WorldWideScience

Sample records for bubbles

  1. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could a...

  2. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  3. Vapor Bubbles

    Science.gov (United States)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  4. Bubble rupture in bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Chen Rouxi

    2015-01-01

    Full Text Available As the distinctive properties and different applications of nanofibers, the demand of nanofibers increased sharply in recently years. Bubble electrospinning is one of the most effective and industrialized methods for nanofiber production. To optimize the set-up of bubble electrospinning and improve its mass production, the dynamic properties of un-charged and charged bubbles are studied experimentally, the growth and rupture process of a bubble are also discussed in this paper.

  5. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  6. Exploring Bubbles

    Science.gov (United States)

    O'Geary, Melissa A.

    Bubbles provide an enjoyable and festive medium through which to teach many concepts within the science topics of light, color, chemistry, force, air pressure, electricity, buoyancy, floating, density, among many others. In order to determine the nature of children's engagement within a museum setting and the learning opportunities of playing with bubbles, I went to a children's interactive museum located in a metropolitan city in the Northeastern part of the United States.

  7. Antigravitating bubbles

    CERN Document Server

    Barnaveli, A T; Barnaveli, Andro; Gogberashvili, Merab

    1995-01-01

    We investigate the gravitational behavior of spherical domain walls (bubbles) arising during the phase transitions in the early Universe. In the thin-wall approximation we show the existence of the new solution of Einstein equations with negative gravitational mass of bubbles and the reversed direction of time flow on the shell. This walls exhibit gravitational repulsion just as the planar walls are assumed to do. The equilibrium radius and critical mass of such objects are found for realistic models.

  8. Bubble diagnostics

    Science.gov (United States)

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  9. Bubbling Threat

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The shift of China’s monetary policy stance from "moderately loose" to "prudent" in 2011 indicates curbing inflation and asset bubbles have become the Central Government’s top priority. But is China’s bubble problem short-term or long-term? Is it only monetary or related to economic structure? Is it the cause of China’s economic imbalance or the result? And what kind of deep-rooted problems in the macro economy does it reflect? All these questions call for deep thought,said Zhang Monan,a

  10. Leverage bubble

    Science.gov (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  11. Bubble drag reduction requires large bubbles

    CERN Document Server

    Verschoof, Ruben A; Sun, Chao; Lohse, Detlef

    2016-01-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  12. Bubble Drag Reduction Requires Large Bubbles

    Science.gov (United States)

    Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  13. Blowing bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Casteel, K.

    1999-04-01

    The article, based on a series of interviews with column flotation equipment suppliers, reviews and comments on the progress of bubble generator design. Developments mentioned include the Air/Water sparger from Cominco, the SparJet and SlamJet from CPT, the CISA sparger from Sevala CISA, Microcel flotation columns from Birtley Engineering, Flotaire column flotation cells from LMC International, and the Variable Gap Sparger from MinnovEX. 1 fig., 2 photo.

  14. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    2016-01-01

    While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable. Howe...... component in stock market valuation ratios, consistent with a rational bubble....

  15. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to...

  16. Tribonucleation of bubbles

    CERN Document Server

    Wildeman, Sander; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2016-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for "writing with bubbles," i.e., creating controlled patterns ...

  17. Bubble-sweeping mechanisms

    Institute of Scientific and Technical Information of China (English)

    WANG; Hao; (王; 昊); PENG; Xiaofeng; (彭晓峰); WANG; Buxuan; (王补宣); LEE; Duzhong; (李笃中)

    2003-01-01

    A series of subcooled boiling experiments was conducted on very small platinum wires having diameters of 0.1 and 0.025 mm. Vapor bubbles were visually observed to sweep back and forth along the wires in the experiments. The dynamic characteristics of bubble-sweeping phenomenon are described, and the induced bubble interaction and nonlinear growth are investigated to understand the boiling heat transfer mechanisms. An unsymmetrical temperature model is proposed to explain the physical mechanism.

  18. Bubbles and market crashes

    CERN Document Server

    Youssefmir, M; Hogg, T; Youssefmir, Michael; Huberman, Bernardo; Hogg, Tad

    1994-01-01

    We present a dynamical theory of asset price bubbles that exhibits the appearance of bubbles and their subsequent crashes. We show that when speculative trends dominate over fundamental beliefs, bubbles form, leading to the growth of asset prices away from their fundamental value. This growth makes the system increasingly susceptible to any exogenous shock, thus eventually precipitating a crash. We also present computer experiments which in their aggregate behavior confirm the predictions of the theory.

  19. Physics of bubble oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Lauterborn, Werner; Kurz, Thomas [Third Physical Institute, University of Goettingen (Germany)

    2010-10-01

    Bubbles in liquids, soft and squeezy objects made of gas and vapour, yet so strong as to destroy any material and so mysterious as at times turning into tiny light bulbs, are the topic of the present report. Bubbles respond to pressure forces and reveal their full potential when periodically driven by sound waves. The basic equations for nonlinear bubble oscillation in sound fields are given, together with a survey of typical solutions. A bubble in a liquid can be considered as a representative example from nonlinear dynamical systems theory with its resonances, multiple attractors with their basins, bifurcations to chaos and not yet fully describable behaviour due to infinite complexity. Three stability conditions are treated for stable trapping of bubbles in standing sound fields: positional, spherical and diffusional stability. Chemical reactions may become important in that respect, when reacting gases fill the bubble, but the chemistry of bubbles is just touched upon and is beyond the scope of the present report. Bubble collapse, the runaway shrinking of a bubble, is presented in its current state of knowledge. Pressures and temperatures that are reached at this occasion are discussed, as well as the light emission in the form of short flashes. Aspherical bubble collapse, as for instance enforced by boundaries nearby, mitigates most of the phenomena encountered in spherical collapse, but introduces a new effect: jet formation, the self-piercing of a bubble with a high velocity liquid jet. Examples of this phenomenon are given from light induced bubbles. Two oscillating bubbles attract or repel each other, depending on their oscillations and their distance. Upon approaching, attraction may change to repulsion and vice versa. When being close, they also shoot self-piercing jets at each other. Systems of bubbles are treated as they appear after shock wave passage through a liquid and with their branched filaments that they attain in standing sound fields. The N-bubble

  20. Bubble and drop interfaces

    CERN Document Server

    Miller

    2011-01-01

    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  1. Prospects for bubble fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  2. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  3. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    Veen, van der Roeland Cornelis Adriaan

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study t

  4. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  5. Single bubble sonoluminescence

    NARCIS (Netherlands)

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef

    2002-01-01

    Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light ten

  6. Bubble collision with gravitation

    CERN Document Server

    Hwang, Dong-il; Lee, Wonwoo; Yeom, Dong-han

    2012-01-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  7. Effect of bubble size on nanofiber diameter in bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Ren Zhong-Fu

    2016-01-01

    Full Text Available Polymer bubbles are widely used for fabrication of nanofibers. Bubble size affects not only bubble's surface tension, but also fiber's morphology. A mathematical model is established to reveal the effect of bubble size on the spinning process, and the experiment verification shows the theoretical analysis is reliable.

  8. Popping the Bubble

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Government adopts regulations to control real estate prices A mid concerns surrounding the presence of housing bubbles across China,the Chinese Government is taking action to secure and stabilize the real

  9. Chemistry in Soap Bubbles.

    Science.gov (United States)

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  10. Bubbling Out of Control

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Jim Chanos,founder of the U.S. hedge fund Kynikos Associates,characterized the prop-erty bubble in China as "Dubai times 1,000-or worse." Many Chinese economists agree. Yi Xianrong,a senior researcher at the Institute of Finance and Banking under the Chinese Academy of Social Sciences,said the property bubble in China was far worse than the Dubai crisis in an interview with the Beijing-based International Herald Leader. Edited excerpts follow:

  11. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  12. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  13. Investigation of bubble-bubble interaction effect during the collapse of multi-bubble system

    Science.gov (United States)

    Shao, Xueming; Zhang, Lingxin; Wang, Wenfeng

    2014-11-01

    Bubble collapse is not only an important subject among bubble dynamics, but also a key consequence of cavitation. It has been demonstrated that the structural damage is associated with the rapid change in flow fields during bubble collapse. How to model and simulate the behavior of the bubble collapse is now of great interest. In the present study, both theoretical analysis and a direct numerical simulation on the basis of VOF are performed to investigate the collapses of single bubble and bubble cluster. The effect of bubble-bubble interaction on the collapse of multi-bubble system is presented. The work was supported by the National Natural Science Foundation of China (11272284, 11332009).

  14. MEASUREMENT OF BUBBLE-BUBBLE INTERACTION DEPENDED ON REYNOLDS NUMBER USING STEREOSCOPIC BUBBLE-TRACKING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    QU Jian-wu; MURAI Yuichi; YAMAMOTO Fujio

    2005-01-01

    Bubble-bubble interaction in free rising bubbly flows is experimentally investigated in the present study.The velocity vectors of the bubbles are measured by a stereoscopic bubble-tracking technique and then the relative velocity vectors of two nearest-neighbor bubbles are calculated with high statistical reliability.With the measurement data at Reynolds number ranging from 5 to 75, the vertical attraction and the horizontal repulsion are confirmed for Re<10 as known by the past study based on Navier-Stokes simulation.The new finding of the present measurement is that the bubbles of Re>30 have repulsive velocity bothin the horizontal and the vertical directions as those rise closely.Moreover, the three-dimensional structure of the bubble-bubble interaction is discussed with the data analysis of the interaction vector fields.

  15. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  16. Experimantal Study on the Bubble Clustering in Bubbly Flows

    Science.gov (United States)

    Takagi, Shu; Fujiwara, Akiko; Ogasawara, Toshiyuki; Matsumoto, Yoichiro

    2003-11-01

    The statistical properties of bubbly flows and the near-wall bubble-clustering behaviors are investigated for upward flow in a rectangular channel. Bubble size, turbulent properties of liquid phase and the bubble clustering motion were measured using image-processing technique, Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV), respectively. Using 3-pentanol as a surfactant, the mono-dispersed 1mm-bubbles are generated. The mono-dispersed bubbles in upward flows accumulate near the wall and construct bubble clusters. These bubble clusters were investigated. Experimental observation showed that the size of bubble cluster can be much larger than that of the coherent structure in single phase turbulence. The clusters change their shape in time and space and these bubble motions accelerate the mean streamwise velocity near the wall due to the buoyancy effect. Thus the mean velocity profile of the liquid phase becomes flattened. It is suggested that the highly accumulated bubbles in the vicinity of the wall disturb the transport of turbulence energy produced in the wall shear layer from the central region of the channel flow. Furthermore, in the middle of channel, the fluctuations of the liquid phase are mainly generated by the bubble motions.

  17. Multivariate bubbles and antibubbles

    Science.gov (United States)

    Fry, John

    2014-08-01

    In this paper we develop models for multivariate financial bubbles and antibubbles based on statistical physics. In particular, we extend a rich set of univariate models to higher dimensions. Changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. Moreover, our multivariate models are able to capture some of the contagious effects that occur during such episodes. We are able to show that declining lending quality helped fuel a bubble in the US stock market prior to 2008. Further, our approach offers interesting insights into the spatial development of UK house prices.

  18. The Early Years: Blowing Bubbles

    Science.gov (United States)

    Ashbrook, Peggy

    2016-01-01

    Blowing bubbles is not only a favorite summer activity for young children. Studying bubbles that are grouped together, or "foam," is fun for children and fascinating to many real-world scientists. Foam is widely used--from the bedroom (mattresses) to outer space (insulating panels on spacecraft). Bubble foam can provide children a…

  19. The Liberal Arts Bubble

    Science.gov (United States)

    Agresto, John

    2011-01-01

    The author expresses his doubt that the general higher education bubble will burst anytime soon. Although tuition, student housing, and book costs have all increased substantially, he believes it is still likely that the federal government will continue to pour billions into higher education, largely because Americans have been persuaded that it…

  20. Popping the Bubble

    Institute of Scientific and Technical Information of China (English)

    LAN XINZHEN

    2010-01-01

    @@ Amid concerns surrounding the presence of housing bubbles across China,the Chinese Government is taking action to secure and stabilize the real estate market.In the past month,the government launched a series of regulatory policies aimed at cooling the overheated market.

  1. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  2. BEBC bubble chamber

    CERN Multimedia

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  3. Understanding the bubbles

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    that are identified to exist between the Internet and housing market bubbles: uncertainty and sentiments. The iteration between uncertainty and sentiments leads to the emergence of the third commonality: residue. The residue is the difference between the actors’ overall sentiment about exaggerated future prospects...

  4. Heavy liquid bubble chamber

    CERN Multimedia

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  5. Microfluidic "blinking" bubble pump

    NARCIS (Netherlands)

    Yin, Zhizhong; Prosperetti, Andrea

    2005-01-01

    The paper reports data obtained on a simple micropump, suitable for electrolytes, based on the periodic growth and collapse of a single vapor bubble in a microchannel. With a channel diameter of the order of 100 µm, pumping rates of several tens of µl/min and pressure differences of several kPa are

  6. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened w

  7. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    Science.gov (United States)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  8. Bubble properties of heterogeneous bubbly flows in a square bubble column: draft

    NARCIS (Netherlands)

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2009-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical prob

  9. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical extent

  10. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  11. CRISIS FOCUS Blowing Bubbles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Chinese stock and property markets have been outperforming expectations, fueled by an unprecedented surge in bank lending. Xie Guozhong, an economist and board member of Rosetta Stone Advisors, argues the robust Chinese economic figures are only propped up by bubbles, whose bursting will lead to a hard landing for the economy. Xie published his opinion in a related article in Caijing Magazine. Edited excerpts follow:

  12. Slurry bubble column hydrodynamics

    Science.gov (United States)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  13. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    Science.gov (United States)

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  14. Electrowetting of a soap bubble

    CERN Document Server

    Arscott, Steve

    2013-01-01

    A proof-of-concept demonstration of the electrowetting-on-dielectric of a sessile soap bubble is reported here. The bubbles are generated using a commercial soap bubble mixture - the surfaces are composed of highly doped, commercial silicon wafers covered with nanometre thick films of Teflon. Voltages less than 40V are sufficient to observe the modification of the bubble shape and the apparent bubble contact angle. Such observations open the way to inter alia the possibility of bubble-transport, as opposed to droplet-transport, in fluidic microsystems (e.g. laboratory-on-a-chip) - the potential gains in terms of volume, speed and surface/volume ratio are non-negligible.

  15. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubble...

  16. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...

  17. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  18. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  19. Dynamic Bubble Behaviour during Microscale Subcooled Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M.Christopher

    2005-01-01

    @@ Bubble cycles, including initiation, growth and departure, are the physical basis of nucleate boiling. The presentinvestigation, however, reveals unusual bubble motions during subcooled nucleate boiling on microwires 25 orl00μm in diameter. Two types of bubble motions, bubble sweeping and bubble return, are observed in theexperiments. Bubble sweeping describes a bubble moving back and forth along the wire, which is motion parallelto the wire. Bubble return is the bubble moving back to the wire after it has detached or leaping above thewire. Theoretical analyses and numerical simulations are conducted to investigate the driving mechanisms forboth bubble sweeping and return. Marangoni flow from warm to cool regions along the bubble interface is foundto produce the shear stresses needed to drive these unusual bubble movements.

  20. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    Science.gov (United States)

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media.

  1. Triangular bubble spline surfaces.

    Science.gov (United States)

    Kapl, Mario; Byrtus, Marek; Jüttler, Bert

    2011-11-01

    We present a new method for generating a [Formula: see text]-surface from a triangular network of compatible surface strips. The compatible surface strips are given by a network of polynomial curves with an associated implicitly defined surface, which fulfill certain compatibility conditions. Our construction is based on a new concept, called bubble patches, to represent the single surface patches. The compatible surface strips provide a simple [Formula: see text]-condition between two neighboring bubble patches, which are used to construct surface patches, connected with [Formula: see text]-continuity. For [Formula: see text], we describe the obtained [Formula: see text]-condition in detail. It can be generalized to any [Formula: see text]. The construction of a single surface patch is based on Gordon-Coons interpolation for triangles.Our method is a simple local construction scheme, which works uniformly for vertices of arbitrary valency. The resulting surface is a piecewise rational surface, which interpolates the given network of polynomial curves. Several examples of [Formula: see text], [Formula: see text] and [Formula: see text]-surfaces are presented, which have been generated by using our method. The obtained surfaces are visualized with reflection lines to demonstrate the order of smoothness.

  2. Tuning bubbly structures in microchannels.

    Science.gov (United States)

    Vuong, Sharon M; Anna, Shelley L

    2012-06-01

    Foams have many useful applications that arise from the structure and size distribution of the bubbles within them. Microfluidics allows for the rapid formation of uniform bubbles, where bubble size and volume fraction are functions of the input gas pressure, liquid flow rate, and device geometry. After formation, the microchannel confines the bubbles and determines the resulting foam structure. Bubbly structures can vary from a single row ("dripping"), to multiple rows ("alternating"), to densely packed bubbles ("bamboo" and dry foams). We show that each configuration arises in a distinct region of the operating space defined by bubble volume and volume fraction. We describe the boundaries between these regions using geometric arguments and show that the boundaries are functions of the channel aspect ratio. We compare these geometric arguments with foam structures observed in experiments using flow-focusing, T-junction, and co-flow designs to generate stable nitrogen bubbles in aqueous surfactant solution and stable droplets in oil containing dissolved surfactant. The outcome of this work is a set of design parameters that can be used to achieve desired foam structures as a function of device geometry and experimental control parameters.

  3. Bubble chamber: colour enhanced tracks

    CERN Multimedia

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  4. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.

    2008-01-01

    Explosive evaporation occurs when a liquid is exposed to extremely high heat-fluxes. Within a few microseconds a bubble in the form vapour film is generated, followed by rapid growth due to the pressure impulse and finally the bubbles collapse. This effect, which already has proven its use in curren

  5. Bubble coalescence in breathing DNA

    DEFF Research Database (Denmark)

    Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias;

    2007-01-01

    We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribu...

  6. Growing bubbles rising in line

    Directory of Open Access Journals (Sweden)

    John F. Harper

    2001-01-01

    Full Text Available Over many years the author and others have given theories for bubbles rising in line in a liquid. Theory has usually suggested that the bubbles will tend towards a stable distance apart, but experiments have often showed them pairing off and sometimes coalescing. However, existing theory seems not to deal adequately with the case of bubbles growing as they rise, which they do if the liquid is boiling, or is a supersaturated solution of a gas, or simply because the pressure decreases with height. That omission is now addressed, for spherical bubbles rising at high Reynolds numbers. As the flow is then nearly irrotational, Lagrange's equations can be used with Rayleigh's dissipation function. The theory also works for bubbles shrinking as they rise because they dissolve.

  7. Energy spectra in bubbly turbulence

    CERN Document Server

    Prakash, Vivek N; Ramos, Fabio Ernesto Mancilla; Tagawa, Yoshiyuki; Lohse, Detlef; Sun, Chao

    2013-01-01

    We conduct experiments in a turbulent bubbly flow to study the unknown nature of the transition between the classical -5/3 energy spectrum scaling for a single-phase turbulent flow and the -3 scaling for a swarm of bubbles rising in a quiescent liquid and of bubble-dominated turbulence. The bubblance parameter, b, which measures the ratio of the bubble-induced kinetic energy to the kinetic energy induced by the turbulent liquid fluctuations before bubble injection, is used to characterise the bubbly flow. We vary b from $b = \\infty$ (pseudo-turbulence) to b = 0 (single-phase flow) over 2-3 orders of magnitude: ~O(0.01, 0.1, 5) to study its effect on the turbulent energy spectrum and liquid velocity fluctuations. The experiments are conducted in a multi-phase turbulent water tunnel with air bubbles of diameters 2-4 mm and 3-5 mm. An active-grid is used to generate nearly homogeneous and isotropic turbulence in the liquid flow. The liquid speeds and gas void fractions are varied to achieve the above mentioned b...

  8. Doughnut-shaped soap bubbles

    Science.gov (United States)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  9. Partial coalescence of soap bubbles

    Science.gov (United States)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2015-11-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette and to the coalescence cascade of droplets on a fluid bath.

  10. Bubble Growth in Lunar Basalts

    Science.gov (United States)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  11. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  12. Thermal Phase in Bubbling Geometries

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-Yong

    2008-01-01

    We use matrix model to study thermal phase in bubbling half-BPS type IIB geometries with SO(4)×SO(4) symmetry.Near the horizon limit,we find that thermal vacua of bubbling geometries have disjoint parts,and each part is one kind of phase of the thermal system.We connect the thermal dynamics of bubbling geometries with one-dimensional fermions thermal system.Finally,we try to give a new possible way to resolve information loss puzzle.

  13. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    Science.gov (United States)

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.

  14. Bubble Dynamics and Resulting Noise from Traveling Bubble Cavitation.

    Science.gov (United States)

    1982-04-13

    has resulted in models which aqree well with bubble dynamics recorded by high speed film . Chahine, et. al. (23) incorporated asymmetric bubble...recording on the tape soundtrack . 3.8 Measurement of Gas Nuclei in Water The role of nuclei density and size in cavitation inception has been the subject...interference between the coherent background and the particle-diffracted radiation exooses photographic film in the far-field of the nuclei. This

  15. The Housing Bubble Fact Sheet

    OpenAIRE

    Dean Baker

    2005-01-01

    This paper explains the basic facts about the current housing market. It lays out the evidence that the rise in housing prices constitutes a housing bubble - and explains what can be expected when it inevitably collapses.

  16. Bubble bean bags in shampoo

    CERN Document Server

    Kundu, Anup; Das, Gargi; Harikrishnan, G

    2011-01-01

    In these fluid dynamics videos, we, for the first time, show various interactions of a 'Taylor bubble' with their smaller and differently, shaped counterparts, in a shear thinning, non-Newtonian fluid, confined in a narrow channel.

  17. Mechanisms of single bubble cleaning.

    Science.gov (United States)

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8substrate and remove particles without significant contact of the gas phase. (II) For small distances, γsubstrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the

  18. Doughnut-shaped soap bubbles

    CERN Document Server

    Preve, Deison

    2015-01-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume $V$ and with a fixed equatorial perimeter $L$. It is well known that the sphere is the solution for $V=L^3/6\\pi^2$, and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for $V<\\alpha L^3/6\\pi^2$, with $\\alpha\\approx 0.21$, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtainin...

  19. Measuring online social bubbles

    Directory of Open Access Journals (Sweden)

    Dimitar Nikolov

    2015-12-01

    Full Text Available Social media have become a prevalent channel to access information, spread ideas, and influence opinions. However, it has been suggested that social and algorithmic filtering may cause exposure to less diverse points of view. Here we quantitatively measure this kind of social bias at the collective level by mining a massive datasets of web clicks. Our analysis shows that collectively, people access information from a significantly narrower spectrum of sources through social media and email, compared to a search baseline. The significance of this finding for individual exposure is revealed by investigating the relationship between the diversity of information sources experienced by users at both the collective and individual levels in two datasets where individual users can be analyzed—Twitter posts and search logs. There is a strong correlation between collective and individual diversity, supporting the notion that when we use social media we find ourselves inside “social bubbles.” Our results could lead to a deeper understanding of how technology biases our exposure to new information.

  20. The effects of surfactants on the lateral migration of bubbles and the bubble clustering phenomenon in a bubbly channel flow

    Science.gov (United States)

    Takagi, Shu; Ogasawara, Toshiyuki; Matsumoto, Yoichiro

    2004-11-01

    The behaviors of bubbles in an upward channel flow are experimentally investigated. Two kinds of surfactant, 3-pentanol and Triton X-100 are added in the bubbly flow. Addition of surfactant prevents the bubble coalescence and mono-dispersed 1mm spherical bubbles were obtained, although these surfactants do not modify the single-phase turbulence statistics. At the condition of high Reynolds number (Re=8200) with 20-60ppm 3-Pentanol, bubbles migrated towards the wall. These bubbles highly accumulated near the wall and formed crescent like shaped horizontal bubble clusters of 10-40mm length. On the other hand, bubble clusters did not appear in the 2ppm Triton-X100 aqueous solution. By the addition of the small amount of Triton-X100, bubble coalescences were also preventable and the bubble size and its distribution became almost the same as in the case of 60ppm 3-Pentanol aqueous solution. However, the tendency of the lateral migration of bubbles towards the wall weakened and the bubbles did not accumulated near the wall. And this is the main reason of the disapperance of bubble cluster. We discuss this phenomenon, related to the lift force acting on bubbles and particles.

  1. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  2. Bubble-bubble interaction: A potential source of cavitation noise

    CERN Document Server

    Ida, Masato

    2009-01-01

    The interaction between microbubbles through pressure pulses has been studied to show that it can be a source of cavitation noise. A recent report demonstrated that the acoustic noise generated by a shrimp originates from the collapse of a cavitation bubble produced when the shrimp closes its snapper claw. The recorded acoustic signal contains a broadband noise that consists of positive and negative pulses, but a theoretical model for single bubbles fails to reproduce the negative ones. Using a nonlinear multibubble model we have shown here that the negative pulses can be explained by considering the interaction of microbubbles formed after the cavitation bubble has collapsed and fragmented: Positive pulses produced at the collapse of the microbubbles hit and impulsively compress neighboring microbubbles to generate reflected pulses whose amplitudes are negative. Discussing the details of the noise generation process, we have found that no negative pulses are generated if the internal pressure of the reflecti...

  3. Bubble-sort图和Modified Bubble-sort图的自同构群%Automorphism Groups of Bubble-sort Graphs and Modified Bubble-sort Graphs

    Institute of Scientific and Technical Information of China (English)

    张昭; 黄琼湘

    2005-01-01

    Bubble-sort graphs and modified bubble-sort graphs are two classes of Cayley graphs which are widely studied for their application in network construction. In this paper, we determine the full automorphism groups of bubble-sort graphs and modified bubble-sort graphs.%Bubble-Sort图和Modified Bubble-Sort图是两类特殊的Cayley图,由于其在网络构建中的应用而受到广泛关注.本文完全确定了这两类图的自同构群.

  4. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  5. Bursting Bubbles and Bilayers

    Directory of Open Access Journals (Sweden)

    Steven P. Wrenn, Stephen M. Dicker, Eleanor F. Small, Nily R. Dan, Michał Mleczko, Georg Schmitz, Peter A. Lewin

    2012-01-01

    Full Text Available This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol (PEG - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented

  6. How safe is Bubble Soccer?

    Science.gov (United States)

    Halani, Sameer H; Riley, Jonathan P; Pradilla, Gustavo; Ahmad, Faiz U

    2016-12-01

    Traumatic neurologic injury in contact sports is a rare but serious consequence for its players. These injuries are most commonly associated with high-impact collisions, for example in football, but are found in a wide variety of sports. In an attempt to minimize these injuries, sports are trying to increase safety by adding protection for participants. Most recently is the seemingly 'safe' sport of Bubble Soccer, which attempts to protect its players with inflatable plastic bubbles. We report a case of a 16-year-old male sustaining a cervical spine burst fracture with incomplete spinal cord injury while playing Bubble Soccer. To our knowledge, this is the first serious neurological injury reported in the sport.

  7. Fine bubble generator and method

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, P.M.; Koros, R.M.

    1990-10-09

    This patent describes a method of forming fine gaseous bubbles in a liquid ambient. It comprises: forcing a gas through orifices located in the liquid ambient while simultaneously forcing a liquid through liquid orifices at a velocity sufficient to form jet streams of liquid, the liquid orifices being equal in number to the gas orifices and so oriented that each jet stream of liquid intersects the gas forced through each gas orifice and creates sufficient turbulence where the gas and jet stream of liquid intersect, whereby fine gaseous bubbles are formed.

  8. Bubble nucleation in an explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.C.

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  9. Bubble Content in Air/Hydro System--Part 1:Measurement of Bubble Content

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanism of bubble formation in air/hydro systems is investigated. Results presented in this paper include further insight into the mechanism of bubble formation and the measurement of bubble content. The regularity of bubble transport in the system is found, with an idea for a new method for separating gas from oil. The method has been verified experimentally with favorable results.

  10. Single bubble sonoluminescence and stable cavitation

    Institute of Scientific and Technical Information of China (English)

    CHEN Qian; QIAN Menglu

    2004-01-01

    A single bubble trapped at an antinode of an acoustic standing wave field in water can emit 50ps-140ps light pulses, called "single bubble sonoluminescence" (SBSL). It arouses much interest in physical acoustics because of its highly non-linear characteristics, high concentration of energy, and stable cavitation behavior. In this paper, bubble stability, the dynamic behavior of bubbles, non-invasive measurement of driving acoustic pressure and Mie scattering method are introduced.

  11. Bubble Formation in Silicon-Quartz Interface

    OpenAIRE

    Kakimoto, K.; EGUCHI, M.; Ozoe, H.

    1997-01-01

    Bubble formation at an interface between silicon melt and a quartz crucible was studied by thermodynamical calculation and visualization of bubble formation using X-ray radiography. A phase diagram of silicon-oxygen (Si-O) system is also calculated from the reported thermodynamical data. Critical temperature and radius of bubble formation at the interface was discussed.

  12. Radiation Damping at a Bubble Wall

    CERN Document Server

    Lee, J; Lee, C H; Jang, J; Lee, Jae-weon; Kim, Kyungsub; Lee, Chul H.; Jang, Ji-ho

    1999-01-01

    The first order phase transition proceeds via nucleation and growth of true vacuum bubbles. When charged particles collide with the bubble they could radiate electromagnetic wave. We show that, due to an energy loss of the particles by the radiation, the damping pressure acting on the bubble wall depends on the velocity of the wall even in a thermal equilibrium state.

  13. Dynamic behavior of gas bubble in single bubble sonoluminescence - vibrator model

    Institute of Scientific and Technical Information of China (English)

    QIAN Menglu; CHENG Qian; GE Caoyan

    2002-01-01

    Single bubble sonoluminescence is a process of energy transformation from soundto light. Therefore the motion equations of near spherical vibration of a gas bubble in anincompressible and viscous liquid can be deduced by Lagrangian Equation with dissipationfunction when the bubble is considered as a vibrator surrounded by liquid. The analyticalsolutions in the bubble expanding, collapsing and rebounding stages can be obtained by solvingthese motion equations when some approximations are adopted. And the dynamic behaviorsof the bubble in these three stages are discussed.

  14. "Financial Bubbles" and Monetary Policy

    Science.gov (United States)

    Tikhonov, Yuriy A.; Pudovkina, Olga E.; Permjakova, Juliana V.

    2016-01-01

    The relevance of this research is caused by the need of strengthening a role of monetary regulators to prevent financial bubbles in the financial markets. The aim of the article is the analysis of a problem of crisis phenomena in the markets of financial assets owing to an inadequate growth of their cost, owing to subjective reasons. The leading…

  15. Impurity bubbles in a BEC

    Science.gov (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  16. Electrolysis Bubbles Make Waterflow Visible

    Science.gov (United States)

    Schultz, Donald F.

    1990-01-01

    Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.

  17. The Big European Bubble Chamber

    CERN Multimedia

    1977-01-01

    The 3.70 metre Big European Bubble Chamber (BEBC), dismantled on 9 August 1984. During operation it was one of the biggest detectors in the world, producing direct visual recordings of particle tracks. 6.3 million photos of interactions were taken with the chamber in the course of its existence.

  18. Droplets, Bubbles and Ultrasound Interactions

    NARCIS (Netherlands)

    Shpak, O.; Verweij, M.; Jong, de N.; Versluis, M.; Escoffre, J.M.; Bouakaz, A.

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to

  19. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.C.

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and fina

  20. Bubble-Driven Inertial Micropump

    CERN Document Server

    Torniainen, Erik D; Markel, David P; Kornilovitch, Pavel E

    2012-01-01

    The fundamental action of the bubble-driven inertial micropump is investigated. The pump has no moving parts and consists of a thermal resistor placed asymmetrically within a straight channel connecting two reservoirs. Using numerical simulations, the net flow is studied as a function of channel geometry, resistor location, vapor bubble strength, fluid viscosity, and surface tension. Two major regimes of behavior are identified: axial and non-axial. In the axial regime, the drive bubble either remains inside the channel or continues to grow axially when it reaches the reservoir. In the non-axial regime the bubble grows out of the channel and in all three dimensions while inside the reservoir. The net flow in the axial regime is parabolic with respect to the hydraulic diameter of the channel cross-section but in the non-axial regime it is not. From numerical modeling, it is determined that the net flow is maximal when the axial regime crosses over to the non-axial regime. To elucidate the basic physical princi...

  1. The effects of bubble-bubble interactions on pressures and temperatures produced by bubbles collapsing near a rigid surface

    Science.gov (United States)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2016-11-01

    Cavitation occurs in a wide range of hydraulic applications, and one of its most important consequences is structural damage to neighboring surfaces following repeated bubble collapse. A number of studies have been conducted to predict the pressures produced by the collapse of a single bubble. However, the collapse of multiple bubbles is known to lead to enhanced collapse pressures. In this study, we quantify the effects of bubble-bubble interactions on the bubble dynamics and pressures/temperatures produced by the collapse of a pair of bubbles near a rigid surface. For this purpose, we use an in-house, high-order accurate shock- and interface-capturing method to solve the 3D compressible Navier-Stokes equations for gas/liquid flows. The non-spherical bubble dynamics are investigated and the subsequent pressure and temperature fields are characterized based on the relevant parameters entering the problem: stand-off distance, geometrical configuation, collapse strength. We demonstrate that bubble-bubble interactions amplify/reduce pressures and temperatures produced at the collapse, and increase the non-sphericity of the bubbles and the collapse time, depending on the flow parameters.

  2. Experimental study of the interaction between the spark-induced cavitation bubble and the air bubble

    Institute of Scientific and Technical Information of China (English)

    罗晶; 许唯临; 牛志攀; 罗书靖; 郑秋文

    2013-01-01

    Experiments are carried out by using high-speed photography to investigate the interaction between the spark-generated cavitation bubble and the air bubble in its surrounding fluid. Three problems are discussed in detail: the impact of the air bubble upon the development of the cavitation bubble, the evolution of the air bubble under the influence of the cavitation bubble, and the change of the fluid pressure during the development of a micro jet of the cavitation bubble. Based on the experimental results, under the condition of no air bubble present, the lifetime of the cavitation bubble from expansion to contraction increases with the increase of the maximum radius. On the other hand, when there is an air bubble present, different sized cavitation bubbles have similarity with one another generally in terms of the lifetime from expansion to contraction, which does not depend on the maximum radius. Also, with the presence of an air bubble, the lifetime of the smaller cavitation bubble is extended while that of the bigger ones reduced. Furthermore, it is shown in the experiment that the low pressure formed in the opposite direction to the cavitation bubble micro jet makes the air bubble in the low pressure area being stretched into a steplike shape.

  3. Shell correction energy for bubble nuclei

    CERN Document Server

    Yu, Y; Magierski, P; Bulgac, Aurel; Magierski, Piotr

    2000-01-01

    The positioning of a bubble inside a many fermion system does not affect the volume, surface or curvature terms in the liquid drop expansion of the total energy. Besides possible Coulomb effects, the only other contribution to the ground state energy of such a system arises from shell effects. We show that the potential energy surface is a rather shallow function of the displacement of the bubble from the center and in most cases the preferential position of a bubble is off center. Systems with bubbles are expected to have bands of extremely low lying collective states, corresponding to various bubble displacements.

  4. Supercoiling induces denaturation bubbles in circular DNA.

    Science.gov (United States)

    Jeon, Jae-Hyung; Adamcik, Jozef; Dietler, Giovanni; Metzler, Ralf

    2010-11-12

    We present a theoretical framework for the thermodynamic properties of supercoiling-induced denaturation bubbles in circular double-stranded DNA molecules. We explore how DNA supercoiling, ambient salt concentration, and sequence heterogeneity impact on the bubble occurrence. An analytical derivation of the probability distribution to find multiple bubbles is derived and the relevance for supercoiled DNA discussed. We show that in vivo sustained DNA bubbles are likely to occur due to partial twist release in regions rich in weaker AT base pairs. Single DNA plasmid imaging experiments clearly demonstrate the existence of bubbles in free solution.

  5. Bubble Universe Dynamics After Free Passage

    CERN Document Server

    Ahlqvist, Pontus; Greene, Brian

    2013-01-01

    We consider bubble collisions in single scalar field theories with multiple vacua. Recent work has argued that at sufficiently high impact velocities, collisions between such bubble vacua are governed by 'free passage' dynamics in which field interactions can be ignored during the collision, providing a systematic process for populating local minima without quantum nucleation. We focus on the time period that follows the bubble collision and provide evidence that, for certain potentials, interactions can drive significant deviations from the free-passage bubble profile, thwarting the production of bubbles with different field values.

  6. An equation of motion for bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Lesage, F.J. [College d' Enseignement General et Professionnel de L' Outaouais, Gatineau, Quebec (Canada). Dept. of Mathematics; Cotton, J.S. [McMaster University, Hamilton, ON (Canada). Dept. of Mechanical Engineering; Robinson, A.J. [Trinity College Dublin (Ireland). Dept. of Mechanical and Manufacturing Engineering

    2009-07-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  7. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G.de

    2006-01-01

    Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically

  8. Cosmological HII Bubble Growth During Reionization

    CERN Document Server

    Shin, Min-Su; Cen, Renyue

    2007-01-01

    We present general properties of ionized hydrogen (HII) bubbles and their growth based on a state-of-the-art large-scale (100 Mpc/h) cosmological radiative transfer simulation. The simulation resolves all halos with atomic cooling at the relevant redshifts and simultaneously performs radiative transfer and dynamical evolution of structure formation. Our major conclusions include: (1) for significant HII bubbles, the number distribution is peaked at a volume of ~ 0.6 Mpc^3/h^3 at all redshifts. But, at z 10 even the largest HII bubbles have a balanced ionizing photon contribution from Pop II and Pop III stars, while at z < 8 Pop II stars start to dominate the overall ionizing photon production for large bubbles, although Pop III stars continue to make a non-negligible contribution. (6) The relationship between halo number density and bubble size is complicated but a strong correlation is found between halo number density and bubble size for for large bubbles.

