), and an assessment of the main incidents which occurred in these reactors. It also reports the experience and lessons learned from the dismantling of various sodium-cooled fast breeder reactors in the world. The next chapter addresses safety issues (technical and safety aspects related to the use of sodium) and environmental issues (dosimetry, gaseous and liquid releases, solid wastes, and cooling water). Then, various technological aspects of these reactors are addressed: the energy conversion system, main components, sodium chemistry, sodium-related technology, advances in in-service inspection, materials used in reactors and their behaviour, and fuel system. The next chapter addresses the fuel cycle in these reactors: its integrated specific character, report of the French experience in fast neutron reactor fuel processing, description of the transmutation of minor actinides in these reactors. The last chapter proposes an overview of reactors currently projected or under construction in the world, presents the Astrid project, and gives an assessment of the economy of these reactors. A glossary and an index

  11. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  12. Methanation assembly using multiple reactors

    Science.gov (United States)

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  13. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  14. MINT research reactor safety program

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad Idris bin Taib [Division of Special Project, Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia)

    2000-11-01

    Malaysian Institute for Nuclear Technology Research (MINT) Research Reactor Safety Program has been done along with Reactor Power Upgrading Project, Reactor Safety Upgrading Project and Development of Expert System for On-Line Nuclear Process Control Project. From 1993 up to date, Neutronic and Thermal-hydraulics analysis, Probabilistic Safety Assessment as well as installation of New 2 MW Secondary Cooling System were done. Installations of New Reactor Building Ventilation System, Reactor Monitoring System, Updating of Safety Analysis Report and Upgrading Primary Cooling System are in progress. For future activities, Reactor Modeling will be included to add present activities. (author)

  15. RB research reactor Safety Report

    International Nuclear Information System (INIS)

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  16. Fusion reactor materials

    International Nuclear Information System (INIS)

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  17. Chernobyl reactor accident

    International Nuclear Information System (INIS)

    On April 26, 1986, an explosion occurred at the newest of four operating nuclear reactors at the Chernobyl site in the USSR. The accident initiated an international technical exchange of almost unprecedented magnitude; this exchange was climaxed with a meeting at the International Atomic Energy Agency in Vienna during the week of August 25, 1986. The meeting was attended by more than 540 official representatives from 51 countries and 20 international organizations. Information gleaned from that technical exchange is presented in this report. A description of the Chernobyl reactor, which differs significantly from commercial US reactors, is presented, the accident scenario advanced by the Russian delegation is discussed, and observations that have been made concerning fission product release are described

  18. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  19. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  20. Licensed operating reactors

    International Nuclear Information System (INIS)

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  1. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  2. Colliding Beam Fusion Reactors

    Science.gov (United States)

    Rostoker, Norman; Qerushi, Artan; Binderbauer, Michl

    2003-06-01

    The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the Fokker-Planck equation. The reactors involve non-Maxwellian plasmas. The calculations are generic in that they do not relate to specific confinement devices. In all cases except for a Tokamak with D-T fuel the recirculating power was found to exceed the fusion power by a large factor. In this paper we criticize the generality claimed for this calculation. The ratio of circulating power to fusion power is calculated for the Colliding Beam Reactor with fuels D-T, D-He3 and p-B11. The results are respectively, 0.070, 0.141 and 0.493.

  3. The MNSR reactor

    International Nuclear Information System (INIS)

    This tank-in-pool reactor is based on the same design concept as the Canadian Slowpoke. The core is a right circular cylinder, 24 cm diameter by 25 cm long, containing 411 fuel pin positions. The pins are HEU-Aluminium alloy, 0.5 cm in diameter. Critical mass is about 900 g. The reactor has a single cadmium control rod. The back-up shutdown system is the insertion of a cadmium capsule in a core position. Excess reactivity is limited to 3.5mk. In both the MNSR and Slowpoke, the insertion of the maximum excess reactivity results in a power transient limited by the coolant/moderator temperature to safe values, independent of any operator action. This reactor is used primarily in training and neutron activation analysis. Up to 64 elements have been analyzed in a great variety of different disciplines. (author)

  4. Welding and reactor safety

    International Nuclear Information System (INIS)

    The high safety requirements which must be demanded of the quality of the welded joints in reactor technique have so far not been fulfilled in all cases. The errors occuring have caused considerable loss of availability and high material costs. They were not, however, so serious that one need have feared any immediate danger to the personnel or to the environment. The safety devices of reactor plants were only called upon in a few cases and to these they responded perfectly. The intensive efforts to complete and improve the specifications are to contribute to that in future, the reactor plants can be counted even more so as one of the safest technical plants ever. (orig./LH)

  5. Reactor operation experience

    International Nuclear Information System (INIS)

    Since the TRIGA Users Conference in Helsinki 1970 the TRIGA reactor Vienna was in operation without any larger undesired shutdown. The integrated thermal power production by August 15 1972 accumulated to 110 MWd. The TRIGA reactor is manly used for training of students, for scientific courses and research work. Cooperation with industry increased in the last two years either in form of research or in performing training courses. Close cooperation is also maintained with the IAEA, samples are irradiated and courses on various fields are arranged. Maintenance work was performed on the heat exchanger and to replace the shim rod magnet. With the view on the future power upgrading nine fuel elements type 110 have been ordered recently. Experiments, performed currently on the reactor are presented in details

  6. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  7. Reactor accidents in perspective

    International Nuclear Information System (INIS)

    In each of the three major reactor accidents which have led to significant releases to the environment, and discussed in outline in this note, the reactor has been essentially destroyed - certainly Windscale and Chernobyl reactors will never operate and the cleanup operation for Three Mile Island is currently estimated to have cost in excess of US Pound 500 000 000. In each of the accidents there has not been any fatality off site in the short term and any long-term health detriment is unlikely to be seen in comparison with the natural cancer incidence rate. At Chernobyl, early fatalities did occur amongst those concerned with fighting the incident on site and late effects are to be expected. The assumption of a linear non-threshold risk, and hence no level of zero risk is the main problem in communication with the public, and the author calls for simplification of the presentation of the concepts of radiological protection. (U.K.)

