WorldWideScience

Sample records for bubbles mimic disc

  1. Thermal stability of bubble domains in ferromagnetic discs

    Energy Technology Data Exchange (ETDEWEB)

    Hrkac, G [University of Sheffield, Engineering Materials, Mappin Street, Sheffield S1 3JD (United Kingdom) ; Bance, S [University of Sheffield, Engineering Materials, Mappin Street, Sheffield S1 3JD (United Kingdom) ; Goncharov, A [University of Sheffield, Engineering Materials, Mappin Street, Sheffield S1 3JD (United Kingdom) ; Schrefl, T [University of Sheffield, Engineering Materials, Mappin Street, Sheffield S1 3JD (United Kingdom) ; Suess, D [Vienna University of Technology, Wiedner Hauptstr. 8-10e, A-1040 Vienna (Austria)

    2007-05-07

    The transition and thermal stability of disc-shaped ferromagnetic particles at the temperature of T = 300 K with a uniaxial anisotropy along the symmetry axis from a bi-domain to a single domain state has been studied. The nudge elastic band method was used to map the energy landscape and to calculate the energy barrier between the transition states. For single FePt disc-shaped particles with perpendicular anisotropy three transition configurations have been found: single domain, stripe- and stable bubble domains at zero applied field. The single domain configuration along the positive anisotropy axis is reached by an annihilation process of the domain wall and the all-down state by a complex domain expansion process. Magnetization configurations in two interacting discs show an increase in thermal stability compared with single disc systems, which is attributed to the interacting magnetostatic energy between the two particles.

  2. Thermal stability of bubble domains in ferromagnetic discs

    International Nuclear Information System (INIS)

    Hrkac, G; Bance, S; Goncharov, A; Schrefl, T; Suess, D

    2007-01-01

    The transition and thermal stability of disc-shaped ferromagnetic particles at the temperature of T = 300 K with a uniaxial anisotropy along the symmetry axis from a bi-domain to a single domain state has been studied. The nudge elastic band method was used to map the energy landscape and to calculate the energy barrier between the transition states. For single FePt disc-shaped particles with perpendicular anisotropy three transition configurations have been found: single domain, stripe- and stable bubble domains at zero applied field. The single domain configuration along the positive anisotropy axis is reached by an annihilation process of the domain wall and the all-down state by a complex domain expansion process. Magnetization configurations in two interacting discs show an increase in thermal stability compared with single disc systems, which is attributed to the interacting magnetostatic energy between the two particles

  3. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  4. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  5. Visualization of airflow growing soap bubbles

    Science.gov (United States)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  6. Magnetic-bubble devices

    International Nuclear Information System (INIS)

    Fairholme, R.J.

    1978-01-01

    Magnetic bubbles were first described only ten years ago when research workers were discussing orthoferrites containing μm diameter bubbles. However, problems of material fabrication limit crystals to a few mm across which severely curtailed device development. Since then materials have changed and rare-earth-iron garnet films can be grown up 3 inches in diameter with bubble diameters down to sizes below 1 μm. The first commercial products have device capacities in the range 64 000 to 100 000 bits with bubble diameters between 4 and 6 μm. Chip capacities of 1 Mbit are presently under development in the laboratory, as are new techniques to use submicrometre bubbles. The operation and fabrication of a bubble device is described using the serial loop devices currently being manufactured at Plessey as models. Chip organization is one important variable which directly affects the access time. A range of access times and capacities is available which offers a wide range of market opportunities, ranging from consumer products to fixed head disc replacements. some of the application areas are described. (author)

  7. Radiofrequency detection by bubble dosemeter technology

    International Nuclear Information System (INIS)

    Olsen, R.G.

    1990-01-01

    In an initial attempt to utilise solid state dosimetric technology for non-ionizing radiation, planar bubble type detectors were irradiated with microwave energy at 2.38 GHz. Individual devices were produced as thin discs (8 cm diam. x 0.6 cm) rather than in the normal test-tube configuration. Both aqueous and non-aqueous-based devices were exposed to plane-wave irradiation inside a microwave anechoic chamber at power densities ranging from 40 to 80 mW.cm -2 . Specific absorption rate (SAR) in the disc shaped devices was thermometrically determined with the aid of a non-perturbing temperature probe and was approximately 0.3 (W.kg -1 )(mW.cm -2 ). Results showed the irradiation-induced bubble response to be relatively uniform in both types of devices, but the sensitivity was lower than that needed in a practical microwave dosemeter. We believe that improved sensitivity will be obtained by adding materials with a high microwave absorption cross section. (author)

  8. M6-C artificial disc placement.

    Science.gov (United States)

    Coric, Domagoj; Parish, John; Boltes, Margaret O

    2017-01-01

    There has been a steady evolution of cervical total disc replacement (TDR) devices over the last decade resulting in surgical technique that closely mimics anterior cervical discectomy and fusion as well as disc design that emphasizes quality of motion. The M6-C TDR device is a modern-generation artificial disc composed of titanium endplates with tri-keel fixation as well as a polyethylene weave with a polyurethane core. Although not yet approved by the FDA, M6-C has finished a pilot and pivotal US Investigational Device Exemption (IDE) study. The authors present the surgical technique for implantation of a 2-level M6-C cervical TDR device. The video can be found here: https://youtu.be/rFEAqINLRCo .

  9. BioMimic fabrication of electrospun nanofibers with high-throughput

    International Nuclear Information System (INIS)

    He Jihuan; Liu Yong; Xu Lan; Yu Jianyong; Sun Gang

    2008-01-01

    Spider-spun fiber is of extraordinary strength and toughness comparable to those of electrospun fiber, the later needs a very high voltage (from several thousands voltage to several ten thousands voltages) applied to water-soluble protein 'soup' that was produced by a spider, furthermore, its mechanical strength dramatically decreases comparable to spider silk. A possible mechanism in spider-spinning process is given, the distinct character in spider-spinning is that its spinneret consists of millions of nano scale tubes, and a bubble can be produced at the apex of each nano-tube. The surface tension of each bubble is extremely small such that it can be spun into nanofibers with an awfully small force, either by the spider's body weight or tension created by the rear legs. We mimic the spider-spinning in electrospinning using an aerated solution, which leads to various small bubbles on surface with very small surface tension, as a result the bubble can be easily electrospun into nanofibers with low applied voltage. This fabrication process possesses features of high productivity, versatility, in addition, the minimum diameter of nanofibers produced by this process can reach as small as 50 nm

  10. Bubble growth in a narrow horizontal space

    International Nuclear Information System (INIS)

    Stutz, Benoit; Goulet, Remi; Passos, Julio Cesar

    2009-01-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  11. Bubble growth in a narrow horizontal space

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Benoit; Goulet, Remi [CETHIL, UMR5008, CNRS, INSA-Lyon, Universite Lyon1 (France); Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LABSOLAR

    2009-07-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  12. Intensely oscillating cavitation bubble in microfluidics

    International Nuclear Information System (INIS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-01-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range. (paper)

  13. Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators

    Science.gov (United States)

    Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.

    2017-08-01

    A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.

  14. SIMULTANEOUS DISC HERNIATION IN PATIENTS WITH MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    Kalina V. Drenska

    2013-04-01

    Full Text Available Background: Multiple sclerosis (MS is a chronic autoimmune, inflammatory demyelinating disease of the central nervous system. Commonly, MS patients present with accompanying degenerative vertebral disc diseases. Simultaneous disc herniations situated in the cervical or lumbosacral spine can mimic the clinical symptoms of MS and worsen patients’ quality of life.Objective: to investigate the incidence rate and clinical impact of accompanying disc herniations in patients with MS.Material and methods: Our study covered 330 patients (220 females and 110 males, mean age 40.5±12.4 years with clinically definite MS, according to McDonald’s criteria. Comprehensive neurological examinations, EDSS (Expanded Disability Status Scale assessments, and MRI neuroimaging were carried out. Statistical data processing was performed by using the method of variation analysis.Results: Relapsing-remitting MS (RRMS was diagnosed in 280 patients while 50 patients presented with secondary progressive MS (SPMS. Disc herniation was found in 64 (19.4% of our patients. Cervical disc pathology was detected in 38 patients (11.5% of the cases and lumbosacral - in 26 (7.9% of the cases. EDSS scores ranged from 2.5 to 5.5. EDSS evaluation showed statistically significantly worse scores in MS patients with disc herniation comorbidity (p<0, 05.Conclusion: Our own data confirm the assumption that MS patients often present with accompanying degenerative disc pathology. We suggest that comorbidity of disc herniation and MS exert an additional unfavorable effect on patient’s disability and individual quality of life.

  15. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    Science.gov (United States)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  16. Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface

    KAUST Repository

    Li, Erqiang

    2015-09-07

    When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large enough to compress the air. Herein we use high-speed interferometry, with 200 ns time-resolution, to directly observe the thickness evolution of the air layer during the entire bubble entrapment process. The initial disc radius and thickness shows excellent agreement with available theoretical models, based on adiabatic compression. For the largest impact velocities the air is compressed by as much as a factor of 14. Immediately following the contact, the air disc shows rapid vertical expansion. The radial speed of the surface minima just before contact, can reach 50 times the impact velocity of the drop.

  17. Bicelles and Other Membrane Mimics: Comparison of Structure, Properties, and Dynamics from MD Simulations

    DEFF Research Database (Denmark)

    Vestergaard, Mikkel; Kraft, Johan Frederik; Vosegaard, Thomas

    2015-01-01

    present molecular dynamics simulations to elucidate structural and dynamic properties of small bicelles and compare them to a large alignable bicelle, a small nanodisc, and a lipid bilayer. Properties such as lipid packing and properties related to embedding both an α-helical peptide and a transmembrane...... protein are investigated. The small bicelles are found to be very dynamic and mainly assume a prolate shape substantiating that small bicelles cannot be regarded as well-defined disclike structures. However, addition of a peptide results in an increased tendency to form disc-shaped bicelles. The small......The increased interest in studying membrane proteins has led to the development of new membrane mimics such as bicelles and nanodiscs. However, only limited knowledge is available of how these membrane mimics are affected by embedded proteins and how well they mimic a lipid bilayer. Herein, we...