  9. Digital Microfluidics with Bubble Manipulations by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Shih-Kang Fan

    2012-03-01

    Full Text Available This paper presents basic bubble manipulations, including transporting, splitting, and merging, by dielectrophoresis (DEP in an oil environment. In our presented method, bubbles are placed between parallel plates in an oil medium of a low vapor pressure, which eliminates the possibility of changing the gaseous composition of the bubble caused by evaporation of the medium. DEP has been previously investigated to actuate dielectric droplets and is adopted here to drive the oil environment as well as the immersed bubbles between parallel plates. In our experiment, air bubbles of 0.3 ml were successfully transported in a 20 cSt silicone oil medium between a 75 mm-high parallel plate gap. In addition, 0.6 ml air bubbles were successfully split into two 0.3 ml air bubbles, and then merged again by DEP. These successful manipulations make digital gaseous lab-on-a-chip a reality.

  10. Developed ‘laminar’ bubbly flow with non-uniform bubble sizes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bubbles with different sizes have different dynamic and kineticbehavior in a two-phase bubbly flow. A common two-fluid model based on the uniform bubble size assumption is not suitable for a bubbly flow with non-uniform bubble sizes. To deal with non-uniform bubbly flows, a multi-fluid model is established, with which bubbles are divided into several groups according to their sizes and a set of basic equations is derived for each group of bubbles with almost the same size. Through analyzing the bubble-bubble and bubble-pipe wall interactions, two new constitutive laws for the wall-force and pressure difference between the liquid phase and interface are developed to close the averaged basic equations. The respective phase distributions for each group of bubbles measured by a specially designed three-dimensional photographic method are used to check the model. Comparison between model-predicted values and experimental data shows that the model can describe laminar bubbly flow with non-uniform bubble sizes.

  11. Bubble–bubble interaction effects on dynamics of multiple bubbles in a vortical flow field

    Directory of Open Access Journals (Sweden)

    Bing Cui

    2016-02-01

    Full Text Available Bubble–bubble interactions play important roles in the dynamic behaviours of multiple bubbles or bubble clouds in a vortical flow field. Based on the Rayleigh–Plesset equation and the modified Maxey–Riley equation of a single bubble, bubble–bubble interaction terms are derived and introduced for multiple bubbles. Thus, both the Rayleigh–Plesset and modified Maxey–Riley equations are improved by considering bubble–bubble interactions and then applied for the multiple bubbles entrainment into a stationary Gaussian vortex. Runge–Kutta fourth-order scheme is adopted to solve the coupled dynamic and kinematic equations and the convergence study has been conducted. Numerical result has also been compared and validated with the published experimental data. On this basis, the oscillation, trajectory and effects of different parameters of double-bubble and multi-bubble entrainment into Gaussian vortex have been studied and the results have been compared with those of the cases without bubble–bubble interactions. It indicates that bubble–bubble interactions influence the amplitudes and periods of bubble oscillations severely, but have small effects on bubble trajectories.

  12. Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction.

    Science.gov (United States)

    Ida, Masato; Naoe, Takashi; Futakawa, Masatoshi

    2007-10-01

    The dynamic behavior of cavitation and gas bubbles under negative pressure has been studied numerically to evaluate the effect of gas bubble injection into a liquid on the suppression of cavitation inception. In our previous studies, it was demonstrated by direct observation that cavitation occurs in liquid mercury when mechanical impacts are imposed, and this will cause cavitation damage in spallation neutron sources, in which liquid mercury is bombarded by a high-power proton beam. In the present paper, we describe numerical investigations of the dynamics of cavitation bubbles in liquid mercury using a multibubble model that takes into account the interaction of a cavitation bubble with preexisting gas bubbles through bubble-radiated pressure waves. The numerical results suggest that, if the mercury includes gas bubbles whose equilibrium radius is much larger than that of the cavitation bubble, the explosive expansion of the cavitation bubble (i.e., cavitation inception) is suppressed by the positive-pressure wave radiated by the injected bubbles, which decreases the magnitude of the negative pressure in the mercury.

  13. Conformal gravity and "gravitational bubbles"

    CERN Document Server

    Berezin, V A; Eroshenko, Yu N

    2015-01-01

    We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson--Walker metrics. We called one of them the "gravitational bubbles", which is compact and with zero Weyl tensor. These "gravitational bubbles" are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from "nothing". The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-para...

  14. Bubble entrapment through topological change

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2010-05-03

    When a viscousdrop impacts onto a solid surface, it entraps a myriad of microbubbles at the interface between liquid and solid. We present direct high-speed video observations of this entrapment. For viscousdrops, the tip of the spreading lamella is separated from the surface and levitated on a cushion of air. We show that the primary mechanism for the bubble entrapment is contact between this precursor sheet of liquid with the solid and not air pulled directly through cusps in the contact line. The sheet makes contact with the solid surface,forming a wetted patch, which grows in size, but only entraps a bubble when it meets the advancing contact line. The leading front of this wet patch can also lead to the localized thinning and puncturing of the liquid film producing strong splashing of droplets.

  15. BEBC Big European Bubble Chamber

    CERN Multimedia

    1974-01-01

    A view of the dismantling of the magnet of BEBC, the 3.7 m European Bubble Chamber : iron magnetic shielding ; lower and upper parts of the vacuum enclosure of the magnet; turbo-molecular vacuum pumps for the "fish-eye" windows; the two superconducting coils; a handling platform; the two cryostats suspended from the bar of the travelling crane which has a 170 ton carrying capacity. The chamber proper, not dismantled, is inside the shielding.

  16. Photon Bubbles in Accretion Discs

    OpenAIRE

    Gammie, Charles F.

    1998-01-01

    We show that radiation dominated accretion discs are likely to suffer from a ``photon bubble'' instability similar to that described by Arons in the context of accretion onto neutron star polar caps. The instability requires a magnetic field for its existence. In an asymptotic regime appropriate to accretion discs, we find that the overstable modes obey the remarkably simple dispersion relation \\omega^2 = -i g k F(B,k). Here g is the vertical gravitational acceleration, B the magnetic field, ...

  17. Soap bubbles in paintings: Art and science

    Science.gov (United States)

    Behroozi, F.

    2008-12-01

    Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.

  18. Armoring confined bubbles in concentrated colloidal suspensions

    Science.gov (United States)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  19. Manipulating bubbles with secondary Bjerknes forces

    Energy Technology Data Exchange (ETDEWEB)

    Lanoy, Maxime [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France); Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Derec, Caroline; Leroy, Valentin [Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Tourin, Arnaud [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France)

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  20. Tube erosion in bubbling fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.K. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center; Stallings, J.W. [Electric Power Research Inst., Palo Alto, CA (United States)

    1991-12-31

    This paper reports on experimental and theoretical studies that were preformed of the interaction between bubbles and tubes and tube erosion in fluidized beds. The results are applicable to the erosion of horizontal tubes in the bottom row of a tube bundle in a bubbling bed. Cold model experimental data show that erosion is caused by the impact of bubble wakes on the tubes, with the rate of erosion increasing with the velocity of wake impact with the particle size. Wake impacts resulting from the vertical coalescence of pairs of bubbles directly beneath the tube result in particularly high rates of erosion damage. Theoretical results from a computer simulation of bubbling and erosion show very strong effects of the bed geometry and bubbling conditions on computed rates of erosion. These results show, for example, that the rate of erosion can be very sensitive to the vertical location of the bottom row of tubes with respect to the distributor.

  1. Bernoulli Suction Effect on Soap Bubble Blowing?

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  2. Mechanism of bubble detachment from vibrating walls

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjun; Park, Jun Kwon, E-mail: junkeun@postech.ac.kr; Kang, Kwan Hyoung [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kang, In Seok [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of)

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  3. Bubbles Rising Through a Soft Granular Material

    Science.gov (United States)

    Le Mestre, Robin; MacMinn, Chris; Lee, Sungyon

    2016-11-01

    Bubble migration through a soft granular material involves a strong coupling between the bubble dynamics and the deformation of the material. This is relevant to a variety of natural processes such as gas venting from sediments and gas exsolution from magma. Here, we study this process experimentally by injecting air bubbles into a quasi-2D packing of soft hydrogel beads and measuring the size, speed, and morphology of the bubbles as they rise due to buoyancy. Whereas previous work has focused on deformation resisted by intergranular friction, we focus on the previously inaccessible regime of deformation resisted by elasticity. At low confining stress, the bubbles are irregular and rounded, migrating via local rearrangement. At high confining stress, the bubbles become unstable and branched, migrating via pathway opening. The authors thank The Royal Society for support (International Exchanges Ref IE150885).

  4. Simple improvements to classical bubble nucleation models

    CERN Document Server

    Tanaka, Kyoko K; Angélil, Raymond; Diemand, Jürg

    2015-01-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a new prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by T...

  5. Ostwald Ripening in Multiple-Bubble Nuclei

    CERN Document Server

    Watanabe, Hiroshi; Inaoka, Hajime; Ito, Nobuyasu

    2014-01-01

    The ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 million Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as $t^{-x}$ with scaling exponent $x$. As the initial temperature increases, the exponent changes from $x=3/2$ to $1$, which implies that the growth of bubbles changes from interface-limited (the $t^{1/2}$ law) to diffusion-limited (the $t^{1/3}$ law) growth.

  6. Ostwald ripening in multiple-bubble nuclei.

    Science.gov (United States)

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-12-21

    The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 10(6) Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t(-x) with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t(1/2) law) to diffusion-limited (the t(1/3) law) growth.

  7. Curvature and bubble convergence of harmonic maps

    CERN Document Server

    Kokarev, Gerasim

    2010-01-01

    We explore geometric aspects of bubble convergence for harmonic maps. More precisely, we show that the formation of bubbles is characterised by the local excess of curvature on the target manifold. We give a universal estimate for curvature concentration masses at each bubble point and show that there is no curvature loss in the necks. Our principal hypothesis is that the target manifold is Kaehler.

  8. ACOUSTIC MEASUREMENTS BUBBLES IN BIOLOGICAL TIESSURE

    Institute of Scientific and Technical Information of China (English)

    CHAHINE Georges L.; TANGUAY Michel; LORAINE Greg

    2009-01-01

    An acoustic based instrument,the ABS Acoustic Bubble Spectrometer(R)(C)(ABS),was investigated for the detection and quantification of bubbles in biological media.These include viscoelastic media(blood),materials of varying density(bone in tissue),non-homogenous distribution of bubbles(intravenous bubbly flow),and bubbles migrating in tissue(decompression sickness,DCS).The performance of the ABS was demonstrated in a series of laboratory experiments.Validation of the code was performed using a viscoelastic polymer solution,Polyox,in which the bubble size distribution and void fraction were determined by ABS measurements and with image analysis of high speed videos.These tests showed that the accuracy of the ABS was not significantly affected by viscoelasticity for bubbles smaller than 200 microns.The ABS detection and measurement of non-homogenous bubble distributions was demonstrated using a bubbly flow through a simulated vein surrounded by tissue.The scatter of acoustic signals due to bones in the acoustic pathway was also investigated.These in-vitro experiments were done using meat(beef)as a tissue simulant.Decompression experiments were done using beef meat which was held underwater at high pressure(9.9 atm)then rapidly decompressed.Bubble size distributions and void fraction calculations in these experiments were then validated using image analysis of high speed video.In addition,preliminary experiments were performed with the US Navy Medical Research Center,demonstrating the utility of the modified ABS system in detecting the evolution of bubbles in swine undergoing decompression sickness(DCS).These results indicate that the ABS may be used to detect and quantify the evolution of bubbles in-vivo and aid in the monitoring of DCS.

  9. Binary Schemes of Vapor Bubble Growth

    Science.gov (United States)

    Zudin, Yu. B.

    2015-05-01

    A problem on spherically symmetric growth of a vapor bubble in an infi nite volume of a uniformly superheated liquid is considered. A description of the limiting schemes of bubble growth is presented. A binary inertial-thermal bubble growth scheme characterized by such specifi c features as the "three quarters" growth law and the effect of "pressure blocking" in a vapor phase is considered.

  10. Finite-Amplitude Vibration of a Bubble

    Institute of Scientific and Technical Information of China (English)

    QIAN Zu-Wen; XIAO Ling

    2003-01-01

    The Rayleigh-Plesset equation for bubble vibration is modified. The numerical solution of new equation is obtained by means of the symbolic computation programme. The acceleration of the h'quid on the surface of the bubble, or pressure in the bubble, displays much intense 8-impulse with a very short duration from ns to ps. Suggestions for developing the measurements of sonoluminescence and cavitation fusion (if any) are presented.

  11. Shock propagation in polydisperse bubbly flows

    OpenAIRE

    Ando, Keita; Colonius, Tim; Brennen, Christopher E.

    2009-01-01

    The effect of distributed bubble size on shock propagation in homogeneous bubbly liquids is computed using a continuum two-phase model. An ensemble-averaging technique is employed to derive the statistically averaged equations and a finite-volume method is used to solve the model equations. The bubble dynamics are incorporated using a Rayleigh-Plesset-type equation which includes the effects of heat transfer, liquid viscosity and compressibility. For the case of monodispe...

  12. Gas Holdups of Small and Large Bubbles in a Large-scale Bubble Column with Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    JIN Hai-bo; YANG Suo-he; ZHANG Tong-wang; TONG Ze-min

    2004-01-01

    Gas holdups of large bubbles and small bubbles were measured by means of dynamic gas disengagement approach in the pressured bubble column with a diameter of 0. 3 m and a height of 6. 6 m. The effects of superficial gas velocity, liquid surface tension, liquid viscosity andsystem pressure on gas holdups of small bubbles and large bubbles were investigated. The holdup of large bubbles increases and the holdup of small bubbles decreases with an increase of liquid viscosity. Meanwhile, the holdup of large bubbles decreases with increasing the system pressure. A correlation for the holdup of small bubbles was obtained from the experimental data.

  13. Bubble burst as jamming phase transition

    CERN Document Server

    Nishinari, Katsuhiro; Saito, Yukiko Umeno; Watanabe, Tsutomu

    2010-01-01

    Recently research on bubble and its burst attract much interest of researchers in various field such as economics and physics. Economists have been regarding bubble as a disorder in prices. However, this research strategy has overlooked an importance of the volume of transactions. In this paper, we have proposed a bubble burst model by focusing the transactions incorporating a traffic model that represents spontaneous traffic jam. We find that the phenomenon of bubble burst shares many similar properties with traffic jam formation by comparing data taken from US housing market. Our result suggests that the transaction could be a driving force of bursting phenomenon.

  14. Living Near de Sitter Bubble Walls

    OpenAIRE

    Cho, Jin-Ho; Nam, Soonkeon

    2006-01-01

    We study various bubble solutions in string/M theories obtained by double Wick rotations of (non-)extremal brane configurations. Typically, the geometry interpolates de Sitter space-time times non-compact extra-dimensional space in the near-bubble wall region and the asymptotic flat Minkowski space-time. These bubble solutions provide nice background geometries reconciling string/M theories with de Sitter space-time. For the application of these solutions to cosmology, we consider multi-bubbl...

  15. Spectroscopic characteristic of conical bubble luminescence

    Institute of Scientific and Technical Information of China (English)

    Chen Qi-Dai; Fu Li-Min; Ai Xi-Cheng; Zhang Jian-Ping; Wang Long

    2005-01-01

    The conical bubble sonoluminescence (CBSL) from the collapse of the bubble was observed in an improved Utube apparatus. The emitted light energy of a single CBSL flash was measured to be ~ 1.4mJ. The pulse width was about 100μs. The spectra of luminescence were continuum superimposed with the spectral bands from the excitedstate C2, CN and CH. The CBSL provides a link between the light emission of the single-bubble and the multi-bubble sonoluminescence (SBSL and MBSL).

  16. Interaction of a bubble and a bubble cluster in an ultrasonic field

    Institute of Scientific and Technical Information of China (English)

    Wang Cheng-Hui; Cheng Jian-Chun

    2013-01-01

    Using an appropriate approximation,we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster.The behavior of the bubbles is observed in coupled and uncoupled states.The oscillation of bubbles inside the cluster is in a coupled state.The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density,initial radius,distance,driving frequency,and amplitude of ultrasound.However,if a bubble approaches a bubble cluster of the same initial radii,coupled oscillation would be induced and a repulsive force is evoked,which may be the reason why the bubble cluster can exist steadily.With the increment of the number density of the bubble cluster,a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles.It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound.

  17. DGP with bubble of nothing

    CERN Document Server

    Izumi, Keisuke

    2014-01-01

    We construct exact solutions with the bubble of nothing in the Dvali-Gabadadze-Porrati(DGP) braneworld model. The configuration with a single brane can be constructed, unlike in the Randall-Sundrum braneworld model. The geometry on the single brane looks like the Einstein-Rosen bridge. We also discuss the junction of multi branes. Surprisingly, even without any artificial matter fields on the branes such as three dimensional tension of the codimension two objects, two branes can be connected in certain configurations. We investigate solutions of multi branes too. The presence of solutions may indicate the semiclassical instability of the models.

  18. Magma mixing enhanced by bubble segregation

    Directory of Open Access Journals (Sweden)

    S. Wiesmaier

    2015-04-01

    Full Text Available That rising bubbles may significantly affect magma mixing paths has already been demon strated by analogue experiments. Here, for the first time, bubble-advection experiments are performed employing volcanic melts at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears to be an efficient mechanism for mingling volcanic melts of highly contrasting compositions and properties. MicroCT imaging reveals bubbles trailing each other and multiple filaments coalescing into bigger ones. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that bubbles rising successively are likely to follow this pathway of low resistance that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Inevitable implications for the concept of bubble advection in magma mixing include thereby both an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse inside a material. Inside the filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble

  19. Neural basis of economic bubble behavior.

    Science.gov (United States)

    Ogawa, A; Onozaki, T; Mizuno, T; Asamizuya, T; Ueno, K; Cheng, K; Iriki, A

    2014-04-18

    Throughout human history, economic bubbles have formed and burst. As a bubble grows, microeconomic behavior ceases to be constrained by realistic predictions. This contradicts the basic assumption of economics that agents have rational expectations. To examine the neural basis of behavior during bubbles, we performed functional magnetic resonance imaging while participants traded shares in a virtual stock exchange with two non-bubble stocks and one bubble stock. The price was largely deflected from the fair price in one of the non-bubble stocks, but not in the other. Their fair prices were specified. The price of the bubble stock showed a large increase and battering, as based on a real stock-market bust. The imaging results revealed modulation of the brain circuits that regulate trade behavior under different market conditions. The premotor cortex was activated only under a market condition in which the price was largely deflected from the fair price specified. During the bubble, brain regions associated with the cognitive processing that supports order decisions were identified. The asset preference that might bias the decision was associated with the ventrolateral prefrontal cortex and the dorsolateral prefrontal cortex (DLPFC). The activity of the inferior parietal lobule (IPL) was correlated with the score of future time perspective, which would bias the estimation of future price. These regions were deemed to form a distinctive network during the bubble. A functional connectivity analysis showed that the connectivity between the DLPFC and the IPL was predominant compared with other connectivities only during the bubble. These findings indicate that uncertain and unstable market conditions changed brain modes in traders. These brain mechanisms might lead to a loss of control caused by wishful thinking, and to microeconomic bubbles that expand, on the macroscopic scale, toward bust.

  20. Modified Bubble Core Fields and Bubble Shape in Laser Driven Plasma

    Institute of Scientific and Technical Information of China (English)

    WU Hai-Cheng; XIE Bai-Song

    2013-01-01

    Bubble core fields as well bubble shape modification due to the nondepleted electrons inside the bubble is investigated theoretically.It is found that the slope of transverse fields are reduced significantly,however,the slope of longitudinal electric field,which plays a key role on electrons acceleration in bubble,changes little.Moreover a modified longitudinal compressed bubble shape leads to a shorter dephasing distance which makes the electrons acceleration energy reduced to some extent.As a comparison we perform particle-in-cell simulations whose results are consistent with that of our theoretical consideration.

  1. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  2. Interaction of cavitation bubbles on a wall

    NARCIS (Netherlands)

    Bremond, Nicolas; Arora, Manish; Dammer, Stephan M.; Lohse, Detlef

    2006-01-01

    We report experimental and numerical investigations on the dynamics of the cavitation of bubbles on a solid surface and the interaction between them with the help of controlled cavitation nuclei: hemispherical bubbles are nucleated from hydrophobic microcavities that act as gas traps when the substr

  3. Structure of nanoscale gas bubbles in metals

    Energy Technology Data Exchange (ETDEWEB)

    Caro, A., E-mail: caro@lanl.gov; Schwen, D.; Martinez, E. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  4. The Physics of Foams, Droplets and Bubbles

    Science.gov (United States)

    Sarker, Dipak K.

    2013-01-01

    Foams or bubble dispersions are common to milkshakes, bread, champagne froth, shaving mousse, shampoo, crude oil extraction systems, upholstery packing and bubble wrap, whereas the term droplet is often synonymous with either a small drop of water or a drop of oil--a type of coarse dispersion. The latter are seen in butter and milk, household…

  5. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    Sourabh S Diwan; O N Ramesh

    2007-02-01

    This work is an experimental investigation of the dynamics and control of the laminar separation bubbles which are typically present on the suction surface of an aerofoil at a large angle of attack. A separation bubble is produced on the upper surface of a flat plate by appropriately contouring the top wall of the wind tunnel. First, a basic (unforced) separation bubble is obtained to set a benchmark for further experiments. Parametric study is done where the reference velocity is decreased to quantify its effect on the aspect ratio of the bubble. It is found that with decrease in Reynolds number, the height of the bubble increases at a greater rate than the length. This feature could be useful in characterising separation bubbles especially from the point of view of low Reynolds number aerofoil design. Artificial disturbance is introduced at two different initial amplitudes (infinitesimal and finite) upstream of separation location and hotwire anemometry is used to trace the wave packet as it is advected downstream. The evolution of wave packets is seen to take place in two distinct stages. Finite amplitude forcing causes periodic quenching of the bubble. Interestingly, even an infinitesimally small forcing is seen to modify and thereby control the separation bubble.

  6. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  7. Simple improvements to classical bubble nucleation models

    Science.gov (United States)

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3 σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  8. Interacting bubble clouds and their sonochemical production

    NARCIS (Netherlands)

    Stricker, L.; Dollet, B.; Fernandez Rivas, D.; Lohse, D.

    2013-01-01

    An acoustically driven air pocket trapped in a pit etched on a surface can emit a bubble cluster. When several pits are present, the resulting bubble clusters interact in a nontrivial way. Fernández Rivas et al. [Angew. Chem. Int. Ed. 49, 9699–9701 (2010)] observed three different behaviors at incre

  9. Probing luminescence from nonspherical bubble collapse

    NARCIS (Netherlands)

    Ohl, Claus-Dieter

    2002-01-01

    The luminescence from single laser produced cavitation bubbles for varying degrees of asphericity is investigated temporally, spatially, and spectrally. The degree of asphericity is controlled with an adjustable rigid boundary near the bubble. Temporally, single and multiple light emission events ha

  10. Galactic Teamwork Makes Distant Bubbles

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey

  11. Tensor Effect on Bubble Nuclei

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-Zhao; GU Jian-Zhong; ZHANG Xi-Zhen; DONG Jian-Min

    2011-01-01

    In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+T, SLy5+Tw and several sets of TIJ parametrizations, I.e. The Skyrme interaction parametrizations including the tensor terms, the proton density distribution in 34Si and 46Ar nuclei is calculated with and without the tensor force. It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force. As to 46Ar, the SLy5+Tw parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-ld3/2 inversion). The inversion mechanism induced by the SLy5+Tw interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+Tw interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.%In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+ T,SLy5+ Tω and several sets of TIJ parametrizations,i.e.the Skyrme interaction pararmetrizations including the tensor terms,the proton density distribution in 34Si and 46 Ar nuclei is calculated with and without the tensor force.It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force.As to 46Ar,the SLy5+ Tω parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-1d3/2 inversion).The inversion mechanism induced by the SLy5+ Tω interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+ Tω interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.The study of exotic nuclear structures has been a hot topic in nuclear physics.[1-4] Exotic nuclei are unstabile,superheavy nuclei,halo nuclei and so forth,whose structures are quite different

  12. Single DNA denaturation and bubble dynamics

    DEFF Research Database (Denmark)

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas

    2009-01-01

    for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation......While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...

  13. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  14. Interacting bubble clouds and their sonochemical production

    CERN Document Server

    Stricker, Laura; Rivas, David Fernandez; Lohse, Detlef

    2013-01-01

    Acoustically driven air pockets trapped in artificial crevices on a sur- face can emit bubbles which organize in (interacting) bubble clusters. With increasing driving power Fernandez Rivas et al. [Angew. Chem. Int. Ed., 2010] observed three different behaviors: clusters close to the very pits out of which they had been created, clusters pointing toward each other, and merging clusters. The latter behavior is highly undesired for technological purposes as it is associated with a reduction of the radical production and an enhancement of the erosion of the reactor walls. The dependence on the control parameters such as the distance of the pits and the conditions for cluster-merging are examined. The underlying mechanism, governed by the secondary Bjerknes forces, turns out to be strongly influenced by the nonlinearity of the bubble oscillations and not directly by the number of nucleated bubbles. The Bjerknes forces are found to dampen the bubble oscillations, thus reducing the radical production. Therefore, th...

  15. Gas bubble dynamics in soft materials.

    Science.gov (United States)

    Solano-Altamirano, J M; Malcolm, John D; Goldman, Saul

    2015-01-01

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic solid. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to an inviscid liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium.

  16. Influence of bubble size, diffuser width, and flow rate on the integral behavior of bubble plumes

    Science.gov (United States)

    Fraga, Bruño.; Stoesser, Thorsten

    2016-06-01

    A large-eddy simulation based Eulerian-Lagrangian model is employed to quantify the impact of bubble size, diffuser diameter, and gas flow rate on integral properties of bubble plumes, such as the plume's width, centerline velocity, and mass flux. Calculated quantities are compared with experimental data and integral model predictions. Furthermore, the LES data were used to assess the behavior of the entrainment coefficient, the momentum amplification factor, and the bubble-to-momentum spread ratio. It is found that bubble plumes with constant bubble size and smaller diameter behave in accordance with integral plume models. Plumes comprising larger and non-uniform bubble sizes appear to deviate from past observations and model predictions. In multi-diameter bubble plumes, a bubble self-organisation takes place, i.e., small bubbles cluster in the center of the plume whilst large bubbles are found at the periphery of the plume. Multi-diameter bubble plumes also feature a greater entrainment rate than single-size bubble plumes, as well as a higher spread ratio and lower turbulent momentum rate. Once the plume is fully established, the size of the diffuser does not appear to affect integral properties of bubble plumes. However, plume development is affected by the diffuser width, as larger release areas lead to a delayed asymptotic behavior of the plume and consequently to a lower entrainment and higher spread ratio. Finally, the effect of the gas flow rate on the integral plume is studied and is deemed very relevant with regards to most integral plume properties and coefficients. This effect is already fairly well described by integral plume models.

  17. Bubbles and denaturation in DNA

    CERN Document Server

    Van Erp, T S; Peyrard, M; Erp, Titus S. van; Cuesta-Lopez, Santiago; Peyrard, Michel

    2006-01-01

    The local opening of DNA is an intriguing phenomenon from a statistical physics point of view, but is also essential for its biological function. For instance, the transcription and replication of our genetic code can not take place without the unwinding of the DNA double helix. Although these biological processes are driven by proteins, there might well be a relation between these biological openings and the spontaneous bubble formation due to thermal fluctuations. Mesoscopic models, like the Peyrard-Bishop-Dauxois model, have fairly accurately reproduced some experimental denaturation curves and the sharp phase transition in the thermodynamic limit. It is, hence, tempting to see whether these models could be used to predict the biological activity of DNA. In a previous study, we introduced a method that allows to obtain very accurate results on this subject, which showed that some previous claims in this direction, based on molecular dynamics studies, were premature. This could either imply that the present...

  18. Bubble Growth and Detachment from a Needle

    Science.gov (United States)

    Shusser, Michael; Rambod, Edmond; Gharib, Morteza

    1999-11-01

    The release of bubbles from an underwater nozzle or orifice occurs in large number of applications, such as perforated plate columns, blood oxygenators and various methods of water treatment. It is also a widely used method in laboratory research on multiphase flow and acoustics for generating small bubbles in a controlled fashion. We studied experimentally the growth and pinch-off of air bubbles released from a submerged needle into a quiescent liquid or a liquid flowing parallel to the needle. Micron-sized bubbles were generated by an air-liquid dispenser. High-speed imaging was performed to study the formation and detachment of bubbles from the tip of the needle. The impact of the needle diameter was investigated and the size and number of produced bubbles were assessed for different flow rates of air and for different velocities of the imposed upward liquid flow. The results were compared with available theoretical models and numerical computations. The existence of a critical gas flow rate and two regimes of bubble growth were verified.

  19. Bubbles in live-stranded dolphins.

    Science.gov (United States)

    Dennison, S; Moore, M J; Fahlman, A; Moore, K; Sharp, S; Harry, C T; Hoppe, J; Niemeyer, M; Lentell, B; Wells, R S

    2012-04-07

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.

  20. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  1. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  2. Arrested Bubble Rise in a Narrow Tube

    Science.gov (United States)

    Lamstaes, Catherine; Eggers, Jens

    2016-06-01

    If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918 ℓ_c , where ℓ_c=√{γ /ρ g} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for Rarrested motion.

  3. Liquid jet pumped by rising gas bubbles

    Science.gov (United States)

    Hussain, N. A.; Siegel, R.

    1975-01-01

    A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.

  4. On thermonuclear processes in cavitation bubbles

    Science.gov (United States)

    Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

    2014-09-01

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics - Uspekhi) journal, is

  5. Bubbles of Nothing in Flux Compactifications

    CERN Document Server

    Blanco-Pillado, Jose J

    2010-01-01

    We construct a simple $5d$ flux compactification stabilized by a complex scalar field winding the extra dimension and demonstrate an instability via nucleation of a bubble of nothing. This occurs when the Kaluza -- Klein dimension degenerates to a point, defining the bubble surface. Because the extra dimension is stabilized by a flux, the bubble surface must be charged, in this case under the axionic part of the complex scalar. This smooth geometry can be seen as a de Sitter topological defect with asymptotic behavior identical to the pure compactification. We discuss how a similar construction can be implemented in more general Freund -- Rubin compactifications.

  6. Numerical investigation of bubble nonlinear dynamics characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo; Hu, Bo [Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Haoyang; Jiang, Wei [College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China)

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  7. Simulation of dynamic behavior in bubbling fluidization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both the behavior of bubbles in the distributor with several orifices and the sensitive dependence of bubbling fluidization on initial condition have been simulated by particle-motion-resolved discrete model in which the gas flow is obtained by solving the Navier-Stokes equation including two-phase interaction, and the motion of solid phase is obtained by decomposing the motion of each particle into collision process and suspension process. Compared with the pseudo-fluid models and previous discrete models, this model is authentic and can be widely used for simulating bubbling fluidization.

  8. A view inside the Gargamelle bubble chamber

    CERN Multimedia

    1970-01-01

    Gargamelle was the name given to a big bubble chamber built at the Saclay Laboratory in France during the late 1960s. It was designed principally for the detection at CERN of the elusive particles called neutrinos. A bubble chamber contains a liquid under pressure, which reveals the tracks of electrically charged particles as trails of tiny bubbles when the pressure is reduced. Neutrinos have no charge, and so leave no tracks, but the aim with Gargamelle was "see neutrinos" by making visible any charged particles set in motion by the interaction of neutrinos in the liquid

  9. Bubbles, Bubbles, Tremors & Trouble: The Bayou Corne Sinkhole

    Science.gov (United States)

    Nunn, J. A.

    2013-12-01

    In May 2012, thermogenic methane bubbles were first observed in Bayou Corne in Assumption Parish, Louisiana. As of July 2013, ninety one bubbling sites have been identified. Gas was also found in the top of the Mississippi River Alluvial Aquifer (MRAA) about 125 ft below the surface. Vent wells drilled into the MRAA have flared more 16 million SCF of gas. Trace amounts of hydrogen sulfide also have been detected. Bayou Corne flows above the Napoleonville salt dome which has been an active area for oil and gas exploration since the 1920s. The dome is also a site of dissolution salt mining which has produced large caverns with diameters of up to 300 ft and heights of 2000 ft. Some caverns are used for storage of natural gas. Microseismic activity was confirmed by an Earthscope seismic station in White Castle, LA in July 2012. An array of microseismic stations set up in the area recorded more than 60 microseismic events in late July and early August, 2012. These microseismic events were located on the western side of the dome. Estimated focal depths are just above the top of salt. In August 2012, a sinkhole developed overnight just to the northwest of a plugged and abandoned brine filled cavern (see figure below). The sinkhole continues to grow in area to more than 20 acres and has consumed a pipeline right of way. The sinkhole is more than 750 ft deep at its center. Microseismic activity was reduced for several months following the formation of the sinkhole. Microseismic events have reoccurred episodically since then with periods of frequent events preceding slumping of material into the sinkhole or a 'burp' where fluid levels in the sinkhole drop and then rebound followed by a decrease in microseismic activity. Some gas and/or oil may appear at the surface of the sinkhole following a 'burp'. Very long period events also have been observed which are believed to be related to subsurface fluid movement. A relief well drilled into the abandoned brine cavern found that

  10. Time-Dependent Changes in a Shampoo Bubble

    Science.gov (United States)

    Chattopadhyay, Arun

    2000-10-01

    This article demonstrates the fascinating phenomenon of time evolution of a shampoo bubble through experiments that can be performed by undergraduate students. The changes in thickness of the bubble films with time are followed by UV-vis spectroscopy. The change in chemical composition as a bubble film evolves is monitored by FTIR spectroscopy. It is observed that the change in thickness of a typical shampoo bubble film enclosed in a container is gradual and slow, and the hydrocarbon components of the bubble drain from the bubble much more slowly than water. An additional agent, such as acetonitrile, strikingly alters the dynamics of evolution of such a bubble.

  11. Wetting of soap bubbles on hydrophilic, hydrophobic and superhydrophobic surfaces

    CERN Document Server

    Arscott, Steve

    2013-01-01

    Wetting of sessile bubbles on solid and liquid surfaces has been studied. A model is presented for the contact angle of a sessile bubble based on a modified Young equation - the experimental results agree with the model. A hydrophilic surface results in a bubble contact angle of 90 deg whereas on a superhydrophobic surface one observes 134 deg. For hydrophilic surfaces, the bubble angle diminishes with bubble radius - whereas on a superhydrophobic surface, the bubble angle increases. The size of the Plateau borders governs the bubble contact angle - depending on the wetting of the surface.

  12. Thermodynamic property of gases in the sonoluminescing bubble

    Institute of Scientific and Technical Information of China (English)

    AN Yu; LI Guiqin; ZHOU Tieying

    2001-01-01

    With the theory of statistical physics dealing with chemical reaction (the law of mass action), the different thermodynamic property of noble gases (mono-atomic gases) in a small bubble and diatomic gases in a small bubble semi-quantitatively are analyzed. As bubbles of the mono-atomic and the diatomic gases are compressed, shock waves are produced in both bubbles. Though shock wave leads to sharp increase of pressure and temperature of gases in the bubble, diatomic gas will excitated vibrations and dissociate themselves to mono-atomic gas,these processes will consume many accumulated heat energy and block the further increase of the temperature. Therefore, compare with the mono-atomic gases in the bubble, there will be no enough charged particles ionized to flash for diatomic gases in the bubble, this may be the reason why a bubble of diatomic gases has no single bubble sonoluminescence while a bubble of noble gases has.

  13. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  14. The coupled motions of bubbles in ultrasonic field

    Institute of Scientific and Technical Information of China (English)

    WANG Chenghui; LIN Shuyu

    2012-01-01

    The dynamic responses of bubbles in ultrasonic field include the radial vibration, translation, and their interactions. Based on the radial vibration modal where the secondary radiation of neighboring bubbles was considered, and interaction forces of bubbles, the coupled motions of two bubbles with different size in a plane ultrasonic field was simulated numerically. The results show that the radial vibration of a big bubble has natural properties and its translation velocity is rapid relatively. The behavior and distribution of bubbles was observed experimentally by using high speed photography. It is shown that the big bubbles translate rapidly in bubble clouds and vibrate radially with small-amplitude. On the other hand, the phenomena of attraction and coalescence among bubbles is observed, which may attribute to the effects of secondary radiation between neighboring bubbles.

  15. Black Hole Blows Big Bubble

    Science.gov (United States)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  16. Effects of Ambient Pressure on Bubble Characteristics

    Institute of Scientific and Technical Information of China (English)

    卢新培; 刘明海; 江中和; 潘垣

    2002-01-01

    The effects of the ambient pressure Pambient on the bubble characteristics of pulsed discharge in water are investigated. The simulation results show that, when Pambient increases from 1 atm to 100 atm, the bubble radius R decreases from 4cma to 7mm, and its pulsation period decreases frown 8ms to 0.2ms. The results also show that the peak pressure of the first shock wave is independent of Pambient, but the peak pressure of the second shock wave caused by the bubble re-expansion decreases when Pambient increases. On the other hand, the larger the ambient pressure, the larger the peak pressure of the plasma in the bubble, while the plasma temperature is independent of Pambient.

  17. Critical bubble radius in solvent sublation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The complex compound of dithizone-Co(Ⅱ) was separated and concentrated from the aqueous phase to n-octanol by solvent sublation. From the analysis of the coalescence behavior of bubbles on water-organic interface, the conception of critical bubble radius was proposed, and the value of the critical bubble radius in the water-octanol system was obtained: 1.196 × 10-3 m. The simulation of the mathematical model using CBR and experimental data is completed with perfect results, and the simulation of the mathematical model using CBR is very different with the classic one. The analytical results proved that the critical bubble radius should be adequately considered in mathematical model of solvent sublation.

  18. Living Near de Sitter Bubble Walls

    CERN Document Server

    Cho, J H; Cho, Jin-Ho; Nam, Soonkeon

    2006-01-01

    We study various bubble solutions in string/M theories obtained by double Wick rotations of (non-)extremal brane configurations. Typically, the geometry interpolates de Sitter space-time times non-compact extra-dimensional space in the near-bubble wall region and the asymptotic flat Minkowski space-time. These bubble solutions provide nice background geometries to reconcile string/M theories with de Sitter space-time. For the applications of these solutions to cosmology, we consider multi-bubble solutions and find a landscape of varying cosmological constant. Double Wick rotation in string/M theories introduces imaginary higher-form fields. Rather than regard these fields as classical pathologies, we interpret them as semi-classical decay processes of de Sitter vacuum via the production of spherical branes. We speculate on the possibility of solving the cosmological constant problem making use of the condensation of the spherical membranes.