  8. Reactor safety equipments

    International Nuclear Information System (INIS)

    Purpose: To positively recover radioactive substances discharged in a dry well at the time of failure of a reactor. Constitution: In addition to the emergency gas treating system fitted to a reactor building, a purification system connected through a pipeline to the dry well is arranged in the reactor building. This purification system is connected through pipes fitted to the dry well to forced circulation device, heat exchanger, and purification device. The atmosphere of high pressure steam gases in the dry well is derived to the heat exchanger for cooling, and then radioactive substances which are contained in the gases are removed by filter sets charged with the HEPA filters and the HECA filters. At last, there gases are returned to dry well by circulation pump, repeat this process. (Kamimura, M.)

  9. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  10. Reactor protection system

    International Nuclear Information System (INIS)

    The report describes the reactor protection system (RPS-II) designed for use on Babcock and Wilcox 145-, later 177-, and 205-fuel assembly pressurized water reactors. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low-pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, a description of the software programmed in the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W

  11. Backfitting swimming pool reactors

    International Nuclear Information System (INIS)

    Calculations based on measurements in a critical assembly, and experiments to disclose fuel element surface temperatures in case of accidents like stopping of primary coolant flow during full power operation, have shown that the power of the swimming pool type research reactor FRG-2 (15 MW, operating since 1967) might be raised to 21 MW within the present rules of science and technology, without major alterations of the pool buildings and the cooling systems. A backfitting program is carried through to adjust the reactor control systems of FRG-2 and FRG-1 (5 MW, housed in the same reactor hall) to the present safety rules and recommendations, to ensure FRG-2 operation at 21 MW for the next decade. (author)

  12. MERCHANT MARINE SHIP REACTOR

    Science.gov (United States)

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  13. Safety systems of heavy water reactors and small power reactors

    International Nuclear Information System (INIS)

    After introductional descriptions of heavy water reactors and natural circulation boiling water reactors the safety philosophy and safety systems like ECCS, residual heat removal, protection systems etc., are described. (RW)

  14. Study of future reactors

    International Nuclear Information System (INIS)

    Today, more than 420 large reactors with a gross output of close to 350 GWe supply 20 percent of world electricity needs, accounting for less than 5 percent of primary energy consumption. These figures are not expected to change in the near future, due to suspended reactor construction in many countries. Nevertheless, world energy needs continue to grow: the planet's population already exceeds five billion and is forecast to reach ten billion by the middle of the next century. Most less developed countries have a very low rate of energy consumption and, even though some savings can be made in industrialized countries, it will become increasingly difficult to satisfy needs using fossil fuels only. Furthermore, there has been no recent breakthrough in the energy landscape. The physical feasibility of the other great hope of nuclear energy, fusion, has yet to be proved; once this has been done, it will be necessary to solve technological problems and to assess economic viability. Although it is more ever necessary to pursue fusion programs, there is little likelihood of industrial applications being achieved in the coming decades. Coal and fission are the only ways to produce massive amounts of energy for the next century. Coal must overcome the pollution problems inherent in its use; fission nuclear power has to gain better public acceptance, which is obviously colored by safety and waste concerns. Most existing reactors were commissioned in the 1970s; reactor lifetime is a parameter that has not been clearly established. It will certainly be possible to refurbish some to extend their operation beyond the initial target of 30 or 40 years. But normal advances in technology and safety requirements will make the operation of the oldest reactors increasingly difficult. It becomes necessary to develop new generations of nuclear reactors, both to replace older ones and to revive plant construction in their countries that are not yet equipped or that have halted their

  15. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  16. Operating US power reactors

    International Nuclear Information System (INIS)

    This update, which appears regularly in each issue of Nuclear Safety, surveys the operations of those power reactors in the US which have been issued operating licenses. Table 1 shows the number of such reactors and their net capacities as of Dec. 31, 1986, the end of the three-month period covered in this report. Table 2 lists the unit capacity and forced outage rate for each licensed reactor for each of the three months (October, November, and December 1986) covered in this report and the cumulative values of these parameters since the beginning of commercial operation. They are defined as follows: In addition to the tabular data, this article discusses significant occurrences and developments that affected licensed US power reactors during this reporting period. It includes, but is not limited to, changes in operating status, regulatory actions and decisions, and legal actions involving the status of power reactors. We do not have space here for routine problems of operation and maintenance, but such information is available at the Nuclear Regulatory Commission (NRC) Public Document Room, 1717 H Street, NW, Washington, DC 20555. Some significant operating events are summarized elsewhere in this section in the article ''Selected Safety-Related Events,'' and a report on activities relating to facilities still in the construction process is given in the article ''Status of Power-Reactor Projects Undergoing Licensing Review'' in the last section of each issue of this journal. The reader's attention is also called to the regular feature ''General Administrative Activities,'' which deals with more general aspects of regulatory and legal matters that are not covered elsewhere in the journal