  18. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain

    Science.gov (United States)

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration − the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval − the activL® Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL® Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL® Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL® Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. PMID:27274317

  19. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    Science.gov (United States)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  20. Size and density sorting of dust grains in SPH simulations of protoplanetary discs

    Science.gov (United States)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline

    2017-07-01

    The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.

  1. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain

    Directory of Open Access Journals (Sweden)

    Yue JJ

    2016-05-01

    Full Text Available James J Yue,1 Rolando Garcia Jr,2 Larry E Miller3 1Department of Orthopaedic Surgery, Yale School of Medicine, New Haven, CT, 2Orthopedic Care Center, Miami, FL, 3Miller Scientific Consulting, Inc., Asheville, NC, USA Abstract: Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration - the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval - the activL® Artificial Disc (Aesculap Implant Systems. Compared to previous-generation lumbar TDRs, the activL® Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL® Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL® Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. Keywords: activL® Artificial Disc, artificial disc, degenerative disc disease, discogenic, implant, lumbar, motion preservation, pain

  2. Lift the quilt in case of atrial fibrillation and disc prolapse

    OpenAIRE

    Bastovansky, Adam; Ziegler, Kathrin; Stöllberger, Claudia; Finsterer, Josef

    2012-01-01

    Adam Bastovansky,1 Kathrin Ziegler,2 Claudia Stöllberger,2 Josef Finsterer31Department of Radiology, 2Medical Department, Krankenanstalt Rudolfstiftung, Vienna, Austria; 3Danube University Krems, Krems, AustriaBackground: Peripheral embolism to the lower extremities may mimic disc prolapse with severe consequences.Case report:  A 71-year-old male with a history of chronic alcoholism developed low back pain radiating to both lower extremities in a nonradicular distribution an...

  3. Theory calculation of combination of 'embryo' bubble growing-up visible bubble in bubble chamber

    International Nuclear Information System (INIS)

    Ye Zipiao; Sheng Xiangdong; Dai Changjiang

    2004-01-01

    By aid of island combination theory of 'embryo' bubble, it is resolved well the question which 'embryo' bubble grows up a visible bubble in the bubble chamber. Through theory calculation it is shown that radius of the big' embryo' bubble combinated not only relates with work matter such as surface tension coefficient, saturation vapour pressure and boiling point of liquid, but also does absorbing quantity of heat and the numbers of 'embryo' bubbles combination. It is explained reasonably that the radius of bubbles in bubble chamber is different for the same energies of neutrons and proton. The track of neutron in bubble chamber is long and thin, and the track of proton in bubble chamber is wide and short. It is also explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. (author)

  4. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; M.P. Dudukovic; L.S. Fan

    2001-07-25

    This report summarizes the accomplishment made during the second year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. The technical difficulties that were encountered in implementing Computer Automated Radioactive Particle Tracking (CARPT) in high pressure SBCR have been successfully resolved. New strategies for data acquisition and calibration procedure have been implemented. These have been performed as a part of other projects supported by Industrial Consortium and DOE via contract DE-2295PC95051 which are executed in parallel with this grant. CARPT and Computed Tomography (CT) experiments have been performed using air-water-glass beads in 6 inch high pressure stainless steel slurry bubble column reactor at selected conditions. Data processing of this work is in progress. The overall gas holdup and the hydrodynamic parameters are measured by Laser Doppler Anemometry (LDA) in 2 inch slurry bubble column using Norpar 15 that mimic at room temperature the Fischer Tropsch wax at FT reaction conditions of high pressure and temperature. To improve the design and scale-up of bubble column, new correlations have been developed to predict the radial gas holdup and the time averaged axial liquid recirculation velocity profiles in bubble columns.

  5. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could...... and do form occasionally. Cutting across and comparing such varied asset types provides some rich insights into the nature of bubbles – and offers an inductive way to arrive at the typology of bubbles....

  6. Disc defect classification for optical disc drives

    NARCIS (Netherlands)

    Helvoirt, van J.; Leenknegt, G.A.L.; Steinbuch, M.; Goossens, H.J.

    2005-01-01

    Optical disc drives are subject to various disturbances and faults. A special type of fault is the so-called disc defect. In this paper we present an approach for disc defect classification. It is based on hierarchical clustering of measured signals that are affected by disc defects. The

  7. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  8. Anti-Bubbles

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  9. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  10. Vasculitis mimics.

    Science.gov (United States)

    Molloy, Eamonn S; Langford, Carol A

    2008-01-01

    There are many disorders that may closely resemble the clinical, radiologic and/or pathologic features of the primary vasculitides. In this review, we focus on recently described and under-recognized syndromes that may mimic vasculitis. Hereditary causes of large-artery aneurysms such as Marfan's syndrome have long been recognized; recent years have seen a greater understanding of the genetics of Marfan's and other such disorders, including Loeys-Dietz syndrome and Ehler-Danlos syndrome type IV. Under-recognized mimics of medium-vessel vasculitis include segmental arterial mediolysis and Grange syndrome. A large number of entities can mimic small-vessel vasculitis. Recent descriptions of antibodies to human neutrophil elastase have provided insight into the occurrence of antineutrophil cytoplasmic antibodies in cocaine-induced midline destructive lesions. The differential diagnosis of cerebral vasculitis can be particularly difficult. Reversible cerebral vasoconstriction syndromes represent an important class of entities that can readily mimic cerebral vasculitis but have a very different management approach and outcome. The diagnosis of vasculitis requires careful assessment of all available clinical, laboratory, radiologic and pathologic information, and consideration of many competing differential diagnoses. Awareness of noninflammatory mimics of vasculitis is essential to avoid unnecessary and potentially harmful treatment with immunosuppressive agents.

  11. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content

    Science.gov (United States)

    Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953

  12. Artificial Disc Replacement

    Science.gov (United States)

    ... Spondylolisthesis BLOG FIND A SPECIALIST Treatments Artificial Disc Replacement (ADR) Patient Education Committee Jamie Baisden The disc ... Disc An artificial disc (also called a disc replacement, disc prosthesis or spine arthroplasty device) is a ...

  13. An intervertebral disc whole organ culture system to investigate proinflammatory and degenerative disc disease condition.

    Science.gov (United States)

    Lang, Gernot; Liu, Yishan; Geries, Janna; Zhou, Zhiyu; Kubosch, David; Südkamp, Norbert; Richards, R Geoff; Alini, Mauro; Grad, Sibylle; Li, Zhen

    2018-04-01

    The aim of this study was to compare the effect of different disease initiators of degenerative disc disease (DDD) within an intervertebral disc (IVD) organ culture system and to understand the interplay between inflammation and degeneration in the early stage of DDD. Bovine caudal IVDs were cultured within a bioreactor for up to 11 days. Control group was cultured under physiological loading (0.02-0.2 MPa; 0.2 Hz; 2 hr/day) and high glucose (4.5 g/L) medium. Detrimental loading (0.32-0.5 MPa, 5 Hz; 2 hr/day) and low glucose (2 g/L) medium were applied to mimic the condition of abnormal mechanical stress and limited nutrition supply. Tumour necrosis factor alpha (TNF-α) was injected into the nucleus pulposus (100 ng per IVD) as a proinflammatory trigger. TNF-α combined with detrimental loading and low glucose medium up-regulated interleukin 1β (IL-1β), IL-6, and IL-8 gene expression in disc tissue, nitric oxide, and IL-8 release from IVD, which indicate a proinflammatory effect. The combined initiators up-regulated matrix metalloproteinase 1 gene expression, down-regulated gene expression of Type I collagen in annulus fibrosus and Type II collagen in nucleus pulposus, and reduced the cell viability. Furthermore, the combined initiators induced a degradative effect, as indicated by markedly higher glycosaminoglycan release into conditioned medium. The combination of detrimental dynamic loading, nutrient deficiency, and TNF-α intradiscal injection can synergistically simulate the proinflammatory and degenerative disease condition within DDD. This model will be of high interest to screen therapeutic agents in further preclinical studies for early intervention and treatment of DDD. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Influence of Bubble-Bubble interactions on the macroscale circulation patterns in a bubbling gas-solid fluidized bed

    NARCIS (Netherlands)

    Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    The macro-scale circulation patterns in the emulsion phase of a gas-solid fluidized bed in the bubbling regime have been studied with a 3D Discrete Bubble Model. It has been shown that bubble-bubble interactions strongly influence the extent of the solids circulation and the bubble size

  15. Freezing Bubbles

    Science.gov (United States)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  16. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  17. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  18. Lift the quilt in case of atrial fibrillation and disc prolapse.

    Science.gov (United States)

    Bastovansky, Adam; Ziegler, Kathrin; Stöllberger, Claudia; Finsterer, Josef

    2012-01-01

    Peripheral embolism to the lower extremities may mimic disc prolapse with severe consequences. A 71-year-old male with a history of chronic alcoholism developed low back pain radiating to both lower extremities in a nonradicular distribution and bilateral dysesthesias of the distal lower legs after lifting a heavy weight. Given that magnetic resonance imaging (MRI) of the lumbar spine showed disc herniation in L3/4 and L4/5, he was scheduled for laminectomy but was unable to undergo surgery due to thrombocytopenia. After transfer to another hospital, persistence of symptoms and signs, absent pulses on the distal lower legs, and rhabdomyolysis with temporary renal insufficiency, peripheral embolism with compartment syndrome was suspected. Magnetic resonance angiography revealed occlusion of the right superficial femoral artery and long high-grade stenosis of the left superficial and profound femoral arteries and distal arteries. He successfully underwent embolectomy and fasciotomy. If lumbar pain is not radicular, peripheral pulses are minimally palpable, and distal limbs are cold and show livid decolorization, peripheral embolism is much more likely than disc herniation, particularly if the patient's history is positive for atrial fibrillation. MRI of the lumbar spine must be interpreted in conjunction with clinical presentation.

