WorldWideScience

Sample records for buckling structural

  1. Buckling of Ship Structures

    CERN Document Server

    Shama, Mohamed

    2013-01-01

    Buckling of Ship Structures presents a comprehensive analysis of the buckling problem of ship structural members. A full analysis of the various types of loadings and stresses imposed on ship plating and primary and secondary structural members is given. The main causes and consequences of the buckling mode of failure of ship structure and the methods commonly used to control buckling failure are clarified. This book contains the main equations required to determine the critical buckling stresses for both ship plating and the primary and secondary stiffening structural members. The critical buckling stresses are given for ship plating subjected to the induced various types of loadings and having the most common boundary conditions encountered in ship structures.  The text bridges the gap existing in most books covering the subject of buckling of ship structures in the classical analytical format, by putting the emphasis on the practical methods required to ensure safety against buckling of ship structur...

  2. Buckling of foam stabilised composite structures

    OpenAIRE

    Rivallant, Samuel; Ferrero, Jean-François; Barrau, Jean-Jacques

    2003-01-01

    An analytical modelling of the symmetrical wrinkling is proposed : from original assumptions on displacements within the core, and from an energy minimisation method, it is possible to predict critical loads and buckling modes better than traditional models do, and to distinguish the influence of each structure component. Compression tests were carried out on sandwich structures to validate the model. Little curved structures were also tested to estimate the influence of skin curvature on rup...

  3. Buckling check tools for plate panel and column structures

    OpenAIRE

    Vuorela, Pia

    2014-01-01

    Buckling is, besides yielding, one of the major causes of failures in structures, and buckling checks are therefore an integral part of strength analyses. Checks can be performed either with methods requiring heavy numerical calculations or with equations based on rules and recommendations from a classification society. Numerical calculations are extremely time-consuming and commercial buckling check programs are expensive. There is therefore a need for buckling check tools based on the recom...

  4. Upon creep buckling of thin structures

    International Nuclear Information System (INIS)

    This paper first describes an analytical model for creep buckling and gives, in some particular case, an analytical explicit solution of creep buckling equations. A strategy for finite element prediction of creep buckling is then applied to the interpretation of creep buckling experiments obtained at INSA Lyon with thin-walled cylinders subject to external uniform pressures. The buckling is in the elastic range, and the presence of initial imperfections is the reason for their creep instability. In spite of very small membrane stresses (10 MPa) the buckling modes very slowly increase in size until the critical time where the instability very rapidly increases and sudden buckling occurs. 7 figs., 2 tabs

  5. Post buckling of structures a static or dynamic problem

    International Nuclear Information System (INIS)

    The computation of post-buckling of structures is considered nowadays as a solved problem at least in the case of elastic post-buckling. The object of this paper is mainly to discuss this point, and to show, from the physical point of view and from an example, that inertial effects cannot be neglected when one wants to predict the post-buckling behaviour of a structure. 10 refs.

  6. Early detection of local buckling in structural members

    Science.gov (United States)

    Ali, Bashir; Sundaresan, Mannur J.; Schulz, Mark J.; Hughes, Derke

    2005-05-01

    Most structural health monitoring analyses to date have focused on the determination of damage in the form of crack growth in metallic materials or delamination or other types of damage growth in composite materials. However, in many applications, local instability in the form of buckling can be the precursor to more extensive damage and unstable failure of the structure. If buckling could be detected in the very early stages, there is a possibility of taking preventive measures to stabilize and save the structure. Relatively few investigations have addressed this type of damage initiation in structures. Recently, during the structural health monitoring of a wind turbine blade, local buckling was identified as the cause of premature failure. A stress wave propagation technique was used in this test to detect the precursor to the buckling failure in the form of early changes in the local curvature of the blade. These conditions have also been replicated in the laboratory and results are reported in this paper. A composite column was subjected to axial compression to induce various levels of buckling deformation. Two different techniques were used to detect the precursors to buckling in this column. The first identifier is the change in the vibration shapes and natural frequencies of the column. The second is the change in the characteristics of diagnostic Lamb waves during the buckling deformation. Experiments indicate that very small changes in curvature during the initial stages of buckling are detectable using the structural health monitoring techniques. The experimental vibration characteristics of the column with slight initial curvatures compared qualitatively with finite element results. The finite element analysis is used to identify the frequencies that are most sensitive to buckling deformation, and to select suitable locations for the placement of sensors that can detect even small changes in the local curvature.

  7. Investigation of Buckling Behavior of Composite Shell Structures with Cutouts

    Science.gov (United States)

    Arbelo, Mariano A.; Herrmann, Annemarie; Castro, Saullo G. P.; Khakimova, Regina; Zimmermann, Rolf; Degenhardt, Richard

    2015-12-01

    Thin-walled cylindrical composite shell structures can be applied in space applications, looking for lighter and cheaper launcher transport system. These structures are prone to buckling under axial compression and may exhibit sensitivity to geometrical imperfections. Today the design of such structures is based on NASA guidelines from the 1960's using a conservative lower bound curve generated from a database of experimental results. In this guideline the structural behavior of composite materials may not be appropriately considered since the imperfection sensitivity and the buckling load of shells made of such materials depend on the lay-up design. It is clear that with the evolution of the composite materials and fabrication processes this guideline must be updated and / or new design guidelines investigated. This need becomes even more relevant when cutouts are introduced to the structure, which are commonly necessary to account for access points and to provide clearance and attachment points for hydraulic and electric systems. Therefore, it is necessary to understand how a cutout with different dimensions affects the buckling load of a thin-walled cylindrical shell structure in combination with other initial geometric imperfections. In this context, this paper present some observations regarding the buckling load behavior vs. cutout size and radius over thickness ratio, of laminated composite curved panels and cylindrical shells, that could be applied in further recommendations, to allow identifying when the buckling of the structure is dominated by the presence of the cutout or by other initial imperfections.

  8. NONLINEAR BUCKLING CHARACTERISTIC OF GRADED MULTIWEB STRUCTURE OF HETEROGENEOUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    LI Yong; ZHANG Zhi-min

    2005-01-01

    The graded multiweb structure of heterogeneous anisotropic materials, which makes full use of the continuous, gradual and changing physical mechanical performance of material properties, has a widespread application in aeroplane aerofoil structure and automobile lightweight structure. On the basis of laminate buckling theory,the equivalent rigidity method is adopted to establish the corresponding constitutive relation and the non-linear buckling governing equation for the graded multiweb structure. In finding the solution, the critical load of buckling under different complicated boundary conditions together with combined loads were obtained and testification of the experimental analysis shows that the calculation results can satisfy the requirements of engineering design in a satisfactory way. Results obtained from the research say that: graded materials can reduce the concentrated stress on the interface in an effective way and weaken the effect of initial defect in materials and thereby improve the strength and toughness of materials.

  9. Buckling-induced encapsulation of structured elastic shells under pressure

    Science.gov (United States)

    Shim, Jongmin; Perdigou, Claude; Chen, Elizabeth R.; Bertoldi, Katia; Reis, Pedro M.

    2012-01-01

    We introduce a class of continuum shell structures, the Buckliball, which undergoes a structural transformation induced by buckling under pressure loading. The geometry of the Buckliball comprises a spherical shell patterned with a regular array of circular voids. In order for the pattern transformation to be induced by buckling, the possible number and arrangement of these voids are found to be restricted to five specific configurations. Below a critical internal pressure, the narrow ligaments between the voids buckle, leading to a cooperative buckling cascade of the skeleton of the ball. This ligament buckling leads to closure of the voids and a reduction of the total volume of the shell by up to 54%, while remaining spherical, thereby opening the possibility of encapsulation. We use a combination of precision desktop-scale experiments, finite element simulations, and scaling analyses to explore the underlying mechanics of these foldable structures, finding excellent qualitative and quantitative agreement. Given that this folding mechanism is induced by a mechanical instability, our Buckliball opens the possibility for reversible encapsulation, over a wide range of length scales. PMID:22451901

  10. Buckling of structures with uncertain imperfections - Personal perspective

    Science.gov (United States)

    Elishakoff, Isaac

    1998-01-01

    The previous review on stochastic buckling of structures was written by Amazigo in 1976. This review summarizes some of the developments which took place in recent two decades. A brief overview is given of the effect on uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation. For the benefit of the thinking reader, the review has a critical nature. It should be noted that this manuscript has yet to be completed.

  11. Snap-Through Buckling Problem of Spherical Shell Structure

    Directory of Open Access Journals (Sweden)

    Sumirin

    2015-01-01

    Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.

  12. Buckling and structural efficiency of sandwich-blade stiffened composite compression panels

    Science.gov (United States)

    Stein, M.; Williams, J. G.

    1978-01-01

    The minimum mass structural efficiency curve was determined for sandwich blade stiffened composite compression panels subjected to buckling and strength constraints. High structural efficiencies are attainable for this type of construction. A method of analysis is presented for the buckling of panels of this configuration which shows that buckling of such panels is strongly dependent on the through-the-thickness transverse shearing of the stiffener. Experimental results are presented and compared with theory.

  13. Buckling analysis and optimal structural design of supercavitating vehicles using finite element technology

    Science.gov (United States)

    Byun, Wanil; Kim, Min Ki; Park, Kook Jin; Kim, Seung Jo; Chung, Minho; Cho, Jin Yeon; Park, Sung-Han

    2011-12-01

    The supercavitating vehicle is an underwater vehicle that is surrounded almost completely by a supercavity to reduce hydrodynamic drag substantially. Since the cruise speed of the vehicle is much higher than that of conventional submarines, the drag force is huge and a buckling may occur. The buckling phenomenon is analyzed in this study through static and dynamic approaches. Critical buckling load and pressure as well as buckling mode shapes are calculated using static buckling analysis and a stability map is obtained from dynamic buckling analysis. When the finite element method (FEM) is used for the buckling analysis, the solver requires a linear static solver and an eigenvalue solver. In this study, these two solvers are integrated and a consolidated buckling analysis module is constructed. Furthermore, Particle Swarm Optimization (PSO) algorithm is combined in the buckling analysis module to perform a design optimization computation of a simplified supercavitating vehicle. The simplified configuration includes cylindrical shell structure with three stiffeners. The target for the design optimization process is to minimize total weight while maintaining the given structure buckling-free.

  14. Study of hydrogenated silicene: The initialization model of hydrogenation on planar, low buckled and high buckled structures of silicene

    International Nuclear Information System (INIS)

    We study the hydrogenation structures possessed by silicene i.e. planar (PL), low buckled (LB) and high buckled (HB). On those structures we found the hydrogenation process occurs with some particular notes. Hydrogen stable position on the silicene surface is determined by its initial configuration. We only considered the fully hydrogenated case with the formula unit (SiH)n for all of these structures. Physical and electronic structure shift after the process are compared with hydrogenated graphene. Moreover, we observed a chemical process in the presence of hydrogen on the PL structure by nudged elastic band (NEB) which illustrates how hydrogen has a significant impact to the force barrier of the PL that changing it from its original structure

  15. Buckling of Monopod Bucket Foundations – Influence of Boundary Conditions and Soil-structure Interaction

    DEFF Research Database (Denmark)

    Madsen, Søren; Pinna, Rodney; Randolph, M. F.;

    2015-01-01

    Using large monopod bucket foundations as an alternative to monopiles for offshore wind turbines offers the potential for large cost savings compared to typical piled foundations. In this paper, numerical simulations are carried out to assess the risk of structural buckling during installation of...... investigated. The effects of including soil restraint and soil–structure interaction on the buckling analysis are also addressed....

  16. Micro-wrinkling and delamination-induced buckling of stretchable electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Oyewole, O. K. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete, P.M.B 1530, Ilorin, Kwara State (Nigeria); Yu, D. [Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Du, J. [Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 137 Reber Building, University Park, Pennsylvania (United States); Asare, J.; Fashina, A. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Oyewole, D. O. [Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Physics Advanced Laboratory, Sheda Science and Technology Complex, P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Anye, V. C. [Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Zebaze Kana, M. G. [Department of Materials Science and Engineering, Kwara State University, Malete, P.M.B 1530, Ilorin, Kwara State (Nigeria); Physics Advanced Laboratory, Sheda Science and Technology Complex, P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); and others

    2015-06-21

    This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussed for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices.

  17. Micro-wrinkling and delamination-induced buckling of stretchable electronic structures

    International Nuclear Information System (INIS)

    This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussed for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices

  18. Structure buckling and non-probabilistic reliability analysis of supercavitating vehicles

    Institute of Scientific and Technical Information of China (English)

    AN Wei-guang; ZHOU Ling; AN Hai

    2009-01-01

    To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine, supercavitating vehicles were simplified as variable cross section beam firstly. Then structural buckling analysis of supercavitating vehicles with or without engine thrust was conducted, and the structural buckling safety margin equation of supercavitating vehicles was established. The indefinite information was de-scribed by interval set and the structure reliability analysis was performed by using non-probabilistic reliability method. Considering interval variables as random variables which satisfy uniform distribution, the Monte-Carlo method was used to calculate the non-probabilistic failure degree. Numerical examples of supercavitating vehi-cles were presented. Under different ratios of base diameter to cavitator diameter, the change tendency of non-probabilistic failure degree of structural buckling of supereavitating vehicles with or without engine thrust was studied along with the variety of speed.

  19. Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2011-01-01

    This paper focuses on criterion functions for gradient based optimization of the buckling load of laminated composite structures considering different types of buckling behaviour. A local criterion is developed, and is, together with a range of local and global criterion functions from literature......, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...

  20. An adaptive model reduction strategy for post-buckling analysis of stiffened structures

    OpenAIRE

    Barrière, Ludovic; Marguet, Steven; Castanié, Bruno; Cresta, Philippe; Passieux, Jean-Charles

    2013-01-01

    The finite element simulation of structures subjected to post-buckling still faces computational limits, especially for large stiffened structures. Several solving strategies have already been proposed in response to this issue. Among them are the adaptive model reduction solving techniques which demonstrated their ability to drastically reduce the number of unknowns as well as to control the approximation error of solving non-linear problems like post-buckling. The challenges regarding these...

  1. Steel containment buckling

    International Nuclear Information System (INIS)

    The Steel Containment Buckling program is in its fourth phase of work directed at the evaluation of the effects of the structural failure mode of steel containments when the membrane stresses are compressive. The structural failure mode for this state of stress is instability or buckling. The program to date has investigated: (1) the effect on overall buckling capacity of the ASME area replacement method for reinforcing around circular penetrations; (2) a set of benchmark experiments on ring-stiffened shells having reinforced and framed penetrations; (3) large and small scale experiments on knuckle region buckling from internal pressure and post-buckling behavior to failure for vessel heads having torispherical geometries; and (4) buckling under time-dependent loadings (dynamic buckling). The first two investigations are complete, the knuckle buckling experimental efforts are complete with data analysis and reporting in progress, and the dynamic buckling experimental and analytical work is in progress

  2. Plastic buckling·behaviour of a thin-plate structure by lateral impact loading

    International Nuclear Information System (INIS)

    The objective of this research is to evaluate the plastic buckling behaviour of the thin plate grid structure. To perform this objective, two kinds of approaches are taken in this work. First, in order to obtain the test data on the dynamic failure behaviour of the grid, an impact test is performed with a 8 x 8 cell size partial grid specimen, which is made of Zircaloy-4 thin plate. Second, a finite element (FE) analysis method for predicting the buckling behaviour on the spacer grid structure is established by a commercial FE code ABAQUS/explicit. In this FE analysis method, appropriate boundary conditions and impact loading conditions are applied to simulate the actual test conditions. The dynamic impact analysis is performed to evaluate the plastic buckling behaviour of a grid structure under the lateral impact load. The FE model is produced using pre-processor I-DEAS, and solved using nonlinear commercial solver ABAQUS/explicit. In this work, a FE model is created using the multi-point constraint (MPC) conditions. Applied boundary conditions for dynamic impact analysis were almost the same as the actual boundary conditions for the impact test. This FE model will be compared with test results. The plastic buckling behaviour of a thin-plate structure is dependent on the external impact velocity of the hammer. In addition, the dynamic buckling behaviour of a thin-plate structure is gradually continued due to the internal impact energy absorption. (author)

  3. Magnetoelastic buckling of structural components in fusion reactor

    International Nuclear Information System (INIS)

    First, the static stability and initial stability analysis of the electromagnetic buckling of ITER first wall are reported. The numerical method and the equation of equilibrium and geometrical stiffness matrix, the results of a curved panel under uniform radial pressure and a rectangular plate under equal uniform compression on two opposite edges are shown. As to the eddy current analysis by A-φ method, the governing equations, magnetic force, the computational model of ITER first wall, the time variation of plasma current, the support conditions of first wall, the time variation of magnetic field, eddy current and Lorentz force, the numerical results of magnetic field, eddy current and Lorentz force, the relation between thickness and maximum Lorentz force, the profile of magnetic field, eddy current and Lorentz force, the relation between maximum load and deflection, the profile of deflection, the relation between maximum load and Tresca stress, the relation of thickness to deflection and Tresca stress at buckling load, and the relation of thickness to buckling load are shown. Also large deformation analysis and dynamic stability analysis are outlined. (K.I.)

  4. Anomalous elastic buckling of layered crystalline materials in the absence of structure slenderness

    Science.gov (United States)

    Ren, Manrui; Liu, Yilun; Zhe Liu, Jefferson; Wang, Lifeng; Zheng, Quanshui

    2016-03-01

    Layered crystalline materials, such as graphene, boron nitride, tungsten sulfate, phosphorene, etc., have attracted enormous attentions, due to their unique crystal structures and superior mechanical, thermal, and physical properties. Making use of mechanical buckling is a promising route to control their structural morphology and thus tune their physical properties, giving rise to many novel applications. In this paper, we employ molecular dynamics (MD) simulations and theoretical modeling to study the compressive buckling of a column made of layered crystalline materials with the crystal layers parallel to the compressive direction. We find that the mechanical buckling of the layered crystalline materials exhibits two anomalous and counter-intuitive features as approaching the zero slenderness ratio. First, the critical buckling strain εcr has a finite value that is much lower than the material's elastic limit strain. A continuum mechanics model (by homogenizing the layered materials) is proposed for the εcr, which agrees well with the results of MD simulations. We find that the εcr solely depends on elastic constants without any structural dimension, which appears to be an intrinsic material property and thus is defined as intrinsic buckling strain (IBS), εcrIBS , in this paper. Second, below a certain nanoscale length, l0, in the compressive direction (e.g., about 20 nm for graphite), the critical buckling strain εcr shows a size effect, i.e., increasing as the column length L decreases. To account for the size effect, inspired by our recently developed multi-beam shear model (Liu et al., 2011), a bending energy term of individual crystal layer is introduced in our continuum model. The theoretical model of εcr agrees well with the size effects observed in MD simulations. This study could lay a ground for engineering layered crystalline materials in various nano-materials and nano-devices via mechanical buckling.

  5. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson's Ratio.

    Science.gov (United States)

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson's ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  6. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio

    Science.gov (United States)

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  7. Effects of constraint curvature on structural instability: tensile buckling and multiple bifurcations

    CERN Document Server

    Bigoni, D; Noselli, G; Zaccaria, D

    2012-01-01

    Bifurcation of an elastic structure crucially depends on the curvature of the constraints against which the ends of the structure are prescribed to move, an effect which deserves more attention than it has received so far. In fact, we show theoretically and we provide definitive experimental verification that an appropriate curvature of the constraint over which the end of a structure has to slide strongly affects buckling loads and can induce: (i.) tensile buckling; (ii.) decreasing- (softening), increasing- (hardening), or constant-load (null stiffness) postcritical behaviour; (iii.) multiple bifurcations, determining for instance two bifurcation loads (one tensile and one compressive) in a single-degree-of-freedom elastic system. We show how to design a constraint profile to obtain a desired postcritical behaviour and we provide the solution for the elastica constrained to slide along a circle on one end, representing the first example of an inflexional elastica developed from a buckling in tension. These ...

  8. Buckling of Bucket Foundations

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    In this paper, the risk of structural buckling during installation of large-diameter bucket foundations is addressed using numerical methods. Imperfect geometries are introduced based on the pre-buckling mode shapes from a linear Eigenvalue buckling analysis. Various imperfect geometries are...

  9. A Novel Rational Design Method for Laminated Composite Structures Exhibiting Complex Geometrically Nonlinear Buckling Behaviour

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2012-01-01

    This paper presents a novel FEM-based approach for fiber angle optimal design of laminated composite structures exhibiting complicated nonlinear buckling behavior, thus enabling design of lighter and more cost-effective structures. The approach accounts for the geometrically nonlinear behavior of...

  10. Buckling flows - Exploring the origins and structure of turbulence

    Science.gov (United States)

    Bejan, Adrian

    1989-11-01

    Numerous natural flow phenomena exhibit geometric features that invite an analogy with the classical buckling of solid elastic columns (Euler buckling). The most striking feature of these flows is the deformation of the straight stream into a sinusoidal shape whose wavelength is unique. Only the straightening effect of solid walls or the stabilizing effects of transversal viscous diffusion and density stratification can prevent the stream from exhibiting the sinusoidal deformation. Other turbulent flow features include: the transition to turbulence in all straight and slender flows occurring when the local Reynolds number exceeds 100; the Reynold number range of 100 of the smallest eddy in a turbulent flow; the viscous sublayer with a constant thickness of order 10 appearing in turbulent flow near a straight wall; the Strouhal number for vortex shedding behind a cylinder in a cross-flow, a constant between 0.2 and 0.3; and the Colburn analogy between heat transfer and friction in a turbulent flow near a wall.

  11. Discrete Material Buckling Optimization of Laminated Composite Structures considering "Worst" Shape Imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust design of laminated composite structures is considered in this work. Because laminated composite structures are often thin walled, buckling failure can occur prior to material failure, making it desirable to maximize the buckling load. However, as a structure always contains imperfections...... and “worst” shape imperfection optimizations to design robust composite structures. The approach is demonstrated on an U-profile where the imperfection sensitivity is monitored, and based on the example it can be concluded that robust designs can be obtained....... these must be included into the optimization, otherwise the imperfection sensitivity of the structure can be increased through optimization. To minimize the imperfection sensitivity of the structure the so-called Recurrence Optimization is applied. This approach uses a sequence of laminate optimizations...

  12. The design of post-buckled spinal structures for airfoil shape control using optimization methods

    OpenAIRE

    Ursache, N.M.; Bressloff, N.W.; Keane, A.J.

    2004-01-01

    In this paper we examine the use of optimization methods and a variety of shape definition schemes to design spinal structures for the control of deformable shape airfoils. The aim is to find structures that, when suitably loaded, can be used to alter the aerodynamic performance of a cladding that forms the airfoil. Further, by using structures that are acting in the post buckling regime it is possible to obtain significant changes in shape with only modest changes in applied load.

  13. Relevance of capsid structure in the buckling and maturation of spherical viruses

    International Nuclear Information System (INIS)

    The shape and mechanical properties of viral capsids play an important role in several biological processes during the virus life cycle. In particular, to become infective, many viruses require a maturation stage where the capsid undergoes a buckling transition, from an initial spherical procapsid into a final icosahedral faceted shell. Here we study, using a minimal physical model, how the capsid shape and the buckling transition depend on the triangulation number T and the icosahedral class P of the virus structure. We find that, for small shells, capsids with P = 1 are most likely to produce polyhedral shapes that minimize their energy and accumulated stress, whereas viruses with P = 3 prefer to remain spherical. For big capsids, all shells are more stable adopting an icosahedral shape, in agreement with continuum elastic theory. Moreover, spherical viruses show a buckling transition to polyhedral shells under expansion, in consonance with virus maturation. The resulting icosahedral shell is mechanically stiffer, tolerates larger expansions and withstands higher internal pressures before failing, which could explain why some dsDNA viruses, which rely on the pressurization of their genetic material to facilitate the infection, undergo a buckling transition. We emphasize that the results are general and could also be applied to non-biological systems. (paper)

  14. Controlled buckling behavior of patterned oxide structures on compliant substrates for flexible optoelectronics

    International Nuclear Information System (INIS)

    There is currently a great interest to design and fabricate novel flexible devices for solar cell, solid-state lighting, biomedical and energy harvesting applications. Such devices require the use of electrode components. Desired electrodes must exhibit structural integrity, low electrical resistivity and, in most cases, high optical transparency in the visible range. Despite growing efforts to replace them, transparent conducting oxide layers deposited on polymer substrates are still enjoying a dominant role as the electrode component. This is because of their excellent combination of electrical and optical properties. However, their performance when they are subjected to externally-applied mechanical stresses is limited. Such performance has been extensively investigated for the case of continuous brittle oxide films on polymer substrates. However, there is relatively little work reported to date on the mechanical behavior of patterned conducting layers on compliant substrates. In this study we report on the mechanical behavior of various patterned indium tin oxide shapes and sizes on polyethylene terephthalate. Micron-sized shapes include squares, circles, and zigzag-based structures. Controlled buckling experiments are performed in-situ using an optical microscope in order to monitor critical strains and potential failure mechanisms. In addition, ITO electrical resistance changes are continuously monitored during deformation. Furthermore, ex-situ characterization of the tested surfaces using scanning electron microscopy is conducted. Higher crack onset values are observed for the smaller size patterns. Also, square-shaped patterns are found to exhibit the lowest crack onset values. SEM observations suggest cracking-driven and buckling-driven delamination during ITO tensile and compressive buckling mode respectively. In both cases, failure is observed to initiate from the pattern edges. - Highlights: • In-situ experimental analysis of various patterned shapes

  15. Buckling behavior and structural efficiency of open-section stiffened composite compression panels

    Science.gov (United States)

    Williams, J. G.; Stein, M.

    1976-01-01

    Several experiments with J- and blade-stiffened graphite/epoxy panels were conducted to obtain insight into how well experimental data could be correlated with analysis for the buckling behavior of open-section stiffened composite compression panels. Although some nonlinear behavior was observed during the experiments, adequate correlation with analysis was obtained to justify the use of linear, thin-plate buckling analysis in a minimum-weight design synthesis program for J- and blade-configurations. Results from two design studies using this program are presented. In the first study the minimum weights of Jand blade-configurations for two different material systems (graphite/epoxy and aluminum) are determined subject to buckling and strength constraints for a wide range of the compressive load index. In the second study the minimum weights required for graphite/epoxy blade-stiffened panels to satisfy additional stiffness constraints typical of medium-size commercial aircraft wing structures are determined. Both minimum-weight studies indicate that graphite/epoxy open-section stiffened panels can be designed so that weight savings of 30 to 50% are possible compared with the most efficient aluminum designs.

  16. Robust buckling optimization of laminated composite structures using discrete material optimization considering “worst” shape imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...... example. The imperfection sensitivity of the optimized structure decreases during the recurrence optimization for both examples, hence robust buckling optimal structures are designed....

  17. Comparative Study for Buckling Resistance of Steel Sheets Provided with Stiffeners Used in Bridge Structures

    Directory of Open Access Journals (Sweden)

    Daraban Marian

    2015-09-01

    Full Text Available The subject discussed in this paper is based on an experimental bridge model which was built to study the pre-critical and post-critical buckling behaviour of steel webs of box girders provided with longitudinal and transversal stiffeners. The article presents a comparison between the experimental results and the numerical ones for buckling resistance of stiffened steel webs. For this purpose two types of analysis will be carried out: an analysis to establish the values and eigenvectors of buckling, after which the critical factor for the first mode of buckling will be obtained, and then a geometrical and physical nonlinear analysis will be performed.

  18. Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon

    Science.gov (United States)

    Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad

    2015-11-01

    A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.

  19. On the structure of Si(100) surface: Importance of higher order correlations for buckled dimer

    OpenAIRE

    Back, Seoin; Schmidt, Johan A.; Ji, Hyunjun; Heo, Jiyoung; Shao, Yihan; Jung, Yousung

    2013-01-01

    We revisit a dangling theoretical question of whether the surface reconstruction of the Si(100) surface would energetically favor the symmetric or buckled dimers on the intrinsic potential energy surfaces at 0 K. This seemingly simple question is still unanswered definitively since all existing density functional based calculations predict the dimers to be buckled, while most wavefunction based correlated treatments prefer the symmetric configurations. Here, we use the doubly hybrid density f...

  20. Pseudo-beam method for compressive buckling characteristics analysis of space inflatable load-carrying structures

    Institute of Scientific and Technical Information of China (English)

    Changguo Wang; Huifeng Tan; Xingwen Du

    2009-01-01

    This paper extends Le van's work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a pre-stressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko's beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our pro-posed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the load-carrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.

  1. Containment buckling program

    International Nuclear Information System (INIS)

    The Containment Buckling program at the Los Alamos National Laboratory is aimed at evaluating the adequacy of the current design procedures for free standing steel nuclear containment shells against static and dynamic structural instability. Such buckling behavior will typically produce large displacements in the shell wall that will potentially violate seals around hatches and penetrations, or even produce puncture or tearing of the shell wall resulting in a loss of containment function. The ultimate goal of the program is to provide NRC with a basis for evaluating the associated licensing issues and to recommend appropriate changes and additions to the NRC Review Criteria

  2. Local buckling of aluminium structures exposed to fire. Part 1: Tests

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.

    2009-01-01

    This paper describes an experimental investigation into local buckling of compressed aluminium alloy sections at elevated temperatures. Stress-strain relationships are derived based on uniaxial tensile tests. A special test set-up with a furnace is developed to test slender square hollow sections an

  3. Modelling of the stiffness evolution of truss core structures damaged by plastic buckling

    Czech Academy of Sciences Publication Activity Database

    Šiška, Filip; Stratil, Luděk; Dlouhý, Ivo; Barnett, M.R.

    2015-01-01

    Roč. 100, AUG (2015), s. 1-11. ISSN 0168-874X R&D Projects: GA MŠk EE2.3.20.0197 Institutional support: RVO:68081723 Keywords : beam theory * plastic buckling * finite element * beam-columns * truss-coredlaminates Subject RIV: JI - Composite Materials Impact factor: 2.017, year: 2014

  4. Buckling failures in insect exoskeletons.

    Science.gov (United States)

    Parle, Eoin; Herbaj, Simona; Sheils, Fiona; Larmon, Hannah; Taylor, David

    2016-02-01

    Thin walled tubes are often used for load-bearing structures, in nature and in engineering, because they offer good resistance to bending and torsion at relatively low weight. However, when loaded in bending they are prone to failure by buckling. It is difficult to predict the loading conditions which cause buckling, especially for tubes whose cross sections are not simple shapes. Insights into buckling prevention might be gained by studying this phenomenon in the exoskeletons of insects and other arthropods. We investigated the leg segments (tibiae) of five different insects: the locust (Schistocerca gergaria), American cockroach (Periplaneta americana), death's head cockroach (Blaberus discoidalis), stick insect (Parapachymorpha zomproi) and bumblebee (Bombus terrestris audax). These were tested to failure in cantilever bending and modelled using finite element analysis (FEA). The tibiae of the locust and the cockroaches were found to be approximately circular in shape. Their buckling loads were well predicted by linear elastic FEA, and also by one of the analytical solutions available in the literature for elastic buckling. The legs of the stick insect are also circular in cross section but have several prominent longitudinal ridges. We hypothesised that these ridges might protect the legs against buckling but we found that this was not the case: the loads necessary for elastic buckling were not reached in practice because yield occurred in the material, causing plastic buckling. The legs of bees have a non-circular cross section due to a pollen-carrying feature (the corbicula). We found that this did not significantly affect their resistance to buckling. Our results imply that buckling is the dominant failure mode in the tibia of insects; it likely to be a significant consideration for other arthropods and any organisms with stiff exoskeletons. The interactions displayed here between material properties and cross sectional geometry may provide insights for the

  5. Post-buckled behaviour and breathing-induced fatigue in thin-walled steel plated structures

    Czech Academy of Sciences Publication Activity Database

    Škaloud, Miroslav; Zörnerová, Marie; Urushadze, Shota

    Lisbon : University of Lisbon, 2015 - (Camotim, D.; Dinis, P.; Chan, S.; Wang, C.; Conçalves, R.; Silvestre, N.; Basaglia, C.; Landesmann, A.; Bebiano, R.) R&D Projects: GA ČR(CZ) GC13-34405J Institutional support: RVO:68378297 Keywords : saving steel * saving fabrication expenses * thin-walled plated construction * effect of initial imperfections * stability * post-buckled behaviour * repeated loading Subject RIV: JM - Building Engineering

  6. Delamination-driven failure processes in two-dimensional composite structures: Delamination growth, crack kinking and nonlinear buckling

    Science.gov (United States)

    El-Sayed, Sami Ibrahim

    the crack planes and treating the cracking material as "cohesive" has been developed. The model was able to capture the delamination kinking into the core, directional changes in the crack growth, the return of the crack to the facesheet-core interface, and finally the interfacial delamination propagation. Experimental results are found to corroborate the accuracy of the model. A feature of the compressive behavior of the structures carrying delamination is delamination buckling. Delamination buckling can interact adversely with other characteristic forms of buckling of the structure, such as the face sheet wrinkling and overall buckling in sandwich columns. It is shown that such interactions can lead to premature collapse. It is also shown that it is important to account for the contact between the delaminated surfaces in the analysis

  7. Slab stagnation and buckling in the mantle transition zone: Rheology, phase transition, trench migration, and seismic structure

    Science.gov (United States)

    Bina, Craig; Cizkova, Hana

    2014-05-01

    Subducting slabs may exhibit buckling instabilities and consequent folding behavior in the mantle transition zone for various combinations of dynamical parameters, accompanied by temporal variations in dip angle, plate velocity, and trench retreat. Parameters governing such behavior include both viscous forces (slab and mantle rheology) and buoyancy forces (slab thermal structure and mineral phase relations). 2D numerical experiments show that many parameter sets lead to slab deflection at the base of the transition zone, typically accompanied by quasi-periodic oscillations (consistent with previous scaling analyses) in largely anticorrelated plate and rollback velocities, resulting in undulating stagnant slabs as buckle folds accumulate subhorizontally atop the lower mantle. Slab interactions with mantle phase transitions are important components of this process (Bina and Kawakatsu, 2010; Čížková and Bina, 2013). For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous, and trench advance is quite rare - due to both rheological structure and ridge-push effects (Čížková and Bina, 2013). Recent analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Izu-Bonin arc (Matthews et al., 2013). Consequently, we explore the conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry associated with the Philippine Sea region. Detailed images of buckled stagnant slabs are difficult to resolve due to smoothing effects inherent in seismic tomography, but velocity structures computed for compositionally layered slabs, using laboratory data on relevant mineral assemblages, can be spatially low-pass filtered for comparison with tomographic images of corresponding resolution. When applied to P-wave velocity anomalies from stagnant slab material beneath northeast China, model slabs which undulate due to compound buckling fit

  8. Experimental evaluation of the buckling phenomena in the new joint design for upper deck structure of a bridge

    Directory of Open Access Journals (Sweden)

    Solazzi L.

    2010-06-01

    Full Text Available This paper is concerned with the experimental mechanical analysis of a new design of a joint for a main components of a upper deck of a road bridge. These components are subject to the compression state stress induced by the weight and the load acting on the road. Each upper deck of a bridge (positioned on each side of the bridge is composed by four tubular structures that must be joint each together. The joint must to take in to account many aspects, for example that the length of each component is not the same (because, obviously, there is a mechanical tolerance. This phenomena induce different compression stress on each component and so is very important non only the critical buckling load but also the post buckling behaviour of the structure. It is very important that if a single tubular structure reaches the critical load of instability, it still has load capacity . This is to avoid that, in the case where a column reaches the instability, the entire load acting on a column increase the load on the remaining three. For this purpose many different geometrical solutions have been designed (elaborated by fem analyses and successively tested experimentally. This work reports the main experimental results on the best joint solution and how this increase the load capacity and the displacement respect to the solution without this flange.

  9. Tensile buckling of advanced turboprops

    Science.gov (United States)

    Chamis, C. C.; Aiello, R. A.

    1982-01-01

    Theoretical studies were conducted to determine analytically the tensile buckling of advanced propeller blades (turboprops) in centrifugal fields, as well as the effects of tensile buckling on other types of structural behavior, such as resonant frequencies and flutter. Theoretical studies were also conducted to establish the advantages of using high performance composite turboprops as compared to titanium. Results show that the vibration frequencies are not affected appreciably prior to 80 percent of the tensile speed. Some frequencies approach zero as the tensile buckling speed is approached. Composites provide a substantial advantage over titanium on a buckling speed to weight basis. Vibration modes change as the rotor speed is increased and substantial geometric coupling is present.

  10. 深水分离器结构非线性屈曲分析%Nonlinear Buckling Analysis for Subsea Separator Structure

    Institute of Scientific and Technical Information of China (English)

    刘培林; 周美珍; 李伟; 周凯; 高杰

    2013-01-01

    Subsea separator serves in the bottom of the sea with high outer pressure. Buckling instability is a key factor for subsea separator structure designing. This paper focus on the subsea separator structure nonlinear buckling characteristics. The simulation model of the subsea separator structure was established by element Solid 95. And buckling modes of the subsea separator structure were analyzed. On this basis, the nonlinear buckling characteristics were studied by introducing the material nonlinear constitutive relation and geometric large deformation theory, which laid technology foundation for deep water separator structure designing and checking.%建立了深水分离器结构的实体数值模型,分析了分离器结构的多阶屈曲模态,并在此基础上,引入材料非线性本构关系和几何大变形理论,深入研究了结构非线性屈曲特性,其结果可为深水分离器结构设计和校核提供参考.

  11. Elastic buckling strength of corroded steel plates

    Indian Academy of Sciences (India)

    Ahmad Rahbar-Ranji

    2013-02-01

    Corrosion makes structures more vulnerable to buckling and yielding failures. It is common practice to assume a uniform thickness reduction for general corrosion. To estimate the remaining strength of corroded structures, typically a much higher level of accuracy is required, since the actual corroded structures have irregular surfaces. Elastic buckling of simply supported rectangular corroded plates are studied with one- and both-sided irregular surfaces. Eigenvalue analysis by using finite element method (FEM) is employed for computing Euler stress. The influence of various geometric and corrosion characteristics are investigated and it is found that the aspect ratio of the plate, the average thickness diminution, the standard deviation of thickness diminution and the amount of corrosion loss have influence on the reduction of buckling strength of the corroded plates. Buckling strength of one- and both-sided corroded plates are the same. In plates with low value of aspect ratio, reduction of buckling strength is negligible. Reduction of buckling strength is more prominent in plates with higher aspect ratio. Reduction of buckling strength is very sensitive to the amount of corrosion loss; the higher the amount of corrosion loss, the more reduction of buckling strength. Reduction of buckling strength is less sensitive to the standard deviation of thickness diminution.

  12. Buckling of conical shell with local imperfections

    Science.gov (United States)

    Cooper, P. A.; Dexter, C. B.

    1974-01-01

    Small geometric imperfections in thin-walled shell structures can cause large reductions in buckling strength. Most imperfections found in structures are neither axisymmetric nor have the shape of buckling modes but rather occur locally. This report presents the results of a study of the effect of local imperfections on the critical buckling load of a specific axially compressed thin-walled conical shell. The buckling calculations were performed by using a two-dimensional shell analysis program referred to as the STAGS (Structural Analysis of General Shells) computer code, which has no axisymmetry restrictions. Results show that the buckling load found from a bifurcation buckling analysis is highly dependent on the circumferential arc length of the imperfection type studied. As the circumferential arc length of the imperfection is increased, a reduction of up to 50 percent of the critical load of the perfect shell can occur. The buckling load of the cone with an axisymmetric imperfections is nearly equal to the buckling load of imperfections which extended 60 deg or more around the circumference, but would give a highly conservative estimate of the buckling load of a shell with an imperfection of a more local nature.

  13. On the analysis of viscoplastic buckling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    1993-01-01

    For elastic-viscoplastic structures the classical elastic-plastic bifurcation approach to inelastic buckling is not valid. Only an elastic bifurcation point exists in the el~tic-viscoplastic case, and the inelastic buckling behaviour is controlled by a strong sensitivity to small imperfections...

  14. Containment buckling program. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.A.; Bennett, J.G.

    1981-01-01

    The Containment Buckling program at the Los Alamos National Laboratory is aimed at evaluating the adequacy of the current design procedures for free standing steel nuclear containment shells against static and dynamic structural instability. Such buckling behavior will typically produce large displacements in the shell wall that will potentially violate seals around hatches and penetrations, or even produce puncture or tearing of the shell wall resulting in a loss of containment function. The ultimate goal of the program is to provide NRC with a basis for evaluating the associated licensing issues and to recommend appropriate changes and additions to the NRC Review Criteria.

  15. Buckling optimization of steering stiffeners for grid-stiffened composite structures

    NARCIS (Netherlands)

    Wang, D.; Abdalla, M.M.

    2015-01-01

    Grid-stiffened composite structures, where the skin is stiffened by a lattice of stiffeners, not only allow for significant reduction in structural weight but are also competitive in terms of structural stability and damage tolerance compared with sandwich composite structures. As the development of

  16. Validation of Structural Parameters As Damage Indicators for Monitoring Plates in the Post Buckling Regime

    OpenAIRE

    Viechtbauer, Christoph; Schagerl, Martin; Schröder, Kai-Uwe

    2014-01-01

    The Structural Health Control (SHC) concept is a novel and overarching approach to monitor the strength of a structure online and in realtime over its lifecycle. In the center of the SHC approach is the structural analysis of the monitored part. It provides the information to identify structural parameters as damage indicators. With this information an optimized sensor layout can be defined to monitor the damage indicators in a smart way. The monitoring system is therefore referred as SmartSH...

  17. A Koiter-Newton arclength method for buckling-sensitive structures

    NARCIS (Netherlands)

    Liang, K.

    2013-01-01

    Thin-walled structures, when properly designed, possess a high strength-to-weight and stiffness-to-weight ratio, and therefore are used as the primary components in some weight critical structural applications, such as aerospace and marine engineering. These structures are prone to be limited in the

  18. Design against elasto plastic buckling of shells proposition of a methodology

    International Nuclear Information System (INIS)

    This paper intends to propose a methodology to design structures against buckling under primary loads. The strategy essentially consists of the classification of structures in three categories: - stiff structures that buckle in the plastic regime, - soft structures that buckle in the elastic regime, - intermediate structure that buckle in between. A way to proceed for each type of structure is proposed. A comparison between an experimental and a theoretical prediction is done for each type of structures

  19. Stochastic behavior of nanoscale dielectric wall buckling

    Science.gov (United States)

    Friedman, Lawrence H.; Levin, Igor; Cook, Robert F.

    2016-03-01

    The random buckling patterns of nanoscale dielectric walls are analyzed using a nonlinear multi-scale stochastic method that combines experimental measurements with simulations. The dielectric walls, approximately 200 nm tall and 20 nm wide, consist of compliant, low dielectric constant (low-k) fins capped with stiff, compressively stressed TiN lines that provide the driving force for buckling. The deflections of the buckled lines exhibit sinusoidal pseudoperiodicity with amplitude fluctuation and phase decorrelation arising from stochastic variations in wall geometry, properties, and stress state at length scales shorter than the characteristic deflection wavelength of about 1000 nm. The buckling patterns are analyzed and modeled at two length scales: a longer scale (up to 5000 nm) that treats randomness as a longer-scale measurable quantity, and a shorter-scale (down to 20 nm) that treats buckling as a deterministic phenomenon. Statistical simulation is used to join the two length scales. Through this approach, the buckling model is validated and material properties and stress states are inferred. In particular, the stress state of TiN lines in three different systems is determined, along with the elastic moduli of low-k fins and the amplitudes of the small-scale random fluctuations in wall properties—all in the as-processed state. The important case of stochastic effects giving rise to buckling in a deterministically sub-critical buckling state is demonstrated. The nonlinear multiscale stochastic analysis provides guidance for design of low-k structures with acceptable buckling behavior and serves as a template for how randomness that is common to nanoscale phenomena might be measured and analyzed in other contexts.

  20. Buckling and Optimization of Composite Lattice Structures%复合材料格栅结构稳定性与优化分析

    Institute of Scientific and Technical Information of China (English)

    陈书华; 刘勇琼; 刘建超

    2012-01-01

    阐述了复合材料格栅结构稳定性及优化分析方法研究概况.指出在格栅结构初级设计阶段可利用拟膜分析法对等效的格栅平板、圆筒及锥筒进行整体屈曲计算即可,而对于复杂构型格栅结构,由于不对称性及拉-压-扭耦合效应存在很难获得解析解,需借助有限法对结构进行非线性求解而求得其真实力学响应,同时还介绍了其他算法,如遗传算法.最后介绍了复合材料格栅结构破坏机理的一些试验方法.%This paper reviews different approaches used to analyze buckling and optimization of composite lattice structures. In the preliminary design,a smeared stiffness approach can be used to calculate global buckling analytical results for smeared lattice panels, cylinders and conical shells. However, it is difficult to get the analytical results for complicated lattice structures with unbalanced laminate and stretching-bending-shearing coupling. So FEA ( finite element analysis) is used to get realistic mechanical response through nonlinear simulation. Simultaneously, the paper also introduces other numerical methods (i. e. ,genetic algorithm). Finally, some experimental methods employed to investigate fracture mechanisms and post-buckling behavior of lattice structure are also introduced.

  1. Use of quadratic components for buckling calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dohrmann, C.R.; Segalman, D.J. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1996-12-31

    A buckling calculation procedure based on the method of quadratic components is presented. Recently developed for simulating the motion of rotating flexible structures, the method of quadratic components is shown to be applicable to buckling problems with either conservative or nonconservative loads. For conservative loads, stability follows from the positive definiteness of the system`s stiffness matrix. For nonconservative loads, stability is determined by solving a nonsymmetric eigenvalue problem, which depends on both the stiffness and mass distribution of the system. Buckling calculations presented for a cantilevered beam are shown to compare favorably with classical results. Although the example problem is fairly simple and well-understood, the procedure can be used in conjunction with a general-purpose finite element code for buckling calculations of more complex systems.

  2. Buckling transition in long α-helices

    Energy Technology Data Exchange (ETDEWEB)

    Palenčár, Peter; Bleha, Tomáš, E-mail: bleha@savba.sk [Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava (Slovakia)

    2014-11-07

    The treatment of bending and buckling of stiff biopolymer filaments by the popular worm-like chain model does not provide adequate understanding of these processes at the microscopic level. Thus, we have used the atomistic molecular-dynamic simulations and the Amber03 force field to examine the compression buckling of α-helix (AH) filaments at room temperature. It was found that the buckling instability occurs in AHs at the critical force f{sub c} in the range of tens of pN depending on the AH length. The decrease of the force f{sub c} with the contour length follows the prediction of the classic thin rod theory. At the force f{sub c} the helical filament undergoes the swift and irreversible transition from the smoothly bent structure to the buckled one. A sharp kink in the AH contour arises at the transition, accompanied by the disruption of the hydrogen bonds in its vicinity. The kink defect brings in an effective softening of the AH molecule at buckling. Nonbonded interactions between helical branches drive the rearrangement of a kinked AH into the ultimate buckled structure of a compact helical hairpin described earlier in the literature.

  3. Voltage-Induced Buckling of Dielectric Films using Fluid Electrodes

    CERN Document Server

    Tavakol, Behrouz

    2016-01-01

    Accurate and integrable control of different flows within microfluidic channels is crucial to further development of lab-on-a-chip and fully integrated adaptable structures. Here we introduce a flexible microactuator that buckles at a high deformation rate and alters the downstream fluid flow. The microactuator consists of a confined, thin, dielectric film that buckles into the microfluidic channel when exposed to voltage supplied through conductive fluid electrodes. We estimate the critical buckling voltage, and characterize the buckled shape of the actuator. Finally, we investigate the effects of frequency, flow rate, and the pressure differences on the behavior of the buckling structure and the resulting fluid flow. These results demonstrate that the voltage--induced buckling of embedded microstructures using fluid electrodes provides a means for high speed attenuation of microfluidic flow.

  4. Buckling analysis of planar compression micro-springs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Sui, Li; Shi, Gengchen [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Science and Technology on Electromechanical Dynamic Control Laboratory, 5 South Street Zhongguancun, Haidian 100081, Beijing (China)

    2015-04-15

    Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software under two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.