  17. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  18. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  19. Experimental reactor physics

    International Nuclear Information System (INIS)

    Neutronic experiments in moderators, subcritical assemblies, critical assemblies, and nuclear reactors are described, as well as the techniques of radiation measurements necessary to perform these experiments. Previously dispersed data from government reports, journal articles, and specialized monographs are codified. Original information drawn from the author's experience is included, especially on the pulsed source technique, spectrum measurements, research reactors, and exponential assemblies. The book provides the essential information for carrying out, analyzing, and understanding the experiments. Theory is kept to a minimum. Emphasis is placed on the physics of the situation, and the importance of estimating error as well as the mean value of a measured quantity

  20. Diagnostics for hybrid reactors

    International Nuclear Information System (INIS)

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  1. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  2. Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Mr. Baron says the administration's effort to terminate the Clinch River Breeder Reactor (CRBR) project is symptomatic; they have also placed restrictions on fusion, coal, solar, and other areas of energy development in which technological advances are held back in order to force conservation. Because the breeder reactor, unlike solar and fusion energy, is both economically and technically feasible, a demonstration plant is needed. The contentions that the CRBR design is obsolete, that its proposed size is inappropriate, or that plutonium can be diverted for weapons proliferation are argued to be invalid. Failure to complete the CRBR will have both economic and national security repercussions

  3. Netherlands Interuniversity Reactor Institut

    International Nuclear Information System (INIS)

    This is the annual report of the Interuniversity Reactor Institute in the Netherlands for the Academic Year 1977-78. Activities of the general committee, the daily committee and the scientific advice board are presented. Detailed reports of the scientific studies performed are given under five subjects - radiation physics, reactor physics, radiation chemistry, radiochemistry and radiation hygiene and dosimetry. Summarised reports of the various industrial groups are also presented. Training and education, publications and reports, courses, visits and cooperation with other institutes in the area of scientific research are mentioned. (C.F.)

  4. Reactor Materials Research

    International Nuclear Information System (INIS)

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  5. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  6. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  7. Decay of reactor neutrinos

    OpenAIRE

    Vogel, P.

    1984-01-01

    We consider the decay of massive neutrinos which couple to electrons and are, therefore, produced in nuclear reactors. Lifetime limits for the γ and electron-positron decay modes of these neutrinos are deduced from the experimental limit on the singles count rate in the detector used to study neutrino oscillations at the Gösgen reactor. The dominantly coupled neutrinos are light, and their invariant-lifetime limit tc.m. / mν is 1-3 sec/eV. The subdominantly coupled heavy neutrinos with mass 1...

  8. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  9. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  10. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    A nuclear reactor construction comprising a reactor core submerged in a pool of liquid metal coolant in a primary vessel which is suspended from the roof structure of a containment vault. Control rods supported from the roof structure are insertable in the core which is carried on a support structure from the wall of the primary vessel. To prevent excessive relaxation of the support structure whereby the control rods would be displaced relative to the core, the support structure incorporates a normally inactive secondary structure designed to become effective in bracing the primary structure against further relaxation beyond a predetermined limit. (author)

  11. Reactor PIK construction

    International Nuclear Information System (INIS)

    The construction work at the 100 MW researches reactor PIK in year 2002 was in progress. The main activity was concentrated on mechanical, ventilation and electrical equipment. Some systems and subsystems are under adjustment. Hydraulic driving gear for beam shutters are finished in installation, rinsing, and adjusting. Regulating rods test assembling was done. On the critical assembly the first reactor fueling was tested to evaluate the starting neutron source intensity and a sufficiency of existing control and instrument board. Mainline of the PIK facility design and neutron parameters are presented. (author)

  12. Reactor pressure vessel materials

    International Nuclear Information System (INIS)

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 3 offers a detailed treatment of the selection criteria and properties of reactor pressure vessel materials. The main attention is directed towards steel and ingot making and the subsequent material processing

  13. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  14. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  15. Space-time reactor kinetics for heterogeneous reactor structure

    International Nuclear Information System (INIS)

    An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods

  16. Utilization of research and training reactors in the study program of students at Slovak University of Technology

    International Nuclear Information System (INIS)

    technologies, but also to travel to perform practical exercises at foreign training or experimental reactors as: TRIGA II Reactor in Atomic Institute of the Austrian Universities, Vienna, Austria (3 practical exercises per study for about 10 students yearly since 1990); School Reactor of the Technical University of Budapest, Hungary (one week per study, about 10 students yearly since 1983); Training Reactor of the CVUT, Prague, Czech Republic (3 days per study, about 10 students yearly since 1998); Experimental reactor ASTRA in Austrian Research Center Seibersdorf (1999-2000) A 4 weeks' IAEA Regional Training Course 'Safety management and utilisation of research reactors' on Safety, Management and Utilization of Research Reactors was held in Bratislava (Slovakia) and Vienna (Austria) during March 05-30th 2001. IAEA in co-operation with the Department of Nuclear Physics and Technology of the Slovak University of Technology and the Atominstitut of Austrian Universities Vienna prepared and realized this training course with the aim to train junior staff from research reactors in various aspects of safety, management and utilization of research reactors. All participants had to have at least 4 years experiences in operation, management, utilization or regulation of research reactors. Lectures covered the topics in nuclear design and operation, neutron physics, reactor physics, health physics, dosimetry, reactor instrumentation, fuel management decontamination procedures, preparation of experiments at research reactors and others. Beside theoretical part of the course, the practical exercises at TRIGA II reactor in Vienna constituted an important part of training. ENEN - European Nuclear Education Network: Feasibility Study for Central-European Region. In frame of this project, prepared for the Central-European region, students participating in nuclear engineering education will visit participating institute to carry out laboratory practices and student as well as diploma work. We