  19. Sonochemical effects on single-bubble sonoluminescence

    CERN Document Server

    Yuan, L

    2005-01-01

    A refined hydro-chemical model for single-bubble sonoluminescence is presented. The processes of water vapor evaporation and condensation, mass diffusion, and chemical reactions are taken into account. Numerical simulations of Xe-, Ar- and He-filled bubbles are carried out. The results show that the trapped water vapor in conjunction with its endothermic chemical reactions significantly reduces the temperature within the bubble so that the degrees of ionization are generally very low. The chemical radicals generated from water vapor are shown to play an increasingly important role in the light emission from Xe to He bubbles. Light spectra and pulses computed from an optically thin model and from an essentially blackbody model are compared with recent experimental results. It is found that the results of the blackbody model generally match better with the experiment ones than those of the optically thin model. Suggestions on how to reconcile the conflict are given.

  20. Bubble collisions and measures of the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Michael P., E-mail: salem@cosmos.phy.tufts.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2012-01-01

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.

  1. Experimental study on interaction and coalescence of synchronized multiple bubbles

    Science.gov (United States)

    Cui, P.; Wang, Q. X.; Wang, S. P.; Zhang, A. M.

    2016-01-01

    Experiments are carried out on the interaction and coalescence of two, three, and four bubbles with approximately the same sizes, distributed evenly and symmetrically. The bubbles are generated simultaneously by electric discharges, using an in-house designed series circuit, and their interaction is captured using a high-speed camera. Particular attentions are paid to if/when coalescence of bubbles happens and the motion of the joined bubbles. Some new features are observed, which depend mainly on the dimensionless distance γbb = dbb/Rmax, where dbb is the inter-bubble distance and Rmax is the maximum bubble radius. For γbb > 2, a jet forms and penetrates each side bubble, directed to the center of the configuration, resulting in a protrusion. Towards the end of collapse, a large portion of bubble gases is compressed into the protrusion from the main part of the toroidal bubble. For γbb bubbles coalesce during expansion, and the part of the joined bubble's surface distal from the center of the configuration collapses faster than elsewhere. The experiments show that the oscillation period of multi-bubbles does not change appreciably without coalescence but increases significantly with coalescence. For three bubbles initiated at collinear positions with γbb > 2, the jets that form from the side bubbles are towards the middle, and the middle bubble splits into two parts, moving towards the two side bubbles. For γbb bubbles merge with the middle bubble during expansion, forming an ellipsoid bubble; the joined bubble collapses predominantly from two sides, where two inward jets form towards the end of collapse.

  2. Gravity Wave Generation by Largescale Bubbles

    Science.gov (United States)

    Brandenburg, A.

    The response of an isothermal atmosphere to small disturbances in entropy is studied taking compressible effects fully into account. The method of Green's functions is applied to solve the linearized hydrodynamic equations by Fourier transformation. A bubble may be created by perturbing the entropy within a finite volume. At first Lamb waves will be then emitted radially and the bubble undergoes a series of Brunt-Väisälä oscillations.

  3. Bubbles, Gating, and Anesthetics in Ion Channels

    OpenAIRE

    Roth, Roland, imp.; Gillespie, Dirk; Nonner, Wolfgang; Eisenberg, Robert E.

    2008-01-01

    We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism—dewetting by capillary evaporation—but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, s...

  4. Beer tapping: dynamics of bubbles after impact

    Science.gov (United States)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  5. Bubble chamber: Omega production and decay

    CERN Multimedia

    1973-01-01

    This image is taken from one of CERN's bubble chambers and shows the decay of a positive kaon in flight. The decay products of this kaon can be seen spiraling in the magnetic field of the chamber. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that has been heated to boiling point.

  6. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  7. Micro-bubbles seeding for flow characterization

    Science.gov (United States)

    Aumelas, V.; Lecoffre, Y.; Maj, G.; Franc, J.-P.

    2016-11-01

    Micro-bubbles injection has long been used in hydrodynamic facilities for the control of dissolved and free air. In some cavitation tunnels [9], very large quantities of microbubbles (billions per second) are injected for rapid degassing and, in smaller quantities (millions per second), for cavitation nuclei seeding. Micro-bubbles can also be used as tracers for optical measurements including visualization, LDV or PIV. For these applications, bubbles must be sufficiently small to faithfully follow the flow. Depending on the quality and spatial characteristics of the micro-bubbles seeding, several optical methods can be applied: simple visualization gives access to semi-quantitative information on the behaviour of flows; LASER velocimetry provides information on the mean velocity and other temporal local characteristics of the flow. This paper presents some new micro-bubbles seeding devices recently developed by YLEC Consultants. These devices have been designed to fulfill specific requirements related to integration into cavitation tunnels and permit optical velocimetry measurement techniques such as Particle Image Velocimetry (PIV). The LEGI cavitation tunnel is the first tunnel which has been equipped with these microbubbles seeding systems dedicated to optical velocimetry. This paper presents the final integration schemes selected for micro-bubbles seeding into LEGI tunnel and discuss about practical concerns related to the use of the injection system for optical velocimetry.

  8. Interstellar Bubbles in Two Young HII Regions

    CERN Document Server

    Naze, Y; Points, S D; Danforth, C W; Rosado, M; Chen, C H R; Naze, Yael; Chu, You-Hua; Points, Sean D.; Danforth, Charles W.; Rosado, Margarita

    2001-01-01

    Massive stars are expected to produce wind-blown bubbles in the interstellar medium; however, ring nebulae, suggesting the existence of bubbles, are rarely seen around main-sequence O stars. To search for wind-blown bubbles around main-sequence O stars, we have obtained high-resolution Hubble Space Telescope WFPC2 images and high-dispersion echelle spectra of two pristine HII regions, N11B and N180B, in the Large Magellanic Cloud. These HII regions are ionized by OB associations that still contain O3 stars, suggesting that the HII regions are young and have not hosted any supernova explosions. Our observations show that wind-blown bubbles in these HII regions can be detected kinematically but not morphologically because their expansion velocities are comparable to or only slightly higher than the isothermal sound velocity in the HII regions. Bubbles are detected around concentrations of massive stars, individual O stars, and even an evolved red supergiant (a fossil bubble). Comparisons between the observed bu...

  9. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  10. A Radio Characterization of Galactic compact Bubbles

    CERN Document Server

    Ingallinera, Adriano; Umana, Grazia; Leto, Paolo; Noriega-Crespo, Alberto; Flagey, Nicolas; Paladini, Roberta; Agliozzo, Claudia; Buemi, Carla

    2013-01-01

    We report the radio observations of a sub-sample of the 428 galactic compact bubbles discovered at 24 $\\mu$m with the MIPSGAL survey. Pervasive through the entire Galactic plane, these objects are thought to be different kinds of evolved stars. The very large majority of the bubbles (~ 70%) are however not yet classified. We conducted radio observations with the EVLA at 6 cm and 20 cm in order to obtain the spectral index of 55 bubbles. We found that at least 70 per cent of the 31 bubbles for which we were effectively able to compute the spectral index (or its lower limit) are likely to be thermal emitters. We were also able to resolve some bubbles, obtaining that the size of the radio nebula is usually similar to the IR size, although our low resolution (with respect to IR images) did not allow further morphological studies. Comparisons between radio flux densities and IR archive data from Spitzer and IRAS suggest that at least 3 unclassified bubbles can be treated as planetary nebula candidates.

  11. Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Shu; Ogasawara, Toshiyuki; Fukuta, Masato; Matsumoto, Yoichiro [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)], E-mail: takagi@mach.t.u-tokyo.ac.jp

    2009-12-15

    It is well known that a small amount of surfactant can drastically change the motion of a single bubble and this causes a dramatic change of the whole bubbly flow structure. In our previous studies using upward vertical channel flows, it was shown that surfactant influences the shear-induced lift and the lateral migration of a bubble, which causes bubble accumulation and clustering near the wall. In this paper, the dependence of surfactant concentration on the motions of a 1 mm bubble rising through the laminar shear flow is investigated using 1-, 3-Pentanol and Triton X-100. The results are compared with the numerical ones, which show quantitative agreement on the lift and drag forces. Furthermore, we analyze the experimental data for the condition of bubble clustering in upward channel flows with the consideration of contaminant level in tap water. The results indicate that lower contaminant level and higher shear rate cause the significant bubble migration toward the wall, which leads to the formation of bubble clusters. (invited paper)

  12. INVITED PAPER: Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel

    Science.gov (United States)

    Takagi, Shu; Ogasawara, Toshiyuki; Fukuta, Masato; Matsumoto, Yoichiro

    2009-12-01

    It is well known that a small amount of surfactant can drastically change the motion of a single bubble and this causes a dramatic change of the whole bubbly flow structure. In our previous studies using upward vertical channel flows, it was shown that surfactant influences the shear-induced lift and the lateral migration of a bubble, which causes bubble accumulation and clustering near the wall. In this paper, the dependence of surfactant concentration on the motions of a 1 mm bubble rising through the laminar shear flow is investigated using 1-, 3-Pentanol and Triton X-100. The results are compared with the numerical ones, which show quantitative agreement on the lift and drag forces. Furthermore, we analyze the experimental data for the condition of bubble clustering in upward channel flows with the consideration of contaminant level in tap water. The results indicate that lower contaminant level and higher shear rate cause the significant bubble migration toward the wall, which leads to the formation of bubble clusters.

  13. Molecular dynamics study of helium bubble pressure in titanium

    Institute of Scientific and Technical Information of China (English)

    Zhang Bao-Ling; Wang Jun; Hou Qing

    2011-01-01

    In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio; then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied. It is shown that the product of the bubble pressure and the radius is approximately a constant, a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble. Furthermore, a state equation of the helium bubble is established based on the MD calculations. Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals.

  14. Numerical modeling of dimethyl ether (DME) bubble growth and breakup

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; ZHANG YuSheng

    2009-01-01

    A numerical program is written to simulate the process of vapor bubble growth with spherical symmetry from the thermodynamic critical radius in an initially uniformly superheated liquid. The program is validated by the experimental data of superheated water. The calculated results agree with those of experiments well. The program takes into account the variations of properties with temperature precisely to simulate the DME bubble growth under flash boiling conditions. Considering the influences of pressure, surface tension and viscous stress, the linear stability analysis method is adopted to deduce the dispersion equation to represent the disturbance development during the bubble growth, and a new criterion for bubble breakup is established. The results show the bubble becomes more unstable with the increase of bubble Weber number and void fraction, and that with the increase of bubble growth rate or the decrease of initial radius ration of droplet to bubble, the breakup time of bubble becomes shorter.

  15. Instability and breakup of cavitation bubbles within diesel drops

    Institute of Scientific and Technical Information of China (English)

    Ming Lü; Zhi Ning; Kai Yan; Juan Fu; Chunhua Sun

    2015-01-01

    A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of fluids stabilize the cavitation bubble, while inertial force destabilizes the cavitation bubble. The droplet viscosity plays a dominant role on the stability of cavitation bubbles compared with that of air and bubble. Bubble–droplet radius ratio is a key factor to control the bubble stability, especially in the high radius ratio range. Internal hydrodynamic and surface tension forces are found to stabilize the cavitation bubble, while bubble stability has little relationship with the external hydrodynamic force. Inertia makes bubble breakup easily, however, the breakup time is only slightly changed when bubble growth speed reaches a certain value (50 m·s−1). In contrast, viscous force makes bubble hard to break. With the increasing initial bubble–droplet radius ratio, the bubble growth rate increases, the bubble breakup radius decreases, and the bubble breakup time becomes shorter.

  16. Financial Bubbles, Real Estate Bubbles, Derivative Bubbles, and the Financial and Economic Crisis

    Science.gov (United States)

    Sornette, Didier; Woodard, Ryan

    The financial crisis of 2008, which started with an initially well-defined epicenter focused on mortgage backed securities (MBS), has been cascading into a global economic recession, whose increasing severity and uncertain duration has led and is continuing to lead to massive losses and damage for billions of people. Heavy central bank interventions and government spending programs have been launched worldwide and especially in the USA and Europe, with the hope to unfreeze credit and bolster consumption. Here, we present evidence and articulate a general framework that allows one to diagnose the fundamental cause of the unfolding financial and economic crisis: the accumulation of several bubbles and their interplay and mutual reinforcement have led to an illusion of a "perpetual money machine" allowing financial institutions to extract wealth from an unsustainable artificial process. Taking stock of this diagnostic, we conclude that many of the interventions to address the so-called liquidity crisis and to encourage more consumption are ill-advised and even dangerous, given that precautionary reserves were not accumulated in the "good times" but that huge liabilities were. The most "interesting" present times constitute unique opportunities but also great challenges, for which we offer a few recommendations.

  17. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    Science.gov (United States)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  18. Herds of methane chambers grazing bubbles

    Science.gov (United States)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  19. Inflation and bubbles in general relativity

    Science.gov (United States)

    Laguna-Castillo, Pablo; Matzner, Richard A.

    1986-11-01

    Following Israel's study of singular hypersurfaces and thin shells in general relativity, the complete set of Einstein's field equations in the presence of a bubble boundary SIGMA is reviewed for all spherically symmetric embedding four-geometries M+/-. The mapping that identifies points between the boundaries Σ+ and Σ- is obtained explicitly when the regions M+ and M- are described by a de Sitter and a Minkowski metric, respectively. In addition, the evolution of a bubble with vanishing surface energy density is studied in a spatially flat Robertson-Walker space-time, for region M- radiation dominated with a vanishing cosmological constant, and an energy equation in M+ determined by the matching. It is found that this type of bubble leads to a ``worm-hole'' matching; that is, an infinite extent exterior of a sphere is joined across the wall to another infinite extent exterior of a sphere. Interior-interior matches are also possible. Under this model, solutions for a bubble following a Hubble law are analyzed. Numerical solutions for bubbles with constant tension are also obtained.

  20. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.

    2013-04-29

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  1. Optical absorption properties of electron bubbles and experiments on monitoring individual electron bubbles in liquid helium

    Science.gov (United States)

    Guo, Wei

    When a free electron is injected into liquid helium, it forms a microscopic bubble essentially free of helium atoms, which is referred to as an electron bubble. It represents a fine example of a quantum-mechanical particle confined in a potential well. In this dissertation, we describe our studies on bubble properties, especially the optical absorption properties of ground state electron bubbles and experiments on imaging individual electron bubbles in liquid helium. We studied the effect of zero-point and thermal fluctuations on the shape of ground state electron bubbles in liquid helium. The results are used to determine the line shape for the 1S to 1P optical transition. The calculated line shape is in very good agreement with the experimental measurements of Grimes and Adams. For 1S to 2P transition, the obtained transition line width agrees well with the measured data of Zipfel over a range of pressure up to 15 bars. Fluctuations in the bubble shape also make other "unallowed" transitions possible. The transition cross-sections from the 1S state to the 1D and 2D states are calculated with magnitude approximately two orders smaller than that of the 1S to 1P and 2P transitions. In our electron bubble imaging experiments, a planar ultrasonic transducer was used to generate strong sound wave pulse in liquid helium. The sound pulse passed through the liquid so as to produce a transient negative pressure over a large volume (˜ 1 cm3). An electron bubble that was passed by the sound pulse exploded for a fraction of a microsecond and grew to have a radius of around 10 microns. While the bubble had this large size it was illuminated with a flash lamp and its position was recorded. In this way, we can determine its position. Through the application of a series of sound pulses, we can then take images along the track of individual electrons. The motion of individual electron bubbles has been successfully monitored. Interesting bubble tracks that may relate to electrons

  2. Root Causes of the Housing Bubble

    Science.gov (United States)

    Kaizoji, Taisei

    In this chapter we investigate root causes of the recent US housing bubble which has been caused a serious downturn in US economic growth since autumn of 2008. We propose a simple model of housing markets in order to indicate the possible determinants of recent housing prices. Utilizing the model, we verify a number of hypotheses which have been proposed in the recent literature on the housing bubbles. We suggest that the main causes of the housing bubble from 2000 to 2006 are (1) non-elastic housing supply in the metropolitan areas, and (2) declines in the mortgage loan rate and the housing premium by the massive mortgage credit expansion. We also suggest that these factors were strongly influenced by policies that governments and the Federal Reserve Board performed.

  3. Rational speculative bubbles: A critical view

    Directory of Open Access Journals (Sweden)

    Radonjić Ognjen

    2007-01-01

    Full Text Available According to the theory of rational bubbles, the bubble is present whenever asset prices progressively diverge from their fundamental value, which occurs because agents expect that asset prices will continue to grow exponentially (self-fulfilling prophecies far in the future and consistently, which promises the realization of ever larger capital gains. In our opinion, the basic shortcoming of this theory refers to the assumption that all market agents are perfectly informed and rational and, accordingly, form homogeneous expectations. The model does not explain decision-making processes or expectation formation, nor does it detect potential psychological and institutional factors that might significantly influence decision making processes and market participants’ reactions to news. Since assumptions of the model critically determine its validity, we conclude that comprehensiveness of the rational bubble model is, to put it mildly, limited.

  4. Bubbles, shocks and elementary technical trading strategies

    Science.gov (United States)

    Fry, John

    2014-01-01

    In this paper we provide a unifying framework for a set of seemingly disparate models for bubbles, shocks and elementary technical trading strategies in financial markets. Markets operate by balancing intrinsic levels of risk and return. This seemingly simple observation is commonly over-looked by academics and practitioners alike. Our model shares its origins in statistical physics with others. However, under our approach, changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. This structure leads to an improved physical and econometric model. We develop models for bubbles, shocks and elementary technical trading strategies. The list of empirical applications is both interesting and topical and includes real-estate bubbles and the on-going Eurozone crisis. We close by comparing the results of our model with purely qualitative findings from the finance literature.

  5. Pattern Generation by Bubble Packing Method

    Directory of Open Access Journals (Sweden)

    Goel V.K.

    2013-06-01

    Full Text Available This paper presents a new computational method forornamental Pattern design. The work is a concerted effort ofevaluation of various methods and the comparatively betterprocess is used for designing keeping in mind the accuracyrequirement for such Indian traditional ethnic designs. The firststep in the process to apply the CAD tools to design the patterns.Small semantics (profile are made using the mathematicalmodelling to make different pattern. Geometric constraints suchas scaling, rotation, transformation etc. are applied to make andmodify the profiles. To create patterns, obtains node locationsthrough a physically based particle simulation, which we call'bubble packing. Bubbles are closely packed on the corners,edges and on the surface domain, and nodes are placed at thecenters of the bubbles. Experimental results show that ourmethod can create high quality ornamental patterns. Thefabrication of the ornaments is on rapid prototype machine.

  6. Photon Bubble Turbulence in Cold Atomic Gases

    CERN Document Server

    Rodrigues, João D; Ferreira, António V; Terças, Hugo; Kaiser, Robin; Mendonça, José T

    2016-01-01

    Turbulent radiation flow is ubiquitous in many physical systems where light-matter interaction becomes relevant. Photon bubbling, in particular, has been identified as the main source of turbulent radiation transport in many astrophysical objects, such as stars and accretion disks. This mechanism takes place when radiation trapping in optically dense media becomes unstable, leading to the energy dissipation from the larger to the smaller bubbles. Here, we report on the observation of photon bubble turbulence in cold atomic gases in the presence of multiple scattering of light. The instability is theoretically explained by a fluid description for the atom density coupled to a diffusive transport equation for the photons, which is known to be accurate in the multiple scattering regime investigated here. We determine the power spectrum of the atom density fluctuations, which displays an unusual $\\sim k^{-4}$ scaling, and entails a complex underlying turbulent dynamics resulting from the formation of dynamical bu...

  7. One Bubble to Rule Them All

    CERN Document Server

    Hartle, James

    2016-01-01

    We apply the principles of quantum mechanics and quantum cosmology to predict probabilities for our local observations of a universe undergoing false vacuum eternal inflation. At a sufficiently fine-grained level, histories of the universe describe a mosaic of bubble universes separated by inflationary regions. We show that predictions for local observations can be obtained directly from sets of much coarser grained histories which only follow a single bubble. These coarse-grained histories contain neither information about our unobservable location nor about the unobservable large-scale structure outside our own bubble. Applied to a landscape of false vacua in the no-boundary state we predict our local universe emerged from the dominant decay channel of the lowest energy false vacuum. We compare and contrast this framework for prediction based on quantum cosmology with traditional approaches to the measure problem in cosmology.

  8. Bubbles of Nothing and Supersymmetric Compactifications

    CERN Document Server

    Blanco-Pillado, Jose J; Sousa, Kepa; Urrestilla, Jon

    2016-01-01

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such "topologically unobstructed" cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to $M_3 \\times S_1$ presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this dec...

  9. Bubble Impact with a Solid Wall

    Science.gov (United States)

    Garg, Vishrut; Thete, Sumeet; Basaran, Osman

    2016-11-01

    In diverse natural and industrial processes, and in particular in process equipment widely used in oil and gas production, bubbles and drops that are immersed in a continuous liquid phase frequently collide with solid walls. In this talk, the impact with a solid wall of a gas bubble that is surrounded by a liquid that is either a Newtonian or a non-Newtonian fluid is analyzed by numerical simulation. Special attention is paid to the thin film that forms between the approaching bubble and the solid wall. Flow regimes that arise as the film thickness decreases are scrutinized and rationalized by comparison of the computational predictions to well-known and new analytical results from lubrication theory based thin film literature. Finally, flow transitions that occur as the lubrication theory breaks down and inertia becomes significant are investigated.

  10. Bubble dynamics in perfused tissue undergoing decompression.

    Science.gov (United States)

    Meisel, S; Nir, A; Kerem, D

    1981-02-01

    A mathematical model describing bubble dynamics in a perfused tissue undergoing decompression is presented, taking into account physical expansion and inward diffusion from surrounding supersaturated tissue as growth promoting factors and tissue gas elimination by perfusion, tissue elasticity, surface tension and inherent unsaturation as resolving driving forces. The expected behavior after a step reduction of pressure of a bubble initially existing in the tissue, displaying both growth and resolution has been demonstrated. A strong perfusion-dependence of bubble resolution time at low perfusion rates is apparent. The model can account for various exposure pressures and saturation fractions of any inert gas-tissue combination for which a set of physical and physiological parameters is available.

  11. Bubble heating in Extreme Cooling Clusters

    Science.gov (United States)

    Allen, Steven

    2007-09-01

    Our proposal targets `extreme cooling' clusters: those systems with the largest, fastest cooling rates that most severely challenge the AGN-heating paradigm for cluster cores. By targeting two X-ray bright `extreme cooling cluters' with the clearest radio bubbles in their cores, we seek to establish whether it is possible for AGN heating to balance cooling in such systems. If cooling is not balanced by some heat source, then large residual cooling rates should be detectable in the spectral X-ray data. We will measure the bubble properties precisely and map the spatial-spectral structure of the surrounding X-ray gas, searching for ghost bubbles, shocks, ripples, fronts and non-thermal emission.

  12. Stability of bubbles in a linear elastic medium: Implications for bubble growth in marine sediments

    Science.gov (United States)

    Algar, C. K.; Boudreau, B. P.

    2010-09-01

    Methane bubbles in muddy fine-grained sediments grow initially through a process of elastic expansion, punctuated by discrete fracture events (LEFM-growth). The ability of the surrounding sediments to support a stress and actively resist expansion can, under conditions of low gas production or high sediment toughness, result in the cessation of growth and the presence of stable bubbles. Thus, it is possible for a bubble to stop growing despite the presence of a source in the sediments that continues to produce gas. This contrasts with growth of bubbles in a fluid medium, which cannot support a stress and so will continue to grow as long as a surrounding source provides gas. This "no-growth" condition is the result of the coupling between gas supply (methane production or supersaturation) and the sediment mechanics. Here we quantify this condition and present a criterion for the switch between no-growth and the LEFM growth regimes. We apply this theory to the sediments of Eckernförde Bay, in the Kiel Bight, Germany, and despite the absence of measurements for the key sediment mechanical properties, we can provide a qualitative explanation for the sizes and shapes of the observed bubble population with depth in the sediment. We also show how the release of hydrostatic pressure can stimulate growth, by pushing otherwise stable bubbles into the LEFM growth regime. This could provide a mechanism for the release of bubbles during periods of low water, such as during low tide or wave events.

  13. The cultivation of Anabaena variabilis in a bubble column operating under bubbly and slug flows.

    Science.gov (United States)

    Yoon, Jong Hyun; Choi, Shin Sik; Park, Tai Hyun

    2012-04-01

    In a bubble column reactor with an inner diameter of 6cm and a height of 63cm for the culture of cyanobacteria two different shapes of bubbles can be generated, resulting in bubbly flow or slug flow. Growth of Anabaena variabilis under slug flow (1.9g/l/day) was 1.73 times higher than that under bubbly flow (1.1g/l/day) when the specific irradiation rate was maintained above 10μmol/s/g dry cell. Although a stepwise increase in superficial gas velocity enhanced the average cell growth rate under bubbly flow by 1.57 times, the average cell growth rate during the deceleration phase under bubbly flow (1.98g/l/day) was 0.61 times smaller than that under slug flow (3.22g/l/day). These results demonstrate that the bubble shape in the slug flow was advantageous in regards to the radial circulation of cells.

  14. Bubble visualization in a simulated hydraulic jump

    CERN Document Server

    Witt, Adam; Shen, Lian

    2013-01-01

    This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

  15. Bubble chamber: Omega production and decay

    CERN Multimedia

    1973-01-01

    This image is of real particle tracks taken from the CERN 2 m liquid hydrogen bubble chamber and shows the production and decay of a negative omega particle. A negative kaon enters the chamber which decays into many particles, including a negative omega that travels a short distance before decaying into more particles. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  16. CRISIS FOCUS: Bubbles Pose The Biggest Threat

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The shift of China’s monetary policy stance from "moderately loose" to "prudent" next year indicates curbing inflation and asset bubbles have become the Central Government’s top priority. But is China’s bubble problem short-term or long-term? Is it only monetary or related to economic structure? Is it the cause of China’s economic imbalance or the result? And what kind of deep-rooted problems in the macro economy does it reflect? All these questions call for deep thought, said Zhang Monan, a researcher with the State Information Center, in a recent article for The Beijing News. Edited excerpt follows:

  17. Partial coalescence from bubbles to drops

    KAUST Repository

    Zhang, F. H.

    2015-10-07

    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  18. A large bubble around the Crab Nebula

    Science.gov (United States)

    Romani, Roger W.; Reach, William T.; Koo, Bon Chul; Heiles, Carl

    1990-01-01

    IRAS and 21 cm observations of the interstellar medium around the Crab nebula show evidence of a large bubble surrounded by a partial shell. If located at the canonical 2 kpc distance of the Crab pulsar, the shell is estimated to have a radius of about 90 pc and to contain about 50,000 solar masses of swept-up gas. The way in which interior conditions of this bubble can have important implications for observations of the Crab are described, and the fashion in which presupernova evolution of the pulsar progenitor has affected its local environment is described.

  19. Stochastic modelling for financial bubbles and policy

    Directory of Open Access Journals (Sweden)

    John Fry

    2015-12-01

    Full Text Available In this paper, we draw upon the close relationship between statistical physics and mathematical finance to develop a suite of models for financial bubbles and crashes. By modifying previous approaches, we are able to derive novel analytical formulae for evaluation problems and for the expected timing of future change points. In particular, we help to explain why previous approaches have systematically overstated the timing of changes in market regime. The list of potential empirical applications is deep and wide ranging, and includes contemporary housing bubbles, the Eurozone crisis and the Crash of 2008.

  20. Simulations of Bubble Motion in an Oscillating Liquid

    Science.gov (United States)

    Kraynik, A. M.; Romero, L. A.; Torczynski, J. R.

    2010-11-01

    Finite-element simulations are used to investigate the motion of a gas bubble in a liquid undergoing vertical vibration. The effect of bubble compressibility is studied by comparing "compressible" bubbles that obey the ideal gas law with "incompressible" bubbles that are taken to have constant volume. Compressible bubbles exhibit a net downward motion away from the free surface that does not exist for incompressible bubbles. Net (rectified) velocities are extracted from the simulations and compared with theoretical predictions. The dependence of the rectified velocity on ambient gas pressure, bubble diameter, and bubble depth are in agreement with the theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Free Surface Lattice Boltzmann with Enhanced Bubble Model

    CERN Document Server

    Anderl, Daniela; Rauh, Cornelia; Rüde, Ulrich; Delgado, Antonio

    2016-01-01

    This paper presents an enhancement to the free surface lattice Boltzmann method (FSLBM) for the simulation of bubbly flows including rupture and breakup of bubbles. The FSLBM uses a volume of fluid approach to reduce the problem of a liquid-gas two-phase flow to a single-phase free surface simulation. In bubbly flows compression effects leading to an increase or decrease of pressure in the suspended bubbles cannot be neglected. Therefore, the free surface simulation is augmented by a bubble model that supplies the missing information by tracking the topological changes of the free surface in the flow. The new model presented here is capable of handling the effects of bubble breakup and coalesce without causing a significant computational overhead. Thus, the enhanced bubble model extends the applicability of the FSLBM to a new range of practically relevant problems, like bubble formation and development in chemical reactors or foaming processes.

  2. Effect of Water Vapour to Temperature Inside Sonoluminescing Bubble

    Institute of Scientific and Technical Information of China (English)

    安宇; 谢崇国; 应崇福

    2003-01-01

    Using the model based on the homo-pressure approximation, we explain why the maximum temperature is sensitive to the ambient temperature in the single bubble sonoluminescence. The numerical simulation shows that the maximum temperature inside a sonoluminescing bubble depends on how much water vapour evaporates or coagulates at the bubble wall during the bubble shrinking to its minimum size. While the amount of water vapour inside the bubble at the initial and the final state of the compression depends on the saturated water vapour pressure which is sensitive to the ambient temperature. The lower the saturated vapour pressure is, the higher the maximum temperature is. This may lead to more general conclusion that those liquids with lower saturated vapour pressure are more favourable for the single bubble sonoluminescence. We also compare those bubbles with different noble gases, the result shows that the maximum temperatures in the different gas bubbles are almost the same for those with the same ambient temperature.

  3. Heterocoagulation of hydrophobic particle and bubble during microflotation

    NARCIS (Netherlands)

    Mishchuk, N.A.; Koopal, L.K.; Dukhin, S.S.

    2002-01-01

    The laws of the interaction between a gas bubble and a hydrophobic solid particle were studied. The range of the system parameters that can ensure the heterocoagulation of the particle and the bubble was determined.

  4. Bubble Dynamics in a Two-Phase Medium

    CERN Document Server

    Jayaprakash, Arvind; Chahine, Georges

    2010-01-01

    The spherical dynamics of a bubble in a compressible liquid has been studied extensively since the early work of Gilmore. Numerical codes to study the behavior, including when large non-spherical deformations are involved, have since been developed and have been shown to be accurate. The situation is however different and common knowledge less advanced when the compressibility of the medium surrounding the bubble is provided mainly by the presence of a bubbly mixture. In one of the present works being carried out at DYNAFLOW, INC., the dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is being investigated experimentally and the results are being provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of vary...

  5. Bubble of Real Estate Does Not Appear in Beijing

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The report newly issued by Citigroup enables the people in Beijing to feel consoling that Beijing does not appear bubble in real estate. But the bubble of real estate has appeared only in Shanghai, Tianjin,Shenyang and Ningbo.

  6. Do unbounded bubbles ultimately become fenced inside a black hole?

    CERN Document Server

    Guzman, F S; Sarbach, O

    2007-01-01

    We examine the dynamical behavior of recently introduced bubbles in asymptotically flat, five-dimensional spacetimes. Using numerical methods, we find that even bubbles that initially start expanding eventually collapse to a Schwarzschild-Tangherlini black hole.

  7. Bubble Content in Air/Hydro System--Part 2:Factors Influencing Bubble Content

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method for measuring bubble content of two-phase fluids in complex systems such as air/hydro systems has been designed and verified. Some new results of the study on the factors influencing bubble content using this new method are given in this paper, including the results of the experiments in the SKIP-valve system and long-tube system. Results indicate that the operating time, opening of the control-valve, air supply pressure, mass of the load, speed ratio, and the length of the tube all affect bubble content.

  8. A COINTEGRATION TEST TO VERIFY THE HOUSING BUBBLE

    OpenAIRE

    Bala Arshanapalli; William Nelson

    2008-01-01

    Housing prices in the US rose rapidly from 2000-2007Q3. Based on this evidence, the financial and general press concluded the US experienced a housing bubble. The efficient market theory denies the possibility of a bubble. This paper applies the statistical technique of cointegration to substantiate the presence of a housing bubble. The paper finds the statistical evidence consistent with the presence of a housing bubble in the period 2000-2007Q3 and not the underlying economic conditions.

  9. Monte Carlo Simulation of Optical Properties of Wake Bubbles

    Institute of Scientific and Technical Information of China (English)

    CAO Jing; WANG Jiang-An; JIANG Xing-Zhou; SHI Sheng-Wei

    2007-01-01

    Based on Mie scattering theory and the theory of multiple light scattering, the light scattering properties of air bubbles in a wake are analysed by Monte Carlo simulation. The results show that backscattering is enhanced obviously due to the existence of bubbles, especially with the increase of bubble density, and that it is feasible to use the Monte Carlo method to study the properties of light scattering by air bubbles.

  10. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  11. A mathematical definition of the financial bubbles and crashes

    Science.gov (United States)

    Watanabe, Kota; Takayasu, Hideki; Takayasu, Misako

    2007-09-01

    We check the validity of the mathematical method of detecting financial bubbles or crashes, which is based on a data fitting with an exponential function. We show that the period of a bubble can be determined nearly uniquely independent of the precision of data. The method is widely applicable for stock market data such as the Internet bubble.

  12. Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.

    Science.gov (United States)

    Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin

    2015-07-28

    Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated.

  13. The interaction between multiple bubbles and the free surface

    Institute of Scientific and Technical Information of China (English)

    Zhang A-Man; Yao Xiong-Liang

    2008-01-01

    The flow is assumed to be potential, and a boundary integral method is used to solve the Laplace equation for the velocity potential to investigate the shape and the position of the bubble. A 3D code to study the bubble dynamics is developed, and the calculation results agree well with the experimental data. Numerical analyses are carried out for the interaction between multiple bubbles near the free surface including in-phase and out-of-phase bubbles. The calculation result shows that the bubble period increases with the decrease of the distance between bubble centres because of the depression effect between multiple bubbles. The depression has no relationship with the free surface and it is more apparent for out-of-phase bubbles. There are great differences in dynamic behaviour between the in-phase bubbles and the out-of-phase bubbles due to the depression effect. Furthermore, the interaction among eight bubbles is simulated with a three-dimensional model, and the evolving process and the relevant physical phenomena are presented. These phenomena can give a reference to the future work on the power of bubbles induced by multiple charges exploding simultaneously or continuously.

  14. Adhesion of solid particles to gas bubbles. Part 2: Experimental

    NARCIS (Netherlands)

    Omota, Florin; Dimian, Alexandre C.; Bliek, Alfred

    2006-01-01

    In slurry bubble columns, the adhesion of solid catalyst particles to bubbles may significantly affect the G–L mass transfer and bubble size distribution. This feature may be exploited in design by modifying the hydrophilic or hydrophobic nature of the particles used. Previously we have proposed a g

  15. Rhetoric, Risk, and Markets: The Dot-Com Bubble

    Science.gov (United States)

    Goodnight, G. Thomas; Green, Sandy Edward, Jr.

    2010-01-01

    Post-conventional economic theories are assembled to inquire into the contingent, mimetic, symbolic, and material spirals unfolding the dot-com bubble, 1992-2002. The new technologies bubble is reconstructed as a rhetorical movement across the practices of the hybrid market-industry risk culture of communications. The legacies of the bubble task…

  16. The emission of sound by statistically homogeneous bubble layers

    NARCIS (Netherlands)

    Wijngaarden, van L.; Buist, J.

    1992-01-01

    This paper is concerned with the flow of a bubbly fluid along a wavy wall, which is one Fourier component of a linearized hydrofoil. The bubbles are dispersed, not throughout the whole of the liquid, but only over a certain distance from the wall, as occurs in practice with cavitation bubbles. Outsi

  17. Calibrating optical bubble size by the displaced-mass method.

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de; Kunz, G.; Cohen, L.H.

    2003-01-01

    Bubble sizing by optical means is very common, but requires calibration by non-optical means. This is particularly important since apparent bubble size increases with decreasing threshold intensity. A calibration experiment was conducted comparing the displaced water mass from captured bubbles with

  18. Solids mixing in bubbling fluidized beds: CFD-based analysis of Bubble Dynamics and Time Scales

    Science.gov (United States)

    Bakshi, Akhilesh; Altantzis, Christos; Ghoniem, Ahmed

    2016-11-01

    In bubbling fluidized bed reactors, solids mixing is critical because it directly affects fuel segregation and residence time. However, there continues to be a lack of understanding because (a) most diagnostic techniques are only feasible in lab-scale setups and (b) the dynamics are sensitive to the operating conditions. Thus, quantitative estimates of mixing (e.g., dispersion coefficient, mixing indices) often span orders of magnitude although it is well accepted that the micro-mixing and gross circulation of solid particles is driven by bubble motion. To quantify this dependence, solids mixing is investigated using fine-grid 3D CFD simulations of a large 50 cm diameter fluidized bed. Detailed diagnostics of the computed flow-field data are performed using MS3DATA, a tool that we developed to detect and track bubbles, and the solids motion is correlated with the spatial and size distribution of bubbles. This study will be useful for quantifying mixing at commercial scales.

  19. Direct Measurement of the Bubble Nucleation Energy Threshold in a CF3I Bubble Chamber

    CERN Document Server

    Behnke, E; Brice, S J; Broemmelsiek, D; Collar, J I; Cooper, P S; Crisler, M; Dahl, C E; Fustin, D; Hall, J; Harnish, C; Levine, I; Lippincott, W H; Moan, T; Nania, T; Neilson, R; Ramberg, E; Robinson, A E; Sonnenschein, A; Vázquez-Jáuregui, E; Rivera, R A; Uplegger, L

    2013-01-01

    We have directly measured the energy threshold and efficiency for bubble nucleation from iodine recoils in a CF3I bubble chamber in the energy range of interest for a dark matter search. These interactions cannot be probed by standard neutron calibration methods, so we develop a new technique by observing the elastic scattering of 12 GeV/c negative pions. The pions are tracked with a silicon pixel telescope and the reconstructed scattering angle provides a measure of the nuclear recoil kinetic energy. The bubble chamber was operated with a nominal threshold of (13.6+-0.6) keV. Interpretation of the results depends on the response to fluorine and carbon recoils, but in general we find agreement with the predictions of the classical bubble nucleation theory. This measurement confirms the applicability of CF3I as a target for spin-independent dark matter interactions and represents a novel technique for calibration of superheated fluid detectors.