  5. Fermions on the low-buckled honey-comb structured lattice plane and classical Casimir-Polder force

    Science.gov (United States)

    Goswami, Partha

    2016-05-01

    We start with the well-known expression for the vacuum polarization and suitably modify it for 2+1-dimensional spin-orbit coupled (SOC) fermions on the low-buckled honey-comb structured lattice plane described by the low-energy Liu-Yao-Feng-Ezawa (LYFE) model Hamiltonian involving the Dirac matrices in the chiral representation obeying the Clifford algebra. The silicene and germanene fit this description suitably. They have the Dirac cones similar to those of graphene and SOC is much stronger. The system could be normal or ferromagnetic in nature. The silicene turns into the latter type if there is exchange field arising due to the proximity coupling to a ferromagnet (FM) such as depositing Fe atoms to the silicene surface. For the silicene, we find that the many-body effects considerably change the bare Coulomb potential by way of the dependence of the Coulomb propagator on the real-spin, iso-spin and the potential due to an electric field applied perpendicular to the silicene plane. The computation aspect of the Casimir-Polder force (CPF) needs to be investigated in this paper. An important quantity in this process is the dielectric response function (DRF) of the material. The plasmon branch was obtained by finding the zeros of DRF in the long-wavelength limit. This leads to the plasmon frequencies. We find that the collective charge excitations at zero doping, i.e., intrinsic plasmons, in this system, are absent in the Dirac limit. The valley-spin-split intrinsic plasmons, however, come into being in the case of the massive Dirac particles with characteristic frequency close to 10 THz. Our scheme to calculate the Casimir-Polder interaction (CPI) of a micro-particle with a sheet involves replacing the dielectric constant of the sample in the CPI expression obtained on the basis of the Lifshitz theory by the static DRF obtained using the expressions for the polarization function we started with. Though the approach replaces a macroscopic constant by a microscopic

  6. The Effect of a Non-Gaussian Random Loading on High-Cycle Fatigue of a Thermally Post-Buckled Structure

    Science.gov (United States)

    Rizzi, Stephen A.; Behnke, marlana N.; Przekop, Adam

    2010-01-01

    High-cycle fatigue of an elastic-plastic beam structure under the combined action of thermal and high-intensity non-Gaussian acoustic loadings is considered. Such loadings can be highly damaging when snap-through motion occurs between thermally post-buckled equilibria. The simulated non-Gaussian loadings investigated have a range of skewness and kurtosis typical of turbulent boundary layer pressure fluctuations in the vicinity of forward facing steps. Further, the duration and steadiness of high excursion peaks is comparable to that found in such turbulent boundary layer data. Response and fatigue life estimates are found to be insensitive to the loading distribution, with the minor exception of cases involving plastic deformation. In contrast, the fatigue life estimate was found to be highly affected by a different type of non-Gaussian loading having bursts of high excursion peaks.

  7. Dynamic buckling of stiffened plates subjected to explosion impact loads

    Science.gov (United States)

    Wang, J.; Guo, J.; Yao, X. L.; Zhang, A. M.

    2016-03-01

    The dynamic buckling characteristics and criteria of a ship's structural stiffened plate subjected to underwater explosion impact loads are investigated in this study. Using the structural deformations observed in the experiments of underwater explosions against a plated grillage model, the mode shapes of the dynamic buckling were obtained. Through the construction of a computational model of stiffened plates subjected to an underwater explosion shock wave, the impact load was theoretically calculated and transformed into a rectangular pulse. According to the different response patterns of stiffened plates under different impact loads, a dynamic buckling criterion for the stiffened plates subjected to an explosion shock wave was proposed. Additionally, the static buckling phenomenon in the stiffened plates was analysed based on the minimum excess principle. In combination with the dynamic buckling criterion, the effects of various stiffening configurations on the dynamic and static buckling loads are discussed. The calculation results show that when the equivalent rectangular pulse is 2-3 times that of the static buckling load, the responses of the stiffened plates under the original shock load and the equivalent rectangular pulse are virtually identical. The impact load amplitude is the primary influencing factor in the dynamic buckling of stiffened plates subjected to underwater explosive impact loads. The stiffened plate aspect ratio has a substantial influence on the dynamic load factor. The analytical method and results are presented, which can be used to design stiffened optimum hull structures to enhance the dynamic load carrying capacity to withstand underwater shock damage.

  8. Electrical characterization of a buckling thermal energy harvester

    Science.gov (United States)

    Trioux, E.; Rufer, L.; Monfray, S.; Skotnicki, T.; Muralt, P.; Basrour, S.

    2015-12-01

    This paper presents the electrical characterizations of a novel concept for thermal energy harvesting at micro scale. The devices presented here are based on a two-step transduction combining thermo-mechanical and piezoelectric conversion. The piezoelectric layer is directly integrated into a buckling bilayer plate made of aluminium and aluminium nitride. For the first time, we have characterized the structures electrically and we have investigated their output power during the buckling. Firstly, we have used an insulating tip to make the plate buckle in order to have an estimation of the output power due to piezoelectric contribution only, and to eliminate any pyroelectric contribution that might be present during the thermal actuation. Then, we heated up the structure and we collected the output signal with an instrumentation amplifier in order to measure the voltage generated during the buckling. The output power during the mechanical and the thermal buckling is compared in the paper.

  9. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on...... external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in...

  10. Buckling of Carbon Nanotubes: A State of the Art Review

    Directory of Open Access Journals (Sweden)

    Hiroyuki Shima

    2011-12-01

    Full Text Available The nonlinear mechanical response of carbon nanotubes, referred to as their “buckling” behavior, is a major topic in the nanotube research community. Buckling means a deformation process in which a large strain beyond a threshold causes an abrupt change in the strain energy vs. deformation profile. Thus far, much effort has been devoted to analysis of the buckling of nanotubes under various loading conditions: compression, bending, torsion, and their certain combinations. Such extensive studies have been motivated by (i the structural resilience of nanotubes against buckling, and (ii the substantial influence of buckling on their physical properties. In this contribution, I review the dramatic progress in nanotube buckling research during the past few years.

  11. The secondary buckling transition: wrinkling of buckled spherical shells

    OpenAIRE

    Knoche, Sebastian; Kierfeld, Jan

    2014-01-01

    We theoretically explain the complete sequence of shapes of deflated spherical shells. Decreasing the volume, the shell remains spherical initially, then undergoes the classical buckling instability, where an axisymmetric dimple appears, and, finally, loses its axisymmetry by wrinkles developing in the vicinity of the dimple edge in a secondary buckling transition. We describe the first axisymmetric buckling transition by numerical integration of the complete set of shape equations and an app...

  12. Buckling analysis of spent fuel basket

    International Nuclear Information System (INIS)

    The basket for a spent fuel shipping cask is subjected to compressive stresses that may cause global instability of the basket assemblies or local buckling of the individual members. Adopting the common buckling design practice in which the stability capacity of the entire structure is based on the performance of the individual members of the assemblies, the typical spent fuel basket, which is composed of plates and tubular structural members, can be idealized as an assemblage of columns, beam-columns and plates. This report presents the flexural buckling formulas for five load cases that are common in the basket buckling analysis: column under axial loads, column under axial and bending loads, plate under uniaxial loads, plate under biaxial loadings, and plate under biaxial loads and lateral pressure. The acceptance criteria from the ASME Boiler and Pressure Vessel Code are used to determine the adequacy of the basket components. Special acceptance criteria are proposed to address the unique material characteristics of austenitic stainless steel, a material which is frequently used in the basket assemblies

  13. Buckling analysis of spent fuel basket

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.S.; Bumpas, S.E. [Lawrence Livermore National Lab., CA (United States)

    1995-05-01

    The basket for a spent fuel shipping cask is subjected to compressive stresses that may cause global instability of the basket assemblies or local buckling of the individual members. Adopting the common buckling design practice in which the stability capacity of the entire structure is based on the performance of the individual members of the assemblies, the typical spent fuel basket, which is composed of plates and tubular structural members, can be idealized as an assemblage of columns, beam-columns and plates. This report presents the flexural buckling formulas for five load cases that are common in the basket buckling analysis: column under axial loads, column under axial and bending loads, plate under uniaxial loads, plate under biaxial loadings, and plate under biaxial loads and lateral pressure. The acceptance criteria from the ASME Boiler and Pressure Vessel Code are used to determine the adequacy of the basket components. Special acceptance criteria are proposed to address the unique material characteristics of austenitic stainless steel, a material which is frequently used in the basket assemblies.

  14. Buckling Analysis of Woven Glass Epoxy Laminated Composite Plate

    OpenAIRE

    M Mohan Kumar

    2013-01-01

    Buckling behavior of laminated composite plates subjected to in-plane loads is an important consideration in the preliminary design of aircraft components. The sizing of many structural subcomponents of the aircraft structures is often determined by stability constraints. The objective of the current study is to understand the influence of the length-to-thickness ratio, the aspect ratio, the fiber orientation and the cut-out shapes on the buckling load for the glass epoxy laminated composit...

  15. A Comparative Study on Numerical Buckling Analysis for a Cantilever Steel Pipe Column under Combined Loads

    Directory of Open Access Journals (Sweden)

    Yungang Zhan, Minxin Li

    2013-07-01

    Full Text Available Buckling of a cantilever steel pipe column under combined loads was studied through linear and nonlinear numerical analysis method. Firstly, linear buckling analysis of the cantilever column with linear-elastic material was used to select appropriate element type and element size for this problem. Then linear buckling and nonlinear buckling analyses for an imperfect cantilever column under different horizontal loads or displacements in the context of elasticity were performed to verify the ability of the linear buckling analysis to include large geometric changes. Thirdly, nonlinear analyses were carried out to examine the effect of plastification of material on the buckling limit loads for the imperfect cantilever column. Through these comparative studies, some aspects concerned with the numerical buckling analysis of structures such as columns were clarified.

  16. Early detection of local buckling in composite bars

    Science.gov (United States)

    Sundaresan, Mannur J.; Ali, Bashir; Ferguson, Frederick; Schulz, Mark J.

    2002-11-01

    Most structural health monitoring analyses to date have focused on the determination of damage in the form of crack growth in metallic materials or delamination or other types of damage growth in composite materials. However, in many applications local instability in the form of buckling can be the precursor to more extensive damage and unstable failure of the structure. If buckling could be detected in the very early stages, there is a possibility of taking preventive measures to stabilize and save the structure. Relatively few investigations have addressed this type of damage initiation in structures. Recently, during the structural health monitoring of wind turbine blades, local buckling was identified as the cause of premature failure. Results from this investigation suggested that stress waves could be used for detecting the early signs of change in the local curvature that precedes buckling type of failure in this structure. These conditions have been replicated in the laboratory and detailed investigation on the ability of low frequency vibrations to detect the buckling displacement has been carried out. The experiment was performed on a composite bar. The results clearly show that low frequency vibrations could be used to detect the onset of buckling in which the local deflection is only of the order of 0.25 inches.

  17. The secondary buckling transition: wrinkling of buckled spherical shells.

    Science.gov (United States)

    Knoche, Sebastian; Kierfeld, Jan

    2014-07-01

    We theoretically explain the complete sequence of shapes of deflated spherical shells. Decreasing the volume, the shell remains spherical initially, then undergoes the classical buckling instability, where an axisymmetric dimple appears, and, finally, loses its axisymmetry by wrinkles developing in the vicinity of the dimple edge in a secondary buckling transition. We describe the first axisymmetric buckling transition by numerical integration of the complete set of shape equations and an approximate analytic model due to Pogorelov. In the buckled shape, both approaches exhibit a locally compressive hoop stress in a region where experiments and simulations show the development of polygonal wrinkles, along the dimple edge. In a simplified model based on the stability equations of shallow shells, a critical value for the compressive hoop stress is derived, for which the compressed circumferential fibres will buckle out of their circular shape in order to release the compression. By applying this wrinkling criterion to the solutions of the axisymmetric models, we can calculate the critical volume for the secondary buckling transition. Using the Pogorelov approach, we also obtain an analytical expression for the critical volume at the secondary buckling transition: The critical volume difference scales linearly with the bending stiffness, whereas the critical volume reduction at the classical axisymmetric buckling transition scales with the square root of the bending stiffness. These results are confirmed by another stability analysis in the framework of Donnel, Mushtari and Vlasov (DMV) shell theory, and by numerical simulations available in the literature. PMID:25039007

  18. Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Rong Ming Lin

    2015-04-01

    Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.

  19. Buckling restrained braces

    Directory of Open Access Journals (Sweden)

    Ramazan ÖZÇELİK

    2016-06-01

    Full Text Available Buckling restrained braces (BRBs have high energy dissipation capacity and equal tension and compression axial load capacity. Therefore, the application of BRBs has gained popularity in seismic regions. The first studies on BRBs started in Japan in 1970 and since then more studies have been undertaken in other earthquake prone countries. Although the BRBs perform well in component and subassembly tests, they do not perform as well in frame tests because of the interaction between beam-column-gusset plate and BRB. In this study, the component and subassembly test of the BRBs and then BRB frame tests available in the literature are summarized.

  20. Combined scleral buckling and phacoemulsification

    OpenAIRE

    Pukhraj Rishi; Tarun Sharma(Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba-400005, India); Ekta Rishi; Chaudhary, Soumendra P.

    2009-01-01

    Aims: To analyze the outcome of combined scleral buckling and phacoemulsification for primary rhegmatogenous retinal detachment and visually significant cataract. Settings and Design: Retrospective, interventional case series. Materials and Methods: Retrospective review of patients with primary rhegmatogenous detachment with or without proliferative vitreoretinopathy (PVR) changes and visually significant cataract who underwent combined scleral buckling and phacoemulsification with or w...

  1. Curved thin shell buckling behaviour

    Directory of Open Access Journals (Sweden)

    G. Forasassi

    2007-08-01

    Full Text Available Purpose: The aim of the paper is to evaluate buckling instabilities behaviour of long curved thin shell. Both initially straight and curved tubes are investigated with numerical and experimental assessment methods, in the context of NPP applications with an illustrative example for IRIS LWR integrated Steam Generator (SG tubes.Design/methodology/approach: In this study structural buckling response tube with combination effects of geometric imperfections as well as initially bent shape under external pressure load are investigated using a non linear finite element (MSC.MARC FEM code formulation analysis. Moreover results are presented, extending the findings of previous research activity works, carried out at Pisa University, on thin walled metal specimen.Findings: The experiments were conducted on Inconel 690 test specimen tube. The comparison between numerical and experimental results, for the same geometry and loading conditions, shows a good agreement between the elastic-plastic finite-element predictions and the experimental data.Research limitations/implications: The presented research results may be considered preliminary in the sense that it would be important to enlarge the statistical base of the results themselves, even if they are yet certainly meaningful to highlight the real problem, considering the relatively large variability of the geometrical imperfections and bending instabilities also in high quality production tubes.Originality/value: From the point of view of the practical implication, besides the addressed problem general interest in industrial plant technology, it is worth to stress that straight and curved axis tubes are foreseen specifically in innovative nuclear reactors SG design.

  2. Buckling Analysis of Woven Glass Epoxy Laminated Composite Plate

    Directory of Open Access Journals (Sweden)

    M Mohan Kumar

    2013-07-01

    Full Text Available Buckling behavior of laminated composite plates subjected to in-plane loads is an important consideration in the preliminary design of aircraft components. The sizing of many structural subcomponents of the aircraft structures is often determined by stability constraints. The objective of the current study is to understand the influence of the length-to-thickness ratio, the aspect ratio, the fiber orientation and the cut-out shapes on the buckling load for the glass epoxy laminated composite plate in clamped-free-clamped-free configuration by FE analysis using MSC.Patran/Nastran. Initially, buckling analysis was carried out on aluminum plates, both; experimentally and numerically; for the two different geometric configurations to predict the critical buckling load and the test results were compared with the FEA predictions, to check the validity of the analysis methodology. The same methodology was further followed for analyzing the buckling behavior of the composite plates. The results shows the effect of orientation of fiber, aspect ratio, cut-out shape and lengthto-thickness ratio on the buckling of the glass epoxy laminated composite plate

  3. A NASTRAN DMAP alter for linear buckling analysis under dynamic loading

    Science.gov (United States)

    Aiello, Robert A.; Grady, Joseph E.

    1989-01-01

    A modification to the NASTRAN solution sequence for transient analysis with direct time integration (COSMIC NASTRAN rigid format 9) was developed and incorporated into a DMAP alter. This DMAP alter calculates the buckling stability of a dynamically loaded structure, and is used to predict the onset of structural buckling under stress-wave loading conditions. The modified solution sequence incorporates the linear buckling analysis capability (rigid format 5) of NASTRAN into the existing Transient solution rigid format in such a way as to provide a time dependent eigensolution which is used to assess the buckling stability of the structure as it responds to the impulsive load. As a demonstration of the validity of this modified solution procedure, the dynamic buckling of a prismatic bar subjected to an impulsive longitudinal compression is analyzed and compared to the known theoretical solution. In addition, a dynamic buckling analysis is performed for the analytically less tractable problem of the localized dynamic buckling of an initially flawed composite laminate under transverse impact loading. The addition of this DMAP alter to the transient solution sequence in NASTRAN facilitates the computational prediction of both the time at which the onset of dynamic buckling occurs in an impulsively loaded structure, and the dynamic buckling mode shapes of that structure.

  4. Buckling Characteristics of Cylindrical Pipes

    Institute of Scientific and Technical Information of China (English)

    Toshiaki Sakurai

    2015-01-01

    This paper describes the buckling pattern of the body frame by energy absorbed efficiency of crashworthiness related toresearch of the buckling characteristics of aluminum cylindrical pipes with various diameters formed mechanical tools. Experimentswere performed by the quasi-static test without lubrication between specimen and equipment. According to the change in the radiusversus thickness of the specimen, the buckling phenomena are transformed from folding to bellows and the rate of energy absorptionis understood. In crashworthiness, frames are characterized by the folding among three patterns from the absorbed energy efficiencypoint of view and weight reduction. With the development of new types of transport such as electric vehicles, innovated bodystructure should be designed.

  5. The effect of temperature on the compressive buckling of boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shokuhfar, Ali; Ebrahimi-Nejad, Salman [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, 19991-43344 Tehran (Iran, Islamic Republic of); Hosseini-Sadegh, Amin [Faculty of Petroleum Engineering, Petroleum University of Technology, 14539-53153 Tehran (Iran, Islamic Republic of); Zare-Shahabadi, Abolfazl [Department of Mechanical Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2012-07-15

    Inspired by the stability at high temperature and the high mechanical strength of boron nitride nanotubes (BNNTs), the effect of temperature on the compressive buckling of BNNTs has been investigated in this paper. Molecular dynamics (MD) simulations of BNNTs subjected to high temperatures (up to 3000 K) were performed and their structures were analyzed by studying their optimized structures at different temperatures through the radial distribution function (RDF). Then, the structural stability and compressive resistance properties of these nanotubes were investigated and the critical buckling loads and critical buckling strains of the nanotubes and their susceptibility to high temperatures were determined. The gradual decrease in the sharpness of the peaks of RDF plots of non-loaded nanotubes implies that at higher temperatures the structure displays greater deviations from that at room temperature. Results of buckling simulations also indicate a general weakening of the nanotubes and lower critical buckling loads and critical buckling strains at increased temperatures. The decrease in the critical buckling load is more significant for the longer nanotube (L {proportional_to} 6 nm) than the shorter one (L {proportional_to} 3 nm). The critical buckling strain experienced a drop of about 35-50% at temperatures higher than 1500 K. A transitional behavior was observed between T = 1000 and 2000 K. Temperature-dependent axial buckling behavior of boron nitride nanotubes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Probabilistic buckling analysis of the beam steel structures subjected to fire by the stochastic finite element method

    Science.gov (United States)

    Świta, P.; Kamiński, M.

    2016-05-01

    The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force) and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM) by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.

  7. CHAOTIC VIBRATION OF BUCKLED BEAMS AND PLATES

    Directory of Open Access Journals (Sweden)

    Daniela BARAN

    2009-12-01

    Full Text Available The great developing of numerical analysis of the dynamic systems emphasizes the existence of astrong dependence of the initial conditions, described in the phase plane by attractors with acomplicated geometrical structure. The Lyapunov exponents are used to determine if there is a realstrong dependence on the initial conditions: there is at least a positive exponent if the system has achaotic evolution and all the Lyapunov exponents are negative if the system has not such anevolution. Determining the largest Lyapunov exponent , which is easier to calculate, is sufficient todraw such conclusions. In this paper we shall use the greatest Lyapunov exponent to study twowell-known problems who leads to chaotic motions: the problem of the buckled beam and the panelflutter problem. In the problem of the buckled beam we verify the results obtained with theMelnikov theorem with the maximum Lyapunov exponent [1]. The flutter of a buckled plate is alsoa problem characterized by strong dependence of the initial conditions, existence of attractors withcomplicated structure existence of periodic unstable motions with very long periods (sometimesinfinite periods.

  8. Scleral buckling with hydrogel implant

    Directory of Open Access Journals (Sweden)

    Das Taraprasad

    1991-01-01

    Full Text Available The hydrogel implant for scleral buckling, first developed in 1980, is said to combine the advantages of both solid silicone rubber and silicone sponges. But it is still not widely used. Our clinical experience with the hydrogel implant used in 23 cases of rhegmatogenous retinal detachment is described. It was used both as exoplant and implant. Anatomical success was achieved in 91% of the cases. There was no infection, erosion, migration of extrusion of the buckle. The advantages are that it is soft, elastic, nontoxic, and nonpyogenic; it is devoid of infection and postoperatively it swells up, for additional heightening of the buckle. This new material appears to combine the advantages of both silicone sponge and solid silicon rubber thereby providing an ideal buckling material.

  9. A probabilistic method for the buckling assessment of stiffened composite shells

    Science.gov (United States)

    Shiao, Michael C.; Abumeri, Galib H.; Singhal, Surendra N.; Chamis, Christos C.

    1993-01-01

    A method is described to computationally simulate probabilistic buckling behavior of multilayered composite shells. The simulation accounts for all naturally-occurring uncertainties including those in constituent (fiber/matrix) material properties, fabrication variables, and structure geometry. The method is demonstrated for probabilistically assessing the buckling survivability of a specific case of a stiffened composite cylindrical shell with and without cutouts. The sensitivities of various uncertain variables on the buckling survivability are evaluated at specified reliability. The results show that the buckling survivability for a shell without cutouts depends primarily on shell skin related uncertainties. However, stringer related uncertainties become important for a shell with cutouts.

  10. Buckling analysis of partially corroded steel plates with irregular surfaces

    Indian Academy of Sciences (India)

    Ahmad Rahbar-Ranji

    2014-04-01

    Corrosion is a long-term, inevitable process, lessens the thickness and load carrying capacity of structures. Old steel structures are more vulnerable to buckling, yielding and fracture due to corrosion. In lieu of a detailed analysis, average thickness assumption is employed for general type of corrosion. However, the estimation of load carrying capacity reduction of corroded structures typically need a much higher level of accuracy, since the actual corroded plates would have irregular surfaces. The objective of this article is to determine the effect of general corrosion on reduction of elastic buckling strength of both-sided partially corroded plates with irregular surfaces. Eigenvalue analysis using finite element method is employed for Euler stress calculation of corroded plates. The effects of different influential parameters are investigated and it is found that, aspect ratio of plate, location of corroded area, standard deviation of thickness diminution and concentration of corrosion have influence on reduction of elastic buckling strength. Reduction of elastic buckling strength is very sensitive to the amount of corrosion loss. The higher the amount of corrosion loss, the more reduction of elastic buckling strength.

  11. Numerical Simulations on Buckling Failure of Preloaded Cylindrical Shell Irradiated by High Power Laser Beam

    Institute of Scientific and Technical Information of China (English)

    王吉; 王肖钧; 王峰; 赵凯

    2004-01-01

    With finite-element software ANSYS 7.0 and simple thermal-mechanical coupling constitutive relations,the buckling failure of preloaded cylindrical shell irradiated by high power laser beam was studied by numerical simulations. The buckling mode and buckling critical loading were analysed for different preloading conditions. The influence of laser intensity, beam irradiation time, preloading conditions and geometric parameters of cylindrical shell on the buckling mode were discussed. The numerical results show that: ① the buckling deformation of the cylindrical shell was concentrated in the area of laser spot and the radial buckling was the main buckling mode, ② a linear relationship between the buckling eigenvalue and the maximum temperature at the center of laser spot was approached, ③ the buckling failure of cylindrical shell was attributed to the coupling effect of the material softening and the radial deformation in the laser spot, and hence to raise the stiffness of the material would enhance the ability for anti-irradiation of structure substantially.

  12. Nonlinear Guided Waves in Continuously Welded Rails for Buckling Prediction

    Science.gov (United States)

    Phillips, Robert; Bartoli, Ivan; Coccia, Stefano; Lanza di Scalea, Francesco; Salamone, Salvatore; Nucera, Claudio; Fateh, Mahmood; Carr, Gary

    2011-06-01

    Most modern railways use Continuous Welded Rail (CWR). A major problem is the almost total absence of expansion joints that can create severe issues such as buckling in hot weather and breakage in cold weather. A related critical parameter is the rail Neutral Temperature (NT), or the temperature at which the net longitudinal force in the rail is zero. In June 2008 the University of California, San Diego (UCSD), under the sponsorship of a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, began work to develop a technique for in-situ measurement of NT and detection of incipient buckling in CWR. The method under investigation is based on ultrasonic guided waves, and the ultimate goal is to build and test a prototype that can be used in motion. A large-scale full rail track (70 feet in length) has been constructed at UCSD's Powell Structural Laboratories, the largest laboratories in the country for structural testing, to validate the NT measurement and buckling detection technique under rail heating conditions well controlled in the laboratory. This paper reports on the status of this project, including proof-of-principle results of stress measurement and buckling detection on a steel I-beam, and initial test results from the large-scale rail testbed at the Powell Labs. These results pave the road for the future development of the rail NT/buckling detection prototype.

  13. A review of analysis methods about thermal buckling

    International Nuclear Information System (INIS)

    This paper highlights the main items emerging from a large bibliographical survey carried out on strain-induced buckling analysis methods applicable in the building of fast neutron reactor structures. The work is centred on the practical analysis methods used in construction codes to account for the strain-buckling of thin and slender structures. Methods proposed in the literature concerning past and present studies are rapidly described. Experimental, theoretical and numerical methods are considered. Methods applicable to design and their degree of validation are indicated

  14. Study on vessels' seismic buckling

    International Nuclear Information System (INIS)

    Inspection on Kashiwazaki-Kariwa Nuclear Power Station after the Niigateken Chuetsu-oki Earthquake in 2007 observed obvious buckling in some fluid storage vessels, the filtrate tanks and de-ionized Water tanks. All vessels with buckling belong to Seismic class C. Contrary the other vessels such as Diesel tanks showed no damage. Those phenomena presumably are brought about by differences in the vessels' condition (Vessels geometries, Fluid weight, etc.) and the seismic load on each vessel. In this study, the elephant's foot buckling occurred on the filtrate tank was simulated by FEM analysis of the large displacement elastic-plastic model with the recorded time history of seismic acceleration. The same analysis on the diesel was conducted tank to see that no damage took place also in the analysis. (author)

  15. Dynamic buckling of shells: evaluation of various methods

    International Nuclear Information System (INIS)

    The problem of dynamic stability is substantially more complex than the buckling analysis of a shell subjected to static loads. Even at this date suitable criteria for dynamic buckling of shells, which are both logically sound and practically applicable, are not easily available. Thus, a variety of analyses are available to the user, encompassing various degrees of complexity, and involving a range of simplifying assumptions. The purpose of this paper is to compare and evaluate some of these solutions by applying them to a specific problem. A shallow spherical cap, subjected to an axisymmetric, uniform-pressure, step loading, is used as the structural example. The predictions, by various methods, of the dynamic buckling of this shell into unsymmetric modes, are then investigated and compared. (Auth.)

  16. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  17. Buckling of microtubules: An insight by molecular and continuum mechanics

    International Nuclear Information System (INIS)

    The molecular structural mechanics method has been extended to investigate the buckling of microtubules (MTs) with various configurations. The results indicate that for relative short MTs the shear deformation effect, rather than the nonlocal effect, is mainly responsible for the limitation of their widely used Euler beam description and the observed length-dependence of their bending stiffness. In addition, the configuration effect of MTs is also studied and considered as an explanation for the large scattering of the critical buckling force and bending stiffness observed in existing experiments. This configuration effect is also found to mainly originate from the geometry of the MTs and is mainly determined by the protofilament number.

  18. Quantum capacitance in monolayers of silicene and related buckled materials

    Science.gov (United States)

    Nawaz, S.; Tahir, M.

    2016-02-01

    Silicene and related buckled materials are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit coupling and the buckled structure. These materials have potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit coupling. We present a theoretical realization of quantum capacitance which has advantages over the scattering problems of traditional transport measurements. We derive and discuss quantum capacitance as a function of the Fermi energy and temperature taking into account electron-hole puddles through a Gaussian broadening distribution. Our predicted results are very exciting and pave the way for future spintronic and valleytronic devices.

  19. Elastic Buckling of Bionic Cylindrical Shells Based on Bamboo

    Institute of Scientific and Technical Information of China (English)

    Jian-feng Ma; Wu-yi Chen; Ling Zhao; Da-hai Zhao

    2008-01-01

    High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years.Biomimicking from nature may offer the potential for lightweight design. In the viewpoint of mechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.

  20. Buckling and Vibration of Fiber Reinforced Composite Plates With Nanofiber Reinforced Matrices

    Science.gov (United States)

    Chamis, Christos C.; Murthy, Pappu L. N.

    2011-01-01

    Anisotropic composite plates were evaluated with nanofiber reinforced matrices (NFRM). The nanofiber reinforcement volumes ratio in the matrix was 0.01. The plate dimensions were 20 by 10 by 1.0 in. (508 by 254 by 25.4 mm). Seven different loading condition cases were evaluated for buckling: three for uniaxial loading, three for pairs of combined loading, and one with three combined loadings. The anisotropy arose from the unidirectional plates having been at 30 from the structural axis. The anisotropy had a full 6 by 6 rigidities matrix which were satisfied and solved by a Galerkin buckling algorithm. For vibration the same conditions were used with the applied cods about a small fraction of the buckling loads. The buckling and vibration results showed that the NFRM plates buckled at about twice those with conventional matrix.

  1. Intrinsic buckling strength of graphene: First-principles density functional theory calculations

    Science.gov (United States)

    Kumar, Sandeep; Hembram, K. P. S. S.; Waghmare, Umesh V.

    2010-09-01

    How graphene, an atomically thin two-dimensional crystal, explores the third spatial dimension by buckling under compression is not yet understood. Knowledge of graphene’s buckling strength, the load at which it transforms from planar to buckled form, is a key to ensure mechanical stability of graphene-based nanoelectronic and nanocomposite devices. Here, we establish using first-principles theoretical analysis that graphene has an intrinsic rigidity against buckling, and it manifests in a weakly linear component in the dispersion of graphene’s flexural acoustic mode, which is believed to be quadratic. Contrary to the expectation from the elastic plate theory, we predict within continuum analysis that a graphene monolayer of macroscopic size buckles at a nonzero critical compressive strain at T=0K , and demonstrate it numerically from first principles. The origin of this rigidity is traced to the coupling between structural and electronic degrees of freedom arising from curvature-induced overlap between π orbitals in graphene.

  2. Analytical and experimental vibration and buckling characteristics of a pretensioned stayed column

    Science.gov (United States)

    Belvin, W. K.

    1982-01-01

    Modal vibration tests to determine lateral modes of vibration of a stayed column and static axial compression tests to determine the column's buckling and postbuckling behavior have been performed. Effects of stay tension levels and vibration-load interaction are presented. Two finite element models are used to analyze the column, a three-dimensional frame using NASTRAN and an equivalent two-dimensional frame using an exact dynamic stiffness matrix. Both analyses correlated well with the linear vibration and buckling experimental data. Results indicate premature buckling of the column due to vibration-load interaction and nonlinear oscillations due to stay slackening. Postbuckling behavior of the column is unusual because of stay slackening and results in a postbuckling restoring force of less than the bifurcation buckling load. Guidelines for design of pretensioned structures are presented which consider buckling, postbuckling and vibration behavior.

  3. Large-Area Buckled MoS2 Films on the Graphene Substrate.

    Science.gov (United States)

    Kim, Seon Joon; Kim, Dae Woo; Lim, Joonwon; Cho, Soo-Yeon; Kim, Sang Ouk; Jung, Hee-Tae

    2016-06-01

    In this study, a novel buckled structure of edge-oriented MoS2 films is fabricated for the first time by employing monolayer graphene as the substrate for MoS2 film growth. Compared to typical buckling methods, our technique has several advantages: (1) external forces such as heat and mechanical strain are not applied; (2) uniform and controllable buckling over a large area is possible; and (3) films are able to be transferred to a desired substrate. Dual MoS2 orientation was observed in the buckled film where horizontally aligned MoS2 layers of 7 nm thickness were present near the bottom graphene surface and vertically aligned layers dominated the film toward the outer surface, in which the alignment structure was uniform across the entire film. The catalytic ability of the buckled MoS2 films, measured by performing water-splitting tests in acidic environments, shows a reduced onset potential of -0.2 V versus reversible hydrogen electrode (RHE) compared to -0.32 V versus RHE for pristine MoS2, indicating that the rough surface provided a higher catalytic activity. Our work presents a new method to generate a buckled MoS2 structure, which may be extended to the formation of buckled structures in various 2D materials for future applications. PMID:27144288

  4. Uncertainty modelling of critical column buckling for reinforced concrete buildings

    Indian Academy of Sciences (India)

    Kasim A Korkmaz; Fuat Demir; Hamide Tekeli

    2011-04-01

    Buckling is a critical issue for structural stability in structural design. In most of the buckling analyses, applied loads, structural and material properties are considered certain. However, in reality, these parameters are uncertain. Therefore, a prognostic solution is necessary and uncertainties have to be considered. Fuzzy logic algorithms can be a solution to generate more dependable results. This study investigates the material uncertainties on column design and proposes an uncertainty model for critical column buckling reinforced concrete buildings. Fuzzy logic algorithm was employed in the study. Lower and upper bounds of elastic modulus representing material properties were defined to take uncertainties into account. The results show that uncertainties play an important role in stability analyses and should be considered in the design. The proposed approach is applicable to both future numerical and experimental researches. According to the study results, it is seen that, calculated buckling load values are stayed in lower and upper bounds while the load values are different for same concrete strength values by using different code formula.

  5. Buckling behaviour of PFBR main vessel and its thermal baffles under seismic loadings

    International Nuclear Information System (INIS)

    The special feature of pool type fast breeder reactor is the usage of very large sized thin shell structures for its reactor vessels. Due to the large diameter to thickness ratio (around 700 to 900), design of these vessels poses challenging structural mechanics problems particularly under seismic loading. An important threat to structural integrity of reactor vessels is the buckling risk during seismic events. The buckling design involves determination of critical buckling load and comparing it with operating load, to ensure that enough safety factors recommended by RCC-MR are available at all loading levels (RCC-MR 1985). The determination of critical buckling load particularly under seismic loading is a complicated task due to dynamic effects, non-axisymmetric nature of loading, material and geometrical nonlinearities, effect of geometric imperfections and boundary conditions and the interaction of different modes of buckling. Based on literature survey and extensive benchmark studies, the above complexities involved in the buckling analysis have been resolved and subsequent analysis is done for the main vessel and its thermal baffle of Prototype Fast Breeder Reactor (PFBR). The integrity of main vessel is very important since it forms an important part of primary containment and also carries around 1250 t of radioactive sodium. The integrity of thermal baffles is not very important during Safe Shutdown Earthquake (SSE) (level D) loading. However, for the operational basis earthquake (OBE) (Level-B loading), thermal baffles should be designed for meeting buckling criteria since either the loss of their integrity or large displacements may affect the cooling passage for the cold sodium flow and in turn, the temperature of main vessel may rise above the creep temperature. While the straight portion of main vessel is subjected to shear and bending mode of buckling, its dished end is subjected to shell mode buckling during seismic events. The dynamic pressure

  6. Post-buckling failure in multi-delaminated composite wind turbine blade materials

    International Nuclear Information System (INIS)

    Highlights: → To study the buckling and post-buckling resistance of multi-delaminated composite structures. → To improve the post-buckling resistance of delaminated composite structures using natural flax yarn. → To investigate the effect of z-pinning on the interlaminar crack propagation in composite materials. → To develop FE techniques to model the buckling process of multi-delaminated composite structures using ANSYS. -- Abstract: This study models the inter-laminar damage due to low velocity impacts on hybrid composite materials typical of those used in wind turbine blade structures. The effect of z-pinning using natural flax yarn on the critical buckling load and post-buckling behaviour of multi-delaminated composite beams was investigated. Laminated composite beams were pinned through their thickness using natural flax yarns to control delamination failure during the post-buckling process. A multiple delamination with a triangular shape was inserted into each of the beams to simulate the damage caused by a low velocity impact e.g. ice, on composite wind turbine blades. For a laminate design of [C90/G90]4, global collapse caused no delamination failure during the post-buckling test while delamination failure occurred for a laminate design of [C0/G0]4. In this case, z-pinning can significantly increase the failure resistance within a composite structure and it can then postpone the failure process. The buckling process of a multi-delaminated composite beam was also simulated by finite element software ANSYS and the results were substantially verified by relevant experimental results.

  7. Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections

    Science.gov (United States)

    Cha, Gene; Schultz, Marc R.

    2013-01-01

    Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.

  8. Mechanical Buckling of Arterioles in Collateral Development

    OpenAIRE

    Liu, Qin; Han, Hai-Chao

    2012-01-01

    Collateral arterioles enlarge in both diameter and length, and develop corkscrew-like tortuous patterns during remodeling. Recent studies showed that artery buckling could lead to tortuosity. The objective of this study was to determine arteriole critical buckling pressure and buckling pattern during arteriole remodeling. Arterioles were modeled as elastic cylindrical vessels with an elastic matrix support and underwent axial and radial growth. Our results demonstrated that arteriole critical...

  9. Anisotropic surface tension of buckled fluid membrane

    OpenAIRE

    Noguchi, Hiroshi

    2011-01-01

    Solid sheets and fluid membranes exhibit buckling under lateral compression. Here, it is revealed that fluid membranes have anisotropic buckling surface tension contrary to solid sheets. Surprisingly, the surface tension perpendicular to the buckling direction shows stronger dependence than that parallel to it. Our theoretical predictions are supported by numerical simulations of a meshless membrane model. This anisotropic tension can be used to measure the membrane bending rigidity. It is al...

  10. Mechanical Buckling of Veins under Internal Pressure

    OpenAIRE

    Martinez, Ricky; Fierro, Cesar A.; Shireman, Paula K.; Han, Hai-Chao

    2010-01-01

    Venous tortuosity is associated with multiple disease states and is often thought to be a consequence of venous hypertension and chronic venous disease. However, the underlying mechanisms of vein tortuosity are unclear. We hypothesized that increased pressure causes vein buckling that leads to a tortuous appearance. The specific aim of this study was to determine the critical buckling pressure of veins. We determined the buckling pressure of porcine jugular veins and measured the mechanical p...

  11. And the Variscan Orogen Buckled

    Science.gov (United States)

    Pastor-Galán, D.; Groenewegen, T.; Gutiérrez-Alonso, G.; Langereis, C. G.

    2013-12-01

    Oroclines are the largest scale folds in nature, and as folds can be produced by bending or by buckling. The most commonly invoked bending mechanisms are indentation (the Himalayan syntaxes) and slab roll-back (The Calabria Arc) whereas buckling usually are commonly related with collision of the apex of ribbon continents along strike (Alaskan oroclines). In Western Europe the tectonostratigraphic zonation of Variscan orogen shows a complex 'S' shape pattern recently interpreted as a double orocline consisting of a northern and southern arc. The northern arc, known as Cantabria-Asturias Arc or Cantabrian Orocline, was developed after closure of the Rheic Ocean and the building and collapse of the Variscan orogenic edifice and, therefore, is considered post-Variscan in age. On the other hand, neither the geometry nor the kinematics of the so-called Central Iberian orocline, situated at the south of the Iberian peninsula are properly known. However, it seems reasonable to think that both oroclines developed at the same time as other coupled oroclines, such as the New England oroclines or the Carpathian oroclines. The particular paleogeography of the Variscan belt in Pangea and the kinematics of the oroclinal formation make impossible the mechanisms of indentation or buckling of a ribbon continent. The occurrence of an intense syn- and slightly post-Cantabrian orocline magmatic event (310-290 Ma) has been linked to the development of the orocline(s) due to the particular spatial-temporal distribution of these post-tectonic granitoids and its isotopic signature which would imply that the oroclines (if synchronous) are thick-skinned. This magmatic pulse has also been interpreted as due to slab roll-back. We present widespread evidences of buckling around the whole orocline at different lithospheric levels and new insights of the particular geometry of the southern orocline which is difficult to reconcile with a roll-back related origin. Therefore, a major change in the

  12. Analysis of Buckled and Pre-bent Columns Used as Vibration Isolators

    OpenAIRE

    Sidbury, Jenny Elizabeth

    2003-01-01

    Analysis of Buckled and Pre-bent Columns Used as Vibration Isolators By Jenny E. Sidbury Dr. Raymond H. Plaut, Chairman Charles E. Via, Jr. Department of Civil and Environmental Engineering (ABSTRACT) Vibrations resulting from earthquakes, machinery, or unanticipated shocks may be very damaging and costly to structures. To avoid such damage, designers need a structural system that can dissipate the energy caused by these vibrations. Using elastically buckled struts may be a viable means ...

  13. Dynamic buckling of shells: evaluation of various methods

    International Nuclear Information System (INIS)

    The problem of dynamic stability is substantially more complex than the buckling analysis of a shell subjected to static loads. A shallow spherical cap, subjected to an axisymmetric, uniform-pressure, step loading, is used as structural example. The predictions, by various methods, of the dynamic buckling of this shell into unsymmetric modes, are then investigated and compared. The approximate methods used by Akkas are compared to the more rigorous and general solution of the KSHEL, STARS, DYNASOR and SATANS computer programs, and the various simplifying assumptions utilized are evaluated. Also included in the comparisons, are the predictions of the relatively simple 'dynamic buckling model' approach of Budiansky and Hutchinson. The approaches utilized by the more complex programs [KSHEL (spatial integration, modal superposition, perturbation approach), DYNASOR (finite elements, time integration of nonlinear dynamic equilibrium equations), SATANS (finite differences, pseudo load method, time integration), STARS (spatial and time integration, non-linear equilibrium or perturbation approaches)] will in turn be compared in terms of accuracy, idealization complexity, ease of use, and user expertise and experience required for analysis. The comparisons show that the more approximate methods underpredict the dynamic buckling loads for this problem. In addition, the basic assumptions of the simpler methods are found to be invalid

  14. Dynamic buckling of shells: evaluation of various methods

    International Nuclear Information System (INIS)

    The problem of dynamic stability is substantially more complex than the buckling analysis of a shell subjected to static loads. Suitable criteria for dynamic bulking of shells, which are both logically sound and practically applicable, are not easily available. The purpose of this paper is to compare and evaluate some solutions by applying them to a specific problem. A shallow spherical cap, subjected to an axisymmetric, uniform-pressure, step-loading, is used as the structural example. The predictions, by various methods, of the dynamic buckling of this shell into unsymmetric modes, are then investigated and compared. The approximate methods used by Akkas are compared to the more rigorous and general solutions of the KSHEL, STARS, DYNASOR, and SATANS computer programs, and the various simplifying assumptions utilized are evaluated. Also included in the comparisons, are the predictions of the relatively simple 'dynamic buckling model' approach of Budiansky and Hutchinson. The approaches utilized by the more complex programs are compared in terms of accuracy, idealization complexity, ease of use, and user expertise and experience required for analysis. The comparisons show that the more approximate methods underpredict the dynamic buckling loads for this problem. In addition, some basic assumptions of the simpler solutions are found to be invalid. (Auth.)

  15. Artery buckling analysis using a two-layered wall model with collagen dispersion.

    Science.gov (United States)

    Mottahedi, Mohammad; Han, Hai-Chao

    2016-07-01

    Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging. PMID:27031686

  16. Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells

    Science.gov (United States)

    Hrinda, Glenn A.

    2012-01-01

    Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.

  17. Experimental investigations on buckling of cylindrical shells under axial compression and transverse shear

    Indian Academy of Sciences (India)

    K Athiannan; R Palaninathan

    2004-02-01

    This paper presents experimental studies on buckling of cylindrical shell models under axial and transverse shear loads. Tests are carried out using an experimental facility specially designed, fabricated and installed, with provision for in-situ measurement of the initial geometric imperfections. The shell models are made by rolling and seam welding process and hence are expected to have imperfections more or less of a kind similar to that of real shell structures. The present work thus differs from most of the earlier investigations. The measured maximum imperfections $\\delta_{\\text{max}}$ are of the order of $\\pm 3t$ (t = thickness). The buckling loads obtained experimentally are compared with the numerical buckling values obtained through finite element method (FEM). In the case of axial buckling, the imperfect geometry is obtained in four ways and in the case of transverse shear buckling, the FE modelling of imperfect geometry is done in two ways. The initial geometric imperfections affect the load carrying capacity. The load reduction is considerable in the case of axial compression and is marginal in the case of transverse shear buckling. Comparisons between experimental buckling loads under axial compression, reveal that the extent of imperfection, rather than its maximum value, in a specimen influences the failure load. Buckling tests under transverse shear are conducted with and without axial constraints. While differences in experimental loads are seen to exist between the two conditions, the numerical values are almost equal. The buckling modes are different, and the experimentally observed and numerically predicted values are in complete disagreement.

  18. Review of strain buckling: analysis methods

    International Nuclear Information System (INIS)

    This report represents an attempt to review the mechanical analysis methods reported in the literature to account for the specific behaviour that we call buckling under strain. In this report, this expression covers all buckling mechanisms in which the strains imposed play a role, whether they act alone (as in simple buckling under controlled strain), or whether they act with other loadings (primary loading, such as pressure, for example). Attention is focused on the practical problems relevant to LMFBR reactors. The components concerned are distinguished by their high slenderness ratios and by rather high thermal levels, both constant and variable with time. Conventional static buckling analysis methods are not always appropriate for the consideration of buckling under strain. New methods must therefore be developed in certain cases. It is also hoped that this review will facilitate the coding of these analytical methods to aid the constructor in his design task and to identify the areas which merit further investigation

  19. Local buckling analysis of biological nanocomposites based on a beam-spring model

    OpenAIRE

    Zhiling Bai; Baohua Ji

    2015-01-01

    Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existin...

  20. Buckling of Slender Prismatic Columns with a Single Edge Crack under Concentric Vertical Loads

    OpenAIRE

    GÜREL, M. Arif

    2005-01-01

    The investigation of the stability behavior of slender columns with cracks is an important problem and finds applications in structural, mechanical and aerospace engineering. This study investigates the buckling of slender prismatic columns with a single nonpropagating edge crack subjected to concentrated vertical loads. The transfer matrix method and fundamental solutions of intact columns (columns without any cracks) are combined for determining the buckling loads of cracked column...

  1. How Does A Porous Shell Collapse? Delayed Buckling And Guided Folding Of Inhomogeneous Capsules

    OpenAIRE

    Datta, Sujit S.; Kim, Shin-Hyun; Paulose, Jayson; Abbaspourrad, Alireza; Nelson, David R; Weitz, David A.

    2012-01-01

    Colloidal capsules can sustain an external osmotic pressure; however, for a sufficiently large pressure, they will ultimately buckle. This process can be strongly influenced by structural inhomogeneities in the capsule shells. We explore how the time delay before the onset of buckling decreases as the shells are made more inhomogeneous; this behavior can be quantitatively understood by coupling shell theory with Darcy's law. In addition, we show that the shell inhomogeneity can dramatically c...

  2. The Lateral Compressive Buckling Performance of Aluminum Honeycomb Panels for Long-Span Hollow Core Roofs

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    2016-06-01

    Full Text Available To solve the problem of critical buckling in the structural analysis and design of the new long-span hollow core roof architecture proposed in this paper (referred to as a “honeycomb panel structural system” (HSSS, lateral compression tests and finite element analyses were employed in this study to examine the lateral compressive buckling performance of this new type of honeycomb panel with different length-to-thickness ratios. The results led to two main conclusions: (1 Under the experimental conditions that were used, honeycomb panels with the same planar dimensions but different thicknesses had the same compressive stiffness immediately before buckling, while the lateral compressive buckling load-bearing capacity initially increased rapidly with an increasing honeycomb core thickness and then approached the same limiting value; (2 The compressive stiffnesses of test pieces with the same thickness but different lengths were different, while the maximum lateral compressive buckling loads were very similar. Overall instability failure is prone to occur in long and flexible honeycomb panels. In addition, the errors between the lateral compressive buckling loads from the experiment and the finite element simulations are within 6%, which demonstrates the effectiveness of the nonlinear finite element analysis and provides a theoretical basis for future analysis and design for this new type of spatial structure.