  19. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  20. A model established of a 'Embryo' bubble growing-up some visible bubble in bubble chamber and its primary theory calculation

    International Nuclear Information System (INIS)

    Ye Zipiao; Sheng Xiangdong

    2006-01-01

    A model of a 'embryo' bubble growing up a visible bubble in the bubble chamber is established. Through primary theory calculation it is shown that the 'embryo' bubble is not only absorbing quantity of heat, but also some molecules get into the 'embryo' bubble from its environment. It is explained reasonably that the radius of bubbles in bubble camber is different for the same energies of neutrons and proton. The track of neutron in bubble camber is long and thin, and the track of proton in bubble camber is wide and short. It is explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. It is also explained reasonably that there are a little different radius of the bubbles of a track at the some region. It can be predicted theoretically that there should be big bubbles to burst when incident particles enter the bubble chamber at first. The sensitivity and the detective efficiency of bubble camber can be enhanced by choosing appropriate work matter. (authors)

  1. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    Science.gov (United States)

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  2. The Behavior of Micro Bubbles and Bubble Cluster in Ultrasound Field

    Science.gov (United States)

    Yoshizawa, Shin; Matsumoto, Yoichiro

    2001-11-01

    Ultrasound is widely applied in the clinical field today, such as ultrasound imaging, Extracorporeal Shock Wave Lithotripsy (ESWL) and so on. It is essential to take a real understanding of the dynamics of micro bubbles and bubble cluster in these applications. Thus we numerically simulate them in ultrasound field in this paper. In the numerical simulation, we consider the thermal behavior inside the bubble and the pressure wave phenomena in the bubble cluster in detail, namely, the evaporation and condensation of liquid at the bubble wall, heat transfer through the bubble wall, diffusion of non-condensable gas inside the bubble and the compressibility of liquid. Initial cluster radius is to 0.5[mm], bubble radius is 1.7[mm], void fraction is 0.1[ambient pressure is 101.3[kPa], temperature is 293[K] and the amplitude of ultrasound is 50[kPa]. We simulate bubble cluster in ultrasound field at various frequencies and we obtain the following conclusions. 1) The maximum pressure inside bubble cluster reaches 5[MPa] and this is much higher than that of a bubble. 2) Bubble cluster behaves like a rigid body acoustically when the frequency of ultrasound is much higher than its natural frequency.

  3. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    2016-01-01

    While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable....... However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive...... component in stock market valuation ratios, consistent with a rational bubble....

  4. Interaction of a bubble and a bubble cluster in an ultrasonic field

    International Nuclear Information System (INIS)

    Wang Cheng-Hui; Cheng Jian-Chun

    2013-01-01

    Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Post-irradiation examinations and high-temperature tests on undoped large-grain UO{sub 2} discs

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Yagnik, S. [EPRI, P.O. Box 10412, Palo Alto, CA 94303-0813 (United States); Turnbull, J.A. [Independent Consultant (United Kingdom)

    2015-07-15

    Within the Nuclear Fuel Industry Research (NFIR) programme, several fuel variants –in the form of thin circular discs – were irradiated in the Halden Boiling Water Reactor (HBWR) at burn-ups up to ∼100 GWd/t{sub HM}. The design of the fuel assembly was similar to that used in other HBWR programmes: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature differences within each fuel disc. One such variant was made of large-grain UO{sub 2} discs (3D grain size = ∼45 μm) which were subjected to three burn-ups: 42, 72 and 96 GWd/t{sub HM}. Detailed characterizations of some of these irradiated large-grain UO{sub 2} discs were performed in the CEA Cadarache LECA-STAR hot laboratory. The techniques used included electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). Comparisons were then carried out with more standard grain size UO{sub 2} discs irradiated under the same conditions. Examination of the high burn-up large-grain UO{sub 2} discs revealed the limited formation of a high burn-up structure (HBS) when compared with the standard-grain UO{sub 2} discs at similar burn-up. High burn-up discs were submitted to temperature transients up to 1200 °C in the heating test device called Merarg at a relatively low temperature ramp rate (0.2 °C/s). In addition to the total gas release during these tests, the release peaks throughout the temperature ramp were monitored. Tests at 1600 °C were also conducted on the 42 GWd/t{sub HM} discs. The fuels were then characterized with the same microanalysis techniques as those used before the tests, to investigate the effects of these tests on the fuel’s microstructure and on the fission gas behaviour. This paper outlines the high resistance of this fuel to gas precipitation at high temperature and to HBS formation at high burn-up. It also shows the similarity of the positions, within the grains, where HBS forms

  6. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  7. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    Science.gov (United States)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  8. Sticky bubbles

    NARCIS (Netherlands)

    Antoniuk, O.; Bos, van der A.; Driessen, T.W.; Es, van B.; Jeurissen, R.J.M.; Michler, D.; Reinten, H.; Schenker, M.; Snoeijer, J.H.; Srivastava, S.; Toschi, F.; Wijshoff, H.M.A.

    2011-01-01

    We discuss the physical forces that are required to remove an air bubble immersed in a liquid from a corner. This is relevant for inkjet printing technology, as the presence of air bubbles in the channels of a printhead perturbs the jetting of droplets. A simple strategy to remove the bubble is to

  9. Formation and evolution of bubbly screens in confined oscillating bubbly liquids

    Science.gov (United States)

    Shklyaev, Sergey; Straube, Arthur V.

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  10. Disc operational system

    International Nuclear Information System (INIS)

    Veretenov, V.Yu.; Volkov, A.I.; Gurevich, M.I.; Kozik, V.S.; Pod'yachev, E.I.; Shapiro, M.L.

    1974-01-01

    A disc operational system is proposed, which is based on the file structure and designed for use in a BESM-6 computer with the software system comprising a dispatcher DD-73 and a monitor 'Dubna'. The main distinguishing feature of the disc operational system is the decentralization of the file system. Each disc package is an independent file unaffected by the state of the other disc packages. The use of several disc packages is allowed. The above feature of the disc operational system makes it possible to simplify the language of communication with the system, to give the user the opportunity of controlling the file quite independently, and to simplify the maintenance of the discs by the computer personnel. One and the same disc can be simultaneously addressed by all problems in the processor (both mathematical and service). A single file, however, may be used in the recording mode by only one problem. The description presented is the instruction for users. It also describes special possibilities open to the system programmers [ru

  11. Characterization of Bubble Size Distributions within a Bubble Column

    OpenAIRE

    Shahrouz Mohagheghian; Brian R. Elbing

    2018-01-01

    The current study experimentally examines bubble size distribution (BSD) within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm), injection tube diameter (0.8–1.6 mm) and superficial gas velocity (1.4–55 mm/s) were varied. Large samples (up to 54,000 bubbles) of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs). The PDFs were used to...

  12. Rational equity bubbles

    OpenAIRE

    Zhou, Ge

    2012-01-01

    This paper discusses the existence of a bubble in the pricing of an asset that pays positive dividends. I show that rational bubbles can exist in a growing economy. The existence of bubbles depends on the relative magnitudes of risk aversion to consumption and to wealth. Furthermore, I examine how an exogenous shock in technology might trigger bubbles.

  13. Chaotic bubbling and nonstagnant foams.

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  14. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    Science.gov (United States)

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.

  16. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    Science.gov (United States)

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  17. Bubbling away

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-10-15

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented.

  18. Effect of bubble interface parameters on predicted of bubble departure diameter in a narrow channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Xie Tianzhou; Zhou Wenbin; Chen Bingde; Huang Yanping

    2014-01-01

    The predicted model on the bubble departure diameter in a narrow channel is built by analysis of forces acting on the bubble, and effects of bubble interface parameters such as the bubble inclination angle, upstream contact angle, downstream contact angle and bubble contact diameter on predicted bubble departure diameters in a narrow channel are analysed by comparing with the visual experimental data. Based on the above results, the bubble interface parameters as the input parameters used to obtain the bubble departure diameter in a narrow channel are assured, and the bubble departure diameters in a narrow channel are predicted by solving the force equation. The predicted bubble departure diameters are verified by the 58 bubble departure diameters obtained from the vertical and inclined visual experiment, and the predicted results agree with the experimental results. The different forces acting on the bubble are obtained and the effect of thermal parameters in this experiment on bubble departure diameters is analysed. (authors)

  19. Star-disc interaction in galactic nuclei: formation of a central stellar disc

    Science.gov (United States)

    Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil

    2018-05-01

    We perform high-resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous accretion disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc on to the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3 per cent of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7 per cent of the mass and 5 per cent of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.