  20. Multi-Dimensional Analysis of the Forced Bubble Dynamics Associated with Bubble Fusion Phenomena. Final Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lahey, Jr., Richard T. [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research and Dept. of Mechanical, Aeronautical and Nuclear Engineering; Jansen, Kenneth E. [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research and Dept. of Mechanical, Aeronautical and Nuclear Engineering; Nagrath, Sunitha [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research and Dept. of Mechanical, Aeronautical and Nuclear Engineering

    2002-12-02

    A new adaptive grid, 3-D FEM hydrodynamic shock (ie, HYDRO )code called PHASTA-2C has been developed and used to investigate bubble implosion phenomena leading to ultra-high temperatures and pressures. In particular, it was shown that nearly spherical bubble compressions occur during bubble implosions and the predicted conditions associated with a recent ORNL Bubble Fusion experiment [Taleyarkhan et al, Science, March, 2002] are consistent with the occurrence of D/D fusion.

  1. Ultrasound induced by CW laser cavitation bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, N; Montero, P Rodriguez; Ramos-Garcia, R; Ramirez-San-Juan, J C; Padilla-Martinez, J P, E-mail: korneev@inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Apt. Postal 51 y 216 CP72000, Puebla, Pue. (Mexico)

    2011-01-01

    The generation of ultrasound by a collapsing single cavitation bubble in a strongly absorbing liquid illuminated with a moderate power CW laser is described. The ultrasound shock wave is detected with hydrophone and interferometric device. To obtain a stronger pulse it is necessary to adjust a liquid absorption and a beam diameter. Their influence can be qualitatively understood with a simple model.

  2. On the Chinese House-Price Bubble

    Institute of Scientific and Technical Information of China (English)

    Christian Dreger; Yanqun Zhang

    2011-01-01

    @@ For many observers, the Chinese economy has been spurred by a bubble in the real-estate market, probably driven by the fiscal stimulus package and massive credit expansion.For example, the stock of loans increased by more than 50% since the end of 2008.

  3. Bubble and Drop Nonlinear Dynamics (BDND)

    Science.gov (United States)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  4. Characterization of polymers by bubble inflation

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Rasmussen, Henrik K.; Kjær, Erik Michael;

    1999-01-01

    In order to characterise materials using a simple and relative inexpensive method, the bubble inflation technique was modified. A polymer plate is clamped between a Teflon coated heating plate and a heated cylinder. By applying air through the heating plate the polymer membrane deforms...

  5. Bubble oscillations and motion under vibration

    CERN Document Server

    O'Hern, Tim; Torczynski, John

    2011-01-01

    Bubbles under vibration can behave in unusual ways, e.g., moving downward against the force of buoyancy. While the bubble downward motion due to the Bjerknes force is well known at acoustic frequencies close to the bubble resonant frequency, these experiments demonstrate that these effects can be observed at relatively low frequencies as well. Experiments were performed in a thin, quasi-two-dimensional rectangular acrylic box partially filled with 20-cSt PDMS silicone oil with overlying ambient air. The apparatus was subjected to sinusoidal axial vibration that produced breakup of the gas-liquid free surface, producing liquid jets into the air, droplets pinching off from these jets, gas cavities in the liquid from impacts of these droplets, and bubble transport below the interface. Vibration conditions for the attached videos are 280 Hz frequency, 15 g acceleration, and 94 micron peak-to-peak displacement. Behaviors shown in the videos include the following. 1. Free surface breakup into jets and droplets, and...

  6. Photon Bubbles in Young Massive Stars

    Science.gov (United States)

    Turner, N. J.; Yorke, H. W.; Socrates, A.; Blaes, O. M.

    2004-12-01

    Spectroscopic studies indicate that gas in the photospheres of young O stars moves at speeds up to the sound speed. We show, using two-dimensional radiation MHD calculations and results from a local linear analysis, that the motions may be due to photon bubble instability if young O stars have magnetic fields.

  7. Drop impact entrapment of bubble rings

    CERN Document Server

    Thoraval, M -J; Etoh, T G; Thoroddsen, S T

    2012-01-01

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting onto a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. [Phys. Rev. Lett. 108, 264506 (2012)]. These dynamics occur mostly within 50 {\\mu}s after the first contact, requiring imaging at 1 million frames/sec. For a water drop impacting onto a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Re above about 12 000, up to 10 partial bubble-rings have been observed at the base of the ejecta, starting when the contact is about 20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into microbubbles. The different refractive index in the pool l...

  8. Heat transport in bubbling turbulent convection

    NARCIS (Netherlands)

    Lakkaraju, R.; Stevens, R.J.A.M.; Oresta, P.; Verzicco, R.; Lohse, D.; Prosperetti, A.

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to giv

  9. Photon Bubbles in Young Massive Stars

    CERN Document Server

    Turner, N J; Socrates, A; Blaes, Omer M

    2004-01-01

    Spectroscopic studies indicate that gas in the photospheres of young O stars moves at speeds up to the sound speed. We show, using two-dimensional radiation MHD calculations and results from a local linear analysis, that the motions may be due to photon bubble instability if young O stars have magnetic fields.

  10. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  11. Progress of Neutron Bubble Detectors in CIAE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Neutron bubble detector is the only personal neutron dosimeter which has adequate neutronsensitivity to meet the implications of the ICRP 60 recommendations for neutron dosimetry. It canmonitor the wide range of neutron energy, for example 100 eV to 10 MeV And it becomes a significanttool for neutron dose monitoring at the environment of nuclear energy.

  12. How to make a giant bubble

    Science.gov (United States)

    Burton, Justin; Frazier, Stephen

    2016-11-01

    Soap and water solutions can form massive, free floating films encompassing volumes in excess of 50 m3 with thicknesses of only 1-10 microns when mixed with polymeric additives. These films are interesting from a physical standpoint due to their long lifetime and stability in ambient environments. We have investigated a variety of mixtures which are deemed "optimal" for making large bubbles, such as solutions made from guar seeds and polyethylene oxide (PEO). Making a giant bubble requires a balance between viscous and elastic forces. Drawing out a large soap film requires a low-viscosity solution, while elasticity enhances stability. Using a combination of shear rheology, drop-based extensional rheology, and time-dependent thickness measurements, we found that "optimal" solutions showed similar extensional properties even though their shear viscosity differed by more than an order of magnitude. Soap and water solutions with polymers lived 2-3 times longer and drained more slowly than typical soap and water solutions, even though their initial thicknesses were similar. In addition, polymeric bubbles showed increased stability to aging in dry environments. By varying the molecular weight and concentration of PEO in the solutions, we are able to optimize the lifetime of the film and determine the best way to make a giant bubble.

  13. Expanding Taylor bubble under constant heat flux

    Science.gov (United States)

    Voirand, Antoine; Benselama, Adel M.; Ayel, Vincent; Bertin, Yves

    2016-09-01

    Modelization of non-isothermal bubbles expanding in a capillary, as a contribution to the understanding of the physical phenomena taking place in Pulsating Heat Pipes (PHPs), is the scope of this paper. The liquid film problem is simplified and solved, while the thermal problem takes into account a constant heat flux density applied at the capillary tube wall, exchanging with the liquid film surrounding the bubble and also with the capillary tube outside medium. The liquid slug dynamics is solved using the Lucas-Washburn equation. Mass and energy balance on the vapor phase allow governing equations of bubble expansion to be written. The liquid and vapor phases are coupled only through the saturation temperature associated with the vapor pressure, assumed to be uniform throughout the bubble. Results show an over-heating of the vapor phase, although the particular thermal boundary condition used here always ensures an evaporative mass flux at the liquid-vapor interface. Global heat exchange is also investigated, showing a strong decreasing of the PHP performance to convey heat by phase change means for large meniscus velocities.

  14. Bubbles with shock waves and ultrasound: a review.

    Science.gov (United States)

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  15. Cavitation Bubble Nucleation by Energetic Particles

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  16. Fundamental of Inclusion Removal from Molten Steel by Rising Bubble

    Institute of Scientific and Technical Information of China (English)

    WANG Li-tao; ZHANG Qiao-ying; LI Zheng-bang; XUE Zheng-liang

    2004-01-01

    The mechanism of inclusion removal by attachment to rising bubble was analyzed, and the movement behavior of inclusion, the mechanism of bubbles/inclusion interaction, collision probability and adhesion probability were discussed. A mathematical model of inclusion removal from molten steel by attachment to fine bubble was developed. The results of theoretical analysis and mathematical model showed that the optimum bubble diameter for inclusion removal is 1 to 2 mm. A new method that argon is injected into the shroud from ladle to tundish during continuous casting has been proposed to produce fine bubble. It provides theoretical guides for production of super clean steel.

  17. Exploding and Imaging of Electron Bubbles in Liquid Helium

    Science.gov (United States)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2016-11-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  18. Maximal air bubble entrainment at liquid drop impact

    CERN Document Server

    Bouwhuis, Wilco; Tran, Tuan; Keij, Diederik L; Winkels, Koen G; Peters, Ivo R; van der Meer, Devaraj; Sun, Chao; Snoeijer, Jacco H; Lohse, Detlef

    2012-01-01

    At impact of a liquid drop on a solid surface an air bubble can be entrapped. Here we show that two competing effects minimize the (relative) size of this entrained air bubble: For large drop impact velocity and large droplets the inertia of the liquid flattens the entrained bubble, whereas for small impact velocity and small droplets capillary forces minimize the entrained bubble. However, we demonstrate experimentally, theoretically, and numerically that in between there is an optimum, leading to maximal air bubble entrapment. Our results have a strong bearing on various applications in printing technology, microelectronics, immersion lithography, diagnostics, or agriculture.

  19. Path instabilities of air bubbles rising in clean water

    CERN Document Server

    Wu, M; Wu, Mingming; Gharib, Moteza

    1998-01-01

    Experiments are conducted to study the path and shape of single air bubbles (diameter range 0.10- 0.20cm) rising freely in clean water. The experimental results demonstrate that the bubble shape has a bistable state, i. e. the bubble chooses to be in spherical or ellipsoidal shape depending on its generation mechanism. The path of a spherical/ellipsoidal bubble is found to change from a straight path to a zigzag/spiral path via a supercritical/subcritical bifurcation when the Reynolds number of the bubble exceeds a threshold.

  20. Successful Registration of Proton Tracks With Bubble Detector

    Institute of Scientific and Technical Information of China (English)

    T.Doke; J.Kikuchi; M.Komiyama

    2001-01-01

    A study of registration of proton tracks with T-15 type of bubble detectors is carried out. The bubble detectors are made in China Institute of Atomic Energy. 210 MeV proton beam used to irradiate the bubble detectors is accelerated by the cyclotron at the Institute of Physical and Chemical Research(RIKEN) in Wako, Japan. The study shows that T-15 type of bubble detectors can be used to record proton tracks directly. A proton track is composed of a few bubbles because of the short recordable range of proton in the detectors, Successful registration of proton tracks will extend the

  1. Sonoluminescence and the probability of isothermal bubble collapse

    Institute of Scientific and Technical Information of China (English)

    ThomasVPrevenslik

    1997-01-01

    Computations of air bubble collapse dynamics usually neglect thermal conduction.but recent computations show about a 3-fold reduction in bubble gas temperature if thermal conduction is included.However,an isothermal collapse at ambient temperature is even more likely because the air molecuses collide with and stick to the bubble walls during bubble expansion and are not available for compression heating during collapse.The probability of isothermal collapse is shown to depend on the mean free path of the air molecules moving through the H2O vapor molecules within the bullbe during bubble expansion and is sensitive to the lowering of ambinet temperature to the freezing point.

  2. Shape measurement of bubble in a liquid metal

    Science.gov (United States)

    Saito, Y.; Shen, X.; Mishima, K.; Matsubayashi, M.

    2009-06-01

    Dynamic behavior of a two-phase bubble, i.e. a steam bubble containing a droplet evaporating in the bubble, in the molten alloy was clearly visualized using high-frame-rate neutron radiography. In relation to some direct contact heat exchanger design with molten lead-bismuth (Pb-Bi), experiments have been done at JRR-3M of JAEA (Japan Atomic Energy Agency) with water droplets evaporating in a stable thermally stratified Newton's alloy pool. The instantaneous shape and size of the bubble has been iteratively estimated from the void fraction distributions and total void volume by assuming a symmetrical bubble shape.

  3. A note on the dynamics of two aligned bubbles perpendicular to and above a thin membrane

    Energy Technology Data Exchange (ETDEWEB)

    Aghdam, A Hajizadeh [Department of Mechanical Engineering, Arak University of Technology, Arak 3818141167 (Iran, Islamic Republic of); Khoo, B C, E-mail: Hajizadeh@arakut.ac.ir [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2015-06-15

    The interaction of two perpendicular bubbles of a similar size (upper bubble and lower bubble) and the thin elastic membrane beneath them is studied experimentally. The dynamical behavior of the lower bubble (Bubble1), which is placed between the membrane and upper bubble (Bubble2), is rather complex. Observed phenomena such as the splitting of Bubble1 into the ‘mushroom shape’ and ‘masher shape’, the bubble-collapse induced jetting toward Bubble2 and even the coalescence effect are found and systematically categorized by the stated dimensionless parameters. (paper)

  4. Modelling for three dimensional coalescence of two bubbles

    Science.gov (United States)

    Han, R.; Li, S.; Zhang, A. M.; Wang, Q. X.

    2016-06-01

    This paper is concerned with the three dimensional (3D) interaction and coalescence of two bubbles subject to buoyancy and the dynamics of the subsequent joined bubble using the boundary integral method (BIM). An improved density potential method is implemented to control the mesh quality. It helps to avoid the numerical instabilities, which occur after coalescence. Numerical convergence tests are conducted in terms of mesh sizes and time steps. The 3D numerical model agrees well with an axisymmetric BIM model for axisymmetric cases as well as experimental results captured by high-speed camera. The bubble jetting, interaction, and coalescence of the two bubbles depend on the maximum bubble radii, the centre distance between two bubbles at inception, and the angle β between the centre line and the direction of buoyancy. We investigate coalescence of two bubbles for β = 0, π/4, and π/2, respectively, and at various centre distances at inception. Numerical results presented include the bubble and jet shapes, the velocity, and pressure fields surrounding the bubbles, as well as the time histories of bubble volumes, jet velocities, and positions of centroid of the bubble system.

  5. Circulatory bubble dynamics: from physical to biological aspects.

    Science.gov (United States)

    Papadopoulou, Virginie; Tang, Meng-Xing; Balestra, Costantino; Eckersley, Robert J; Karapantsios, Thodoris D

    2014-04-01

    Bubbles can form in the body during or after decompression from pressure exposures such as those undergone by scuba divers, astronauts, caisson and tunnel workers. Bubble growth and detachment physics then becomes significant in predicting and controlling the probability of these bubbles causing mechanical problems by blocking vessels, displacing tissues, or inducing an inflammatory cascade if they persist for too long in the body before being dissolved. By contrast to decompression induced bubbles whose site of initial formation and exact composition are debated, there are other instances of bubbles in the bloodstream which are well-defined. Gas emboli unwillingly introduced during surgical procedures and ultrasound microbubbles injected for use as contrast or drug delivery agents are therefore also discussed. After presenting the different ways that bubbles can end up in the human bloodstream, the general mathematical formalism related to the physics of bubble growth and detachment from decompression is reviewed. Bubble behavior in the bloodstream is then discussed, including bubble dissolution in blood, bubble rheology and biological interactions for the different cases of bubble and blood composition considered.

  6. Predawn plasma bubble cluster observed in Southeast Asia

    Science.gov (United States)

    Watthanasangmechai, Kornyanat; Yamamoto, Mamoru; Saito, Akinori; Tsunoda, Roland; Yokoyama, Tatsuhiro; Supnithi, Pornchai; Ishii, Mamoru; Yatini, Clara

    2016-06-01

    Predawn plasma bubble was detected as deep plasma depletion by GNU Radio Beacon Receiver (GRBR) network and in situ measurement onboard Defense Meteorological Satellite Program F15 (DMSPF15) satellite and was confirmed by sparse GPS network in Southeast Asia. In addition to the deep depletion, the GPS network revealed the coexisting submesoscale irregularities. A deep depletion is regarded as a primary bubble. Submesoscale irregularities are regarded as secondary bubbles. Primary bubble and secondary bubbles appeared together as a cluster with zonal wavelength of 50 km. An altitude of secondary bubbles happened to be lower than that of the primary bubble in the same cluster. The observed pattern of plasma bubble cluster is consistent with the simulation result of the recent high-resolution bubble (HIRB) model. This event is only a single event out of 76 satellite passes at nighttime during 3-25 March 2012 that significantly shows plasma depletion at plasma bubble wall. The inside structure of the primary bubble was clearly revealed from the in situ density data of DMSPF15 satellite and the ground-based GRBR total electron content.

  7. On the fate of vacuum bubbles on matter backgrounds

    CERN Document Server

    Rakic, Aleksandar; Adamek, Julian; Niemeyer, Jens C

    2009-01-01

    In this letter we discuss cosmological first order phase transitions with de Sitter bubbles nucleating on (inhomogeneous) matter backgrounds. The de Sitter bubble can be a toy model for an inflationary phase of universes like our own. Using the thin wall approximation and the Israel junction method we trace the classical evolution of the formed bubbles within a compound model. We first address homogeneous ambient space (FRW model) and already find that bubbles nucleated in a dust dominated background cannot expand. For an inhomogeneous dust background (LTB model) we describe cases with at least initially expanding bubbles. Yet, an ensuing passage of the bubble wall through ambient curvature inhomogeneities remains unnoticed for observers inside the bubble. Notable effects also for interior observers are found in the case of a rapid background phase transition in a FRW model.

  8. Precise measurement technique for the stable acoustic cavitation bubble

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; CHEN Weizhong; LIU Yanan; GAO Xianxian; JIANG Lian; XU Junfeng; ZHU Yifei

    2005-01-01

    Based on the periodic oscillation of the stable acoustic cavitation bubble, we present a precise measurement technique for the bubble evolution. This technique comprises the lighting engineering of pulsing laser beam whose phase can be digitally shifted, and the long distance microphotographics. We used a laser, an acousto-optic modulator, a pulse generator, and a long distance microscope. The evolution of a levitated bubble can be directly shown by a series of bubble's images at different phases. Numerical simulation in the framework of the Rayleigh-Plesset bubble dynamics well supported the experimental result, and the ambient radius of the bubble, an important parameter related to the mass of the gas inside the bubble, was obtained at the same time.

  9. Flow Structures Around Micro-bubbles During Subcooled Nucleate Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M. Christopher; WANG Bu-Xuan

    2005-01-01

    The flow structures were investigated around micro bubbles on extremely thin wires during subcooled nucleate boiling. Jet flows emanating from the bubbles were observed visually with the fluid field measurement using high-speed photography and a PIV system. The jet flows induced a strong pumping effect around a bubble. The multi-jet structure was further observed experimentally, indicating the evolution of flow structure around micro bubbles. Numerical simulations explore that the jet flows were induced by a strong Marangoni effect due to high temperature gradients near the wire. The bubble interface with multi-jet structure has abnormal temperature distribution such that the coolest parts were observed at two sides of a bubble extending into the subcooled bulk liquid rather than at the top. Evaporation and condensation on the bubble interface play important roles not only in controlling the intensity of the jet flow, but also in bringing out the multi-jet structure.

  10. Dynamics of two interacting bubbles in a nonspherical ultrasound field.

    Science.gov (United States)

    Liang, Jinfu; Wang, Xun; Yang, Jing; Gong, Lunxun

    2017-03-01

    In this paper, we present and analyze a model of the oscillations of a pair of gas bubbles driven by nonspherical ultrasound. We derived our model based on the perturbation and potential flow theories and use it to study three cases of oscillation of two bubbles under driving ultrasound with different initial phases, different separation distances between the bubbles and different sound pressure amplitudes. For the driving ultrasound with different initial phases, we obtain the in-phase and anti-phase radial pulsations of the bubbles in incompressible liquid. We also study the effect of the secondary Bjerknes force on the oscillation of bubbles separated by different relative distances. Lastly, we analyze the ratio of a nonspherical to a spherical partial quantity, and the results show that the bubbles survive longer with decreases in both the pressure amplitude of nonspherical ultrasound and the initial bubbles radii.

  11. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  12. Numerical simulation of high Reynolds number bubble motion

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  13. Effects of Gas Dynamics on Rapidly Collapsing Bubbles

    CERN Document Server

    Bauman, Spenser

    2013-01-01

    The dynamics of rapidly collapsing bubbles are of great interest due to the high degree of energy focusing that occurs withing the bubble. Molecular dynamics provides a way to model the interior of the bubble and couple the gas dynamics with the equations governing the bubble wall. While much theoretical work has been done to understand how a bubble will respond to an external force, the internal dynamics of the gas system are usually simplified greatly in such treatments. This paper shows how the gas system dynamics affect bubble collapse and illustrates what effects various modeling assumptions can have on the motion of the bubble wall. In addition, we present a method of adaptively partitioning space to improve the performance of collision intersection calculations when using an energy dependent collision cross section.

  14. Effect of internal bubbly flow on pipe vibrations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents an experimental investigation on wall vibrations of a pipe due to injection of a uniform bubble cloud into the pipe flow. For different bubble void fractions and averaged bubble sizes, the vibrations were measured using accelerometers. To understand the underlying physics, the evolution of the vibration spectra along the streamwise direction was examined. Results showed that wall vibrations were greatly enhanced up to 25 dB, compared with no bubble case. The characteristics of the vibration were mainly dependent on void fraction. These vibrations were believed to be caused by two mechanisms: acoustic resonance and normal modes of the bubble cloud. The former, originating from the interaction between the first mode of the bubble cloud and the first acoustic mode of the pipe, persisted along the entire pipe to enhance the vibration over a broad band frequency range, while the later, due to the process of bubble formation, successively decayed in the streamwise direction.

  15. 球状泡群内气泡的耦合振动∗%Coupled oscillation of bubbles in a spherical bubble cluster

    Institute of Scientific and Technical Information of China (English)

    王成会; 莫润阳; 胡静; 陈时

    2015-01-01

    The pressure wave emitted by a pulsating bubble affects the motions of other bubbles, so in an acoustic field bubbles are in a state of coupled oscillation. In this paper, a cluster with cavitation bubbles inside is considered, and a mathematical model is developed to describe the dynamics of the bubbles of the same radius inside a spherical cluster when the effects of coupled oscillation are included. Based on this new model, the nonlinear acoustic response of cavitation bubbles is analyzed numerically. Comparison of our model with those in the literature, shows that bubbles are suppressed heavily. Because of the coupled oscillations of bubbles, the motions of a bubble are affected by more constraints in the system, which cause the decrease of natural frequency of the bubbles. The nonlinear acoustical response of bubbles is improved by the coupled oscillation in a bubble cluster. With the rise in number density of the cluster, the suppression of bubble oscillation is enhanced. For a cluster of 1 mm radius, when the bubble number is below 500, the change of bubble number may cause a sharp decrease of maximum radial displacement of the bubbles. In cavitation region, there are bubble clusters and large-sized bubble, and the moving large bubble can absorb small bubbles from the surface of bubble cluster, so the bubble numbers inside a cluster varies with time, which may change the acoustic response of coupled oscillating bubbles. The increase of the liquid static pressure can suppress the oscillation of bubbles too, and there is a sensitive region (1–2 atm) that affects remarkably the acoustical response of bubbles. Driving ultrasound can affect the motion of bubble greatly. The range of cavitation bubble size is narrowed when the wave frequency increases. The bubbles whose initial radii are close to 5 µm are easy to be activated by ultrasound under given acoustic conditions, i.e. sizes of bubble cluster, surrounding liquid and inner gas. The cluster oscillation of

  16. Bubble formation in a quiescent pool of gold nanoparticle suspension.

    Science.gov (United States)

    Vafaei, Saeid; Wen, Dongsheng

    2010-08-11

    This paper begins with an extensive review of the formation of gas bubbles, with a particular focus on the dynamics of triple lines, in a pure liquid and progresses into an experimental study of bubble formation on a micrometer-sized nozzle immersed in a quiescent pool of aqueous gold nanofluid. Unlike previous studies of triple line dynamics in a nanofluid under evaporation or boiling conditions, which are mainly caused by the solid surface modification due to particle sedimentation, this work focuses on the roles of nanoparticles suspended in the liquid phase. The experiments are conducted under a wide range of flow rates and nanoparticle concentrations, and many interesting phenomena are revealed. It is observed that nanofluids prevent the spreading of the triple line during bubble formation, i.e. the triple line is pinned somewhere around the middle of the tube wall during the rapid bubble formation stage whereas it spreads to the outer edge of the tube for pure water. A unique 'stick-slip' movement of the triple line is also observed for bubbles forming in nanofluids. At a given bubble volume, the radius of the contact line is found to be smaller for higher particle concentrations, but a reverse trend is found for the dynamic bubble contact angle. With the increase of particle concentration, the bubble frequency is raised and the bubble departure volume is decreased. The bubble shape is found to be in a good agreement with the prediction from Young-Laplace equation for given flow rates. The influence of nanoparticles on other detailed characteristics related to bubble growth inside, including the variation of bubble volume expansion rate, the radius of the curvature at the apex, the bubble height and bubble volume, is revealed. It is suggested that the variation of surface tensions and the resultant force balance at the triple line might be responsible for the modified dynamics of the triple line.

  17. Lithotripter shock wave interaction with a bubble near various biomaterials

    Science.gov (United States)

    Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.

    2016-10-01

    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  18. Modeling of surface cleaning by cavitation bubble dynamics and collapse.

    Science.gov (United States)

    Chahine, Georges L; Kapahi, Anil; Choi, Jin-Keun; Hsiao, Chao-Tsung

    2016-03-01

    Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid-structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.

  19. Interaction of two differently sized oscillating bubbles in a free field.

    Science.gov (United States)

    Chew, Lup Wai; Klaseboer, Evert; Ohl, Siew-Wan; Khoo, Boo Cheong

    2011-12-01

    Most real life bubble dynamics applications involve multiple bubbles, for example, in cavitation erosion prevention, ultrasonic baths, underwater warfare, and medical applications involving microbubble contrast agents. Most scientific dealings with bubble-bubble interaction focus on two similarly sized bubbles. In this study, the interaction between two oscillating differently sized bubbles (generated in tap water) is studied using high speed photography. Four types of bubble behavior were observed, namely, jetting toward each other, jetting away from each other, bubble coalescence, and a behavior termed the "catapult" effect. In-phase bubbles jet toward each other, while out-of-phase bubbles jet away from each other. There exists a critical phase difference that separates the two regimes. The behavior of the bubbles is fully characterized by their dimensionless separation distance, their phase difference, and their size ratio. It is also found that for bubbles with large size difference, the smaller bubble behaves similarly to a single bubble oscillating near a free surface.

  20. Measurements of fast neutrons by bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251, Cuernavaca Morelos (Mexico); Leal, B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F. (Mexico); Rangel, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F (Mexico); Reyes, P. G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario 100, Col. Centro, 50000, Toluca Estado de Mexico (Mexico)

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  1. Tracking bubble evolution inside a silicic dike

    Science.gov (United States)

    Álvarez-Valero, Antonio M.; Okumura, Satoshi; Arzilli, Fabio; Borrajo, Javier; Recio, Clemente; Ban, Masao; Gonzalo, Juan C.; Benítez, José M.; Douglas, Madison; Sasaki, Osamu; Franco, Piedad; Gómez-Barreiro, Juan; Carnicero, Asunción

    2016-10-01

    Pressure estimates from rapidly erupted crustal xenoliths constrain the depth of intrusion of the silicic lavas hosting them. This represents an opportunity for tracking magmatic bubble's evolution and quantifying the variation in bubble volume during rapid magma ascent through a volcanic dike just prior to eruption. The petrology, stable-isotope geochemistry and X-ray micro-tomography of dacites containing crustal xenoliths, erupted from a Neogene volcano in SE Spain, showed an increase in porosity from ~ 1.7 to 6.4% from ~ 19 to 13 km depth, at nearly constant groundmass and crystal volumes. This result provides additional constraints for experimental and numerical simulations of subvolcanic magma-crust degassing processes in silicic systems, and may allow the characterization of volcanic eruptive styles based on volatile content.

  2. Electrospun jets launched from polymeric bubbles

    Directory of Open Access Journals (Sweden)

    J.S. Varabhas

    2009-12-01

    Full Text Available In this paper the launching of liquid polymer jetsfrom the apex of gas bubbles on thepolyvinylpyrrolidone in ethanol (PVP solutionsurface due to an applied electrical potential isinvestigated. Jets of polymer launched from bubbleprovide an alternative method for electrospinningpolymer nanofibers that may be scalable forcommercial production. Bubbles were experimentallycreated on the surface of a polymer solution byforcing air through a syringe into the polymersolution. An electric potential was applied to thesolution to launch the jets. The polymer solutionconcentration was varied to determine the optimumconcentration. The semi-angle of the apex of bubblejust prior to jet launch was observed to be close to thetheoretical value of 49.3 degrees for a pendant drop.

  3. Numerical Simulation on Ship Bubbly Wake

    Institute of Scientific and Technical Information of China (English)

    Huiping Fu; Pengcheng Wan

    2011-01-01

    Based on a volume of fluid two-phase model imbedded in the general computational fluid dynamics code FLUENT6.3.26,the viscous flow with free surface around a model-scaled KRISO container ship(KCS)was first numerically simulated.Then with a rigid-lid-free-surface method,the underwater flow field was computed based on the mixture multiphase model to simulate the bubbly wake around the KCS hull.The realizable k-ε two-equation turbulence model and Reynolds stress model were used to analyze the effects of turbulence model on the ship bubbly wake.The air entrainment model,which is relative to the normal velocity gradient of the free surface,and the solving method were verified by the qualitatively reasonable computed results.

  4. Composite particles and bubbles in Weyl space

    Science.gov (United States)

    Wood, W. R.; Mobed, N.; Papini, G.

    1993-11-01

    A composite particle model that exhibits a number of features of a generic hadronic bag model is derived from a conformally invariant theory in Weyl space. The Gauss-Mainardi-Codazzi formalism facilitates the description of the interior and exterior vacuum phases. Boundary conditions between the two regions are chosen such that the same complex scalar field that is responsible for a dynamical wave equation in the exterior space also provides the surface tension of the bubble. The conformal invariance is broken in the interior space where fluctuations in the scalar field possess a bound-state energy spectrum. Reality conditions dictate that the interior space be anti-de Sitter. Finally, it is pointed out that the bubble may experience collective excitations.

  5. Composite particles and bubbles in Weyl space

    Energy Technology Data Exchange (ETDEWEB)

    Wood, W.R. (Faculty of Natural and Applied Sciences, Trinity Western University, 7600 Glover Road, Langley, British Columbia, V3A 6H4 (Canada)); Mobed, N.; Papini, G. (Department of Physics, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada))

    1993-11-15

    A composite particle model that exhibits a number of features of a generic hadronic bag model is derived from a conformally invariant theory in Weyl space. The Gauss-Mainardi-Codazzi formalism facilitates the description of the interior and exterior vacuum phases. Boundary conditions between the two regions are chosen such that the same complex scalar field that is responsible for a dynamical wave equation in the exterior space also provides the surface tension of the bubble. The conformal invariance is broken in the interior space where fluctuations in the scalar field possess a bound-state energy spectrum. Reality conditions dictate that the interior space be anti--de Sitter. Finally, it is pointed out that the bubble may experience collective excitations.

  6. Rapid-Cycling Bubble-Chamber, details

    CERN Multimedia

    1980-01-01

    Parts of the hydraulic expansion system of the Rapid-Cycling Bubble-Chamber (RCBC). RCBC was the largest of 3 rapid-cycling bubble-chambers (the others were LEBC and HOLEBC), used as target- and vertex-detectors within the European Hybrid Spectrometer (EHS) in the SPS North Area (EHN1). RCBC contained 250 l of liquid hydrogen and was located inside a 3 T superconducting magnet. It was designed for 30 expansions/s (100 times faster than BEBC), the system shown here allowed 50 expansions/s. RCBC operated from 1981 to 1983 for experiments NA21, NA22 and NA23 at a rate of 15 expansions/s, clocking up a total of over 4 million. In the rear, at left, is bearded Lucien Veillet; Augustin Didona is at the right. See also 8001009. The installation of the piston assembly in the RCBC chamber body is shown in the Annual Report 1980, p.65.

  7. Computational analysis of ozonation in bubble columns

    Energy Technology Data Exchange (ETDEWEB)

    Quinones-Bolanos, E. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada)]|[Univ. de Cartagena, Facultad de Ciencias e Ingenieria, Cartagena de Indias (Colombia); Zhou, H.; Otten, L. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada)]. E-mail: hzhou@uoguelph.ca

    2002-06-15

    This paper presents a new computational ozonation model based on the principle of computational fluid dynamics along with the kinetics of ozone decay and microbial inactivation to predict the performance of ozone disinfection in fine bubble columns. The model can be represented using a mixture two-phase flow model to simulate the hydrodynamics of the water flow and using two transport equations to track the concentration profiles of ozone and microorganisms along the height of the column, respectively. The applicability of this model was then demonstrated by comparing the simulated ozone concentrations with experimental measurements obtained from a pilot scale fine bubble column. One distinct advantage of this approach is that it does not require the prerequisite assumptions such as plug flow condition, perfect mixing, tanks-in-series, uniform radial or longitudinal dispersion in predicting the performance of disinfection contactors without carrying out expensive and tedious tracer studies. (author)

  8. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  9. The Distribution of Bubble Sizes During Reionization

    CERN Document Server

    Lin, Yin; Furlanetto, Steven R; Sutter, P M

    2015-01-01

    A key physical quantity during reionization is the size of HII regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm -- widely used for void finding in galaxy surveys -- which we show to be an unbiased method with the lowest dispersion and best performance on Monte-Carlo realizations of a known bubble size PDF. We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect those volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, HI...

  10. Metastability in bubbling AdS space

    Science.gov (United States)

    Massai, Stefano; Pasini, Giulio; Puhm, Andrea

    2015-02-01

    We study the dynamics of probe M5 branes with dissolved M2 charge in bubbling geometries with SO(4) × SO(4) symmetry. These solutions were constructed by Bena-Warner and Lin-Lunin-Maldacena and correspond to the vacua of the maximally supersymmetric mass-deformed M2 brane theory. We find that supersymmetric probe M2 branes polarize into M5 brane shells whose backreaction creates an additional bubble in the geometry. We explicitly check that the supersymmetric polarization potential agrees with the one found within the Polchinski-Strassler approximation. The main result of this paper is that probe M2 branes whose orientation is opposite to the background flux can polarize into metastable M5 brane shells. These decay to a supersymmetric configuration via brane-flux annihilation. Our findings suggest the existence of metastable states in the mass-deformed M2 brane theory.

  11. Metastability in Bubbling AdS Space

    CERN Document Server

    Massai, Stefano; Puhm, Andrea

    2014-01-01

    We study the dynamics of probe M5 branes with dissolved M2 charge in bubbling geometries with SO(4) x SO(4) symmetry. These solutions were constructed by Bena-Warner and Lin-Lunin-Maldacena and correspond to the vacua of the maximally supersymmetric mass-deformed M2 brane theory. We find that supersymmetric probe M2 branes polarize into M5 brane shells whose backreaction creates an additional bubble in the geometry. We explicitly check that the supersymmetric polarization potential agrees with the one found within the Polchinski-Strassler approximation. The main result of this paper is that probe M2 branes whose orientation is opposite to the background flux can polarize into metastable M5 brane shells. These decay to a supersymmetric configuration via brane-flux annihilation. Our findings suggest the existence of metastable states in the mass-deformed M2 brane theory.

  12. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  13. The Gargamelle heavy liquid bubble chamber

    CERN Multimedia

    1970-01-01

    This image shows the Gargamelle heavy liquid bubble chamber. It was used to detect particles in experiments at the PS between 1970 and 1976 before being moved to the SPS. In 1973, while working on the PS, it detected the first neutral current, an interaction vital to the electroweak theory. In 1978 a large fissure appeared in the body of the chamber and Gargamelle was stopped in 1979.

  14. Bubble chamber: D meson production and decay

    CERN Multimedia

    1978-01-01

    This event shows real particle tracks from the Big European Bubble Chamber (BEBC), which was used to observe neutrino and hadron beams between 1973 and 1984 from the PS and SPS accelerators. In this event a neutrino interacts with a proton producing an excited D meson. A labeled diagram is seen on the right as the particles spiral in the magnetic field of the detector.

  15. Gas Bubble Growth in Muddy Sediments

    Science.gov (United States)

    2016-06-07

    appropriate model for growth (i.e. non - Newtonian viscous vs. plastic (Bingham) vs. elastic vs. visco-elastic). The modelling research (Bernard Boudreau...Rev. 8-98) Prescribed by ANSI Std Z39-18 On the modelling front, we have a working model of a sediment as a Newtonian /Power-Law fluid , surrounding a... Newtonian model or approximated with a Power-Law fluid model. IMPACT/APPLICATIONS Bubbles seriously compromise acoustic sensing of sediments, e.g. locating

  16. The Bern Infinitesimal Bubble Chamber (BIBC)

    CERN Multimedia

    1977-01-01

    The chamber body was machined from a block of aluminium. The visible volume was cylindrical with 65 mm diameter and 35 mm depth. It was filled with propane or freon. It was meant as vertex detector in the search of short-lived particles. It was also used with in-line holography resulting in 8 µm bubble size and 9 cm depth of the field. See E. Ramseyer, B. Hahn and E. Hugentobler, Nucl. Instrum. Methods 201 (1982) 335.

  17. Investor Outlook: After the Biotech Bubble Popped.

    Science.gov (United States)

    Schimmer, Joshua; Breazzano, Steven; Yang, Jerry

    2016-03-01

    After a few torrid years of value appreciation, the biotech "bubble" has precipitously popped over the past few months. In this report, we take a look at some of the factors that drove the run-up in valuations, the triggers that led to their substantial pullback, and where the industry may be headed from here. Gene therapy/editing companies have been particularly affected by these dynamics, raising a new set of questions and challenges for the group.