  3. LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

    Directory of Open Access Journals (Sweden)

    SREELATHA P.R

    2012-06-01

    Full Text Available Submarine is a watercraft capable of independent operation under water. Use of submarines includes marine science, offshore industry underwater exploration etc. The pressure hull of submarine is constructed as combination of cylinders and domes. The shell is subjected to very high hydrostatic pressure, which creates large compressive stress resultants. Due to this the structure is susceptible to buckling. The introduction of stiffeners in both directions considerably increases the buckling strength of the shell. Since the stiffened cylindrical shell is susceptible to initial imperfections, nonlinear analysis is essential. The objective of this work is the linear and nonlinear analysis of the stiffened cylindrical shell subjected to very high hydrostatic pressure.Finite element method is a powerful tool for analysis of complex structures. Finite element package ANSYS is used for modeling and analysis the submarine hull.

  4. Effects of Elastic Edge Restraints and Initial Prestress on the Buckling Response of Compression-Loaded Composite Panels

    Science.gov (United States)

    Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.

    2004-01-01

    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should also be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.

  5. Numerical analysis and experiment to identify origin of buckling in rapid cycling synchrotron core

    International Nuclear Information System (INIS)

    The accelerating cavities used in the rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) are loaded with magnetic alloy (MA) cores. Over lengthly periods of RCS operation, significant reductions in the impedance of the cavities resulting from the buckling of the cores were observed. A series of thermal structural simulations and compressive strength tests showed that the buckling can be attributed to the low-viscosity epoxy resin impregnation of the MA core that causes the stiffening of the originally flexible MA–ribbon–wound core. Our results showed that thermal stress can be effectively reduced upon using a core that is not epoxy-impregnated. -- Highlights: • Study to identify the origin of buckling in the MA cores is presented. • Thermal stress simulations and compressive strength tests were carried out. • Results show that thermal stress is the origin of core buckling. • Thermal stress can be reduced by using cores without epoxy impregnation

  6. Buckling rules in design codes: state of the art and future developments

    International Nuclear Information System (INIS)

    Buckling, which can affect structures like bars, beams and shells when they are submitted to compressive stresses, can lead to unacceptable deformations and ruptures. Consequently, main Design Codes, especially those used in nuclear industry, include rules and analysis methods in order to prevent this phenomenon. In this paper, a review of buckling rules and/or analysis methods existing in ASME, RCC-M, RCC-MR and European Recommendations is performed. Then, these rules and methods are applied to the case of a cylinder filled with water and submitted to a seismic loading and results are compared. In the last part, current developments of methods to analyse creep buckling and dynamic buckling which should come and complete RCC-MR soon are presented. (author)

  7. Buckling Instability of Dielectric Elastomeric Plates for Soft, Bio-Compatible Microfluidic Pumps

    Science.gov (United States)

    Tavakol, Behrouz; Bozlar, Michael; Froehlicher, Guillaume; Punckt, Christian; Stone, Howard A.; Aksay, Ilhan; Holmes, Douglas

    2013-03-01

    Dielectric elastomers are well-known for their superior stretchability and permittivity. A fully-clamped thin elastomer will buckle when it is compressed by applying sufficient electric potentials to its sides. When embedded within soft, silicone rubbers, these advanced materials can provide a means for a bio-compatible pumping mechanism that can be used to inject bio-fluids with desired flow rates into microfluidic devices, tissues, and organs of interest. We have incorporated a dielectric film that is sandwiched between two thin, flexible, solid electrodes into a microfluidic device and utilized a voltage-induced out-of-plane buckling instability for pumping of fluids. We experimentally quantify the voltage-induced plate buckling and measure the fluid flow rate when the structure is embedded in a microchannel. Additionally, we offer an analytical prediction that uses plate buckling theory to estimate the flow rate as a function of applied voltage.

  8. Buckled graphene: A model study based on density functional theory

    KAUST Repository

    Khan, Mohammad A.

    2010-09-01

    We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.

  9. Discussion and validation of a simplified analysis against buckling

    International Nuclear Information System (INIS)

    The Department of Thermal and Mechanical Studies (DEMT/SMTS/RDMS) and the RAMSES Committee of CEA have developed a simplified method to determine the critical instantaneous buckling load under primary loading. This method was introduced as a simplified analytical rule in the RCC-MR (Design and Building Rules for Mechanical Equipment of LMFBR). The RCC-MR imposes buckling design rules for Class I components in paragraph RB 3270, and for class II components in paragraph RC 3270. The practical analysis methods are presented in volume Z, appendix A7 of the same code. It takes account of the lowering of the critical buckling load due to plasticity, to shape imperfections and to the stable of unstable character of the buckling given by charts. These charts can be used for all types of structure, independent of the loading mode or of the temperature (for type 316 stainless steel) and cover imperfections ranging from 0 to 5 times the wall thickness. The RCC-MR method, based on the analysis of the critical load of a beam under axial compression, was validated by more than 60 experimental results obtained on representative mock-ups of thin shells subjected to various loadings, such as internal and external pressure, axial compression and shear, and whose imperfections vary from 0 to 4 times the shell thickness. The RCC-MR rule remains available for structures with defects size from 0. to several thickness like the LMFBR large and thin structures. The comparisons made with the ASME rules, section III, for the structures that these rules consider, are carried ou for cylinders under axial compresison, cylinders without external pressure, and spheres under external pressure. 16 refs.

  10. Redesigning of a Canard Control Surface of an Advanced Fighter Aircraft: Effect on Buckling and Aerodynamic Behavior

    Directory of Open Access Journals (Sweden)

    Shrivastava Sachin

    2015-01-01

    Full Text Available A redesign of canard control-surface of an advanced all-metallic fighter aircraft was carried out by using carbon fibre composite (CFC for ribs and panels. In this study ply-orientations of CFC structure are optimized using a Genetic-Algorithm (GA with an objective function to have minimum failure index (FI according to Tsai-Wu failure criterion. The redesigned CFC structure was sufficiently strong to withstand aerodynamic loads from stress and deflection points of view. Now, in the present work CFC canard structure has been studied for its buckling strength in comparison to existing metallic design. In this study, the existing metallic design was found to be weak in buckling. Upon a detailed investigation, it was revealed that there are reported failures in the vicinity of zones where initial buckling modes are excited as predicted by the finite element based buckling analysis. In view of buckling failures, the redesigned CFC structure is sufficiently reinforced with stringers at specific locations. After providing reinforcements against buckling, the twist and the camber variations of the airfoil are checked and compared with existing structure data. Finally, the modal analysis has been carried out to compare the variation in excitation frequency due to material change. The CFC structure thus redesigned is safe from buckling and aerodynamic aspects as well.

  11. Investigations for buckling risks of PFBR vessels

    International Nuclear Information System (INIS)

    Buckling analysis of reactor assembly components like main vessel, inner vessel, and roof slab support skirt have been carried out for the normal and seismic loadings corresponding to 0.1g SSE. The results have shown that, the above components are meeting the RCC-MR code limits for buckling with a convenient safety margin. In case, the higher level of seismic load of 0.2g SSE needs to be considered, it will call for some design modifications and further analysis of the above components. In the present work, some simplified approaches have been followed to incorporate the effects of seismic loads and imperfections in buckling. (author)

  12. A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses

    Science.gov (United States)

    Jenkins, Jerald M.

    1988-01-01

    High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.

  13. Medial Rectus Dehiscence following Buckling

    Directory of Open Access Journals (Sweden)

    Simi Zaka-ur-Rab, Manoj Shukla, Faisal Zubair, Akbar Saleem, Mohd. Shahim Sami

    2008-01-01

    Full Text Available Migration of silicone explants through rectus muscle insertion is a rare complication with very few casesreported. Anterior migration of a solid silicone band may occur if it is tight, placed anterior to the equatoror not properly anchored to the sclera. The band slowly erodes through the tendon of one or more rectimuscles allowing them to reattach spontaneously with scar tissue behind migrating element. The authorsdescribe a rare case of anterior migration of the buckle following encirclage by a 4mm silicone bandresulting in spontaneous disinsertion of medial rectus muscle where muscle disinsertion had not beenperformed peroperatively. This migration occurred in the absence of any predisposing factors. The muscledisinsertion was so gradual that the muscle got reinserted almost to its original insertion as a result ofwhich there was no heterotropia .

  14. 大展弦比机翼屈曲及后屈曲分析%BUCKLING AND POST-BUCKLING ANALYSIS OF HIGH ASPECT-RATIO WING

    Institute of Scientific and Technical Information of China (English)

    夏盛来; 何景武; 海尔瀚

    2011-01-01

    Adopting the FEM( finite element method) ,the buckling and post-buckling analyses are conducted based on the wing structure from some high aspect-ration composite material UAV( unmanned aerial vehicle) . During the analysis,the buckling of the wing structure is analyzed firstly with the help of Patran and Nastran software, aiming to ensure the sectors where the wing structure easily buckles. Then different buckling sectors are analyzed to make sure the detail model that needs the post-buckling analysis,during which the Patran and Marc software are adopted with the arc-length method. Through the post-buckling analysis, the buckling-path in the structure can be found out. The result indicates that the buckling phenomena exist in the wing. The result of the static test on the ground verifies the dependability of the analysis result.%针对某大展弦比复合材料无人机机翼结构,利用有限元素法进行机翼结构的屈曲及后屈曲分析.首先采用MSC.Patran/Nastran软件进行结构屈曲分析,目的是确定机翼结构易发生屈曲的区域;然后对不同区域进行分析,确定需要进行后屈曲分析的细节模型.对细节模型进行后屈曲分析时采用MSC.Patran/Marc软件,分析方法采用弧长法.通过机翼结构的后屈曲分析,可以分析出结构的失稳路径.结果表明,该机翼存在屈曲失稳问题.该机翼的地面静力试验结果验证分析结果的可信性.

  15. Exact buckling load of a restrained RC column

    OpenAIRE

    Krauberger, Nana; Saje, Miran; Planinc, Igor; Bratina, Sebastjan

    2015-01-01

    Theoretical foundation for the buckling load determination in reinforced concrete columns is described and analytical solutions for buckling loads of the Euler-type straight reinforced concrete columns given. The buckling analysis of the limited set of restrained reinforced concrete columns is also included, and some conclusions regarding effects of material non-linearity and restrain stiffhesses on the buckling loads and the buckling lengths are presented. It is shown that the material non-l...

  16. Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin

    2003-08-29

    We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed.

  17. Ab initio study of the buckling on silicene and germanene

    Science.gov (United States)

    Martinez-Guerra, Edgar; Hernández, Karla; Cifuentes-Quintal, Eduardo; de Coss, Romeo

    2013-03-01

    Recently, a new graphene-like silicon structure was discovered: silicene. Since its discovery, silicene has been more exciting than graphene because this is a semiconductor and it should be compatible with silicon-based electronic. Silicon and germanium atoms have similar electronic configurations as those of carbon and this the reason that the bandstructure of silicene and germacene exhibits the Dirac cones at K point, with a very similar linear dispersion around it, like in graphene. The disvintage is that sp2 bonded Si is much less stable than for carbon resulting that to be stable in the planar layer their atoms must buckle. In this work, we calculated the sp character on silicene and germacene to correlate its hibridization with the velocity of electrons and holes at Dirac cones. The calculations were performed using the pseudopotential LCAO method with GGA for the exchange-correlation energy functional. The buckling of silicene and germacene layer was 0.50 and 0.69 Å, respectively. In addition, the sp- character of silicene and germacene buckled was 2.33 and 2.64, respectively. Thus, a detailed analysis on the electronic band structure of these system show that as sp character goes from sp2 to sp3 it is correlated with a decrease of velocity of electrons and holes at Dirac cones. This study is primarly important and it could address a new future to modulate carrier velocities on bidimensional systems. This research was supported by Conacyt under Grant No. 133022.

  18. Effect of geometrical imperfection on buckling failure of ITER VVPSS tank

    International Nuclear Information System (INIS)

    The 'Vacuum Vessel Pressure Suppression System' (VVPSS) is Part of ITER machine, which is designed to protect the ITER Vacuum Vessel and its connected systems, from an over-pressure situation. It is comprised of a partially evacuated tank of stainless steel approximately 46 meters long and 6 meters in diameter and thickness 30mm. It is to hold approximately 675 tonnes of water at room temperature to condense the steam resulting from the adverse water leakage into the Vacuum Vessel chamber. For any vacuum vessel, geometrical imperfection has significant effect on buckling failure and structural integrity. Major geometrical imperfection in VVPSS tank depends on form tolerances. To study the effect of geometrical imperfection on buckling failure of VVPSS tank, finite element analysis (FEA) has been performed in line with ASME section VIII division 2 part 5, 'design by analysis method'. Linear buckling analysis has been performed to get the buckled shape and displacement. Geometrical imperfection due to form tolerance is incorporated in FEA model of VVPSS tank by scaling the resulted buckled shape by a factor '60'. This buckled shape model is used as input geometry for plastic collapse and buckling failure assessment. Plastic collapse and buckling failure of VVPSS tank has been assessed by using the elastic-plastic analysis method. This analysis has been performed for different values of form tolerance. The results of analysis show that displacement and load proportionality factor (LPF) vary inversely with form tolerance. For higher values of form tolerance LPF reduces significantly with high values of displacement. (author)

  19. Local buckling analysis of biological nanocomposites based on a beam-spring model

    Directory of Open Access Journals (Sweden)

    Zhiling Bai

    2015-07-01

    Full Text Available Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals. We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.

  20. Voltage Induced Buckling Instability, a Means for Advanced Functionality within Soft Materials

    Science.gov (United States)

    Tavakol, Behrouz; Beauchamp, Sarah E.; Chawan, Aschvin; Holmes, Douglas P.

    2015-03-01

    Instabilities within structures composed of soft materials may provide advanced functionality. We use the buckling of thin dielectric plates for pumping fluids and controlling the flow rate within microchannels. When exposed to an electric field, a confined dielectric plate buckles out of the plane, and this buckling can stop or enhance the flow rate of surrounding media. Compliant or grease electrodes have conventionally been used to aid in voltage application to both sides of the dielectric film. Here we introduce fluid electrodes, which make this mechanism embeddable into micro devices, enable the buckling at lower voltages, and significantly enhance the rate of deformation. We show that this mechanism can function as a microvalve to control the flow rate, or as a micropump to enhance the flow rate. We also examine buckled shapes of the dielectric film using a scaled-up version with fluid electrodes. These reversible, voltage-induced buckling instabilities can potentially be used in variety of different applications to control or enhance fluid flow in micro devices.

  1. Scleral buckle infection with Alcaligenes xylosoxidans

    Directory of Open Access Journals (Sweden)

    Chih-Kang Hsu

    2014-01-01

    Full Text Available We describe a rare case of extraocular inflammation secondary to scleral buckle infection with Alcaligenes xylosoxidans. A 60-year-old female with a history of retinal detachment repair with open-book technique of scleral buckling presented with purulent discharge and irritation in the right eye that had begun 4 weeks earlier and had been treated ineffectively at another hospital. Conjunctival erosion with exposure of the scleral buckle was noted. The scleral buckle was removed and cultured. The explanted material grew gram-negative rod later identified as A. xylosoxidans. On the basis of the susceptibility test results, the patient was treated by subconjunctival injection and fortified topical ceftazidime. After 4 weeks of treatment, the infection resolved.

  2. Buckling of Bucket Foundations During Installation

    DEFF Research Database (Denmark)

    Madsen, Søren

    There is a great politically will to expand the green energy market in these times. A proven green technology is wind turbines. Wind turbines have been installed in great numbers on land over the last decades. However, the current development in wind turbine design leads to larger turbine sizes i...... imperfect geometry is, • The multi-shell cross section is just as sensitive to imperfections as a circular cylinder, • The new multi-shell design provides a significantly larger (75%) buckling load compared to the traditional design....... during penetration, • Considering the first mode shape from a linear buckling analysis as imperfect geometry in a nonlinear buckling analysis is not sufficient for capturing the buckling incident in Wilhelmshaven; however, considering the first 21 mode shapes and introducing themost critical one as an...

  3. Scleral buckle infection with aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Bouhaimed Manal

    2008-01-01

    Full Text Available Purpose: To present a case of scleral buckle infection with Aspergillus flavus in a tertiary eye center in Saudi Arabia. Methods: A retrospective case report of a 28-year-old Saudi male who presented with a six-month history of conjunctival injection and discharge from the left eye which had undergone uncomplicated conventional retinal detachment surgery, at the King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia, in the form of cryopexy, subretinal fluid drainage and scleral buckle (grooved segmental sponge and circumferential band with sleeve for a macula on retinal detachment four years earlier. A diagnosis of infected extruded scleral buckle was made and the buckle was removed. Results: The infected scleral buckle was removed under local anesthesia with administration of sub-conjunctival irrigation of 50 mg solution of Vancomycin, and sub-conjunctival injection of 25mg of Vancomycin. Post operative microbiological studies revealed infection with silver staining of moderate Aspergillus flavus hyphae. Visual acuity of the left eye improved from 20/200 before surgery to 20/60 in the two years follow-up visit. Conclusion: This case report indicates the importance of considering infection with multiple organisms - including fungal ones - in cases of scleral buckle infections in our population.

  4. Controlled 3D buckling of silicon nanowires for stretchable electronics.

    Science.gov (United States)

    Xu, Feng; Lu, Wei; Zhu, Yong

    2011-01-25

    Silicon (Si) nanowire (NW) coils were fabricated on elastomeric substrates by a controlled buckling process. Si NWs were first transferred onto prestrained and ultraviolet/ozone (UVO)-treated poly(dimethylsiloxane) (PDMS) substrates and buckled upon release of the prestrain. Two buckling modes (the in-plane wavy mode and the three-dimensional coiled mode) were found; a transition between them was achieved by controlling the UVO treatment of PDMS. Structural characterization revealed that the NW coils were oval-shaped. The oval-shaped NW coils exhibited very large stretchability up to the failure strain of PDMS (∼104% in our study). Such a large stretchability relies on the effectiveness of the coil shape in mitigating the maximum local strain, with a mechanics that is similar to the motion of a coil spring. Single NW devices based on coiled NWs were demonstrated with a nearly constant electrical response in a large strain range. In addition to the wavy shape, the coil shape represents an effective architecture in accommodating large tension, compression, bending, and twist, which may find important applications for stretchable electronics and other stretchable technologies. PMID:21189041

  5. Thermal buckling analysis of truss-core sandwich plates

    Institute of Scientific and Technical Information of China (English)

    陈继伟; 刘咏泉; 刘伟; 苏先樾

    2013-01-01

    Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulse-resistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex three-dimensional (3D) systems that direct analytical solutions do not exist, and the finite element method (FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is idealized by obtaining the effective bending and transverse shear stiffness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The effect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.

  6. Buckling characteristic of multi-laminated composite elliptical cylindrical shells

    Science.gov (United States)

    Kassegne, Samuel Kinde; Chun, Kyoung-Sik

    2015-03-01

    Fiber-reinforced composite materials continue to experience increased adoption in aerospace, marine, automobile, and civil structures due to their high specific strength, high stiffness, and light weight. This increased use has been accompanied by applications involving non-traditional configurations such as compression members with elliptical cross-sections. To model such shapes, we develop and report an improved generalized shell element called 4EAS-FS through a combination of enhanced assumed strain and the substitute shear strain fields. A flat shell element has been developed by combining a membrane element with drilling degree-of-freedom and a plate bending element. We use the element developed to determine specifically buckling loads and mode shapes of composite laminates with elliptical cross-section including transverse shear deformations. The combined influence of shell geometry and elliptical cross-sectional parameters, fiber angle, and lay-up on the buckling loads of an elliptical cylinder is examined. It is hoped that the critical buckling loads and mode shapes presented here will serve as a benchmark for future investigations.

  7. A Reduction Factor for Buckling Load of Spherical Cap Shells

    Directory of Open Access Journals (Sweden)

    P.N. Khakina

    2011-12-01

    Full Text Available The classical buckling theory usually overestimates the buckling load of shells. In this study, a reduction factor is determined using geometrical parameters so as to reduce the classical buckling load to a more realistic value based on the post-buckling load. It is observed that the buckling load is directly proportional to the thickness and rise and inversely proportional to the span of the spherical cap. Finite element modeling and simulation using ABAQUS was conducted to determine the buckling behavior of a spherical cap shell subjected to different initial geometrical imperfections. The load-deflection curves drawn from the simulation formed a plateau at the post-buckling load. It is observed that as the initial geometrical imperfection is increased, the value of the initial buckling load is almost the same as the value of the post-buckling load on the plateau. The results obtained from different shells were used to derive a formula for the reduction factor.

  8. TRBUCKL - A NASTRAN DMAP ALTER FOR LINEAR BUCKLING ANALYSIS UNDER DYNAMIC LOADING

    Science.gov (United States)

    Aiello, R. A.

    1994-01-01

    Delaminations near the outer surface of a laminate are susceptible to local buckling and buckling-induced delamination propagation when the laminate is subjected to transverse impact loading. This results in a loss of stiffness and strength. TRBUCKL is an unique dynamic delamination buckling and delamination propagation analysis capability that can be incorporated into the structural analysis program, NASTRAN. This capability will aid engineers in the design of structures incorporating composite laminates. The capability consists of: (1) a modification of the direct time integration solution sequence which provides a new analysis algorithm that can be used to predict delamination buckling in a laminate subjected to dynamic loading; and (2) a new method of modeling the composite laminate using plate bending elements and multipoint constraints. The capability now exists to predict the time at which the onset of dynamic delamination buckling occurs, the dynamic buckling mode shape, and the dynamic delamination strain energy release rate. A procedure file for NASTRAN, TRBUCKL predicts both impact induced buckling in composite laminates with initial delaminations and the strain energy release rate due to extension of the delamination. In addition, the file is useful in calculating the dynamic delamination strain energy release rate for a composite laminate under impact loading. This procedure simplifies the simulation of progressive crack extension. TRBUCKL has been incorporated into COSMIC NASTRAN. TRBUCKL is a DMAP Alter for NASTRAN. It is intended for use only with the COSMIC NASTRAN Direct Transient Analysis (RF 9) solution sequence. The program is available as a listing only. TRBUCKL was developed in 1987.

  9. Cholesterol-Induced Buckling in Physisorbed Polymer-Tethered Lipid Monolayers

    Directory of Open Access Journals (Sweden)

    Christoph A. Naumann

    2013-04-01

    Full Text Available The influence of cholesterol concentration on the formation of buckling structures is studied in a physisorbed polymer-tethered lipid monolayer system using epifluorescence microscopy (EPI and atomic force microscopy (AFM. The monolayer system, built using the Langmuir-Blodgett (LB technique, consists of 3 mol % poly(ethylene glycol (PEG lipopolymers and various concentrations of the phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC, and cholesterol (CHOL. In the absence of CHOL, AFM micrographs show only occasional buckling structures, which is caused by the presence of the lipopolymers in the monolayer. In contrast, a gradual increase of CHOL concentration in the range of 0–40 mol % leads to fascinating film stress relaxation phenomena in the form of enhanced membrane buckling. Buckling structures are moderately deficient in CHOL, but do not cause any notable phospholipid-lipopolymer phase separation. Our experiments demonstrate that membrane buckling in physisorbed polymer-tethered membranes can be controlled through CHOL-mediated adjustment of membrane elastic properties. They further show that CHOL may have a notable impact on molecular confinement in the presence of crowding agents, such as lipopolymers. Our results are significant, because they offer an intriguing prospective on the role of CHOL on the material properties in complex membrane architecture.

  10. Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage

    Science.gov (United States)

    Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei

    Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.

  11. Creep buckling problems in fast reactor components

    International Nuclear Information System (INIS)

    Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab

  12. Mechanical buckling of veins under internal pressure.

    Science.gov (United States)

    Martinez, Ricky; Fierro, Cesar A; Shireman, Paula K; Han, Hai-Chao

    2010-04-01

    Venous tortuosity is associated with multiple disease states and is often thought to be a consequence of venous hypertension and chronic venous disease. However, the underlying mechanisms of vein tortuosity are unclear. We hypothesized that increased pressure causes vein buckling that leads to a tortuous appearance. The specific aim of this study was to determine the critical buckling pressure of veins. We determined the buckling pressure of porcine jugular veins and measured the mechanical properties of these veins. Our results showed that the veins buckle when the transmural pressure exceeds a critical pressure that is strongly related to the axial stretch ratio in the veins. The critical pressures of the eight veins tested were 14.2 +/- 5.4 and 26.4 +/- 9.0 mmHg at axial stretch ratio 1.5 and 1.7, respectively. In conclusion, veins buckle into a tortuous shape at high lumen pressures or reduced axial stretch ratios. Our results are useful in understanding the development of venous tortuosity associated with varicose veins, venous valvular insufficiency, diabetic retinopathy, and vein grafts. PMID:20094913

  13. Stress orientation and fracturing during three-dimensional buckling: Numerical simulation and application to chocolate-tablet structures in folded turbidites, SW Portugal

    Science.gov (United States)

    Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.

    2010-10-01

    Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.

  14. Optomechanical Cavity with a Buckled Mirror

    CERN Document Server

    Yuvaraj, D; Shtempluck, Oleg; Buks, Eyal

    2012-01-01

    We study an optomechanical cavity, in which a buckled suspended beam serves as a mirror. The mechanical resonance frequency of the beam obtains a minimum value near the buckling temperature. Contrary to the common case, in which self-excited oscillations of the suspended mirror are optically induced by injecting blue detuned laser light, in our case self-excited oscillations are observed with red detuned light. These observations are attributed to a retarded thermal (i.e. bolometric) force acting on the buckled mirror in the inwards direction (i.e. towards to other mirror). With relatively high laser power other interesting effects are observed including period doubling of self-excited oscillations and intermode coupling.

  15. Thermoelastic buckling of plates in a cylindrical geometry against an elastic back support

    International Nuclear Information System (INIS)

    A plate which is fixed at its edges to a strong edge support structure will develop large compressive stresses when heated from ambient temperature more rapidly than the support structure. Determining the response of the plate to this situation requires stability analysis to ascertain whether the plate might buckle, or whether the constrained thermal expansion will lead to compressive stresses exceeding the yield point because it did not buckle. A special case is considered here, both analytically and experimentally, in which the plate is curved slightly into a cylindrical shape and the convex face of the plate is against a supporting surface. This case is more complex because the buckling mode will be a harmonic rather than the fundamental mode which is usually encountered

  16. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a...

  17. On the interaction of uni-directional and bi-directional buckling of a plate supported by an elastic foundation

    OpenAIRE

    Wadee, M. Khurram; Lloyd, David J. B.; Bassom, Andrew P.

    2016-01-01

    A thin flat rectangular plate supported on its edges and subjected to in-plane loading exhibits stable post-buckling behaviour. However, the introduction of a nonlinear (softening) elastic foundation may cause the response to become unstable. Here the post-buckling of such a structure is investigated and several important phenomena are identified, including the transition of patterns from stripes to spots and back again. The interaction between these forms is of importance for understanding t...

  18. Review of analysis methods to prevent thermal buckling

    International Nuclear Information System (INIS)

    This report is a State of the Art about practical methods to analyze buckling risks mainly due to thermal stresses in slender shell structures. A critical review of theoretical, numerical and experimental results available in open literature till 1986 is performed. They are particularly examined from the point of view of simplicity in the formulations and experimental validation. The final aim of this study is an attempt to propose analysis method of practical use for engineers. Most of used informations were obtained from aeronautic and nuclear (fast breeder reactors) domains

  19. Studies of the buckling of composite plates in compression

    DEFF Research Database (Denmark)

    Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian;

    2009-01-01

    As part of the MARSTRUCT Network of Excellence on Marine Structures, a series of studies has been carried out into the buckling of glass fibre reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...... thick-nesses and initial geometrical imperfections, material testing, advanced FE modelling studies and finally pa-rametric studies covering a range of slendernesses and imperfection amplitudes. The paper provides an over-view of the studies, which involved several participants in the Network....

  20. Studies of the Buckling of Composite Plates in Compression

    DEFF Research Database (Denmark)

    Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian;

    2011-01-01

    As part of the Network of Excellence on Marine Structures (MARSTRUCT), a series of studies has been carried out into the buckling of glass-fibre-reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...... thicknesses and initial geometrical imperfections, material testing, advanced finite element modelling studies and finally parametric studies covering a range of slendernesses and imperfection amplitudes. The paper provides an overview of the studies, which involved several participants in the Network....

  1. Thermal buckling and natural vibration of the beam with an axial stick-slip-stop boundary

    Science.gov (United States)

    Cui, D. F.; Hu, H. Y.

    2014-04-01

    As a first attempt to study the dynamics of a heated structure with complicated boundaries, this paper deals with the thermal buckling and the natural vibration of a simply supported slender beam, which is subject to a uniformly distributed heating and has a frictional sliding end within a clearance. This sliding end is initially at a stick status under the friction force, but may be slightly slipping due to the thermal expansion of the beam until the sliding end contacts a stop, i.e., the bound of the clearance. The material properties of the beam are temperature-independent for low temperature, but temperature-dependent for high temperature. For each case, the analytic solutions for the critical buckling temperature and the natural frequencies of the heated beam are derived first. Then, discussions are made to reveal the effects of beam parameters, such as the ratio of beam length to beam thickness, the ratio of clearance to beam length and the temperature-dependent material properties, on the critical buckling temperature and the fundamental natural frequency of the heated beam. The study shows that both friction force and clearance have significant influences on the critical buckling temperature and the fundamental natural frequency of the beam. When the friction force is not very large, the clearance can greatly increase the critical buckling temperature. These conclusions enable one to properly design the stick-slip-stop boundary so as to improve the mechanical performance of the beam in thermal environments.

  2. Buckling of Laminated Composite Stiffened Panels Subjected to Linearly Varying In-Plane Edge Loading

    Science.gov (United States)

    Mallela, Upendra K.; Upadhyay, Akhil

    2014-01-01

    The presence of in-plane loading may cause buckling of stiffened panels. An accurate knowledge of critical buckling load and mode shapes is essential for reliable and lightweight structural design. This paper presents parametric studies on simply supported laminated composite blade-stiffened panels subjected to linearly varying in-plane edge/compressive loading. Studies are carried out by changing the panel orthotropy ratio, stiffener depth, pitch length (number of stiffeners), smeared extensional stiffness ratio of stiffener to that of the plate and load distribution parameter. Based on the studies, a few important parameters influencing the buckling behavior are identified and their significance is discussed. Further, the interaction equations for combined loadings are validated by carrying out numerical studies.

  3. Effect of vertical seismic load on shear-bending buckling strength of thin cylindrical shells

    International Nuclear Information System (INIS)

    The main vessels of Fast Breeder Reactors (FBR) are cylindrical structures containing liquid, and have to be thin-walled in order to withstand severe thermal condition. One of the most critical factors in the design of earthquake-resistant FBRs is the buckling strength of the cylinder part of the reactor vessel. In order to investigate various non-linear response characteristics, including buckling, of thin cylindrical shells under vertical and horizontal seismic motion, pseudo-dynamic experiments and non-linear response simulation analysis is performed. It is confirmed that buckling is caused mainly by horizontal seismic loads, and that vertical seismic loads reduce the lateral load-carrying capacity of cylinders and amplify response displacement for a given horizontal seismic load. To evaluate the amplification of non-linear horizontal responses due to vertical input motions, the authors define a response amplification factor, which is calculated from floor response spectra of seismic waves

  4. Buckling Instability of Self-Assembled Colloidal Columns

    Science.gov (United States)

    Swan, James W.; Vasquez, Paula A.; Furst, Eric M.

    2014-09-01

    Suspended, slender self-assembled domains of magnetically responsive colloids are observed to buckle in microgravity. Upon cessation of the magnetic field that drives their assembly, these columns expand axially and buckle laterally. This phenomenon resembles the buckling of long beams due to thermal expansion; however, linear stability analysis predicts that the colloidal columns are inherently susceptible to buckling because they are freely suspended in a Newtonian fluid. The dominant buckling wavelength increases linearly with column thickness and is quantitatively described using an elastohydrodynamic model and the suspension thermodynamic equation of state.

  5. Buckling determination in reflected systems, program FLUXFIT

    International Nuclear Information System (INIS)

    An improvement in accuracy of determining radial and axial buckling from foil activation distributions measured in reflected cylindrical systems is given. resultant activities are fitted to radial and axial spatial functions derived from homogeneous diffusion theory. A Fortran program FLUXFIT based on the derived method is included. (author)

  6. Critical Buckling Load on Large Spherical Shells

    DEFF Research Database (Denmark)

    Wedellsborg, B. W.

    1962-01-01

    Approximate evaluation for watertanks, hortonspheres, vapor containers, containment vessels for nuclear reactors, and so forth, has been computed, taking into account out-of-roundness and local flattened areas; graphs have been plotted giving critical buckling load as function of maximum radial d...

  7. On modelling of lateral buckling failure in flexible pipe tensile armour layers

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    In the present paper, a mathematical model which is capable of representing the physics of lateral buckling failure in the tensile armour layers of flexible pipes is introduced. Flexible pipes are unbounded composite steel–polymer structures, which are known to be prone to lateral wire buckling...... when exposed to repeated bending cycles and longitudinal compression, which mainly occurs during pipe laying in ultra-deep waters. On the basis of multiple single wire analyses, the mechanical behaviour of both layers of tensile armour wires can be determined. Since failure in one layer destabilises...

  8. Molecular dynamics simulations of the buckling of graphyne and its family

    International Nuclear Information System (INIS)

    Molecular dynamics simulations are employed to study the instability characteristics of graphyne and its family under compressive loads. The effects of nanosheet side length and aspect ratio on the critical compressive force and critical strain are investigated. It is shown that increasing aspect ratio leads to decreasing the critical compressive force. Besides, the effect of atomic structure on the compressive behavior of nanosheets is explored. It is observed that the zigzag graphynes have larger buckling forces than the armchair graphynes with same geometries. Finally, the buckling behavior of different nanosheets from the graphyne family is studied. It is represented that the nanosheets with more acetylene links have smaller critical compressive forces

  9. A Semi-Analytical Model for Buckling of Stiffened Cylindrical Shells

    OpenAIRE

    2013-01-01

    Cylindrical shells are common configurations within the technology. The transition from the side to the bottom on a ship has the shape of a fourth of a cylindrical shell. Both ring and stringer stiffeners can be added to the shell for support. Buckling of this type of structure is an important area of interest. The main purpose of this thesis has been to make a semi-analytical model that can describe how a ring stiffened shell and stringer stiffened shell respond during buckling. A va...

  10. A Simple Buckling Analysis Method for Airframe Composite Stiffened Panel by Finite Strip Method

    Science.gov (United States)

    Tanoue, Yoshitsugu

    Carbon fiber reinforced plastics (CFRP) have been used in structural components for newly developed aircraft and spacecraft. The main structures of an airframe, such as the fuselage and wings, are essentially composed of stiffened panels. Therefore, in the structural design of airframes, it is important to evaluate the buckling strength of the composite stiffened panels. Widely used finite element method (FEM) can analyzed any stiffened panel shape with various boundary conditions. However, in the early phase of airframe development, many studies are required in structural design prior to carrying out detail drawing. In this phase, performing structural analysis using only FEM may not be very efficient. This paper describes a simple buckling analysis method for composite stiffened panels, which is based on finite strip method. This method can deal with isotropic and anisotropic laminated plates and shells with several boundary conditions. The accuracy of this method was verified by comparing it with theoretical analysis and FEM analysis (NASTRAN). It has been observed that the buckling coefficients calculated via the present method are in agreement with results found by detail analysis methods. Consequently, this method is designed to be an effective calculation tool for the buckling analysis in the early phases of airframe design.

  11. Shear-Induced Buckling Instability in The Lamellar Phase:a Mechanism for Onions Formation

    International Nuclear Information System (INIS)

    We present a model of coupling of shear flow to microscopic degrees of freedom in the lyotropic Smectic A (lamellar phase ). This coupling is then shown to produce macroscopic buckling instability analogous to well known undulation instability appearing in thermotropic smectics under dilatation in the direction perpendicular to the layers. The Iyotropic Lamellar phase is experimentally known to become unstable under shear flow. The instability occurs at shear rate γ ∼ 1sec-1and the so called 'onions' (multi lamellar vesicles) are formed. We propose that the instability occurs in two stages. At the first stage, the layers are buckled by shear -induced microscopic tension σ ≅ ηeγd where ηe is an effective viscosity of the system (which can be very large :ηe ≅ 1000ηsolvent) and d is all inter- layer spacing. As the membrane projected area cannot increase (for example, being sandwiched between defects) it has to buckle in the direction perpendicular to itself.There is a critical tension however due to energy cost of compression of layers in the buckled state and of bending and expansion of individual layers. Then one is able to calculate the buckling amplitude Uo and the wavevector k as a function of γ. Denoting K usual smectic bending modulus and B the compressional one, the result is that the transition occurs at σ ≅ T/Dd, where D is the width of a film. For σ - σc >> σc we have k ≅ √(8σ/3dB). At the second stage the buckled structure is deformed by shear (by coupling to Macroscopic degrees of freedom) nad eventually broken, resulting in the formation of onions. We speculate that the buckled state will become unstable when the relaxation time of the buckling structure τc ≅ ηc/Kk2 is shorter than the one needed for shear to deform the structure to a degree that maxima are shifted to the position of neighboring minima. The estimate is γ ≅ Kk2(U0k)-1 which gives γ ∼ d-a with 7/3 < a < 17/7 which is consistent with experimental data a

  12. Buckling Design Studies of Inverted, Oblate Bulkheads for a Propellant Tank

    Science.gov (United States)

    Smeltzer, Stanley S., III; Bowman, Lynn M.

    2002-01-01

    An investigation of the deformation and buckling characteristics of a composite, oblate bulkhead that has an inverted geometry and is subjected to pressure-only loading is presented for three bulkhead geometries and thicknesses. The effects of a stiffening support ring at the bulkhead to cylinder interface are also evaluated. Buckling analyses conducted using the axisymmetric shell code BOSOR4 are discussed for several bulkhead configurations. These results are analytically verified using results from the Structural Analysis of General Shells (STAGS) code for a selected bulkhead configuration. The buckling characterization of an inverted, oblate bulkhead requires careful attention as small changes in bulkhead parameters can have a significant effect on the critical buckling load. Comparison of BOSOR4 and STAGS results provided a very good correlation between the two analysis methods. In addition, the analysis code BOSOR4 was found to be an efficient sizing tool that is useful during the preliminary design stage of a practical shell structure. Together, these two aspects should give the design engineer confidence in sizing these stability critical structures. Additional characterization is warranted, especially for a composite tank structure, since only one bulkhead configuration was examined closely.

  13. Buckling Imperfection Sensitivity of Axially Compressed Orthotropic Cylinders

    Science.gov (United States)

    Schultz, Marc R.; Nemeth, Michael P.

    2010-01-01

    Structural stability is a major consideration in the design of lightweight shell structures. However, the theoretical predictions of geometrically perfect structures often considerably over predict the buckling loads of inherently imperfect real structures. It is reasonably well understood how the shell geometry affects the imperfection sensitivity of axially compressed cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is less well understood. In the present paper, the development of an analytical model for assessing the imperfection sensitivity of axially compressed orthotropic cylinders is discussed. Results from the analytical model for four shell designs are compared with those from a general-purpose finite-element code, and good qualitative agreement is found. Reasons for discrepancies are discussed, and potential design implications of this line of research are discussed.

  14. Dynamic buckling in a next generation metal coolant nuclear reactor

    Directory of Open Access Journals (Sweden)

    G. Forasassi

    2008-08-01

    Full Text Available Purpose: The aim of the paper is to investigate the buckling effects due to the seismic sloshing phenomena interesting for a next generation heavy liquid metal cooled reactor as for example the eXperimental Accelerator Driven System (XADS.Design/methodology/approach: In this study the structural buckling behaviour of a reactor pressure vessel, retaining a rather large amount of liquid and many internal structures, is coupled to the fluid-structure interaction because during a postulated earthquake (e.g. Design Basis Earthquake the primary coolant surrounding the internals may be accelerated with a resulting significant fluid-structure hydrodynamic interaction (known as “sloshing”. Finite element numerical approach is applied because neither linear nor second-order potential theory is directly applicable when steep waves are present and local bulge appear with a marked decrease in strength of structure.Findings: The numerical results are presented and discussed highlighting the importance of the fluid-structure interaction effects in terms of stress intensity and impulsive pressure on the structural dynamic capability. These results allowed to determine the components mostly affected by the loading condition, in order to upgrade the geometrical design, if any, for the considered nuclear power plant (NPP.Research limitations/implications: The presented research results may be considered preliminary; thus it may be useful for a design upgrading of the reactor vessel and for achieving a first evaluation of the real components capacity to bear dynamic loads in particular in the event of a severe earthquake.Originality/value: From the point of view of the practical implication, it is worth to stress that the safety of liquid retaining nuclear structures subjected to a seismic loading is of great importance in regard to the hydrodynamic forces caused by sloshing and impulsive liquid motion determined by the liquid filling levels oscillatory

  15. Buckling and postbuckling analysis of stiffened composite panels in axial compression

    Science.gov (United States)

    Park, Oung

    The major objective of this study is to analyze buckling and delamination behavior of composite stiffened panels subjected to axial compression. First, a combined analytical and experimental study of a blade stiffened composite panel subjected to axial compression was conducted. The effects of the differences between a simple model used to design the panel and the actual experimental conditions were examined. It was found that in spite of many simplifying assumptions the design model did reasonably well in that the experimental failure load was only 10% higher than the design load. Several structural analysis programs, including PANDA2, STAGS, and ABAQUS, were used to obtain high fidelity analysis results. The buckling loads from STAGS agreed well with the experimental failure loads. However, substantial differences were found in the out-of-plane displacements of the panel. Efforts were made to identify the source of these differences. Implementing non-uniform load introduction with general contact definition in the STAGS finite element model improved correlation between the measured and predicted out-of-plane deformations. Next, a new method called Crack Tip Force Method (CTFM) is derived for computing point-wise energy release rate along the delamination front in delaminated plates. The CTFM is computationally simple as the G is computed using the forces transmitted at the crack-tip between the top and bottom sub-laminates and the sub-laminate properties. Finally, buckling and postbuckling of a blade-stiffened composite panel under axial compression with a partial skin-stiffener debond are investigated. Two different finite element models, where nodes of the panel skin and the stiffener flange are located on the mid-plane or at the interface between skin and flange, are used. Linear buckling analysis is conducted using both STAGS and ABAQUS. Postbuckling analysis is conducted with STAGS. Comparison between the present results and previous buckling analysis

  16. Buckling and fracture behaviour of cracked thin plates under shear loading

    International Nuclear Information System (INIS)

    Thin-walled structural components are widely used in several engineering applications such as in aerospace, naval, nuclear power plant, pressure vessel, mechanical and civil fields. Since they are frequently characterised by a high slenderness, the safety assessment of such structural components requires to carefully consider the buckling collapse which can heavily limit their allowable bearing capacity. For very thin plates, buckling collapse can occur under compression, shear, or even under tension. In the present paper, the buckling and fracture collapse mechanisms in an elastic rectangular thin-plate with a central straight crack under shear loading are analysed. Different boundary conditions, crack length and orientation are considered. Through a parametric finite elements (FE) numerical analysis, the crack sensitivity of the collapse load of such a structural component is examined. The obtained results are discussed, and some interesting and useful conclusions are drawn. The collapse mechanism occurring earlier (buckling or fracture) is found by varying the fracture toughness of the material, and some failure-type maps depending on the geometrical parameters of the crack are determined.

  17. Post Buckling Progressive Failure Analysis of Composite Laminated Stiffened Panels

    Science.gov (United States)

    Anyfantis, Konstantinos N.; Tsouvalis, Nicholas G.

    2012-06-01

    The present work deals with the numerical prediction of the post buckling progressive and final failure response of stiffened composite panels based on structural nonlinear finite element methods. For this purpose, a progressive failure model (PFM) is developed and applied to predict the behaviour of an experimentally tested blade-stiffened panel found in the literature. Failure initiation and propagation is calculated, owing to the accumulation of the intralaminar failure modes induced in fibre reinforced composite materials. Hashin failure criteria have been employed in order to address the fiber and matrix failure modes in compression and tension. On the other hand, the Tsai-Wu failure criterion has been utilized for addressing shear failure. Failure detection is followed with the introduction of corresponding material degradation rules depending on the individual failure mechanisms. Failure initiation and failure propagation as well as the post buckling ultimate attained load have been numerically evaluated. Final failure behaviour of the simulated stiffened panel is due to sudden global failure, as concluded from comparisons between numerical and experimental results being in good agreement.

  18. Evolved to fail: Bacteria induce flagellar buckling to reorient

    Science.gov (United States)

    Son, Kwangmin; Guasto, Jeffrey S.; Stocker, Roman

    2012-11-01

    Many marine bacteria swim with a single helical flagellum connected to a rotary motor via a 100 nm long universal joint called the ``hook.'' While these bacteria have seemingly just one degree of freedom, allowing them to swim only back and forth, they in fact exhibit large angular reorientations mediated by off-axis ``flicks'' of their flagellum. High-speed video microscopy revealed the mechanism underpinning this turning behavior: the buckling of the hook during the exceedingly brief (10 ms) forward run that follows a reversal. Direct measurements of the hook's mechanical properties corroborated this result, as the hook's structural stability is governed by the Sperm number, which compares the compressive load from propulsion to the elastic restoring force of the hook. Upon decreasing the Sperm number below a critical value by reducing the swimming speed, the frequency of flicks diminishes sharply, consistent with the criticality of buckling. This elegant, under-actuated turning mechanism appears widespread among marine bacteria and may provide a novel design concept in micro-robotics.

  19. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global

  20. Using Euler buckling springs for vibration isolation

    CERN Document Server

    Winterflood, J; Blair, D G

    2002-01-01

    Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance.

  1. Using Euler buckling springs for vibration isolation

    International Nuclear Information System (INIS)

    Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance

  2. Transpalpebral extrusion of solid silicone buckle

    OpenAIRE

    Abadan Amitava Khan

    2009-01-01

    Explants used in retinal reattachment surgery occasionally extrude. Cheese-wiring of the suture through the sclera consequent to raised intraocular pressure allows the buckle to loosen and/or unfold. Subsequent infection, often with Staphylococcus albus, accelerates the process of extrusion. Commonly, such explants are of silicone sponge. The reported case is unusual in that the extrusion occurred through the upper lid, and involved a solid silicone explant.

  3. Transpalpebral extrusion of solid silicone buckle

    Directory of Open Access Journals (Sweden)

    Abadan Amitava Khan

    2009-01-01

    Full Text Available Explants used in retinal reattachment surgery occasionally extrude. Cheese-wiring of the suture through the sclera consequent to raised intraocular pressure allows the buckle to loosen and/or unfold. Subsequent infection, often with Staphylococcus albus, accelerates the process of extrusion. Commonly, such explants are of silicone sponge. The reported case is unusual in that the extrusion occurred through the upper lid, and involved a solid silicone explant.

  4. Transpalpebral extrusion of solid silicone buckle.

    Science.gov (United States)

    Khan, Abadan Amitava

    2009-05-01

    Explants used in retinal reattachment surgery occasionally extrude. Cheese-wiring of the suture through the sclera consequent to raised intraocular pressure allows the buckle to loosen and/or unfold. Subsequent infection, often with Staphylococcus albus, accelerates the process of extrusion. Commonly, such explants are of silicone sponge. The reported case is unusual in that the extrusion occurred through the upper lid, and involved a solid silicone explant. PMID:20671837

  5. Shear-lag model of diffusion-induced buckling of core–shell nanowires

    Science.gov (United States)

    Li, Yong; Zhang, Kai; Zheng, Bailin; Yang, Fuqian

    2016-07-01

    The lithiation and de-lithiation during the electrochemical cycling of lithium–ion batteries (LIBs) can introduce local deformation in the active materials of electrodes, resulting in the evolution of local stress and strain in the active materials. Understanding the structural degradation associated with lithiation-induced deformation in the active materials is one of the important steps towards structural optimization of the active materials used in LIBs. There are various degradation modes, including swelling, cracking, and buckling especially for the nanowires and nanorods used in LIBs. In this work, a shear-lag model and the theory of diffusion-induced stress are used to investigate diffusion-induced buckling of core–shell nanowires during lithiation. The critical load for the onset of the buckling of a nanowire decreases with the increase of the nanowire length. The larger the surface current density, the less the time is to reach the critical load for the onset of the buckling of the nanowire.

  6. Flutter and thermal buckling control for composite laminated panels in supersonic flow

    Science.gov (United States)

    Li, Feng-Ming; Song, Zhi-Guang

    2013-10-01

    Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.

  7. Circumferential buckling instability of a growing cylindrical tube

    KAUST Repository

    Moulton, D.E.

    2011-03-01

    A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.