  17. Risk prevention during reactor shutdown

    International Nuclear Information System (INIS)

    During reactor shutdown potential risks are issued of a number of maintenance operations. In this text we analyse these operations and give the modifications of technical specifications to ameliorate the reactor safety. 4 figs

  18. New fast-reactor approach

    International Nuclear Information System (INIS)

    The design parameters for a 1000 MW LMFBR type reactor are presented. The design requires the multiple primary coolant pumps and heat exchangers to be located around the core within the reactor vessel

  19. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  20. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  1. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  2. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  3. The IR-8 reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Ryazantsev, E.P.; Egorenkov, P.M.; Yashin, A.F. [Reactor Technology and Materials Research Inst. of RRC ' KI' , Moscow (Russian Federation)

    1997-07-01

    At the Russian Research Center 'Kurchatov Institute' (RRC 'KI') the IR-8 reactor commissioning was carried out in 1981. The reactor was developed in return for earlier existing at RRC 'KI' of the IRT-M reactor (modernized IRT reactor, constructed in 1957). The IRT-M reactor was used for investigations in nuclear physics, solid state physics, radiation chemistry, biology as well as to produce isotopes. Under developing the IR-8 reactor the IRT biological shielding with beam tubes and its process systems were used. The IR-8 reactor creation was founded on application developed by then new fuel assemblies (FA) of IRT-3M type, having two times as great surface of heat transfer and 1.75 times higher U-235 load than the FA of the IRT-2M type, which were used in IRT-M reactor. (author)

  4. Power calibrations for TRIGA reactors

    International Nuclear Information System (INIS)

    The purpose of this paper is to establish a framework for the calorimetric power calibration of TRIGA reactors so that reliable results can be obtained with a precision better than ± 5%. Careful application of the same procedures has produced power calibration results that have been reproducible to ± 1.5%. The procedures are equally applicable to the Mark I, Mark II and Mark III reactors as well as to reactors having much larger reactor tanks and to TRIGA reactors capable of forced cooling up to 3 MW in some cases and 15 MW in another case. In the case of forced cooled TRIGA reactors, the calorimetric power calibration is applicable in the natural convection mode for these reactors using exactly the same procedures as are discussed below for the smaller TRIGA reactors (< 2 MW)

  5. Secondary charged particle activation method for measuring the tritium production rate in the breeding blankets of a fusion reactor

    International Nuclear Information System (INIS)

    In this work, a new passive technique has been developed for measuring the tritium production rate in ITER (International Thermonuclear Experimental Reactor) test blanket modules. This method is based on the secondary charged particle activation, in which the irradiated sample contains two main components: a tritium producing target (6Li or 7Li) and an indicator nuclide, which has a relatively high cross-section for an incoming tritium particle (triton). During the neutron irradiation, the target produces a triton, which has sufficiently high energy to cause the so-called secondary charged particle activation on an indicator nuclide. If the product of this reaction is a radioactive nuclide, its activity must be proportional to the amount of generated tritium. A comprehensive set of irradiations were performed at the Training Reactor of the Budapest University of Technology and Economics. The following charged particle reactions were observed and investigated: 27Al(t,p)29Al; 26Mg(t,p)28Mg; 26Mg(t,n)28Al; 32S(t,n)34mCl; 16O(t,n)18F; and 18O(t,α)17N. The optimal atomic ratio of the indicator elements and 6Li was also investigated. The reaction rates were estimated using calculations with the MCNPX Monte Carlo particle transport code. The trend of the measured and the simulated data are in good agreement, although accurate data for triton induced reaction cross-sections cannot be found in the literature. Once the technique is calibrated with a reference LSC (Liquid Scintillation Counting) measurement, a new passive method becomes available for tritium production rate measurements.

  6. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  7. Reactor safety in Eastern Europe

    International Nuclear Information System (INIS)

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. All papers are indexed separately in report GRS--117. (HP)

  8. VVER and RBMK reactors

    International Nuclear Information System (INIS)

    The safety of VVER and RBMK reactors has been discussed a lot after Chernobyl accident. Some improvements have been performed since that especially in RBMK-reactors and extensive programmes for backfitting have been planned and are partly underway. There are two different sizes of VVER reactors, 440 MW and 1000 MW. The design bases and designs itself vary inside the family of two size classes depending on the age of the plant. The oldest VVER-440 is called model 230 and the newest model 213. The oldest VVER-1000 units (two units) are prototypes that have some unique, nonfavorable features. The next stage of VVER-1000 developement (three units) is model V-302 and the remaining 15 plants in operation are model V-320, but even within this latest model there are some differences. The design bases and designs vary also inside the family of the RBMK reactors exactly the same way as in VVERs. The most important design bases of nuclear power plants designed in the former Soviet Union is presented in this paper. Also some safety advantages and disadvantages of these NPPs are discussed. (au). (5 figs.)