  18. Methods of Evaluating Bubble Boundary Definition Using Characteristic Parameters of Bubble Boundary

    Science.gov (United States)

    Shao, JianBin; Chen, Gang; Li, Guodong

    2007-06-01

    Taking image with high definition is the basis to study aerated water flow using image measurement method. It was found that gas-water flow have complicated optical properties because both bubbles and water are transparent, and bubbles are featured with continuous deformation. Even under the same illumination conditions, the characteristics of the captured bubble images are very different. By now, human intuition and analysis still play a central role in the choices of the best lighting schemes. Nevertheless, the decision made within a person's mind is not unreliable. In this paper, we presented a series of quantitative evaluation methods to identify the imaging quality of bubble by brightness feature analysis of water, bubbles and interface between them. As an example, an optimized lighting scheme was determined via selection from back-lighting, side-lighting, normal-lighting and other lighting schemes with different angles. It is shown that our method is effective to optimize photography, reduce the number of pictures and obtain high quality images.

  19. Decompression-induced bubble formation in salmonids: comparison to gas bubble disease.

    Science.gov (United States)

    Beyer, D L; D'Aoust, B G; Smith, L S

    1976-12-01

    The relationship of gas bubble disease (GBD) in fish to decompression-induced bubble formation was investigated with salmonids. Acute bioassays were used to determine equilibration times for critical effects in fish decompressed from depths to 200 fsw. It was found that equilibration of critical tissues was complete in 60-90 min. Salmonids and air-breathers are sensitive to decompressions at similar levels of supersaturation if elimination of excess gas following decompression is unrestricted. However, if elimination is restricted, bubble formation and growth increase accordingly. Tests with mixtures of He-O2, Ar-O2, N2-O2 (80% inert gas: 20% O2) and pure oxygen demonstrated that gas solubility as well as supersaturation (delta P), pressure ratio (initial pressure: final pressure), and absolute pressure must be considered in setting tolerance limits for any decompression. Gases with higher solubility are more likely to produce bubbles upon decompression. Oxygen, however, does not follow this relationship until higher pressures are reached, probably owing to its function in metabolism and in binding with hemoglobin. Tissue responses observed in both GBD and decompressed fish involved similar pathological effects at acute exposures. The circulatory system was consistently affected by bubbles that occluded vessels and blocked flow through the heart.

  20. Micro bubble formation and bubble dissolution in domestic wet central heating systems

    Directory of Open Access Journals (Sweden)

    Ge Yunting

    2012-04-01

    Full Text Available 16 % of the carbon dioxide emissions in the UK are known to originate from wet domestic central heating systems. Contemporary systems make use of very efficient boilers known as condensing boilers that could result in efficiencies in the 90-100% range. However, research and development into the phenomenon of micro bubbles in such systems has been practically non-existent. In fact, such systems normally incorporate a passive deaerator that is installed as a ‘default’ feature with no real knowledge as to the micro bubble characteristics and their effect on such systems. High saturation ratios are known to occur due to the widespread use of untreated tap water in such systems and due to the inevitable leakage of air into the closed loop circulation system during the daily thermal cycling. The high temperatures at the boiler wall result in super saturation conditions which consequently lead to micro bubble nucleation and detachment, leading to bubbly two phase flow. Experiments have been done on a test rig incorporating a typical 19 kW domestic gas fired boiler to determine the expected saturation ratios and bubble production and dissolution rates in such systems.

  1. Micro bubble formation and bubble dissolution in domestic wet central heating systems

    Science.gov (United States)

    Fsadni, Andrew M.; Ge, Yunting

    2012-04-01

    16 % of the carbon dioxide emissions in the UK are known to originate from wet domestic central heating systems. Contemporary systems make use of very efficient boilers known as condensing boilers that could result in efficiencies in the 90-100% range. However, research and development into the phenomenon of micro bubbles in such systems has been practically non-existent. In fact, such systems normally incorporate a passive deaerator that is installed as a `default' feature with no real knowledge as to the micro bubble characteristics and their effect on such systems. High saturation ratios are known to occur due to the widespread use of untreated tap water in such systems and due to the inevitable leakage of air into the closed loop circulation system during the daily thermal cycling. The high temperatures at the boiler wall result in super saturation conditions which consequently lead to micro bubble nucleation and detachment, leading to bubbly two phase flow. Experiments have been done on a test rig incorporating a typical 19 kW domestic gas fired boiler to determine the expected saturation ratios and bubble production and dissolution rates in such systems.

  2. The influence of bubbles on the perception carbonation bite.

    Directory of Open Access Journals (Sweden)

    Paul M Wise

    Full Text Available Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form and at 2.0 atmospheres pressure (at which bubbles did not form. Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  3. The influence of bubbles on the perception carbonation bite.

    Science.gov (United States)

    Wise, Paul M; Wolf, Madeline; Thom, Stephen R; Bryant, Bruce

    2013-01-01

    Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form) and at 2.0 atmospheres pressure (at which bubbles did not form). Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated) solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  4. Nonlinear Bubbling and Micro-Convection at a Submerged Orifice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The present paper describes the nonlinear behavior of bubble formation from a single submerged orifice and induced liquid motion (micro-convection) surrounding the bubble. The experimental data reveals that departing periods of successive bubbles evolve multiple periods from single to triple periods when the gas flow rate is increased and that the micro-convection evolves bifurcation phenomena similar to the so-called "period doubling" in chaos dynamics. The photographic observation using high-speed video movies and data analysis indicate that the nonlinear features come from the deformation of the bubble and also the interaction between consecutive bubbles. A new comprehensive theoretical model is developed for describing the instantaneous bubble behaviors during formation and ascendance processes and for predicting the departing periods and sizes of successive bubbles for constant flow rate conditions. Owing to the estimation of instantaneous interactions between successive bubbles and the incorporation of the wake effect of previous bubbles, the present model describes the evolution process and mechanisms of bubble departing periods corresponding to different gas flow rate regimes. The theoretical results are in good agreement with experimental results.

  5. Effect of supercritical water shell on cavitation bubble dynamics

    Science.gov (United States)

    Shao, Wei-Hang; Chen, Wei-Zhong

    2015-05-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh-Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174145 and 11334005).

  6. Bubbles of nothing and supersymmetric compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)

    2016-10-03

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.

  7. Wrinkling in the deflation of elastic bubbles

    KAUST Repository

    Aumaitre, Elodie

    2013-03-01

    The protein hydrophobin HFBII self-assembles into very elastic films at the surface of water; these films wrinkle readily upon compression. We demonstrate and study this wrinkling instability in the context of non-planar interfaces by forming HFBII layers at the surface of bubbles whose interfaces are then compressed by deflation of the bubble. By varying the initial concentration of the hydrophobin solutions, we are able to show that buckling occurs at a critical packing fraction of protein molecules on the surface. Independent experiments show that at this packing fraction the interface has a finite positive surface tension, and not zero surface tension as is usually assumed at buckling. We attribute this non-zero wrinkling tension to the finite elasticity of these interfaces. We develop a simple geometrical model for the evolution of the wrinkle length with further deflation and show that wrinkles grow rapidly near the needle (used for deflation) towards the mid-plane of the bubble. This geometrical model yields predictions for the length of wrinkles in good agreement with experiments independently of the rheological properties of the adsorbed layer. © 2013 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  8. 3D shock-bubble interaction

    Science.gov (United States)

    Hejazialhosseini, Babak; Rossinelli, Diego; Koumoutsakos, Petros

    2013-09-01

    We present a simulation for the interactions of shockwaves with light spherical density inhomogeneities. Euler equations for two-phase compressible flows are solved in a 3D uniform resolution finite volume based solver using 5th order WENO reconstructions of the primitive quantities, HLL-type numerical fluxes and 3rd order TVD time stepping scheme. In this study, a normal Mach 3 shockwave in air is directed at a helium bubble with an interface Atwood number of -0.76. We employ 4 billion cells on a supercomputing cluster and demonstrate the development of this flow until relatively late times. Shock passage compresses the bubble and deposits baroclinic vorticity on the interface. Initial distribution of the vorticity and compressions lead to the formation of an air jet, interface roll-ups and the formation of a long lasting vortical core, the white core. Compressed upstream of the bubble turns into a mixing zone and as the vortex ring distances from this mixing zone, a plume-shaped region is formed and sustained. Close observations have been reported in previous experimental works. The visualization is presented in a fluid dynamics video.

  9. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  10. The Trouble with the Local Bubble

    CERN Document Server

    Welsh, Barry Y

    2009-01-01

    The model of a Local Hot Bubble has been widely accepted as providing a framework that can explain the ubiquitous presence of the soft X-ray background diffuse emission. We summarize the current knowledge on this local interstellar region, paying particular reference to observations that sample emission from the presumed local million degree K hot plasma. However, we have listed numerous observations that are seemingly in conflict with the concept of a hot Local Bubble. In particular, the discovery of solar wind charge exchange that can generate an appreciable soft X-ray background signal within the heliosphere, has led to a reassessment of the generally accepted model that requires a hot local plasma. In order to explain the majority of observations of the local plasma, we forward two new speculative models that describe the physical state of the local interstellar gas. One possible scenario is similar to the present widely accepted model of the Local Hot Bubble, except that it accounts for only 50% of the s...

  11. Non-Abelian bubbles in microstate geometries

    CERN Document Server

    Ramirez, Pedro F

    2016-01-01

    We find the first smooth microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of $\\mathcal{N}=1$, $d=5$ Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  12. BEBC, the Big European Bubble Chamber

    CERN Multimedia

    1971-01-01

    The vessel of the Big European Bubble Chamber, BEBC, was installed at the beginning of the 1970s. The large stainless-steel vessel, measuring 3.7 metres in diameter and 4 metres in height, was filled with 35 cubic metres of liquid (hydrogen, deuterium or a neon-hydrogen mixture), whose sensitivity was regulated by means of a huge piston weighing 2 tonnes. During each expansion, the trajectories of the charged particles were marked by a trail of bubbles, where liquid reached boiling point as they passed through it. The first images were recorded in 1973 when BEBC, equipped with the largest superconducting magnet in service at the time, first received beam from the PS. In 1977, the bubble chamber was exposed to neutrino and hadron beams at higher energies of up to 450 GeV after the SPS came into operation. By the end of its active life in 1984, BEBC had delivered a total of 6.3 million photographs to 22 experiments devoted to neutrino or hadron physics. Around 600 scientists from some fifty laboratories through...

  13. Allostery through protein-induced DNA bubbles.

    Science.gov (United States)

    Traverso, Joseph J; Manoranjan, Valipuram S; Bishop, A R; Rasmussen, Kim Ø; Voulgarakis, Nikolaos K

    2015-01-01

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.

  14. Allostery through protein-induced DNA bubbles

    Science.gov (United States)

    Traverso, Joseph J.; Manoranjan, Valipuram S.; Bishop, A. R.; Rasmussen, Kim Ø.; Voulgarakis, Nikolaos K.

    2015-03-01

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.

  15. Gravitational waves from cosmic bubble collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hoon [Ewha Womans University, Basic Science Research Institute, Seoul (Korea, Republic of); Ewha Womans University, Institute for the Early Universe, Seoul (Korea, Republic of); Lee, Bum-Hoon [Sogang University, Center for Quantum Spacetime, Seoul (Korea, Republic of); Sogang University, Department of Physics, Seoul (Korea, Republic of); Lee, Wonwoo [Sogang University, Center for Quantum Spacetime, Seoul (Korea, Republic of); Yang, Jongmann [Ewha Womans University, Basic Science Research Institute, Seoul (Korea, Republic of); Ewha Womans University, Institute for the Early Universe, Seoul (Korea, Republic of); Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Yeom, Dong-han [Sogang University, Center for Quantum Spacetime, Seoul (Korea, Republic of); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China)

    2015-03-01

    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)

  16. Bubble migration in a compacting crystal-liquid mush

    Science.gov (United States)

    Boudreau, Alan

    2016-04-01

    Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid

  17. Bubbles in liquids with phase transition. Part 1. On phase change of a single vapor bubble in liquid water

    Science.gov (United States)

    Dreyer, Wolfgang; Duderstadt, Frank; Hantke, Maren; Warnecke, Gerald

    2012-11-01

    In the forthcoming second part of this paper a system of balance laws for a multi-phase mixture with many dispersed bubbles in liquid is derived where phase transition is taken into account. The exchange terms for mass, momentum and energy explicitly depend on evolution laws for total mass, radius and temperature of single bubbles. Therefore in the current paper we consider a single bubble of vapor and inert gas surrounded by the corresponding liquid phase. The creation of bubbles, e.g. by nucleation is not taken into account. We study the behavior of this bubble due to condensation and evaporation at the interface. The aim is to find evolution laws for total mass, radius and temperature of the bubble, which should be as simple as possible but consider all relevant physical effects. Special attention is given to the effects of surface tension and heat production on the bubble dynamics as well as the propagation of acoustic elastic waves by including slight compressibility of the liquid phase. Separately we study the influence of the three phenomena heat conduction, elastic waves and phase transition on the evolution of the bubble. We find ordinary differential equations that describe the bubble dynamics. It turns out that the elastic waves in the liquid are of greatest importance to the dynamics of the bubble radius. The phase transition has a strong influence on the evolution of the temperature, in particular at the interface. Furthermore the phase transition leads to a drastic change of the water content in the bubble. It is shown that a rebounding bubble is only possible, if it contains in addition an inert gas. In Part 2 of the current paper the equations derived are sought in order to close the system of equations for multi-phase mixture balance laws for dispersed bubbles in liquids involving phase change.

  18. Cosmic Bubble Image Wins NRAO Contest

    Science.gov (United States)

    2006-10-01

    A striking image of an enormous bubble blown into the dusty gas disk of our own Milky Way galaxy has won first place in the National Radio Astronomy Observatory's second annual Radio Astronomy Image Contest. Dr. Jayanne English of the University of Manitoba led the team that made the winning image using data from the National Science Foundation's Very Large Array (VLA) in New Mexico and Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. Cosmic Bubble Image Giant "Bubble" in Milky Way's Gas CREDIT: English et al., NRAO/AUI/NSF Click on image for large files and full information English and her collaborators Jeroen Stil and Russ Taylor, from the University of Calgary, will share the grand prize of $1,000 from Associated Universities, Inc., the research corporation that operates the observatory for the NSF. "We congratulate Dr. English for producing an outstanding image that beautifully illustrates the power of our radio telescopes," said NRAO Director Fred K.Y. Lo. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanding image gallery on the observatory's Web site. English's winning image shows a giant bubble in the Milky Way's dusty gas disk. The bubble has been sculpted by the wind and radiation force from a few dozen hot, massive stars along with the explosive force of supernova explosions from dying stars. The bubble, seen in the faint radio glow of hydrogen gas, is some 30,000 light-years from Earth and measures 1,100 by 520 light-years. If the bubble, in the constellation Vulpecula, were visible to human eyes, it would appear to be eight times the diameter of the full Moon in the sky. The image was made using data collected as part of the VLA Galactic Plane Survey (VGPS), a set of systematic observations of the Milky Way. This survey, led by

  19. How does gas pass? Bubble transport through sediments

    Science.gov (United States)

    Fauria, K. E.; Rempel, A. W.

    2009-12-01

    The transport of gas through marine sediments is critical for both the formation and the ultimate fate of gas that is housed temporarily within hydrates. We monitored the gas flux produced by repeated bubble injections into a particle layer that was initially saturated with liquid. The size of ejected bubbles and the period between ejection events were different from the input size and period. Our observations clearly demonstrate bubble break-up as well as coalescence and the formation of preferred bubble migration pathways. We develop an elementary, semi-empirical model to interpret aspects of these results and predict the gas flux expected from a given size distribution of bubble inputs as a function of basic host sediment characteristics. Models of gas transport that use simple modifications to Darcy's law are not adequate to cope with bubble dynamics in the parameter regime that we observe.

  20. The equilibrium shape of bubbles on curved interfaces

    Science.gov (United States)

    Bird, James; Poe, Daniel; Walls, Peter

    2016-11-01

    The equilibrium shape for a bubble resting at a free surface depends on a balance of hydrostatic and capillary forces, with the smallest bubbles approximating a sphere and a hemisphere for the largest. This shape has been shown to be important to several processes ranging from gas transfer across the thin film cap to the production of jet droplets. Past works calculating the equilibrium shape assume that the interface is flat. However, there are instances where the curvature of the boundary may be comparable to the bubble itself. For example, a bubble bursting on the surface of a rain droplet. Here we relax the assumption of a flat interface and extend the classic bubble shape calculations to account for a curved interface boundary. An understanding of the extent of this deformation and the precise equilibrium bubble shape is important to applications in fields ranging from air-sea exchange to combustion dynamics. We acknowledge financial support from NSF Grant No. 1351466.

  1. Bubbles in extended inflation and multi-production of universes

    Science.gov (United States)

    Sakai, Nobuyuki; Maeda, Kei-ichi

    Developing the thin-wall method of Israel, we present a formalism to investigate bubble dynamics in generalized Einstein theories. We derive the equations of motion for a bubble, finding that the space-time inside a bubble is always inhomogeneous. Applying this formalism to extended inflation, we find the following two results: (1) Any true vacuum bubble expands, contrary to the results of Goldwirth-Zaglauer, who claim that bubbles created initially later collapse. We show that their initial conditions for collapsing bubbles are physically inconsistent. (2) Concerning the global space-time structure of the Universe in extended inflation, we show that worm-holes are produced as in old inflation, resulting in the multi-production of universes.

  2. A critical review of physiological bubble formation in hyperbaric decompression.

    Science.gov (United States)

    Papadopoulou, Virginie; Eckersley, Robert J; Balestra, Costantino; Karapantsios, Thodoris D; Tang, Meng-Xing

    2013-05-01

    Bubbles are known to form in the body after scuba dives, even those done well within the decompression model limits. These can sometimes trigger decompression sickness and the dive protocols should therefore aim to limit bubble formation and growth from hyperbaric decompression. Understanding these processes physiologically has been a challenge for decades and there are a number of questions still unanswered. The physics and historical background of this field of study is presented and the latest studies and current developments reviewed. Heterogeneous nucleation is shown to remain the prime candidate for bubble formation in this context. The two main theories to account for micronuclei stability are then to consider hydrophobicity of surfaces or tissue elasticity, both of which could also explain some physiological observations. Finally the modeling relevance of the bubble formation process is discussed, together with that of bubble growth as well as multiple bubble behavior.

  3. Photothermally controlled Marangoni flow around a micro bubble

    Energy Technology Data Exchange (ETDEWEB)

    Namura, Kyoko, E-mail: namura.kyoko.57r@st.kyoto-u.ac.jp; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi [Department of Micro Engineering, Kyoto University, Kyoto daigaku-Katsura, Kyoto 615-8540 (Japan)

    2015-01-26

    We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size.

  4. Condensation-Induced Steam Bubble Collapse in a Pipeline

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Steam bubbles often occur in pipelines due to the pipeline structure or operational errors. The water hammer force induced by the steam bubble collapse is a hidden safety concern. This paper experimentally and numerically investigates the conditions for steam bubble formation and collapse. A series of video pictures taken in the laboratory show that steam bubbles form and collapse over several cycles. The pressure history of the steam bubbles is measured in conjunction with the pictures. In the experiment, the liquid column cavitated at the low pressures and then the cavities collapsed due to condensation causing high pressure pulses. The process was also simulated numerically. The results suggest that coolant pipeline design and operation must include procedures to avoid steam bubble formation.

  5. Interfacial structure in an air-water planar bubble jet

    Science.gov (United States)

    Sun, X.; Vasavada, S.; Choi, S. W.; Kim, S.; Ishii, M.; Beus, S. G.

    2005-04-01

    The objective of the current study is to better understand the interfacial structure and its development in an air-water planar bubble jet, as well as to provide a unique benchmark data set for a 3D thermal-hydraulic analysis code. Both flow visualization and local measurements were performed in three characteristic flow conditions at four elevations along a test section with a cross section of 200 mm in width and 10 mm in gap. A high-speed digital video camera was applied in the flow visualization study to capture the flow structures and bubble interaction phenomena, while a miniaturized four-sensor conductivity probe was used to acquire the time-averaged local void fraction, interfacial velocity, and bubble number frequency. Also, the interfacial area concentration and the averaged bubble Sauter mean diameter were obtained from the local measurements. The lateral bubble transport and bubble interaction mechanisms were clearly demonstrated in the acquired data.

  6. Formation of bubbles in a multisection flow-focusing junction.

    Science.gov (United States)

    Hashimoto, Michinao; Whitesides, George M

    2010-05-01

    The formation of bubbles in a flow-focusing (FF) junction comprising multiple rectangular sections is described. The simplest junctions comprise two sections (throat and orifice). Systematic investigation of the influence on the formation of bubbles of the flow of liquid and the geometry of the junction identifies regimes that generate monodisperse, bidisperse, and tridisperse trains of bubbles. The mechanisms by which these junctions form monodisperse and bidisperse bubbles are inferred from the shapes of the gas thread during breakup: these mechanisms differ primarily by the process in which the gas thread collapses in the throat and/or orifice. The dynamic self-assembly of bidisperse bubbles leads to unexpected groupings of bubbles during their flow along the outlet channel.

  7. THE INFLUENCE OF GAS-DENSITY AND LIQUID PROPERTIES ON BUBBLE BREAKUP

    NARCIS (Netherlands)

    WILKINSON, PM; VANSCHAYK, A; SPRONKEN, JPM; VANDIERENDONCK, LL

    1993-01-01

    On the basis of a literature review of bubble breakup experiments, it is demonstrated that both liquid viscosity and surface tension have an influence on bubble stability and, thus, bubble breakup, for small as well as large bubbles. Possible influences of the gas properties on bubble breakup have u

  8. Bubbles Outside the Plume During the LUMINY Wind-Wave Experiment

    NARCIS (Netherlands)

    Leeuw, G. de; Leifer, I.

    2002-01-01

    Since many bubble-mediated processes are size dependent, it is often necessary to characterize the bubble distribution over the full size spectrum. For example, in regards to bubble-mediated gas transfer, small bubbles are important for insoluble gases like helium, while large bubbles are important

  9. Oxygen quenching in LAB based liquid scintillator and nitrogen bubbling

    CERN Document Server

    Hua-Lin, Xiao

    2009-01-01

    Oxygen quenching effect in Linear Alkl Benzne (LAB) based liquid scintillator (LAB+3g/L POPOP+ 15 mg Bis--MSB) was studied by measuring the light yield as the function of nitrogen bubbling time. it shows that the light yield of fully purged liquid scintillator would increase of nearly 11% in room temperature and room atmosphere pressure. A simple model of nitrogen bubbling was built to describe the relationship between relative light yield (oxygen quenching factor) and bubbling time.

  10. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  11. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    Energy Technology Data Exchange (ETDEWEB)

    Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-08-01

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  12. Can airborne ultrasound monitor bubble size in chocolate?

    OpenAIRE

    Watson, N; Hazlehurst, T; Povey, M; Vieira, J.; Sundara, R; Sandoz, JP

    2014-01-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non cont...

  13. The Asymmetric Collapse of Bubbles in Compressible Liquid

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Shan

    2003-01-01

    The analytical solution ora bubble collapse close to a solid boundary in a compressible water is investigatedby means of a perturbation method to first order in the bubble wall Mach number. It is shown, in this paper, that itis the Rayleigh-Plesset equation for incompressible liquid to zero order solution or similar to the Gilmore equation forcompressible water to first order solution when the effect of solid boundary is negligibly small enough, i.e., sufficientlyfar away from the bubble center.

  14. Modification of Shape Oscillations of an Attached Bubble by Surfactants

    OpenAIRE

    Tihon J.; Vejražka J.; Vobecká L.

    2013-01-01

    Surface-active agents (surfactants, e.g. washing agents) strongly modifies properties of gas-liquid interface. We have carried out extensive experiments, in which we study effect of surfactants on the shape oscillations of a bubble, which is attached at a tip of a capillary. In the experiments, shape oscillations of a bubble are invoked by a motion of a capillary, to which the bubble is injected. Decaying oscillations are recorded and their frequency and damping are evaluated. By changing the...

  15. Nucleation of vacuum bubbles in Brans-Dicke type theory

    CERN Document Server

    Kim, Hongsu; Lee, Wonwoo; Lee, Young Jae; Yeom, Dong-han

    2010-01-01

    In this paper, we study nucleation of vacuum bubbles in the Brans-Dicke type theory of gravity. In the Euclidean signatures, we calculate field combinations of vacuum bubbles as solutions of Einstein and field equations as well as their probabilities by integrating the Euclidean action. We illustrate three possible ways to obtain vacuum bubbles: true vacuum bubbles for $\\omega$ > -3/2, false vacuum bubbles for $\\omega$ -3/2 when the vacuum energy of the false vacuum in the potential of the Einstein frame is less than that of the true vacuum. After the bubble is nucleated at the t = 0 surface, we can smoothly connect and match the field combinations to some solutions of the Lorentzian signatures and consistently continue their subsequent evolutions. Therefore, we conclude that, in general scalar-tensor theories or Brans-Dicke type theories, which include some models of string theory, vacuum bubbles are allowed not only in the form of true vacuum bubbles but also false vacuum bubbles, as long as a special cond...

  16. Rise of Air Bubbles in Aircraft Lubricating Oils

    Science.gov (United States)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  17. PICO Bubble Chambers for Dark Matter Searches: Future Prospects

    Science.gov (United States)

    Neilson, Russell; PICO Collaboration

    2017-01-01

    The PICO collaboration uses bubble chambers to search for WIMP dark matter particles. The bubble chambers are operated in a moderately superheated state, providing superb rejection of the dominant gamma background, and are filled with fluorinated target fluids ideally suited for investigating spin-dependent WIMP-proton interactions. PICO currently operates a 2-liter (PICO-2L) and a 32-liter (PICO-60) bubble chamber at the SNOLAB deep underground laboratory. I will discuss recent activities by the PICO collaboration to understand and mitigate an anomalous background that has impacted previous dark matter searches, plans for the operating experiments, and prospects for a future ton-scale PICO bubble chamber.

  18. Correction of bubble size distributions from transmission electron microscopy observations

    Energy Technology Data Exchange (ETDEWEB)

    Kirkegaard, P.; Eldrup, M.; Horsewell, A.; Skov Pedersen, J.

    1996-01-01

    Observations by transmission electron microscopy of a high density of gas bubbles in a metal matrix yield a distorted size distribution due to bubble overlap and bubble escape from the surface. A model is described that reconstructs 3-dimensional bubble size distributions from 2-dimensional projections on taking these effects into account. Mathematically, the reconstruction is an ill-posed inverse problem, which is solved by regularization technique. Extensive Monte Carlo simulations support the validity of our model. (au) 1 tab., 32 ills., 32 refs.

  19. Refrigerating systems for the big CERN bubble chamber

    CERN Document Server

    Giger, U; Trepp, C

    1974-01-01

    A combined helium-hydrogen refrigerator has been installed for cooling the new CERN bubble chamber at Geneva. This article describes the cool-down of the bubble chamber and magnet, as well as emergency operation and control of the refrigerator. Besides the choice of basic conception and circuit, the plant components are dealt with too. The function of the bubble chamber and the development of the CERN proton synchrotron are described in order to facilitate understanding of the relationship between the Sulzer cryogenic plant and the CERN bubble chamber. Installations and equipment not manufactured by Sulzer are also mentioned. (1 refs).

  20. The AGN Jet Model of the Fermi Bubbles

    CERN Document Server

    Guo, Fulai

    2016-01-01

    The nature and origin of the Fermi bubbles detected in the inner Galaxy remain elusive. In this paper, we briefly discuss some recent theoretical and observational developments, with a focus on the AGN jet model. Analogous to radio lobes observed in massive galaxies, the Fermi bubbles could be naturally produced by a pair of opposing jets emanating nearly along the Galaxy's rotation axis from the Galactic center. Our two-fluid hydrodynamic simulations reproduce quite well the bubble location and shape, and interface instabilities at the bubble surface could be effectively suppressed by shear viscosity. We briefly comment on some potential issues related to our model, which may lead to future progress.

  1. Interaction of two three-dimensional explosion bubbles

    Institute of Scientific and Technical Information of China (English)

    YAO Xiong-liang; ZHANG A-man; LIU Yu-chen

    2007-01-01

    The interaction of two underwater explosion bubbles was mathematically analyzed in this paper. Based on the assumption of potential flow, high-order curved elements were used to discretize the boundary integral equation and solve it. Assuming that gas inside the bubble follows the isentropic rule,the Euler-Lagrange method was used to trace the evolution of the bubble, and when calculating the singular integral, the singularity of the double-layer singular integral was eliminated by reconstructing a principal-value integral of double-layer potential so that a more precise result could be obtained. Elastic mesh technique (EMT) was also used when tracing the evolution of the bubble interface, and numerical smoothing wasn't needed. A comparison of calculations using this three-dimensional model with results of the Reyleigh-Plesset bubble model shows that the three-dimensional model and calculation method in this paper is practical. This three-dimensional model was applied to simulate the interaction of two bubbles under the action of gravity, and the dynamic characteristics of two bubbles near the surface was also analyzed. Bubbles influenced by surface effects and gravity present severe non-linearity. This paper provides a reference for research into the dynamics of multi-bubbles.

  2. Bubble cloud dynamics in a high-pressure spherical resonator

    Science.gov (United States)

    Anderson, Phillip Andrew

    A bubble cloud is a population of bubbles confined to a region within a fluid. Bubble clouds play a large role in a variety of naturally occurring phenomena and man-made applications (e.g., ocean noise, cavitation damage, sonoluminescence, ultrasonic cleaning, drug delivery, lithotripsy). It is important, therefore, to understand the behavior of bubble clouds so that their effects may be enhanced or diminished as desired. This work explores and characterizes the properties of bubble clouds nucleated inside a high-pressure spherical acoustic resonator, in connection with recent interest in acoustic inertial confinement fusion (acoustic ICF). A laser system was developed to repeatably nucleate a cloud of bubbles inside the resonator. The resulting events were then observed, primarily with schlieren imaging methods. Preliminary studies of the bubble cloud dynamics showed the sensitivity of the initial cloud to nucleation parameters including the phase of nucleation, the laser energy, and the acoustic power. After many acoustic cycles, some bubble clouds are observed to evolve into a tight cluster. The formation of these clusters correlates with initial bubble distributions which have a large cloud interaction parameter, β. Cluster dynamics are seen to be largely driven by reconverging shock waves from previous collapses reflected from the resonator's interior surface. Initial expansion of the cluster boundary is on the order of 8 mm/µs and the maximum radius approaches 3 mm. Shock pressures are estimated to be > 10 GPa at a radius of 100 µm using weak shock theory.

  3. Phaco-emulsification causes the formation of cavitation bubbles.

    Science.gov (United States)

    Svensson, B; Mellerio, J

    1994-09-01

    There have been reports of complications arising from damage to non-lenticular ocular tissue during the increasingly popular procedure of cataract extraction with phaco-emulsification. One cause of this damage might be the formation of cavitation bubbles. Such bubbles are known to produce free radicals and shock waves. This paper demonstrates directly the formation of cavitation bubbles at the tip of the phaco-probe. It also shows the importance of a smooth probe profile in reducing bubble formation. Recommendations are made for probe and tip design and for the use of minimum power during the surgical procedure of phaco-emulsification.

  4. Scaling law for bubbles rising near vertical walls

    Science.gov (United States)

    Dabiri, Sadegh; Bhuvankar, Pramod

    2016-06-01

    This paper examines the rising motion of a layer of gas bubbles next to a vertical wall in a liquid in the presence of an upward flow parallel to the wall to help with the understanding of the fluid dynamics in a bubbly upflow in vertical channels. Only the region near the wall is simulated with an average pressure gradient applied to the domain that balances the weight of the liquid phase. The upward flow is created by the rising motion of the bubbles. The bubbles are kept near the wall by the lateral lift force acting on them as a result of rising in the shear layer near the wall. The rise velocity of the bubbles sliding on the wall and the average rise velocity of the liquid depend on three dimensionless parameters, Archimedes number, Ar, Eötvös number, Eo, and the average volume fraction of bubbles on the wall. In the limit of small Eo, bubbles are nearly spherical and the dependency on Eo becomes negligible. In this limit, the scaling of the liquid Reynolds number with Archimedes number and the void fraction is presented. A scaling argument is presented based on viscous dissipation analysis that matches the numerical findings. Viscous dissipation rates are found to be high in a thin film region between the bubble and the wall. A scaling of the viscous dissipation and steady state film thickness between the bubble and the wall with Archimedes number is presented.

  5. DIGITAL IMAGE MEASUREMENT OF BUBBLE MOTION IN AERATED WATER FLOWS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Digital image measurement method, as an ex-tension of Particle Image Velocimetry of single-phase flowmeasurement, was investigated for application to air-watertwo-phase flows. The method has strong potential ability inmeasuring bubble geometrical features and moving velocitiesfor complex bubble motion in aerated water flow. Both dilutedand dense bubble rising flows are measured using the digitalimage method. Measured bubble shapes and sizes, and bubblevelocities are affected by threshold selection for binary image.Several algorithms for selecting threshold are compared andmethods for calculating the time-averaged void fraction arediscussed.

  6. The shape of an axisymmetric bubble in uniform motion

    Indian Academy of Sciences (India)

    P N Shankkar

    2005-09-01

    We consider in a frame fixed to a bubble translating with steady speed , the inviscid, axisymmetric, irrotational motion of the liquid past it. If all speeds are normalized by and lengths by $T/\\dfrac{1}{2} \\varrho U^{2}$, where is the surface tension of the liquid–bubble interface, it can be shown that the unknown bubble shape and field depend on a single parameter $ = (p_{b} − p_{∞})/\\dfrac{1}{2} \\varrho U^{2} − 1$ alone, where the pressures are the ones in the bubble and far away respectively. When is very large the bubble is almost spherical in shape while for $ ≤ ^{*} ≈ -0.315$, bubbles whose exteriors are simply connected do not exist. We solve the non-linear, free boundary problem for the whole range $^{*}$ < < ∞ by the use of an analytical representation for the bubble shape, a surface singularity method to compute potential flows and a generalized Newton's method to continue in . Apart from providing explicit representations for bubble shapes and detailed numerical values for the bubble parameters, we show that the classical linearized solution for large is a very good approximation, surprisingly, to as low values of as 2. We also show that Miksis et al [1] is inaccurate over the whole range and in serious error for large and small . These have been corrected.

  7. Molecular dynamics study of helium bubble pressure in titanium

    Science.gov (United States)

    Zhang, Bao-Ling; Wang, Jun; Hou, Qing

    2011-03-01

    In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio; then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied. It is shown that the product of the bubble pressure and the radius is approximately a constant, a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble. Furthermore, a state equation of the helium bubble is established based on the MD calculations. Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals. Project supported by the National Natural Science Foundation of China (Grant No. 10775101) and National Magnetic Confinement Fusion Program of China (Grant No. 2009GB106004).

  8. Bubble evolution and properties in homogeneous nucleation simulations.

    Science.gov (United States)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime.

  9. Bubble Coalescence Heat Transfer During Subcooled Nucleate Pool Boiling

    Institute of Scientific and Technical Information of China (English)

    Abdoulaye Coulibaly; LIN Xipeng; Bi Jingliang; David M Christopher

    2012-01-01

    Bubble coalescence during subcooled nucleate pool boiling was investigated experimentally using constant wall temperature boundary conditions while the wall heat flux was measured at a various locations to understand the effects of coalescence on the heat transfer. The observations showed that the coalesced bubble moved and oscillated on the heater surface with significant heat transfer variations prior to departure. Some observations also showed coalescence with no increase in the heat transfer rate. The heat flux for boiling with coalescence fluctuated much more than for single bubble boiling due to the vaporization of the liquid layer trapped between the bubbles.

  10. Bubble motion measurements during foam drainage and coarsening.

    Science.gov (United States)

    Maurdev, G; Saint-Jalmes, A; Langevin, D

    2006-08-15

    We have studied bubble motion within a column of foam allowed to undergo free drainage. We have measured bubble motion upward with time and as a function of their initial positions. Depending on the gas used, which sets the coarsening and drainage rates, different bubble upward motion types have been identified (constant speed, acceleration or deceleration) and explained in relation with liquid downward flows. The proofs of the consistency between bubble upward motion and liquid downward flow are obtained both by comparing the bubble motion curves to the liquid drainage ones, and by comparing the time variations of the liquid fraction extracted from bubble motion to direct liquid fraction measurements by electrical conductimetry. The agreement between bubble position tracking and electrical conductivity shows in particular that it is possible to determine the drainage regime from such simple bubble motion measurements. This work also allowed us to demonstrate a special case of foam coarsening and expansion, occurring when the foam gas is less soluble than the outside one, caused by diffusion of this external gas into the foam. All these results allow us to build a picture of drainage and coarsening seen from the bubble point of view.

  11. Synchronous observation of rising soluble bubble through quiescent solution

    Institute of Scientific and Technical Information of China (English)

    Yifu ZHANG; Shuai TIAN; Weizhong LI; Yongchen SONG

    2009-01-01

    An experimental method using computer image processing technology (CIPT) was proposed to observe and investigate the velocity, deformation, heat and mass transfer, etc. of a rising soluble gas (CO2) bubble through a quiescent hot water. A model was set up to describe the behavior of the bubble in a visual experi-mental system in which a high-speed camera rose instantaneously with the movement of the bubble. A series of trajectory videos about the bubble were recorded by a computer linked to the camera. The trajectory, volume changes and rate of mass transfer of the bubble were obtained by the CIPT. It is found that the single bubble follows a rolling trajectory at the initial stage when there is mass transfer. With the volume decreasing, the disturbed behavior of the bubble becomes tempered. When the rising velocity of the bubble reaches the maximum, the velocity is nearly at a constant. The experimental and analysis results show that this method is useful for the research on the mass transfer and the movement of rising bubbles in liquid.

  12. Molecular Lines of 13 Glactic Infrared Bubble Regions

    CERN Document Server

    Yan, Q Z; Zhang, B; Lu, D R; Chen, X; Tang, Z H

    2016-01-01

    We investigated the physical properties of molecular clouds and star formation processes around infrared bubbles which are essentially expanding HII regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. Five molecular lines, 12CO (J=1-0), 13CO (J=1-0), C18O(J=1-0), HCN (J=1-0), and HCO+ (J=1-0), were observed, and several publicly available surveys, GLIMPSE, MIPSGAL, ATLASGAL, BGPS, VGPS, MAGPIS, and NVSS, were used for comparison. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 solar mass, and their dynamic ages are about 0.3-3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles w...

  13. The distribution of bubble sizes during reionization

    Science.gov (United States)

    Lin, Yin; Oh, S. Peng; Furlanetto, Steven R.; Sutter, P. M.