  8. Anisotropic growth of buckling-driven wrinkles in graphene monolayer

    International Nuclear Information System (INIS)

    We theoretically and numerically investigate the growth of buckling-driven wrinkles in graphene monolayers. It is found that the growth of buckling-driven wrinkles in a graphene monolayer is remarkably chirality- and size-dependent. In small sizes, the flexural response of a graphene sheet cannot be accurately described by the classical Euler regime, and the non-continuum effect leads to zigzag-along-preferred buckling. With the increase of size, the width/length ratio α of the compressed region plays an important role in the growth of buckling-driven wrinkles. When α < 0.5, the oblique buckling happens in armchair-along compression; when 0.5 < α < 1.0, the effect of edge warp leads to zigzag-along-preferred buckling. When 1.0 < α < 3.0, the potential energy density difference due to chiral bending stiffness leads to armchair-along-preferred buckling. When α > 3.0, the non-continuum effect and chiral bending stiffness can both be neglected, and the buckling in a graphene monolayer is isotropic. The chirality-along-preferred transition of compressed buckling in a graphene monolayer leads to an improved fundamental understanding of the dynamics mechanism of graphene-based nanodevices, especially for the nanodevices with high frequency response. (paper)

  9. Method for studying the plastic buckling of shells. Testing

    International Nuclear Information System (INIS)

    In this article a description is given of the method selected for studying the elasto-plastic buckling of shells of any shape. The emphasis is mainly on three points: the difficulty in making a strict formulation with respect to plasticity, the model selected (MOTAN model) is presented; the effect of so called 'non conservative' forces; and the effect of great deformations that might precede the buckling. The method is compared to tests: basket handle buckling of bottoms, buckling of elliptical bottoms under internal pressure, of compresses thin tubes, of metal drums, spherical diaphragm, shearing rings

  10. Dimple Patterns in Buckling Surfaces

    Science.gov (United States)

    Breid, Derek; Crosby, Alfred

    2010-03-01

    Surface wrinkling has attracted considerable attention in recent years for its ability to generate micro- and nano- scale surface structures via non-lithographic pathways. Although the wrinkle morphology has been considered from an energetic viewpoint for stresses exceeding the critical bifurcation stress, the wrinkle morphology for stress near the critical value is far less understood, in part due to a lack of experimental results in this regime. Recent models for this regime predict the formation of a dimple-phase morphology when the stress is equibiaxial, transitioning to aligned ridges when the stress is anisotropic. Here, we present an experimental investigation into the formation of dimple arrays through the control of the applied stress as well as the geometric parameters of the wrinkling system. We demonstrate the ability to develop dimple arrays over extensive lateral length scales, as well as dimples on the surface of a microscale hemisphere, resulting in a `golf ball' hierarchical structure. These results shed light on the morphology in the near-critical wrinkle regime and provoke many open questions about the underlying materials mechanics in the development of wrinkle surface structures.

  11. Framework for the Buckling Optimization of Variable-Angle Tow Composite Plates

    OpenAIRE

    Wu, Zhangming; Raju, Gangadharan; Weaver, Paul M

    2015-01-01

    Variable-angle tow describes fibers in a composite lamina that have been steered curvilinearly. In doing so, substantially enlarged freedom for stiffness tailoring of composite laminates is enabled. Variable-angle tow composite structures have been shown to have improved buckling and postbuckling load-carrying capability when compared to straight fiber composites. However, their structural analysis and optimal design is more computationally expensive due to the exponential increase in number ...

  12. Computational analysis based on creep damage mechanics for creep bifurcation buckling of circular cylindrical shell subjected to axial compression

    International Nuclear Information System (INIS)

    Cylindrical shells are utilized as structural elements of nuclear power plans, heat exchangers or pressure vessels, which are operated under elevated temperature. Creep buckling is one of the failure modes of structures at elevated temperature. In some experiments conducted by other authors, axially compressive cylindrical shells with a large ratio of radius to thickness were observed to buckle with circumferential waves. We reported that the circumferential weaves occur due to bifurcation buckling. But, the citrical time and the minimum loading for bifurcation buckling obtained from calculations of finite element analyses are not very good agreement with those of the experiments. One of the reasons for the disagreement is considered to be that the creep constitutive equations employed in many previous analyses represent steady creep. The creep phenomena usually have primary creep period, steady creep one and tertiary creep one. A creep strain-time relation through the three periods can be simulated by using a constitutive equation based on creep damage mechanics. In the present paper, we analyze bifurcation creep buckling of circular cylindrical shells subjected to axial compression by the use of the finite element method taking account of the creep damage mechanics of Kachanov-Rabotnov. (author)

  13. Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons

    Science.gov (United States)

    Yao, Zhenwei; Olvera de la Cruz, Monica

    2016-04-01

    We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.

  14. Evaluation of post buckling residual strength of H section steel column for both ends are fixed condition

    International Nuclear Information System (INIS)

    Progressive collapse is a chain reaction of failures propagating throughout a portion of a structure that is disproportionate to the original local failure. When column members are subjected to unexpected load (compression load), they will buckle it the applied load is greater than the critical load the induces buckling. The post buckling strength of the columns will decrease rapidly, but if there is enough residual strength, the members will absorb the potential energy generated by the impact load to prevent progressive collapse. Thus, it is necessary to identify the relationship of the load deformation of a column member in the progressive collapse of a structure up to final collapse. In this study, we carried out nonlinear FEM analysis and based on deflection theory, we investigated the load deformation relationship of H section steel columns when both ends were fixed

  15. The status of experimental buckling investigations of shells

    International Nuclear Information System (INIS)

    The recent developments in shell buckling experiments are surveyed and related to a review of the progress in the seventies. Model fabrication, imperfection measurements, boundary conditions, nondestructive testing, combined loading, postbuckling behavior, composite shells and other aspects of shell buckling tests are discussed. The motivation for experiments and the conclusions drawn in the previous review are reassessed. (orig.)

  16. Elastic buckling analysis of corroded stiffened plates with irregular surfaces

    Indian Academy of Sciences (India)

    Ahmad Rahbar-Ranji

    2015-02-01

    Numerical simulation is used to study the influence of corrosion damage in stiffened plates focusing on elastic buckling strength. Three-dimensional specta are used to simulate geometries of corroded surfaces and finite element method is employed for computing Euler stress of stiffened plates. The influence of corrosion patterns, amount of corrosion loss and roughness of surface are investigated. Ratio of Euler stress of corroded stiffened plate over Euler stress of un-corroded stiffened plate is used to characterize the effects of corrosion on reduction of buckling strength. Results show that reduction of buckling strength is very sensitive to the amount of corrosion loss and roughness of surface, but less sensitive to the location of corroded region. The potential for decrease in buckling strength as a consequence of corrosion is found to depend on the dominant buckling mode. Residual buckling strength is reduced by as much as 12% for the interaction of plate-web-torsional buckling mode, and by 2% for column buckling.

  17. Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists

    Science.gov (United States)

    Villasenor Aguilar, Jose Maria

    Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end

  18. Global lateral buckling analysis of idealized subsea pipelines

    Institute of Scientific and Technical Information of China (English)

    刘润; 刘文彬; 吴新利; 闫澍旺

    2014-01-01

    In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty, usually high temperature and high pressure are used in the transportation of oil and gas. The differences of temperature and pressure cause additional stress along the pipeline, due to the constraint of the foundation soil, the additional stress can not release freely, when the additional stress is large enough to motivate the submarine pipelines buckle. In this work, the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature, buckling length and amplitude under different high-order global lateral buckling modes. To obtain a consistent formulation of the problem, the principles of virtual displacements and the variation calculus for variable matching points are applied. The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure. The factors influencing the lateral buckling of pipelines are further studied. Based upon some actual engineering projects, the finite element results are compared with the analytical ones, and then the influence of thermal stress, the section rigidity of pipeline, the soil properties and the trigging force to the high order lateral buckling are discussed. The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis. In practice, increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.

  19. Flow sensing by buckling monitoring of electrothermally actuated double-clamped micro beams

    CERN Document Server

    Kessler, Yoav; Liberzon, Alex

    2016-01-01

    We report on a flow sensing approach based on deflection monitoring of micro beams buckled by the compressive thermal stress due to electrothermal Joules heating. The air stream convectively cooling the device affects both the critical buckling values of the electric current and the postbuckling deflections of the structure. After calibration, the flow velocity was obtained from the deflections measurements. The quasi-static responses of 2000 microns long, 10 microns wide and 30 microns high single crystal silicon beam transduced using image processing were consistent with the prediction of the reduced order model, which couples thermoelectric, thermofluidic and structural domains. The deflection sensitivity of 1.5 microns/(m/s) and the critical current sensitivity of 0.4 mA/(m/s) were registered in the experiments. Our model and experimental results collectively demonstrate feasibility of the sensing approach and further suggest that simple, robust and potentially downscalable beam-type devices may have use ...

  20. Effects of Antimicrobial Peptide Revealed by Simulations: Translocation, Pore Formation, Membrane Corrugation and Euler Buckling

    Directory of Open Access Journals (Sweden)

    Weihai Fang

    2013-04-01

    Full Text Available We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling.

  1. A proposed set of popular limit-point buckling benchmark problems

    OpenAIRE

    LEAHU-ALUAS, Ion; ABED-MERAIM, Farid

    2011-01-01

    Developers of new finite elements or nonlinear solution techniques rely on discriminative benchmark tests drawn from the literature to assess the advantages and drawbacks of new formulations. Buckling benchmark tests provide a rigorous evaluation of finite elements applied to thin structures, and a complete and detailed set of reference results would therefore prove very useful in carrying out such evaluations. Results are usually presented in the form of load-deflection curves that developer...

  2. The Buckling Analysis of Axially Loaded Columns with Artificial Neural Networks

    OpenAIRE

    Ülker, Mehmet; CİVALEK, Ömer

    2002-01-01

    The determination of effective design values in structural analysis is important.Axially loaded columns are designed according to the their buckling load capacity. In this study, a multi-layer artificial neural network is trained to give critical load for axially loaded columns and various support conditions. Back-propagation training algorithms are used considering the circular, square, rectangular, and I cross-sections. The artificial neural network, with is trained for circular and rec...

  3. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    Science.gov (United States)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  4. Pseudo-nonlinear dynamic analysis of buckled pipes

    Science.gov (United States)

    Gültekin Sınır, B.

    2013-02-01

    In this study, the post-divergence behavior of fluid-conveying pipes supported at both ends is investigated using the nonlinear equations of motion. The governing equation exhibits a cubic nonlinearity arising from mid-plane stretching. Exact solutions for post-buckling configurations of pipes with fixed-fixed, fixed-hinged, and hinged-hinged boundary conditions are investigated. The pipe is stable at its original static equilibrium position until the flow velocity becomes high enough to cause a supercritical pitchfork bifurcation, and the pipe loses stability by static divergence. In the supercritical fluid velocity regime, the equilibrium configuration becomes unstable and bifurcates into multiple equilibrium positions. To investigate the vibrations that occur in the vicinity of a buckled equilibrium position, the pseudo-nonlinear vibration problem around the first buckled configuration is solved precisely using a new solution procedure. By solving the resulting eigenvalue problem, the natural frequencies and the associated mode shapes of the pipe are calculated. The dynamic stability of the post-buckling configurations obtained in this manner is investigated. The first buckled shape is a stable equilibrium position for all boundary conditions. The buckled configurations beyond the first buckling mode are unstable equilibrium positions. The natural frequencies of the lowest vibration modes around each of the first two buckled configurations are presented. Effects of the system parameters on pipe behavior as well as the possibility of a subcritical pitchfork bifurcation are also investigated. The results show that many internal resonances might be activated among the vibration modes around the same or different buckled configurations.

  5. Electromechanical Dynamics Analysis of Buckling Microstructure For Micromirror

    International Nuclear Information System (INIS)

    The electromechanical dynamics characteristic and emulation of buckling microstructure for digital micromirror device are studied. The microstructure of digital micromirror device based on buckling theory is designed and its electromechanical dynamics model is established. The hidden functions in the dynamics model are found out by numerical methods such as Runge-Kutta method and Finite Element method. A numerical emulation to the whole motion differential equation has been presented, and a continuous angular displacement curve of micro-reflectmirror is obtained. At last, it is concluded that the buckling microstructure has an advantage of light beam stability

  6. On the buckling of an elastic rotating beam

    DEFF Research Database (Denmark)

    Furta, Stanislaw D.; Kliem, Wolfhard; Pommer, Christian

    1997-01-01

    problem is integrated and this results in a second order differential equation of the Fuchs type, which allows an asymptotic expansion of the buckling equation. By means of Lyapunov and Chetaev functions, a rigorous proof is given that the loss of stability of the trivial equilibrium shape occurs for any......A nonlinear model is developed, which describes the buckling phenomena of an elastic beam clamped to the interior of a rotating wheel. We use a power series method to obtain an approximate expression of the buckling equation and compare this with previous results in the literature. The linearized...

  7. Experimental validation of CASTEM code for buckling problems

    International Nuclear Information System (INIS)

    For validating the buckling analysis capability of CASTEM code which is used for the buckling design of Prototype Fast Breeder Reactor (PFBR) vessels, a few experiments have been carried out at Indira Gandhi Centre for Atomic Research (IGCAR)in Kalpakkam. Experiments were conducted on aluminium cylindrical shells under axial compression and stainless steel cylindrical shells under external pressure and transverse shear loading. This paper presents the results of experimental and associated theoretical buckling studies performed using the code INCA. (author). 3 refs., 9 figs., 3 tabs

  8. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically...

  9. Buckling and vibration of a rotating beam†

    Science.gov (United States)

    Nachman, A.

    1986-09-01

    The equations for the vibration of a rotating beam, such as a helicopter blade, are exhibited. The beam is elastic (in general non-linearly so), the description is geometrically exact, the axis of rotation does not necessarily pass through the beam's clamped end (precession) and cross-sectional shearing is accounted for by using a director theory. Particular attention is paid to the impossibility of vibration (or buckling) confined to a plane making an angle β to the axis of rotation unless β=π/2 (orπ/2 or 0) or rotatory inertia is neglected. For purposed of illustration the analysis is specialized to describe Euler-Bernoulli and Timoshenko beams.

  10. 速度型阻尼器和防屈曲支撑在装配式框架结构纵向体系中减震效果研究%Damping Effect Research of Velocity Type Damper and Buckling-restrained Brace in the Longitudinal System of Fabricated Frame Structure

    Institute of Scientific and Technical Information of China (English)

    严俊; 庞金来; 施卫星

    2015-01-01

    For the lack of researches of the longitudinal framing of fabricated structure with weak lateral stiffness, non-damped, buckling-restrainedbrace and damped structure finite element analysis models were es-tablished .The three models'earthquake reaction in the longitudinal system were compared by the nonlinear time history analysis method .Analysis shows that the similar structure with damper can significantly improve the damping effect , and keep the structure in the elastic stage under the major earthquake .The paper can provide a reference for damper's application in the longitudinal framing .%针对抗侧刚度较弱的装配式结构纵向框架研究较少的现状,建立了纯框架、增设防屈曲支撑及增设阻尼器的装配式框架有限元分析模型,通过非线性的时程对比分析了在地震作用下三种模型纵向体系的结构反应。分析表明,在类似结构中增设阻尼器,可显著提高减震效果,使结构在大震中依然处于弹性状态。对于进一步提高阻尼器在纵向框架的应用水平具有一定的借鉴意义。

  11. The eigenvalue problem associated with the nonlinear buckling of a shear bending column

    Science.gov (United States)

    Nishimura, Isao

    2011-04-01

    This paper discusses the eigenvalue problem of a nonlinear differential equation that governs the stability of a shear bending column under extremely large deformation. What is taken into consideration is the geometrical nonlinearity while the material is supposed to be linear. The reason of a superbly stable buckling behavior of a slender rubber bearing is physically explained by pointing out the analogy that is similar to the nonlinear wave propagation expressed in KdV equation. The nonlinear boundary condition and the nonlinear term of the differential equation cancel each other and make the associated eigenvalue rather constant. In other words, as far as the material is supposed to be linear, the column does not buckle no matter how large the deformation is. This theoretical prediction is experimentally verified and successfully applied to a base isolation system of a lightweight structure.

  12. Numerical analysis of pulse signal restoration by stochastic resonance in a buckled microcavity.

    Science.gov (United States)

    Sun, Heng; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu; Han, Jing

    2016-04-20

    A novel scheme is proposed to restore weak pulse signals immersed in noise by stochastic resonance based on photothermal-effect-induced optical bistability in a buckled dome microcavity. The bistable properties of the dome microcavity are analyzed with different initial detuning wavelengths and effective cavity lengths, and bistable transmission can be obtained for input powers in submilliwatt range. A theoretical model is derived to interpret the nonlinear process of pulse signal recovery through double-well potential theory. The cross-correlation coefficient between output signals and pure input pulses is calculated to quantitatively analyze the influence of noise intensity on stochastic resonance. A cross-correlation gain of 7 is obtained, and the noise-hidden signal can be recovered effectively though the buckled dome microcavity with negligible distortion. The simulation results show the potential of using this structure to restore low-level or noise-hidden pulse signals in all-optical integrated systems. PMID:27140110

  13. Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function

    Science.gov (United States)

    Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang

    2016-08-01

    In this paper, a model of topology optimization with linear buckling constraints is established based on an independent and continuous mapping method to minimize the plate/shell structure weight. A composite exponential function (CEF) is selected as filtering functions for element weight, the element stiffness matrix and the element geometric stiffness matrix, which recognize the design variables, and to implement the changing process of design variables from "discrete" to "continuous" and back to "discrete". The buckling constraints are approximated as explicit formulations based on the Taylor expansion and the filtering function. The optimization model is transformed to dual programming and solved by the dual sequence quadratic programming algorithm. Finally, three numerical examples with power function and CEF as filter function are analyzed and discussed to demonstrate the feasibility and efficiency of the proposed method.

  14. Dynamic buckling of columns by biaxial moments and uniform end torque

    Science.gov (United States)

    Leung, A. Y. T.

    2010-05-01

    A new concept of uniform torque is proposed for the dynamic torsional buckling analysis. A dynamic biaxial moments and torque buckling theory is presented for analysis in structural dynamics. Second-order effects of the axial force, biaxial moments and torque are considered. The consistent natural boundary moments and forces are derived to ensure the symmetry of the dynamic stiffness matrix in fulfilling the requirement of the reciprocal theorem and conservation of energy. The exact dynamic stiffness matrix is obtained using power series expansion. The derivatives of the analytical dynamic stiffness matrix with respect to different loading and geometric parameters are derived explicitly for sensitivity and continuation analyses. Generally distributed axial force can be analyzed without difficulty. It is pointed out that non-uniform sections may not be handled by power series due to the convergent problem. Global pictures for all kinds of linear dynamic buckling are given for the first time. The methodology is based on finite element formulation and therefore it can easily be extended to analyze structural frames.

  15. Broadband performance of a piezoelectric energy harvester based on the internal resonance of buckled beam

    Science.gov (United States)

    Xiong, Liuyang; Tang, Lihua; Ding, Hu; Chen, Liqun; Mace, Brian

    2016-04-01

    Nonlinear internal resonance mechanism is exploited in piezoelectric vibration energy harvesting (PVEH) for the purpose of broadening the resonance band. Conventional linear energy harvester has narrow operating bandwidth. In this research, a buckled piezoelectric beam structure with preload under transverse excitation is investigated to demonstrate the superiority of internal resonance. The condition for 2:1 internal resonance could be established by truncating the continuum beam with geometrical nonlinearity. Integro-partial-differential equations are derived for governing transverse motion measured from a stable equilibrium position. At specific initial axial compressive force, two modes are coupled through the internal resonance interaction. For weak nonlinear perturbations, multiple scales method is used to explore the amplitude-frequency responses of the buckled beam system under primary resonance with 2:1 internal resonance. Numerical examples demonstrate that the resonance bandwidth is broadened thanks to the coexistence of softening and hardening nonlinear characteristics. Moreover, validity of the approximate analytical method is demonstrated by comparing with simulation. Furthermore, the optimal resistance is discussed with a pure resistive load. This research on the internal resonance of buckled beam provides a basis for structure design and optimization in broadband PVEH.

  16. Stress evolution during 3D single-layer visco-elastic buckle folding: Implications for the initiation of fractures

    Science.gov (United States)

    Liu, Xiaolong; Eckert, Andreas; Connolly, Peter

    2016-06-01

    Buckle folds of sedimentary strata commonly feature a variety of different fracture sets. Some fracture sets including outer arc tensile fractures and inner arc shear fractures at the fold hinge zones are well understood by the extensional and compressional strain/stress pattern. However, other commonly observed fracture sets, including tensile fractures parallel to the fold axis, tensile fractures cutting through the limb, extensional faults at the fold hinge, and other shear fractures of various orientations in the fold limb, fail to be intuitively explained by the strain/stress regimes during the buckling process. To obtain a better understanding of the conditions for the initiation of the various fractures sets associated with single-layer cylindrical buckle folds, a 3D finite element modeling approach using a Maxwell visco-elastic rheology is utilized. The influences of three model parameters with significant influence on fracture initiation are considered: burial depth, viscosity, and permeability. It is concluded that these parameters are critical for the initiation of major fracture sets at the hinge zone with varying degrees. The numerical simulation results further show that the buckling process fails to explain most of the fracture sets occurring in the limb unless the process of erosional unloading as a post-fold phenomenon is considered. For fracture sets that only develop under unrealistic boundary conditions, the results demonstrate that their development is realistic for a perclinal fold geometry. In summary, a more thorough understanding of fractures sets associated with buckle folds is obtained based on the simulation of in-situ stress conditions during the structural development of buckle folds.

  17. Buckled circular monolayer graphene: a graphene nano-bowl

    International Nuclear Information System (INIS)

    We investigate the stability of circular monolayer graphene subjected to a radial load using non-equilibrium molecular dynamics simulations. When monolayer graphene is radially stressed, after some small circular strain (∼0.4%) it buckles and bends into a new bowl-like shape. Young's modulus is calculated from the linear relation between stress and strain before the buckling threshold, which is in agreement with experimental results. The prediction of elasticity theory for the buckling threshold of a radially stressed plate is presented and its results are compared to the one of our atomistic simulation. The Jarzynski equality is used to estimate the difference between the free energy of the non-compressed states and the buckled states. From a calculation of the free energy we obtain the optimum radius for which the system feels the minimum boundary stress.

  18. Buckled circular monolayer graphene: a graphene nano-bowl

    Energy Technology Data Exchange (ETDEWEB)

    Neek-Amal, M [Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788 (Iran, Islamic Republic of); Peeters, F M [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2011-02-02

    We investigate the stability of circular monolayer graphene subjected to a radial load using non-equilibrium molecular dynamics simulations. When monolayer graphene is radially stressed, after some small circular strain ({approx}0.4%) it buckles and bends into a new bowl-like shape. Young's modulus is calculated from the linear relation between stress and strain before the buckling threshold, which is in agreement with experimental results. The prediction of elasticity theory for the buckling threshold of a radially stressed plate is presented and its results are compared to the one of our atomistic simulation. The Jarzynski equality is used to estimate the difference between the free energy of the non-compressed states and the buckled states. From a calculation of the free energy we obtain the optimum radius for which the system feels the minimum boundary stress.

  19. Buckling Analysis of Functionally Graded Plates with Simply Supported Edges

    Directory of Open Access Journals (Sweden)

    Megueni ABDELKADER

    2009-12-01

    Full Text Available Thermal buckling analyses of S-FGM are investigated by using first order shear deformation theory. Material properties are varied continuously in the thickness direction according to a sigmoid distribution. The thermal buckling behaviours under uniform, linear and sinusoidal temperature rise across the thickness are analyzed. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the classic plate theory (CPT.

  20. Lateral buckling and axial walking of surface laid subsea pipeline

    OpenAIRE

    Obele, Ifenna

    2013-01-01

    Subsea pipelines are increasingly being required to operate at high temperature and pressure HT/HP. The pipeline installed on the seabed and left exposed have a potential to buckle, walk and change configuration under high temperature and pressure (HT/HP). This could lead to failure of the Pipeline if buckling and walking is not properly controlled or mitigated. The objective of the thesis work is to study and understand the influence of pipeline-soil interaction on the design ...

  1. On the buckling of an elastic rotating beam

    DEFF Research Database (Denmark)

    Furta, Stanislaw D.; Kliem, Wolfhard; Pommer, Christian

    1997-01-01

    A nonlinear model is developed, which describes the buckling phenomena of an elastic beam clamped to the interior of a rotating wheel. We use a power series method to obtain an approximate expression of the buckling equation and compare this with previous results in the literature. The linearized...... length of the beam provided the angular velocity of the rotating wheel is sufficiently large. Finally we discuss the nonlinear problem and describe the qualitative behaviour of branches in a bifurcation diagram....

  2. Local and distortional buckling of perforated steel wall studs

    OpenAIRE

    Kesti, Jyrki

    2000-01-01

    The local and distortional buckling behaviour of flange and web-stiffened compression members was investigated. In particular, the behaviour of web-perforated sections was investigated both numerically and experimentally. Perforation reduces the perpendicular flexural stiffness of the web and thus particularly reduces the distortional buckling strength of the section. The main task of the research was to develop a design method for estimating the compression capacity of a perforated steel wal...

  3. Buckling and failure characteristics of graphite-polyimide shear panels

    Science.gov (United States)

    Shuart, M. J.; Hagaman, J. A.

    1983-01-01

    The buckling and failure characteristics of unstiffened, blade stiffened, and hat stiffened graphite-polyimide shear panels are described. The picture frame shear test is used to obtain shear stress-strain data at room temperature and at 316 deg C. The experimental results are compared with a linear buckling analysis, and the specimen failure modes are described. The effect of the 316 deg C test temperature on panel behavior are discussed.

  4. Wing Panel Design with Novel Skin-Buckling Containment Features

    OpenAIRE

    Houston, G; Quinn, D.; Murphy, A; Bron, F.

    2016-01-01

    The impact of buckling containment features on the stability of thin-gauge fuselage, metallic stiffened panels has previously been demonstrated. With the continuing developments in manufacturing technology, such as welding, extrusion, machining, and additive layer manufacture, understanding the benefits of additional panel design features on heavier applications, such as wing panels, is timely. This compression testing of thick-gauge panels with and without buckling containment features has b...

  5. Improvement of the axial buckling capability of elliptical cylindrical shells

    OpenAIRE

    Paschero, Maurizio

    2008-01-01

    A rather thorough and novel buckling analysis of an axially-loaded orthotropic circular cylindrical shell is formulated. The analysis assumes prebuckling rotations are negligible and uses a unique re-defining of the orthotropic material properties in terms of a so-called geometric mean isotropic (GMI) material. Closed-form expressions for the buckling stress in terms of cylinder geometry and orthotropic material properties are presented, the particular closed form depending on ...

  6. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  7. Flexural-torsional buckling behavior of aluminum alloy beams

    Institute of Scientific and Technical Information of China (English)

    Xiaonong GUO; Zhe XIONG; Zuyan SHEN

    2015-01-01

    This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load- deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexuml-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural- torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

  8. Combined torsional buckling of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    This paper reports the results of an investigation on combined torsional buckling of an individual multi-walled carbon nanotube (MWNT) under combined torque and axial loading. Here, a multiple shell model is adopted and the effect of van der Waals forces between two adjacent tubes is taken into account. According to the ratio of radius to thickness, MWNTs discussed in this paper are classified into three types: thin, thick and nearly solid. The critical shear stress and the combined buckling mode are calculated for three types of MWNTs under combined torque and axial loading. Results carried out show that the buckling mode (m, n) corresponding to the critical shear stress is unique, which is obviously different from the purely axial compression buckling of an individual MWNT. Numerical results also show that the critical shear stresses and the corresponding buckling modes of MWNTs under combined torque and axial loading are dependent on the axial loading form and the types of MWNTs. The new features and meaningful numerical results in the present work on combined buckling of MWNTs under combined torque and axial loading may be used as a useful reference for the designs of nano-drive devices and rotational actuators in which MWNTs act as basic elements

  9. BUCKLING ANALYSES OF A HEAVY COLUMN CONSIDERATED IN WATER

    Directory of Open Access Journals (Sweden)

    Yeliz PEKBEY

    2008-02-01

    Full Text Available In 1744, the critical buckling load with the assumption of uniform cross-section without weight of column were computed by Euler. Whenever an economical solution is required, the weight of column must be considered for solution of buckling analyses. In literature, the critical buckling load and asymptotic behaviour of heavy column in condition of atmosphere have inverstigated for ten different support types. When this literature is examined, it is stated that the differential equations of for four different suppport types in condition of water is similar to condition of atmosphere. However, the differential equations of other four different suppport types in condition of water is different from to condition of atmosphere. And it is stated that the critical buckling load these different suppport types in condition of water is not calculated from condition of atmosphere. The goals of this paper are to develop self weight buckling of column at its top fixed and lower end fixed-roller supported in condition of water. This paper, presents a analytical method for calculating the critical buckling load of the heavy column.

  10. Energy harvesting from localized dynamic transitions in post-buckled elastic beams under quasi-static loading

    Science.gov (United States)

    Borchani, Wassim

    The deployability of structural health monitoring self-powered sensors relies on their capability to harvest energy from signals being monitored. Many of the signals required to assess the structure condition are quasi-static events which limits the levels of power that can be extracted. Several vibration-based techniques have been proposed to increase the transferred level of power and broaden the harvester operating bandwidth. However, these techniques require vibration input excitations at frequencies higher than dominant structural response frequencies which makes them inefficient and not suitable for ambient quasi-static excitations. This research proposes a novel sensing and energy harvesting technique at low frequencies using mechanical energy concentrators and triggers. These mechanisms consist of axially-loaded bilaterally-constrained beams with attached piezoelectric energy harvesters. When the quasi-static axial load reaches a certain mechanical threshold, a sudden snap-through mode-switching occurs. These transitions excite the attached piezoelectric scavengers with high-rate input accelerations, generating then electric power. The main objectives are to understand and model the post-buckling behavior of bilaterally-constrained beams, control it by tailoring geometry and material properties of the buckled elements or stacking them into system assemblies, and finally characterize the energy harvesting and sensing capability of the system under quasi-static excitations. The fundamental principle relies on the following concept. Under axial load, a straight slender beam buckles in the first buckling mode. The increased transverse deformations from a buckled shape lead to contact interaction with the lateral boundaries. The contact interaction generates transverse forces that induce the development of higher order buckling configurations. Transitions between the buckled configurations occur not only during loading, but also unloading. In this work, the post-buckling

  11. HANFORD DOUBLE-SHELL TANK (DST) THERMAL and SEISMIC PROJECT-BUCKLING EVALUATION METHODS and RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to

  12. Tension and twist of chiral nanotubes: torsional buckling, mechanical response and indicators of failure

    International Nuclear Information System (INIS)

    We report on molecular dynamic calculations of combined tension–torsion of chiral single-wall nanotubes. We work within the framework of objective structures that exploits symmetry groups to enable torsion of chiral nanotubes, in addition to non-equilibrium extension. We apply the method to study the mechanical response and failure of nanotubes of various chiralities. We find that three distinct regimes exist for nanotubes under twist: distorted but unbuckled, reversible torsional buckling and irreversible torsional buckling. When twisted but unbuckled nanotubes are subject to tension, there is minimal change in failure strain, whereas reversibly buckled nanotubes have substantially reduced failure strain and load. We also observe the evolution of the twisting moment during the elongation process while keeping the twist angle fixed. This evolution has two interesting and potentially useful features: first, some nanotubes ‘unbuckle’ in the process of extension, and second, there is a clear correlation between extrema in the evolution of the twisting moment and impending nanotube failure. Given the sensitivity of electrical properties in carbon nanotubes to torsion, and the recent demonstrations of measuring torsion-induced changes, the latter feature suggests the possibility of real-time diagnostics to detect critical mechanical events. (paper)

  13. Tension and twist of chiral nanotubes: torsional buckling, mechanical response and indicators of failure

    Science.gov (United States)

    Aghaei, Amin; Dayal, Kaushik

    2012-12-01

    We report on molecular dynamic calculations of combined tension-torsion of chiral single-wall nanotubes. We work within the framework of objective structures that exploits symmetry groups to enable torsion of chiral nanotubes, in addition to non-equilibrium extension. We apply the method to study the mechanical response and failure of nanotubes of various chiralities. We find that three distinct regimes exist for nanotubes under twist: distorted but unbuckled, reversible torsional buckling and irreversible torsional buckling. When twisted but unbuckled nanotubes are subject to tension, there is minimal change in failure strain, whereas reversibly buckled nanotubes have substantially reduced failure strain and load. We also observe the evolution of the twisting moment during the elongation process while keeping the twist angle fixed. This evolution has two interesting and potentially useful features: first, some nanotubes ‘unbuckle’ in the process of extension, and second, there is a clear correlation between extrema in the evolution of the twisting moment and impending nanotube failure. Given the sensitivity of electrical properties in carbon nanotubes to torsion, and the recent demonstrations of measuring torsion-induced changes, the latter feature suggests the possibility of real-time diagnostics to detect critical mechanical events.

  14. High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code

    Science.gov (United States)

    Hilburger, Mark W.

    2014-01-01

    Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.

  15. Experimental evidence of imperfection influence on the buckling of thin cylindrical shell under uniform external pressure

    International Nuclear Information System (INIS)

    The load carrying behaviour of cylindrical thin-walled shell structures under pressure load is strongly dependent on the nature and magnitude of the imperfections invariably caused by various manufacturing processes. The present paper examines instabilities of long homogeneous and isotropic thin elastic tubes, characterized by geometric imperfections like eccentricity or oval shape, on the buckling behaviour in conditions for which, at present, a complete theoretical analysis was not found in literature. Moreover, the additional aspect of the influence of the welded joint geometry and position is investigated over a wide range of diameter to thickness ratio, extending the findings of previous works. The experiments were conducted on test specimens with different materials, e.g. A-316 ASTM (with and without seam weld) and Inconel, as well as different loading conditions (lateral and hydrostatic external pressure). A validation of numerical evaluations by comparison with test results is also performed. A good agreement has been observed between the experimental data and the elasto-plastic finite element analyses results, highlighting also the different influence of the mentioned imperfections on the buckling loads. For all 3 tube families tested, the oval form was found to reduce the collapse pressure quite significantly. The local thickness variation along the longitudinal welding and the interaction between neighbouring imperfections have been shown to be important factors governing buckling

  16. On the nonlinear axisymmetric dynamic buckling behavior of clamped functionally graded spherical caps

    Science.gov (United States)

    Prakash, T.; Sundararajan, N.; Ganapathi, M.

    2007-01-01

    Here, the dynamic thermal buckling behavior of functionally graded spherical caps is studied considering geometric nonlinearity based on von Karman's assumptions. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the material constituents. The effective material properties are evaluated using homogenization method. The governing equations obtained using finite element approach are solved employing the Newmark's integration technique coupled with a modified Newton-Raphson iteration scheme. The pressure load corresponding to a sudden jump in the maximum average displacement in the time history of the shell structure is taken as the dynamic buckling load. The present model is validated against the available isotropic case. A detailed numerical study is carried out to highlight the influences of shell geometries, power law index of functional graded material and boundary conditions on the dynamic buckling load of shallow spherical shells.

  17. Experimental evidence of imperfection influence on the buckling of thin cylindrical shell under uniform external pressure

    International Nuclear Information System (INIS)

    The load carrying behaviour of cylindrical thin-walled shell structures under pressure load is strongly dependent on the nature and magnitude of the imperfections invariably caused by various manufacturing processes. The present paper examines instabilities of long homogeneous and isotropic thin elastic tubes, characterized by geometric imperfections like eccentricity or ovality, on the buckling behaviour in conditions for which, at present, a complete theoretical analysis was not found in literature. Moreover, the additional aspect of the influence of the welded joint geometry and position is investigated over a wide range of diameter to thickness ratio, extending the findings of previous works. The problem of buckling for variable load conditions is relevant in the context of NPP applications as, for instance the optimisation of an integrated and innovative LWR Steam Generator (SG) tubes, according to the updated ASME rules. To the purpose, at Pisa University a rather intense research activity is being carried out on the buckling of thin walled metal specimens in the dimensional range suitable for the above mentioned application. Therefore a test equipment (with the necessary data acquisition facility), suitable for carrying out test series on this issue, as well as numerical models implemented on the MARC FEM code, were set up. The experiments were conducted on test specimens with different materials, e.g. A-316 ASTM (with and without seam weld) and Inconel 690 TT, as well as different loading conditions (lateral and hydrostatic external pressure). A validation of numerical evaluations by comparison with test results is also performed. A good agreement has been observed between the experimental data and the elasto-plastic finite element analyses results, highlighting also the different influence of the mentioned imperfections on the buckling loads

  18. The state of art for the buckling analysis of liquid metal reactor

    International Nuclear Information System (INIS)

    Because of the initial stage of the buckling analysis application for KALIMER (Korea Advanced Liquid Metal Reactor), the domestic design code of buckling analysis has not yet been provided for KALIMER. It was necessary to review the buckling design codes of the reactor and containment vessels in foreign advanced countries in order to establish the buckling design criteria and evaluate the buckling of KALIMER. In this report, the buckling design codes of the advanced nations such as France, Japan and USA are studied. In France, buckling design rules is RCC-MR RB 3113, 3270 and appendix 7 which describe the classification of analysis methods and procedures. In Japan, seismic buckling design guideline was provided in 1995 and is being supplemented, which is based on the experimental results and provides the simplified equation. In USA, buckling and instability design code is ASME section III division 1 subsection NH and code case N284-1. (author)

  19. Static and dynamic buckling of large thin shells. (Design procedure, computation tools. Physical understanding of the mechanisms)

    International Nuclear Information System (INIS)

    During the last ten years, the French Research Institute for Nuclear Energy (Commissariat a l'Energie Atomique) achieved many theoretical as well as experimental studies for designing the first large size pool type fast breeder reactor. Many of the sensitive parts of this reactor are thin shells subjected to high temperatures and loads. Special care has been given to buckling, because it often governs design. Most of the thin shells structures of the french breeder reactor are axisymmetric. However, imperfections have to be accounted for. In order to keep the advantage of an axisymmetric analysis (low computational costs), a special element has been implemented and used with considerable success in the recent years. This element (COMU) is described in the first chapter, its main features are: either non axisymmetric imperfection or non axisymmetric load, large displacement, non linear material behaviour, computational costs about ten times cheaper than the equivalent three dimensional analysis. This paper based on a careful comparison between experimental and computational results, obtained with the COMU, will analyse three problems: First: design procedure against buckling of thin shells structures subjected to primary loads; Second: static post buckling; Third: buckling under seismic loads

  20. A new algorithm for buckling analyses under non-proportional loading - with application to CERN CMS experiment

    International Nuclear Information System (INIS)

    Full text: The following items might be of interest when the stability of a structure under interacting load cases with independent load factors is investigated: 1. in the case of an interaction between variable loads, their most unfavorable combination with respect to buckling and the corresponding stability limit might be sought after. 2. if variable loads interact with parameter loads the buckling load factor applies only to the former ones, while the latter ones might vary within predefined limits. In this case the most unfavorable values for the parameter loads might be needed as well. For simple structures under simple load cases (e.g. rectangular plates under combined in-plane compression and bending) the above investigations can be easily performed with the aid of analytically determined interaction diagrams, which represent limit curves dividing the load space (a space spanned by the contributing load cases, in which the coordinates of each point correspond to a set of load factors) into stable and unstable sub-regions. However, conventional treatment of more complex structures and loading conditions requires a series of buckling analyses with discrete ratios between the contributing load cases to provide a sufficient number of discrete stability limit points on the interaction diagrams. Further inconvenience arises when a standard FE-code with an eigenvalue solver capable of treating proportional loading only is utilized, whereby even the combination of one variable load with one constant load requires an iterative solution with a series of buckling analyses. In lower bounds for buckling load factors delivered by initial linear eigenvalue analyses under interacting load cases were obtained, providing a means for iterative determination of the worst direction in the load space and the corresponding stability limit, i.e., for the treatment of the first of the above items. In the present paper the second item is addressed. Based on the same bounding method a

  1. Production TTR modeling and dynamic buckling analysis

    Institute of Scientific and Technical Information of China (English)

    Hugh Liu; John Wei; Edward Huang

    2013-01-01

    In a typical tension leg platform (TLP) design,the top tension factor (TTF),measuring the top tension of a top tensioned riser (TTR) relative to its submerged weight in water,is one of the most important design parameters that has to be specified properly.While a very small TTF may lead to excessive vortex induced vibration (ⅤⅣ),clashing issues and possible compression close to seafloor,an unnecessarily high TTF may translate into excessive riser cost and vessel payload,and even has impacts on the TLP sizing and design in general.In the process of a production TTR design,it is found that its outer casing can be subjected to compression in a worst-case scenario with some extreme metocean and hardware conditions.The present paper shows how finite element analysis (FEA) models using beam elements and two different software packages (Flexcom and ABAQUS) are constructed to simulate the TTR properly,and especially the pipe-in-pipe effects.An ABAQUS model with hybrid elements (beam elements globally + shell elements locally) can be used to investigate how the outer casing behaves under compression.It is shown for the specified TTR design,even with its outer casing being under some local compression in the worst-case scenario,dynamic buckling would not occur; therefore the TTR design is adequate.

  2. Post-buckled precompressed (PBP) solid state adaptive rotor

    Science.gov (United States)

    Barrett, Ronald M.; Barnhart, Ryan

    2010-04-01

    This paper is centered on a new actuation philosophy executed on an old rotor design. An adaptive rotor employing twist-active piezoelectric root actuators was used as a testbed to investigate the new branch of structural mechanics devoted to low- and zero-net passive stiffness (ZNPS) structures. One of the more common methods to achieve zero net passive stiffnesses in structures is to employ "negative" springs: that is, mechanisms which when combined with the baseline structure null the passive stiffness of the total structural element. This paper outlines the application of such a system via a Post-Buckled Precompression (PBP) technique at the end of a twist-active piezoelectric rotor blade actuator. The basic performance of the system is handily modeled by using laminated plate theory techniques. A dual cantilevered spring system was used to increasingly null the passive stiffness of the root actuator along the feathering axis of the rotor blade. As the precompression levels were increased, it was shown that corresponding blade pitch levels also increased. The PBP cantilever spring system was designed so as to provide a high level of stabilizing pitch-flap coupling and inherent resistance to rotor propeller moments. Experimental testing showed pitch deflections increasing from just 8° peak-to-peak deflections at 650 V/mm field strength to more than 26° at the same field strength with design precompression levels. Dynamic testing showed the corner frequency of the linear system coming down from 63 Hz (3.8/rev) to 53Hz (3.2/rev). Thrust coefficients manipulation levels were shown to increase from 0.01 to 0.028 with increasing precompression levels. The paper concludes with an overall assessment of the actuator design and conclusions on overall feasibility.

  3. Generation of buckle folds in Naga fold thrust belt, north-east India

    Science.gov (United States)

    Saha, B.; Dietl, C.

    2009-04-01

    Naga fold thrust belt (NFTB), India, formed as a result of northward migration of the Indian plate initiated in Eocene and its subsequent collision with the Burmese plate during Oligocene. The NW-SE oriented compression generated a spectrum of structures; among them, we intend to focus on the folds- varying from gentle to tight asymmetric in geometry. Large recumbent folds are often associated with thrusting. Buckle folds forming under shallow crustal conditions are frequently reported from NFTB. Buckle folding occurs mainly within sandstones with intercalated shale layers which are in the study area typical for the Barail, Surma and Tipam Groups. We have tried to explain the controlling factors behind the variation of the buckle fold shapes and their varying wavelengths throughout the fold thrust belt with the aid of analogue (sand box) modelling. It is undoubted that competence contrast along with the layer parallel compressive stress are the major influencing factors in generation of buckle folds. Schmalholz and Podladchikov (1999) and Jeng et al. (2002) have shown that when low strain rate and low temperature are applicable, not only the viscosity contrast, but also the elasticity contrast govern the geometry of the developing buckle folds. Rocks deforming under high temperature and high pressure deform in pure viscous manner, whereas, rocks undergoing less confining stress and less temperature, are subjected to pure elastic deformation. However, they are the end members, and most of the deformations are a combination of these two end members, i.e. of viscoelastic nature. Our models are made up of sieved sand (0.5 mm grain size) and mica layers (1-5 mm) This interlayering imparts a mechanical anisotropy in the model. Mica is not a pure viscous material, rather it displays more elastic behaviour. The mica layers in the model produce bedding parallel slip during shortening through internal reorganization of the individual mica crystals leading to the thickening

  4. Investigation on the Geometric Imperfections driven Local Buckling Onset in Composite Conical Shells

    Science.gov (United States)

    Di Pasqua, Maria Francesca; Khakimova, Regina; Castro, Saullo G. P.; Arbelo, Mariano A.; Riccio, Aniello; Raimondo, Antonio; Degenhardt, Richard

    2016-08-01

    Buckling is a critical failure phenomenon for structures, and represents a threat for thin shells subjected to compressive forces. The global buckling load, for a conical structure, depends on the geometry and material properties of the shell, on the stacking sequence, on the type of applied load and on the initial geometric imperfections. Geometric imperfections, occurring inevitably during manufacturing and assembly of thin-walled composite structures, produce a reduction in the carrying load capability with respect to the design value. This is the reason why investigating these defects is of major concern in order to avoid over-conservative design structures. In this paper, the buckling behavior a conical structure with 45° semi-vertical angle is numerically investigated. The initial imperfections are taken into account by using different strategies. At first, the Single Perturbation Load Approach (SPLA), which accounts for defects in the form of a lateral load, normal to the surface, has been adopted. Then, the actual measured defects have been applied to the structure by using the Real Measured Mid-Surface Imperfections (MSI) approach. Investigations on cylindrical shells using the first strategy have already shown the occurrence of a particular phenomenon called "local snap-through", which represents a preliminary loss of stiffness. In order to better understand this phenomenon for conical shells, both the aforementioned techniques have been used to provide an exhaustive overview of the imperfections sensitiveness in conical composite shells. This study is related to part of the work performed in the frame of the European Union (EU) project DESICOS.

  5. Buckling of Dielectric Elastomeric Plates for Electrically Active Microfludic Pumps

    Science.gov (United States)

    Holmes, Douglas; Tavakol, Behrouz; Bozlar, Michael; Froehlicher, Guillaume; Stone, Howard; Aksay, Ilhan

    2013-11-01

    Fluid flow can be directed and controlled by a variety of mechanisms within industrial and biological environments. Advances in microfluidic technology have required innovative ways to control fluid flow on a small scale, and the ability to actively control fluid flow within microfluidic devices is crucial for advancements in nanofluidics, biomedical fluidic devices, and digital microfluidics. In this work, we present a means for microfluidic control via the electrical actuation of thin, flexible valves within microfluidic channels. These structures consist of a dielectric elastomer confined between two compliant electrodes that can be actively and reversibly buckle out of plane to pump fluids from an applied voltage. The out-of-plane deformation can be quantified using two parameters: net change in surface area and the shape of deformation. Change in surface area depends on the voltage, while the deformation shape, which significantly affects the flow rate, is a function of voltage, and the pressure and volume of the chambers on each side of the thin plate. The use of solid electrodes enables a robust and reversible pumping mechanism that will have will enable advancements in rapid microfluidic diagnostics, adaptive materials, and artificial muscles.

  6. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    Science.gov (United States)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  7. Explicit expressions describing elastic properties and buckling load of BN nanosheets due to the effects of vacancy defects

    Science.gov (United States)

    Sarvi, Z.; Asgari, M.; Shariyat, M.; Googarchin, H. Saeidi

    2015-12-01

    In this study, effects of the presence of vacancy defects in a hexagonal nanosheet on Young's modulus, effective Poisson's ratio, buckling loads and buckling modes, regardless of its constituent atoms, have been studied. Explicit expressions are proposed in order to define these characteristics considering a defect distribution term as a modifying parameter. Molecular structural mechanics concepts and FEM simulation are utilized in order to obtain these expressions and results. Different sizes and shapes of defects as well as random distribution of vacancies have been considered. The results for perfect Boron Nitride, Silicon Carbide and graphene nanosheet as well as defected Boron Nitride nanosheets are in a good agreement with those available in literature. Linear degradation behavior of Young's modulus and linear increase of effective Poisson's ratio in terms of defects distribution are observed in obtained results. A second order behavior is also observed in decreasing buckling load in terms of increasing vacancy distribution. Moreover, buckling mode characteristics due to the percentage of defects distribution has been investigated.

  8. Perturbation analysis on post-buckling behavior of pile

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then,the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase,and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied.