  20. Bubble Collision in Curved Spacetime

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han

    2014-01-01

    We study vacuum bubble collisions in curved spacetime, in which vacuum bubbles were nucleated in the initial metastable vacuum state by quantum tunneling. The bubbles materialize randomly at different times and then start to grow. It is known that the percolation by true vacuum bubbles is not possible due to the exponential expansion of the space among the bubbles. In this paper, we consider two bubbles of the same size with a preferred axis and assume that two bubbles form very near each other to collide. The two bubbles have the same field value. When the bubbles collide, the collided region oscillates back-and-forth and then the collided region eventually decays and disappears. We discuss radiation and gravitational wave resulting from the collision of two bubbles

  1. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  2. Characterization of Bubble Size Distributions within a Bubble Column

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-02-01

    Full Text Available The current study experimentally examines bubble size distribution (BSD within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm, injection tube diameter (0.8–1.6 mm and superficial gas velocity (1.4–55 mm/s were varied. Large samples (up to 54,000 bubbles of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs. The PDFs were used to identify an alternative length scale termed the most frequent bubble size (dmf and defined as the peak in the PDF. This length scale as well as the traditional Sauter mean diameter were used to assess the sensitivity of the BSD to gas injection rate, injector tube diameter, injection tube angle and column diameter. The dmf was relatively insensitive to most variation, which indicates these bubbles are produced by the turbulent wakes. In addition, the current work examines higher order statistics (standard deviation, skewness and kurtosis and notes that there is evidence in support of using these statistics to quantify the influence of specific parameters on the flow-field as well as a potential indicator of regime transitions.

  3. Lift the quilt in case of atrial fibrillation and disc prolapse

    Directory of Open Access Journals (Sweden)

    Bastovansky A

    2012-06-01

    Full Text Available Adam Bastovansky,1 Kathrin Ziegler,2 Claudia Stöllberger,2 Josef Finsterer31Department of Radiology, 2Medical Department, Krankenanstalt Rudolfstiftung, Vienna, Austria; 3Danube University Krems, Krems, AustriaBackground: Peripheral embolism to the lower extremities may mimic disc prolapse with severe consequences.Case report:  A 71-year-old male with a history of chronic alcoholism developed low back pain radiating to both lower extremities in a nonradicular distribution and bilateral dysesthesias of the distal lower legs after lifting a heavy weight. Given that magnetic resonance imaging (MRI of the lumbar spine showed disc herniation in L3/4 and L4/5, he was scheduled for laminectomy but was unable to undergo surgery due to thrombocytopenia. After transfer to another hospital, persistence of symptoms and signs, absent pulses on the distal lower legs, and rhabdomyolysis with temporary renal insufficiency, peripheral embolism with compartment syndrome was suspected. Magnetic resonance angiography revealed occlusion of the right superficial femoral artery and long high-grade stenosis of the left superficial and profound femoral arteries and distal arteries. He successfully underwent embolectomy and fasciotomy.Conclusions: If lumbar pain is not radicular, peripheral pulses are minimally palpable, and distal limbs are cold and show livid decolorization, peripheral embolism is much more likely than disc herniation, particularly if the patient's history is positive for atrial fibrillation. MRI of the lumbar spine must be interpreted in conjunction with clinical presentation.Keywords: embolism, compartment syndrome, neurosurgery, embolectomy, fasciotomy, rhabdomyolysis

  4. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to...

  5. Bubbling away

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented

  6. MR imaging findings of a sequestered disc in the lumbar spine: a comparison with an extruded disc

    International Nuclear Information System (INIS)

    Sim, Su Youn; Park, Ji Seon; Ryu, Kyung Nam; Jin, Wook

    2007-01-01

    To compare the MR findings of a sequestered disc with an extruded disc. MR images of 28 patients with a sequestered disc and 18 patients with an extruded disc were retrospectively reviewed. Patients with sequestered discs were divided into two groups whether definite separation from the parent disc was or was not seen. In the latter group (definite separation not seen) and the extruded disc group of patients, the signal intensities of the herniated discs were compared with the signal intensities of the parent discs and were evaluated on T1-and T2-weighted images. We also assessed the presence of a notch within the herniated disc. In the sequestered disc group of patients (28 discs), only 5 discs (18%) showed obvious separation from the parent disc. Among the remaining 23 discs with indefinite separation, the notch was visible in 14 discs (61%) and 9 discs (39%) had no notch. In the extruded disc group (18 discs), the notch was visible in 2 (11%) discs and the difference between the two groups was statistically significant (ρ 0.0002). The signal intensities of the herniated discs on T1-weighted images were isointense in both the sequestered and extruded discs. The difference of incidence of high signal intensities on T2-weighted images was not statistically significant (ρ = 0.125). It is necessary to consider the possibility of the presence of a sequestered disc when a herniated disc material shows a notch

  7. Instability of warped discs

    Science.gov (United States)

    Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-05-01

    Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further, if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which, in general, yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term that would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ < 0) but is here modified by the warp to include ∂(ν1|ψ|)/∂|ψ| < 0, and (2) a similar condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.

  8. Fission gas release behaviour of a 103 GWd/t{sub HM} fuel disc during a 1200 °C annealing test

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Yagnik, S. [EPRI, P.O. Box 10412, Palo Alto, CA 94303-0813 (United States); Turnbull, J.A. [Independent Consultant (United Kingdom); Tverberg, T. [IFE, P.O. Box 173, NO-1751 Halden (Norway)

    2014-03-15

    Within the Nuclear Fuel Industry Research (NFIR) program, several fuel variants, in the form of thin circular discs, were irradiated in the Halden Boiling Water Reactor (HBWR) to a range of burn-ups ∼100 GWd/t{sub HM}. The design of the assembly was similar to that used in other HBWR programs: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature gradients within the fuel discs. One such rod contained standard grain UO{sub 2} discs (3D grain size = 18 μm) reaching a burn-up of 103 GWd/t{sub HM}. After the irradiation, the gas release upon rod puncturing was measured to be 2.9%. Detailed characterizations of one of these irradiated UO{sub 2} discs, using electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS), were performed in a CEA Cadarache hot laboratory. Examination revealed the high burn-up structure (HBS) formation throughout the whole of the disc, also the fission gas distribution within this HBS, with a very high proportion of the gas in the HBS bubbles. A sibling disc was submitted to a temperature transient up to 1200 °C in the out-of-pile (OOP) annealing test device “Merarg” at a relatively low temperature ramp rate (0.2 °C/s). In addition to the total gas release during this annealing test, the release peaks throughout the temperature range were monitored. The fuel was then characterized with the same microanalysis techniques as before the annealing test to investigate the effects of this test on the microstructure of the fuel and on the fission gases. It provided valuable insights into fission gas localization and the release behaviour in UO{sub 2} fuel with high burn-up structure (HBS)

  9. Evolution of viscous discs. 3. Giant discs in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [Oxford Univ. (UK). Dept. of Astrophysics; Pringle, J E [Cambridge Univ. (UK). Inst. of Astronomy

    1982-10-01

    The structure of time-dependent accretion discs in giant binaries with separation of the order of 10/sup 13/ cm is examined. Radiative ..cap alpha..-viscosity discs with ..cap alpha.. of order unity accreting on to main-sequence stars at accretion rates which generate luminosities greater than a giant companion decay on time-scales of the same order as the binary period, unlike those in dwarf nova binaries which decay on time-scales 100 times longer than the binary period. This results from the lower gravitational potential and consequent larger disc thickness (relative to the radius) of luminous 'giant' discs accreting at high accretion rates. The eruptions of the symbiotic binary C I Cygni are modelled by an ..cap alpha.. = 1 disc with outer radius 8.5 x 10/sup 12/ cm and a sequence of five mass-transfer bursts at rates between 1.5 x 10/sup 21/ and 4 x 10/sup 22/g s/sup -1/.

  10. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  11. Superluminous accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [Cambridge Univ. (UK). Inst. of Astronomy; Polska Akademia Nauk, Warsaw. Centrum Astronomiczne)

    1981-07-01

    Upper limits are computed for the total luminosities and collimation of radiation from thick, radiation supported accretion discs around black holes. Numerical results are obtained for the 'extreme' discs with rsub(out) = 10/sup 3/ GMsub(BH)/c/sup 2/, the angular momentum of the black hole being Jsub(BH) = 0.998 GMsub(BH)/c. The high luminosity (L approximately 8.5 Lsub(Edd)) and substantial collimation of radiation found for these discs indicate that such discs can explain both the high luminosities of quasars and similar objects and may produce some of the observed beams and jets.

  12. Prospects for bubble fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  13. Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian

    2012-01-01

    The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)

  14. Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble

    Science.gov (United States)

    Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra

    2018-04-01

    The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.

  15. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    International Nuclear Information System (INIS)

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  16. Tracing Planets in Circumstellar Discs

    Directory of Open Access Journals (Sweden)

    Uribe Ana L.

    2013-04-01

    Full Text Available Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (submm wavelength range for the Atacama Large (SubMillimeter Array (ALMA. On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (submm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses, nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67·10-7 M⊙ and 4.10·10-2 M⊙, six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4...2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplane tary discs (0.1 M⊙...0.001 M⊙ the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67·10-6 M⊙ and trace gaps in discs with 2.67·10-4 M⊙ with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of

  17. A three field two fluid CFD model for the bubbly-cap bubble regime

    International Nuclear Information System (INIS)

    Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke

    2005-01-01

    Full text of publication follows: The lateral phase distribution of a two phase duct flow in the cap bubble regime is analyzed with a three dimensional three field two-fluid CFD model based on the turbulent k-ε model for bubbly flows developed by Lopez de Bertodano et. al. [2]. The turbulent diffusion of the bubbles is the dominant phase distribution mechanism. A new analytic result is presented to support the development of the model for the bubble induced turbulent diffusion force. New experimental data obtained with a state-of-the-art four sensor miniature conductivity probe are used to validate the two-fluid model. The focus of this work is modeling the transport of the dispersed phase. Previous work (e.g., Lopez de Bertodano et. al.) was focused on the interfacial forces of drag, lift and virtual mass. However, the dispersion of the bubbles by the turbulent eddies of the continuous phase must be considered too. The rigorous formulation of a model for the turbulent dispersion of the bubbles results in a turbulent diffusion force which is obtained from a probability distribution function average (i.e., Boltzmann averaging) of the dispersed phase momentum equation. This force was recently applied to a turbulent bubbly jet with small bubbles (i.e., 1 mm diameter) without adjusting any coefficient. However, the application of this force to industrial conditions (i.e., larger bubbles) requires specific two-phase flow experimental data to calibrate the model due to the uncertainties of the flow around large bubbles. In particular the void distribution and the interfacial area concentration are measured in a mixture of big and small bubbles. The state-of-the-art miniaturized four-sensor conductivity probe developed by Kim et al. [3] is used to obtain the interfacial area concentration in complex two-phase flow situations. This probe can discriminate between small and large bubbles so it offers an opportunity to perform further developments of the multidimensional two

  18. Bubble bath soap poisoning

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  19. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.