  9. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  10. Studies on reactor physics

    International Nuclear Information System (INIS)

    Most of the peaceful applications of atomic energy are inherently dependent on advances in the science and technology of nuclear reactors, and aspects of this development are part of a major programme of the International Atomic Energy Agency. The most useful role that the Agency can play is as a co-ordinating body or central forum where the trends can be reviewed and the results assessed. Some of the basic studies are carried out by members of the Agency's own scientific staff. The Agency also convenes groups of experts from different countries to examine a particular problem in detail and make any necessary recommendations. Some of the important subjects are discussed at international scientific meetings held by the Agency. One of the subjects covered by such studies is the physics of nuclear reactors and a specific topic recently discussed was Codes for Reactor Computations, on which a seminar was held in Vienna in April this year. Another The members of the Panel described the development of heavy water reactors, the equipment and methods of research currently used, and plans for further development in their respective countries meeting of Panel of Experts on Heavy Water Lattices was held in Vienna in August 1959

  11. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude

  12. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  13. Thermal Reactor Safety

    International Nuclear Information System (INIS)

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods

  14. Nuclear reactor container

    International Nuclear Information System (INIS)

    In a container of a BWR type reactor, spray water is stored in a pedestal cavity. A perforated hole is formed on the side wall of the pedestal, and a stirrer is disposed in the pedestal cavity to stir the stored spray water. During reactor operation, the door on the side wall of the pedestal is closed to prevent discharge of fission products to the dry well when a severe accident should occur. During periodical inspection for the plant, the door is opened to enable an operator to access to the inside of the pedestal. When a molten reactor core should drop to the pedestal cavity, fission products generated from the failed reactor core left in a pressure vessel pass through the spray water in the pedestal cavity. Then, most of the fission products are held in the spray water by a scrubbing effect when they pass through the spray water. In addition, the stored spray water is stirred by the stirrer to enhance the scrubbing effect thereby enabling to further decrease the amount of the fission products discharged to the dry well. (N.H.)

  15. ICF tritium production reactor

    International Nuclear Information System (INIS)

    The conceptual design of an ICF tritium production reactor is described. The chamber design uses a beryllium multiplier and a liquid lithium breeder to achieve a tritium breeding ratio of 2.08. The annual net tritium production of this 532 MW/sub t/ plant is 16.9 kg, and the estimated cost of tritium is $8100/g

  16. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  17. Nuclear reactor building

    Science.gov (United States)

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  18. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    A method of constructing a radiation shielding plug for use in the roof of the coolant containment vault of liquid metal cooled fast breeder reactors is described. The construction allows relative movement of that part of service cables and pipes which are carried by the fixed roof and that part which is carried by the rotatable plug. (U.K.)

  19. Fast reactor programme

    International Nuclear Information System (INIS)

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  20. Fusion reactor materials

    International Nuclear Information System (INIS)

    At the Belgian Nuclear Research Centre SCK-CEN, activities related to fusion focus on environmental tolerance of opto-electronic components. The objective of this program is to contribute to the knowledge on the behaviour, during and after neutron irradiation, of fusion-reactor materials and components. The main scientific activities for 1997 are summarized

  1. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  2. Cermet fuel reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  3. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  4. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  5. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  6. SRP reactor safety evolution

    International Nuclear Information System (INIS)

    The Savannah River Plant reactors have operated for over 100 reactor years without an incident of significant consequence to on or off-site personnel. The reactor safety posture incorporates a conservative, failure-tolerant design; extensive administrative controls carried out through detailed operating and emergency written procedures; and multiple engineered safety systems backed by comprehensive safety analyses, adapting through the years as operating experience, changes in reactor operational modes, equipment modernization, and experience in the nuclear power industry suggested. Independent technical reviews and audits as well as a strong organizational structure also contribute to the defense-in-depth safety posture. A complete review of safety history would discuss all of the above contributors and the interplay of roles. This report, however, is limited to evolution of the engineered safety features and some of the supporting analyses. The discussion of safety history is divided into finite periods of operating history for preservation of historical perspective and ease of understanding by the reader. Programs in progress are also included. The accident at Three Mile Island was assessed for its safety implications to SRP operation. Resulting recommendations and their current status are discussed separately at the end of the report. 16 refs., 3 figs

  7. Fusion reactor materials

    International Nuclear Information System (INIS)

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  8. Department of reactor technology

    International Nuclear Information System (INIS)

    The activities of the Department of Reactor Technology at Risoe during 1980 are described. The work is presented in three chapters: General Information on the Department, Summary of the Department's Development during 1980, and Activities of the Department. Lists of staff, publications, computer programs, and test facilities are included. (author)

  9. The AP1000 reactor

    International Nuclear Information System (INIS)

    The design of the AP1000 reactor began 20 years ago when Westinghouse launched the AP600 reactor project. In fact by re-assessing AP600's safety margins Westinghouse realized that the its power output could be raised without putting at risk its safety standard. The AP1000 was born, it yields 1100 MWe. The main AP1000's design features is its passive safety (particularly after the Fukushima accident) and its modularity. The passive safety of the AP1000 implies: -) no humane intervention needed for 72 hours at least after the incident; -) no necessity for redundant complex safety systems. The modularity means that the plant, the reactor and other buildings are constructed from a choice of 300 modular units. These units can be built off-site and fit together on site. The modularity allows more construction activities to be led simultaneously and more chances to cope with the construction schedule. The NRC has approved the operation license for 30 years of the first AP1000 being built in the Usa (Vogtle plant in Georgia). 4 AP1000 are being built in China (Sanmen and Haiyang sites) and 6 others are planned in the Usa. Westinghouse is convinced that the AP1000's passive safety makes it more attractive. Let us not forget that Westinghouse was at the origin of the concept of pressurized water reactors, an idea adopted for half the nuclear power stations in the world and for all the plants now active in France. (A.C.)