  9. Column buckling of magnetically affected stocky nanowires carrying electric current

    Science.gov (United States)

    Kiani, Keivan

    2015-08-01

    Axial load-bearing capacity of current carrying nanowires (CCNWs) acted upon by a longitudinal magnetic field is of high interest. By adopting Gurtin-Murdoch surface elasticity theory, the governing equations of the nanostructure are constructed based on the Timoshenko and higher-order beam models. To solve these equations for critical compressive load, a meshfree approach is exploited and the weak formulations for the proposed models are obtained. The predicted buckling loads are compared with those of assume mode method and a remarkable confirmation is reported. The role of influential factors on buckling load of the nanostructure is carefully addressed and discussed. The obtained results reveal that the surface energy effect becomes important in buckling behavior of slender CCNWs, particularly for high electric currents and magnetic field strengths. For higher electric currents, relative discrepancies between the results of Timoshenko and higher-order beam models increase with a higher rate as the slenderness ratio magnifies. A magnetically affected current-carrying nanowire acted upon by an axial force. Axial buckling of stocky current-carrying nanowires in the presence of a longitudinal magnetic field is of particular interest. Using Timoshenko and higher-order beam theories accounting for surface energy effect, the governing equations are derived and a meshfree methodology is applied to evaluate the buckling load.

  10. Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets

    Science.gov (United States)

    Han, Tao; Reneker, Darrell H.

    2007-03-01

    The electrospinning jet was a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension. The jet moved straight away from the tip and then became unstable and bent into coils. This phenomenon is the electrical bending instability [1]. When the distance between the tip and collector was reduced to less than the maximal straight segment length, the electrical bending instability did not occur. The periodic buckling of a fluid jet incident onto a surface is a striking fluid mechanical instability [2]. When axial compressive stress along the jet reached a sufficient value, it produced the fluid mechanics analogue to the buckling of a slender solid column. In the electrospinning, the buckling instability occurred just above the collector where the jet was compressed as it encountered the collector. The buckling frequencies of these jets are in the range of 10^4 to 10^5 Hz. The buckling lengths of these jets are in the range of 10 to 100μm. *Reneker,D.H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000 *Tchavdarov B.; Yarin, A. L.; Radev S., Journal of Fluid Mechanics; 253, 593,1993

  11. Application of post-buckling theory to HVAC duct design

    International Nuclear Information System (INIS)

    Conventionally, HVAC duct spans range from 8 feet 0 inches to 10 feet 0 inches. However, a utilization of duct panel post-buckling strength allows the use of significantly larger spans for Seismic Class I rectangular ducts. Duct behavior is better described when sheet panel post-buckling behavior is taken into consideration. The thin panel due to its large h/t of w/t ratio is unable to remain fully effective during the entire loading history. As the loading is applied, it may undergo local instability due to either excessive compressive stress, shear stress, or a combination thereof. However, such local instability does not constitute overall failure as duct panel post-buckling behavior is stable. Duct corner chords in conjunction with the transverse reinforcing stiffeners and the web panels develop a pratt truss-like behavior, capable of maintaining post-buckling stability. Once bifurcation of the web due to shear has occurred, the tension-field action in the web develops a band of tensile forces. Equilibrium is maintained by the transfer of stress to the transverse stiffeners and the adjacent panel chords. As a result of the application of the post-buckling method, HVAC hangers required by a conventional analysis can be reduced by up to 50 percent

  12. Buckling of hybrid nanocomposites with embedded graphene and carbon nanotubes

    Science.gov (United States)

    Chandra, Y.; Saavedra Flores, E. I.; Scarpa, F.; Adhikari, S.

    2016-09-01

    With the aid of atomistic multiscale modelling and analytical approaches, buckling strength has been determined for carbon nanofibres/epoxy composite systems. Various nanofibres configurations considered are single walled carbon nano tube (SWCNT) and single layer graphene sheet (SLGS) and SLGS/SWCNT hybrid systems. Computationally, both eigen-value and non-linear large deformation-based methods have been employed to calculate the buckling strength. The non-linear computational model generated here takes into account of complex features such as debonding between polymer and filler (delamination under compression), nonlinearity in the polymer, strain-based damage criteria for the matrix, contact between fillers and interlocking of distorted filler surfaces with polymer. The effect of bridging nanofibres with an interlinking compound on the buckling strength of nano-composites has also been presented here. Computed enhancement in buckling strength of the polymer system due to nano reinforcement is found to be in the range of experimental and molecular dynamics based results available in open literature. The findings of this work indicate that carbon based nanofillers enhance the buckling strength of host polymers through various local failure mechanisms.

  13. Periodic buckling patterns of graphene/hexagonal boron nitride heterostructure

    International Nuclear Information System (INIS)

    Graphene/hexagonal boron nitride (h-BN) heterostructure has showed great potential to improve the performance of a graphene device. A graphene on an h-BN substrate may buckle due to the thermal expansion mismatch between the graphene and h-BN. We used an energy method to investigate the periodic buckling patterns including one-dimensional, square checkerboard, hexagonal, equilateral triangular and herringbone mode in a graphene/h-BN heterostructure under equi-biaxial compression. The total energy, consisting of cohesive energy, graphene membrane energy and graphene bending energy, for each buckling pattern is obtained analytically. At a compression slightly larger than the critical strain, all buckling patterns have the same total energies, which suggests that any buckling pattern may occur. At a compression much larger than the critical strain, the herringbone mode has the lowest total energy by significantly reducing the membrane energy of graphene at the expense of a slight increase of the bending energy of graphene and cohesive energy. These results may serve as guidelines for strain engineering in graphene/h-BN heterostructures. (paper)

  14. Fine Belt-Buckles of Walrus Ivory – also Made in Greenland

    DEFF Research Database (Denmark)

    Roesdahl, Else

    On the production of decorative artefacts in Norse Greenland - and new finds of walrus ivory belt buckles......On the production of decorative artefacts in Norse Greenland - and new finds of walrus ivory belt buckles...

  15. Experimental and Numerical Study of Buckling of Vacuum Chambers for Fast-Cycling Synchrotrons

    DEFF Research Database (Denmark)

    Bräuner, Lars Erik

    The optimal functioning of the long span thin walled elliptical cross section shells used as vacuum chambers for fast-cycling synchrotrons is provided by their buckling capacity. Also it is often necessary to design inter-stiffener panels of elliptical shells used as vacuum chambers to resist any...... elastic-plastic buckling of these elliptical shells in a variety of modes. A comparison is made between the numerical results and the experimental results....... tendency towards pressure induced buckling due to some combination of excessive out-gassing, fragility, radiation damage, magnetic field distortion,. The analysis for design is complicated because elliptical shell chambers display a complex form of nonlinear snap buckling behavior under the external...... pressure. Buckling analysis for shells is further complicated by the observation that geometric imperfections have an important influence on the buckling mode as well as on the buckling load-carrying capacity. Buckling loads are, in general, considerably lower than the lowest critical loads predicted from...

  16. Bifurcations in the optimal elastic foundation for a buckling column

    International Nuclear Information System (INIS)

    We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.

  17. Bifurcations in the optimal elastic foundation for a buckling column

    Science.gov (United States)

    Rayneau-Kirkhope, Daniel; Farr, Robert; Ding, K.; Mao, Yong

    2010-12-01

    We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.

  18. Bifurcations in the optimal elastic foundation for a buckling column

    CERN Document Server

    Rayneau-Kirkhope, Daniel; Ding, K; Mao, Yong

    2010-01-01

    We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.

  19. Axisymmetric buckling of laminated thick annular spherical cap

    Science.gov (United States)

    Dumir, P. C.; Dube, G. P.; Mallick, A.

    2005-03-01

    Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.

  20. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes.

    Science.gov (United States)

    Robison, Patrick; Caporizzo, Matthew A; Ahmadzadeh, Hossein; Bogush, Alexey I; Chen, Christina Yingxian; Margulies, Kenneth B; Shenoy, Vivek B; Prosser, Benjamin L

    2016-04-22

    The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes. MTs deformed under contractile load into sinusoidal buckles, a behavior dependent on posttranslational "detyrosination" of α-tubulin. Detyrosinated MTs associated with desmin at force-generating sarcomeres. When detyrosination was reduced, MTs uncoupled from sarcomeres and buckled less during contraction, which allowed sarcomeres to shorten and stretch with less resistance. Conversely, increased detyrosination promoted MT buckling, stiffened the myocyte, and correlated with impaired function in cardiomyopathy. Thus, detyrosinated MTs represent tunable, compression-resistant elements that may impair cardiac function in disease. PMID:27102488

  1. Vibrations of post-buckled rods: The singular inextensible limit

    KAUST Repository

    Neukirch, Sébastien

    2012-01-01

    The small-amplitude in-plane vibrations of an elastic rod clamped at both extremities are studied. The rod is modeled as an extensible, shearable, planar Kirchhoff elastic rod under large displacements and rotations, and the vibration frequencies are computed both analytically and numerically as a function of the loading. Of particular interest is the variation of mode frequencies as the load is increased through the buckling threshold. While for some modes there are no qualitative changes in the mode frequencies, other frequencies experience rapid variations after the buckling threshold, the thinner the rod, the more abrupt the variations. Eventually, a mismatch for half of the frequencies at buckling arises between the zero thickness limit of the extensible model and the inextensible model. © 2011 Elsevier Ltd. All rights reserved.

  2. Fatigue Crack Propagation in Steel A131 Under Ice Loading of Crushing, Bending and Buckling

    Institute of Scientific and Technical Information of China (English)

    DUAN Menglan(段梦兰); SONG Lisong(宋立崧); FAN Xiaodong(樊晓东); James C.M.LId; FANG Huacan(方华灿)

    2001-01-01

    Three types of ice loading, which are most commonly present when ice acts on structures,are chosen and simulated for use of fatigue crack propagation tests on offshore structural steel Al31. The three types of ice categorized in accordance with the failure modes when acting on structures called crushing ice, bending ice, and buckling ice,respectively. This paper presents an experimental investigation on the fatigue crack propagation behavior of widely used high strength steel A 131 for offshore jackets in the loading environment of ice crushing, bending, and buckling. The test results of fatigue crack propagation in steel A 13 l under these simulated ice loading at temperature 292K are presented and analyzed in detail in this paper. The amplitude root mean square stress intensity factor is optimized to be the fundamental parameter of fatigue crack propagation for all types of ice loading histories. The results are also compared with constant amplitude fatigue crack propagation conclusions as in wave load mode, and a joint investigation on the results from ice forces, ice-induced vibrations, and ice-induced fatigue crack propagation is conducted, Conclusions are drawn for reference in structural design and material selection for offshore structures in ice environments.

  3. Uncertain Buckling Load and Reliability of Columns with Uncertain Properties

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    ordinary finite element method slightly overestimates the buckling load, and with a very few number of elements high rate of convergence to the exact results is observed. If the bending rigidity field is modelled using random fields, stochastic finite element method is utilized. The discretization is...... considering safety factors are estimated by means of extensive Monte Carlo simulations. For the case, when the bending rigidity field is taken to be bound from above an below, an integral equation formulation and optimization methods are used to determine conservative bounds for the buckling load. for...

  4. Dynamic Buckling of Column Impacted by a Rigid Body

    Institute of Scientific and Technical Information of China (English)

    Zhijun Han; Hongwei Ma; Shanyuan Zhang

    2004-01-01

    The dynamic buckling of an elastic column subjected to axial impact by a rigid body is discussed in accordance with the energy law in this paper. The equation of lateral disturbance used to analysis the problem is developed by taking into account the effect of stress wave. The power series solution of this problem has been obtained by using the power series approach. The buckling criterion of this problem is proposed by analyzing the characteristics of the solution. The relationships between critical velocity and impacting mass as well as critical velocity and critical length are given by using theoretical analysis and numerical computation.

  5. Numerical analysis of linear buckling of wind turbine blade with different trailing bonding models

    Science.gov (United States)

    Zhang, J. D.; Xu, Y.

    2013-12-01

    The work focus on the linear buckling analysis of wind turbine blade with different trailing bonding models. Based on finite element model, it has been demonstrated that there are some differences for buckling load factor between different models. Several different models are valid for buckling analysis.

  6. Numerical Buckling Analysis of Large Suction Caissons for Wind Turbines on Deep Water

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2013-01-01

    Using large suction caissons for offshore wind turbines is an upcoming cost-effective technology also referred to as bucket foundations. During operation, the monopod bucket foundation is loaded by a large overturning moment from the wind turbine and the wave loads. However, during installation the...... suction caisson is loaded by external pressure (internal suction) due to evacuation of water inside the bucket and vertical forces due to gravity. The risk of structural buckling during installation of large-diameter suction caissons is addressed using numerical methods. Initial imperfect geometries are...

  7. Topology Optimization of Periodic Microstructures with a Penalization of Highly Localized Buckling Modes

    DEFF Research Database (Denmark)

    Neves, Miguel M.; Sigmund, Ole; Bendsøe, Martin P.

    2002-01-01

    obtained stability condition for the microscale level is then used to establish a comparative analysis between different material distributions in the base cell subjected to the same strain field at the macroscale level. The idea is illustrated by some two-dimensional finite element examples and used to......The problem of determining highly localized buckling modes in perfectly periodic cellular microstructures of infinite extent is addressed. A double scale asymptotic technique is applied to the linearized stability problem for a periodic structure built from linearly elastic microstructures. The...

  8. Limit-point buckling analyses using solid, shell and solid.shell elements

    International Nuclear Information System (INIS)

    In this paper, the recently-developed solid-shell element SHB8PS is used for the analysis of a representative set of popular limit-point buckling benchmark problems. For this purpose, the element has been implemented in Abaqus/Standard finite element software and the modified Riks method was employed as an efficient path-following strategy. For the benchmark problems tested, the new element shows better performance compared to solid elements and often performs as well as state-of-the-art shell elements. In contrast to shell elements, it allows for the accurate prescription of boundary conditions as applied to the actual edges of the structure

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  10. Limit-point buckling analyses using solid, shell and solid.shell elements

    Energy Technology Data Exchange (ETDEWEB)

    Killpack, Marc; Abed-Meraim, Farid [CNRS, Metz Cedex (France)

    2011-05-15

    In this paper, the recently-developed solid-shell element SHB8PS is used for the analysis of a representative set of popular limit-point buckling benchmark problems. For this purpose, the element has been implemented in Abaqus/Standard finite element software and the modified Riks method was employed as an efficient path-following strategy. For the benchmark problems tested, the new element shows better performance compared to solid elements and often performs as well as state-of-the-art shell elements. In contrast to shell elements, it allows for the accurate prescription of boundary conditions as applied to the actual edges of the structure.

  11. A molecular dynamics investigation into the size-dependent buckling behavior of a novel three-dimensional metallic carbon nanostructure (T6)

    Science.gov (United States)

    Ansari, R.; Ajori, S.; Hassani, R.

    2016-09-01

    The buckling behavior of a novel three-dimensional metallic carbon nanostructure known as T6 is investigated herein employing the molecular dynamics (MD) simulations. The models are prepared on the basis of two beam- and plate-like structures to study the effects of size and geometry on the critical buckling force and critical strain. It is observed that the range of critical force for the beam-like and plate-like T6 with different geometrical parameters is approximately identical. Moreover, it is demonstrated that the critical buckling force decreases and increases by increasing the length and the width of T6, respectively. Moreover, it is shown that critical strain of beam-like T6 decreases by increasing the length, whereas, in the case of plate-like T6, the critical strain only fluctuates around 2% by increasing the width. It is further found that the buckling parameters of T6 are not comparable with those of single-walled carbon nanotubes (SWCNTs) and graphene with a relatively similar dimension. The critical buckling force and critical strain of T6 are considerably smaller than those of SWCNT and larger than those of graphene.

  12. Active buckling control of a beam-column with circular cross-section using piezo-elastic supports and integral LQR control

    Science.gov (United States)

    Schaeffner, Maximilian; Götz, Benedict; Platz, Roland

    2016-06-01

    Buckling of slender beam-columns subject to axial compressive loads represents a critical design constraint for light-weight structures. Active buckling control provides a possibility to stabilize slender beam-columns by active lateral forces or bending moments. In this paper, the potential of active buckling control of an axially loaded beam-column with circular solid cross-section by piezo-elastic supports is investigated experimentally. In the piezo-elastic supports, lateral forces of piezoelectric stack actuators are transformed into bending moments acting in arbitrary directions at the beam-column ends. A mathematical model of the axially loaded beam-column is derived to design an integral linear quadratic regulator (LQR) that stabilizes the system. The effectiveness of the stabilization concept is investigated in an experimental test setup and compared with the uncontrolled system. With the proposed active buckling control it is possible to stabilize the beam-column in arbitrary lateral direction for axial loads up to the theoretical critical buckling load of the system.

  13. Pre-Test Analysis Predictions for the Shell Buckling Knockdown Factor Checkout Tests - TA01 and TA02

    Science.gov (United States)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2011-01-01

    This report summarizes the pre-test analysis predictions for the SBKF-P2-CYL-TA01 and SBKF-P2-CYL-TA02 shell buckling tests conducted at the Marshall Space Flight Center (MSFC) in support of the Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment. The test article (TA) is an 8-foot-diameter aluminum-lithium (Al-Li) orthogrid cylindrical shell with similar design features as that of the proposed Ares-I and Ares-V barrel structures. In support of the testing effort, detailed structural analyses were conducted and the results were used to monitor the behavior of the TA during the testing. A summary of predicted results for each of the five load sequences is presented herein.

  14. Design and Analysis of Subscale and Full-Scale Buckling-Critical Cylinders for Launch Vehicle Technology Development

    Science.gov (United States)

    Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.

  15. Effect of Topological Defects on Buckling Behavior of Single-walled Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Wang Guoxiu

    2011-01-01

    Full Text Available Abstract Molecular dynamic simulation method has been employed to consider the critical buckling force, pressure, and strain of pristine and defected single-walled carbon nanotube (SWCNT under axial compression. Effects of length, radius, chirality, Stone–Wales (SW defect, and single vacancy (SV defect on buckling behavior of SWCNTs have been studied. Obtained results indicate that axial stability of SWCNT reduces significantly due to topological defects. Critical buckling strain is more susceptible to defects than critical buckling force. Both SW and SV defects decrease the buckling mode of SWCNT. Comparative approach of this study leads to more reliable design of nanostructures.

  16. On critical buckling load estimation for slender transversely cracked beam-columns by the application of a simple computational model

    OpenAIRE

    Skrinar, Matjaž

    2012-01-01

    This paper brings new insights into the implementation of a simplified computational model in the prediction of buckling load Pcr for slender beam-type structures with a transverse crack. From among several approaches discussed, two of them produced applicable results exhibiting considerably good agreement with those values from more precise and complex computational models. In the first approach, the critical load value is obtained from numerical solutions of analytically expressed character...

  17. On the Modeling of Elastic and Inelastic, Critical- and Post-Buckling Behavior of Slender Columns and Bracing Members

    OpenAIRE

    Krishnan, Swaminathan

    2009-01-01

    Analyzing tall braced frame buildings with thousands of degrees of freedom in three dimensions subject to strong earthquake ground motion requires an efficient brace element that can capture the overall features of its elastic and inelastic response under axial cyclic loading without unduly heavy discretization. This report details the theory of a modified elastofiber (MEF) element developed to model braces and buckling-sensitive slender columns in such structures. The MEF element...

  18. Post-buckled precompressed (PBP) elements: a new class of flight control actuators enhancing high-speed autonomous VTOL MAVs

    OpenAIRE

    Barrett, R.; McMurtry, R.; De Vos, R; Tiso, P.; De Breuker, R.

    2005-01-01

    This paper describes a new class of flight control actuators using Post-Buckled Precompressed (PBP) piezoelectric elements. These actuators are designed to produce significantly higher deflection and force levels than conventional piezoelectric actuator elements. Classical laminate plate theory (CLPT) models are shown to work very well in capturing the behavior of the free, unloaded elements. A new high transverse deflection model which employs nonlinear structural relations is shown to succe...

  19. Motor-Driven Bacterial Flagella and Buckling Instabilities

    CERN Document Server

    Vogel, Reinhard

    2012-01-01

    Many types of bacteria swim by rotating a bundle of helical filaments also called flagella. Each filament is driven by a rotary motor and a very flexible hook transmits the motor torque to the filament. We model it by discretizing Kirchhoff's elastic-rod theory and develop a coarse-grained approach for driving the helical filament by a motor torque. A rotating flagellum generates a thrust force, which pushes the cell body forward and which increases with the motor torque. We fix the rotating flagellum in space and show that it buckles under the thrust force at a critical motor torque. Buckling becomes visible as a supercritical Hopf bifurcation in the thrust force. A second buckling transition occurs at an even higher motor torque. We attach the flagellum to a spherical cell body and also observe the first buckling transition during locomotion. By changing the size of the cell body, we vary the necessary thrust force and thereby obtain a characteristic relation between the critical thrust force and motor torq...

  20. Orbital cellulitis following silicone-sponge scleral buckles

    Directory of Open Access Journals (Sweden)

    Nemet AY

    2013-10-01

    Full Text Available Arie Y Nemet, Joseph R Ferencz, Ori Segal, Amit Meshi Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel Background: Acute or chronic infection of the scleral explant is rare. We report seven cases of scleral explant infections that caused orbital cellulitis. Materials and methods: This was a retrospective chart review of oculoplastics at oculoplastics and vitreo-retinal units in a secondary referral hospital. All subjects had orbital cellulitis secondary to scleral buckle in the range of January 1990 to March 2010. Demographics, imaging studies, and pathology specimens were reviewed. Results: A total of 841 silicone-sponge scleral buckle implants for rhegmatogenous retinal detachment were performed. Forty were extracted (4.75%; annual rate of 1.9 cases. Seven (0.83% had orbital cellulitis. The mean time from implantation to presentation was 5.7 years. There was bacterial growth in all specimens, with Staphylococcus aureus in four. Conclusions: Patients who are operated on with silicone-sponge scleral buckling for rhegmatogenous retinal detachment sometimes require removal of the implant because of infection. However, the infection rate is low. Patients should be followed in the long term for possible complications. Keywords: scleral explant infection, scleral buckle, orbital cellulitis, rhegmatogenous retinal detachment

  1. Buckling-driven Delamination in Layered Spherical Shells

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Jensen, Henrik Myhre

    2008-01-01

    An analysis of buckling-driven delamination of a thin film on a spherical substrate has been carried out. The effects of the substrate having a double curvature compared to previous studies of delamination on cylindrical substrates turn out to be non-trivial: In addition to the effect of the shap...

  2. Finite Element Modeling of the Buckling Response of Sandwich Panels

    Science.gov (United States)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  3. Stretchable transistors with buckled carbon nanotube films as conducting channels

    Science.gov (United States)

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  4. Use of Buckling Instabilities in Micro Pumps, Valves, and Mixers

    Science.gov (United States)

    Tavakol, Behrouz; Chawan, Aschvin; Holmes, Douglas

    2014-03-01

    We use the buckling of thin, flexible plates for pumping fluids, controlling the flow rate, and mixing different media within a microfluidic channel. A dielectric elastomeric film with a confined geometry buckles out of the plane when exposed to an electric field. Solid or grease electrodes have traditionally been used as conductive materials to aid in voltage application to both sides of the film. In this work, we use an electrolytic fluid solution as the electrode to enable buckling at relatively low voltages, and to enhance the rate of deformation. We show that this mechanism can be implemented as a microvalve that controls flow rate, or as a micropump that operates over a range of frequencies. A similar mechanism can be used to aid diffusion between two adjacent laminar streams and improve mixing. These low-cost micropumps, microvalves, and micromixers rely on the reversible buckling of thin plates, are easily embeddable in a microfluidic chip, and can potentially be used in variety of applications to accurately control and manipulate fluid flow in a microchannel.

  5. Buckling Cascade of Thin Plates Forms, Constraints and Similarity

    CERN Document Server

    Román, B

    1999-01-01

    We experimentally study compression of thin plates in rectangular boxes with variable height. A cascade of buckling is generated. It gives rise to a self-similar evolution of elastic reaction of plates with box height which surprisingly exhibits repetitive vanishing and negative stiffness. These features are understood from properties of Euler's equation for elastica.

  6. Functional buckling behavior of silicone rubber shells for biomedical use

    NARCIS (Netherlands)

    van der Houwen, E B; Kuiper, L H; Burgerhof, J G M; van der Laan, B F A M; Verkerke, G J

    2013-01-01

    BACKGROUND: The use of soft elastic biomaterials in medical devices enables substantial function integration. The consequent increased simplification in design can improve reliability at a lower cost in comparison to traditional (hard) biomaterials. Functional bi-stable buckling is one of the many n

  7. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  8. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT-BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor

  9. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2009-01-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor bolt

  10. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    Chu-lin YU; Zhi-ping CHEN; Ji WANG; Shun-juan YAN; Li-cai YANG

    2012-01-01

    The effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells is investigated through experimental and numerical buckling analysis using six welded steel cylindrical shell specimens.The relationship between the amplitude of weld reinforcement and the axial plastic buckling critical load is explored.The effect of the material yield strength and the number of circumferential welds on the axial plastic buckling is studied.Results show that circumferential weld reinforcement represents a severe imperfect form of axially compressed welded steel cylindrical shells and the axial plastic buckling critical load decreases with the increment of the mean amplitude of circumferential weld reinforcement.The material yield strength and the number of circumferential welds are found to have no significant effect on buckling waveforms; however,the axial plastic buckling critical load can be decreased to some extent with the increase of the number of circumferential welds.

  11. Buckling design criteria for waste package disposal containers in mined salt repositories: Technical report

    International Nuclear Information System (INIS)

    This report documents analytical and experimental results from a survey of the technical literature on buckling of thick-walled cylinders under external pressure. Based upon these results, a load factor is suggested for the design of waste package containers for disposal of high-level radioactive waste in repositories mined in salt formations. The load factor is defined as a ratio of buckling pressure to allowable pressure. Specifically, a load factor which ranges from 1.5 for plastic buckling to 3.0 for elastic buckling is included in a set of proposed buckling design criteria for waste disposal containers. Formulas are given for buckling design under axisymmetric conditions. Guidelines are given for detailed inelastic buckling analyses which are generally required for design of disposal containers

  12. Damping effect analysis of high-rise steel structure with buckling-restrained column%高层钢结构中BRC跷动技术的减震影响分析

    Institute of Scientific and Technical Information of China (English)

    谭燕秋; 王颖欣

    2013-01-01

    By using finite element analysis software SPA2000, 12 layers of steel frame structure were set up. In X direction and Y direction of original framework bottom column, BRC structure was constructed. The top maximum displacement, base shear and top absolute acceleration time history of three structure scheme under the action of seismic wave as follow EL - Centra wave, Taft wave and TRI_TREASURE ISLAND_90 were analyzed. The results show that comparing with the traditional steel structure, the natural vibration period of BRC structure increased. The control effect of top floor of the maximum displacement and basal shear control is very apparent. This structure has obvious damping effect.%利用有限元分析软件SPA2000,建立12层的钢框架结构,在原框架底层柱X方向、Y方向添加BRC结构.分析三种结构方案在EL-Centro波、Taft波和TRI_TREASURE ISLAND_90这三种地震波作用下的顶层最大位移、基底剪力和顶层绝对加速度时程分析这几种结构反应.结果表明:BRC结构与传统钢结构相比,自振周期有所增加,对顶层最大位移和基底剪力的控制效果非常明显,具有显著的减震效果.

  13. Parasitic folds with wrong vergence: How pre-existing geometrical asymmetries can be inherited during multilayer buckle folding

    Science.gov (United States)

    Frehner, Marcel; Schmid, Timothy

    2016-06-01

    Parasitic folds are typical structures in geological multilayer folds; they are characterized by a small wavelength and are situated within folds with larger wavelength. Parasitic folds exhibit a characteristic asymmetry (or vergence) reflecting their structural relationship to the larger-scale fold. Here we investigate if a pre-existing geometrical asymmetry (e.g., from sedimentary structures or folds from a previous tectonic event) can be inherited during buckle folding to form parasitic folds with wrong vergence. We conduct 2D finite-element simulations of multilayer folding using Newtonian materials. The applied model setup comprises a thin layer exhibiting the pre-existing geometrical asymmetry sandwiched between two thicker layers, all intercalated with a lower-viscosity matrix and subjected to layer-parallel shortening. When the two outer thick layers buckle and amplify, two processes work against the asymmetry: layer-perpendicular flattening between the two thick layers and the rotational component of flexural flow folding. Both processes promote de-amplification and unfolding of the pre-existing asymmetry. We discuss how the efficiency of de-amplification is controlled by the larger-scale fold amplification and conclude that pre-existing asymmetries that are open and/or exhibit low amplitude are prone to de-amplification and may disappear during buckling of the multilayer system. Large-amplitude and/or tight to isoclinal folds may be inherited and develop type 3 fold interference patterns.

  14. A bi-stable buckled energy harvesting device actuated via torque arms

    International Nuclear Information System (INIS)

    A bi-stable switching energy harvester made from a buckled steel structure mounted with uni-axially poled piezoelectric polyvinylidene fluoride and 3D printed polylactic acid components is constructed and tested. A data collection system and frequency sweeping program is built to drive the device using a custom compression rig fitted with an accelerometer. The energy harvester is tested with the center beam compressed to different degrees of buckling, as well as in its unloaded state. Root mean square (RMS) accelerations are applied to the device in the range of 0.1–0.9g rms by 0.2 g steps. The device is driven with a frequency between 16 and 40 Hz (by 0.5 Hz) in both forwards and backwards sweeps. Finite element modeling program ANSYS is used to model the device and determine undamped pre-stressed modal frequencies, proof mass displacements to ‘snap-through’, and static buckled profiles for the center beam. As a comparison, a doubly constrained beam (DCB) with the same width and length is constructed and tested in the same manner as the torque arm device. RMS power density for the torque actuated device compressed by 0.13 mm and frequency swept in reverse was 0.246 μW cm−2 (3.13 μW) at 16.5 Hz and 1.5g rms using two 0.19 g proof masses. The DCB RMS power density swept in reverse was 1.287 μW cm−2 (6.18 μW) at 59.5 Hz and 1.5g rms with a 1.38 g proof mass. (papers)

  15. Magnetic ordering of the buckled honeycomb lattice antiferromagnet Ba2NiTeO6

    Science.gov (United States)

    Asai, Shinichiro; Soda, Minoru; Kasatani, Kazuhiro; Ono, Toshio; Avdeev, Maxim; Masuda, Takatsugu

    2016-01-01

    We investigate the magnetic order of the buckled honeycomb lattice antiferromagnet Ba2NiTeO6 and its related antiferromagnet Ba3NiTa2O9 by neutron diffraction measurements. We observe magnetic Bragg peaks below the transition temperatures, and identify propagation vectors for these oxides. A combination of representation analysis and Rietveld refinement leads to a collinear magnetic order for Ba2NiTeO6 and a 120∘ structure for Ba3NiTa2O9 . We find that the spin model of the bilayer triangular lattice is equivalent to that of the two-dimensional buckled honeycomb lattice having magnetic frustration. We discuss the magnetic interactions and single-ion anisotropy of Ni+2 ions for Ba2NiTeO6 in order to clarify the origin of the collinear magnetic structures. Our calculation suggests that the collinear magnetic order of Ba2NiTeO6 is induced by the magnetic frustration and easy-axis anisotropy.

  16. Axial buckling and transverse vibration of ultrathin nanowires: low symmetry and surface elastic effect

    Science.gov (United States)

    Lei, Xiao; Narsu, B.; Yun, Guohong; Li, Jiangang; Yao, Haiyan

    2016-05-01

    Surface effects play a deterministic role in the physical and mechanical properties of nanosized materials and structures. In this paper, we present a self-consistent theoretical scheme for describing the elasticity of nanowires. The natural frequency and the critical compression force of axial buckling are obtained analytically, taking into consideration the influences of lower symmetry, additional elastic parameters, surface reconstruction, surface elasticity, and residual surface stress. Applications of the present theory to elastic systems for the    axially oriented Si and Cu nanowires and Ag    axially oriented nanowires yield good agreement with experimental data and calculated results. The larger positive value of the new elastic parameter c12α taken into account for Si    oriented nanowires drives the curves of natural frequency and critical compression force versus thickness towards the results obtained from density functional theory simulation. Negative surface stress decreases the critical load for axial buckling, thus making the nanowires very easy to bend into various structures. The present study is envisaged to provide useful insights for the design and application of nanowire-based devices.

  17. Effects of Buckling Knockdown Factor, Internal Pressure and Material on the Design of Stiffened Cylinders

    Science.gov (United States)

    Lovejoy, Andrew E.; Hilburger, Mark W.; Chunchu, Prasad B.

    2010-01-01

    A design study was conducted to investigate the effect shell buckling knockdown factor (SBKF), internal pressure and aluminum alloy material selection on the structural weight of stiffened cylindrical shells. Two structural optimization codes were used for the design study to determine the optimum minimum-weight design for a series of design cases, and included an in-house developed genetic algorithm (GA) code and PANDA2. Each design case specified a unique set of geometry, material, knockdown factor combinations and loads. The resulting designs were examined and compared to determine the effects of SBKF, internal pressure and material selection on the acreage design weight and controlling failure mode. This design study shows that use of less conservative SBKF values, including internal pressure, and proper selection of material alloy can result in significant weight savings for stiffened cylinders. In particular, buckling-critical cylinders with integrally machined stiffener construction can benefit from the use of thicker plate material that enables taller stiffeners, even when the stiffness, strength and density properties of these materials appear to be inferior.

  18. Analysis of Thermal Buckling of Ceramic-Metal Functionally Graded Plates Using Refined Third Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    S. S. Daimi

    2014-08-01

    Full Text Available Functionally graded materials (FGMs are microscopically inhomogeneous spatial composite materials, typically composed of a ceramic-metal or ceramic-polymer pair of materials. Therefore, it is important to investigate the behaviors of engineering structures such as beams and plates made from FGMs when they are subjected to thermal loads for appropriate design. Therefore, using an improved third order shear deformation theory (TSDT based on more rigorous kinetics of displacements to predict the behaviors of functionally graded plates is expected to be more suitable than using other theories. In this paper, the improved TSDT is used to investigate thermal buckling of functionally graded plates. Temperature dependent material property solutions are adopted to investigate thermal buckling results of functionally graded plates. To obtain the solutions, the Ritz method using polynomial and trigonometric functions for defining admissible displacements and rotations is applied to solve the governing equations.

  19. Assessment of buckling-restrained braced frame reliability using an experimental limit-state model and stochastic dynamic analysis

    Institute of Scientific and Technical Information of China (English)

    Blake M. Andrews; Junho Song; Larry A. Fahnestock

    2009-01-01

    Buckling-restrained braces (BRBs) have recently become popular in the United :States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.

  20. 结构非线性屈曲分析的有限元降阶方法%Finite Element-Based Order Reduction Method for Nonlinear Buckling Analysis of Structures

    Institute of Scientific and Technical Information of China (English)

    梁珂; 孙秦; Zafer Gurdal

    2013-01-01

    基于Koiter的初始后屈曲理论以及Newton法的增量迭代技术,提出了一种能够自动跟踪非线性平衡路径的降阶方法.降阶模型中摄动载荷以及主路径上变形位移的引入使摄动展开能够在平衡路径上的任意一点处进行;在每个摄动步中将求解降阶模型得到的非线性解作为结构响应的初始预测,然后采用有限元模型计算的残余力对解进行修正,最后以修正后的解作为下一个摄动步的已知展开点,并通过更新降阶模型来反映当前结构刚度的变化.算例分析表明,该方法不仅具有很高的非线性分析精度,而且需要计算的线性方程组(阶数与有限元全模型阶数相当)的数目远小于常规的非线性有限单元法.%A kind of solar heat reflection material, Na2O-ZnO-Fe2O3-P2O5, was prepared via coprecipitation and was characterized by means of UV-Vis-NIR spectroscopy and XRD. The results show that (1) when the Zn/Fe molar ratio is 9.00, the phase composition of the products calcined at 7001 varies with the Zn/P molar ratio (1. 52, 1. 02, 0. 76 and 0. 61) , in which a Zn/P molar ratio of 0. 61 may result in a single-phase NaZnPO4 structure while the other ratios may result in multiphase structures; (2) when the Zn/P molar ratio is 0. 61 , the phase composition of the products calcined at 700℃ is independent of the Zn/Fe molar ratio (19. 00 , 9. 00 , 5. 67 and 4. 00) , with all the products being of a single-phase NaZnPO4 structure, however, these products become dark and the reflectance decreases with the decrease of the Zn/Fe molar ratio; and (3) at a Zn/P molar ratio of 0.61 and a Zn/Fe molar ratio of 9.00, the products calcined at 500 ~ 800℃ are all of a single-phase NaZnPO4 structure, and the products become dark and the reflectance decreases with the increase of the calcination temperature, for instance, the products calcined at 600 and 7001 are respectively orange and red, with their reflectance being 80. 7% and 72

  1. ON THE ORIENTATION OF BUCKLING DIRECTION OF ANISOTROPIC ELASTIC PLATE UNDER UNIAXIAL COMPRESSION

    Institute of Scientific and Technical Information of China (English)

    Zhang Yitong

    2001-01-01

    The theory of small deformation superimposed on a large deformation of an elastic solid is used to investigate the buckling of anisotropic elastic plate under uniaxial compression. The buckling direction (the direction of buckling wave) is generally not aligned with the compression direction. The equation for determining the buckling direction is obtained. It is found that the out-of-plane buckling of anisotropic elastic plate is possible and both buckling conditions for flexural and extensional modes are presented. As a specific case of buckling of anisotropic elastic plate, the buckling of an orthotropic elastic plate subjected to a compression in a direction that forms an arbitrary angle with an elastic principal axis of the materials is analyzed. It is found that the buckling direction depends on the angle between the compression direction and the principal axis of the materials, the critical compressive force and plate-thickness parameters.In the case that the compression direction is aligned with the principal axis of the materials, the buckling direction will be aligned with the compression one irrespective of critical compressive force and plate-thickness.

  2. Stability Loss and Buckling Delamination Three-Dimensional Linearized Approach for Elastic and Viscoelastic Composites

    CERN Document Server

    Akbarov, Surkay

    2013-01-01

    This book investigates stability loss and buckling delamination problems of the viscoelastic composite materials and structural members made from these materials within the framework of the Three-Dimensional Linearized Theory of Stability (TDLTS). The investigation of stability loss problems is based on the study of an evolution of the initial infinitesimal imperfection in the structure of the material or of the structural members with time (for viscoelastic composites) or with external compressing forces (for elastic composites). This study is made within the scope of the Three-Dimensional Geometrically Non-Linear Theory of the Deformable Solid Body Mechanics. The solution to the corresponding boundary-value problems is presented in the series form in a small parameter which characterizes the degree of the initial imperfection. The boundary form perturbation technique is employed and nonlinear problems for the domains bounded by noncanonical surfaces are reduced to the same nonlinear problem for the correspo...

  3. BUCKLING ANALYSIS UNDER COMBINED LOADING OF THIN-WALLED PLATE ASSEMBLIES USING BUBBLE FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    Gao Xuanneng; Zou Yinsheng; Zhou Xuhong

    2000-01-01

    Bubble functions are finite element modes that are zero on the boundary of the element but nonzero at the other point. The present paper adds bubble functions to the ordinary Complex Finite Strip Method(CFSM) to calculate the elastic local buckling stress of plates and plate assemblies. The results indi cate that the use of bubble functions greatly improves the convergence of the Finite Strip Method(FSM) in terms of strip subdivision, and leads to much smaller storage required for the structure stiffness and stability matrices. Numerical examples are given, including plates and plate structures subjected to a combination of longitudinal and transverse compression, bending and shear. This study illustrates the power of bubble func tions in solving stability problems of plates and plate structures.

  4. Debonding and buckling of a thin short-fiber nonwoven bonded to a rigid surface and its application to the creeping process

    Science.gov (United States)

    Sun, Zhaohui

    In this dissertation, debonding of a thin surface film from a rigid surface with debonded portion of the thin film undergoing buckling and postbuckling was studied both analytically and experimentally. The research is motivated from the creping process in tissue paper manufacturing, and it is turned out to be a general failure problem of thin surface films. The study is consisted of five parts: an experimental study with a laboratory creping simulator; a stress analysis of the thin film-adhesive-rigid surface structure; buckling and postbuckling analysis of the debonded film under unilateral constraint; an analytical model of debonding and buckling of a thin surface film; and a finite element simulation through ABAQUS. The laboratory creping simulator described by Ramasubramanian et al (2000) was employed in the experimental study and was improved through introducing an adhesive coating mechanism. The Young's modulus and tensile strength of the creped paper, together the creping wavelength and creping force were examined to measure the creped paper qualities under different conditions. A stress analysis was then presented in which the adhesive was modeled as an elastic layer. A simplified analytical model to the debonding problem was obtained by using the Euler buckling criterion of the debonded portion of film. Numerical study showed that the model could grasp most of the main features of the process, however ignoring the unilateral constraint for the film buckling brought about some unsatisfactory predictions. A buckling and postbuckling analysis was then conducted. Numerical results showed that the debonded film undergoes a contact and snap-through buckling sequence, and under the rigid unilateral constraint, the buckling force can be four times as large as the one when the constraint is released. Once the structure snaps through, the buckling force drops greatly, therefore cease of debonding propagation can be expected. An improved analytical model of the thin

  5. Measurement of material buckling of subcritical assembly CAPITU

    International Nuclear Information System (INIS)

    Material buckling and cadmium ratio measurements for 5 lattices of the subcritical assembly CAPITU with UO2 as fuel (French fuel elements) and D2O as moderator are reported. Flux shape method from foil activation data has been used. Some developed accessories, experimental procedures and the counting system used are also described. Flux distributions were analysed by least squares fitting method and by a moments method. Final results for material buckling were confronted with theoretical values and with values obtained by pulsed neutron techniques. A summary of the programs used for preliminary processing of counting data and for least squares fitting are included. Although the measurements involved some problems which were not definitively solved, results seem to be reasonably reliable and the methodology well implemented. (Author)

  6. Cooperative buckling and the nonlinear mechanics of nematic semiflexible networks

    Science.gov (United States)

    Foucard, L. C.; Price, J. K.; Klug, W. S.; Levine, A. J.

    2015-09-01

    We review the nonlinear mechanics of cross-linked networks of stiff filaments with a quenched anisotropic (nematic) alignment. A combination of numerical simulations and analytic calculations shows that the broken rotational symmetry of the filament orientational distribution leads to a dramatic nonlinear softening of the network at very small strain (on the order of 0.1%). We argue that one can understand this softening in terms of Euler buckling, i.e. the loss of further load-carrying capacity in compression within the network. With increasing shear strain, this source of geometric nonlinearity appears as heterogeneous nucleation (originating in particularly fragile regions, which may be identified by a linear stability analysis) and subsequently grows into ‘buckling scars’ that eventually spread throughout the system. We develop a simple mean-field model for the nonlinear mechanics of such networks and suggest applications of these ideas to a variety of fiber networks and biopolymer systems.

  7. Propulsion of Microorganisms and Elastic Buckling in Viscous Fluids

    Science.gov (United States)

    Dasgupta, Moumita

    Understanding the physics behind systems operating in the low- Reynolds number regime has been a common area explored in the field of fluid mechanics. The realm of low-Reynolds number (Re) encompasses the world of the very small, the very viscous, or the very slow. Typically the inertial forces are dominated by viscous ones in this domain. In my dissertation I discuss two experiments, both of which are in this regime. The first problem discusses a mechanical experimental model of a flexible sheet swimming with a prescribed wave pattern---a Taylor swimmer---through a fluid. Our study is motivated by a need for a fundamental understanding of microorganism locomotion through non-Newtonian fluids. We measure the swimming speed of this cylindrical version of Taylor's swimming sheet in viscoelastic fluids, and find that depending on the rheology, the speed can either increase or decrease relative to the speed in a Newtonian viscous fluid. The swimming stroke of the sheet is a prescribed propagating wave that travels along the sheet in the azimuthal direction. The measurements are performed with the sheet immersed in a fluid inside a cylindrical tank under torque-free conditions. Swimming speeds in the Newtonian case are found to be consistent with calculations using the Stokes equation. A faster swimming speed is found in a viscoelastic fluid that has a viscosity independent of shear rate. By contrast, a slower swimming speed is found with more complex shear-thinning viscoelastic fluids which have multiple relaxation time scales as well. These results are compared with calculations with Oldroyd-B fluids which find a decreasing swimming speed with Deborah number given by the product of the fluid elastic relaxation time scale and the driving frequency. The second problem, investigates the buckling of an elastic filament when immersed in a Newtonian fluid as it undergoes a uniaxial compression. Although there have been investigations of buckling of semi-flexible filaments

  8. Simulating Thin Sheets: Buckling, Wrinkling, Folding and Growth

    Science.gov (United States)

    Vetter, Roman; Stoop, Norbert; Wittel, Falk K.; Herrmann, Hans J.

    2014-03-01

    Numerical simulations of thin sheets undergoing large deformations are computationally challenging. Depending on the scenario, they may spontaneously buckle, wrinkle, fold, or crumple. Nature's thin tissues often experience significant anisotropic growth, which can act as the driving force for such instabilities. We use a recently developed finite element model to simulate the rich variety of nonlinear responses of Kirchhoff-Love sheets. The model uses subdivision surface shape functions in order to guarantee convergence of the method, and to allow a finite element description of anisotropically growing sheets in the classical Rayleigh-Ritz formalism. We illustrate the great potential in this approach by simulating the inflation of airbags, the buckling of a stretched cylinder, as well as the formation and scaling of wrinkles at free boundaries of growing sheets. Finally, we compare the folding of spatially confined sheets subject to growth and shrinking confinement to find that the two processes are equivalent.

  9. Scleral buckling for retinal detachment in patients with retinoblastoma

    International Nuclear Information System (INIS)

    Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years

  10. Scleral buckling for retinal detachment in patients with retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Buzney, S.M.; Pruett, R.C.; Regan, C.D.; Walton, D.S.; Smith, T.R.

    1984-10-15

    Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years.

  11. Qualitative properties of large buckled states of spherical shells

    Science.gov (United States)

    Shih, K. G.; Antman, S. S.

    1985-01-01

    A system of 6th-order quasi-linear Ordinary Differential Equations is analyzed to show the global existence of axisymmetrically buckled states. A surprising nodal property is obtained which shows that everywhere along a branch of solutions that bifurcates from a simple eigenvalue of the linearized equation, the number of simultaneously vanishing points of both shear resultant and circumferential bending moment resultant remains invariant, provided that a certain auxiliary condition is satisfied.

  12. Buckling response of ferritic stainless steel columns at elevated temperatures

    OpenAIRE

    Afshan, S; Gardner, L; Baddoo, NR

    2013-01-01

    This paper presents a numerical study on the buckling behaviour of ferritic stainless steel columns in fire. Finite element models were developed and validated against existing test results to predict the elevated temperature non-linear response of ferritic stainless steel columns. A total of nine austenitic and three ferritic stainless steel column tests were replicated using the finite element analysis package ABAQUS. Parametric studies were performed to investigate the effects of variation...

  13. Energy harvesting from controlled buckling of piezoelectric beams

    Science.gov (United States)

    Ansari, M. H.; Karami, M. Amin

    2015-11-01

    A piezoelectric vibration energy harvester is presented that can generate electricity from the weight of passing cars or crowds. The energy harvester consists of a piezoelectric beam, which buckles when the device is stepped on. The energy harvester can have a horizontal or vertical configuration. In the vertical (direct) configuration, the piezoelectric beam is vertical and directly sustains the weight of the vehicles or people. In the horizontal (indirect) configuration, the vertical weight is transferred to a horizontal axial force through a scissor-like mechanism. Buckling of the beam results in significant stresses and, thus, large power production. However, if the beam’s buckling is not controlled, the beam will fracture. To prevent this, the axial deformation is constrained to limit the deformations of the beam. In this paper, the energy harvester is analytically modeled. The considered piezoelectric beam is a general non-uniform beam. The natural frequencies, mode shapes, and the critical buckling force corresponding to each mode shape are calculated. The electro-mechanical coupling and the geometric nonlinearities are included in the model. The design criteria for the device are discussed. It is demonstrated that a device, realized with commonly used piezoelectric patches, can generate tens of milliwatts of power from passing car traffic. The proposed device could also be implemented in the sidewalks or integrated in shoe soles for energy generation. One of the key features of the device is its frequency up-conversion characteristics. The piezoelectric beam undergoes free vibrations each time the weight is applied to or removed from the energy harvester. The frequency of the free vibrations is orders of magnitude larger than the frequency of the load. The device is, thus, both efficient and insensitive to the frequency of the force excitations.

  14. Soft modes near the buckling transition of icosahedral shells

    OpenAIRE

    Widom, M.; Lidmar, J.; Nelson, D. R.

    2007-01-01

    Icosahedral shells undergo a buckling transition as the ratio of Young's modulus to bending stiffness increases. Strong bending stiffness favors smooth, nearly spherical shapes, while weak bending stiffness leads to a sharply faceted icosahedral shape. Based on the phonon spectrum of a simplified mass-and-spring model of the shell, we interpret the transition from smooth to faceted as a soft-mode transition. In contrast to the case of a disclinated planar network where the transition is sharp...