    Science.gov (United States)

    Guédra, Matthieu; Cornu, Corentin; Inserra, Claude

    2017-09-01

    The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bubble nucleation in an explosive micro-bubble actuator

    International Nuclear Information System (INIS)

    Van den Broek, D M; Elwenspoek, M

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm −2 . A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters

  1. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  2. Numerical simulation of bubbles motion in lifting pipe of bubble pump for lithium bromide absorption chillers

    International Nuclear Information System (INIS)

    Gao, Hongtao; Liu, Bingbing; Yan, Yuying

    2017-01-01

    A bubble pump is proposed to replace the traditional mechanical solution pump in lithium bromide absorption chillers, for its advantageous feature that can be driven by industrial waste heat or solar energy or other low-grade energy. In two-stage bubble pump driven lithium bromide absorption refrigeration system, flow patterns in lifting pipe have significant effects on the performance of bubble pump. In this paper, the single bubble motion and the double bubbles coalescence in vertical ascending pipe are simulated by an improved free energy model of lattice Boltzmann method, in which the two-phase liquid to gas density ratio is 2778. The details of bubbles coalescence process are studied. Density and velocity of bubbles have been obtained. The computational results show that the initial radius of each bubble has a great influence on the coalescence time. The larger the initial bubble radius, the shorter the coalescence time. The pipe diameter has a little effect on the two bubbles coalescence time while it has a significant effect on the bubble velocity. As the pipe diameter increases, the bubble velocity increases. The obtained results are helpful for studying the transition mechanisms of two-phase flow patterns and useful for improving the bubble pump performance by controlling the flow patterns in lifting pipe.

  3. Regeneration of spine disc and joint cartilages under temporal and space modulated laser radiation

    Science.gov (United States)

    Sobol, E.; Shekhter, A.; Baskov, A.; Baskov, V.; Baum, O.; Borchshenko, I.; Golubev, V.; Guller, A.; Kolyshev, I.; Omeltchenko, A.; Sviridov, A.; Zakharkina, O.

    2009-02-01

    The effect of laser radiation on the generation of hyaline cartilage in spine disc and joints has been demonstrated. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces nonhomogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 45-50 oC) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Nondestructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in orthopedics for the treatment cartilages of spine and joints. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed for 340 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care. Substantial relief of back pain was obtained in 90% of patients treated who returned to their daily activities. The experiments on reparation of the defects in articular cartilage of the porcine joints under temporal and spase modulated laser radiation have shown promising results.

  4. HCDA bubble experiment, (2)

    International Nuclear Information System (INIS)

    Sakata, Kaoru; Mashiko, Hiroyuki; Oka, Yoshiaki; An, Shigehiro; Isozaki, Tadashi.

    1981-06-01

    An experiment simulating the behavior of the very large steam bubbles generated at the time of an accident of core collapse was carried out with a warm water tank, and the applicability of the theory of very small bubble disappearance known at present was examined. The bubbles generated in HCDA (hypothetical core disruptive accident) are expected to be very large, containing sodium, fuel, FP gas and so on, and play important role in the mechanism of emitting radioactive substances in the safety analysis of LMFBRs. In this experiment, the degree of subcool of the warm water pool, the initial radii of steam bubbles and the blowoff pressure of steam were taken as the parameters. The radius of the steam bubbles generated in the experiment was about 6.5 cm, and the state of disappearance was different above and below the degree of unsaturation of 10 deg C. Comparing the disappearance curve obtained by the experiment with the theory of disappearance of small bubbles, the experimental values were between inertia-controlled disappearance and heat transfer-controlled disappearance, and this result was able to be explained generally with the model taking the pressure change within steam bubbles into account. The rise of bubbles was also observed. (Kako, I.)

  5. Accretion discs around neutron stars

    International Nuclear Information System (INIS)

    Pringle, J.E.

    1982-01-01

    If the central object in the disc is a neutron star, then we do not need the disc itself to produce the X-rays. In other words, the disc structure itself is not important as long as it plays the role of depositing matter on the neutron star at a sufficient rate to produce the X-ray flux. Similarly, in the outer disc regions, the main disc luminosity comes from absorption and reradiation of X-ray photons and not from the intrinsic, viscously-produced, local energy production rate. These two points indicate why in the compact binary X-ray sources confrontation between disc theory and observations is not generally practicable. For this reason I will divide my talk into two parts: one on observational discs in which I discuss what observational evidence there is for discs in the compact X-ray sources and what the evidence can tell the theorist about disc behaviour, and the other on theoretical discs where I consider in what ways theoretical arguments can put limits or cast doubt on some of the empirical models put forward to explain the observations. (orig.)

  6. Study of droplet entrainment from bubbling surface in a bubble column

    International Nuclear Information System (INIS)

    Ramirez de Santiago, M.

    1991-05-01

    In a bubble column droplets are ejected from the free surface by bubble bursting or splashing. Depending on their size, the droplets are partly carried away by the streaming gas or fall back to the bubbling surface by gravity force. Experiments have been carried out to determine the void fraction in the column by means of an optical probe. In the interfacial zone the bubble bursting process was captured with a high-speed video camera. Simultaneous measurements were made of size and velocity of droplets at several distances from the bubbling surface with a Phase-Doppler Anemometry. The bubble column can be divided into three regions: A lower zone with a flat profile of the local void fraction, a central zone where the flow regime is steady and an upper zone where the local void fraction grows rapidly. A two-parameter log-normal distribution function was proposed in order to describe the polydisperse distribution of droplet-size. Results were obtained concerning the entrainment, concentration, volume fraction and interfacial area of droplets. Finally, it was found that the turbulence intensity affects the droplet terminal velocity for droplets smaller than the Kolmogorov microscale [fr

  7. Optimization of the bubble radius in a moving single bubble sonoluminescence

    International Nuclear Information System (INIS)

    Mirheydari, Mona; Sadighi-Bonabi, Rasoul; Rezaee, Nastaran; Ebrahimi, Homa

    2011-01-01

    A complete study of the hydrodynamic force on a moving single bubble sonoluminescence in N-methylformamide is presented in this work. All forces exerted, trajectory, interior temperature and gas pressure are discussed. The maximum values of the calculated components of the hydrodynamic force for three different radii at the same driving pressure were compared, while the optimum bubble radius was determined. The maximum value of the buoyancy force appears at the start of bubble collapse, earlier than the other forces whose maximum values appear at the moment of bubble collapse. We verified that for radii larger than the optimum radius, the temperature peak value decreases.

  8. Development of three-dimensional individual bubble-velocity measurement method by bubble tracking

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa

    2012-01-01

    A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)

  9. Validating the TeleStroke Mimic Score: A Prediction Rule for Identifying Stroke Mimics Evaluated Over Telestroke Networks.

    Science.gov (United States)

    Ali, Syed F; Hubert, Gordian J; Switzer, Jeffrey A; Majersik, Jennifer J; Backhaus, Roland; Shepard, L Wylie; Vedala, Kishore; Schwamm, Lee H

    2018-03-01

    Up to 30% of acute stroke evaluations are deemed stroke mimics, and these are common in telestroke as well. We recently published a risk prediction score for use during telestroke encounters to differentiate stroke mimics from ischemic cerebrovascular disease derived and validated in the Partners TeleStroke Network. Using data from 3 distinct US and European telestroke networks, we sought to externally validate the TeleStroke Mimic (TM) score in a broader population. We evaluated the TM score in 1930 telestroke consults from the University of Utah, Georgia Regents University, and the German TeleMedical Project for Integrative Stroke Care Network. We report the area under the curve in receiver-operating characteristic curve analysis with 95% confidence interval for our previously derived TM score in which lower TM scores correspond with a higher likelihood of being a stroke mimic. Based on final diagnosis at the end of the telestroke consultation, there were 630 of 1930 (32.6%) stroke mimics in the external validation cohort. All 6 variables included in the score were significantly different between patients with ischemic cerebrovascular disease versus stroke mimics. The TM score performed well (area under curve, 0.72; 95% confidence interval, 0.70-0.73; P mimic during telestroke consultation in these diverse cohorts was similar to its performance in our original cohort. Predictive decision-support tools like the TM score may help highlight key clinical differences between mimics and patients with stroke during complex, time-critical telestroke evaluations. © 2018 American Heart Association, Inc.

  10. Myositis Mimics.

    Science.gov (United States)

    Michelle, E Harlan; Mammen, Andrew L

    2015-10-01

    Patients with autoimmune myositis typically present with muscle weakness, elevated serum levels of muscle enzymes, and abnormal muscle biopsies. However, patients with other acquired myopathies or genetic muscle diseases may have remarkably similar presentations. Making the correct diagnosis of another muscle disease can prevent these patients from being exposed to the risks of immunosuppressive medications, which benefit those with myositis, but not those with other types of muscle disease. Here, we review some of the most common acquired and inherited muscle diseases that can mimic autoimmune myositis, including inclusion body myositis, limb girdle muscular dystrophies, metabolic myopathies, mitochondrial myopathies, and endocrine myopathies. We emphasize aspects of the medical history, physical exam, laboratory evaluation, and muscle biopsy analysis that can help clinicians distinguish myositis mimics from true autoimmune myositis.