  10. Fast reactor programme

    International Nuclear Information System (INIS)

    This progress report summarises the fast reactor research carried out at the Netherlands Energy Research Centre during the year 1981. The neutron and fission product cross sections of various isotopes have been evaluated. In the fuel performance programme, some preliminary results are given and irradiation facilities described. Creep experiments on various stainless steel components are reported

  11. Pressure tube type reactor

    International Nuclear Information System (INIS)

    Heretofore, a pressure tube type reactor has a problem in that the evaluation for the reactor core performance is complicate and no sufficient consideration is made for the economical property, to increase the size of a calandria tank and make the cost expensive. Then, in the present invention, the inner diameter of a pressure tube is set to greater than 50% of the lattice gap in a square lattice like arrangement, and the difference between the inner and the outer diameters of the calandria tube is set smaller than 20% of the lattice gap. Further, the inner diameter of the pressure tube is set to greater than 40% and the difference between the inner and the outer diameters of the calandria tube is set smaller than 30% of the lattice gap in a triangle lattice arrangement. Then, heavy water-to-fuel volume ratio can be determined appropriately and the value for the coolant void coefficient is made more negative side, to improve the self controllability inherent to the reactor. In particular, when 72 to 90 fuel rods are arranged per one pressure tube, the power density per one fuel rod is can be increased by about twice. Accordingly, the number of the pressure tubes can be reduced about to one-half, thereby enabling to remarkably decrease the diameter of the reactor core and to reduce the size of the calandria, which is economical. (N.H.)

  12. TRIGA reactor characteristics

    International Nuclear Information System (INIS)

    The general design, characteristics and parameters of TRIGA reactors and fuel are described. This is a training module with the learning objectives: to understand the basics of the physics and mechanical design of the TRIGA fuel as well as its unique operational characteristics and realize the differences between TRIGA fuels and other more traditional. 10 figs., 6 tabs. (nevyjel)

  13. SNAP Nuclear Space Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R

    1966-01-01

    This booklet describes the principles of nuclear-reactor space power plants and shows how they will contribute to the exploration and use of space. It compares them with chemical fuels, solar cells, and systems using energy from radioisotopes. The SNAP (Systems for Nuclear Auxiliary Power) Program, begun in 1955, is described.

  14. Fast breeder reactor

    International Nuclear Information System (INIS)

    This paper outlined the present status of FBR development in six countries and reviewed Japanese activities on FBR development. Joyo experimental FBR has accumulated a lot of technical data including irradiation tests of advanced fuels and was now long shut down due to the partial obstruction of rotating plug movement. Monju prototype FBR reactor experienced a sodium leakage in its secondary heat transfer system during performance tests in December 1995 and had been shut down until May 2010. Feasibility study on commercialized FBR cycle system ended in March 2006 and proposed the concept of commercialized FBR cycle technologies. In order to plan a demonstration reactor, research and development of innovative technologies are conducted as the FaCT (Fast Reactor Cycle Technology Development) Project. In connection with the results of this research and development, a 5-party council of Japan was established to discuss processes of demonstration and commercialization of FBR cycle systems in Japan. Joint efforts were made for a demonstration reactor to be committed in 2015, in addition to start operation around 2025 aiming at the commercialization of FBR before 2050. (T. Tanaka)

  15. The Chernobyl reactor accident

    International Nuclear Information System (INIS)

    The documentation abstracted contains a complete survey of the broadcasts transmitted by the Russian wire service of the Deutsche Welle radio station between April 28 and Mai 15, 1986 on the occasion of the Chernobyl reactor accident. Access is given to extracts of the remarkable eastern and western echoes on the broadcasts of the Deutsche Welle. (HP)

  16. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. The concept evolved in the 1960's with the objective of developing a reactor design which could be used for a wide range of mobile power generation systems including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests and in-reactor irradiation tests using cermet fuel were carried out by General Electric in the 1960's as part of the 710 Development Program and by Argonne National laboratory in a subsequent activity. Cermet fuel development programs are currently underway at Argonne National laboratory and Pacific Northwest Laboratory as part of the Multi-Megawatt Space Power Program. Key features of the cermet fueled reactor design are 1) the ability to achieve very high coolant exit temperatures, and 2) thermal shock resistance during rapid power changes, and 3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, there is a potential for achieving a long operating life because of 1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and 2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core

  17. Reactor power measuring device

    International Nuclear Information System (INIS)

    The device of the present invention comprises a γ-thermometer disposed in a BWR type reactor, a first amplifier for amplifying the output thereof, a fission ionization chamber disposed in the reactor separately from the γ-thermometer, a second amplifier for amplifying the output thereof, a differential circuit for differentiating the output signal of the second amplifier and a first adding circuit for adding an output signal of the differential circuit and an output signal of the first amplifier. Alternatively, a γ-ray self-powered neutron detector may be disposed instead of the fission ionization chamber. A second adding circuit is also disposed for adding the output signals of plurality of differentiation circuits and inputting the result to the first adding circuit. A sensitivity controller is disposed upstream of the first adder for controlling the sensitivity of the fission ionization chamber. Then, even if time delay should be caused in the γ-thermometer, output signals with good time response characteristic can be obtained by using signals of LPRM or SPND, and currently changing output of the reactor can be measured accurately to provide an effect on the improvement of the safety and operation controllability of the reactor. (N.H.)