  15. Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders

    Science.gov (United States)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2010-01-01

    Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.

  16. Prebuckling, Buckling, and Postbuckling Response of Segmented Circular Composite Cylinders

    OpenAIRE

    Riddick, Jaret Cleveland

    2001-01-01

    Discussed is a numerical and experimental characterization of the response of small-scale fiber-reinforced composite cylinders constructed to represent a fuselage design whereby the crown and keel consist of one laminate stacking sequence and the two sides consist of another laminate stacking sequence. This construction is referred to as a segmented cylinder. The response to uniform axial endshortening is discussed. Numerical solutions for the nonlinear prebuckling, buckling, and postbuckling...

  17. The Influence of the Properties of Embroidery Threads on Buckling of Fabric Inside of the Embroidered Element

    Directory of Open Access Journals (Sweden)

    Svetlana RADAVIČIENĖ

    2012-12-01

    Full Text Available In production of garments, embroidery carries out a variety of functions, one of which is the aesthetic appearance of the product improvement. The resulting defects, are seen as a negative indicator of the product quality. The discrepancy of the embroidered element to the digital design in size is a defect, which is influenced by the embroidery threads, embroidery materials properties and process parameters. The fabric sorrounded by the embroidery threads between adjancent needle penetrations inside of the embroidered element is compressed, buckling. The aim of this paper is to investigate the influence of the properties of embroidery threads on buckling of fabric inside of the embroidered element. For investigations specimens were prepared using different fibre composition, density and linear structure of the embroidery threads. Specimens were cut and photo-captured at the beginning, middle and end of the embroidered element.  It was found, that different properties of the embroidery threads affecting on the different behavior of fabric inside of the embroidered element. The results of the investigations showed that the fabric inside of the embroidered element formed larger waves of buckling using the maximum elongation of the feedback exhibiting embroidery thread.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3100

  18. Visual force sensing with flexible nanowire buckling springs

    International Nuclear Information System (INIS)

    A calibrated method of force sensing is demonstrated in which the buckled shape of a long flexible metallic nanowire, referred to as a 'nanoneedle', is interpreted to determine the applied force. An individual needle of 157 nm diameter by 15.6 μm length is grown on an atomic force microscope (AFM) cantilever with a desired orientation (by the method of Yazdanpanah et al 2005 J. Appl. Phys. 98 073510). Using a nanomanipulator the needle is buckled in the chamber of a scanning electron microscope (SEM) and the buckled shapes are recorded in SEM images. Force is determined as a function of deflection for an assumed elastic modulus by fitting the shapes using the generalized elastica model (De Bona and Zelenika 1997 Proc. Inst. Mech. Eng. C 211 509-17). In this calibration the elastic modulus (68.3 GPa) was determined using an auxiliary AFM measurement, with the needle in the same orientation as in the SEM. Following this calibration the needle was used as a sensor in a different orientation than the AFM coordinates to deflect a suspended PLLA polymer fiber from which the elastic modulus (2.96 GPa) was determined. The practical value of the sensing method does depend on the reliability and ruggedness of the needle. In this study the same needle remained rigidly secured to the AFM cantilever throughout the entire SEM/AFM calibration procedure and the characterization of the nanofiber

  19. A numerical study of flexural buckling of foliated rock slopes

    Science.gov (United States)

    Adhikary, D. P.; Mühlhaus, H.-B.; Dyskin, A. V.

    2001-08-01

    The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes.

  20. Monitoring thermal stresses and incipient buckling of continuous-welded rails: results from the UCSD/BNSF/FRA large-scale laboratory test track

    Science.gov (United States)

    Phillips, Robert; Nucera, Claudio; Coccia, Stefano; Lanza di Scalea, Francesco; Bartoli, Ivan; Fateh, Mahmood; Carr, Gary

    2011-04-01

    Most modern railways use Continuous Welded Rail (CWR). A major problem is the almost total absence of expansion joints that can create buckling in hot weather and breakage in cold weather due to the rail thermal stresses. In June 2008 the University of California, San Diego (UCSD), under the sponsorship of a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, began work to develop a technique for in-situ measurement of stress and detection of incipient buckling in CWR. The method under investigation is based on ultrasonic guided waves, and the ultimate goal is to develop a prototype that can be used in motion. A large-scale full rail track (70 feet in length) has been constructed at UCSD's Powell Structural Laboratories, the largest laboratories in the country for structural testing, to validate the CWR stress measurement and buckling detection technique under rail heating conditions well controlled in the laboratory. This paper will report on the results obtained from this unique large-scale test track to date. These results will pave the road for the future development of the rail stress measurement & buckling detection prototype.

  1. Caught in the Act: Direct Detection of Galactic Bars in the Buckling Phase

    CERN Document Server

    Erwin, Peter

    2016-01-01

    The majority of massive disk galaxies, including our own, have stellar bars with vertically thick inner regions -- so-called "boxy/peanut-shaped" (B/P) bulges. The most commonly suggested mechanism for the formation of B/P bulges is a violent vertical "buckling" instability in the bar, something that has been seen in N-body simulations for over twenty years, but never identified in real galaxies. Here, we present the first direct observational evidence for ongoing buckling in two nearby galaxies (NGC 3227 and NGC 4569), including characteristic asymmetric isophotes and (in NGC 4569) stellar-kinematic asymmetries that match buckling in simulations. This confirms that the buckling instability takes place and produces B/P bulges in real galaxies. A toy model of bar evolution yields a local fraction of buckling bars consistent with observations if the buckling phase lasts ~0.5--1 Gyr, in agreement with simulations.

  2. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    Science.gov (United States)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  3. Interactive Shear Buckling Of Plate Girder with Corrugated Web (Analytical Solution)

    OpenAIRE

    Prof.Dr:S.A.Tohamy; Ass.Prof.Dr:A.B.Saddek; Eng: Asmaa.Y.Hamed

    2016-01-01

    This paper presents analytical studies the elastic interactive shear buckling stress of corrugated steel web is calculated by all possible failure criteria (steel yielding, local and global buckling stresses), using Minimum Potential Energy Method to determine critical shear stress of local and global buckling of plate girder with corrugated webs. The results are compared with Finite element method (FEM) using ANSYS/V12. It found that the proposed equations are a good agreement with the resul...

  4. Thermo-mechanical buckling analysis of FGM plate using generalized plate theory

    Science.gov (United States)

    Sharma, Kanishk; Kumar, Dinesh; Gite, Anil

    2016-05-01

    This paper investigates the thermo-mechanical buckling behavior of simply-supported FGM plate under the framework of generalized plate theory (GPT), which includes classical plate theory (CPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) as special cases. The governing equations for FGM plate under thermal and mechanical loading conditions are derived from the principle of virtual displacements and Navier-type solution is assumed for simply supported boundary condition. The efficiency and applicability of presented methodology is illustrated by considering various examples of thermal and mechanical buckling of FGM plates. The closed form solutions in the form of critical thermal and mechanical buckling loads, predicted by CPT, FSDT and HSDT are compared for different side-to-thickness of FGM plate. Subsequently, the effect of material gradation profile on critical buckling parameters is examined by evaluating the buckling response for a range of power law indexes. The effect of geometrical parameters on mechanical buckling of FGM plate under uni-axial and bi-axial loading conditions are also illustrated by calculating the critical load for various values of slenderness ratios. Furthermore a comparative analysis of critical thermal buckling loads of FGM plate for different temperature profiles is also presented. It is identified that all plate theories predicted approximately same critical buckling loads and critical buckling temperatures for thin FGM plate, however for thick FGM plates, CPT overestimates the critical buckling parameters. Moreover the critical buckling loads and critical buckling temperatures of FGM plate are found to be significantly lower than the corresponding homogenous isotropic ceramic plate (n=0).

  5. CRITICAL BUCKLING LOAD ESTIMATION OF THE COMPRESSION RODS USING ARTIFICIAL NEURAL NETWORKS METHOD

    OpenAIRE

    BİLGEHAN, Mahmut; PEKGÖKGÖZ, RECEP KADİR

    2011-01-01

    In this work, the buckling problem of constant rectangular cross-sectional slender prismatic compression members having a nonpropagating open edge crack is investigated by Transfer Matrix and Neural Network methods. Obtained results show that, besides the Transfer Matrix Method whose efficiency on technical problems such as buckling and vibration was seen previously, the Neural Network Method also an efficient and reliable method for determination of buckling load of cracked compression membe...

  6. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    Science.gov (United States)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  7. Elastic and plastic buckling of shells. The CEASEMT system. Available results. Comparison with tests

    International Nuclear Information System (INIS)

    Specific routines for the analysis of elastic and elastic-plastic buckling have been written in the CEASEMT system of analysis by the finite element method. The basis of formulation are reviewed with emphasis on important points like: the correct and comprehensive formulation of the second order terms, the nonconservative loads. Some computational results are given and a comparison is made with experimental results (Euler type buckling of a long tube, elastic-plastic buckling of torispherical ends)

  8. Effect of Topological Defects on Buckling Behavior of Single-walled Carbon Nanotube

    OpenAIRE

    Wang Guoxiu; Ranjbartoreh Ali

    2010-01-01

    Abstract Molecular dynamic simulation method has been employed to consider the critical buckling force, pressure, and strain of pristine and defected single-walled carbon nanotube (SWCNT) under axial compression. Effects of length, radius, chirality, Stone–Wales (SW) defect, and single vacancy (SV) defect on buckling behavior of SWCNTs have been studied. Obtained results indicate that axial stability of SWCNT reduces significantly due to topological defects. Critical buckling strain is ...

  9. The application of the initial post-buckling analysis to shells

    International Nuclear Information System (INIS)

    The energy approach to elastic stability is employed to describe characteristic differences in buckling behaviour between bars in compression, plates loaded in their plane, and shells, in particular in the absence of inextensional deformation. The initial stage of post-buckling behaviour of shells is discussed from the stand-point of shallow shell theory and it is applied to more or less localized buckling patterns. (orig.)

  10. Investigation of scleral buckling by CO2 laser

    International Nuclear Information System (INIS)

    This thesis investigates the effect of using the infrared wavelength CO2 laser (10.6μm) as a localised heat source for inducing scleral buckling on eyes. Retinal detachment disease is a major cause of blindness and the scleral buckling is an important technique used in treatment. A radio-frequency excited 10.6λm laser source is used to heat collagen in the sclera above its shrinkage temperature so as to produce a localised indentation and deformation in the human eye (in vitro). Basic measurements of the onset shrinkage temperatures of porcine and human sclera are taken. Optical properties of sclera tissue at 10.6μm are also determined to provide information about the interaction of the CO2 laser with the sclera. It is found that CO2 laser radiation is highly absorbed by the scleral water. Optical diffraction technique is investigated to quantify in-plane deformation in the sclera tissue as result of heating by producing grating on porcine and human sclera using the ArF laser (193nm). Photothermal deflection technique is also used to investigate scleral ablation by using the TEA and Ultrapulse CO2 laser. This technique provides a useful guide to the regime where ablation rather than heat shrinkage of collagen in the sclera will dominate using the Ultrapulse CO2 laser. A quantitative assessment of buckling using the technique of projection moire interferometry is described which allows a non-contact measurement to be made of the out-of-plane displacement by laser radiation. In-plane surface strain (shrinkage) has also been demonstrated using in-situ optical microscopy of the laser treated eye. The moire method is suitable to obtain information on buckling in real time and to obtain a three-dimensional view of the eye surface as laser treatment proceeds. A theoretical heat flow model is described for predicting the temperature profile produced in the sclera using the Ultrapulse CO2 laser. For appropriate exposure parameters the CO2 laser is found to be an

  11. Buckling-induced retraction of spherical shells: A study on the shape of aperture

    Science.gov (United States)

    Lin, Sen; Xie, Yi Min; Li, Qing; Huang, Xiaodong; Zhou, Shiwei

    2015-06-01

    Buckling of soft matter is ubiquitous in nature and has attracted increasing interest recently. This paper studies the retractile behaviors of a spherical shell perforated by sophisticated apertures, attributed to the buckling-induced large deformation. The buckling patterns observed in experiments were reproduced in computational modeling by imposing velocity-controlled loads and eigenmode-affine geometric imperfection. It was found that the buckling behaviors were topologically sensitive with respect to the shape of dimple (aperture). The shell with rounded-square apertures had the maximal volume retraction ratio as well as the lowest energy consumption. An effective experimental procedure was established and the simulation results were validated in this study.

  12. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture.

    Science.gov (United States)

    Xiao, Yangming; Liu, Qin; Han, Hai-Chao

    2016-09-01

    Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries. PMID:26913855

  13. Experimental Reserch on Buckling of Nano-Thin Film under Alternating Load

    Science.gov (United States)

    Cui, D. Q.; Wang, S. B.; Li, L. A.; Jia, H. K.

    In this paper, an experiment focus on thin film buckling under alternating load has been completed. The alternating-loading device based on piezoelectric ceramic which also integrates the force-displacement measure module, has been designed to offer the alternating loading to the metal films deposited on PMMA substrates. The initiation of the straight-side buckling and the cumulative buckling with propagation process are recorded and investigated by using a CCD camera and a optical microscope. It is found that buckling's initiation and propagation are influenced by the frequency, thickness of thin film and number of cycles.

  14. COMPPAP - COMPOSITE PLATE BUCKLING ANALYSIS PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Smith, J. P.

    1994-01-01

    The Composite Plate Buckling Analysis Program (COMPPAP) was written to help engineers determine buckling loads of orthotropic (or isotropic) irregularly shaped plates without requiring hand calculations from design curves or extensive finite element modeling. COMPPAP is a one element finite element program that utilizes high-order displacement functions. The high order of the displacement functions enables the user to produce results more accurate than traditional h-finite elements. This program uses these high-order displacement functions to perform a plane stress analysis of a general plate followed by a buckling calculation based on the stresses found in the plane stress solution. The current version assumes a flat plate (constant thickness) subject to a constant edge load (normal or shear) on one or more edges. COMPPAP uses the power method to find the eigenvalues of the buckling problem. The power method provides an efficient solution when only one eigenvalue is desired. Once the eigenvalue is found, the eigenvector, which corresponds to the plate buckling mode shape, results as a by-product. A positive feature of the power method is that the dominant eigenvalue is the first found, which is this case is the plate buckling load. The reported eigenvalue expresses a load factor to induce plate buckling. COMPPAP is written in ANSI FORTRAN 77. Two machine versions are available from COSMIC: a PC version (MSC-22428), which is for IBM PC 386 series and higher computers and compatibles running MS-DOS; and a UNIX version (MSC-22286). The distribution medium for both machine versions includes source code for both single and double precision versions of COMPPAP. The PC version includes source code which has been optimized for implementation within DOS memory constraints as well as sample executables for both the single and double precision versions of COMPPAP. The double precision versions of COMPPAP have been successfully implemented on an IBM PC 386 compatible running

  15. The magneto-elastica: from self-buckling to self-assembly

    KAUST Repository

    Vella, D.

    2013-12-04

    Spherical neodymium-iron-boron magnets are permanent magnets that can be assembled into a variety of structures owing to their high magnetic strength. A one-dimensional chain of these magnets responds to mechanical loadings in a manner reminiscent of an elastic rod. We investigate the macroscopic mechanical properties of assemblies of ferromagnetic spheres by considering chains, rings and chiral cylinders of magnets. Based on energy estimates and simple experiments, we introduce an effective magnetic bending stiffness for a chain of magnets and show that, used in conjunction with classic results for elastic rods, it provides excellent estimates for the buckling and vibration dynamics of magnetic chains. We then use this estimate to understand the dynamic self-assembly of a cylinder from an initially straight chain of magnets.

  16. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    Science.gov (United States)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  17. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    Science.gov (United States)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-09-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated.

  18. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles

    Science.gov (United States)

    Liu, Z. F.; Fang, S.; Moura, F. A.; Ding, J. N.; Jiang, N.; Di, J.; Zhang, M.; Lepró, X.; Galvão, D. S.; Haines, C. S.; Yuan, N. Y.; Yin, S. G.; Lee, D. W.; Wang, R.; Wang, H. Y.; Lv, W.; Dong, C.; Zhang, R. C.; Chen, M. J.; Yin, Q.; Chong, Y. T.; Zhang, R.; Wang, X.; Lima, M. D.; Ovalle-Robles, R.; Qian, D.; Lu, H.; Baughman, R. H.

    2015-07-01

    Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson’s ratio on torsional actuation and electronic properties.

  19. Buckle, ruck and tuck: A proposed new model for the response of graphite to neutron irradiation

    International Nuclear Information System (INIS)

    The default theory of radiation damage in graphite invokes Frenkel pair formation as the principal cause of physical property changes. We set out its inadequacies and present two new mechanisms that contribute to a better account for changes in dimension and stored energy. Damage depends on the substrate temperature, undergoing a change at approximately 250 deg. C. Below this temperature particle radiation imparts a permanent, nano-buckling to the layers. Above it, layers fold, forming what we describe as a ruck and tuck defect. We present first principles and molecular mechanics calculations of energies and structures to support these claims. Necessarily we extend the dislocation theory of layered materials. We cite good experimental evidence for these features from the literature on radiation damage in graphite.

  20. Adsorption-enhanced spin-orbit coupling of buckled honeycomb silicon

    Science.gov (United States)

    Sun, Jia-Tao; Chen, Wei; Sakamoto, Kazuyuki; Feng, Yuan Ping; Wee, Andrew T. S.

    2016-09-01

    We have studied the electronic structures of quasi-two-dimensional buckled honeycomb silicon (BHS) saturated by atomic hydrogen and fluorine by means of first-principles calculations. The graphene-like hexagonal silicon with chair configurations can be stabilized by atomic hydrogen and fluorine adsorption. Together with a magnetic ground state, large spin-orbit coupling (SOC) of BHS saturated by hydrogen on either side (Semi-H-BHS) indicated by the band splitting of σ bond at Γ point in the Brillouin zone is attributed to the intermixing between the density of states of hydrogen atoms and π bonds of unpassivated Si2 around the Fermi level. The Zeeman spin splitting is most likely caused by the internal electric field induced by asymmetric charge transfer.

  1. Nonlinear vibrations of buckled plates by an asymptotic numerical method

    Science.gov (United States)

    Benchouaf, Lahcen; Boutyour, El Hassan

    2016-03-01

    This work deals with nonlinear vibrations of a buckled von Karman plate by an asymptotic numerical method and harmonic balance approach. The coupled nonlinear static and dynamic problems are transformed into a sequence of linear ones solved by a finite-element method. The static behavior of the plate is first computed. The fundamental frequency of nonlinear vibrations of the plate, about any equilibrium state, is obtained. To improve the validity range of the power series, Padé approximants are incorporated. A continuation technique is used to get the whole solution. To show the effectiveness of the proposed methodology, numerical tests are presented.

  2. Geometric buckling measurements using the pulsed neutron source method

    International Nuclear Information System (INIS)

    The geometric buckling of cylindrical reactors with one or both ends rounded has been determined by pulsed source measurements with small polyethylene geometries. The results were in general accord with theoretical calculations. The diffusion parameters of polyethylene were also determined. The diffusion length was 2.12 ± 0.03 cm, and for the capture cross section of hydrogen a value of 0.337 ± 0.005 barns was found. The effect of control rods was studied using thin cadmium rods in water. Good agreement was found for axial, central rods, whereas the theoretical predictions for the effect of diagonal rods were too high

  3. Flambage vertical des conduites en souillées Vertical Buckling of Buried Pipes

    Directory of Open Access Journals (Sweden)

    Bournazel C.

    2006-11-01

    Full Text Available Si l'apparition d'un flambage vertical des conduites rigides enfouies dans une tranchée est un phénomène assez rare, il peut ne pas en être de même pour des conduites flexibles dont les propriétés mécaniques sont de nature différente. Une étude théorique et expérimentale, ayant pour but de proposer une méthode analytique de calcul de l'apparition du flambage et de son évolution sous l'effet de la pression interne, a été réalisée. II apparaît que les conduites flexibles actuelles sont très sensibles à ce phénomène et qu'il serait nécessaire, pour l'éliminer à coup sûr, de réexaminer la structure des flexibles ou d'imaginer des artifices dans la procédure d'ensouillage Whereas the appearance of vertical buckling in rigid pipes buried in a trench is a relatively rare phenomenon, the same cannot be said for flexible pipes which have mechanical properties of a different nature. A theoretical and experimental study has been made with the aim of proposing an analytical method for computing the appearance of buckling and its evolution under the effect of outside pressure. Current flexible pipes appear to be very sensitive to this phenomenon, and to be certain of eliminating it the structure of flexible pipes should be reexamined or stratagems in the burying procedure should be devised.

  4. Local buckling of fire-exposed aluminum members: New design model

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Snijder, H.H.

    2010-01-01

    Design models for local buckling of fire-exposed aluminum sections are currently lacking. Based on analyses with validated finite-element models, this paper investigates local buckling of extruded sections with stress-strain relationships representative for fire-exposed aluminum alloys. Due to the f

  5. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests.

    Science.gov (United States)

    Evans, E A

    1983-07-01

    Observation of cell membrane buckling and cell folding in micropipette aspiration experiments was used to evaluate the bending rigidity of the red blood cell membrane. The suction pressure required to buckle the membrane surface initially was found to be about one-half to two-thirds of the pressure that caused the cell to fold and move up the pipet. A simple analytical model for buckling of a membrane disk supported at inner and outer radii correlates well with the observed buckling pressures vs. pipet radii. The buckling pressure is predicted to increase in inverse proportion to the cube of the pipet radius; also, the buckling pressure depends inversely on the radial distance to the toroidal rim of the cell, normalized by the pipet radius. As such, the pressure required to buckle the membrane with 1 X 10(-4) cm diam pipet would be about four times greater than with a 2 X 10(-4) cm pipet. This is the behavior observed experimentally. Based on analysis of the observed buckling data, the membrane bending or curvature elastic modulus is calculated to be 1.8 X 10(-12) dyn-cm. PMID:6882860

  6. A Nonlinear Theory of Bending and Buckling of Thin Elastic Shallow Spherical Shells

    Science.gov (United States)

    Kaplan, A; Fung, Y C

    1954-01-01

    The problem of the finite displacement and buckling, of a shallow spherical dome is investigated both theoretically and experimentally. Experimental results seem to indicate that the classical criterion of buckling is applicable to very shallow spherical domes for which the theoretical calculation was made. A transition to energy criterion for higher domes is also indicated.

  7. Caught in the Act: Direct Detection of Galactic Bars in the Buckling Phase

    Science.gov (United States)

    Erwin, Peter; Debattista, Victor P.

    2016-07-01

    The majority of massive disk galaxies, including our own, have stellar bars with vertically thick inner region, known as “boxy/peanut-shaped” (B/P) bulges. The most commonly suggested mechanism for the formation of B/P bulges is a violent vertical “buckling” instability in the bar, something that has been seen in N-body simulations for over 20 years, but never identified in real galaxies. Here, we present the first direct observational evidence for ongoing buckling in two nearby galaxies (NGC 3227 and NGC 4569), including characteristic asymmetric isophotes and (in NGC 4569) stellar kinematic asymmetries that match buckling in simulations. This confirms that the buckling instability takes place and produces B/P bulges in real galaxies. A toy model of bar evolution yields a local fraction of buckling bars consistent with observations if the buckling phase lasts ∼0.5–1 Gyr, in agreement with simulations.

  8. On dynamic buckling of cylindrical shell in soil subjected to blast loads%爆炸荷载作用下土埋圆柱壳动力屈曲分析

    Institute of Scientific and Technical Information of China (English)

    刘新宇; 马林建; 方秦; 张川; 马淑娜

    2012-01-01

    To investigate the dynamic stability of cylindrical shell in shallow soil,the calculation model of soil spring-shell interaction was established based on the stress characteristic of the shell subjected to blast loads. The nonlinear FEM method was utilized to solve the structural dynamic responses. The B-R buckling rule was applied to determining the critical buckling load following the numerical simulation of the shell buckling progress. The influence of the soil layer deformation on the structural buckling load was analyzed in detail. The quantitative relationship between the buckling load of the structure and the elastic modulus of the soil was obtained. The results indicate that the structural buckling load increases nonlinear-ly with the soil elastic modulus.%为研究爆炸动载作用下土中圆柱壳结构的动力稳定特性,依据爆炸动载作用下土埋圆柱壳的受力特征,建立了考虑土与圆柱壳相互作用的土弹簧一柱壳计算模型,应用非线性有限元方法进行了数值计算.在圆柱壳结构动力屈曲过程数值分析的基础上,运用B-R屈曲准则判定土埋圆柱壳在爆炸动载作用下的屈曲临界荷载,并重点讨论了土层变形性质对圆柱壳屈曲荷载的影响,得到了土中圆柱壳屈曲荷载和土体弹性常数K的定量关系.结果表明,屈曲荷载随土体弹性常数的增大而非线性增大.

  9. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT-BUCKLING EVALUATION METHODS and RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system

  10. Buckling assessment procedure for large diameter vessel with multiple local thin areas subjected to external moment

    International Nuclear Information System (INIS)

    Highlights: → We proposed the combination rule of multiple cracks as that of multiple flaws. → We proposed additional safety factor for conventional buckling equations. → The margin for the buckling load of a cylinder with multiple flaws is saved 2.0. - Abstract: The procedures described in based on the p-M (internal pressure ratio and external bending moment ratio) method () were used to predict the plastic initiation condition and the collapse condition for cylinders with a local thin area (LTA) subjected to combined internal pressure and bending moment. The effective wall thickness, t*, for the buckling assessment on a vessel with an LTA was proposed for use instead of wall thickness based on approximation which simply took into account only the effect of section modulus reduction (). The buckling evaluation on a vessel with an LTA was presented by and that was shown to be easily and adequately conducted by applying t* to the well-known Donnell's or Miller's equation. In this paper, the attention was focused on the procedure for assessing the buckling of large D/t vessels with multiple aligned or non-aligned local thin areas. From the comparison with the results of non-linear FEA, a combination rule and a buckling assessment procedure for multiple LTAs (flaws) subjected to external moment are proposed. The interaction-affected area for multiple cracks can be applied as the combination rule to evaluate the buckling of a large diameter vessel with multiple flaws subjected to external moment. From the comparison between the buckling loads of FEA results and the conventional buckling equations using the measured yield stress, an additional safety factor 'ks' is proposed so as to maintain the margin of 1.5. When the specified minimum yield stress is applied to Donnell's or Miller's equations, the margin for the buckling load of a cylinder with multiple flaws is more than 2.08 and 2.29, respectively.

  11. Flutter of buckled shape memory alloy reinforced laminates

    International Nuclear Information System (INIS)

    The effect of shape memory alloys (SMA) on the linear and nonlinear flutter behaviors of buckled cross-ply and angle-ply laminates was investigated in the frequency and time domains using the finite element method. In particular, this study takes the first move toward examining the effect of varying the SMA fiber spacing. Von Karman large deformation assumptions and quasi-steady aerodynamic theory were employed. The flutter boundary, stability boundary, time history response, and phase plane plots of SMA reinforced cross-ply and angle-ply laminates are presented. The numerical results show that increase in the SMA fiber volume fraction and prestrain may generate more recovery stress, and increase the stiffness of the SMA reinforced laminates. Therefore, the flutter boundary and critical load of the plate may be increased significantly. All five types of panel behavior, namely flat, buckled, limit-cycle, periodic, and chaotic motion, are clearly displayed and successively identified. This study sheds light on improving the flutter boundary efficiently by increasing the SMA fiber volume fraction to reinforce the center of the plate. (paper)

  12. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali

    2012-08-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.

  13. Nonlinear buckling analyses of a small-radius carbon nanotube

    International Nuclear Information System (INIS)

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained

  14. Torsional Buckling and Writhing Dynamics of Elastic Cables and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, S; Perkins, N C; Lee, C L

    2003-02-14

    Marine cables under low tension and torsion on the sea floor can undergo a dynamic buckling process during which torsional strain energy is converted to bending strain energy. The resulting three-dimensional cable geometries can be highly contorted and include loops and tangles. Similar geometries are known to exist for supercoiled DNA and these also arise from the conversion of torsional strain energy to bending strain energy or, kinematically, a conversion of twist to writhe. A dynamic form of Kirchhoff rod theory is presented herein that captures these nonlinear dynamic processes. The resulting theory is discretized using the generalized-method for finite differencing in both space and time. The important kinematics of cross-section rotation are described using an incremental rotation ''vector'' as opposed to traditional Euler angles or Euler parameters. Numerical solutions are presented for an example system of a cable subjected to increasing twist at one end. The solutions show the dynamic evolution of the cable from an initially straight element, through a buckled element in the approximate form of a helix, and through the dynamic collapse of this helix through a looped form.

  15. Buckling of Single-Crystal Silicon Nanolines under Indentation

    Directory of Open Access Journals (Sweden)

    Min K. Kang

    2008-01-01

    Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.

  16. Experimental and finite element investigation of the buckling characteristics of a beaded skin panel for a hypersonic aircraft. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Siegel, W. H.

    1978-01-01

    As part of NASA's continuing research into hypersonics and 85 square foot hypersonic wing test section of a proposed hypersonic research airplane was laboratory tested. The project reported on in this paper has carried the hypersonic wing test structure project one step further by testing a single beaded panel to failure. The primary interest was focused upon the buckling characteristics of the panel under pure compression with boundary conditions similar to those found in a wing mounted condition. Three primary phases of analysis are included in the report. These phases include: experimental testing of the beaded panel to failure; finite element structural analysis of the beaded panel with the computer program NASTRAN; a summary of the semiclassical buckling equations for the beaded panel under purely compressive loads. Comparisons between each of the analysis methods are also included.

  17. Towards universal buckling dynamics in nanocolloidal sessile droplets: the effect of hydrophilic to superhydrophobic substrates and evaporation modes.

    Science.gov (United States)

    Basu, Saptarshi; Bansal, Lalit; Miglani, Ankur

    2016-06-14

    The evaporation of a nanocolloidal sessile droplet exhibits preferential particle assembly, nanoporous shell formation and buckling to form cavities with unique morphological features. Here, we have established many universal trends that explain the buckling dynamics under one umbrella irrespective of hydrophobicity, evaporation mode and particle loading. We provide a regime map explaining the droplet morphology and buckling characteristics for droplet evaporation on various substrates. Specifically, we find that the final droplet volume and the radius of curvature at the buckling onset are universal functions of particle concentration. Furthermore, we establish that post-buckling cavity growth is evaporation driven regardless of the substrate. PMID:27125247

  18. Post-buckling analysis of composite beams: A simple intuitive formulation

    Indian Academy of Sciences (India)

    Jagadish Babu Gunda; G Venkateswara Rao

    2013-06-01

    Post-buckling analysis of composite beams with axially immovable ends is investigated using an Intuitive formulation. Intuitive formulation uses two parameters namely critical buckling load and axial stretching force developed in the post-buckled domain of composite beam. Geometric nonlinearity of von-Karman type is taken into consideration which accounts for membrane stretching action of the beam. Axial stretching force developed in post-buckled domain of composite beam is evaluated by using an axial governing equation and is expressed either in terms of lateral displacement function as an integrated value, or as a function of both axial and lateral displacement functions at any discrete location of the beam. The available expressions of critical buckling load and derived expressions of axial stretching force developed in the beam are used for obtaining an approximate closed-form expressions for the post-buckling loads of various beam boundary conditions. Numerical accuracy of the proposed analytical closed-form expressions obtained from the intuitive formulation are compared to the available finite element solutions for symmetric and asymmetric lay-up schemes of laminated composite beam. Effect of central amplitude ratio and lay-up orientation on post-buckling load variation is briefly discussed for various beam boundary conditions considered in this study.

  19. Hydroelastic Response of Surface-Effect Ship Bow Seals: Large-Scale Experiments and Post-Buckling Analysis

    Science.gov (United States)

    Wiggins, Andrew D.

    Bow seals are critical components on advanced marine vehicles that rely on aerostatic support to reduce drag. They consist of a series of open-ended fabric cylinders ("fingers") that contact the free surface and, when inflated, form a compliant pressure barrier. Bow seals are unique in that, unlike a majority of structures in civil and mechanical engineering, bow seals operate in a buckled state. The response characteristics of these structures are of practical interest due to unacceptable wear rates on seal components and difficulties in predicting seal performance. Despite this, the hydroelastic response of the seal system, particularly basic information on seal vibration modes and the mechanisms responsible for seal wear, remains largely unknown. Similarly, estimates of the hydrodynamic loads on the seal system are inaccurate and based on heuristic scaling of data from small-scale experiments, where similitude is challenging to maintain. Thus, a large-scale test system is necessary to obtain accurate estimates of bow seal response. The work is comprised of three parts. Part one presents detailed observations of bow seal response acquired using a large-scale test platform developed as part of the present study. These high-resolution observations, the first of their kind, show bow seal response to be characterized by complex post-buckling behavior. Part two proposes an analytical framework for interpreting the wide range of behavior observed at large scale. Using this framework, key parameters driving seal conformation and stability are identified. It is found that, due to their buckled state, bow seals are highly susceptible to a mode switching instability, which may be a potential mechanism responsible for the damaging vibrations. In part three, a benchtop experiment is used to demonstrate that the scalings identified in this study hold across a wide range of bending rigidities. This work has implications for improving drag and wear characteristics in future bow

  20. Mechanical buckling of multi-walled carbon nanotubes: The effects of slenderness ratio

    Science.gov (United States)

    Lu, Jian-Ming; Hwang, Chi-Chuang; Kuo, Qu-Yuan; Wang, Yun-Che

    2008-03-01

    Buckling strengths, in terms of compressive strain, of single-, double- and triple-walled carbon nanotubes (CNTs) are investigated to study the effects of slenderness ratio ( SR) via the molecular dynamics (MD) simulations with the Tersoff potential. Under constant ratio of slenderness, the CNTs with small SR behave like a continuum shell object. For large SR's, multi-walled CNTs exhibit the characteristics of the Euler columns. In addition, smaller nanotubes possess higher buckling-resistance. The buckling strength of multi-walled nanotubes is controlled by the size of their outermost shell.

  1. Buckling Analysis of Rectangular Plates with Variable Thickness Resting on Elastic Foundation

    International Nuclear Information System (INIS)

    Buckling of rectangular plates of variable thickness resting in elastic foundation is analysed using a quintic spline approximation technique. The thickness of the plate varies in the direction of one edge and the variations are assumed to be linear, exponential and sinusoidal. The plate is subjected to in plane load of two opposite edges. The buckling load and the mode shapes of buckling are computed from the eigenvalue problem that arises. Detailed parametric studies are made with different boundary conditions and the results are presented through the diagram and discussed

  2. Analysis of the LOFT Modular Drag Disc Turbine Transducer (MDTT) spring for compressive buckling

    International Nuclear Information System (INIS)

    The LOFT Modular Drag Disc Turbine Transducer (MDTT) springs (for range 2, rhoV2 = 4900 lbm/ft-sec2) were analyzed to determine the static rhoV2 load needed to cause a buckling failure. The static load needed to cause elastic buckling was found to be equivalent to a rhoV2 value of 431,000 lbm/ft-sec2 according to classical buckling theory, but could be as low as rhoV2 = 100,000 lbm/ft-sec2 due to uncertain end fixity and other spring imperfections

  3. Axisymmetric buckling of laminated, moderately thick shallow conical cap

    Energy Technology Data Exchange (ETDEWEB)

    Dumir, P.C.; Dube, G.P.; Joshi, S. [Applied Mechanics Dept., I.I.T. Delhi, New Delhi (India)

    2001-05-01

    Axisymmetric buckling and postbuckling analysis is presented for a moderately thick, laminated shallow conical cap under static transverse load. Marguerre-type, first-order shear deformation shallow-shell theory is formulated in terms of transverse deflection w, the rotation {psi} of the normal to the midsurface and the stress function {phi}. The governing equations are solved by the orthogonal point-collocation method. Clamped conical caps and simple supports with movable and immovable edge conditions are considered. Typical numerical results are presented, illustrating the effect of various parameters. The dependence of the effect of the shear deformation on the thickness parameter, boundary conditions, ratio of Young's moduli and cap height is investigated. (orig.)

  4. Harnessing buckling to design tunable locally resonant acoustic metamaterials.

    Science.gov (United States)

    Wang, Pai; Casadei, Filippo; Shan, Sicong; Weaver, James C; Bertoldi, Katia

    2014-07-01

    We report a new class of tunable and switchable acoustic metamaterials comprising resonating units dispersed into an elastic matrix. Each resonator consists of a metallic core connected to the elastomeric matrix through elastic beams, whose buckling is intentionally exploited as a novel and effective approach to control the propagation of elastic waves. We first use numerical analysis to show the evolution of the locally resonant band gap, fully accounting for the effect of nonlinear pre-deformation. Then, we experimentally measure the transmission of vibrations as a function of the applied loading in a finite-size sample and find excellent agreement with our numerical predictions. The proposed concept expands the ability of existing acoustic metamaterials by enabling tunability over a wide range of frequencies. Furthermore, we demonstrate that in our system the deformation can be exploited to turn on or off the band gap, opening avenues for the design of adaptive switches. PMID:25032927

  5. Study of Dynamic Buckling of FG Plate Due to Heat Flux Pulse

    Directory of Open Access Journals (Sweden)

    Czechowski L.

    2015-02-01

    Full Text Available The paper deals with a FEM analysis of dynamic buckling of functionally graded clamped plates under heat flux loading with huge power. The materials of structures as well as their properties are varying in each layer across the plate thickness formulated by the power law distribution. The heat flux was applied evenly to the whole ceramic surface. The analysis was developed in the ANSYS 14.5 software. The duration of the heat flux loading equal to a period of natural fundamental flexural vibrations of given structures was taken into consideration. To implement large deflections of structures, the Green-Lagrange nonlinear-displacement equations and the incremental Newton-Raphson algorithm were applied. An evaluation of the dynamic response of structures was carried out on basis of the Budiansky-Hutchinson criterion. The studies were conducted for different volume fraction distributions and different shapes of the heat flux loading. The computation results of the heat flux versus maximal plate deflection are shown and discussed.

  6. Stability and buckling of flat circular configurations of closed, intrinsically nonrectilinear filaments spanned by fluid films

    CERN Document Server

    Hoang, T M

    2016-01-01

    We explore how the stability and buckling behavior of a flexible but inextensible loop spanned by a liquid film in a flat circular configuration is influenced by the intrinsic shape of the fiber from which the loop is made.

  7. Buckling instability of thin films as a means to control or enhance fluid flow within microchannel

    Science.gov (United States)

    Tavakol, Behrouz; Chawan, Aschvin; Holmes, Douglas

    2014-11-01

    Here we show that the buckling of thin, flexible plates can be used for pumping fluids, controlling the flow rate, and mixing different media within a microfluidic channel. A confined, dielectric elastomeric film buckles out of the plane when exposed to an electric field. We use an electrolytic fluid solution as the electrode to enable buckling at relatively low voltages, and to enhance the rate of deformation. When embedded in a microfluidic channel, this mechanism can be used as a microvalve that controls the flow rate, or as a micropump that alters the flow rate. A similar mechanism can be used to aid diffusion between two adjacent laminar streams and improve mixing. This novel means for dielectric actuation may improve voltage application, and the buckling microstructures may be used in variety of applications to accurately control and manipulate fluid flow in a microchannel.

  8. Buckling Testing and Analysis of Space Shuttle Solid Rocket Motor Cylinders

    Science.gov (United States)

    Weidner, Thomas J.; Larsen, David V.; McCool, Alex (Technical Monitor)

    2002-01-01

    A series of full-scale buckling tests were performed on the space shuttle Reusable Solid Rocket Motor (RSRM) cylinders. The tests were performed to determine the buckling capability of the cylinders and to provide data for analytical comparison. A nonlinear ANSYS Finite Element Analysis (FEA) model was used to represent and evaluate the testing. Analytical results demonstrated excellent correlation to test results, predicting the failure load within 5%. The analytical value was on the conservative side, predicting a lower failure load than was applied to the test. The resulting study and analysis indicated the important parameters for FEA to accurately predict buckling failure. The resulting method was subsequently used to establish the pre-launch buckling capability of the space shuttle system.

  9. Vibration and Buckling of In-Plane Loaded Double-Walled Carbon Nano-Tubes

    OpenAIRE

    ECE, Metin AYDOĞDU and Mehmet Cem

    2007-01-01

    The paper studies vibration and buckling of in-plane loaded double-walled carbon nanotubes. Timoshenko beam theory was used to investigate the vibration and buckling behavior of double-walled and simply supported carbon nanotubes. The influence of in-plane loads on the natural frequencies was determined. The results show that while the natural frequencies decrease with increasing compressive in-plane loads an increase in frequencies is observed for tension type of in-plane loads. T...

  10. Effects of interfacial debonding and fiber breakage on static and dynamic buckling of fibers in matrices.

    OpenAIRE

    Serttunc, Metin

    1992-01-01

    Approved for public release; distribution is unlimited Analyses were performed for static and dynamic buckling of a continuous fiber embedded in a matrix and fiber breakage in order to determine the effects of interfacial debonding on the critical buckling load and the domain of instability. A beam on elastic foundation model was used for this study. The study showed that a local interfacial debonding between a fiber and a surrounding matrix resulted in an increase of the waveleng...

  11. Lithospheric buckling and intra-arc stresses: A mechanism for arc segmentation

    Science.gov (United States)

    Nelson, Kerri L.

    1989-01-01

    Comparison of segment development of a number of arcs has shown that consistent relationships between segmentation, volcanism and variable stresses exists. Researchers successfully modeled these relationships using the conceptual model of lithospheric buckling of Yamaoka et al. (1986; 1987). Lithosphere buckling (deformation) provides the needed mechanism to explain segmentation phenomenon; offsets in volcanic fronts, distribution of calderas within segments, variable segment stresses and the chemical diversity seen between segment boundary and segment interior magmas.

  12. Analisa Pemasangan Loop Ekspansi Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

    OpenAIRE

    Hariono Hariono; Handayanu Handayanu; Yoyok Setyo Hadiwidodo

    2014-01-01

    Pada pipa yang dipendam didalam tanah sering terjadi kegagalan deformasi. Kegagalan deformasi global yang menyebabkan pipa menekuk vertikal ke atas yang disebut sebagai upheaval buckling. Lengkungan awal pada pipa penyalur yang terpasang bisa terjadi akibat kombinasi dari kenaikan temperatur saat operasional dan gaya friksi tanah akan menghasilkan gaya tekan aksial efektif pada pipa. Salah satu cara yang akan dibahas pada penelitian ini jika terjadi upheaval buckling adalah pemasangan loop ek...

  13. Design optimization of blade stiffened laminated composite plates for maximum buckling load

    OpenAIRE

    Achenbach, Mark R.

    1990-01-01

    Approved for public release; distribution unlimited. The buckling load of a blade stiffened laminated composite plate having midplane symmetry is maximized for a given total weight. The thickness of the layers and the width and height of the stiffener are taken as the design variables. Buckling analysis is carried out using a finite element method. The optimization problem is solved using commercially available optimization packages. Due to the highly nonlinear nature of the optimality equ...

  14. Contribution to the problem of buckling of orthotropic plates, with special reference to plywood

    Science.gov (United States)

    Thielemann, Wilhelm

    1950-01-01

    Planar stress-strain relations and bending stress-strain relations are presented for elastic orthotropic plates and specialized to plywood. These relations are used to derive the differential equation and energy expression for the buckling of orthotropic rectangular plates whose principal stiffness directions are not parallel to the plate edges. Buckling analyses are made for the case of pure compression and pure shear of a long plate-strip.

  15. An Approximate Solution and Master Curves for Buckling of Symmetrically Laminated Composite Cylinders

    Science.gov (United States)

    Nemeth, Michael P.

    2013-01-01

    Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of

  16. A study toward the development of an electromechanical poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) buckling membrane actuator

    International Nuclear Information System (INIS)

    Buckling membrane micro-actuators based on relaxor ferroelectric polymer poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) (P(VDF–TrFE–CFE)) were fabricated and actuated near their resonant frequency. The devices produced displacements of several microns under applied biases of ⩽60 V μm−1. In this buckling actuator configuration the electrodes are located only at the membrane’s circumference and do not coat the entire membrane. Besides for preserving the optical transparency of the polymer, the critical advantage of this configuration is that the unique electro-mechanical properties of the polymer can be exploited without constriction of displacements by the metal electrodes which have a comparatively higher Young’s modulus. Electrical characterization of P(VDF–TrFE–CFE) thin films was performed through the use of micro-capacitor test structures. Dielectric properties were examined as a function of temperature (25–115 °C), frequency (6 kHz–2 MHz) and processing conditions, most notably thermoplastic nano-imprint lithography (T-NIL). (paper)

  17. Evidence theory and differential evolution based uncertainty quantification for buckling load of semi-rigid jointed frames

    Indian Academy of Sciences (India)

    Hesheng Tang; Yu Su; Jiao Wang

    2015-08-01

    The paper describes a procedure for the uncertainty quantification (UQ) using evidence theory in buckling analysis of semi-rigid jointed frame structures under mixed epistemic–aleatory uncertainty. The design uncertainties (geometrical, material, strength, and manufacturing) are often prevalent in engineering applications. Due to lack of knowledge or incomplete, inaccurate, unclear information in the modeling, simulation, measurement, and design, there are limitations in using only one framework (probability theory) to quantify uncertainty in a system because of the impreciseness of data or knowledge. Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. Unfortunately, propagation of an evidence theory representation for uncertainty through a model is more computationally demanding than propagation of a probabilistic representation for uncertainty. In order to alleviate the computational difficulties in the evidence theory based UQ analysis, a differential evolution-based computational strategy for propagation of epistemic uncertainty in a system with evidence theory is presented here. A UQ analysis for the buckling load of steel-plane frames with semi-rigid connections is given herein to demonstrate accuracy and efficiency of the proposed method.

  18. Semi-analytical approach for the study of linear static behaviour and buckling of shells with single constant curvature

    Science.gov (United States)

    de Leo, Andrea Matteo; Contento, Alessandro; Di Egidio, Angelo

    2015-09-01

    A model of linear, internally constrained shell with single, constant curvature is used to describe the behaviour of existing structures, such as barrel shells. A linear, elastic, isotropic material is considered. Observing that in the shell two families of mono-dimensional interacting beams can be recognized: straight longitudinal beams and transversal arches, a non-conventional semi-analytical approximate solution, which uses the method of separation of variables, is proposed. By using an integral procedure, reduced differential, ordinary equations, capable of describing the behaviour of the shell, are obtained. Both linear static behaviour and longitudinal buckling of the shell are investigated. The approximate solution proposed leads to results that match those of a finite element model and permits to give a description of shells similar to that of beams on elastic soil. With regard to the linear static behaviour of the shell, a "short" and a "long" characterization is proposed and original graphical abaci are obtained with the purpose of facilitating the classification. An extensive study is then performed in order to analyse the buckling of the shells.

  19. Electrothermal modeling, fabrication and analysis of low-power consumption thermal actuator with buckling arm

    KAUST Repository

    So, Hongyun

    2013-10-31

    © 2013, Springer-Verlag Berlin Heidelberg. This paper reports on a novel thermal actuator with sub-micron metallic structures and a buckling arm to operate with low voltages and to generate very large deflections, respectively. A lumped electrothermal model and analysis were also developed to validate the mechanical design and easily predict the temperature distribution along arms of the sub-micron actuator. The actuator was fabricated via the combination of electron beam lithography to form actuator arms with a minimum feature size of 200 nm and lift-off process to deposit a high aspect ratio nickel structure. Reproducible displacements of up to 1.9 μm at the tip were observed up to 250 mV under confocal microscope. The experimentally measured deflection values and theoretically calculated temperature distribution by the developed model were compared with finite element analysis results and they were in good agreement. This study shows a promising approach to develop more sophisticated nano actuators required larger deflections for manipulation of sub-micron scale objects with low-power consumption.

  20. Effect of Boundary Conditions on the Axial Compression Buckling of Homogeneous Orthotropic Composite Cylinders in the Long Column Range

    Science.gov (United States)

    Mikulas, Martin M., Jr.; Nemeth, Michael P.; Oremont, Leonard; Jegley, Dawn C.

    2011-01-01

    Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, Fluegge and Donnell's equations. Results from these methods are presented using simple parameters useful for fundamental design work. Buckling loads for two types of simply supported boundary conditions are calculated using finite element methods for comparison to select cases of the closed form solution. Results indicate that relying on Donnell theory can result in an over-prediction of buckling loads by as much as 40% in isotropic materials.

  1. Volume-controlled buckling of thin elastic shells: Application to crusts formed on evaporating partially-wetted droplets

    OpenAIRE

    Head, D. A.