  11. Double rupture disc experience

    International Nuclear Information System (INIS)

    1979-01-01

    Result of these observations, comparisons and evaluations can be summarized in the following list of concerns regarding the use of double rupture discs coupled to the liquid space of a steam generator that is subjected to a large leak sodium water reaction event. Single rupture disc show delayed collapse characteristics in LLTR Series I and double disc assemblies are presumed to be more complex with additional delay before opening to give pressure relief. Delayed failure increases pressures in the IHTS and must be adequately covered by design requirements. With CRBR design, the first disc may fail only partially reducing the loading on the second disc with the result that relief performance may not meet requirements

  12. Radially truncated galactic discs

    NARCIS (Netherlands)

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  13. Dynamics of bubble-bubble interaction in sheared low-viscosity magma imaged by X-ray computed micro-tomography

    Science.gov (United States)

    Helo, C.; Flaws, A.; Hess, K.-U.; Franz, A.; Clague, D. A.; Dingwell, D. B.

    2012-04-01

    X-ray computed tomography of vesicles in basaltic pyroclastic glass fragments has been used to investigate the syn-eruptive shear environment and resulting bubble-bubble interaction during mild pyroclastic eruptions in a mid-ocean ridge environment. We have imaged vesicles present in two different types of pyroclastic fragments produced by mildly explosive activity on Axial Seamount, limu o Pele, that is, thin glass films often described as bubble walls, and tube scoria fragments. Rapid quenching of the glass has prevented extensive bubble relaxation preserving the syn-eruptive geometry of the bubbles in these fragments. Isolated, ellipsoid-shaped vesicles in low-vesicular limu o Pele indicate deformation in a simple shear environment. Under these shear conditions higher vesiculated parts of the erupting magma show strong bubble-bubble interactions partially leading to coalscence and formation of tubular vesicles. These tubular vesicles can reach significant lengths, exceeding the dimensions of the small glass fragments (2 mm). Their unreformed radius can be more then one order of magnitude larger than that of the isolated vesicles in the limu o Pele fragments. We can distinguish two principle modes of interaction based on the relative orientation of the bubbles. Interaction along the sidewalls of two bubbles, and tip-to-tip interaction. At interdistances of less than a few tens of micrometre, interaction of the sidewalls results in deformation of the bubbles to more irregular shapes, with depressions caused by close, small bubbles or in some cases bubbles being partially mantled around tubular bubbles. This often leads to a more close packing of bubbles. At distances of less than a few microns, the melt films between the bubbles destabilize leading to coalescence. This mechanism appears to involve a bulging of the larger bubble into the smaller, followed by melt film rapture and coalescence. The complete digestion of one bubble by the other is the slow rate

  14. Fermi Bubble: Giant Gamma-Ray Bubbles in the Milky Way

    Science.gov (United States)

    Su, Meng

    Data from the Fermi-LAT reveal two gigantic gamma-ray emitting bubble structures (known as the Fermibubbles), extending˜50° above and below the Galactic center symmetric about the Galactic plane, with a width of˜40∘ in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum ({dN}/{dE} ˜ {E}^{-2}) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAPhaze; the edges of the bubbles also line up with features in the ROSATsoft X-ray maps at 1.5-2keV. The Fermibubble is most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last˜10Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.

  15. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  16. Bubbles & Squat

    DEFF Research Database (Denmark)

    Højbjerre Larsen, Signe

    , a new concept called ‘Bubbles & Squat’, where fitness training is combined with Champagne and a live DJ. One of the invitations for this event describes how “we spice up your friday training with live DJ and lots of refreshing bubbles, to make sure that you are ready for the weekend (...).” Before New...

  17. A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

    DEFF Research Database (Denmark)

    Luo, Hao; Lu, Bona; Zhang, Jingyuan

    2017-01-01

    The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...

  18. Rocking disc electro-deposition of copper films on Mo/MoSe{sub 2} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, Charles Y.; Frith, Paul E. [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Zoppi, Guillaume; Forbes, Ian [Northumbria Photovoltaics Applications Centre, Northumbria University, NE1 8ST (United Kingdom); Rogers, Keith D. [Cranfield Health, Cranfield University, Shrivenham Campus, Swindon, SN6 8LA (United Kingdom); Lane, David W. [Department of Applied Science, Security and Resilience, Cranfield University, Shrivenham, Swindon, SN6 8LA (United Kingdom); Marken, Frank, E-mail: F.Marken@bath.ac.uk [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-08-31

    A novel electro-deposition method based on a rocking disc system with {pi}/3 amplitude and variable frequency is introduced. Uniform copper films were deposited from a 0.1 M CuSO{sub 4}/3.0 M NaOH/0.2 M sorbitol bath directly onto 12.1 cm{sup 2} Mo/MoSe{sub 2} substrates with X-ray diffraction showing a thickness variation of {+-}5% over this area. Investigation of the mass transport conditions suggests (i) uniform diffusion over the sample, (ii) a rate of mass transport proportional to the square root of the rocking rate, and (iii) turbulent conditions, which are able to dislodge gas bubbles during electro-deposition.

  19. Double-disc gate valve

    International Nuclear Information System (INIS)

    Wheatley, S.J.

    1979-01-01

    The invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewith, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separation of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve

  20. Optic disc oedema

    DEFF Research Database (Denmark)

    Nielsen, Marianne Kromann; Hamann, Steffen

    2014-01-01

    Optic disc oedema describes the nonspecific, localized swelling of the optic nerve head regardless of aetiology. Therefore, differentiating among the various aetiologies depends on a thorough history and knowledge of the clinical characteristics of the underlying conditions. Papilloedema strictly...... refers to optic disc oedema as a consequence of elevated intracranial pressure. It is usually a bilateral condition and visual function is preserved until late. Optic disc oedema caused by an anterior optic neuropathy is usually unilateral and accompanied by the loss of visual function....

  1. Mimics of scleroderma

    Directory of Open Access Journals (Sweden)

    Kaveri K Nalianda

    2017-01-01

    Full Text Available Systemic sclerosis is a rare autoimmune connective tissue disorder characterised typically by tightening and tethering of skin. However, several other disorders are also characterised by hardening and thickening of skin. These mimics can be potentially confused with systemic sclerosis, leading to a misdiagnosis. This review describes the aetiopathogenesis, clinical features and treatment of Morphea (localised scleroderma, Scleredema, Scleromyxoedema, Eosinophilic fasciitis, Nephrogenic Systemic Fibrosis, Diabetic Cheiroarthropathy, chronic GVHD, POEMS syndrome and drug induced scleroderma like illness. A careful and thorough clinical assessment is essential in order to differentiate these mimics from each other and from systemic sclerosis, establish the diagnosis, and initiate appropriate treatment.

  2. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    Science.gov (United States)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  3. Bubble transport in bifurcations

    Science.gov (United States)

    Bull, Joseph; Qamar, Adnan

    2017-11-01

    Motivated by a developmental gas embolotherapy technique for cancer treatment, we examine the transport of bubbles entrained in liquid. In gas embolotherapy, infarction of tumors is induced by selectively formed vascular gas bubbles that originate from acoustic vaporization of vascular droplets. In the case of non-functionalized droplets with the objective of vessel occlusion, the bubbles are transported by flow through vessel bifurcations, where they may split prior to eventually reach vessels small enough that they become lodged. This splitting behavior affects the distribution of bubbles and the efficacy of flow occlusion and the treatment. In these studies, we investigated bubble transport in bifurcations using computational and theoretical modeling. The model reproduces the variety of experimentally observed splitting behaviors. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Maximum shear stresses were found to decrease with increasing Reynolds number. The initial bubble length was found to affect the splitting behavior in the presence of gravitational asymmetry. This work was supported by NIH Grant R01EB006476.

  4. Proto-planetary disc evolution and dispersal

    Science.gov (United States)

    Rosotti, Giovanni Pietro

    2015-05-01

    Planets form from gas and dust discs in orbit around young stars. The timescale for planet formation is constrained by the lifetime of these discs. The properties of the formed planetary systems depend thus on the evolution and final dispersal of the discs, which is the main topic of this thesis. Observations reveal the existence of a class of discs called "transitional", which lack dust in their inner regions. They are thought to be the last stage before the complete disc dispersal, and hence they may provide the key to understanding the mechanisms behind disc evolution. X-ray photoevaporation and planet formation have been studied as possible physical mechanisms responsible for the final dispersal of discs. However up to now, these two phenomena have been studied separately, neglecting any possible feedback or interaction. In this thesis we have investigated what is the interplay between these two processes. We show that the presence of a giant planet in a photo-evaporating disc can significantly shorten its lifetime, by cutting the inner regions from the mass reservoir in the exterior of the disc. This mechanism produces transition discs that for a given mass accretion rate have larger holes than in models considering only X-ray photo-evaporation, constituting a possible route to the formation of accreting transition discs with large holes. These discs are found in observations and still constitute a puzzle for the theory. Inclusion of the phenomenon called "thermal sweeping", a violent instability that can destroy a whole disc in as little as 10 4 years, shows that the outer disc left can be very short-lived (depending on the X-ray luminosity of the star), possibly explaining why very few non accreting transition discs are observed. However the mechanism does not seem to be efficient enough to reconcile with observations. In this thesis we also show that X-ray photo-evaporation naturally explains the observed correlation between stellar masses and accretion

  5. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  6. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity

    Czech Academy of Sciences Publication Activity Database

    Orvalho, Sandra; Růžička, Marek; Olivieri, G.; Marzocchella, A.