    2016-09-01

    A key physical quantity during reionization is the size of H II regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm - widely used for void finding in galaxy surveys - which we show to be an unbiased method with the lowest dispersion and best performance on Monte Carlo realizations of a known bubble size probability density function (PDF). We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect the volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, H II regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modelled by analytic theory. Our results have important consequences for high-redshift 21 cm observations, the mean free path of ionizing photons, and the visibility of Lyα emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.

  14. Direct Measurement of the Bubble Nucleation Energy Threshold in a CF3I Bubble Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, E. [Indiana Univ. South Bend, IN (United States); Benjamin, T. [Indiana Univ. South Bend, IN (United States); Brice, S. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Broemmelsiek, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Cooper, P. S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crisler, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dahl, C. E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northwestern Univ., Evanston, IL (United States); Fustin, D. [Univ. of Chicago, IL (United States); Hall, Jeter C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harnish, C. [Indiana Univ. South Bend, IN (United States); Levine, I. [Indiana Univ. South Bend, IN (United States); Lippincott, W. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Moan, T. [Indiana Univ. South Bend, IN (United States); Nania, T. [Indiana Univ. South Bend, IN (United States); Neilson, R. [Univ. of Chicago, IL (United States); Ramberg, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Robinson, A. E. [Univ. of Chicago, IL (United States); Ruschman, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sonnenschein, Andrew [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vazquez-Jauregui, E. [SNOLAB, Sudbury, ON (Canada); RIvera, R. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Uplegger, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-07-30

    Here, we measured the energy threshold and efficiency for bubble nucleation from iodine recoils in a CF3I bubble chamber in the energy range of interest for a dark matter search. These interactions cannot be probed by standard neutron calibration methods, so we develop a new technique by observing the elastic scattering of 12 GeV/c negative pions. The pions are tracked with a silicon pixel telescope and the reconstructed scattering angle provides a measure of the nuclear recoil kinetic energy. The bubble chamber was operated with a nominal threshold of (13.6±0.6) keV. Interpretation of the results depends on the response to fluorine and carbon recoils, but in general we find agreement with the predictions of the classical bubble-nucleation theory. Moreover, this measurement confirms the applicability of CF3I as a target for spin-independent dark matter interactions and represents a novel technique for calibration of superheated fluid detectors.

  15. Size distribution estimation of cavitation bubble cloud via bubbles dissolution using an ultrasound wide-beam method

    Science.gov (United States)

    Xu, Shanshan; Zong, Yujin; Liu, Xiaodong; Wan, Mingxi

    2017-03-01

    This paper proposed an acoustic technique to estimate size distribution of a cavitation bubble cloud induced by focused ultrasound (FUS) based on the dissolution of bubble cloud trapped by a wide beam of low acoustic pressure, after the acoustic exposure of FUS is turned off. Dissolution of cavitation bubbles in saline and in phase-shift nanodroplet emulsion diluted with degassed saline or saturated saline has been respectively studied to quantify the effects of pulse duration (PD) and acoustic power (AP) or peak negative pressure (PNP) of FUS on size distribution of cavitation bubbles.

  16. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A., E-mail: douglasbaroni@ien.gov.b, E-mail: lamy@ien.gov.b, E-mail: bittenc@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Cunha Filho, Jurandyr S. [Escola Tecnica Estadual Visconde de Maua (ETEVM/RJ), Rio de Janeiro, RJ (Brazil); Motta, Mauricio S., E-mail: mmotta@cefet-rj.b [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  17. Effects of Swirl Bubble Injection on Mass Transfer and Hydrodynamics for Bubbly Flow Reactors: A Concept Paper

    Directory of Open Access Journals (Sweden)

    Farooqi Ahmad Salam

    2017-01-01

    Full Text Available Bubble flow reactors (BFR are commonly used for various industrial processes in the field of oil and gas production, pharmaceutical industries, biochemical and environmental engineering etc. The operation and performance of these reactors rely heavily on a range of hydrodynamic parameters; prominent among them are geometric configurations including gas injection geometry, operating conditions, mass transfer etc. A huge body of literature is available to describe the optimum design and performance of bubbly flow reactors with conventional bubble injection. Attempts were made to modify gas injection for improved efficiency of BFR’s. However, here instead of modifying the geometry of the gas injection, an attempt has been made to generate swirl bubbles for gaining larger mass transfer between gas and liquid. Here an exceptionally well thought strategies have been used in our numerical simulations towards the design of swirl injection mechanism, whose paramount aspect is to inhibit the rotary liquid motion but facilitates the swirl movement for bubbles in nearly stationary liquid. Our comprehension here is that the swirl motion can strongly affect the performance of bubbly reactor by identifying the changes in hydrodynamic parameters as compared to the conventional bubbly flows. In order to achieve this bubbly flow, an experimental setup has been designed as well as computational fluid dynamic (CFD code was used with to highlight a provision of swirl bubble injection by rotating the sparger plate.

  18. Propagation of shock waves in dilute bubbly liquids. 4. Comparison between theory and experiment for a uniform bubbly mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, Masaharu; Shimaura, Naoto; Higashino, Fumio [Tokyo Univ. of Agriculture and Technology, Fuchu, Tokyo (Japan); Matsumoto, Yoichiro

    1997-07-01

    Transient shock wave phenomena in a liquid containing noncondensable gas bubbles are studied experimentally and numerically. In order to obtain a uniform spatial distribution of bubbles experimentally, an upwardly directed bubbly flow, whose initial gas volume fraction is 0.2%, is generated in a shock tube. The liquid used is silicone oil. Nitrogen, argon, and SF{sub 6} gas bubbles are tested to show the thermal effects of the bubble interior. The transient pressure profiles determined in the experiments for the upwardly bubbly flow agree well quantitatively with those obtained by numerical calculation using a uniform spatial distribution of bubbles. Since the thermal diffusivity of SF{sub 6} is much lower than that of nitrogen and argon, the damping on the radial oscillation of the SF{sub 6} bubble is mainly due to the compressibility of the liquid. Thus, the radial motion of the bubble should be estimated by solving an equation in which the liquid compressibility is taken into account. (author)

  19. Air-sea exchange from bubble-induced jetting: How viscous forces suppress droplet production from small bubbles

    Science.gov (United States)

    Flynn, Elena; Walls, Peter; Bird, James

    2016-11-01

    When a bubble ruptures in the ocean, it frequently produces a jet that releases aerosols into the atmosphere. The number of jet drops ejected is important because droplets may contain sea salt and other cloud condensation nuclei. It is generally accepted that the smallest bubbles produce the largest number of jet drops. However, if the bubble is sufficiently small, viscosity prevents droplet production altogether. Here we investigate the number of jet drops produced by small bubbles. Using a combination of high-speed microscopy, similitude, and numerical simulations, we quantify the extent that viscous forces inhibit this droplet production. We acknowledge support from NSF under Grant No. 1351466.

  20. Measurement of bubble shape and size in bubbly flow structure for stagnant and pulsating liquid flow using an undivided electrochlorination cell and Telecentric Direct Image Method

    DEFF Research Database (Denmark)

    Andersen, Nikolaj; Stroe, Rodica-Elisabeta; Hedensted, Lau

    2016-01-01

    in MATLAB and NI Vision in LabVIEW to determine shape and diameter of the bubbles. Three bubble regions are observed; adherence, bubble diffusion and bulk region. For stagnant liquid flow the mean bubble diameter increases from 30 to 60 μm going from the adherence region to the bulk region, which...

  1. Purging dissolved oxygen by nitrogen bubble aeration

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2016-11-01

    We apply aeration with nitrogen microbubbles to water in order to see whether oxygen gas originally dissolved in the water at one atmosphere is purged by the aeration. The concentration of dissolved oxygen (DO) is detected by a commercial DO meter. To detect the dissolved nitrogen (DN) level, we observe the growth of millimetre-sized bubbles nucleated at glass surfaces in contact with the aerated water and compare it with the Epstein-Plesset theory that accounts for DO/DN diffusions and the presence of the glass surfaces. Comparisons between the experiment and the theory suggest that the DO in the water are effectively purged by the aeration.

  2. Bubble Radiation Detection: Current and Future Capability

    Energy Technology Data Exchange (ETDEWEB)

    AJ Peurrung; RA Craig

    1999-11-15

    Despite a number of noteworthy achievements in other fields, superheated droplet detectors (SDDs) and bubble chambers (BCs) have not been used for nuclear nonproliferation and arms control. This report examines these two radiation-detection technologies in detail and answers the question of how they can be or should be ''adapted'' for use in national security applications. These technologies involve closely related approaches to radiation detection in which an energetic charged particle deposits sufficient energy to initiate the process of bubble nucleation in a superheated fluid. These detectors offer complete gamma-ray insensitivity when used to detect neutrons. They also provide controllable neutron-energy thresholds and excellent position resolution. SDDs are extraordinarily simple and inexpensive. BCs offer the promise of very high efficiency ({approximately}75%). A notable drawback for both technologies is temperature sensitivity. As a result of this problem, the temperature must be controlled whenever high accuracy is required, or harsh environmental conditions are encountered. The primary findings of this work are listed and briefly summarized below: (1) SDDs are ready to function as electronics-free neutron detectors on demand for arms-control applications. The elimination of electronics at the weapon's location greatly eases the negotiability of radiation-detection technologies in general. (2) As a result of their high efficiency and sharp energy threshold, current BCs are almost ready for use in the development of a next-generation active assay system. Development of an instrument based on appropriately safe materials is warranted. (3) Both kinds of bubble detectors are ready for use whenever very high gamma-ray fields must be confronted. Spent fuel MPC and A is a good example where this need presents itself. (4) Both kinds of bubble detectors have the potential to function as low-cost replacements for conventional neutron

  3. On "bubbly" structures in plasma facing components

    Science.gov (United States)

    Krasheninnikov, S. I.; Smirnov, R. D.

    2013-07-01

    The theoretical model of "fuzz" growth describing the main features observed in experiments is discussed. This model is based on the assumption of enhancement of plasticity of tungsten containing significant fraction of helium atoms and clusters. The results of molecular dynamics (MD) simulations support this idea and demonstrate strong reduction of the yield strength for all temperature range. The MD simulations also show that the "flow" of tungsten strongly facilitates coagulation of helium clusters, which otherwise practically immobile, and the formation of nano-bubbles.

  4. Row bubbles up over particle prize

    CERN Multimedia

    Chalmers, Matthew

    2009-01-01

    "The European Physical Society (EPS) has defended its handling of the 2009 prize for high-energy and particle physics despite complaints that the awarding committee overlooked a vital scientific contribution to the prize-winning work. The biennial award, worth SwFr 5000, was given to collaborators on the Gargamelle bubble-chamber experiment at Cern for their descovery in 1973 of the "weak neutral current" - one of the ways in which the weak nuclear force is mediated between fundamental particles" (0.75 page)

  5. Basics of sterile compounding: bubble point testing.

    Science.gov (United States)

    Thoma, Laura

    2014-01-01

    Compounding pharmacies that compound sterile preparations must choose sterile filters that are approved for human use. They may rely on the filter manufacturer's Certificate of Quality to ensure the sterile filter is pyrogen free and has been tested for bacterial retention. The Certificate of Quality from the filter manufacturer also contains other useful information about the filter such as: flow rate and maximum pressure drop, thermal and hydraulic stress, and membrane results of the initial integrity test performed on the filter membrane with water, if a hydrophilic membrane. This article discusses the integrity test, which is often called the water bubble point test.

  6. Temperature Effect on Single Bubble Sonoluminescence

    Institute of Scientific and Technical Information of China (English)

    卢美军; 陈伟中; 申建华; 王文杰; 李晟琼

    2002-01-01

    Experiments of the temperature effect on single bubble sonoluminescence (SBSL) are performed with a mixture of water and anti-freeze. Since experiments of constant pressure (keeping sound pressure constant) are not feasible for a wide temperature range, experiments of constant luminance (keeping light intensity stable), which reflect pure sensitivity of SBSL to temperature, are investigated. The results show that lower temperature needs less pressure to obtain the same light intensity, which means that lower temperature is better for SBSL. Numerical calculations show a qualitative agreement with experiments.

  7. Toward a Metatheory of Economic Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    and original research in Toward a Metatheory of Economic Bubbles have far-reaching implications for the study and practice of entrepreneurship and marketing, public and corporate finance, and public policies towards innovation, economy, and finance. It contributes to the defining issues for economic sociology......, and social dynamics assumptions, explaining how these elements are related. By doing so, they provide a partial window into the precarious nature of contemporary finance-driven capitalism and suggest some possible ways of overcoming the wrenching ups and downs of the prevalent system. The case studies...... that describe the relationship between the economic and the social....

  8. Bubbles, currency speculation and technology adoption

    OpenAIRE

    2010-01-01

    Esta es una tesis de carácter teórico que propone y discute tres aplicaciones de la teoría de juegos al análisis económico. Consta de tres capítulos: El primer capítulo se titula "Bubbles with Random Behavioral Trading". Este capítulo se enmarca dentro de la teoría de las finanzas del comportamiento (behavioral finance). Es un análisis teórico de las condiciones necesarias para que aparezcan y se sostengan burbujas especulativas en los mercados de activos. Explica cómo la pr...

  9. Do Stops Slow Down Electroweak Bubble Walls?

    CERN Document Server

    John, P

    2001-01-01

    We compute the wall velocity in the MSSM. We therefore generalize the SMequations of motion for bubble walls moving through a hot plasma at theelectroweak phase transition and calculate the friction terms which describethe viscosity of the plasma. We give the general expressions and apply them toa simple model where stops, tops and W bosons contribute to the friction. In awide range of parameters including those which fulfil the requirements ofbaryogenesis we find a wall velocity of order v = 0.001-0.01 much below the SMvalue.

  10. On 3D reconstruction of bubbles in volcanic ash particles

    Science.gov (United States)

    Proussevitch, A.; Sahagian, D.; Mulukutla, G.; Kiely, C.

    2007-12-01

    Bubbles in volcanic ash particles are primarily represented by the remnants of films and plateau borders from disrupting foam. Without preservation of complete bubbles, measuring bubble size distributions a challenging task, but one for which we have taken a novel approach. Concavities in ash particles retain a record of bubble sizes in the curvature of their concave surfaces that resulted from bubble fragmentation and quenching during energetic magma eruptions. We have used two methods to measure bubble fragment curvature on the basis of 3D reconstruction of ash particle surfaces. One is based on High Resolution X-Ray Tomography (HRXRT) and the second one is based on stereo images from tilting Scattered Electron Microscopy (SEM). Both methods allow the creation of Digital Elevation Model (DEM) datasets of the ash particle surfaces which in turn are used to identify and measure vertical cross-sectional profiles of the individual bubble fragments ("craters"). Function fit analysis for circular or elliptical functions are applied to each bubble cross sectional profile in two orthogonal directions to reconstruct sizes of the original, complete bubbles. The method allows measurement of submicron (SEM; XUM), micron or larger (HRXRT) bubbles in ash particles. The bubble size distributions so obtained can provide valuable insights regarding magma dynamics and vesiculation that lead to explosive eruptions, as well as the processes of fragmentation in eruption columns. There are no previous systematic information/databases of vesiculation metrics for explosive silicic eruptions, but this new method can be used to produce these and thus provide better insights into prehistoric eruption styles for volcanic hazard assessment.

  11. Laser Doppler velocimetry measurement of turbulent bubbly channel flow

    Energy Technology Data Exchange (ETDEWEB)

    So, S.; Takagi, S.; Matsumoto, Y. [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Morikita, H. [Morikita Shuppan Co. Ltd, 1-4-11,Fujimi Chiyoda-ku, Tokyo 102-0071 (Japan)

    2002-07-01

    Measurements of the turbulence properties of gas-liquid bubbly flows with mono-dispersed 1-mm-diameter bubbles are reported for upward flow in a rectangular channel. Bubble size and liquid-phase velocity were measured using image-processing and laser Doppler velocimetry (LDV), respectively. A description is given of the special arrangements for two-dimensional LDV needed to obtain reliable bubbly flow data, in particular the configuration of the optical system, the distinction of signals from the bubbles and liquid phase. To create the mono-dispersed bubbles, a small amount of surfactant (3-pentanol of 20 ppm) was added to the flow. Whilst this caused a drastic change in bubble size distribution and flow field, it did not affect the turbulence properties of the single-phase flow. In this study, experiments with three different bulk Reynolds numbers (1,350, 4,100, 8,200) were conducted with void fractions less than 1.2%. In all three cases, there was a very high accumulation of bubbles near the wall with bubble slip at the wall. The mean velocity profile of the liquid phase was steeper near the wall owing to the driving force of buoyant bubbles, and the streamwise turbulent intensity in the vicinity of the wall was enhanced. Furthermore the mean velocity profiles of the liquid phase were flattened in the wide region around the channel center. This region was lifted up by the bubble sheet near the wall, giving it a plug-like flow structure. In addition, the turbulent fluctuation and Reynolds stress in the liquid phase are very much suppressed in this region. This strong preferential accumulation near the wall produces the dramatic change of the whole flow structure. (orig.)

  12. Laser Doppler velocimetry measurement of turbulent bubbly channel flow

    Science.gov (United States)

    So, S.; Morikita, H.; Takagi, S.; Matsumoto, Y.

    2002-05-01

    Measurements of the turbulence properties of gas-liquid bubbly flows with mono-dispersed 1-mm-diameter bubbles are reported for upward flow in a rectangular channel. Bubble size and liquid-phase velocity were measured using image-processing and laser Doppler velocimetry (LDV), respectively. A description is given of the special arrangements for two-dimensional LDV needed to obtain reliable bubbly flow data, in particular the configuration of the optical system, the distinction of signals from the bubbles and liquid phase. To create the mono-dispersed bubbles, a small amount of surfactant (3-pentanol of 20 ppm) was added to the flow. Whilst this caused a drastic change in bubble size distribution and flow field, it did not affect the turbulence properties of the single-phase flow. In this study, experiments with three different bulk Reynolds numbers (1,350, 4,100, 8,200) were conducted with void fractions less than 1.2%. In all three cases, there was a very high accumulation of bubbles near the wall with bubble slip at the wall. The mean velocity profile of the liquid phase was steeper near the wall owing to the driving force of buoyant bubbles, and the streamwise turbulent intensity in the vicinity of the wall was enhanced. Furthermore the mean velocity profiles of the liquid phase were flattened in the wide region around the channel center. This region was lifted up by the bubble sheet near the wall, giving it a plug-like flow structure. In addition, the turbulent fluctuation and Reynolds stress in the liquid phase are very much suppressed in this region. This strong preferential accumulation near the wall produces the dramatic change of the whole flow structure.

  13. Hot and cold bubbles in M87

    CERN Document Server

    Kaiser, C R

    2003-01-01

    The X-ray data obtained with XMM-Newton is used to investigate the complex structure of the gas in the atmosphere of the Virgo cluster around M87. We construct a simple model for the temperature and density distribution. This model implies that the cumulative mass of the cluster gas is a power-law of its entropy index, $kT n^{-2/3}$, similar to the Hydra cluster. This supports the idea that such power-laws are a direct consequence of gas cooling in a gravitational potential. In the cluster atmosphere hot bubbles of gas injected by the AGN are rising buoyantly. We estimate the age of these structures from the synchrotron radio data and find that this `radiative age' is consistent with the estimated dynamical timescale. However, this requires a spatial separation of the relativistic particles from the magnetic field. The age estimates suggest an activity cycle of the AGN in M87 of roughly $10^8$ years. We show that the largest radio structures are consistent with being the remnants of buoyant bubbles injected b...

  14. Direct Numerical Simulation of laminar separation bubbles

    Science.gov (United States)

    Ramesh, O. N.; Patwardhan, Saurabh; Mitra, Abhijit

    2012-11-01

    This work presents the DNS of laminar separation bubbles (LSB) that formed over a flat plate due to an imposed pressure gradient. Mean flow parameters such as mean velocity, static pressure distribution and the geometric parameters, such as aspect ratio of the LSB, over the plate closely corresponds to those found in experiments and literature. The locus of the inflection point of the mean velocity profile was found to lie outside the dividing streamline and this is expected to correspond to a convectively unstable bubble. A closer look of the LSB as when advects along the reverse flow streamline adjacent to the wall suggest that turbulence progressively decayed as one moved upstream. This is indicative of the phenomenon similar to relaminarisation in this region, presumably due to the decrease in pressure along the reverse flow streamline. The energy budget inside the dividing streamline showed interesting trends and these will be discussed during the presentation. Furthermore, the dynamics of free shear layer and nonlinearity will also be presented.

  15. Diamagnetic "bubble" equilibria in linear traps

    CERN Document Server

    Beklemishev, Alexei D

    2016-01-01

    The plasma equilibrium in a linear trap at $\\beta\\approx 1$ (or above the mirror-instability threshold) under the topology-conservation constraint evolves into a kind of diamagnetic "bubble". This can take two forms: either the plasma body greatly expands in radius while containing the same magnetic flux, or, if the plasma radius is limited, the plasma distribution across flux-tubes changes, so that the same cross-section contains a greatly reduced flux. If the magnetic field of the trap is quasi-uniform around its minimum, the bubble can be made roughly cylindrical, with radius much larger than the radius of the corresponding vacuum flux-tube, and with non-paraxial ends. Then the effective mirror ratio of the diamagnetic trap becomes very large, but the cross-field transport increases. The confinement time can be found from solution of the system of equilibrium and transport equations and is shown to be $\\tau_E\\approx\\sqrt{\\tau_\\parallel\\tau_\\perp}$. If the cross-field confinement is not too degraded by turb...

  16. Interfacial area transport in bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Wu, Q.; Revankar, S.T. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1997-12-31

    In order to close the two-fluid model for two-phase flow analyses, the interfacial area concentration needs to be modeled as a constitutive relation. In this study, the focus was on the investigation of the interfacial area concentration transport phenomena, both theoretically and experimentally. The interfacial area concentration transport equation for air-water bubbly up-flow in a vertical pipe was developed, and the models for the source and sink terms were provided. The necessary parameters for the experimental studies were identified, including the local time-averaged void fraction, interfacial area concentration, bubble interfacial velocity, liquid velocity and turbulent intensity. Experiments were performed with air-water mixture at atmospheric pressure. Double-sensor conductivity probe and hot-film probe were employed to measure the identified parameters. With these experimental data, the preliminary model evaluation was carried out for the simplest form of the developed interfacial area transport equation, i.e., the one-dimensional transport equation.

  17. Probing Cell Deformability via Acoustically Actuated Bubbles.

    Science.gov (United States)

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-02-17

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis.

  18. Volume Displacement Effects in Bubble-laden Flows

    Science.gov (United States)

    Cihonski, Andrew; Finn, Justin; Apte, Sourabh

    2012-11-01

    When a few bubbles are entrained in a traveling vortex ring, it has been shown that even at extremely low volume loadings, their presence can significantly affect the structure of the vortex core (Sridhar & Katz 1999). A typical Euler-Lagrange point-particle model with two-way coupling for this dilute system, wherein the bubbles are assumed subgrid and momentum point-sources are used to model their effect on the flow, is shown to be unable to accurately capture the experimental trends of bubble settling location and vortex distortion for a range of bubble parameters and vortex strengths. The bubbles experience a significant amount of drag, lift, added mass, pressure, and gravity forces. However, these forces are in balance of each other, as the bubbles reach a mean settling location away from the vortex core. Accounting for fluid volume displacement due to bubble motion, using a model termed as volumetric coupling, experimental trends on vortex distortion and bubble settling location are well captured. The fluid displacement effects are studied by introducing a notion of a volumetric coupling force, the net force on the fluid due to volumetric coupling, which is found to be dominant even at the low volume loadings investigated here.

  19. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NARCIS (Netherlands)

    Ochsendorf, B.B.; Verdolini, S.; Cox, N.L.J.; Berné, O.; Kaper, L.; Tielens, A.G.G.M.

    2014-01-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even tho

  20. Methods for Detection Housing Bubble: Evidence from Chile

    OpenAIRE

    Idrovo Aguirre, Byron; Lennon S., Joaquín

    2013-01-01

    This article analyzes the presence of a price bubble in the new house market for the Greater Santiago. For the above use di®erent methodologies on the Real Housing Prices Index (IRPV) prepared by CEC-CChC, all of which reject the presence of a housing bubble in the concerned market.

  1. Will Higher Education Be the Next Bubble to Burst?

    Science.gov (United States)

    Cronin, Joseph Marr; Horton, Howard E.

    2009-01-01

    The public has become all too aware of the term "bubble" to describe an asset that is irrationally and artificially overvalued and cannot be sustained. The dot-com bubble burst by 2000. More recently the overextended housing market collapsed, helping to trigger a credit meltdown. The stock market has declined more than 30 percent in the past year,…

  2. Energy partition at the collapse of spherical cavitation bubbles

    Science.gov (United States)

    Tinguely, M.; Obreschkow, D.; Kobel, P.; Dorsaz, N.; de Bosset, A.; Farhat, M.

    2012-10-01

    Spherically collapsing cavitation bubbles produce a shock wave followed by a rebound bubble. Here we present a systematic investigation of the energy partition between the rebound and the shock. Highly spherical cavitation bubbles are produced in microgravity, which suppresses the buoyant pressure gradient that otherwise deteriorates the sphericity of the bubbles. We measure the radius of the rebound bubble and estimate the shock energy as a function of the initial bubble radius (2-5.6mm) and the liquid pressure (10-80kPa). Those measurements uncover a systematic pressure dependence of the energy partition between rebound and shock. We demonstrate that these observations agree with a physical model relying on a first-order approximation of the liquid compressibility and an adiabatic treatment of the noncondensable gas inside the bubble. Using this model we find that the energy partition between rebound and shock is dictated by a single nondimensional parameter ξ=Δpγ6/[pg01/γ(ρc2)1-1/γ], where Δp=p∞-pv is the driving pressure, p∞ is the static pressure in the liquid, pv is the vapor pressure, pg0 is the pressure of the noncondensable gas at the maximal bubble radius, γ is the adiabatic index of the noncondensable gas, ρ is the liquid density, and c is the speed of sound in the liquid.

  3. Proceedings of the Second International Colloquium on Drops and Bubbles

    Science.gov (United States)

    Lecroissette, D. H. (Editor)

    1982-01-01

    Applications of bubble and drop technologies are discussed and include: low gravity manufacturing, containerless melts, microballoon fabrication, ink printers, laser fusion targets, generation of organic glass and metal shells, and space processing. The fluid dynamics of bubbles and drops were examined. Thermomigration, capillary flow, and interfacial tension are discussed. Techniques for drop control are presented and include drop size control and drop shape control.

  4. Bubbling and bistability in two parameter discrete systems

    Indian Academy of Sciences (India)

    G Ambika; N V Sujatha

    2000-05-01

    We present a graphical analysis of the mechanisms underlying the occurrences of bubbling sequences and bistability regions in the bifurcation scenario of a special class of one dimensional two parameter maps. The main result of the analysis is that whether it is bubbling or bistability is decided by the sign of the third derivative at the inflection point of the map function.

  5. Jet formation in shock-heavy gas bubble interaction

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhai; Ting Si; Li-Yong Zou; Xi-Sheng Luo

    2013-01-01

    The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work.The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D.As a validation,the experiments of a SF6 bubble accelerated by a planar shock were performed.The results indicate that,due to the mismatch of acoustic impedance,the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition.With respect to the same bubble,the manner of jet formation is also distinctly different under different shock strengths.The disparities of the acoustic impedance result in different effects of shock focusing in the bubble,and different behaviors of shock wave inside and outside the bubble.The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation.Moreover,the analysis of the vorticity deposition,and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation.It is concluded that the pressure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.

  6. BUBBLES OF LANDAU-LIFSHITZ EQUATIONS WITH APPLIED FIELDS

    Institute of Scientific and Technical Information of China (English)

    Ding Shijin; Guo Boling

    2005-01-01

    In this paper, we discuss the Landau-Lifshitz equations with applied magnetic fields. The equations describing the bubbles in the ferromagnets and the behaviors of the solutions near the singularities are given. We found that the applied fields do not affect the bubbles and we have the same conclusions as in reference [1].

  7. Bubble-assisted ultrasound : Application in immunotherapy and vaccination

    NARCIS (Netherlands)

    Escoffre, JM; Deckers, Roel; Bos, Clemens; Moonen, Chrit

    2016-01-01

    Bubble-assisted ultrasound is a versatile technology with great potential in immunotherapy and vaccination. This technology involves the exposure of immune cells (i.e., dendritic cells, lymphocytes) in-vitro or diseased tissues (i.e., brain, tumor) in-vivo to ultrasound treatment with gas bubbles. B

  8. Berry curvature and dynamics of a magnetic bubble

    Science.gov (United States)

    Koshibae, Wataru; Nagaosa, Naoto

    2016-04-01

    Magnetic bubbles have been the subject of intensive studies aiming to investigate their applications to memory devices. A bubble can be regarded as the closed domain wall and is characterized by the winding number of the in-plane components or the skyrmion number N sk , which are related to the number of Bloch lines (BLs). For the magnetic bubbles without BLs, the Thiele equation assuming no internal distortion describes the center-of-mass motion of the bubbles very well. For the magnetic bubbles with BLs, on the other hand, their dynamics is affected seriously by that of BLs along the domain wall. Here we show theoretically, that the distribution of the Berry curvature b z , i.e., the solid angle formed by the magnetization vectors, in the bubble plays the key role in the dynamics of a bubble with {N}{sk}=0 in a dipolar magnet. In this case, the integral of b z over the space is zero, while the nonuniform distribution of b z and associated Magnus force induce several nontrivial coupled dynamics of the internal deformation and center-of-mass motion as explicitly demonstrated by numerical simulations of Landau-Lifshitz-Gilbert equation. These findings give an alternative view and will pave a new route to design the bubble dynamics.

  9. Lighten up Your Lesson: Matter, Optics, and Bubbles

    Science.gov (United States)

    Maxwell, Jeffrey S.; He, Beixin Julie; deProphetis, Wendy; Gimm, J. Aura

    2006-01-01

    This article discusses how soap bubbles can be used to teach scientific principles such as phases of matter and the reflection of light. The study of soap bubbles addresses the National Science Education Standards for grades 5-8 related to the properties and changes of properties in matter. The exercises suggested here can be flexible in terms of…

  10. Bubbles in inkjet printheads : analytical and numerical models

    NARCIS (Netherlands)

    Jeurissen, Roger Josef Maria

    2009-01-01

    The phenomenon of nozzle failure of an inkjet printhead due to entrainment of air bubbles was studies using analytical and numerical models. The studied inkjet printheads consist of many channels in which an acoustic field is generated to eject a droplet. When an air bubble is entrained, it disrupts

  11. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...

  12. Energy partition at the collapse of spherical cavitation bubbles.

    Science.gov (United States)

    Tinguely, M; Obreschkow, D; Kobel, P; Dorsaz, N; de Bosset, A; Farhat, M

    2012-10-01

    Spherically collapsing cavitation bubbles produce a shock wave followed by a rebound bubble. Here we present a systematic investigation of the energy partition between the rebound and the shock. Highly spherical cavitation bubbles are produced in microgravity, which suppresses the buoyant pressure gradient that otherwise deteriorates the sphericity of the bubbles. We measure the radius of the rebound bubble and estimate the shock energy as a function of the initial bubble radius (2-5.6mm) and the liquid pressure (10-80kPa). Those measurements uncover a systematic pressure dependence of the energy partition between rebound and shock. We demonstrate that these observations agree with a physical model relying on a first-order approximation of the liquid compressibility and an adiabatic treatment of the noncondensable gas inside the bubble. Using this model we find that the energy partition between rebound and shock is dictated by a single nondimensional parameter ξ=Δpγ6/[p(g0)1/γ(ρc2)1-1/γ], where Δp=p∞ - pv is the driving pressure, p∞ is the static pressure in the liquid, pv is the vapor pressure, pg0 is the pressure of the noncondensable gas at the maximal bubble radius, γ is the adiabatic index of the noncondensable gas, ρ is the liquid density, and c is the speed of sound in the liquid.

  13. Bubble Effect in Heterogeneous Nuclear Fuel Solution System

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Xiao-ping; LUO; Huang-da; ZHANG; Wei; ZHU; Qing-fu

    2013-01-01

    Bubble effect means system reactivity changes due to the bubble induced solution volume,neutron leakage and absorption properties,neutron energy spectrum change in the nuclear fuel solution system.In the spent fuel dissolver,during uranium element shearing,the oxygen will be inlet to accelerate the

  14. Power Laws in Real Estate Prices during Bubble Periods

    Science.gov (United States)

    Ohnishi, Takaaki; Mizuno, Takayuki; Shimizu, Chihiro; Watanabe, Tsutomu

    How can we detect real estate bubbles? In this paper, we propose making use of information on the cross-sectional dispersion of real estate prices. During bubble periods, prices tend to go up considerably for some properties, but less so for others, so that price inequality across properties increases. In other words, a key characteristic of real estate bubbles is not the rapid price hike itself but a rise in price dispersion. Given this, the purpose of this paper is to examine whether developments in the dispersion in real estate prices can be used to detect bubbles in property markets as they arise, using data from Japan and the U.S. First, we show that the land price distribution in Tokyo had a power-law tail during the bubble period in the late 1980s, while it was very close to a lognormal before and after the bubble period. Second, in the U.S. data we find that the tail of the house price distribution tends to be heavier in those states which experienced a housing bubble. We also provide evidence suggesting that the power-law tail observed during bubble periods arises due to the lack of price arbitrage across regions.

  15. The physics of the oscillating bubble made simple.

    Science.gov (United States)

    Dawson, P

    2002-03-01

    The physics of bubbles and of their oscillations is extremely complex and attempts at its mathematical description are generally inaccessible. Yet some idea, in broad descriptive terms at least, is very helpful in understanding bubble phenomena of clinical interest. A brief attempt to provide such a description is given in this article.

  16. Periodicity in the occurrence of equatorial plasma bubbles

    Science.gov (United States)

    Choi, J.; Kim, Y.; Kil, H.; Kwak, Y.; Lee, W.

    2013-12-01

    The observations of equatorial plasma bubbles by low-inclination orbit satellites show periodic occurrence of bubbles along satellite orbits. The periodicity in the bubble occurrence provides a useful tool for identifying the role of gravity waves in the creation of bubbles. In this study, we investigate the variability of the periodicity in the bubble occurrence by analyzing the observations of Communication/Navigation Outage Forecasting System (C/NOFS) and the first Republic of China satellite (ROCSAT-1). Here the periodicity indicates spatial periodicity and is derived by applying a Fourier analysis to the electron densities projected onto the magnetic apex height. Our preliminary results show an occurrence of significant amplitudes of periodicity peaks on the spatial scale range of 50-1000 km. The periodicity on small scales may be associated with the bifurcation of bubbles or to the creation of multiple bubbles for one wave seeding. The periodicity on larger scales is considered to be related with the scale size of a seeding mechanism. We present statistics of the periodicity and the coincident satellite observations of periodic bubbles with ground observations.

  17. Bubble wake dynamics in liquids and liquid-solid suspensions

    CERN Document Server

    Fan, Liang-Shih; Brenner, Howard

    1990-01-01

    This book is devoted to a fundamental understanding of the fluid dynamic nature of a bubble wake, more specifically the primary wake, in liquids and liquid-solid suspensions, an dto the role it plays in various important flow phenomena of multiphase systems. Examples of these phenomena are liquid/solids mixing, bubble coalescence and disintergration, particle entrainment to the freeboard, and bed contraction.

  18. Vapor bubbles in confined geometries : a numerical study

    NARCIS (Netherlands)

    Can, Edip

    2010-01-01

    The rapid and violent dynamics of vapor bubbles in confined geometries offer many potential uses in microfluidic devices without moving mechanical parts. The performance of these devices depend strongly on the bubble dynamics. A fundamental understanding of these entities is therefore of paramount i

  19. The quasi-static growth of CO2 bubbles

    NARCIS (Netherlands)

    Enriquez, Oscar R.; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea; Meer, van der Devaraj

    2014-01-01

    We study experimentally the growth of an isolated gas bubble in a slightly supersaturated water–CO2 solution at 6 atm pressure. In contrast to what was found in previous experiments at higher supersaturation, the time evolution of the bubble radius differs noticeably from existing theoretical soluti

  20. Single Bubble SonoLuminescence of Particles model

    CERN Document Server

    Maiga, Mahamadou Adama

    2012-01-01

    The Single Bubble SonoLuminescence is a phenomenon where the vapor bubble trapped in a liquid collapse by emitting of a light. It is very known that the temperature inside the bubble depends on the radius, during the collapse, the temperature can reach thousands of Kelvins and that the light would be emitted by radiation of the ionized gas inside the bubble. So, studies show that in certain cases neither an imploding shock nor a plasma has been observed and the temperature is not high enough to explain the spectrum observed. The Single Bubble SonoLuminescence remains a subject of study. For this study we consider the bubble as a box where the free particles (particularly electrons) stemming from the molecules dissociation, are are trapped and confined within the bubble. The confinement allows the particles to acquire some energy during the collapse which they lose in the form of light and also to be considered to bind to the bubble as an electron is bound to the nucleus in an atom. So, with regard to the bubb...

  1. Observation and theoretic analysis of gas-bubble formation and growth in water-model

    Institute of Scientific and Technical Information of China (English)

    WU Rui-zhi; SHU Da; SUN Bao-de; WANG Jun; LU Yan-ling

    2005-01-01

    The behavior of bubbles is observed with high-speed digital camera in water-model. It is found that each bubble has three processes: bubble formation, bubble coalescence and bubble division. Bubble shape is spherical firstly, then elliptical and spherical crown after coalescence, and spherical again after division. These phenomena are explained theoretically. And the bubble size is defined newly. The so-defined bubble size is measured through digital camera and LECO graphical analyzer. And the measured results are compared with those in literatures.

  2. Helium nano-bubble evolution in aging metal tritides.

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, Donald F.