    2006-01-01

    Motivated by the buckling of glassy crusts formed on evaporating droplets of polymer and colloid solutions, we numerically model the deformation and buckling of spherical elastic caps controlled by varying the volume between the shell and the substrate. This volume constraint mimics the incompressibility of the unevaporated solvent. Discontinuous buckling is found to occur for sufficiently thin and/or large contact angle shells, and robustly takes the form of a single circular region near the...

  2. Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.

    Science.gov (United States)

    Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system. PMID:24526915

  3. Kelvin-Helmholtz and Buckling Instabilities for a Viscoelastic Liquid

    CERN Document Server

    Keshavarz, Bavand

    2012-01-01

    In this fluid dynamics video prepared for the APS-DFD Gallery of Fluid Motion we study the Kelvin-Helmholtz instability for both Newtonian and viscoelastic jets. The nonlinear dynamics of the jet motion are slowed down by orders of magnitude using a synchronized strobe effect coupled with precise timing control of perturbation frequencies. Our results show that at high wave-numbers the imposed perturbations initially grow linearly with time and the jet axis remains straight while the Kelvin-Helmholtz wave amplitude grows and rolls up into bags that encapsulate the central jet within themselves. At low wave-numbers (long wave-lengths) the jet axis buckles under the action of viscous stresses and a coupling between the Kelvin-Helmholtz instability and bending of the jet leads to new concertina or chevron modes which grow with time as they move downstream. Addition of viscoelasticity to the jet leads to the pronounced inhibition of the Kelvin-Helmholtz instability as the jet perturbation amplitude grows and larg...

  4. Buckling of Flat Thin Plates under Combined Loading

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2015-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.

  5. Predictions of thermal buckling strengths of hypersonic aircraft sandwich panels using minimum potential energy and finite element methods

    Science.gov (United States)

    Ko, William L.

    1995-01-01

    Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue convergence rate is discussed.

  6. Design, Manufacturing and Test of a High Lift Secondary Flight Control Surface with Shape Memory Alloy Post-Buckled Precompressed Actuators

    Directory of Open Access Journals (Sweden)

    Thomas Sinn

    2015-07-01

    Full Text Available The use of morphing components on aerospace structures can greatly increase the versatility of an aircraft. This paper presents the design, manufacturing and testing of a new kind of adaptive airfoil with actuation through Shape Memory Alloys (SMA. The developed adaptive flap system makes use of a novel actuator that employs SMA wires in an antagonistic arrangement with a Post-Buckled Precompressed (PBP mechanism. SMA actuators are usually used in an antagonistic arrangement or are arranged to move structural components with linearly varying resistance levels similar to springs. Unfortunately, most of this strain energy is spent doing work on the passive structure rather than performing the task at hand, like moving a flight control surface or resisting air loads. A solution is the use of Post-Buckled Precompressed (PBP actuators that are arranged so that the active elements do not waste energy fighting passive structural stiffnesses. One major problem with PBP actuators is that the low tensile strength of the piezoelectric elements can often result in tensile failure of the actuator on the convex face. A solution to this problem is the use of SMA as actuator material due to their tolerance of tensile stresses. The power consumption to hold deflections is reduced by approximately 20% with the Post-Buckled Precompressed mechanism. Conventional SMAs are essentially non-starters for many classes of aircraft due to the requirement of holding the flight control surfaces in a given position for extremely long times to trim the vehicle. For the reason that PBP actuators balance out air and structural loads, the steady-state load on the SMAs is essentially negligible, when properly designed. Simulations and experiments showed that the SMAPBP actuator shows tip rotations on the order of 45°, which is nearly triple the levels achieved by piezoelectric PBP actuators. The developed SMAPBP actuator was integrated in a NACA0012 airfoil with a flexible skin

  7. SEISMIC RESPONSE AND PERFORMANCE OF BUCKLING-RESTRAINED BRACED FRAMES%偏心BRBFs的抗震性能分析

    Institute of Scientific and Technical Information of China (English)

    王菲; 张勇

    2011-01-01

    In order to learn the seismic performance of eccentric buckling-restrained braced frames , two kinds of structures portal eccentric buckling-restrained braced frames and herringbone eccentric buckling-restrained brace frames, were designed with PKPM and numerically simulated based on finite element software ANSYS. The models' response sto- ry drifts, story shear forces under basic seismic intensity were measured. The deformation of the two structures present a shear-flexural type,and the low model has a great influention on the displacement of structure. Story drifts, story shear forces can both meet the seismic-resistent deflection demand, which indicates that the two kinds of structures both have good seismic performance. The components can be equivalent to the structure damping to be analyzed ,when they dissipate the energy through plastic deformation. The solution of calculating the equivalent damping ratio was presented. The seismic performance of the two strutures were evaluated furtherly through the investgation of toplevel displacement and story shear forces under 0.4g peak acceleration seismic ground motion , the result showed that the herringbone eccentric buckling-restrained brace frames performed better in earthquake-resistance.%为了解偏心屈曲约束支撑钢框架(BRBFs)的抗震性能,运用pkpm设计软件设计门架式偏心BRBFs和人字形偏心BRBFs两种结构,基于大型有限元软件ANSYS对两种结构进行有限元数值模拟,分析了两种结构在基本烈度作用下的各层位移反应及层间位移角,结果表明,两种结构变形受低阶振型影响较大,沿高度呈倒三角地形分布,结构变形为弯剪形,各层位移及层间位移角均满足规范要求,体现出良好的抗震性能。构件产生塑性变形而耗能时,可以将结构构件等效为结构阻尼进行分析,介绍了等效阻尼比的求解方法。通过对罕遇地震作用下的两种结

  8. Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions

    International Nuclear Information System (INIS)

    Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis

  9. Effects of Impact Velocity and Slenderness Ratio on Dynamic Buckling Load for Long Columns

    Science.gov (United States)

    Mimura, K.; Umeda, T.; Yu, M.; Uchida, Y.; Yaka, H.

    In this research, the buckling behavior of long columns under dynamic load was investigated both experimentally and numerically, and an effective buckling criterion for dynamic load was derived from the results in terms of the impact velocity and the slenderness ratio. In the experiments, a free fall drop-weight type impact testing machine was employed. The dynamic buckling loads were measured by the load sensing block, and the displacements were measured by a high speed magnetic-resistance device. In the numerical analyses, dynamic FEM code 'MSC-Dytran' was used to simulate the typical experimental results, and the validity and the accuracy of the simulations were checked. The dynamic buckling loads at various impact velocities were then systematically investigated. From both experimental and simulated results, it was found that the dynamic to static buckling load ratios can be successfully described as a square function of the slenderness ratio of the columns, while they can be also described by a power law of the applied impact velocity.

  10. Buckling of dished heads under internal pressure. Experimental tests performed from 1981 to 1983 at Saclay

    International Nuclear Information System (INIS)

    Dished heads can buckle on submitted to internal pressure. Computation of buckling pressure can be made by plastic bifurcation method. However validity of plastic bifurcation method is not fully demonstrated by theoretical consideration. Therefore it is necessary to justify this method by experimental test. In order to increase the available experimental results, experiments have been performed at Saclay. Experiments on 25 heads are reported here (16 torispherical heads and 9 ellipsoidal heads). These heads are made out of mild steel plates by cold-spinned. Comprehensive geometric examination of each head is made before testing, in particular thickness variation if fully examined by ultrasonic device. Internal pressure is obtained by volume control loading in order to avoir very quick buckling. Deflection is recorded as a function of pressure and deformations in the knuckle aera are recorded as a function of polar angle to detect buckle information. All these records are given in the report. Definition of buckling pressure is carefully defined and his value is given on each head. In addition material characteristics are obtained by tensile tests on sample cut out of tested heads

  11. Do foliation refraction patterns around buckle folds represent finite strain?

    Science.gov (United States)

    Frehner, M.; Exner, U.

    2012-04-01

    Buckle folds in the field commonly feature a characteristic syn-deformational foliation, which is sub-parallel to the fold axial plane; hence it is called axial plane foliation. As the foliation is not perfectly parallel to the axial plane, it may exhibit either a divergent or convergent fan around the fold. Convergent fans most commonly occur in the stronger rocks (the folded layer) while divergent fans rather occur in the mechanically weaker rocks (the matrix). The foliation orientation is usually thought to reflect the long axes of the finite strain ellipses, a hypothesis that we investigate in our study. To study the strain distribution around folds, we use the finite-element method to simulate two-dimensional single-layer viscous buckling. The numerical simulations allow to calculate the strain evolution during the folding process and to visualize its distribution and orientation around the fold. We use different measures of strain: (1) the finite strain (recording the strain history from the beginning of the simulation until the end), (2) the infinitesimal strain (capturing only the very last moment of the simulation), (3) the incremental strain (recording the strain history from a certain shortening value during the simulation until the end), and (4) initially layer-orthogonal passive marker lines. The shortening value, from which the incremental strain is calculated, can be anything between the beginning and the end of the simulation. The first three strain measures are tensor fields that are used to calculate and visualize the orientation of the long axis of the strain ellipses around the fold. We find that all strain measures result in a divergent fan in the mechanically weak matrix at the outer arc of the fold and that this divergent fan has almost the same geometry for all strain measures. Also, for the case of the incremental strain, the divergent fan does hardly depend on the moment from which the incremental strain is calculated. This observation

  12. Non-drainage scleral buckling with solid silicone elements

    Directory of Open Access Journals (Sweden)

    Pukhraj Rishi

    2014-01-01

    Full Text Available Background: With the increasing number of cataract surgeries, incidence of posterior segment complications including rhegmatogenous retinal detachment (RRD is likely to rise. Scleral buckling (SB surgery is an effective and less expensive option. The primary advantage of non-drainage procedure is avoidance of possible complications associated with trans-choroidal drainage. The aim of present study is to describe the clinical profile of subjects undergoing non-drainage SB surgery with solid silicone elements for RRD and analyze their treatment outcomes. Materials and Methods: This was a retrospective, non-randomized, interventional study at a tertiary care center. Three hundred and six eyes of 298 patients undergoing non-drainage SB surgery with solid silicone elements from year 2000 to 2006 were included. Inclusion criteria were primary RRD, peripheral depressible retinal break, media clarity affording peripheral retinal view and proliferative vitreo-retinopathy (PVR up to grade C2. Uni- and multivariate analyses was done to analyze factors affecting anatomical and visual outcomes. Statistical analysis was performed using SPSS Version 10. Results: Mean follow-up was 303 ± 393.33 days. Primary anatomical success was obtained in 279 (91.2% eyes; primary functional success in 286 (93.5% eyes. PVR (grade B or C, intraocular pressure <10 mm Hg and the inability to find a retinal break were significantly associated with final anatomical failure. Baseline vision ≤3/60 was significantly associated with poor visual recovery. Conclusions: SB surgery is reasonably safe and highly efficacious. Solid silicone elements are effective in non-drainage SB surgery. However, case selection is important.

  13. Study on dynamic buckling behavior of a cylindrical liquid storage tanks under seismic excitation. 1st report, effects of liquid pressure on elephant foot bulge

    International Nuclear Information System (INIS)

    When a thin walled cylindrical liquid storage tank is exposed to a very large seismic base excitation, buckling phenomena may be caused such as bending buckling where diamond buckling pattern or elephant foot bulge pattern will be found at the bottom portion, and shear buckling at the middle portion of the tank. In this study, dynamic buckling tests were performed using scale models of thin cylindrical liquid storage tanks for the nuclear power plants. The input seismic acceleration was increased until the elephant foot bulge occurred and the vibrational behavior before and after buckling was investigated. And the effects of static and dynamic liquid pressure on the bending buckling patterns and the buckling critical force was investigated by fundamental tests using small tank models. (author)

  14. Research on Buckling Analysis of Thin-walled Grid-stiffened Shells Using Dynamic FEM%动力学方法求解薄壁网格加筋壳稳定性技术研究

    Institute of Scientific and Technical Information of China (English)

    徐卫秀; 张希; 王立朋; 王江

    2014-01-01

    Non-linear buckling such as local skin buckling and plastic buckling often appears on thin-walled grid-stiffened shells. Non-linear dynamic analysis considered geometric nonlinear, material nonlinear and buckling temporal effect can be used to obtain the critical loads and failure modes.. Taking grid-stiffened shells under axial loads effects as the object, implicit and explicit non-linear dynamic FE methods are proposed to solve grid-stiffened shells buckling modeling and control requirement using ABAQUS dynamic mode. The result demonstrates that effective control and implicit/explicit dynamic methods can be used to obtain thin-walled grid-stiffened shells critical buckling loads and simulate structure failure mode. The method applies to other linear/non-linear buckling.%工程上薄壁网格加筋壳常发生蒙皮局部失稳和塑性失稳等非线性稳定性问题,要获得结构临界失稳载荷和失效模式需要考虑几何非线性、材料非线性及结构失稳瞬时的振动效应,进行非线性动力学分析。以轴压作用下正交网格加筋圆筒壳为研究对象,基于Abaqus软件,提出了隐式/显式两种非线性动力学有限元方法求解网格加筋壳稳定性问题的建模及求解收敛控制要求。结果表明,通过有效控制,隐式/显式动力学方法能准确求解薄壁网格加筋壳临界失稳载荷,模拟结构失效模式,且适用线性/非线性各种失稳情况。

  15. INVESTIGATION OF THE DYNAMIC BUCKLING OF DOUBLEWALLED CARBON NANOTUBE SUBJECTED TO AXIAL PERIODIC DISTURBING FORCES

    Institute of Scientific and Technical Information of China (English)

    SHA Feng-huan; ZHAO Long-mao; YANG Gui-tong

    2005-01-01

    The dynamic response of a double-walled carbon nanotube embedded in elastic medium subjected to periodic disturbing forces is investigated. Investigation of the dynamic buckling of a double-walled carbon nanotube develops continuum model. The effect of the van der Waals forces between two tubes and the surrounding elastic medium for axial dynamic buckling are considered. The buckling model subjected to periodic disturbing forces and the critical axial strain and the critical frequencies are given. It is found that the critical axial strain of the embedded multi-walled carbon nanotube due to the intertube van der Waals forces is lower than that of an embedded single-walled carbon nanotube. The van der Waals forces and the surrounding elastic medium affect region of dynamic instability. The van der Waals forces increase the critical frequencies of a double-walled carbon nanotube. The effect of the surrounding elastic medium for the critical frequencies is small.

  16. Buckling of Sandwich Composites; Effects of Core-Skin Debonding and Core Density

    Science.gov (United States)

    Mahfuz, Hassan; Islam, Syful; Saha, Mrinal; Carlsson, Leif; Jeelani, Shaik

    2005-03-01

    Foam-core sandwich composites have been fabricated using innovative co-injection resin infusion technique and tested under in-plane compression. The sandwich construction consisted of Klegcell foam as core materials and S2-glass/vinyl ester composites as face sheets. Tests were conducted with various foam densities and also with implanted delamination between the core and the face sheet. The intent was to investigate the effect of core density, and the effect of core-skin debonds on the overall buckling behavior of the sandwich. Analytical and finite element calculations were also performed to augment the experimental observations. It has been observed that core density has direct influence on the global buckling of the sandwich panel, while embedded delamination seem to have minimal effect on both global as well as local buckling. Detailed description of the experimental work, finite element modeling and analytical calculations are presented in this paper.

  17. A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model

    DEFF Research Database (Denmark)

    Sönmez, Ümit; Tutum, Cem Celal

    2008-01-01

    In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams, and a...... slider. The kinematic analysis of this new mechanism is studied, using nonlinear Elastica buckling beam theory, the PRBM of a large deflecting cantilever beam, the vector loop closure equations, and numerically solving nonlinear algebraic equations. A design method of the bistable mechanism in...... microdimensions is investigated by changing the relative stiffness of the flexible beams. The actuation force versus displacement characteristics of several cases is explored and the full simulation results of one of the cases are presented. This paper demonstrates the united application of the PRBM and the...

  18. Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics

    International Nuclear Information System (INIS)

    Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >104 and a field-effect mobility of 5 cm2 V−1 s−1 under elongation and demonstrate invariant performance over 1000 stretching cycles

  19. DYNAMIC BUCKLING OF ELASTIC-PLASTIC COLUMN IMPACTED BY RIGID BODY

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The dynamic buckling of an elastic-plastic column subjected to an axial impact by a rigid body was discussed by using the energy law. The traveling process of elastic-plastic waves under impact action was analyzed by characteristics method. The equation of lateral disturbance used to analyze the problem was developed by taking into account the effect of elastic-plastic stress wave. The power series solution of this problem has been the power series approach. The buckling criterion of this problem was proposed by analyzing the characteristics of the solution. The relationship among critical velocity and impact mass, critical buckling length, hardening modulus was given by using theoretical analysis and numerical computation.

  20. The comparison of retinal blood flow after scleral buckling surgery with or without encircling procedure

    Directory of Open Access Journals (Sweden)

    Alireza Dehghani

    2013-01-01

    Full Text Available Aim: We aimed to compare peak systolic velocity of central retinal artery (PSV.CRA and peak systolic velocity of ophthalmic artery (PSV.OA between patients with retinal detachment who were treated with segmental scleral bucking and scleral buckling with encircling procedure. Materials and Methods: This study was a descriptive-analytic cross sectional study that was performed in Isfahan university referral centers since April 2010 to April 2011. Of the patients who have undergone scleral buckling surgery, 20 patients belonging to two groups were randomly selected to enroll in the study. Study groups were, patients who have undergone segmental scleral buckling and the other group were patients who have undergone scleral buckling with encircling procedure. Patients were invited to perform color Doppler imaging. PSV-RA and PSV-OA were measured and documented in both operated and unoperated eyes. All of the Doppler′s performed at least three months after ophthalmic surgery. Results: We found significant decrease in PSV.CRA among patients in both groups. In patients who had undergone scleral buckling with encircling procedure PSV.CRA was 11.03 ± 3.04 (cm/sec and 14.83 ± 4.80 in operated and unoperated eye respectively (P = 0.03. In other hand, who treated with segmental scleral buckling these parameters were 11.02 ± 2.48 and 14.45 ± 4.69 (P = 0.03. PSV.OA did not change significantly in each method. The difference between mean PSV.CRA and PSV.OA in operated eye between two study groups was not significant. Conclusion: PSV.CRA reduced significantly in both surgery methods and PSV.OA changes was not significant. However, the mean PSV.CRA and PSV.OA changes did not show statistically significant difference between surgery methods.

  1. A fiber optic buckle transducer for measurement of in vitro tendon strain

    Science.gov (United States)

    Roriz, Paulo; Ramos, António; Marques, Manuel B.; Simões, José A.; Frazão, Orlando

    2015-09-01

    The purpose of the present study is to present a prototype of a fiber optic based buckle transducer suitable for measuring strain caused by stretching of a tendon. The device has an E-shape and its central arm is instrumented with a fiber Bragg grating (FBG) sensor. The tendon adjusts to the E-form in a fashion that when it is stretched the central arm bends causing a shift of the Bragg's wavelength (λB) that is proportional to the amount of strain. This prototype is presented as an alternative to conventional strain gauge (SG) buckle transducers.

  2. Experimental and modelling buckling of wood-based columns under repeated loading

    Directory of Open Access Journals (Sweden)

    Nafa Z.

    2010-06-01

    Full Text Available Collapse of timber constructions can appear under the effect of load that exceeds the resistance of a carrying element or under the effect of a geometrical instability like buckling. In addition, loading can be constant or varying for example loads due to wind or earthquakes. The aim of this paper is to study the behaviour and the lifetime of columns in wood or based-wood material such as glulam (GL or laminated veneer lumber (LVL under repeated loading leading to buckling.

  3. Optimization of Blade Stiffened Composite Panel under Buckling and Strength Constraints

    Science.gov (United States)

    Todoroki, Akira; Sekishiro, Masato

    This paper deals with multiple constraints for dimension and stacking-sequence optimization of a blade-stiffened composite panel. In a previous study, a multiple objective genetic algorithm using a Kriging response surface with a buckling load constraint was the target. The present study focuses on dimension and stacking-sequence optimization with both a buckling load constraint and a fracture constraint. Multiple constraints complicate the process of selecting sampling analyses to improve the Kriging response surface. The proposed method resolves this problem using the most-critical-constraint approach. The new approach is applied to a blade stiffened composite panel and the approach is shown to be efficient.

  4. Improvement of risk estimate on wind turbine tower buckled by hurricane

    CERN Document Server

    Li, Jingwei

    2013-01-01

    Wind is one of the important reasonable resources. However, wind turbine towers are sure to be threatened by hurricanes. In this paper, method to estimate the number of wind turbine towers that would be buckled by hurricanes is discussed. Monte Carlo simulations show that our method is much better than the previous one. Since in our method, the probability density function of the buckling probability of a single turbine tower in a single hurricane is obtained accurately but not from one approximated expression. The result in this paper may be useful to the design and maintenance of wind farms.

  5. Harvesting energy from a water flow through ionic polymer metal composites' buckling

    Science.gov (United States)

    Cellini, Filippo; Cha, Youngsu; Porfiri, Maurizio

    2014-03-01

    This study seeks to investigate the feasibility of energy harvesting from mechanical buckling of ionic polymer metal composites (IPMCs) induced by a steady fluid flow. In particular, we propose a harvesting device composed of a paddle wheel, a slider-crank mechanism, and two IPMCs clamped at both their ends. We test the system in a water tunnel to estimate the effects of the flow speed and the shunting resistance on power harvesting. The classical post-buckling theory of inextensible rods is utilized, in conjunction with a black-box model for IPMC sensing, to interpret experimental results.

  6. Dislocation dynamics and the viscoplastic buckling of dendritic web type silicon ribbon

    Science.gov (United States)

    Tsai, C. T.; Dillon, O. W., Jr.; De Angelis, R. J.

    1987-01-01

    The effect of dendrites (reinforced edges) on the residual stresses, dislocation densities and buckling behavior during growth of web type silicon ribbon is studied. A viscoplastic material response function (Haasen-Sumino model) is used to calculate the stresses and the disloction density at each point in the silicon ribbon. In addition, the role of dendrites on the viscoplastic buckling behavior of the ribbon is investigated. The critical thicknesses, the corresponding deflection shapes and lateral deflection speeds are calculated. These results are then compared with similar data obtained for flat plates.

  7. A weighted extended B-spline solver for bending and buckling of stiffened plates

    CERN Document Server

    Verschaeve, Joris C G

    2015-01-01

    The weighted extended B-spline method [Hoellig (2003)] is applied to bending and buckling problems of plates with different shapes and stiffener arrangements. The discrete equations are obtained from the energy contributions of the different components constituting the system by means of the Rayleigh-Ritz approach. The pre-buckling or plane stress is computed by means of Airy's stress function. A boundary data extension algorithm for the weighted extended B-spline method is derived in order to solve for inhomogeneous Dirichlet boundary conditions. A series of benchmark tests is performed touching various aspects influencing the accuracy of the method.

  8. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Marián

    2015-07-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  9. Effect of bow-type initial imperfection on the buckling load and mass of graphite-epoxy blade-stiffened panels

    Science.gov (United States)

    Stroud, W. J.; Anderson, M. S.; Hennessy, K. W.

    1977-01-01

    A structural synthesis computer code which accounts for first order effects of an initial bow and which can be used for sizing stiffened composite panels having an arbitrary cross section is used to study graphite blade-stiffened panels. The effect of a small initial bow on both the load carrying ability of panels and on the mass of panels designed to carry a specified load is examined. Large reductions in the buckling load caused by a small initial bow emphasize the need for considering a bow when a panel is designed.

  10. Buckling and reaction rate experiments in plutonium/uranium metal fuelled, graphite moderated lattices at temperatures up to 400 deg. C. Part I: Experimental techniques and results

    Energy Technology Data Exchange (ETDEWEB)

    Carter, D.H.; Clarke, W.G.; Gibson, M.; Hobday, R.; Hunt, C.; Marshall, J.; Puckett, B.J.; Symons, C.R.; Wass, T. [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-07-15

    This report presents experimental measurements of bucklings, flux fine structure and fission rate distributions in graphite moderated lattices fuelled with plutonium/uranium metal at temperatures up to 400 deg. C in the sub-critical assemblies SCORPIO I and SCORPIO II. The experimental techniques employed are described in some detail. The accuracy of the experimental measurements appears to be adequate for testing methods of calculation being developed for the calculation of reactivity and temperature coefficient of reactivity for power reactors containing plutonium and uranium. (author) 26 refs, 17 tabs, 17 figs

  11. Post-buckled precompressed (PBP) elements: a new class of flight control actuators enhancing high-speed autonomous VTOL MAVs

    Science.gov (United States)

    Barrett, Ronald; McMurtry, Ross; Vos, Roelof; Tiso, Paolo; Breuker, Roeland D.

    2005-05-01

    This paper describes a new class of flight control actuators using Post-Buckled Precompressed (PBP) piezoelectric elements. These actuators are designed to produce significantly higher deflection and force levels than conventional piezoelectric actuator elements. Classical laminate plate theory (CLPT) models are shown to work very well in capturing the behavior of the free, unloaded elements. A new high transverse deflection model which employs nonlinear structural relations is shown to successfully predict the performance of the PBP actuators as they are exposed to higher and higher levels of axial force, which induces post buckling deflections. A proof-of-concept empennage assembly and actuator were fabricated using the principles of PBP actuation. A single grid-fin flight control effector was driven by a 3.5" (88.9mm) long piezoceramic bimorph PBP actuator. By using the PBP configuration, deflections were controllably magnified 4.5 times with excellent correlation between theory and experiment. Quasi-static bench testing showed deflection levels in excess of +/-6° at rates exceeding 15 Hz. The new solid state PBP actuator was shown to reduce the part count with respect to conventional servoactuators by an order of magnitude. Power consumption dropped from 24W to 100mW, weight was cut from 108g to 14g, slop went from 1.6° to 0.02° and current draw went from 5A to 1.4mA. The result was that the XQ-138 subscale UAV family experienced nearly a 4% reduction in operating empty weight via the switch from conventional to PBP actuators while in every other measure, gross performance was significantly enhanced.

  12. Thermal Buckling and Free Vibration Analysis of Heated Functionally Graded Material Beams

    Directory of Open Access Journals (Sweden)

    Khalane Sanjay Anandrao

    2013-05-01

    Full Text Available The effect of temperature dependency of material properties on thermal buckling and free vibration of functionally graded material (FGM beams is studied. The FGM beam is assumed to be at a uniform through thickness temperature, above the ambient temperature. Finite element system of equations based on the first order shear deformation theory is developed. FGM beam with axially immovable ends having the classical boundary conditions is analysed. An exhaustive set of numerical results, in terms of buckling temperatures and frequencies, is presented, considering the temperature independent and temperature dependent material properties. The buckling temperature and fundamental frequency obtained using the temperature independent material properties is higher than that obtained by using the temperature dependent material properties, for all the material distributions, geometrical parameters in terms of length to thickness ratios and the boundary conditions considered. It is also observed that the frequencies of the FGM beam will reduce with the increase in temperature. This observation is applicable for the higher modes of vibration also. The necessity of considering the temperature dependency of material properties in determining thermal buckling and vibration characteristics of FGM beams is clearly demonstrated.Defence Science Journal, 2013, 63(3, pp.315-322, DOI:http://dx.doi.org/10.14429/dsj.63.2370

  13. Verification of The Thermal Buckling Load in Plates Made of Functional Graded Material

    Directory of Open Access Journals (Sweden)

    Amran Ayob

    2010-12-01

    Full Text Available In this study, thermal buckling of thin plate made of Functionally Graded Materials (FGM with linearly varying thickness is considered. The material properties are also graded in the thickness direction according to a simple power law distribution in which the properties are stated in terms of the volume fractions of the constituents. All edges of the plate are simply supported. The equilibrium and stability equations of a FGM plate under thermal loads can be derived based on higher order plate theories via variation formulation, and are then used to determine the governing deferential equation of the plate and the pre-buckling forces. The buckling analysis of a FGM plate is conducted by assuming a uniform temperature rise, temperature gradient through the thickness, and linear temperature variation in the thickness. Closed–form solutions are obtained the buckling load defined in a weighted residual approach. In a special case the obtained results are compared with the results of FGM plates with uniform thickness. The influences of the plate thickness variation and the edge ratio on the critical loads are investigated. Different gradient exponent k, different geometries and loading conditions were studied.

  14. On the durable critic load in creep buckling of viscoelastic laminated plates and circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the first order shear deformation theory and classic buckling theory, the paper investigates the creep buckling behavior of viscoelastic laminated plates and laminated circular cylindrical shells. The analysis and elaboration of both instantaneous elastic critic load and durable critic load are emphasized. The buckling load in phase domain is obtained from governing equations by applying Laplace transform, and the instantaneous elastic critic load and durable critic load are determined according to the extreme value theorem for inverse Laplace transform. It is shown that viscoelastic approach and quasi-elastic approach yield identical solutions for these two types of critic load respectively. A transverse disturbance model is developed to give the same mechanics significance of durable critic load as that of elastic critic load. Two types of critic loads of boron/epoxy composite laminated plates and circular cylindrical shells are discussed in detail individually, and the influencing factors to induce creep buckling are revealed by examining the viscoelasticity incorporated in transverse shear deformation and in-plane flexibility.

  15. Active buckling control of beams using piezoelectric actuators and strain gauge sensors

    International Nuclear Information System (INIS)

    In this paper, a finite element model incorporating active control techniques has been developed to stabilize the first two buckling modes of both a simply supported and a cantilevered beam. The goal is to increase the corresponding beam buckling loads by using piezoelectric actuators along with optimal feedback control. The uniform beams are bonded with two pairs of segmented piezoelectric actuators at the top and bottom. Resistive strain gauges are attached to the centres of the actuators as sensors. Measurements are taken using these, to estimate the system states. The beams are simply supported or cantilevered and subjected to a slowly increasing axial compressive load. Finite element formulations based on the classical Euler–Bernoulli beam theory and linear piezoelectric constitutive equations for the actuators are presented. The associated reduced-order modal equations and the state-space equations are derived for the design of a standard linear quadratic regulator (LQR). The finite element analysis and the active control simulation results are consistent with both theoretical analysis results and experimental data. The designed full state feedback LQR controller is shown to be successful in stabilizing the first two buckling modes of the beams. Also the control simulation shows that the present optimally located segmented actuator pairs along the beam are more effective for buckling control

  16. An alternative technique in (1) determining the placement of scleral buckles in (2) retinal detachment surgery.

    Science.gov (United States)

    Akkin, C; Erakgun, T

    2001-01-01

    We have developed a simple technique to verify the final and exact position of the explant on the retinal break before placing the radial or circumferential scleral buckles during the retinal detachment surgery. For this purpose, we used the back end of a dismantled blade holder which is essentially the same size as a sponge. PMID:12678393

  17. Scleral buckling procedure with chandelier illumination for pediatric rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Yokoyama T

    2015-01-01

    Full Text Available Toshiyuki Yokoyama, Koki Kanbayashi, Tamaki YamaguchiDepartment of Ophthalmology, Juntendo University Nerima Hospital, Tokyo, JapanPurpose: To assess the treatment of pediatric patients with rhegmatogenous retinal detachment (RRD by scleral buckling with chandelier illumination.Methods: Three eyes were treated in three patients, healthy boys aged 7 years, 12 years, and 11 years, with RRD, macular involvement, and small retinal holes, of which two were preoperatively undetectable. Conventional scleral buckling with cryoretinopexy was performed under the contact lens for vitreous surgery or noncontact wide-angle viewing system using 27-gauge twin chandelier illumination.Results: The only known predisposing factor for retinal detachment was myopia stronger than 3 D with lattice retinal degeneration in two of the three patients. Retinal reattachment was achieved in all cases without intra- or postoperative complications. However, visual recovery was limited in one of the three patients.Conclusion: Scleral buckling with chandelier illumination is effective for pediatric RRD, especially if the retinal hole is difficult to detect preoperatively. However, visual recovery was sometimes limited because of macular involvement due to late diagnosis, which is one of the characteristic features of pediatric RRD.Keywords: pediatric rhegmatogenous retinal detachment, chandelier illumination, scleral buckling

  18. Rigorous buckling analysis of size-dependent functionally graded cylindrical nanoshells

    Science.gov (United States)

    Sun, Jiabin; Lim, C. W.; Zhou, Zhenhuan; Xu, Xinsheng; Sun, Wei

    2016-06-01

    This paper presents new analytical solutions for buckling of carbon nanotubes (CNTs) and functionally graded (FG) cylindrical nanoshells subjected to compressive and thermal loads. The model applies Eringen's nonlocal differential constitutive relation to describe the size-dependence of nanoshells. Based on Reddy's higher-order shear deformation theory, governing equations are established and solved by separating the variables. The analysis first re-examines the classical buckling of single-walled CNTs. Accurate solutions are established, and it is found that the buckling stress decreases drastically when the nonlocal parameter reaches a certain value. For CNTs with constant wall-thickness, the buckling stress eventually decreases with enhanced size effect. By comparing with CNTs molecular dynamic simulations, the obtained nonlocal parameters are much smaller than those proposed previously. Subsequently, FG cylindrical nanoshells are analyzed, and it is concluded that similar behavior that has been observed for CNTs is also valid for FG cylindrical nanoshells. The paper further discusses in detail the effects of different geometric parameters, material distribution, and temperature field.

  19. Internal pressure buckling of very thin torispherical shells. A comparison of experiment and theory

    International Nuclear Information System (INIS)

    The bottom head of the primary vessel of some LMFBR's is a thin torispherical shell. The internal pressure loading on the head consists of the weight of the sodium contents plus any superimposed gas pressure. Depending on the design of the bottom head, it can fail by (i) elastic or elastic-plastic circumferential buckling or (ii) the development of yield 'hinges' and gross deformation of the shell. At the present time, there is no generally-accepted theory of asymmetric elastic-plastic shell buckling due to internal pressure. However, the experimental-theoretical correlation for external pressure buckling looks promising-as evidenced by the recent paper by Bushnell and Galletly. In this paper a review is given of previous work on internal pressure buckling of torispheres-some of it of very recent origin. The author's experiments on a limited number of machined, stress-relieved, cylinder-torisphere combinations which were subjected to increasing internal pressure are then described. (Auth.)

  20. Dynamic and buckling analysis of a thin elastic-plastic square plate in a uniform temperature field

    Institute of Scientific and Technical Information of China (English)

    Shifu Xiao; Bin Chen

    2005-01-01

    The nonlinear models of the elastic and elasticlinear strain-hardening square plates with four immovably simply-supported edges are established by employing Hamilton's Variational Principle in a uniform temperature field. The unilateral equilibrium equations satisfied by the plastically buckled equilibria are also established. Dynamics and stability of the elastic and plastic plates are investigated analytically and the buckled equilibria are investigated by employing Galerkin-Ritz's method. The vibration frequencies, the first critical temperature differences of instability or buckling, the elastically buckled equilibria and the extremes depending on the final loading temperature difference of the plastically buckled equillibria of the plate are obtained. The results indicate that the critical buckling value of the plastic plate is lower than its critical instability value and the critical value of its buckled equilibria turning back to the trivial equilibrium are higher than the value. However, three critical values of the elastic plate are equal. The unidirectional snap-through may occur both at the stress-strain boundary of elasticity and plasticity and at the initial stage of unloading of the plastic plate.

  1. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    PENG Fan; FU YiMing; CHEN YaoJun

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated. The viscoelastic behavior of laminas is modeled by Schapery's integral constitutive equation with growing ma-trix cracks. The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from meso-mechanics approach, and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress. The gov-erning equations for pre-buckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Karman-Donnell geometrically nonlinear relationship. Corresponding solution strategy is constructed by inte-grating finite-difference technique, trigonometric series expansion method and Taylor's numerical recursive scheme for convolution integration. The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parame-ters and parameters of damage evolution as well as boundary conditions. The nu-merical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads, and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells, also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  2. Buckling-driven delamination growth in composite laminates: Guidelines for assessing the threat posed by interlaminar matrix delamination

    DEFF Research Database (Denmark)

    Bhushan, Karihaloo; Stang, Henrik

    2008-01-01

    This paper is concerned with development of a simple procedure to assess the threat posed by interlaminar matrix delaminations to the integrity of composite laminates when they are situated in a compressive stress field. Depending upon the size of the delamination, its location below the surface...... and on the level of the applied stress, it may or may not buckle away from the rest of the laminate. If it buckles, the post-buckling response will depend upon the applied compressive stress level, the thickness of the delaminated ply and the interlaminar critical energy release rate of the composite...

  3. CEASEMT system: the TEDEL code. Pipings - Plasticity - Dynamics - Statics - Buckling - Thermoplasticity - Creep - Large displacements - FLUIDS - SEISMS - ASME

    International Nuclear Information System (INIS)

    The TEDEL code is intended for elastic and plastic computation of three-dimensional pipes and frames with possible junction to shells. The structures are described with using assemblies of beam elements, or piping elements such as, curved pipes, 900 elbows, tees, any elements, the stiffness properties of which are given to TEDEL. TEDEL allows the dynamic computation of the structures: search of eigenfrequencies and eigenmodes of vibration, time response to any time-dependent canvassing. This response can be obtained either from recombining a number of eigenmodes, or from a direct numerical integration of the dynamics equation. In these last two cases TEDEL accounts for some possible damping. A TEDEL option allows critical buckling loads to be computed (Euler). The structures can offer any shapes comprising any number of materials. The data are readout without any format, and distributed in optional commands with a precise physical meaning: GEOMETRY, MATERIALS, LOAD, COMPUTATION, END. A dynamical memory control allows the size of the routine to be adapted to the problem to be treated. For pipings, an option is intended for an automatic checking of the stress level with regard to the limiting values of the ASME. Geometrical data, node positions, element numbering are given by COCO which also delivers perspective drawings for the structure to be studied. The results on magnetic tapes can be treated by the subroutines ESPACE-VISU-TEMPS

  4. Numerical simulation of blast wave interaction with structure columns

    Science.gov (United States)

    Shi, Yanchao; Hao, Hong; Li, Zhong-Xian

    2007-08-01

    Buckling of slender structures under compressive loading is a failure of infinitesimal stability due to a confluence of two factors: the energy density non-convexity and the smallness of Korn’s constant. The problem has been well understood only for bodies with simple geometries when the slenderness parameter is well defined. In this paper, we present the first rigorous analysis of buckling for bodies with complex geometry. By limiting our analysis to the “near-flip” instability, we address the universal features of the buckling phenomenon that depend on neither the shape of the domain nor the degree of constitutive nonlinearity of the elastic material.

  5. Equivalent Imperfections In Arched Structures

    Directory of Open Access Journals (Sweden)

    Dallemule Marian

    2015-09-01

    Full Text Available There are currently three design methods to verify the in-plane buckling of an arched structure: substitute member method, the method of equivalent imperfection with recommendations for arched bridges, and the equivalent unique global and local initial imperfection method (EUGLI, which uses the critical elastic buckling mode as an imperfection. The latter method is included in the EN 1993-1-1 cl. 5.3.2 (11 since 2002; however, to this day it is neither utilized in the design practice nor is it incorporated in ordinary structural analysis software. The main purpose of this article is to show the application of the proposed methods in a step-by-step manner to the numerical example considered and to compare these design methods for various arched structures. Verification of the in-plane buckling of an arch is explained in detail.

  6. Thermostructural Analysis of Unconventional Wing Structures of a Hyper-X Hypersonic Flight Research Vehicle for the Mach 7 Mission

    Science.gov (United States)

    Ko, William L.; Gong, Leslie

    2001-01-01

    Heat transfer, thermal stresses, and thermal buckling analyses were performed on the unconventional wing structures of a Hyper-X hypersonic flight research vehicle (designated as X-43) subjected to nominal Mach 7 aerodynamic heating. A wing midspan cross section was selected for the heat transfer and thermal stress analyses. Thermal buckling analysis was performed on three regions of the wing skin (lower or upper); 1) a fore wing panel, 2) an aft wing panel, and 3) a unit panel at the middle of the aft wing panel. A fourth thermal buckling analysis was performed on a midspan wing segment. The unit panel region is identified as the potential thermal buckling initiation zone. Therefore, thermal buckling analysis of the Hyper-X wing panels could be reduced to the thermal buckling analysis of that unit panel. "Buckling temperature magnification factors" were established. Structural temperature-time histories are presented. The results show that the concerns of shear failure at wing and spar welded sites, and of thermal buckling of Hyper-X wing panels, may not arise under Mach 7 conditions.

  7. Implicit-Solvent Coarse-Grained Simulation with a Fluctuating Interface Reveals a Molecular Mechanism for Peptoid Monolayer Buckling.

    Science.gov (United States)

    Haxton, Thomas K; Zuckermann, Ronald N; Whitelam, Stephen

    2016-01-12

    Peptoid polymers form extended two-dimensional nanostructures via an interface-mediated assembly process: the amphiphilic peptoids first adsorb to an air-water interface as a monolayer, then buckle and collapse into free-floating bilayer nanosheets when the interface is compressed. Here, we investigate the molecular mechanism of monolayer buckling by developing a method for incorporating interface fluctuations into an implicit-solvent coarse-grained model. Representing the interface with a triangular mesh controlled by surface tension and surfactant adsorption, we predict the direction of buckling for peptoids with a segregated arrangement of charged side chains and predict that peptoids with with an alternating charge pattern should buckle less easily than peptoids with a segregated charge pattern. PMID:26647143

  8. Volume-controlled buckling of thin elastic shells: application to crusts formed on evaporating partially wetted droplets

    International Nuclear Information System (INIS)

    Motivated by observing the buckling of glassy crusts formed on evaporating droplets of polymer and colloid solutions, we numerically model the deformation and buckling of spherical elastic caps controlled by varying the volume between the shell and the substrate. This volume constraint mimics the incompressibility of the unevaporated solvent. Discontinuous buckling is found to occur for sufficiently thin and/or large contact angle shells, and robustly takes the form of a single circular region near the boundary that 'snaps' to an inverted shape, in contrast to the externally pressurized shells case. Scaling theory for shallow shells is shown to approximate well the critical buckling volume, the subsequent enlargement of the inverted region and the contact line force. (letter to the editor)

  9. Preserved scleral patch graft for unexpected extreme scleral thinning found at the scleral buckling procedure: A case report

    Directory of Open Access Journals (Sweden)

    Spela Stunf

    2011-01-01

    Full Text Available Pre-existing scleral pathology is an important risk factor for globe rupture during scleral buckling procedures. We report here, the surgical management of an unexpected scleral pathology found at the scleral buckling procedure in a retinal detachment patient. A 77-year-old white female with retinal detachment underwent a scleral buckling procedure. The surgery was converted into a scleral graft procedure, as extreme scleral thinning was found intraoperatively. An alcohol-preserved donor sclera graft was used. The second surgery for definitive retinal alignment was performed two weeks later. The presented case of an unexpected scleral pathology in a retinal detachment patient was managed with a combination of scleral grafting and pars plana vitrectomy, without any major complications. The anatomical outcome was excellent and the scleral rupture was prevented; the visual outcome was satisfactory. A conversion of the scleral buckling procedure into a scleral graft procedure has proved to be safe and effective for unexpected scleral pathology.

  10. The influences of pre-tensions on the deformations of woven fabric shells during cyclic axial compression buckling processes

    OpenAIRE

    Wang, Y; Mao, N

    2015-01-01

    The influences of pre-tensions on the deformations of cylindrical shells made of various woven fabrics undergoing axial compression buckling process were studied. The fabric deformations were differentiated and quantified using the energy consumed to produce and recover them. Various types of deformation including elastic deformation, recoverable deformation and permanent deformation produced in the cyclic compression buckling-recovery processes were associated with their corresponding energy...

  11. Corneal topographic changes after 20-gauge pars plana vitrectomy associated with scleral buckling for the treatment of rhegmatogenous retinal detachment

    OpenAIRE

    Alexandre Achille Grandinetti; Janaína Dias; Ana Carolina Trautwein; Natasha Iskorostenski; Luciane Moreira; Ana Tereza Ramos Moreira

    2013-01-01

    PURPOSE: To evaluate the changes in corneal topography after 20-gauge pars plana vitrectomy associated with scleral buckling for the repair of rhegmatogenous retinal detachment. METHODS: Twenty-five eyes of 25 patients with rhegmatogenous retinal detachment were included in this study. 20-gauge pars plana vitrectomy associated with scleral buckling was performed in all patients. The corneal topography of each was measured before surgery and one week, one month, and three months after surgery ...

  12. Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory

    Science.gov (United States)

    Shojaeian, Milad; Beni, Yaghoub Tadi; Ataei, Hossein

    2016-01-01

    Electromechanical buckling (EMB) of beam-type nanoelectromechanical systems (NEMSs) is investigated based on modified strain gradient theory. The system is modeled as a clamped-guided nanobeam which is under compressive or tensile axial loads as well as the effect of nonlinear electrostatic and van der Waals symmetric transverse forces. In addition, the beam is considered to be made of axially and transverse functionally graded materials. Here, FGM is Poly-SiGe, of which the general properties change gradually from silicon to germanium based on a simple power-law method. Considering the Euler-Bernoulli beam theory and using the principle of minimum potential energy, the governing equations and corresponding boundary conditions are established. After validation of results, the effects of power law index, variation of size effect parameters, length-thickness ratio and the distance between the two fixed and movable electrodes on the buckling response of the system are discussed.

  13. Effect of boundary conditions on piezoelectric buckled beams for vibrational noise harvesting

    Science.gov (United States)

    Cottone, F.; Mattarelli, M.; Vocca, H.; Gammaitoni, L.

    2015-11-01

    Nonlinear bistable systems have proven to be advantageous for energy harvesting of random and real ambient vibrations. One simple way of implementing a bistable transducer is setting a piezoelectric beam in a post-buckled configuration by axial compression. Besides, hinged or clamped-clamped type of boundary conditions correspond to two different post-buckled shape functions. Here we study, through theoretical analysis and numerical simulations, the efficiency of a hinged and clamped-clamped piezoelectric bridge under band-limited random noise with progressive axial load. Clamped configuration results to harvest 26% more power than hinged around an optimal axial load of 0.05%, while, in the intra-well trapped situation, above 0.1%, the two configurations present no substantial difference. Nevertheless, simulations confirm the advantage of exploiting inter-well oscillations in bistable regime.

  14. Multistep Optimization of Composite Drive Shaft Subject to Strength, Buckling, Vibration and Manufacturing Constraints

    Science.gov (United States)

    Cherniaev, Aleksandr; Komarov, Valeriy

    2015-10-01

    Composite drive shafts are extensively used in automotive and aeronautical applications due to lightweight combined with exceptional strength and stiffness. Complexity of the drive shaft design problem associated with the need to determine rational values for multiple parameters characterizing composite material (fiber orientation angles, stacking sequence and ply thicknesses), as well as with the fact that multiple conflicting design constraints should be considered simultaneously. In this paper we approach this problem considering carbon/epoxy drive shaft design as a multistep optimization process. It includes the following steps: 1) determination of fiber orientation angles and laminate stacking sequence based on analysis of loading conditions and analytical expressions predicting buckling load and minimal natural frequency of idealized drive shaft; 2) finding rational ply thicknesses using formal optimization procedure utilizing response surface approximations and gradient-based optimization algorithm; and 3) verification analysis of the optimized configuration with the use of nonlinear buckling analysis to ensure satisfaction of stability constraint.

  15. A nonlinear model arising in the buckling analysis and its new analytic approximate solution

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Yasir [Zhejiang Univ., Hangzhou, ZJ (China). Dept. of Mathematics; Al-Hayani, Waleed [Univ. Carlos III de Madrid, Leganes (Spain). Dept. de Matematicas; Mosul Univ. (Iraq). Dept. of Mathematics

    2013-05-15

    An analytical nonlinear buckling model where the rod is assumed to be an inextensible column and prismatic is studied. The dimensionless parameters reduce the constitutive equation to a nonlinear ordinary differential equation which is solved using the Adomian decomposition method (ADM) through Green's function technique. The nonlinear terms can be easily handled by the use of Adomian polynomials. The ADM technique allows us to obtain an approximate solution in a series form. Results are presented graphically to study the efficiency and accuracy of the method. To the author's knowledge, the current paper represents a new approach to the solution of the buckling of the rod problem. The fact that ADM solves nonlinear problems without using perturbations and small parameters can be judged as a lucid benefit of this technique over the other methods. (orig.)

  16. EXACT SOLUTION FOR TEMPERATURE-DEPENDENT BUCKLING ANALYSIS OF FG-CNT-REINFORCED MINDLIN PLATES

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Mousavi

    2016-03-01

    Full Text Available This research deals with the buckling analysis of nanocomposite polymeric temperature-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs. For the carbon-nanotube reinforced composite (CNTRC plate, uniform distribution (UD and three types of functionally graded (FG distribution patterns of SWCNT reinforcements are assumed. The material properties of FG-CNTRC plate are graded in the thickness direction and estimated based on the rule of mixture. The CNTRC is located in a elastic medium which is simulated with temperature-dependent Pasternak medium. Based on orthotropic Mindlin plate theory, the governing equations are derived using Hamilton’s principle and solved by Navier method. The influences of the volume fractions of carbon nanotubes, elastic medium, temperature and distribution type of CNTs are considered on the buckling of the plate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the stiffness of plates.