    2015-01-01

    Roč. 134, SEP 29 (2015), s. 205-216 ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : bubble coalescence * bubble approach velocity * liquid viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.750, year: 2015

  7. Bubble propagation on a rail: a concept for sorting bubbles by size

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.

  8. CT discography for cervical soft disc hernia

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Kenichi; Mizutani, Shigeru; Morimoto, Hiroyuki; Yamada, Hidehito; Iwasa, Satoru

    1985-03-01

    In this study the effectiveness of computed tomographic discography (CTD) in diagnosing cervical soft disc hernia was evaluated. Twenty-five intervertebral discs of 15 cases with cervical soft disc hernia were examined with a discography and then a CT scan. Results of the CT scan were as follows: three discs were protruded, 12 discs were prolapsed, 6 discs were extruded, and 4 discs were sequestrated. The findings were helpful in determining the location of soft disc hernias between the median and posterolateral discs. They were also valuable in classifying types of hernias and surgical approaches.

  9. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  10. DNA mimic proteins: functions, structures, and bioinformatic analysis.

    Science.gov (United States)

    Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J

    2014-05-13

    DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.

  11. CT discography for cervical soft disc hernia

    International Nuclear Information System (INIS)

    Iwasa, Kenichi; Mizutani, Shigeru; Morimoto, Hiroyuki; Yamada, Hidehito; Iwasa, Satoru

    1985-01-01

    In this study the effectiveness of computed tomographic discography (CTD) in diagnosing cervical soft disc hernia was evaluated. Twenty-five interververtebral discs of 15 cases with cervical soft disc hernia were examined with a discography and then a CT scan. Results of the CT scan were as follows: three discs were protruded, 12 discs were prolapsed, 6 discs were extruded, and 4 discs were sequestrated. The findings were helpful in determining the location of soft disc hernians between the median and posterolateral discs. They were also valuable in classifying types of hernians and surgical aproaches. (author)

  12. Experimental study of vapor bubble dynamics

    International Nuclear Information System (INIS)

    Pasquini, Maria-Elena

    2015-01-01

    The object of this thesis is an experimental study of vapor bubble dynamics in sub-cooled nucleate boiling. The test section is locally heated by focusing a laser beam: heat fluxes from 1 e4 to 1.5 e6 W/m 2 and water temperature between 100 and 88 C have been considered. Three boiling regimes have been observed. Under saturated conditions and with low heat fluxes a developed nucleate boiling regime has been observed. Under higher sub-cooling and still with low heat fluxes an equilibrium regime has been observed in which the liquid flowrate evaporating at the bubble base is compensated by the vapor condensing flowrate at bubble top. A third regime have been observed at high heat fluxes for all water conditions: it is characterized by the formation of a large dry spot on the heated surface that keeps the nucleation site dry after bubble detachment. The condensation phase starts after bubble detachment. Bubble equivalent radius at detachment varies between 1 and 2.5 mm. Bubble properties have been measured and non-dimensional groups have been used to characterize bubble dynamics. Capillary waves have been observed on the bubble surface thanks to high-speed images acquisition. Two main phenomena have been proposed to explain capillary waves effects on bubble condensation: increasing of the phases interface area and decreasing of vapor bubble translation velocity, because of the increased drag force on the deformed bubble. (author) [fr

  13. Amyotrophic lateral sclerosis mimic syndromes.

    Science.gov (United States)

    Ghasemi, Majid

    2016-04-03

    Amyotrophic lateral sclerosis (ALS) misdiagnosis has many broad implications for the patient and the neurologist. Potentially curative treatments exist for certain ALS mimic syndromes, but delay in starting these therapies may have an unfavorable effect on outcome. Hence, it is important to exclude similar conditions. In this review, we discuss some of the important mimics of ALS.

  14. Single bubble sonoluminescence

    NARCIS (Netherlands)

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef

    2002-01-01

    Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light

  15. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  16. Gravitating discs around black holes

    International Nuclear Information System (INIS)

    Karas, V; Hure, J-M; Semerak, O

    2004-01-01

    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole-disc system using analytical solutions of stationary, axially symmetric Einstein equations. Then, more detailed considerations are focused to the middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring. However, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging are completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the surrounding environment. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star-disc interactions, which can be recognized in observational properties, such as the relation between the central mass and stellar velocity dispersion. (topical review)

  17. The in vitro and in vivo effects of microRNA-133a on intervertebral disc destruction by targeting MMP9 in spinal tuberculosis.

    Science.gov (United States)

    Wang, Xin-Wen; Liu, Ji-Jun; Wu, Qi-Ning; Wu, Shu-Fang; Hao, Ding-Jun

    2017-11-01

    We aim to investigate the role of microRNA-133a (miR-133a) in intervertebral disc destruction by targeting MMP9 in spinal tuberculosis (TB). Rabbit models with spinal TB were established and assigned to the blank, miR-133a mimic, miR-133a inhibitor and negative control (NC) groups. Primary notochordal cells were extracted and separately transfected with miR-133a mimics, miR-133a inhibitor, miR-nonsense sequence control (NC), si-NC and si-MMP9. QRT-PCR and Western blot assay were used to detect the expression of MMP-9, Collagen I, Collagen II and Collagen-X. Gelatin Zymography was performed to detect MMP9 activity. Immunohistochemistry was used to detect the expression of Collagen I, Collagen II and Collagen-X proteins. Osteoclast morphology and the number of osteoclast cells were observed after Tartrate resistant acid phosphatase staining. MMP9, Collagen-X and Collagen I expression and MMP9 activity were higher while the expression of Collagen II was lower in the miR-133a mimic group than the miR-NC group. MMP9, Collagen-X Collagen I and MMP9 activities were lower and Collagen II expression was higher in the miR-133a inhibitor group than the miR-NC group. Compared with the si-NC group, the si-MMP9 group showed increased Collagen II expression but decreased expression of MMP9, Collagen-X and Collagen I and MMP9 activity. A reduced amount of osteoclast cells exhibited in the miR-133a mimic group while an increased number was seen in the miR-133a inhibitor group compared to the blank group. MiR-133a could inhibit Collagen degradation by down-regulating MMP-9 expression to attenuate the destructive effects of spinal TB on intervertebral disc. Copyright © 2017. Published by Elsevier Inc.

  18. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  19. Bidirectional cinematography of steam-bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz.

  20. Bidirectional cinematography of steam-bubble growth

    International Nuclear Information System (INIS)

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz

  1. An equation of motion for bubble growth

    International Nuclear Information System (INIS)

    Lesage, F.J.; Cotton, J.S.; Robinson, A.J.

    2009-01-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  2. Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc.

    Science.gov (United States)

    Takada, Toru; Nishida, Kotaro; Doita, Minoru; Kurosaka, Masahiro

    2002-07-15

    Rat and human intervertebral disc specimens were examined immunohistochemically. Reverse transcription polymerase chain reaction (RT-PCR) analysis was also performed on rat disc tissue to demonstrate the existence of Fas ligand. To clarify the existence of Fas ligand on intact intervertebral disc cells. The nucleus pulposus has been reported to be an immune-privileged site. The immune-privileged characteristic in other tissues such as the retina and testis has been attributed to the local expression of Fas ligand, which acts by inducing apoptosis of invading Fas-positive T-cells. The existence of Fas ligand in normal disc cells has not yet been addressed. Skeletally mature SD male rats were killed, and the coccygeal discs were harvested. Human disc specimens were obtained from idiopathic scoliosis patients during surgical procedures. Immunohistochemical staining for Fas ligand was performed for cross-sections of the discs by standard procedures. Reverse transcription polymerase chain reaction analysis was also carried out to demonstrate Fas ligand mRNA expression on rat intervertebral discs. Testes of the rats were used for positive controls, and muscles were used for negative controls. The sections were observed by light microscopy. The nucleus pulposus cells exhibited intense positive immune staining for Fas ligand. The outer anulus fibrosus cells and notochordal cells exhibited little immunopositivity. The positive controls exhibited positive immune staining, and the negative control showed no immunopositivity. The result of RT-PCR confirmed the existence of Fas ligand in disc cells. The human nucleus pulposus cells showed a similar predilection to rat disc cells. We demonstrated the existence of Fas ligand on disc cells, which should play a key role in the potential molecular mechanism to maintain immune privilege of the disc. Immune privilege and Fas ligand expression of the intervertebral disc may provide a new insight for basic science research as well as

  3. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  4. Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia.

    Science.gov (United States)

    Lee, Jong Eun; Sung, Kyung Rim; Park, Ji Min; Yoon, Joo Young; Kang, Sung Yong; Park, Sung Bae; Koo, Hyung Jin

    2017-03-01

    To explore optic disc and peripapillary retinal nerve fiber layer (RNFL) features associated with glaucomatous optic disc (GOD) in young myopia. Presence of GOD, optic disc tilt, and disc torsion were determined using fundus photographs. If the measured disc tilt ratio was >1.3, the optic disc was classified as tilted. Optic disc torsion was defined as a >15° deviation in the long axis of the optic disc from the vertical meridian. The average and four quadrants RNFL thicknesses were assessed using spectral domain optical coherence tomography (SD-OCT). Logistic regression analyses were performed to identify factors associated with the presence of GOD. Nine hundred and sixty myopic subjects were recruited from four refractive surgery clinic databases. The mean age was 26.6 ± 5.7 years and spherical equivalent (SE) was -5.5 ± 2.5 diopters. Among 960 eyes, 26 (2.7%) received GOD group classification. Among 934 normal eyes, 290 (31.0%) had titled optic discs. Eighteen eyes (69.2%) in the GOD group had tilted optic discs. When compared to normal eyes, the GOD group had significantly higher tilt ratios (1.4 ± 0.2 vs. 1.2 ± 0.1, p Optic disc tilt was found in approximately one-third of young myopic eyes and was independently associated with the presence of GOD.