  18. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  19. Reactor physics problems on HCPWR

    International Nuclear Information System (INIS)

    Reactor physics problems on high conversion pressurized water reactors (HCPWRs) are discussed. Described in this report are outline of the HCPWR, expected accuracy for the various reactor physical qualities, and method for K-effective calculation in the resonance energy area. And requested further research problems are shown. The target value of the conversion ratio are also discussed. (author)

  20. Nuclear reactor with control rods

    International Nuclear Information System (INIS)

    The invention relates to liquid cooled nuclear reactors. In particular, it concerns reactors with mobile control rods in a straight line and guide tubes to guide these control rods through the internal upper components of the reactor vessel and in the aligned fuel assemblies of the core

  1. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis

  2. Reactor regulating and protection system for a light water reactor

    International Nuclear Information System (INIS)

    Microprocessor based systems are developed for reactor regulation and protection of LWR. A triple modular redundancy approach is followed for the design of this system. This system is functionally partitioned into two sub-systems - Reactor Regulating System (RRS) and Reactor Trip Logic System (RTLS). RRS controls the reactor power as per demand and RTLS generates the reactor trip on abnormal process conditions. This paper describes the details of RRS and RTLS system architecture and fault tolerant and fail-safe features used in the system design. (author)

  3. The reactor Pegase

    International Nuclear Information System (INIS)

    The reactor Pegase is designed for testing fuel elements for gas-cooled power reactors. Experience has shown that the classical multi-purpose test reactors are not well adapted to these tests. On another side, the introduction of these test elements into the existing power reactors involves numerous problems, which limits their interest. Pegase, which is designed to satisfy these experimental needs, is composed of a parallelepipedal core of enriched Uranium, moderated and cooled by pressurized water. This core is used as a neutron source for eight autonomous loops, containing the elements to be tested, and situated around the core. The core and the eight loops are immersed in a irradiation pool. The loops are placed on the bottom of the pool so, it is possible to move a loop away from the core, or to remove it from the pool without interfering with the operation of the other loops. The irradiation conditions are adjusted, making the synthesis of the following development works. - Experimental studies on Peggy, a zero power critical facility, mock up of Pegase in operation since 1961: measurements of neutron flux level, radial and axial fly distributions on the experiments. Effect of burnable poisons and of movements of the control rods; adjustment of devices (reflectors, screens etc..) needed for optimum performances. - Experimental work on two prototype autonomous loops, heated electrically to the nominal operating power (in operation since 1961): development of the thermodynamic measurements, thermal balances parameters for control of the operating conditions, natural convection. - Studies on Pegase operating under power; thermodynamic measurements on the core circuits on the independent loop circuits; neutronic measurements, etc... The reactor Pegase went critical on the 4. of April 1963 and reached the nominal power of 30 MW on the 28. of May 1963. (authors)

  4. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  5. Reactor physics activities in Japan

    International Nuclear Information System (INIS)

    This report reviews the research activity in reactor physics field in Japan during July, 1992 - July, 1993. The review was performed in the following fields : nuclear data evaluation, calculational method development, fast reactor physics, thermal reactor physics, advanced core design, fusion reactor neutronics, nuclear criticality safety, shielding, incineration of radioactive nuclear wastes, noise analysis and control and national programs. The main references were taken from journals and reports published during this period. The research committee of reactor physics is responsible for the review work. (author)

  6. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  7. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    This report summarizes main research achievements in the 48th fiscal year which were made by Reactor Engineering Division consisted of eight laboratories and Computing Center. The major research and development projects, with which the research programmes in the Division are associated, are development of High Temperature Gas Cooled Reactor for multi-purpose use, development of Liquid Metal Fast Breeder Reactor conducted by Power Reactor and Nuclear Fuel Development Corporation, and Engineering Research Programme for Thermonuclear Fusion Reactor. Many achievements are reported in various research items such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of Computing Center. (auth.)

  8. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  9. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIMtm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  10. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  11. Feasible reactor power cutback logic development for an integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Han, Soon-Kyoo [KHNP Co., Ltd., Uljin-gun, Gyeong-buk (Korea, Republic of); Lee, Chung-Chan; Choi, Suhn; Kang, Han-Ok [Korea Atomic Energy Research Institute (KAERI), Daedeokdaero, Yuseong, Daejeon (Korea, Republic of)

    2013-07-15

    Major features of integral reactors that have been developed around the world recently are simplified operating systems and passive safety systems. Even though highly simplified control system and very reliable components are utilized in the integral reactor, the possibility of major component malfunction cannot be ruled out. So, feasible reactor power cutback logic is required to cope with the malfunction of components without inducing reactor trip. Simplified reactor power cutback logic has been developed on the basis of the real component data and operational parameters of plant in this study. Due to the relatively high rod worth of the integral reactor the control rod assembly drop method which had been adapted for large nuclear power plants was not desirable for reactor power cutback of the integral reactor. Instead another method, the control rod assembly control logic of reactor regulating system controls the control rod assembly movements, was chosen as an alternative. Sensitivity analyses and feasibility evaluations were performed for the selected method by varying the control rod assembly driving speed. In the results, sensitivity study showed that the performance goal of reactor power cutback system could be achieved with the limited range of control rod assembly driving speed. (orig.)