    2004-05-01

    A continuum-scale, evolutionary model of helium (He) nano-bubble nucleation, growth and He release for aging bulk metal tritides is presented which accounts for major features of the experimental database. Bubble nucleation, modeled as self-trapping of interstitially diffusing He atoms, is found to occur during the first few days following tritium introduction into the metal and is sensitive to the He diffusivity and pairing energy. An effective helium diffusivity of 0.3 x 10{sup -16} cm{sup 2}/s at 300 K is required to generate the average bubble density of 5x 1017 bubbles/cm3 observed by transmission electron microscopy (TEM). Early bubble growth by dislocation loop punching with a l/radius bubble pressure dependence produces good agreement with He atomic volumes and bubble pressures determined from swelling data, nuclear magnetic resonance (NMR) measurements, and hydride pressure-composition-temperature (PCT) shifts. The model predicts that later in life neighboring bubble interactions may first lower the loop punching pressure through cooperative stress effects, then raise the pressure by partial blocking of loops. It also accounts for the shape of the bubble spacing distribution obtained from NMR data. This distribution is found to remain fixed with age, justifying the separation of nucleation and growth phases, providing a sensitive test of the growth formulation, and indicating that further significant bubble nucleation does not occur throughout life. Helium generated within the escape depth of surfaces and surface-connected porosity produces the low-level early helium release. Accelerated or rapid release is modeled as inter-bubble fracture using an average ligament stress criterion. Good agreement is found between the predicted onset of fracture and the observed He-metal ratio (HeM) for rapid He release from bulk palladium tritide. An examination of how inter-bubble fracture varies over the bubble spacing distribution shows that the critical Hem will be

  3. Cavitation erosion by single laser-produced bubbles

    Science.gov (United States)

    Philipp, A.; Lauterborn, W.

    1998-04-01

    In order to elucidate the mechanism of cavitation erosion, the dynamics of a single laser-generated cavitation bubble in water and the resulting surface damage on a flat metal specimen are investigated in detail. The characteristic effects of bubble dynamics, in particular the formation of a high-speed liquid jet and the emission of shock waves at the moment of collapse are recorded with high-speed photography with framing rates of up to one million frames/s. Damage is observed when the bubble is generated at a distance less than twice its maximum radius from a solid boundary ([gamma]=2, where [gamma]=s/Rmax, s is the distance between the boundary and the bubble centre at the moment of formation and Rmax is the maximum bubble radius). The impact of the jet contributes to the damage only at small initial distances ([gamma][less-than-or-eq, slant]0.7). In this region, the impact velocity rises to 83 m s[minus sign]1, corresponding to a water hammer pressure of about 0.1 GPa, whereas at [gamma]>1, the impact velocity is smaller than 25 m s[minus sign]1. The largest erosive force is caused by the collapse of a bubble in direct contact with the boundary, where pressures of up to several GPa act on the material surface. Therefore, it is essential for the damaging effect that bubbles are accelerated towards the boundary during the collapse phases due to Bjerknes forces. The bubble touches the boundary at the moment of second collapse when [gamma]jet flow through the bubble centre. Corresponding to the decay of this bubble torus into multiple tiny bubbles each collapsing separately along the circumference of the torus, the observed damage is circular as well. Bubbles in the ranges [gamma][less-than-or-eq, slant]0.3 and [gamma]=1.2 to 1.4 caused the greatest damage. The overall diameter of the damaged area is found to scale with the maximum bubble radius. Owing to the possibility of generating thousands of nearly identical bubbles, the cavitation resistance of even hard

  4. Guest investigator program study: Physics of equatorial plasma bubbles

    Science.gov (United States)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  5. Flotation bubble image segmentation based on seed region boundary growing

    Institute of Scientific and Technical Information of China (English)

    Zhang Guoying; Zhu Hong; Xu Ning

    2011-01-01

    Segmenting blurred and conglutinated bubbles in a flotation image is done using a new segmentation method based on Seed Region and Boundary Growing (SRBG). Bright pixels located on bubble tops were extracted as the seed regions. Seed boundaries are divided into four curves: left-top, right-top, rightbottom, and left-bottom. Bubbles are segmented from the seed boundary by moving these curves to the bubble boundaries along the corresponding directions. The SRBG method can remove noisy areas and it avoids over- and under-segmentation problems. Each bubble is segmented separately rather than segmenting the entire flotation image. The segmentation results from the SRBG method are more accurate than those from the Watershed algorithm.

  6. Dynamics of a single cavitating and reacting bubble.

    Science.gov (United States)

    Hauke, Guillermo; Fuster, Daniel; Dopazo, Cesar

    2007-06-01

    Some of the studies on the dynamics of cavitating bubbles often consider simplified submodels assuming uniform fluid properties within the gas bubbles, ignoring chemical reactions, or suppressing fluid transport phenomena across the bubble interface. Another group of works, to which the present contribution belongs, includes the radial dependence of the fluid variables. Important fluid processes that occur inside the gas bubble, such as chemical reactions, and across the bubble interface, such as heat and mass transfer phenomena, are here considered also. As a consequence, this model should yield more realistic results. In particular, it is found that water evaporation and condensation are fundamental transport phenomena in estimating the dissociation reactions of water into OH. The thermal and mass boundary layers and the radial variation of the chemical concentrations also seem essential for accurate predictions.

  7. SIMULATION AND EXPERIMENT OF BUBBLY FLOW INSIDE THROTTLING GROOVE

    Institute of Scientific and Technical Information of China (English)

    FU Xin; DU Xuewen; ZOU Jun; YANG Huayong; JI Hong

    2007-01-01

    The relationship between pressure distribution and cavitation (noise) inside throttling groove is investigated by numerical simulation and experimental method. A valve pocket with several transducers is performed to detect the pressure distributions inside the valve chamber, and the results fit quite well with the computational fluid dynamics(CFD) analysis. High-speed imaging techniques are employed to investigate the cavitation mechanisms, in particular bubble inception and cluster formation near the throttling groove. A spectrum analyzer is used to measure the sound pressure level of noise generated by the bubble flow. It is found that the pressure distributions inside the groove are sensitive to the valve port configuration and back pressure. The pressure distribution determines the bubble size and number passing through the valve grooves and the sound pressure level of noise induced by collapsing bubbles. The inlet pressure mainly affects the saturation degree of bubbly flow inside the groove and the intensity of sound pressure level accordingly.

  8. Micro-Bubble Experiments at the Van de Graaff Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, K. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Youker, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, S. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-02-01

    In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O2 + H2) data were collected. The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.

  9. Photon Bubbles and the Vertical Structure of Accretion Disks

    CERN Document Server

    Begelman, M C

    2006-01-01

    We consider the effects of "photon bubble" shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability. They increase the rate at which radiation escapes from the disk, and may allow disks to exceed the Eddington limit by a substantial factor. We first generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low optical depth tend to fill in the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities of 10 to >100 times the Eddington limit (L_E), depending on the mass of the central ...

  10. Golden Jubilee photos: The first CERN bubble chamber

    CERN Multimedia

    2004-01-01

    In the 1950s and 1960s, bubble and spark chambers were the dominant experimental tools in high-energy physics. While spark chambers were usually built and fitted to specific experiments, bubble chambers were constructed as general purpose devices that could be used for a variety of experiments. At CERN, the bubble chamber programme started under Charles Peyrou in the late 1950s. The first of CERN's bubble chambers, a 30 cm hydrogen chamber, is seen here being inserted into its vacuum tank. The HBC30, as it was called, took its first beam from the SC in 1959. One of the first pictures taken, of a positive pion-proton interaction, began a long series of pretty images for which bubble chambers would become famous. When it stopped operating in spring 1962, the HBC30 had consumed 150 km of film in its 3 years of operation.

  11. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling

    Institute of Scientific and Technical Information of China (English)

    ZOU Yu; HUAI Xiu-Lan; LIANG Shi-Qiang

    2009-01-01

    Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range.

  12. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer.

  13. Universe unveiled the cosmos in my bubble bath

    CERN Document Server

    Vishveshwara, C V

    2015-01-01

    The bubbles were swirling all around me, massaging my body. As I luxuriated in this fantastic bath, I gasped realizing that those bubbles carried with them miniature galaxies bringing the entire Cosmos into my bathtub... Alfie is back. And so are George and other characters from the author’s previous book Einstein’s Enigma or Black Holes in My Bubble Bath. While the present book, Universe Unveiled - The Cosmos in My Bubble Bath, is completely independent, its storyline can be considered a sequel to the previous one. The scientific content spanning ancient world models to the most recent mysteries of cosmology is presented in an entirely nontechnical and descriptive style through the discussions between Alfie, the enlightened learner, and George, professor of astrophysics. Fantasies, based on these discussions that cover the scientific facts, are created by the magical bubble baths taken by Alfie. Universe Unveiled blends accurate science with philosophy, drama, humour, and fantasy to create an exciting co...

  14. IMPROVEMENT OF BUBBLE MODEL FOR CAVITATING FLOW SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    TAMURA Y.; MATSUMOTO Y.

    2009-01-01

    In the present research,a bubble dynamics based model for cavitating flow simulations is extended to higher void fraction region for wider range of applications.The present bubble model is based on the so-called Rayleigh-Plesset equation that calculates a temporal bubble radius with the surrounding liquid pressure and is considered to be valid in an area below a certain void fraction.The solution algorithm is modified so that the Rayleigh-Plesset equation is no more solved once the bubble radius(or void fraction)reaches at a certain value till the liquid pressure recovers above the vapor pressure in order to overcome this problem.This procedure is expected to stabilize the numerical calculation.The results of simple two-dimensional flow field are presented compared with the existing bubble model.

  15. Optimization of bubble column performance for nanoparticle collection.

    Science.gov (United States)

    Cadavid-Rodriguez, M C; Charvet, A; Bemer, D; Thomas, D

    2014-04-30

    Fibrous media embody the most effective and widely used method of separating ultrafine particles from a carrier fluid. The main problem associated with them is filter clogging, which induces an increasingly marked pressure drop with time and thus imposes regular media cleaning or replacement. This context has prompted the idea of investigating bubble columns, which operate at constant pressure drop, as alternatives to fibrous filters. This study examines the influence of different operating conditions, such as liquid height, air flow rate, bubble size and presence of granular beds on ultrafine particle collection. Experimental results show that bubble columns are characterised by high collection efficiency, when they feature a large liquid height and small diameter bubbling orifices, while their efficiencies remain lower than those of fibrous filters. Gas velocity does not greatly influence collection efficiency, but the inclusion of a granular bed, composed of beads, increases the bubble residence time in the column, thereby increasing the column collection efficiency.

  16. Size of the top jet drop produced by bubble bursting

    CERN Document Server

    Ghabache, Elisabeth

    2016-01-01

    As a bubble bursts at a liquid-air interface, a tiny liquid jet rises and can release the so-called \\textit{jet drops}. In this paper, the size of the top jet drop produced by a bubble bursting is investigated experimentally. We determine, and discuss, the first scaling law enabling the determination of the top jet drop size as a function of the corresponding mother bubble radius and the liquid properties (viscosity, surface tension, density), along with its regime of existence. Furthermore, in the aim of decoupling experimentally the effects of bubble collapse and jet dynamics on the drop detachment, we propose a new scaling providing the top drop size only as a function of the jet velocity and liquid parameters. In particular, this allows us to untangle the intricate roles of viscosity, gravity and surface tension in the \\textit{end-pinching} of the bubble bursting jet.

  17. Contact angle of a hemispherical bubble: an analytical approach.

    Science.gov (United States)

    Teixeira, M A C; Teixeira, P I C

    2009-10-01

    We have calculated the equilibrium shape of the axially symmetric Plateau border along which a spherical bubble contacts a flat wall, by analytically integrating Laplace's equation in the presence of gravity, in the limit of small Plateau border sizes. This method has the advantage that it provides closed-form expressions for the positions and orientations of the Plateau border surfaces. Results are in very good overall agreement with those obtained from a numerical solution procedure, and are consistent with experimental data. In particular we find that the effect of gravity on Plateau border shape is relatively small for typical bubble sizes, leading to a widening of the Plateau border for sessile bubbles and to a narrowing for pendant bubbles. The contact angle of the bubble is found to depend even more weakly on gravity.

  18. Characteristics of a bubble jet near a vertical wall

    Institute of Scientific and Technical Information of China (English)

    ZHANG A-man; YAO Xiong-liang; LI Jia

    2008-01-01

    A numerical model of a coupled bubble jet and wall was built on the assumption of potential flow and calculated by the boundary integral method. A three-dimensional computing program was then developed. Starting with the basic phenomenon of the interaction between a bubble and a wall, the dynamics of bubbles near rigid walls were studied systematically with the program. Calculated results agreed well with experimental results. The relationship between the Bjerknes effect of a wall and characteristic parameters was then studied and the calculated results of various cases were compared and discussed with the Blake criterion based on the Kelvin-impulse theory. Our analyses show that the angle of the jet's direction and the pressure on the rigid wall have a close relationship with collapse force and the bubble's characteristic parameters. From this, the application range of Blake criterion can be determined. This paper aims to provide a basis for future research on the dynamics of bubbles near a wall.

  19. DIRECT NUMERICAL SIMUIATION OF BUBBLE-CLUSTER'S DYNAMIC CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A Direct Numerical Simulation (DNS) for understanding the dynamic response of bubble cluster to pulses of pressure perturbations has been studied by using a front-tracking method. The results show that owing to high nonlinearity, the bubble shape and volume oscillations caused by passing by pressure wave will be transformed into an in-phase volumetric oscillation of whole bubble cluster at a particular low-frequency. The value of the frequency is independent of the pulse excitations but the characteristics of the bubble cluster such as its bubble size, bulk void fraction and its spacial distribution etc. It is believed that this study provides important information for us to understand the coupling mechanism of cavitation cloud involved in cavitation resonance, a phenomenon noticed by one of the authors more than two decades ago.

  20. Curvature-driven bubbles or droplets on the spiral surface

    Science.gov (United States)

    Li, Shanpeng; Liu, Jianlin; Hou, Jian

    2016-11-01

    Directional motion of droplets or bubbles can often be observed in nature and our daily life, and this phenomenon holds great potential in many engineering areas. The study shows that droplets or bubbles can be driven to migrate perpetually on some special substrates, such as the Archimedean spiral, the logarithmic spiral and a cantilever sheet in large deflection. It is found that a bubble approaches or deviates from the position with highest curvature of the substrate, when it is on the concave or convex side. This fact is helpful to explain the repelling water capability of Nepenthes alata. Based on the force and energy analysis, the mechanism of the bubble migration is well addressed. These findings pave a new way to accurately manipulate droplet or bubble movement, which bring inspirations to the design of microfluidic and water harvesting devices, as well as oil displacement and ore filtration.

  1. Bubble size distribution in surface wave breaking entraining process

    Institute of Scientific and Technical Information of China (English)

    HAN; Lei; YUAN; YeLi

    2007-01-01

    From the similarity theorem,an expression of bubble population is derived as a function of the air entrainment rate,the turbulent kinetic energy (TKE) spectrum density and the surface tension.The bubble size spectrum that we obtain has a dependence of a-2.5+nd on the bubble radius,in which nd is positive and dependent on the form of TKE spectrum within the viscous dissipation range.To relate the bubble population with wave parameters,an expression about the air entrainment rate is deduced by introducing two statistical relations to wave breaking.The bubble population vertical distribution is also derived,based on two assumptions from two typical observation results.

  2. Multiresolution edge detection based on modified bubble function and SWT

    Institute of Scientific and Technical Information of China (English)

    YU Rui-xing; LI Yan-jun; ZHANG Ke

    2006-01-01

    A new way based on a modified bubble function and stationary wavelet transform(SWT) is proposed to solve the problem that the conventional edge detection algorithms are sensitive to the noises.Firstly,the traditional bubble function is modified in order to get different time-frequency domain responses and to get filtering effects through adjusting the parameters. Secondly, the modified bubble function is combined with SWT to construct a multiresolution network. By using the modified bubble function to enhance the edges and by using SWT to reduce the noises, the edges can be extracted accurately,effectively and quickly with lower noise.Finally, the experimental results of the proposed edge detection algorithm are verified to be better than that with the traditional bubble function.

  3. Space experimental investigation on thermocapillary migration of bubbles

    Science.gov (United States)

    Cui, Hailiang; Hu, Liang; Duan, Li; Kang, Qi; Hu, Wenrui

    2008-07-01

    Results from a space experiment on bubble thermocapillary migration conducted on board the Chinese 22nd recoverable satellite were presented. Considering the temperature field in the cell was disturbed by the accumulated bubbles, the temperature gradient was corrected firstly with the help of the temperature measurement data at six points and numerical simulation. Marangoni number ( Ma) of single bubble migrating in the space experiment ranged from 98.04 to 9288, exceeding that in the previous experiment data. The experiment data including the track and the velocity of two bubble thermocapillary migration showed that a smaller bubble would move slower as it was passed by a larger one, and the smaller one would even rest in a short time when the size ratio was large enough.

  4. NUMERICAL STUDY OF 3D EXPLOSION BUBBLES ADJACENT TO STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The bejavior of a bubble near a rigid structure was considered by using the local surface fitting method and the "jet prediction" method. The convergence difficulty caused by the abnormality of the elements was overcome. The flow was numerically simulated by using the boundary-integral method on the assumption that the water was inviscid and incompressible, and the bubble gas obeyed the isoentropic rule. The evolution of the bubble was investigated by means of the mixed Euler-Lagrange method, and the Runge-Kutta method. The important behavior of the bubble, such as migration and jetting, was analyzed in several examples. And the solution of one period of the explosion bubble was obtained.

  5. Molecular dynamics simulations of bubble nucleation in dark matter detectors

    CERN Document Server

    Denzel, Philipp; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy di...

  6. Space experimental investigation on thermocapillary migration of bubbles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Results from a space experiment on bubble thermocapillary migration conducted on board the Chinese 22nd recoverable satellite were presented. Considering the temperature field in the cell was disturbed by the accumulated bubbles, the temperature gradient was corrected firstly with the help of the temperature measurement data at six points and numerical simulation. Marangoni number (Ma) of single bubble migrating in the space experiment ranged from 98.04 to 9288, exceeding that in the previous experiment data. The experiment data including the track and the velocity of two bubble thermocapillary migration showed that a smaller bubble would move slower as it was passed by a larger one, and the smaller one would even rest in a short time when the size ratio was large enough.

  7. Laryngeal findings and acoustic changes in hubble-bubble smokers.

    Science.gov (United States)

    Hamdan, Abdul-latif; Sibai, Abla; Oubari, Dima; Ashkar, Jihad; Fuleihan, Nabil

    2010-10-01

    The purpose of our investigation was to evaluate the laryngeal findings and acoustic changes in hubble-bubble smokers. A total of 42 subjects with history of hubble-bubble smoking were recruited for this study. A corresponding group with a history of cigarette smoking and controls were matched. All subjects underwent laryngeal video-endostroboscopic evaluation and acoustic analysis. In the hubble-bubble smoking group, 61.9% were males. The average age was 30.02 +/- 9.48 years and the average number of years of smoking was 8.09 +/- 6.45 years. Three subjects had dysphonia at the time of examination. The incidence of benign lesions of the vocal folds in the hubble-bubble group was 21.5%, with edema being the most common at 16.7% followed by cyst at 4.8%. The incidence of laryngeal findings was significantly higher in the hubble-bubble group compared to controls. In the cigarette-smoking group, the most common finding was vocal fold cyst in 14.8% followed by polyps in 7.4%, and edema, sulcus vocalis and granuloma. These findings were not significantly different from the hubble-bubble group except for the thick mucus, which was significantly higher in the latter. There were no significant changes in any of the acoustic parameters between hubble-bubble smokers and controls except for the VTI and MPT, which were significantly lower in the hubble-bubble group. In comparison with the cigarette-smoking group, hubble-bubble smokers had significantly higher Fundamental frequency and habitual pitch (p value 0.042 and 0.008, respectively). The laryngeal findings in hubble-bubble smokers are comparable to cigarette smokers. These laryngeal findings are not translated acoustically, as all the acoustic parameters are within normal range compared to controls.

  8. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  9. Bubble reconstruction method for wire-mesh sensors measurements

    Science.gov (United States)

    Mukin, Roman V.

    2016-08-01

    A new algorithm is presented for post-processing of void fraction measurements with wire-mesh sensors, particularly for identifying and reconstructing bubble surfaces in a two-phase flow. This method is a combination of the bubble recognition algorithm presented in Prasser (Nuclear Eng Des 237(15):1608, 2007) and Poisson surface reconstruction algorithm developed in Kazhdan et al. (Poisson surface reconstruction. In: Proceedings of the fourth eurographics symposium on geometry processing 7, 2006). To verify the proposed technique, a comparison was done of the reconstructed individual bubble shapes with those obtained numerically in Sato and Ničeno (Int J Numer Methods Fluids 70(4):441, 2012). Using the difference between reconstructed and referenced bubble shapes, the accuracy of the proposed algorithm was estimated. At the next step, the algorithm was applied to void fraction measurements performed in Ylönen (High-resolution flow structure measurements in a rod bundle (Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20961, 2013) by means of wire-mesh sensors in a rod bundle geometry. The reconstructed bubble shape yields bubble surface area and volume, hence its Sauter diameter d_{32} as well. Sauter diameter is proved to be more suitable for bubbles size characterization compared to volumetric diameter d_{30}, proved capable to capture the bi-disperse bubble size distribution in the flow. The effect of a spacer grid was studied as well: For the given spacer grid and considered flow rates, bubble size frequency distribution is obtained almost at the same position for all cases, approximately at d_{32} = 3.5 mm. This finding can be related to the specific geometry of the spacer grid or the air injection device applied in the experiments, or even to more fundamental properties of the bubble breakup and coagulation processes. In addition, an application of the new algorithm for reconstruction of a large air-water interface in a tube bundle is

  10. In situ X-ray tomographic microscopy observations of vesiculation of bubble-free and bubble-bearing magmas

    Science.gov (United States)

    Pistone, Mattia; Caricchi, Luca; Fife, Julie L.; Mader, Kevin; Ulmer, Peter

    2015-12-01

    Magma degassing is thought to play a major role in magma fractionation, transport, storage, and volcanic eruption dynamics. However, the conditions that determine when and how magma degassing operates prior to and during an eruption remain poorly constrained. We performed experiments to explore if the initial presence of gas bubbles in magma influences the capability of gas to escape from the magma. Vesiculation of natural H2O-poor (bubble coalescence during vesiculation. In both sets of experiments, vesiculation was triggered by heating the samples at room pressure. Our results suggest that the presence of pre-existing gas bubbles during a nucleation event significantly decreases the tendency of bubbles to coalesce and inhibits magma outgassing. In contrast, in initially bubble-free samples, the nucleation and growth of bubbles is accompanied by significant coalescence and outgassing. We infer that volatile-undersaturated (i.e. bubble-free) magmas in the reservoirs are more likely to erupt effusively, while the presence of excess gas already at depth (i.e. bubble-bearing systems) increases the likelihood of explosive eruptions.

  11. Neutron Imaging study of bubble behaviors in Nanofluid Through Engineered Orifices

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Bin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Tae Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Most studies focused on the change of surface parameters through deposited nanoparticles, while Vafaei and Wen firstly discussed modification of bubble dynamics by dispersed nanoparticles in fluid as well as deposited ones. The boiling mechanism, as an effective heat transfer mode, includes bubble generation, growth, departure, and coalescence. Therefore the change of bubble dynamics can lead to the change of boiling heat transfer condition. That is, not only surface characteristics but the dispersed nanoparticles would be the essential parameters of boiling mechanism in terms of bubble dynamics. For advanced visualization of opaque fluids, the neutron imaging technique is introduced. In the present study, the bubble dynamics in nanofluid through engineered orifices was studied. The main parameters of engineered orifices are size and geometry. Photographic analysis of bubble departure frequency and averaged bubble departure volume provides as follows: With increasing orifice diameter, averaged bubble departure volume increases, while bubble departure frequency decreases. The results are attributed to enhanced capillary force by increasing contact perimeter. Averaged bubble departure volume and bubble departure frequency remain similar for three different types of orifices. But edges of the triangle and square orifice produce small bubbles which interrupts bubble generation. The converged triple contact line due to the edge may be a reason for the emerged baby bubbles. Nanofluid shows less averaged bubble departure volume and higher bubble departure frequency. Considering little change in physical properties of the fluid, interaction between bubble interface and nanoparticles may be in charge of the results.

  12. Relic Radio Bubbles and Cluster Cooling Flows

    CERN Document Server

    De Young, D S

    2003-01-01

    Recent suggestions that buoyant radio emitting cavities in the intracluster medium can cause significant reheating of cooling flows are re-examined when the effects of the intracluster magnetic field are included. Expansion of the cavity creates a tangential magnetic field in the ICM around the radio source, and this field can suppress instabilities that mix the ICM and the radio source. The onset of instability can be delayed for ~100 million years, and calculation of the actual reheating time shows that this may not occur until about 1Gy after creation of the cavity. These results may explain why the relic radio bubbles are still intact at such late times, and it may imply that the role of radio sources in reheating the ICM should be re-examined. In addition, the existence of relic radio cavities may also imply that the particle content of radio source lobes is primarily electrons and protons rather than electrons and positrons.

  13. Bubble Chambers for Experiments in Nuclear Astrophysics

    CERN Document Server

    DiGiovine, B; Holt, R J; Rehm, K E; Raut, R; Robinson, A; Sonnenschein, A; Rusev, G; Tonchev, A P; Ugalde, C

    2015-01-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas tar...

  14. A mechanistic model of separation bubble

    CERN Document Server

    Krechetnikov, R; Nagib, H M

    2007-01-01

    This work uncovers the low-dimensional nature the complex dynamics of actuated separated flows. Namely, motivated by the problem of model-based predictive control of separated flows, we identify the requirements on a model-based observer and the key variables and propose a prototype model in the case of thick airfoils as motivated by practical applications. The approach in this paper differs fundamentally from the logic behind known models, which are either linear or based on POD-truncations and are unable to reflect even the crucial bifurcation and hysteresis inherent in separation phenomena. This new look at the problem naturally leads to several important implications, such as, firstly, uncovering the physical mechanisms for hysteresis, secondly, predicting a finite amplitude instability of the bubble, and thirdly to new issues to be studied theoretically and tested experimentally. More importantly, by employing systematic reasoning, the low-dimensional nature of these complex phenomena at the coarse level...

  15. Formation and X-ray emission from Hot Bubbles in Planetary Nebulae. I. Hot Bubble formation

    CERN Document Server

    Toalá, J A

    2014-01-01

    We carry out high resolution two-dimensional radiation-hydrodynamic numerical simulations to study the formation and evolution of hot bubbles inside planetary nebulae (PNe). We take into account the evolution of the stellar parameters, wind velocity and mass-loss rate from the final thermal pulses during the asymptotic giant branch (AGB) through to the post-AGB stage for a range of initial stellar masses. The instabilities that form at the interface between the hot bubble and the swept-up AGB wind shell lead to hydrodynamical interactions, photoevaporation flows and opacity variations. We explore the effects of hydrodynamical mixing combined with thermal conduction at this interface on the dynamics, photoionization, and emissivity of our models. We find that even models without thermal conduction mix significant amounts of mass into the hot bubble. When thermal conduction is not included, hot gas can leak through the gaps between clumps and filaments in the broken swept-up AGB shell and this depressurises the...

  16. Modeling of isothermal bubbly flow with interfacial area transport equation and bubble number density approach

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Salih [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Erguen, Sule [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)], E-mail: se@nuke.hacettepe.edu.tr; Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)

    2009-03-15

    In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data.

  17. Novel techniques for slurry bubble column hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  18. Intraluminal bubble dynamics induced by lithotripsy shock wave

    Science.gov (United States)

    Song, Jie; Bai, Jiaming; Zhou, Yufeng

    2016-12-01

    Extracorporeal shock wave lithotripsy (ESWL) has been the first option in the treatment of calculi in the upper urinary tract since its introduction. ESWL-induced renal injury is also found after treatment and is assumed to associate with intraluminal bubble dynamics. To further understand the interaction of bubble expansion and collapse with the vessel wall, the finite element method (FEM) was used to simulate intraluminal bubble dynamics and calculate the distribution of stress in the vessel wall and surrounding soft tissue during cavitation. The effects of peak pressure, vessel size, and stiffness of soft tissue were investigated. Significant dilation on the vessel wall occurs after contacting with rapid and large bubble expansion, and then vessel deformation propagates in the axial direction. During bubble collapse, large shear stress is found to be applied to the vessel wall at a clinical lithotripter setting (i.e. 40 MPa peak pressure), which may be the mechanism of ESWL-induced vessel rupture. The decrease of vessel size and viscosity of soft tissue would enhance vessel deformation and, consequently, increase the generated shear stress and normal stresses. Meanwhile, a significantly asymmetric bubble boundary is also found due to faster axial bubble expansion and shrinkage than in radial direction, and deformation of the vessel wall may result in the formation of microjets in the axial direction. Therefore, this numerical work would illustrate the mechanism of ESWL-induced tissue injury in order to develop appropriate counteractive strategies for reduced adverse effects.

  19. Uniting the family of jets of single cavitation bubbles

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Tinguely, Marc; Kobel, Philippe; Dorsaz, Nicolas; Farhat, Mohamed

    2016-11-01

    Micro-jets are high-speed liquid jets that are produced when a cavitation bubble experiences a non-spherical collapse. Such jets may be driven by any anisotropy in the liquid, such as those induced by near surfaces, gravity, pressure gradients in flows or shock waves. Here we unify this diverse family of micro-jets by describing their dynamics with a single anisotropy parameter ζ >= 0 that represents a dimensionless version of the liquid momentum at the collapse point. We observe, experimentally and numerically, that the dimensionless jet parameters describing the jet speed, jet impact time, bubble displacement, bubble volume at jet impact and vapor-jet volume, all reduce to functions of ζ. Consequently, a measurement of a single parameter, such as the bubble displacement, may be used to estimate any other parameter, such as the jet speed. The jets are phenomenologically categorized into three visually distinct regimes: weak jets that hardly pierce the bubble, intermediate jets that pierce the bubble late during the collapse, and strong jets that pierce the bubble at an early stage of the collapse. In the weak and intermediate jet regimes, that is, when ζ Research Collaboration Award, European Space Agency.

  20. Can airborne ultrasound monitor bubble size in chocolate?

    Science.gov (United States)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  1. Improving electrokinetic microdevice stability by controlling electrolysis bubbles.

    Science.gov (United States)

    Lee, Hwi Yong; Barber, Cedrick; Minerick, Adrienne R

    2014-07-01

    The voltage-operating window for many electrokinetic microdevices is limited by electrolysis gas bubbles that destabilize microfluidic system causing noise and irreproducible responses above ∼3 V DC and less than ∼1 kHz AC at 3 Vpp. Surfactant additives, SDS and Triton X-100, and an integrated semipermeable SnakeSkin® membrane were employed to control and assess electrolysis bubbles from platinum electrodes in a 180 by 70 μm, 10 mm long microchannel. Stabilized current responses at 100 V DC were observed with surfactant additives or SnakeSkin® barriers. Electrolysis bubble behaviors, visualized via video microscopy at the electrode surface and in the microchannels, were found to be influenced by surfactant function and SnakeSkin® barriers. Both SDS and Triton X-100 surfactants promoted smaller bubble diameters and faster bubble detachment from electrode surfaces via increasing gas solubility. In contrast, SnakeSkin® membranes enhanced natural convection and blocked bubbles from entering the microchannels and thus reduced current disturbances in the electric field. This data illustrated that electrode surface behaviors had substantially greater impacts on current stability than microbubbles within microchannels. Thus, physically blocking bubbles from microchannels is less effective than electrode functionalization approaches to stabilize electrokinetic microfluidic systems.

  2. Artificial neural network for bubbles pattern recognition on the images

    Science.gov (United States)

    Poletaev, I. E.; Pervunin, K. S.; Tokarev, M. P.

    2016-10-01

    Two-phase bubble flows have been used in many technological and energy processes as processing oil, chemical and nuclear reactors. This explains large interest to experimental and numerical studies of such flows last several decades. Exploiting of optical diagnostics for analysis of the bubble flows allows researchers obtaining of instantaneous velocity fields and gaseous phase distribution with the high spatial resolution non-intrusively. Behavior of light rays exhibits an intricate manner when they cross interphase boundaries of gaseous bubbles hence the identification of the bubbles images is a complicated problem. This work presents a method of bubbles images identification based on a modern technology of deep learning called convolutional neural networks (CNN). Neural networks are able to determine overlapping, blurred, and non-spherical bubble images. They can increase accuracy of the bubble image recognition, reduce the number of outliers, lower data processing time, and significantly decrease the number of settings for the identification in comparison with standard recognition methods developed before. In addition, usage of GPUs speeds up the learning process of CNN owning to the modern adaptive subgradient optimization techniques.

  3. Vortex Simulation of the Bubbly Flow around a Hydrofoil

    Directory of Open Access Journals (Sweden)

    Tomomi Uchiyama

    2007-01-01

    Full Text Available This study is concerned with the two-dimensional simulation for an air-water bubbly flow around a hydrofoil. The vortex method, proposed by the authors for gas-liquid two-phase free turbulent flow in a prior paper, is applied for the simulation. The liquid vorticity field is discrerized by vortex elements, and the behavior of vortex element and the bubble motion are simultaneously computed by the Lagrangian approach. The effect of bubble motion on the liquid flow is taken into account through the change in the strength of vortex element. The bubbly flow around a hydrofoil of NACA4412 with a chord length 100 mm is simulated. The Reynolds number is 2.5×105, the bubble diameter is 1 mm, and the volumetric flow ratio of bubble to whole fluid is 0.048. It is confirmed that the simulated distributions of air volume fraction and pressure agree well with the trend of the measurement and that the effect of angle of attack on the flow is favorably analyzed. These demonstrate that the vortex method is applicable to the bubbly flow analysis around a hydrofoil.

  4. Turbulence Modification Structures in an Upward Bubbly Pipe Flow

    Science.gov (United States)

    Tanaka, Tomohiko; Hishida, Koichi; Eaton, John

    2002-11-01

    The objective of this study is to investigate the mechanism of modification of turbulence in gas-liquid bubbly flow. We especially focused on the effect of void fraction and bubble diameter, which are important factors in turbulence modification. Fluid velocity was measured by applying PIV with fluorescent tracer particles, and bubble shapes and positions were obtained by the shadow-image technique. The experiment consisted of a fully developed vertical upward pipe flow with void fraction 0.5diameter is 2R=44mm and the Re=9700. In order to compare the effect of the bubble diameter at fixed void fraction, nearly 60ppm of 3-Pentanol (C5H11OH) surfactant was added as the surfactant. Bubbles accelerated the mean streamwise velocity near the wall. Thus the mean streamwise velocity profile was flatted. Moreover, the streamwise fluctuation velocity was suppressed at the middle pipe region. It is suggested that the highly concentrated bubbles in the vicinity of the wall disturb the transport of turbulence energy produced by the wall shear layer toward the middle of pipe. Thus the fluctuation velocity is remarkably reduced at the wide region of the pipe center. Moreover, in the middle of pipe, the turbulence structure is governed by the presence of bubbles.

  5. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.

    Science.gov (United States)

    Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N

    2016-01-21

    We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.

  6. Measuring Technique of Bubble Size Distributions in Dough

    Science.gov (United States)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Tsuta, Mizuki

    A novel technique to recognize bubbles in bread dough and analyze their size distribution was developed by using a Micro-Slicer Image Processing System (MSIPS). Samples were taken from the final stage of the mixing process of bread dough which generally consists of four distinctive stages. Also, to investigate the effect of freeze preservation on the size distribution of bubbles, comparisons were made between fresh dough and the dough that had been freeze preserved at .30°C for three months. Bubbles in the dough samples were identified in the images of MSIPS as defocusing spots due to the difference in focal distance created by vacant spaces. In case of the fresh dough, a total of 910 bubbles were recognized and their maximum diameter ranged from 0.4 to 70.5μm with an average of 11.1μm. On the other hand, a total of 1,195 bubbles were recognized from the freeze-preserved sample, and the maximum diameter ranged from 0.9 to 32.7μm with an average of 6.7μm. Small bubbles with maximum diameters less than 10μm comprised approximately 59% and 78% of total bubbles for fresh and freeze-preserved dough samples, respectively. The results indicated that the bubble size of frozen dough is smaller than that of unfrozen one. The proposed method can provide a novel tool to investigate the effects of mixing and preservation treatments on the size, morphology and distribution of bubbles in bread dough.

  7. Global Solutions to Bubble Growth in Porous Media

    CERN Document Server

    Karp, Lavi

    2010-01-01

    We study a moving boundary problem modeling an injected fluid into another viscous fluid. The viscous fluid is withdrawn at infinity and governed by Darcy's law. We present solutions to the free boundary problem in terms of time-derivative of a generalized Newtonian potentials of the characteristic function of the bubble. This enables us to show that the bubble occupies the entire space as the time tends to infinity if and only if the internal generalized Newtonian potential of the initial bubble is a quadratic polynomial.

  8. Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces

    Science.gov (United States)

    Manor, Ofer; Vakarelski, Ivan U.; Tang, Xiaosong; O'Shea, Sean J.; Stevens, Geoffrey W.; Grieser, Franz; Dagastine, Raymond R.; Chan, Derek Y. C.

    2008-07-01

    Dynamic forces between a 50μm radius bubble driven towards and from a mica plate using an atomic force microscope in electrolyte and in surfactant exhibit different hydrodynamic boundary conditions at the bubble surface. In added surfactant, the forces are consistent with the no-slip boundary condition at the mica and bubble surfaces. With no surfactant, a new boundary condition that accounts for the transport of trace surface impurities explains variations of dynamic forces at different speeds and provides a direct connection between dynamic forces and surface transport effects at the air-water interface.

  9. Collision of a small bubble with a large falling particle

    Directory of Open Access Journals (Sweden)

    Vejrazka Jiri

    2014-03-01

    Full Text Available The motion of a tiny bubble (< 1mm in a neighborhood of a solid sphere falling through a liquid is studied. A model assuming irrotational flow around the sphere and spherical bubble shape is provided; this model is validated by comparison with the experiment. The model can be further simplified by neglecting inertial forces, which are negligible in present experiments. Results of the model are provided also for the opposite limit, in which the inertial forces are dominating the bubble motion.

  10. Dark matter searches with PICO bubble chambers: An overview

    Science.gov (United States)

    Harris, Orin; PICO Collaboration

    2017-01-01

    The PICO collaboration uses bubble chambers to search for dark matter, with world-leading sensitivity to the direct-detection of WIMPs with spin-dependent couplings to protons. PICO currently operates a 2 liter (PICO-2L) and a 32 liter (PICO 60) bubble chamber at the SNOLAB deep underground laboratory, and is currently constructing a 40 liter demonstration device that is expected to eliminate an anomalous background that has previously proven significant for the scaling of the bubble chamber technique to a future ton-scale experiment (PICO-500). A discussion of the technology, recent progress, and future plans will be presented.