  17. Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces

    International Nuclear Information System (INIS)

    Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.

  18. Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhachuk, R., E-mail: zhachuk@gmail.com; Teys, S. [Institute of Semiconductor Physics, pr. Lavrentyeva 13, Novosibirsk 630090 (Russian Federation); Coutinho, J. [Department of Physics and I3N, University of Aveiro, Campus Santiago, 3810-193 Aveiro (Portugal); Rayson, M. J. [Department of Chemistry, University of Surrey, Guildford GU2 7XH (United Kingdom); Briddon, P. R. [School of Electrical, Electronic and Computer Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom)

    2014-10-27

    Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.

  19. Evolved Colloidosomes Undergoing Cell-like Autonomous Shape Oscillations with Buckling.

    Science.gov (United States)

    Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

    2016-04-18

    In living systems, there are many autonomous and oscillatory phenomena to sustain life, such as heart contractions and breathing. At the microscopic level, oscillatory shape deformations of cells are often observed in dynamic behaviors during cell migration and morphogenesis. In many cases, oscillatory behaviors of cells are not simplistic but complex with diverse deformations. So far, we have succeeded in developing self-oscillating polymers and gels, but complex oscillatory behaviors mimicking those of living cells have yet to be reproduced. Herein, we report a cell-like hollow sphere composed of self-oscillating microgels, that is, a colloidosome, that exhibits drastic shape oscillation in addition to swelling/deswelling oscillations driven by an oscillatory reaction. The resulting oscillatory profile waveform becomes markedly more complex than a conventional one. Especially for larger colloidosomes, multiple buckling and moving buckling points are observed to be analogous to cells. PMID:26960167

  20. Experimental analysis of buckling in aircraft skin panels by fibre optic sensors

    Science.gov (United States)

    Güemes, J. A.; Menendez, J. M.; Frövel, M.; Fernandez, I.; Pintado, J. M.

    2001-06-01

    Three blade-stiffened CFRP panels with co-cured stiffener webs, manufactured by means of an elastomeric mould, have been tested under compressive load. Several Bragg grating sensors have been surface bonded on two of the stiffened panels and have been embedded into the stiffener webs of the third panel. The Bragg grating sensors measured the strain distribution in the stiffener web and in the skin panels. The bucking onset was clearly detected in every case, the post-buckling behaviour can be tracked, but the information is heavily dependent on the right choice of the sensor position and the buckling mode. To calibrate the system, and to evaluate the influence of different curing pressures, and the use of unidirectional or fabric prepreg material, tensile test specimens were made on flat panels. The strain measurements provided by the optical fibre sensors in tensile tests were compared with the strain measurements provided by conventional clamp extensometers.

  1. The effect of delaminations on local buckling in wind turbine blades

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Bitsche, Robert; Branner, Kim

    2015-01-01

    . The local buckling caused high strains and stresses in the surrounding of the delamination, which exceeded the material design properties and therefore should be considered as dangerous. Delaminations placed near the mid-surface of the cap did not have a significant effect on the blade response under......In this article the effect of delaminations on the load carrying capacity of a large wind turbine blade is studied numerically. For this purpose an 8.65 m long blade section with different initial delaminations in the main spar was subjected to a flapwise dominated bending moment. The model was...... setup in Abaqus and cohesive elements were chosen for modelling delamination growth. For initial delaminations with a width of 30–50% of the cap width the study showed that delamination close to the surface started to grow in load ranges of normal operation conditions and led to local buckling modes...

  2. Some applications of NASTRAN to the buckling of thin cylindrical shells with cutouts

    Science.gov (United States)

    Williams, J. G.; Starnes, J. H., Jr.

    1972-01-01

    The buckling of isotropic and waffle-stiffened circular cylinders with and without cutouts was studied using NASTRAN's Rigid Format 5 for the case of axial compressive loading. The results obtained for the cylinders without cutouts are compared with available reference solutions. The results for the isotropic cylinders containing a single circular cutout with selected radii are compared with available experimental data. For the waffle-stiffened cyclinder, the effect of two diametrically opposed rectangular cutouts was studied. A DMAP alter sequence was used to permit the necessary application of different prebuckling and buckling boundary conditions. Advantage was taken of available symmetry planes to formulate equivalent NASTRAN model segments which reduced the associated computational cost of performing the analyses. Limitations of the applicability of NASTRAN for the solution of problems with nonlinear characteristics are discussed.

  3. Cubic Spline Solutions of Nonlinear Bending and Buckling of Circular Plates with Arbitrarily Variable Thickness

    Institute of Scientific and Technical Information of China (English)

    侯朝胜; 李婧; 龙泉

    2003-01-01

    The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.

  4. Secondary Glaucoma Associated with Encircling Scleral Buckle Migration into the Cornea

    Directory of Open Access Journals (Sweden)

    Şengül Özdek

    2016-01-01

    Full Text Available Transmuscular migration of the encircling band through rectus muscles and straddling of the cornea has only been reported in a few cases previously in the literature. This rare condition has never been associated with glaucoma. In this report, we aimed to describe a unique case with transmuscular migration of encircling buckle as a probable cause of glaucoma. A 17-year-old female presented with transmuscular migration of buckle and high intraocular pressure (IOP. Limbal/corneal migration of the silicone band was thought to be the main reason for the IOP rise; therefore, scleral band removal was performed. One month after removal, the patient was free of glaucoma medications and IOP was within normal limits. The retina remained attached during all postoperative visits. Transmuscular migration of the encircling band through rectus muscles and straddling of the cornea may act as a trigger for glaucoma.

  5. Buckling test of a 3-meter-diameter corrugated graphite-epoxy ring-stiffened cylinder

    Science.gov (United States)

    Davis, R. C.

    1982-01-01

    A three m diameter by three m long corrugated cylindrical shell with external stiffening rings was tested to failure by buckling. The corrugation geometry for the graphite epoxy composite cylinder wall was optimized to withstand a compressive load producing an ultimate load intensity of 157.6 kN/m without buckling. The test method used to produce the design load intensity was to mount the specimen as a cantilevered cylinder and apply a pure bending moment to the end. A load introduction problem with the specimen was solved by using the BOSOR 4 shell of revolution computer code to analyze the shell and attached loading fixtures. The cylinder test loading achieved was 101 percent of design ultimate, and the resulting mass per unit of shell wall area was 1.96 kg/sq m.

  6. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    Science.gov (United States)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  7. Buckling of steel and composite steel and concrete columns in case of fire

    OpenAIRE

    Correia, Antonio M.; Rodrigues, João Paulo C.

    2010-01-01

    Bare steel columns are known to have a very low fire resistance. The high thermal conductivity and the sudden decrease of the steel yield stress and Young Modulus in function of the temperature are responsible for this behaviour. The purpose of this study is to compare different modes of failure of building steel columns. The buckling of the columns is strongly influenced by the contact with other elements such as brick walls. Three types of situations were compared: steel columns...

  8. A fracture mechanics model to describe the buckling behavior of  lightly rc columns

    OpenAIRE

    Porras Soriano, Rocio; Ruiz Carmona, Jacinto; Ruiz Lopez, Gonzalo Francisco; Yu, Chengxiang

    2013-01-01

    In order to correctly model the behavior of slender columns made of lightly reinforced concrete (RC) sub- jected to buckling load, both tensile fracture and compressive damage should be taken into account. In this work, we propose to consider both failure types as cohesive cracks, governed by a bilinear cohesive law for traction or a linear-decreasing softening equation for compression. Since the columns are lightly reinforced, we assume only one single crack is to propagate at the column cen...

  9. The comparison of retinal blood flow after scleral buckling surgery with or without encircling procedure

    OpenAIRE

    Alireza Dehghani; Hassan Razmjoo; Farhad Fazel; Mehdi Karami; Akbar Etesampour; Heshmatolah Ghanbari; Farzan Kianersi; Mohammadreza Akhlaghi; Hamid Fesharaki

    2013-01-01

    Aim: We aimed to compare peak systolic velocity of central retinal artery (PSV.CRA) and peak systolic velocity of ophthalmic artery (PSV.OA) between patients with retinal detachment who were treated with segmental scleral bucking and scleral buckling with encircling procedure. Materials and Methods: This study was a descriptive-analytic cross sectional study that was performed in Isfahan university referral centers since April 2010 to April 2011. Of the patients who have undergone scleral buc...

  10. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated.The viscoelastic behavior of laminas is modeled by Schapery’s integral constitutive equation with growing matrix cracks.The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from mesomechanics approach,and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress.The governing equations for prebuckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Kármán-Donnell geometrically nonlinear relationship.Corresponding solution strategy is constructed by integrating finite-difference technique,trigonometric series expansion method and Taylor’s numerical recursive scheme for convolution integration.The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parameters and parameters of damage evolution as well as boundary conditions.The numerical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads,and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells,also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  11. Free vibrations and buckling analysis of laminated plates by oscillatory radial basis functions

    Science.gov (United States)

    Neves, A. M. A.; Ferreira, A. J. M.

    2015-12-01

    In this paper the free vibrations and buckling analysis of laminated plates is performed using a global meshless method. A refined version of Kant's theorie which accounts for transverse normal stress and through-the-thickness deformation is used. The innovation is the use of oscillatory radial basis functions. Numerical examples are performed and results are presented and compared to available references. Such functions proved to be an alternative to the tradicional nonoscillatory radial basis functions.

  12. Scleral buckling procedure with chandelier illumination for pediatric rhegmatogenous retinal detachment

    OpenAIRE

    Yokoyama, Toshiyuki

    2015-01-01

    Toshiyuki Yokoyama, Koki Kanbayashi, Tamaki YamaguchiDepartment of Ophthalmology, Juntendo University Nerima Hospital, Tokyo, JapanPurpose: To assess the treatment of pediatric patients with rhegmatogenous retinal detachment (RRD) by scleral buckling with chandelier illumination.Methods: Three eyes were treated in three patients, healthy boys aged 7 years, 12 years, and 11 years, with RRD, macular involvement, and small retinal holes, of which two were preoperativel...

  13. Axisymmetric buckling of a spherical shell embedded in an elastic medium under uniaxial stress at infinity

    OpenAIRE

    Jones, G. W.; Chapman, S. J.; Allwright, D. J.

    2008-01-01

    The problem of a thin spherical linearly-elastic shell, perfectly bonded to an infinite linearly-elastic medium is considered. A constant axisymmetric stress field is applied at infinity in the matrix, and the displacement and stress fields in the shell and matrix are evaluated by means of harmonic potential functions. In order to examine the stability of this solution, the buckling problem of a shell which experiences this deformation is considered. Using Koiter's nonlinear shallow shell the...

  14. Extrusion of hydrogel exoplant into upper eyelid 16 years after a scleral buckle procedure

    Directory of Open Access Journals (Sweden)

    Chirag P Shah

    2011-01-01

    Full Text Available Sixteen years after scleral buckle surgery with a hydrogel episcleral exoplant, a 43-year-old woman presented with progressive binocular diplopia, ptosis, and an expanding mass in her upper eyelid. She underwent surgical removal of the hydrogel exoplant through an anterior approach. The exoplant proved to be friable, fragmented, and encapsulated in a fibrous tissue; the exoplant was removed in its entirety. Postoperatively, the eyelid mass resolved, while her diplopia and ptosis improved slightly.

  15. Buckling and failure characteristics of compression-loaded stiffened composite panels with a hole

    Science.gov (United States)

    Nagendra, S.; Gurdal, Z.; Haftka, R. T.; Starnes, J. H.

    An experimental and analytical study was carried out to investigate the buckling and failure characteristics of stiffened compression-loaded panels with holes and to assess the validity of analytical models used for the design of such panels. Graphite-epoxy panels with four equally spaced blade stiffeners were fabricated with a laminate stacking sequence optimally designed for stiffened panels without holes. Panels with different hole sizes and panels without holes were tested.

  16. Strain-induced Large Exciton Energy Shifts in Buckled CdS Nanowires

    OpenAIRE

    Sun, Liaoxin; Kim, Do Hyun; Oh, Kyu Hwan; Agarwal, Ritesh

    2013-01-01

    Strain engineering can be utilized to tune the fundamental properties of semiconductor materials for applications in advanced electronic and photonic devices. Recently, the effects of large strain on the properties of nanostructures are being intensely investigated to further expand our insights into the physics and applications of such materials. In this letter, we present results on controllable buckled cadmium-sulfide (CdS) optical nanowires (NWs), which show extremely large energy bandgap...

  17. ANALYSIS OF THE TOW BUCKLING DEFECT DURING THE COMPLEX SHAPE FORMING OF A FLAX WOVEN FABRIC

    OpenAIRE

    Capelle, Emilie; Ouagne, Pierre; Tephany, Christophe; Soulat, Damien; Duriatti, Davy; Hivet, Gilles; Allaoui, Samir

    2012-01-01

    A flax fibre plain weave fabric has been used to form a complex tetrahedron shape. The global shape has been obtained. Globally, the complex tetrahedron shape was obtained, but tow buckling was observed in specific zones of the shape. The main mechanism at the origin of this defect has been defined. The influence of the fabric architecture has also been discussed and a solution consisting in specifically optimising the architecture of the fabric was proposed and tested with success to prevent...

  18. Buckling of anisotropic films on cylindrical substrates: insights for self-assembly fabrication of 3D helical gears

    International Nuclear Information System (INIS)

    We propose an effective way of fabricating true three-dimensional helical gear-like structures (with inclined gear teeth) by using self-assembled stress-driven buckling of anisotropic films on compliant cylindrical substrates. Key parameters characterizing the helical undulation profile, in particular the gear teeth number and the inclined teeth angle, are investigated numerically using finite element simulations. Based on the insights from numerical calculations, a simplified theoretical model is established to effectively predict the teeth number. The results show that the anisotropic modulus ratio has a larger effect on the teeth number than the anisotropy angle. The orientation of gear teeth is related to the coupled effects of the anisotropic modulus ratio, anisotropy angle, substrate curvature and substrate aspect ratio. In general, the undulation orientation tends to be perpendicular to the direction of minimum bending stiffness in the film. The findings in this paper provide useful guidance for the self-assembly fabrication of helical gears and other 3D structures at various length scales.

  19. Buckling of steel containment shells. Task 3. Parameter studies. Final report, 25 August 1980-30 September 1982

    International Nuclear Information System (INIS)

    The content of this volume is related to the choice of knockdown factors to be used in the design of containment vessels. The presently used design recommendations are based on experimental results pertaining to shells subjected to uniform static loading. Relatively few experiments have been performed on fabricated shells typical of civil engineering structures. A variety of factors have some effect on the imperfection sensitivity of shell structures, such as ratios between basic dimensions, degree of stiffening, inelastic deformation, duration and uniformity of loading. Therefore, it is hardly possible to collect sufficient empirical information to allow for the development of truly satisfactory design procedures. It is suggested here that the situation can be greatly improved if numerical experimentation based on computer analysis of shells with random imperfections is used to enlarge the basis for the procedures. A distinction is made between more or less deterministic imperfections inherent in the manufacturing process and truly random imperfections. The utilization of numerical results to verify or modify code recommendations is demonstrated for ring stiffened inelastic shell segments. Some effects on buckling of nonuniformity in loading are discussed

  20. Ultrasonography-guided scleral buckle retinopexy and cryotherapy: case report Retinopexia com "buckle" escleral e crioterapia guiada por ultrassom: relato de caso

    Directory of Open Access Journals (Sweden)

    Daniel da Rocha Lucena

    2009-04-01

    Full Text Available If the ocular media are clear, indirect binocular ophthalmoscopy allows retinal detachment and retinal tear identification and treatment under direct visualization. However, if opacities are present preventing direct fundus examination, ultrasonography becomes the most important tool for evaluating the posterior segment. In addition, ultrasonography can be useful in retinal tear treatment by guiding cryotherapy. In this article we describe a rhegmatogenous retinal detachment treatment technique applied to a patient with corneal opacity. Cryopexy and circumferential and radial buckle positioning were guided by ultrasonography, resulting in retinal attachment during the 6-month follow-up period.Quando os meios oculares são transparentes, oftalmoscopia binocular indireta permite a identificação de descolamento de retina e roturas, bem como seu tratamento sob visibilização direta. Porém, em olhos que apresentam opacidades de meios impedindo o exame oftalmoscópico, a ultrassonografia constitui o exame mais importante do segmento posterior do olho. Além disso, o tratamento de roturas retinianas também pode ser auxiliado pelo uso desse equipamento, orientando a crioterapia. Neste trabalho será apresentada técnica de tratamento de descolamento de retina regmatogênico, no qual a criopexia e o posicionamento dos "buckles" episclerais circunferencial e radial foram guiados pelo ultrassom em paciente com leucoma corneano. O tratamento resultou em aplicação retiniana durante o seguimento em seis meses.

  1. Flexural -Torsional Buckling Tests of Cold-Formed Lipped Channel Beams Under Restrained Boundary Conditions

    Directory of Open Access Journals (Sweden)

    R. KANDASAMY

    2014-05-01

    Full Text Available In this paper, tests on flexural buckling ( Lateral – Torsional of cold-formed steel(CFS lipped Channel beams under restrained boundary conditions are described Two point loading for flexural tests have been established for 3.0m span to obtain uniform bending moment. The section sizes selected for testing are 100x50x10 mm, 100x50x15 mm and 100x50x20 mm with 1.6mm and 2.0mm thickness for the investigation. Carefully designed loading and support systems were used in the tests to apply gravity load through the web of the section and to ensure that simply supported ends were established. The test results are compared in the BS5950:Part 5 and IS code 801-1975. The influence of warping and torsional restraints on flexural capacity is presented. The influence of buckling length for different boundary conditions proposed by Rhodes was considered to calculate critical flexural-torsional buckling moment.

  2. Theoretical and experimental investigations of creep buckling on NiCr 22 Co 12 Mo tubes

    International Nuclear Information System (INIS)

    The postulated pressure loss of the secondary circuit is one of the hardest loading conditions for the heat exchanging components in a HTGR plant. It is to proof for the design that the heat exchanging metallic components (heat exchanger or reformer tubes of a PNP plant for instance) do not collapse under such an emergency condition. An external pressure pa stressed tubes or cylindric shells at a pressure loss of a secondary circuit side. This external pressure buckles the tubes in dependence of the fabrication implied out of roundness 0 (fabrication tolerances) by material creep in the high temperature region. This creep buckling ends in a failure (collapse) of the component after a critical time tcr. The aim of the work is the experimental verification of creep buckling behaviour for the heat exchanger components and the comparison with different constitutive equations. With these equations safety factors can be formulated against as well the critical collapse time and pressure as the permissible out of roundness from fabrication. (orig.)

  3. Experimental Investigation into the Elastic Buckling of a Nuclear Fuel Cladding Tube

    International Nuclear Information System (INIS)

    Outer diameter of a dual cooled fuel rod needs to be increased considerably from that of a conventional one due to the requirement of a surface area increase as well as the formation of an internal flow passage. As was found previously, the thickness to outer diameter ratio (t/Do) of the conventional PWR fuel rod is mostly 0.058∼0.062. It seemed to be determined from experiences since there was little information about the reason for the t/Do values. Elastic buckling concern would be one of the reasons. Safety factor is more than 3 if a conventional design formula of the elastic buckling was applied. It is almost impossible to apply those values to a dual cooled fuel rod due to a considerably decreased rod-to-rod gap size and the amount of UO2 required for a burnup. So, there is a strong need to investigate the fundamental background of the used formula and its conservatism. In this paper, a classical theory of the stability was revisited and an experiment was conducted. Deduction for the used formula of an elastic buckling is explained. Experimental results are discussed by focusing on the safety margin of the used formula. Finally, the safety factor is considered for the presently determined thickness and diameter of a dual cooled fuel rod

  4. Critical forces for actin filament buckling and force transmission influence transport in actomyosin networks

    Science.gov (United States)

    Stam, Samantha; Gardel, Margaret

    Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.

  5. Measurement of material buckling in a large heavy water moderated exponential assembly

    International Nuclear Information System (INIS)

    Exponential measurements of material buckling have been made in a number of Steam Generating Heavy Water lattices, in the large exponential assembly known as SGHW I, at AEE Winfrith. The procedures adopted for the optimum adjustment of neutron source positions, for the analysis of harmonic effects and for the investigation and minimising of random and systematic errors are described in detail in this report. It is believed that these methods are adequate to determine a typical material buckling of 3 m-2 to a statistical accuracy of ± 0.030 m-2 and that the additional contribution from systematic errors is not greater than ± 0.036 m-2. It has been shown that the positions of flux peaks caused by cluster end plates in the axial distributions in these cores are moved vertically by about 2 cm by the interaction with the macroscopic exponential flux distribution. Radial reflector savings have been shown to vary with core composition in a manner which is well predicted by a relatively simple theoretical calculation. This suggests that statistical errors in individual radial buckling determinations in lattices of this type could be reduced from ± 0.016 m-2 to ± 0.005 m-2 by collating radial reflector saving data from similar lattices. (author)

  6. An enriched 1D finite element for the buckling analysis of sandwich beam-columns

    Science.gov (United States)

    Sad Saoud, Kahina; Le Grognec, Philippe

    2016-06-01

    Sandwich constructions have been widely used during the last few decades in various practical applications, especially thanks to the attractive compromise between a lightweight and high mechanical properties. Nevertheless, despite the advances achieved to date, buckling still remains a major failure mode for sandwich materials which often fatally leads to collapse. Recently, one of the authors derived closed-form analytical solutions for the buckling analysis of sandwich beam-columns under compression or pure bending. These solutions are based on a specific hybrid formulation where the faces are represented by Euler-Bernoulli beams and the core layer is described as a 2D continuous medium. When considering more complex loadings or non-trivial boundary conditions, closed-form solutions are no more available and one must resort to numerical models. Instead of using a 2D computationally expensive model, the present paper aims at developing an original enriched beam finite element. It is based on the previous analytical formulation, insofar as the skin layers are modeled by Timoshenko beams whereas the displacement fields in the core layer are described by means of hyperbolic functions, in accordance with the modal displacement fields obtained analytically. By using this 1D finite element, linearized buckling analyses are performed for various loading cases, whose results are confronted to either analytical or numerical reference solutions, for validation purposes.

  7. Buckling transition in icosahedral shells subjected to volume conservation constraint: relations to virus maturation

    CERN Document Server

    Siber, A

    2006-01-01

    Minimal energy shapes of closed, elastic shells with twelve pentagonal disclinations introduced in otherwise hexagonally coordinated crystalline lattice are studied. The geometry and the total energy of shells are studied as a function of the elastic properties of the material they are made of. Particular emphasis is put on the buckling transition of the shells, that is a strong preference of the shell shapes to 'buckle out' in spatial regions close to the pentagonal disclinations for certain range of the elastic parameters of the problem. The transition effectively increases the mean square aspherity of shapes, making them look more like an icosahedron, rather than a sphere which is a preferred shape prior to the onset of the transition. The properties of the buckling transition are studied in cases when the total volume enclosed by the elastic shell has to be fixed. This may be related to maturation process in non-enveloped dsDNA viruses, where the insertion of the genetic material in a pre-formed protein s...

  8. Analisa Pemasangan Loop Ekspansi Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

    Directory of Open Access Journals (Sweden)

    Hariono Hariono

    2014-09-01

    Full Text Available Pada pipa yang dipendam didalam tanah sering terjadi kegagalan deformasi. Kegagalan deformasi global yang menyebabkan pipa menekuk vertikal ke atas yang disebut sebagai upheaval buckling. Lengkungan awal pada pipa penyalur yang terpasang bisa terjadi akibat kombinasi dari kenaikan temperatur saat operasional dan gaya friksi tanah akan menghasilkan gaya tekan aksial efektif pada pipa. Salah satu cara yang akan dibahas pada penelitian ini jika terjadi upheaval buckling adalah pemasangan loop ekspansi pada daerah yang mengalami upheaval buckling. Loop ekspansi akan divariasikan dengan 2 tipe yaitu tipe loop horizontal dan tipe loop vertical. Pada penelitian ini terlebih dahulu pipa dimodelkan dengan panjang pipa tertentu kemudian ujung-ujungnya diberi tumpuan sehingga didapatkan besar tegangan longitudinal sebesar 41366,563 Psi. Tegangan tersebut melebihi tegangan ijin sehingga pipa mengalami ekspansi termal atau elongasi yang membentuk lengkungan keatas dengan tinggi 0.259 meter. Maka dilakukan pemodelan loop ekspansi untuk meredam elongasi tersebut dengan panjang loop 5.3 meter. Kedua loop tersebut mampu meredam tegangan aksial menjadi 3662 Psi untuk tipe loop horizontal dan 3670 Psi untuk tipe loop vertikal. Dari kedua tipe loop tersebut kemudian juga dilakukan perbandingan besar tegangan yang terjadi pada bagian elbow. Maka didapatkan bahwa tipe loop horizontal mengalami tegangan relatif lebih kecil dari pada tipe loop vertikal sehingga sebagai bahan rekomendasi maka pemasangan loop horizontal lebih diutamakan.

  9. Vibration and buckling of rotating, pretwisted, preconed beams including Coriolis effects

    Science.gov (United States)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The effects of pretwist, precone, setting angle and Coriolis forces on the vibration and buckling behavior of rotating, torsionally rigid, cantilevered beams were studied. The beam is considered to be clamped on the axis of rotation in one case, and off the axis of rotation in the other. Two methods are employed for the solution of the vibration problem: (1) one based upon a finite-difference approach using second order central differences for solution of the equations of motion, and (2) based upon the minimum of the total potential energy functional with a Ritz type of solution procedure making use of complex forms of shape functions for the dependent variables. The individual and collective effects of pretwist, precone, setting angle, thickness ratio and Coriolis forces on the natural frequencies and the buckling boundaries are presented. It is shown that the inclusion of Coriolis effects is necessary for blades of moderate to large thickness ratios while these effects are not so important for small thickness ratio blades. The possibility of buckling due to centrifugal softening terms for large values of precone and rotation is shown.

  10. Vibration and buckling of rotating, pretwisted, preconed beams including Cooriolis effects

    Science.gov (United States)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The effects of pretwist, precone, setting angle and Coriolis forces on the vibration and buckling behavior of rotating, torsionally rigid, cantilevered beams were studied. The beam is considered to be clamped on the axis of rotation in one case, and off the axis of rotation in the other. Two methods are employed for the solution of the vibration problem: (1) one based upon a finite-difference approach using second order central differences for solution of the equations of motion, and (2) based upon the minimum of the total potential energy functional with a Ritz type of solution procedure making use of complex forms of shape functions for the dependent variables. The individual and collective effects of pretwist, precone, setting angle, thickness ratio and Coriolis forces on the natural frequencies and the buckling boundaries are presented. It is shown that the inclusion of Coriolis effects is necessary for blades of moderate to large thickness ratios while these effects are not so important for small thickness ratio blades. The possibility of buckling due to centrifugal softening terms for large values of precone and rotation is shown.

  11. Cross talk between bending, twisting, and buckling modes of three types of microcantilever sensors

    Science.gov (United States)

    Jeon, Sangmin; Braiman, Yehuda; Thundat, Thomas

    2004-11-01

    Microcantilevers generally deflect in three ways: bending, twisting, and buckling. Among these, the accurate measurement of bending is essential for atomic force microscopy imaging and sensing applications. However, it was found that the bending of certain cantilevers can be coupled with twisting and buckling of the cantilever. In this article, cross talk between bending and twisting modes of microcantilevers of three different designs such as rectangular, triangular, and piezoresistive cantilevers is described. For the experiments, a thermal stress was applied to the rectangular and triangular cantilevers, and a Lorentz force was exerted on the triangular and the piezoresistive cantilevers. While the bending of the rectangular cantilever induced a negligible amount of twisting when heated, the triangular cantilevers showed nonlinear twisting responses during bending. This nonlinear response of the triangular cantilever was attributed to the variations in the spring constants between the two legs. When a Lorentz force was exerted on the triangular cantilevers, coupling of the bending and twisting modes depended on the direction of a magnetic field. For the piezoresistive cantilevers, a Lorentz force induced the in-phase buckling which accompanied both the bending and twisting modes.

  12. Model Test Based Soil Spring Model and Application in Pipeline Thermal Buckling Analysis

    Institute of Scientific and Technical Information of China (English)

    GAO Xi-feng; LIU Run; YAN Shu-wang

    2011-01-01

    The buckling of submarine pipelines may occur due to the action of axial soil frictional force caused by relative movement of soil and pipeline,which is induced by the thermal and internal pressure.The likelihood of occurrence of this buckling phenomenon is largely determined by soil resistance.A series of large-scale model tests were carried out to facilitate the establishment of substantial data base for a variety of burial pipeline relationships.Based on the test data,nonlinear soil spring can be adopted to simulate the soil behavior during the pipeline movement.For uplift resistance,an ideal elasticity plasticity model is recommended in the case of H/D (depth-to-diameter ratio)>5 and an elasticity softened model is recommended in the case of H/D≤5.The soil resistance along the pipeline axial direction can be simulated by an ideal elasticity plasticity model.The numerical analyzing results show that the capacity of pipeline against thermal buckling decreases with its initial imperfection enlargement and increases with the burial depth enhancement.

  13. Distortional Buckling Analysis of Steel-Concrete Composite Girders in Negative Moment Area

    Directory of Open Access Journals (Sweden)

    Zhou Wangbao

    2014-01-01

    Full Text Available Distortional buckling is one of the most important buckling modes of the steel-concrete composite girder under negative moment. In this study, the equivalent lateral and torsional restraints of the bottom flange of a steel-concrete composite girder under negative moments due to variable axial forces are thoroughly investigated. The results show that there is a coupling effect between the applied forces and the lateral and torsional restraint of the bottom flange. Based on the calculation formula of lateral and torsional restraints, the critical buckling stress of I-steel-concrete composite girders and steel-concrete composite box girders under variable axial force is obtained. The critical bending moment of the steel-concrete composite girders can be further calculated. Compared to the traditional calculation methods of elastic foundation beam, the paper introduces an improved method, which considers coupling effect of the external loads and the foundation spring constraints of the bottom flange. Fifteen examples of the steel-concrete composite girders in different conditions are calculated. The calculation results show a good match between the hand calculation and the ANSYS finite element method, which validated that the analytic calculation method proposed in this paper is practical.

  14. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    B. Sidda Reddy

    2013-01-01

    Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.

  15. Internal pressure buckling of very thin torispherical shells. A comparison of experiment and theory

    International Nuclear Information System (INIS)

    The bottom head of the primary vessel of some LMFBR's is a thin torispherical shell. The internal pressure loading on the head consists of the weight of the sodium contents plus any superimposed gas pressure. Depending on the design of the bottom head, it can fail by elastic or elastic-plastic circumferential buckling or the development of yield 'hinges' and gross deformation of the shell. A review is given of previous work on internal pressure buckling of torispheres - some of it of very recent origin. Experiments on a limited number of machined, stress-relieved, cylinder-torisphere combinations which were subjected to increasing internal pressure are described. The diameter-thickness ratios of the models were approximately 500 and 1000. It was also considered important to vary the ratio of the yield stress to the modulus of elasticity of the model material. This was accomplished by using both mild steel and an aluminium alloy for nominally identical models. The experimental buckling pressures are compared with the best available theoretical predictions

  16. Scleral buckling for retinal detachment in Ibadan, Sub-Saharan Africa: anatomical and visual outcome

    Directory of Open Access Journals (Sweden)

    Oluleye TS

    2013-05-01

    Full Text Available TS Oluleye, OA Ibrahim, BA OlusanyaRetina and Vitreous Unit, Department of Ophthalmology, University College Hospital, Ibadan, NigeriaBackground: Scleral buckle surgery is not a commonly performed surgical procedure in Sub-Saharan Africa due to a paucity of trained vitreo retinal surgeons. The aim of the study was to review sclera buckle procedures with a view to evaluating the anatomical and visual outcomes.Methods: Case records of patients that had scleral buckle surgery at the Retina Unit of the University College Hospital, Ibadan, Nigeria, between 2007 and 2010 were reviewed. Information retrieved included patients' demographics, duration of symptoms, and presenting vision. Other information included site of retinal break, extent of retinal detachment, involvement of the fellow eye, and macular involvement. Postoperative retina reattachment and postoperative visual acuity were also recorded. Proportions and percentages were used to analyze data.Results: Forty five eyes of 42 patients were studied with a male to female ratio of 1.6:1. The mean age was 47.7 years (±17.6 years. The median duration before presentation was 3 months (range: 5 days – 156 months. Subtotal retinal detachment was found in 35 eyes (77.8% while total retinal detachment occurred in ten eyes (22.2%. Thirty four eyes (75.6% had "macular off" detachments. At 6 weeks, there was an improvement in visual acuity in 23 eyes (51.1%, while visual acuity remained the same in nine eyes (20% and was worse in 13 eyes (28.9%. Anatomical attachment was seen in 43 eyes (95.6% on the operation table, in 40 eyes (90.9% at first day postoperatively and in 32 eyes (86.5% at 6 weeks after surgery.Conclusion: Outcome of sclera buckle surgery for rhegmatogenous retinal detachment may be improved in developing countries of Sub Sahara Africa if adequate awareness is created to educate the populace on early presentation.Keywords: retinal detachment, scleral buckle surgery, anatomical and visual

  17. Emergent perversions in the buckling of heterogeneous elastic strips.

    Science.gov (United States)

    Liu, Shuangping; Yao, Zhenwei; Chiou, Kevin; Stupp, Samuel I; Olvera de la Cruz, Monica

    2016-06-28

    A perversion in an otherwise uniform helical structure, such as a climbing plant tendril, refers to a kink that connects two helices with opposite chiralities. Such singularity structures are widely seen in natural and artificial mechanical systems, and they provide the fundamental mechanism of helical symmetry breaking. However, it is still not clear how perversions arise in various helical structures and which universal principles govern them. As such, a heterogeneous elastic bistrip system provides an excellent model to address these questions. Here, we investigate intrinsic perversion properties which are independent of strip shapes. This study reveals the rich physics of perversions in the 3D elastic system, including the condensation of strain energy over perversions during their formation, the repulsive nature of the perversion-perversion interaction, and the coalescence of perversions that finally leads to a linear defect structure. This study may have implications for understanding relevant biological motifs and for use of perversions as energy storers in the design of micromuscles and soft robotics. PMID:27303040

  18. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    Science.gov (United States)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  19. Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2008-01-01

    The objective of this paper is to show the application of a novel approach to the rigid plastic hinge and yield line theory in post-buckling analysis of slender plates and columns. The upper bound theorem of plasticity theory and the associated flow law of plasticity are used to find the...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...

  20. Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates.

    Science.gov (United States)

    Na, Jun-Hee; Bende, Nakul P; Bae, Jinhye; Santangelo, Christian D; Hayward, Ryan C

    2016-06-14

    Shape programmable materials capable of morphing from a flat sheet into controlled three dimensional (3D) shapes offer promise in diverse areas including soft robotics, tunable optics, and bio-engineering. We describe a simple method of 'grayscale gel lithography' that relies on a digital micromirror array device (DMD) to control the dose of ultraviolet (UV) light, and therefore the extent of swelling of a photocrosslinkable poly(N-isopropyl acrylamide) (PNIPAm) copolymer film, with micrometer-scale spatial resolution. This approach allows for effectively smooth profiles of swelling to be prescribed, enabling the preparation of buckled 3D shapes with programmed Gaussian curvature. PMID:27169886

  1. Eringen's small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model

    Science.gov (United States)

    Zhang, Z.; Challamel, N.; Wang, C. M.

    2013-09-01

    This paper presents the determination of Eringen's small length scale coefficient e0 for buckling of nonlocal Timoshenko beam from a microstructured beam model. The microstructured beam model is composed of discrete rigid elements (of equal length), which are connected by rotational and shear springs that model the bending and shearing behaviors in a beam. The exact solution of e0 is given for nonlocal Timoshenko beam with small length scale term appearing in the normal stress-strain relation only. It is shown that e0 approaches 1/√12 ≈0.289 which coincides with the one calibrated for nonlocal Euler beams.

  2. Buckling And Postbuckling Of An Imperfect Plate Subjected To The Shear Load

    Directory of Open Access Journals (Sweden)

    Psotný Martin

    2015-12-01

    Full Text Available The stability analysis of an imperfect plate subjected to the shear load is presented. To solve this problem, a specialized computer program based on FEM has been created. The nonlinear finite element method equations are derived from the variational principle of minimum of total potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used. Corresponding levels of the total potential energy are defined. Special attention is paid to the influence of imperfections on the post-critical buckling mode. Obtained results are compared with those gained using ANSYS system.

  3. Limit-point buckling analyses using solid, shell and solid–shell elements

    OpenAIRE

    KILLPACK, Marc; ABED-MERAIM, Farid

    2011-01-01

    In this paper, the recently-developed solid-shell element SHB8PS is used for the analysis of a representative set of popular limit-point buckling benchmark problems. For this purpose, the element has been implemented in Abaqus/Standard finite element software and the modified Riks method was employed as an efficient path-following strategy. For the. benchmark problems tested, the new element shows better performance compared to solid elements and often performs as well as state-of-the-art she...

  4. The compressive buckling and size effect of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhou, E-mail: yuzhousun@126.com; Zhu, Yanzhi; Li, Dongxia [Department of Civil Engineering and Architecture, Zhongyuan University of Technology, Zhengzhou (China)

    2015-03-10

    A higher-order Bernoulli-Euler beam model is developed to investigate the compressive buckling and size effect of single-walled carbon nanotubes by using a higher-order continuum relationship that has been previously proposed by the present authors. The second-order deformation gradients with respect to the axial direction are also considered, and the beam parameters are obtained by calculating the constitutive response around the circumference. The critical compressive force is analytically provided, and the size effect is studied by estimating the contribution of the higher-order terms.

  5. Corneal topographic changes after 20-gauge pars plana vitrectomy associated with scleral buckling for the treatment of rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Alexandre Achille Grandinetti

    2013-04-01

    Full Text Available PURPOSE: To evaluate the changes in corneal topography after 20-gauge pars plana vitrectomy associated with scleral buckling for the repair of rhegmatogenous retinal detachment. METHODS: Twenty-five eyes of 25 patients with rhegmatogenous retinal detachment were included in this study. 20-gauge pars plana vitrectomy associated with scleral buckling was performed in all patients. The corneal topography of each was measured before surgery and one week, one month, and three months after surgery by computer-assisted videokeratoscopy. RESULTS: A statistically significant central corneal steepening (average, 0,9 D , p<0,001 was noted one week after surgery. The total corneal astigmatism had a significant increase in the first postoperative month (p=0,007. All these topographic changes persisted for the first month but returned to preoperative values three months after the surgery. CONCLUSION: Pars plana vitrectomy with scleral buckling was found to induce transient changes in corneal topography.

  6. Buckling analysis of rectangular composite plates with rectangular cutout subjected to linearly varying in-plane loading using fem

    Indian Academy of Sciences (India)

    A Lakshmi Narayana; Krishnamohana Rao; R Vijaya Kumar

    2014-06-01

    A numerical study is carried out using finite element method, to examine the effects of square and rectangular cutout on the buckling behavior of a sixteen ply quasi-isotropic graphite/epoxy symmetrically laminated rectangular composite plate $[0^\\circ /+45^\\circ /-45^\\circ /90^\\circ ]_{2s}$, subjected to various linearly varying in-plane compressive loads. Further, this paper addresses the effects of size of square/rectangular cutout, orientation of square/rectangular cutout, plate aspect ratio(a/b), plate length/thickness ratio(a/t), boundary conditions on the buckling bahaviour of symmetrically laminated rectangular composite plates subjected to various linearly varying in-plane compressive loading. It is observed that the various linearly varying in-plane loads and boundary conditions have a substantial influence on buckling strength of rectangular composite plate with square/rectangular cutout.

  7. NONLINEAR BUCKLING BEHAVIOR OF DAMAGED COMPOSITE SANDWICH PLATES CONSIDERING THE EFFECT OF TEMPERATURE-DEPENDENT THERMAL AND MECHANICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Bai Ruixiang; Chen Haoran

    2001-01-01

    On the basis of the first-order shear deformation plate theory and the zig-zag deformation assumption, an incremental finite element formulation for nonlinear buckling analysis of the composite sandwich plate is deduced and the temperature-dependent thermal and mechanical properties of composite is considered. A finite element method for thermal or thermo-mechanical coupling nonlinear buckling analysis of the composite sandwich plate with an interfacial crack damage between face and core is also developed. Numerical results and discussions concerning some typical examples show that the effects of the variation of the thermal and mechanical properties with temperature, extermal compressive loading, size of the damage zone and piy angle of the faces on the thermal buckling behavior are significant.

  8. THERMAL POST-BUCKLING OF AN ELASTIC BEAMS SUBJECTED TO A TRANSVERSELY NON-UNIFORM TEMPERATURE RISING

    Institute of Scientific and Technical Information of China (English)

    李世荣; 程昌钧; 周又和

    2003-01-01

    Based on the nonlinear geometric theory of axially extensible beams and by usingthe shooting method, the thermal post-buckling responses of an elastic beams, withimmovably simply supported ends and subjected to a transversely non-uniformly distributedtemperature rising, were investigated. Especially, the influences of the transversetemperature change on the thermal post-buckling deformations were examined and thecorresponding characteristic curves were plotted. The numerical results show that theequilibrium paths of the beam are similar to what of an initially deformed beam because ofthe thermal bending moment produced in the beam by the transverse temperature change.

  9. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  10. Buckling assisted and lithographically micropatterned fully flexible sensors for conformal integration applications

    Science.gov (United States)

    Maji, Debashis; Das, Debanjan; Wala, Jyoti; Das, Soumen

    2015-12-01

    Development of flexible sensors/electronics over substrates thicker than 100 μm is of immense importance for its practical feasibility. However, unlike over ultrathin films, large bending stress hinders its flexibility. Here we have employed a novel technique of fabricating sensors over a non-planar ridge topology under pre-stretched condition which not only helps in spontaneous generation of large and uniform parallel buckles upon release, but also acts as stress reduction zones thereby preventing Poisson’s ratio induced lateral cracking. Further, we propose a complete lithography compatible process to realize flexible sensors over pre-stretched substrates thicker than 100 μm that are released through dissolution of a water soluble sacrificial layer of polyvinyl alcohol. These buckling assisted flexible sensors demonstrated superior performance along different flexible modalities. Based on the above concept, we also realized a micro thermal flow sensor, conformally wrapped around angiographic catheters to detect flow abnormalities for potential applications in interventional catheterization process.

  11. Effect of shear connectors on local buckling and composite action in steel concrete composite walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai, E-mail: kai-zh@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R., E-mail: smalusht@bechtel.com [Bechtel Power Corporation, Frederick, MD (United States); Gallocher, Stewart, E-mail: stewart.gallocher@steelbricks.com [Modular Walling Systems Ltd., Glasgow (United Kingdom)

    2014-04-01

    Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t{sub p}) and yield stress (F{sub y}), and the shear connector spacing (s), stiffness (k{sub s}), and strength (Q{sub n}) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t{sub p}) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis.

  12. Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity

    Directory of Open Access Journals (Sweden)

    Arash Ghaedizadeh

    2016-01-01

    Full Text Available Metallic auxetic metamaterials are of great potential to be used in many applications because of their superior mechanical performance to elastomer-based auxetic materials. Due to the limited knowledge on this new type of materials under large plastic deformation, the implementation of such materials in practical applications remains elusive. In contrast to the elastomer-based metamaterials, metallic ones possess new features as a result of the nonlinear deformation of their metallic microstructures under large deformation. The loss of auxetic behavior in metallic metamaterials led us to carry out a numerical and experimental study to investigate the mechanism of the observed phenomenon. A general approach was proposed to tune the performance of auxetic metallic metamaterials undergoing large plastic deformation using buckling behavior and the plasticity of base material. Both experiments and finite element simulations were used to verify the effectiveness of the developed approach. By employing this approach, a 2D auxetic metamaterial was derived from a regular square lattice. Then, by altering the initial geometry of microstructure with the desired buckling pattern, the metallic metamaterials exhibit auxetic behavior with tuneable mechanical properties. A systematic parametric study using the validated finite element models was conducted to reveal the novel features of metallic auxetic metamaterials undergoing large plastic deformation. The results of this study provide a useful guideline for the design of 2D metallic auxetic metamaterials for various applications.

  13. Analysis on Buckling Performance of Submarine Pipelines During Deepwater Pipe-Laying Operation

    Institute of Scientific and Technical Information of China (English)

    YUAN Lin; GONG Shun-feng; JIN Wei-liang; LI Zhi-gang; ZHAO Dong-yan

    2009-01-01

    Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formalas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear rcsponse of elliptical collapse of steel circular tubes for different ratios of diameter to thickness (D/t) under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.

  14. Buckling analysis of an underground storage tank on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Many tanks are stored underground on the Oak Ridge Reservation in the state of Tennessee. The construction of some of these tanks dates back to the 1940s. A major Department of Energy (DOE) initiative is to assess the integrity of these existing tanks. These tanks must be analyzed and evaluated to ensure the safety of workers, the public, and the environment. This paper presents the results of a buckling analysis for two horizontal tanks in an underground vault. The tanks are 3.7 m (12.0 ft) in diam, 18.7 m (61.4 ft) long, and supported on two saddles. The analysis addresses different loading scenarios to complement the safety evaluation of these tanks. The loading conditions consider empty and half-full tanks in the vault flooded with either waste material or flood water to different heights. The results indicate that the tank will neither yield nor buckle for flood water of 5.5 m (18.0 ft) above the tank top

  15. Vibration and Buckling Analysis of Moderately Thick Plates using Natural Element Method

    Directory of Open Access Journals (Sweden)

    Mohammad Etemadi

    2015-07-01

    Full Text Available Using natural element method (NEM, the buckling and the free vibration behaviors of moderate thick plates is studied here. The basis of NEM is natural neighbors and Voronoi cells concepts. The shape functions of nodes located in the domain is equal to the proportion of common natural neighbors area divided by area that related by each Voronoi cells. First step in analyzing the moderate thick plates is identification boundaries. This is done by nodes scattering on problem domain. Mindlin/Reissner theory is used to express the equations of moderate thick plate. First and second order shape functions obtained from natural element method are used to discretize differential equations. Using numerical integration on whole discrete equations of domain, stiffness, geometry and mass matrices of plate are obtained. Buckling loads and vibration modes are expressed by substituting these matrices in plate equations of motions. Arbitrary shapes of plate are selected for solution. Comparing the results of the current approach with those obtained by other numerical analytical methods, it is shown that natural element method can solve problems with complex areas accurately.

  16. Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium

    International Nuclear Information System (INIS)

    In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated

  17. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala

    2014-11-03

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  18. On a generalized laminate theory with application to bending, vibration, and delamination buckling in composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, E.J.

    1989-01-01

    In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical as well as finite-element solutions of the theory are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and postbuckling are included and used to perform stress analysis of laminated plates. A general two dimensional theory of laminated cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modelled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects.

  19. Effect of shear connectors on local buckling and composite action in steel concrete composite walls

    International Nuclear Information System (INIS)

    Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (tp) and yield stress (Fy), and the shear connector spacing (s), stiffness (ks), and strength (Qn) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/tp) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis

  20. Scleral buckle is good option for treatment of uncomplicated retinal detachment

    Directory of Open Access Journals (Sweden)

    Iuuki Takasaka

    2012-12-01

    Full Text Available OBJETIVE: To describe the reattachment rate and visual acuity results of patients with uncomplicated rhegmatogenous retinal detachment who underwent segmental scleral buckle surgery. METHODS: Prospective case series of 100 patients with visual loss or symptoms (floaters and photopsia of less than 30 days' duration scheduled for surgery. No patient had a retinal break greater than 30°, a retinal detachment larger than 2 quadrants or proliferative vitreoretinopathy. RESULTS: The 1-week, 1-month, and 6-month anatomical success rates were 93%, 100%, and 100%, respectively. Seven patients underwent one additional retinal detachment surgery (pars plan vitrectomy after primary failure at 1-week follow-up. The preoperative, 1-month, and 6-month best correct visual acuity were 20/100, 20/80, and 20/50, respectively. The postoperative complications were: eyelid edema in 10% of the patients, transient ocular hypertension in 5%, macular pucker in 3%, transient diplopia in 3%, and hyphema (<0.5mm in 1%. CONCLUSION: In patients with uncomplicated retinal detachment, segmental scleral buckle showed a very good anatomical and functional success, with a few number of major complications.