  12. Feasible reactor power cutback logic development for an integral reactor

    International Nuclear Information System (INIS)

    Major features of integral reactors that have been developed around the world recently are simplified operating systems and passive safety systems. Even though highly simplified control system and very reliable components are utilized in the integral reactor, the possibility of major component malfunction cannot be ruled out. So, feasible reactor power cutback logic is required to cope with the malfunction of components without inducing reactor trip. Simplified reactor power cutback logic has been developed on the basis of the real component data and operational parameters of plant in this study. Due to the relatively high rod worth of the integral reactor the control rod assembly drop method which had been adapted for large nuclear power plants was not desirable for reactor power cutback of the integral reactor. Instead another method, the control rod assembly control logic of reactor regulating system controls the control rod assembly movements, was chosen as an alternative. Sensitivity analyses and feasibility evaluations were performed for the selected method by varying the control rod assembly driving speed. In the results, sensitivity study showed that the performance goal of reactor power cutback system could be achieved with the limited range of control rod assembly driving speed. (orig.)

  13. Elk River Reactor dismantling

    International Nuclear Information System (INIS)

    The dismantling program was carried out in three overlapping phases: the planning phase which included the preliminary planning and selection of the dismantling approach, the dismantling phase which included all work performed to remove the reactor facility and restore the site to its pre-reactor condition, and the closeout phase which included the final site survey and efforts necessary to terminate the AEC license and contract. Of particular interest was the use of a remotely operated plasma cutting torch to section the pressure vessel internals, the pressure vessel and the outer thermal shield, the use of explosives in removal of the biological shield and the method of establishment of the criteria for material disposal

  14. Selecting reactor operator trainees

    International Nuclear Information System (INIS)

    Reactor operator trainee selection tends to be more effective if tailored to a utility's unique needs, and offers the organization a better chance for compliance with Federal regulations than if selection methods are adopted without benefit of local research. The costs of operator training range from $50,000 to $100,000. The test validity relative to a variety of training grades and performance measures is reviewed. Of interest is the degree to which tests differentiate reactor operators with respect to simulator training grades and performance in simulator operation; forms of evaluation which have become fairly standard throughout the power industry. The tests administered to each individual were selected because of their presumed relevance to training grades, and the aptitude measures are intended to assess an individual's potential to benefit from training. Tests, availability, form, the abilities they measure, and the time limit are described. (MCW)

  15. Embattled breeder reactor

    International Nuclear Information System (INIS)

    A commercial fuel-cloning machine, a nuclear breeder reactor, is yet to produce electricity in the United States. It is expensive in capital and fuel costs, its fuel that must be reprocessed can become a link to nuclear weapons manufacture, and its safety is no greater than conventional nuclear reactors. The breeder has had on-again/off-again administrative support from Washington. Opponents worry about escalating costs and failure to develop alternatives like solar energy. Proponents say fossil-fuel depletion will eventually force long-term renewable resources such as the breeder anyway. Some who share parts of both views oppose present policy regarding the Clinch River Breeder demonstration plant specifically. The correct choices on breeder concept development and commercialization will be known in 2050. 3 figures

  16. Robot for reactor dismantling

    International Nuclear Information System (INIS)

    Purpose: To enable to attain the operation on a cylindrical coordinate system thereby performing dismantling operation exactly and at a high reliability. Constitution: A reactor dismantling robot is suspended by ropes by an elevating device to the inside of reactor shielding walls. The robot has a fixed portion having a plurality of legs abutting against the inner surface of the shieling walls while extending and shrinking radially in the horizontal direction and an arm portion having an operation arm disposed with a shielding wall breaking operation device. The arm portion is disposed with a mechanism for vertically moving the operation arm and a mechanism for forwarding and backwarding the operation arm in the horizontal direction and the arm portion itself is constituted so as to be rotatable around a vertical axis. (Seki, T.)

  17. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  18. The Pegase reactor loops

    International Nuclear Information System (INIS)

    After 4 years operation, experimentation and maintenance of the gas loops built especially for the nuclear fuel testing reactor Pegase, it appears desirable not only to gather together in a single document the essential characteristics and particularities of these devices and of their associated equipment, but also to give the reasons for the technical modifications and the way in which they were carried out; this is done here by the persons themselves who were responsible, day after day, for operating these loops. This essentially practically experience thus complements the careful research and preliminary testing carried out on these loops or on their prototypes. It should be of interest to those who deal with problems concerned with the design or operation of irradiation loops in experimental reactors or of similar equipment. (authors)

  19. Spherical torus fusion reactor

    Science.gov (United States)

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  20. Decay of reactor neutrinos

    International Nuclear Information System (INIS)

    We consider the decay of massive neutrinos which couple to electrons and are, therefore, produced in nuclear reactors. Lifetime limits for the γ and electron-positron decay modes of these neutrinos are deduced from the experimental limit on the singles count rate in the detector used to study neutrino oscillations at the Goesgen reactor. The dominantly coupled neutrinos are light, and their invariant-lifetime limit t/sup c.m.//m/sub ν/ is 1--3 sec/eV. The subdominantly coupled heavy neutrinos with mass 1--4 MeV could decay into electron-positron pairs. These pairs were not observed, and from the absence of such a signal we deduce restrictions on the corresponding mixing parameters