  11. Is There a Real-Estate Bubble in the US?

    CERN Document Server

    Zhou, W X; Zhou, Wei-Xing; Sornette, Didier

    2006-01-01

    We analyze the quarterly average sale prices of new houses sold in the USA as a whole, in the northeast, midwest, south, and west of the USA, in each of the 50 states and the District of Columbia of the USA, to determine whether they have grown faster-than-exponential which we take as the diagnostic of a bubble. We find that 22 states (mostly Northeast and West) exhibit clear-cut signatures of a fast growing bubble. From the analysis of the S&P 500 Home Index, we conclude that the turning point of the bubble will probably occur around mid-2006.

  12. Calculation of reactivity changes due to bubble collapse. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, T.J.; Petrie, L.M.

    1977-01-01

    Calculations based on Behrens' method indicate that a substantial increase in reactivity may accompany the collapse of a large number of small bubbles in an LMFBR core. More sophisticated transport approaches to this problem have encountered several difficulties: the large number of bubbles requires many mesh points; the desired effect can easily be masked by the movement of fuel to regions of greater (or lesser) importance; the reactivity is desired for a random distribution of spherical bubbles. This paper describes a transport approach to this problem which avoids the above difficulties by using the ''sub-group'' or ''probability table'' method.

  13. Evolution of Vacuum Bubbles Embeded in Inhomogeneous Spacetimes

    CERN Document Server

    Pannia, F A Teppa

    2016-01-01

    As a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region, we study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant. For comparison, we also analyse the cases with homogeneous dust and radiation backgrounds. We show that the evolution of the bubble in the radiation environments is always slower than in the dust cases, both for homogeneous and inhomogeneous ambients, and leads to appreciable differences in the evolution of the proper radius of the bubble.

  14. Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics.

    Science.gov (United States)

    Ilinskii, Yurii A; Hamilton, Mark F; Zabolotskaya, Evgenia A

    2007-02-01

    Two models of interacting bubble dynamics are presented, a coupled system of second-order differential equations based on Lagrangian mechanics, and a first-order system based on Hamiltonian mechanics. Both account for pulsation and translation of an arbitrary number of spherical bubbles. For large numbers of interacting bubbles, numerical solution of the Hamiltonian equations provides greater stability. The presence of external acoustic sources is taken into account explicitly in the derivation of both sets of equations. In addition to the acoustic pressure and its gradient, it is found that the particle velocity associated with external sources appears in the dynamical equations.

  15. Growing bubbles in a slightly supersaturated liquid solution

    CERN Document Server

    Enríquez, Oscar R; Bruggert, Gert-Wim; Lohse, Detlef; Prosperetti, Andrea; van der Meer, Devaraj; Sun, Chao

    2013-01-01

    We have designed and constructed an experimental system to study gas bubble growth in slightly supersatu- rated liquids. This is achieved by working with carbon dioxide dissolved in water, pressurized at a maximum of 1 MPa and applying a small pressure drop from saturation conditions. Bubbles grow from hydrophobic cavities etched on silicon wafers, which allows us to control their number and position. Hence, the experiment can be used to investigate the interaction among bubbles growing in close proximity when the main mass transfer mechanism is diffusion and there is a limited availability of the dissolved species.

  16. Concentration distribution around a growing gas bubble in tissue.

    Science.gov (United States)

    Mohammadein, S A; Mohamed, K G

    2010-05-01

    This paper presents the concentration distribution around a growing nitrogen gas bubble in the blood and other tissues of divers who surface too quickly, when the ambient pressure through the decompression process is variable and constant. This effort is a modification of Sirinivasan et al. model (1999) [9]. The mathematical model is solved analytically to find the growth rate of a gas bubble in a tissue after decompression in the ambient pressure. Moreover, the concentration distribution around the growing bubble is introduced. The growth process is affected by ascent rate alpha (t), tissue diffusivity D(T), initial concentration difference DeltaC(0), surface tension sigma and void fraction varphi(0).

  17. Bubble formation in oxide scales on SiC

    Science.gov (United States)

    Mieskowski, D. M.; Mitchell, T. E.; Heuer, A. H.

    1984-01-01

    The oxidation of alpha-SiC single crystals and sintered alphaand beta-SiC polycrystals has been investigated at elevated temperatures. Bubble formation is commonly observed in oxide scales on polycrystalline SiC, but is rarely found on single-crystal scales; bubbles result from the preferential oxidation of C inclusions, which are abundant in SiC polycrystals. The absence of bubbles on single crystals, in fact, implies that diffusion of the gaseous species formed on oxidation, CO (or possibly SiO), controls the rate of oxidation of SiC.

  18. Finite-amplitude vibration of a bubble and sonoluminescence

    Institute of Scientific and Technical Information of China (English)

    Qian Zu-Wen; Xiao Ling; Guo Liang-Hao

    2004-01-01

    Numerical solutions of the differential equation for a bubble performing finite-amplitude vibration are given in detail for a variety of situations. The results demonstrate that in lower acoustic pressure (maximum Mach number very low) its vibration has bounce. When acoustic pressure is in excess of 1.18atm and the instantaneous radius of the bubble approaches its equivalent Van der Waals radius, the maximum velocity and acceleration on the surface of a bubble have a huge increase in a very short period, which seems to favour the sonoluminescence. In vacuum environment (0.1atm),an intensive sonoluminescence could be generated.

  19. Bubble contributions to scalar correlators with mixed actions

    CERN Document Server

    Fu, Ziwen

    2013-01-01

    WWithin mixed-action chiral perturbation theory (MA$\\chi$PT), Sasa's derivation of the bubble contribution to scalar $a_0$ meson is extended to those of scalar $\\kappa$ and $\\sigma$ mesons. We revealed that $\\kappa$ bubble has two double poles and $\\sigma$ bubble contains a quadratic-in-$t^2$ growth factor stemming from the multiplication of two double poles for a general mass tuning of valence quarks and sea quarks. The corresponding preliminary analytical expressions in MA$\\chi$PT with 2+1 chiral valence quarks and 2+1 staggered sea quarks will be helpful for lattice studies of scalar mesons.

  20. Theoretical analysis of bubble nucleation in GASAR materials

    Institute of Scientific and Technical Information of China (English)

    刘源; 李言祥

    2003-01-01

    Nucleation of gaseous hydrogen bubbles is the initial stage of GASAR process. Through the theoretical analysis, it has been identified that heterogeneous nucleation of bubbles as caps on the solid surfaces of impurities is impossible and only the heterogeneous nucleation in pits and cracks in impurities is the most feasible way in the GASAR process. The results also show that the probability of bubble nucleation progressively decreases from Al, Cu and Ni to Fe molten metal, which is the result of the increasing adhesion work of liquid metal on alumina.

  1. BURST OF STAR FORMATION DRIVES BUBBLE IN GALAXY'S CORE

    Science.gov (United States)

    2002-01-01

    These NASA Hubble Space Telescope snapshots reveal dramatic activities within the core of the galaxy NGC 3079, where a lumpy bubble of hot gas is rising from a cauldron of glowing matter. The picture at left shows the bubble in the center of the galaxy's disk. The structure is more than 3,000 light-years wide and rises 3,500 light-years above the galaxy's disk. The smaller photo at right is a close-up view of the bubble. Astronomers suspect that the bubble is being blown by 'winds' (high-speed streams of particles) released during a burst of star formation. Gaseous filaments at the top of the bubble are whirling around in a vortex and are being expelled into space. Eventually, this gas will rain down upon the galaxy's disk where it may collide with gas clouds, compress them, and form a new generation of stars. The two white dots just above the bubble are probably stars in the galaxy. The close-up reveals that the bubble's surface is lumpy, consisting of four columns of gaseous filaments that tower above the galaxy's disk. The filaments disperse at a height of 2,000 light-years. Each filament is about 75 light-years wide. Velocity measurements taken by the Canada-France-Hawaii Telescope in Hawaii show that the gaseous filaments are ascending at more than 4 million miles an hour (6 million kilometers an hour). According to theoretical models, the bubble formed when ongoing winds from hot stars mixed with small bubbles of very hot gas from supernova explosions. Observations of the core's structure by radio telescopes indicate that those processes are still active. The models suggest that this outflow began about a million years ago. They occur about every 10 million years. Eventually, the hot stars will die, and the bubble's energy source will fade away. Astronomers have seen evidence of previous outbursts from radio and X-ray observations. Those studies show rings of dust and gas and long plumes of material, all of which are larger than the bubble. NGC 3079 is 50

  2. Stability of a Bubble Expanding and Translating Through an Inviscid Liquid

    Indian Academy of Sciences (India)

    Dinesh Khattar; B B Chakraborty

    2002-05-01

    A bubble expands adiabatically and translates in an incompressible and inviscid liquid. We investigate the number of equilibrium points of the bubble and the nature of stability of the bubble at these points. We find that there is only one equilibrium point and the bubble is stable there.

  3. Jet flows from bubbles during subcooled pool boiling on micro wires

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; D. M. Christopher; PENG Xiaofeng; WANG Buxuan

    2005-01-01

    An experimental investigation was conducted on subcooled nucleate boiling on ultra-small wires having diameters of 25―100 m. High-speed photography and laser PIV (Particle Image Velocimetry) technology were used to visually observe the bubble dynamics. For highly subcooled boiling at moderate heat fluxes, the bubbles generally remained attached to the micro heating wires and bubble-top jet flows were clearly observed. Smaller bubbles usually had stronger bubble-top jet flows, while larger bubbles seemed to produce multi-jet flows. The structures of the bubble-top jet flows, as well as multi-jet flows, were proposed from the experimental observation. A model was developed to describe jet flow phenomena from bubbles on micro wires. Numerical simulations for bubbles having diameter of 0.03 and 0.06 mm showed that both the bubble-top and multi-jet flows were induced by a strong Marangoni effect due to high temperature gradients near the wire. The predicted velocity magnitudes and flow structures agreed very well with experimental measurements. The bubble size relative to the wire is an important factor affecting the jet flow structure. For a 0.03 mm bubble on a 0.1 mm wire, only a bubble-top jet flow forms, while a complex multi-jet flow pattern forms around the bubble with a weak bubble-top jet and two side jet flows for a 0.06 mm bubble.

  4. Sponge Cake or Champagne? Bubbles, Magmatic Degassing and Volcanic Eruptions

    Science.gov (United States)

    Cashman, K.; Pioli, L.; Belien, I.; Wright, H.; Rust, A.

    2007-12-01

    Vesiculation is an unavoidable consequence of magma decompression; the extent to which bubbles travel with ascending magma or leave the system by separated or permeable flow will determine the nature of the ensuing eruption. Bubbles travel with the melt from which they exsolve if the rise time of bubbles through the melt (the 'drift velocity') is much less than the rise rate of the magma (sponge cake). This condition is most likely to be met in viscous melts (where bubble rise velocities are low) and in melts that experience rapid decompression (high ascent velocities). Under these conditions, bubble expansion within the melt continues until sufficient bubble expansion causes coalescence and the development of a permeable network. Typical pumice vesicularities of 70-80% and permeabilities of 10-12 m2 constrain this limit under conditions appropriate for subplinian to plinian eruptions (mass fluxes > 106 kg/s). Slower rise rates (and lower mass fluxes) that characterize effusive eruptions produce silicic lavas with a wider range of vesicularities. In general, permeability decreases with decreasing sample vesicularity as bubbles deform (as evidenced by anisotropy in permeability and electrical conductivity) and pore apertures diminish. Degassing efficiency (and resulting densification of magma within the conduit) under these conditions is determined by permeability and the time allowed for gas escape. Bubbles rise through the melt if the drift velocity exceeds the velocity of magma ascent (champagne). This condition is most easily met in volatile-rich, low viscosity (mafic) melts at low to moderate fluxes. At very low magma flux, magma eruption rate is determined by the extent to which magma is entrained and ejected by rising gases (strombolian eruptions); when bubbles are too small, or are rising too slowly, they may not break the surface at all, but instead may be concentrated in a near-surface layer (surface foam). As the magma flux increases, segregation of

  5. A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows

    CERN Document Server

    Kuntoro, Hadiyan Yusuf; Deendarlianto,

    2015-01-01

    Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...

  6. Use of optical probes to characterize bubble behavior in gas-solid fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Mainland, M.E.; Welty, J.R. (Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering)

    1995-02-01

    Optical probes are used to study gas-solid fluidized-bed hydrodynamics. The probes each consisting of a light source and photodetector separated by a gap are suitable for use at combustion-level temperatures. The methodology to process the signal for calculation of bubble properties such as bubble frequency, local bubble residence time, bubble velocity, pierced length, bubble size, and visible bubble flow is presented. The signal processing technique is independent of bed operating conditions. The probe signal processing methodology is validated by comparing calculated bubble properties based on the probe signal with properties observed on videotapes of a 2-D bed.

  7. The Milky Way Project: Leveraging Citizen Science and Machine Learning to Detect Interstellar Bubbles

    CERN Document Server

    Beaumont, Christopher; Williams, Jonathan; Kendrew, Sarah; Simpson, Robert

    2014-01-01

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to the mid plane, and display a stronger excess of Young Stellar Objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches -- particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machi...

  8. Numerical Simulation of Sub-cooled Cavitating Flow by Using Bubble Size Distribution

    Institute of Scientific and Technical Information of China (English)

    Yutaka ITO; Hideki WAKAMATSU; Takao NAGASAKI

    2003-01-01

    A new cavitating model by using bubble size distribution based on mass of bubbles is proposed. Liquid phase is treated with Eulerian framework as a mixture containing minute cavitating bubbles. Vapor phase consists of various sizes of minute vapor bubbles, which is distributed to classes based on their mass. The change of bubble number density for each class was solved by considering the change of bubble mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method the mass of bubbles is treated as an independent variable, in other word, a new coordinate, and dependant variables are solved in Eulerian framework for spatial coordinates and bubble-mass coordinate. The present method is applied to a cavitating flow in a convergent-divergent nozzle, and the two-phase flow with bubble size distribution and phase change was successfully predicted.

  9. Soap bubbles in analytical chemistry. Conductometric determination of sub-parts per million levels of sulfur dioxide with a soap bubble.

    Science.gov (United States)

    Kanyanee, Tinakorn; Borst, Walter L; Jakmunee, Jaroon; Grudpan, Kate; Li, Jianzhong; Dasgupta, Purnendu K

    2006-04-15

    Soap bubbles provide a fascinating tool that is little used analytically. With a very low liquid volume to surface area ratio, a soap bubble can potentially provide a very useful interface for preconcentration where mass transfer to an interfacial surface is important. Here we use an automated system to create bubbles of uniform size and film thickness. We utilize purified Triton-X 100, a nonionic surfactant, to make soap bubbles. We use such bubbles as a gas-sampling interface. Incorporating hydrogen peroxide into the bubble provides a system where electrical conductance increases as the bubble is exposed to low concentrations of sulfur dioxide gas. We theoretically derive the conductance of a hollow conducting spherical thin film with spherical cap electrodes. We measure the film thickness by incorporating a dye in the bubble making solution and laser transmission photometry and find that it agrees well with the geometrically computed thickness. With the conductance of the bubble-making soap solution being measured by conventional methods, we show that the measured values of the bubble conductance with known bubble and electrode dimensions closely correspond to the theoretically computed value. Finally, we demonstrate that sub-ppm levels of SO(2) can readily be detected by the conductivity change of a hydrogen peroxide-doped soap bubble, measured in situ, when the gas flows around the bubble.

  10. ANALYSIS OF PRICE BUBBLES ON THE CZECH REAL ESTATE MARKET

    Directory of Open Access Journals (Sweden)

    Gevorgyan Kristine

    2015-12-01

    Full Text Available This thesis deals with the issue of price bubbles on the Czech real estate market. The theoretical part explains the price bubble in terms of behavioural finance, and describes the relationship between monetary policy and asset prices from the perspective of the Austrian school and representatives of traditional economics. In the empirical part, it presents ways of identifying bubbles on the property market using relative indicators and econometric models. By means of econometric methods, this thesis analyses specific factors that influence housing prices in the Czech Republic. It puts a particular emphasis on the impact of interest rates on asset prices, because low inflation and expansionary monetary policy can create conditions for the formation of price bubbles.

  11. Nanoemulsions obtained via bubble bursting at a compound interface

    CERN Document Server

    Feng, Jie; Vigolo, Daniele; Arnaudov, Luben N; Stoyanov, Simeon D; Gurkov, Theodor D; Tsutsumanova, Gichka G; Stone, Howard A

    2013-01-01

    The bursting of bubbles at an air/liquid interface is a familiar occurrence important to foam stability, cell cultures in bioreactors and mass transfer between the sea and atmosphere. Here we document the hitherto unreported formation and dispersal into the water column of submicrometre oil droplets following bubble bursting at a compound air/oil/water-with-surfactant interface. We show that dispersal results from the detachment of an oil spray from the bottom of the bubble towards water during bubble collapse. We provide evidence that droplet size is selected by physicochemical interactions between oil molecules and the surfactants rather than by hydrodynamic effects. We illustrate the unrecognized role that this dispersal mechanism may play in the fate of the sea surface micro-layer and of pollutant spills by dispersing petroleum in the water column. Finally, our system provides an energy-efficient route, with potential upscalability and wide applicability, for applications in drug delivery, food production...

  12. Fermi bubble simulations: black hole feedback in the Milky Way

    CERN Document Server

    Ruszkowski, M; Zweibel, E

    2013-01-01

    The $Fermi$ gamma-ray telescope discovered a pair of bubbles at the Galactic center. These structures are spatially-correlated with the microwave emission detected by the WMAP and Planck satellites. These bubbles were likely inflated by a jet launched from the vicinity of a supermassive black hole in the Galactic center. Using MHD simulations, which self-consistently include interactions between cosmic rays and magnetic fields, we build models of the supersonic jet propagation, cosmic ray transport, and the magnetic field amplification within the $Fermi$ bubbles. Our key findings are that: (1) the synthetic $Fermi$ gamma-ray and WMAP microwave spectra based on our simulations are consistent with the observations, suggesting that a single population of cosmic ray leptons may simultaneously explain the emission across a range of photon energies; (2) the model fits the observed centrally-peaked microwave emission if a second, more recent, pair of jets embedded in the $Fermi$ bubbles is included in the model. Thi...

  13. Calibration of PICO Bubble Chamber Dark Matter Detectors

    Science.gov (United States)

    Jin, Miaotianzi; PICO Collaboration

    2016-03-01

    The PICO Collaboration builds bubble chambers for the direct detection of WIMP dark matter. I will present the suite of calibration experiments performed to measure the sensitivity of these chambers to nuclear recoils (the expected WIMP signal) and to gamma rays (a common background to the WIMP signal). These calibrations include measurements with a 10-ml C3F8 bubble chamber at Northwestern University and with a 30-ml C3F8 bubble chamber deployed in the University of Montreal's tandem Van de Graaf facility, giving the bubble chamber response to a variety of gamma rays, broad-spectrum neutron sources, and mono-energetic low energy neutrons. I will compare our measured sensitivities to those predicted by a simple thermodynamic model and will show how the results impact our ability to detect dark matter, with a focus on light WIMP searches. Supported by DOE Grant: DE-SC0012161.

  14. Hydrogen bubble flotation of fine minerals containing calcium

    Institute of Scientific and Technical Information of China (English)

    Sun Wei; Ma Liang; Hu Yuehua; Dong Yanhong; Zhang Gang

    2011-01-01

    One characteristic of electro-flotation is the presence of micro bubbles that are well known for improving the flotation performance of fine particles.An electro-flotation method was studied with fine scheelite and fluorite particles sized into three different fractions.Experiments were performed in a modified Hallimond tube.We investigated the effects of gas holdup,particle size,and different mesh electrode apertures on mineral recovery.Flotation results show that two size fractions show increased flotation recovery as the gas holdup increases.For the sized scheelite and fluorite,the flotation effect is diverse for different sizes of the cathode aperture.Pictures of the bubbles taken by a high speed CCD were used to determine the hydrogen bubble size distribution generated as a function of collector,current density,and electrode size.The diameters of the hydrogen bubbles ranged from 12 to 117 μm in alkaline conditions.

  15. Dynamics of electrons in quantum Hall bubble phases

    Science.gov (United States)

    Côté, R.; Doiron, C. B.; Bourassa, J.; Fertig, H. A.

    2003-10-01

    In Landau levels N>1, the ground state of the two-dimensional electron gas (2DEG) in a perpendicular magnetic field evolves from a Wigner crystal for small filling ν* of the partially filled Landau level, into a succession of bubble states with increasing number of guiding centers per bubble as ν* increases, to a modulated stripe state near ν*=0.5. In this work, we show that these first-order phase transitions between the bubble states lead to measurable discontinuities in several physical quantities such as the density of states and the magnetization of the 2DEG. We discuss in detail the behavior of the collective excitations of the bubble states and show that their spectra have higher-energy modes besides the pinned phonon mode. The frequencies of these modes, at small wave vector k, have a discontinuous evolution as a function of filling factor that should be measurable in, for example, microwave absorption experiments.

  16. Modeling the dynamics of single-bubble sonoluminescence

    CERN Document Server

    Vignoli, Lucas L; Thomé, Roberto C A; Nogueira, A L M A; Paschoal, Ricardo C; Rodrigues, Hilario

    2014-01-01

    Sonoluminescence (SL) is the phenomenon in which acoustic energy is (partially) transformed into light. It may occur by means of many or just one bubble of gas inside a liquid medium, giving rise to the terms multi-bubble- and single-bubble sonoluminescence (MBSL and SBSL). In the last years some models have been proposed to explain this phenomenon, but there is still no complete theory for the light emission mechanism (especially in the case of SBSL). In this work, we will not address this more complicated particular issue, but only present a simple model describing the dynamical behaviour of the sonoluminescent bubble, in the SBSL case. Using simple numerical techniques within the software Matlab, we discuss solutions considering various possibilities for some of the parameters involved: liquid compressibility, superficial tension, viscosity, and type of gas. The model may be used as an introductory study of sonoluminescence in physics courses at undergraduate or graduate levels, as well as a quite clarifyi...

  17. Coalescence In Draining Foams Made of Very Small Bubbles

    Science.gov (United States)

    Briceño-Ahumada, Zenaida; Drenckhan, Wiebke; Langevin, Dominique

    2016-03-01

    We studied the stability of foams containing small bubbles (radius ≲ 50 μ m ). The foams are made from aqueous surfactant solutions containing various amounts of glycerol. The foams start breaking at their top, when the liquid volume fraction has decreased sufficiently during liquid drainage. Unlike in foams with larger bubbles, the liquid fraction at which the foam destabilizes is surprisingly high. In order to interpret this observation we propose that film rupture occurs during reorganization events (T 1 ) induced by bubble coarsening, which is particularly rapid in the case of small bubbles. New films are therefore formed rapidly and if their thickness is too small, they cannot be sufficiently covered by surfactant and they break. Using literature data for the duration of T 1 events and the thickness of the new films, we show that this mechanism is consistent with the behavior of the foams studied.

  18. The Growth of Bubbles in Cosmological Phase Transitions

    CERN Document Server

    Ignatius, J; Kurki-Suonio, H; Laine, Mikko

    1994-01-01

    We study how bubbles grow after the initial nucleation event in generic first-order cosmological phase transitions characterised by the values of latent heat, interface tension and correlation length, and driven by a scalar order parameter $\\phi$. Equations coupling $\\phi$ and the fluid variables $v$ and $T$ and depending on a dissipative constant $\\Gamma$ are derived and solved numerically in the 1+1 dimensional case starting from a slightly deformed critical bubble configuration. Parameters corresponding to QCD and electroweak phase transitions are chosen and the whole history of the bubble with formation of combustion and shock fronts is computed as a function of $\\Gamma$. Both deflagrations and detonations can appear depending on the values of the parameters. Reheating due to collisions of bubbles is also computed.

  19. Investigating short-time dynamics of spreading bubbles

    Science.gov (United States)

    Laurent, Matthieu; Menesses, Mark; Bird, James

    2016-11-01

    When a bubble comes into contact with a partially wetting surface, the film between the bubble and solid surface rapidly dewets to minimize the free energy of the system. The dynamics of this dewetting is assumed to be dominated by capillary and viscous effects. Yet, when drops rather than bubbles spread, the short-time dynamics are dominated by a balance of capillarity and inertia. Here we revisit spreading bubbles to investigate whether the short-time dynamics is better captured by a viscous or inertial scaling. Counter-intuitively, neither viscous nor inertial effects alone can account for short-time spreading dynamics. Through an experimental approach, we develop a dimensionless scaling relation - incorporating both viscosity and inertia - that successfully collapses the data. Chaire X-ESPCI-Saint Gobain.

  20. The Neutrino Bubble Instability: A Mechanism for Generating Pulsar Kicks

    CERN Document Server

    Socrates, A; Hungerford, A; Fryer, C L; Socrates, Aristotle; Blaes, Omer; Hungerford, Aimee; Fryer, Chris L.

    2004-01-01

    An explanation for the large random velocities of pulsars is presented. Like many other models, we propose that the momentum imparted to the star is given at birth. The ultimate source of energy is provided by the intense optically thick neutrino flux that is responsible for radiating the proto-neutron star's gravitational binding energy during the Kelvin-Helmholtz phase. The central feature of the kick mechanism is a radiative-driven magnetoacoustic instability, which we refer to as ``neutrino bubbles.'' Identical in nature to the photon bubble instability, the neutrino bubble instability requires the presence of an equilibrium radiative flux as well as a coherent steady background magnetic field. Over regions of large magnetic flux densities, the neutrino bubble instability is allowed to grow on dynamical timescales ~ 1ms, potentially leading to large luminosity enhancements and density fluctuations. Local luminosity enhancements, which preferentially occur over regions of strong magnetic field, lead to a n...

  1. 'Reading' bubble chamber pictures with the Spiral Reader eyes.

    CERN Multimedia

    1974-01-01

    Interactive techniques were widely used to study bubble chamber pictures. After a visual scanning of the pictures and a vertex measurement on a Shivamatic, the Spiral Reader allowed the track polar coordinates to be easily measured. See photo 7408137X

  2. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    Science.gov (United States)

    Hu, Mao-Bin; Dang, Sai-Chao; Ma, Qiang; Xia, Wei-Dong

    2015-07-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current Cms, air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005 and 11034010).

  3. Dynamics of Bubbles Rising in Finite and Infinite Media

    Energy Technology Data Exchange (ETDEWEB)

    C.C. Maneri; P.F. Vassallo

    2000-10-27

    The dynamic behavior of single bubbles rising in quiescent liquid Suva (R134a) in a duct has been examined through the use of a high speed video system. Size, shape and velocity measurements obtained with the video system reveal a wide variety of characteristics for the bubbles as they rise in both finite and infinite media. This data, coupled with previously published data for other working fluids, has been used to assess and extend a rise velocity model given by Fan and Tsuchiya. As a result of this assessment, a new rise velocity model has been developed which maintains the physically consistent characteristics of the surface tension in the distorted bubbly regime. In addition, the model is unique in that it covers the entire range of bubble sizes contained in the spherical, distorted and planar slug regimes.

  4. Evolution of the plasma bubble in a narrow gap.

    Science.gov (United States)

    Chu, Hong-Yu; Lee, Hung-Ken

    2011-11-25

    We investigate the evolution of the plasma bubble in a narrow gap. According to the morphological changes, we further show that there are three phases during the evolution for spherical fluctuating, radial fingering, and dense branching plasma bubbles, which are similar to the radial fingering pattern in a Hele-Shaw cell. The dependences of the wavelength of the fingering boundary are experimentally discussed. The dense branching plasma bubble is found with a fractal dimension of D(f)=1.74. The reduced surface tension pressure from the local heatings due to the filamentary discharges is suspected of being responsible for the growth of the radial fingering and the dense branching plasma bubbles.

  5. Direct observation of bubble-assisted electroluminescence in liquid xenon

    CERN Document Server

    Erdal, E; Chepel, V; Rappaport, M L; Vartsky, D; Breskin, A

    2015-01-01

    Bubble formation in liquid xenon underneath a Thick Gaseous Electron Multiplier (THGEM) electrode immersed in liquid xenon was observed with a CCD camera. With voltage across the THGEM, the appearance of bubbles was correlated with that of electroluminescence signals induced by ionization electrons from alpha-particle tracks. This confirms recent indirect evidence that the observed photons are due to electroluminescence within a xenon vapor layer trapped under the electrode. The bubbles seem to emerge spontaneously due to heat flow from 300K into the liquid, or in a controlled manner, by locally boiling the liquid with resistive wires. Controlled bubble formation resulted in energy resolution of {\\sigma}/E~7.5% for ~6,000 ionization electrons. The phenomenon could pave ways towards the conception of large-volume 'local dual-phase' noble-liquid TPCs.

  6. Enhanced lifetime of methane bubble streams within the deep ocean

    Science.gov (United States)

    Rehder, Gregor; Brewer, Peter W.; Peltzer, Edward T.; Friederich, Gernot

    2002-08-01

    We have made direct comparisons of the dissolution and rise rates of methane and argon bubbles experimentally released in the ocean at depths from 440 to 830 m. The bubbles were injected from the ROV Ventana into a box open at the top and the bottom, and imaged by HDTV while in free motion. The vehicle was piloted upwards at the rise rate of the bubbles. Methane and argon show closely similar behavior at depths above the methane hydrate stability field. Below that boundary (~520 m) markedly enhanced methane bubble lifetimes are observed, and are attributed to the formation of a hydrate skin. This effect greatly increases the ease with which methane gas released at depth, either by natural or industrial events, can penetrate the shallow ocean layers.

  7. Multiple steadily translating bubbles in a Hele-Shaw channel.

    Science.gov (United States)

    Green, Christopher C; Vasconcelos, Giovani L

    2014-03-01

    Analytical solutions are constructed for an assembly of any finite number of bubbles in steady motion in a Hele-Shaw channel. The solutions are given in the form of a conformal mapping from a bounded multiply connected circular domain to the flow region exterior to the bubbles. The mapping is written as the sum of two analytic functions-corresponding to the complex potentials in the laboratory and co-moving frames-that map the circular domain onto respective degenerate polygonal domains. These functions are obtained using the generalized Schwarz-Christoffel formula for multiply connected domains in terms of the Schottky-Klein prime function. Our solutions are very general in that no symmetry assumption concerning the geometrical disposition of the bubbles is made. Several examples for various bubble configurations are discussed.

  8. Multiple steadily translating bubbles in a Hele-Shaw channel

    CERN Document Server

    Green, Christopher C

    2013-01-01

    Analytical solutions are constructed for an assembly of any finite number of bubbles in steady motion in a Hele-Shaw channel. The solutions are given in the form of a conformal mapping from a bounded multiply connected circular domain to the flow region exterior to the bubbles. The mapping is written as the sum of two analytic functions---corresponding to the complex potentials in the laboratory and co-moving frames---that map the circular domain onto respective degenerate polygonal domains. These functions are obtained using the generalised Schwarz-Christoffel formula for multiply connected domains in terms of the Schottky-Klein prime function. Our solutions are very general in that no symmetry assumption concerning the geometrical disposition of the bubbles is made. Several examples for various bubble configurations are discussed.

  9. Collision of counterpropagating laser-excited wake bubbles.

    Science.gov (United States)

    Deng, Z G; Yang, L; Zhou, C T; Yu, M Y; Ying, H P; Wang, X G

    2014-06-01

    The collision of wake bubbles behind two counterpropagating laser pulses in rarefied plasma is investigated using particle-in-cell simulation. Special attention is paid to the highly nonlinear dynamics of the electrons in the interaction region. It is found that, as the two bubbles approach each other and collide, the electrons in the interaction region first oscillate in a periodic fashion, forming a quasistationary dense electron density ripple with fairly regular spatial structure. At longer times, the electron motion becomes chaotic, and the density grating is gradually smeared. The electrons escape in the transverse direction, and eventually the two bubbles merge to form a single one. The transition of the electron motion from regular to chaotic is confirmed by analytical modeling using test electrons moving in counterpropagating planar electromagnetic waves. The findings shed light on the dynamics of wake-bubble collisions and the complex behavior induced by multiple laser pulses in plasmas.

  10. Detection of ultrasound contrast agent microbubble with constructed bubble wavelet

    Institute of Scientific and Technical Information of China (English)

    LI Bin; WAN Mingxi

    2005-01-01

    To detect the echo irradiated by microbubble out from the signal reflected by surrounding tissues, a mother wavelet named bubble wavelet according to the modified Herring oscillation equation was constructed and then applied to the original ultrasound radio frequency signal to perform the wavelet transformation. The transformed wavelet coefficients were extracted by selected threshold values to differentiate the echo of microbubble from signal of surround tissues. The effect of bubble wavelet was compared with other three commonly used mother wavelets by computer simulation and phantom experiment. The results demonstrated that there existed a highly correlation between the bubble wavelet and the experimental echo irradiated by microbubble because bubble wavelet had represented the dynamics of microbubble in advance. Furthermore, the wavelet transform results showed a better signal-noise-ratio and a sharper contrast between the echo of microbubble and the signal of surrounding tissues. Finally,constructing an overall mother wavelet library can improve the applicability and robustness of this detection method.

  11. Dynamics of a bubble rising in gravitational field

    Directory of Open Access Journals (Sweden)

    De Bernardis Enrico

    2016-03-01

    Full Text Available The rising motion in free space of a pulsating spherical bubble of gas and vapour driven by the gravitational force, in an isochoric, inviscid liquid is investigated. The liquid is at rest at the initial time, so that the subsequent flow is irrotational. For this reason, the velocity field due to the bubble motion is described by means of a potential, which is represented through an expansion based on Legendre polynomials. A system of two coupled, ordinary and nonlinear differential equations is derived for the vertical position of the bubble center of mass and for its radius. This latter equation is a modified form of the Rayleigh-Plesset equation, including a term proportional to the kinetic energy associated to the translational motion of the bubble.

  12. Probing nuclear bubble structure via neutron star asteroseismology

    CERN Document Server

    Sotani, Hajime; Oyamatsu, Kazuhiro

    2016-01-01

    We consider torsional oscillations that are trapped in a layer of spherical-hole (bubble) nuclear structure, which is expected to occur in the deepest region of the inner crust of a neutron star. Because this layer intervenes between the phase of slab nuclei and the outer core of uniform nuclear matter, torsional oscillations in the bubble phase can be excited separately from usual crustal torsional oscillations. We find from eigenmode analyses for various models of the equation of state of uniform nuclear matter that the fundamental frequencies of such oscillations are almost independent of the incompressibility of symmetric nuclear matter, but strongly depend on the slope parameter of the nuclear symmetry energy $L$. Although the frequencies are also sensitive to the entrainment effect, i.e., what portion of nucleons outside bubbles contribute to the oscillations, by having such a portion fixed, we can successfully fit the calculated fundamental frequencies of torsional oscillations in the bubble phase insi...

  13. Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chiu

    2016-07-01

    Full Text Available We proposed heterodyne angle deviation interferometry (HADI for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR prism is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. In bubble measurement, we can count the number of bubbles passing through the cross section of the laser beam and measure the bubble size from the phase pulse signal.

  14. The Milky Way Project: Leveraging Citizen Science and Machine Learning to Detect Interstellar Bubbles

    OpenAIRE

    Beaumont, Christopher N.; Goodman, Alyssa A.; Kendrew, Sarah; Williams, Jonathan P.; Simpson, Robert

    2014-01-01

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find ...

  15. The Real—gas Effect in Single—bubble Sonoluminescence

    Institute of Scientific and Technical Information of China (English)

    LiYUAN; WeiWEI; 等

    1999-01-01

    The full set of hydrodynamic equations governing the oscilltion of a bubble is solved nomerically by using a modified equation of state with ionization.We show that the hydro-thermal process in the form of compression waves and low-level ionization are dominant inside a sonoluminescing bubble for a wide range of driving pressure.The resulting thermal bremsstrahlung radiation has pulse heights and widths that agree with experimental data for cases considered in this paper.

  16. The bursting of housing bubble as jamming phase transition

    Science.gov (United States)

    Nishinari, Katsuhiro; Iwamura, Mitsuru; Umeno Saito, Yukiko; Watanabe, Tsutomu

    2010-04-01

    In this paper, we have proposed a bubble burst model by focusing on transaction volume incorporating a traffic model that represents spontaneous traffic jam. We find that the phenomenon of bubble burst shares many similar properties with traffic jam formation on highway by comparing data taken from the U.S. housing market. Our result suggests that transaction volume could be a driving force of bursting phenomenon.

  17. Assessing the Potential for Nitrogen Bubble Formation in Diving Odontocetes

    Science.gov (United States)

    2007-01-01

    first compartment within which exchange occurs is the blood pool, and assuming that cetacean hematological factors do not inhibit bubble formation...relationship between “bubble-like” cavitary lesions reported in the portal system of some stranding cetaceans , and the accessibility of these vessels...Dorian Houser served as the PI on project and was responsible for facilities coordination, animal welfare issues, ultrasound inspections and blood

  18. Quantum decoherence of subcritical bubble in electroweak phase transition

    CERN Document Server

    Shiromizu, T

    1995-01-01

    In a weakly first order phase transition the typical scale of a subcritical bubble calculated in our previous papers turned out to be too small. At this scale quantum fluctuations may dominate and our previous classical result may be altered. So we examine the critical size of a subcritical bubble where quantum-to-classical transition occurs through quantum decoherence. We show that this critical size is almost equal to the typical scale which we previously obtained.

  19. Luminescence from Tube-Arrest Bubbles in Pure Glycerin

    Institute of Scientific and Technical Information of China (English)

    陈岐岱; 王龙

    2004-01-01

    Single transient cavitation bubble with luminescence has been generated in pure glycerin by using the ‘tube arrest'method. The analyses of high-speed photograph and light emission data suggest that the light emission would be a single bubble sonoluminescence. The luminescence pulse width is observed to wry from sub-nanosecond to about 30 ns. The width and intensity of luminescence pulses increases with the height of the liquid column height and decreases with the liquid temperature.

  20. Global Solutions to Bubble Growth in Porous Media

    OpenAIRE

    Karp, Lavi

    2010-01-01

    We study a moving boundary problem modeling an injected fluid into another viscous fluid. The viscous fluid is withdrawn at infinity and governed by Darcy's law. We present solutions to the free boundary problem in terms of time-derivative of a generalized Newtonian potentials of the characteristic function of the bubble. This enables us to show that the bubble occupies the entire space as the time tends to infinity if and only if the internal generalized Newtonian potential of the initial bu...