  5. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  6. Growth process of helium bubbles in aluminium

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  7. Nuttier bubbles

    International Nuclear Information System (INIS)

    Astefanesei, Dumitru; Mann, Robert B.; Stelea, Cristian

    2006-01-01

    We construct new explicit solutions of general relativity from double analytic continuations of Taub-NUT spacetimes. This generalizes previous studies of 4-dimensional nutty bubbles. One 5-dimensional locally asymptotically AdS solution in particular has a special conformal boundary structure of AdS 3 x S 1 . We compute its boundary stress tensor and relate it to the properties of the dual field theory. Interestingly enough, we also find consistent 6-dimensional bubble solutions that have only one timelike direction. The existence of such spacetimes with non-trivial topology is closely related to the existence of the Taub-NUT(-AdS) solutions with more than one NUT charge. Finally, we begin an investigation of generating new solutions from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality, we provide new explicit time-dependent backgrounds in six dimensions

  8. Sinking bubbles in stout beers

    Science.gov (United States)

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  9. Retina image–based optic disc segmentation

    Directory of Open Access Journals (Sweden)

    Ching-Lin Wang

    2016-05-01

    Full Text Available The change of optic disc can be used to diagnose many eye diseases, such as glaucoma, diabetic retinopathy and macular degeneration. Moreover, retinal blood vessel pattern is unique for human beings even for identical twins. It is a highly stable pattern in biometric identification. Since optic disc is the beginning of the optic nerve and main blood vessels in retina, it can be used as a reference point of identification. Therefore, optic disc segmentation is an important technique for developing a human identity recognition system and eye disease diagnostic system. This article hence presents an optic disc segmentation method to extract the optic disc from a retina image. The experimental results show that the optic disc segmentation method can give impressive results in segmenting the optic disc from a retina image.

  10. Interaction mechanism of double bubbles in hydrodynamic cavitation

    Science.gov (United States)

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  11. Prognosis of intervertebral disc loss from diagnosis of degenerative disc disease

    Science.gov (United States)

    Li, S.; Lin, A.; Tay, K.; Romano, W.; Osman, Said

    2015-03-01

    Degenerative Disc Disease (DDD) is one of the most common causes of low back pain, and is a major factor in limiting the quality of life of an individual usually as they enter older stages of life, the disc degeneration reduces the shock absorption available which in turn causes pain. Disc loss is one of the central processes in the pathogenesis of DDD. In this study, we investigated whether the image texture features quantified from magnetic resonance imaging (MRI) could be appropriate markers for diagnosis of DDD and prognosis of inter-vertebral disc loss. The main objective is to use simple image based biomarkers to perform prognosis of spinal diseases using non-invasive procedures. Our results from 65 subjects proved the higher success rates of the combination marker compared to the individual markers and in the future, we will extend the study to other spine regions to allow prognosis and diagnosis of DDD for a wider region.

  12. Physiological pattern of lumbar disc height

    International Nuclear Information System (INIS)

    Biggemann, M.; Frobin, W.; Brinckmann, P.

    1997-01-01

    Purpose of this study is to present a new method of quantifying objectively the height of all discs in lateral radiographs of the lumbar spine and of analysing the normal craniocaudal sequence pattern of lumbar disc heights. Methods: The new parameter is the ventrally measured disc height corrected for the dependence on the angle of lordosis by normalisation to mean angles observed in the erect posture of healthy persons. To eliminate radiographic magnification, the corrected ventral height is related to the mean depth of the cranially adjoining vertebra. In this manner lumbar disc heights were objectively measured in young, mature and healthy persons (146 males and 65 females). The craniocaudal sequence pattern was analysed by mean values from all persons and by height differences of adjoining discs in each individual lumbar spine. Results: Mean normative values demonstrated an increase in disc height between L1/L2 and L4/L5 and a constant or decreasing disc height between L4/L5 and L5/S1. However, this 'physiological sequence of disc height in the statistical mean' was observed in only 36% of normal males and 55% of normal females. Conclusion: The radiological pattern of the 'physiological sequence of lumbar disc height' leads to a relevant portion of false positive pathological results especially at L4/L5. An increase of disc height from L4/L5 to L5/S1 may be normal. The recognition of decreased disc height should be based on an abrupt change in the heights of adjoining discs and not on a deviation from a craniocaudal sequence pattern. (orig.) [de

  13. CT morphometry of adult thoracic intervertebral discs.

    Science.gov (United States)

    Fletcher, Justin G R; Stringer, Mark D; Briggs, Christopher A; Davies, Tilman M; Woodley, Stephanie J

    2015-10-01

    Despite being commonly affected by degenerative disorders, there are few data on normal thoracic intervertebral disc dimensions. A morphometric analysis of adult thoracic intervertebral discs was, therefore, undertaken. Archival computed tomography scans of 128 recently deceased individuals (70 males, 58 females, 20-79 years) with no known spinal pathology were analysed to determine thoracic disc morphometry and variations with disc level, sex and age. Reliability was assessed by intraclass correlation coefficients (ICCs). Anterior and posterior intervertebral disc heights and axial dimensions were significantly greater in men (anterior disc height 4.0±1.4 vs 3.6±1.3 mm; posterior disc height 3.6±0.90 vs 3.4±0.93 mm; p<0.01). Disc heights and axial dimensions at T4-5 were similar or smaller than at T2-3, but thereafter increased caudally (mean anterior disc height T4-5 and T10-11, 2.7±0.7 and 5.4±1.2 mm, respectively, in men; 2.6±0.8 and 5.1±1.3 mm, respectively, in women; p<0.05). Except at T2-3, anterior disc height decreased with advancing age and anteroposterior and transverse disc dimensions increased; posterior and middle disc heights and indices of disc shape showed no consistent statistically significant changes. Most parameters showed substantial to almost perfect agreement for intra- and inter-rater reliability. Thoracic disc morphometry varies significantly and consistently with disc level, sex and age. This study provides unique reference data on adult thoracic intervertebral disc morphometry, which may be useful when interpreting pathological changes and for future biomechanical and functional studies.

  14. An equation of motion for bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Lesage, F.J. [College d' Enseignement General et Professionnel de L' Outaouais, Gatineau, Quebec (Canada). Dept. of Mathematics; Cotton, J.S. [McMaster University, Hamilton, ON (Canada). Dept. of Mechanical Engineering; Robinson, A.J. [Trinity College Dublin (Ireland). Dept. of Mechanical and Manufacturing Engineering

    2009-07-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  15. Computing bubble-points of CO

    NARCIS (Netherlands)

    Ramdin, M.; Balaji, S.P.; Vicent Luna, J.M.; Torres-Knoop, A; Chen, Q.; Dubbeldam, D.; Calero, S; de Loos, T.W.; Vlugt, T.J.H.

    2016-01-01

    Computing bubble-points of multicomponent mixtures using Monte Carlo simulations is a non-trivial task. A new method is used to compute gas compositions from a known temperature, bubble-point pressure, and liquid composition. Monte Carlo simulations are used to calculate the bubble-points of

  16. Bubble bursting at an interface

    Science.gov (United States)

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  17. Scales and structures in bubbly flows. Experimental analysis of the flow in bubble columns and in bubbling fluidized beds

    NARCIS (Netherlands)

    Groen, J.S.

    2004-01-01

    In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing

  18. A physiological model of the interaction between tissue bubbles and the formation of blood-borne bubbles under decompression

    International Nuclear Information System (INIS)

    Chappell, M A; Payne, S J

    2006-01-01

    Under decompression, bubbles can form in the human body, and these can be found both within the body tissues and the bloodstream. Mathematical models for the growth of both types of bubbles have previously been presented, but they have not been coupled together. This work thus explores the interaction between the growth of tissue and blood-borne bubbles under decompression, specifically looking at the extent to which they compete for the common resource of inert gas held in solution in the tissues. The influence of tissue bubbles is found to be significant for densities as low as 10 ml -1 for tissues which are poorly perfused. However, the effects of formation of bubbles in the blood are not found until the density of bubble production sites reaches 10 6 ml -1 . From comparison of the model predictions with experimental evidence for bubbles produced in animals and man under decompression, it is concluded that the density of tissue bubbles is likely to have a significant effect on the number of bubbles produced in the blood. However, the density of nucleation sites in the blood is unlikely to be sufficiently high in humans for the formation of bubbles in the blood to have a significant impact on the growth of the bubbles in the tissue

  19. Are Collapsed Cervical Discs Amenable to Total Disc Arthroplasty?: Analysis of Prospective Clinical Data With 2-Year Follow Up.

    Science.gov (United States)

    Patwardhan, Avinash G; Carandang, Gerard; Voronov, Leonard I; Havey, Robert M; Paul, Gary A; Lauryssen, Carl; Coric, Domagoj; Dimmig, Thomas; Musante, David

    2016-12-15

    Analysis of prospectively collected radiographic data. To investigate the influence of preoperative index-level range of motion (ROM) and disc height on postoperative ROM after cervical total disc arthroplasty (TDA) using compressible disc prostheses. Clinical studies demonstrate benefits of motion preservation over fusion; however, questions remain unanswered as to which preoperative factors have the ability to identify patients who are most likely to have good postoperative motion, which is the primary rationale for TDA. We analyzed prospectively collected data from a single-arm, multicenter study with 2-year follow up of 30 patients with 48 implanted levels. All received compressible cervical disc prostheses of 6 mm-height (M6C, Spinal Kinetics, Sunnyvale, CA). The influence of index-level preoperative disc height and ROM (each with two levels: below-median and above-median) on postoperative ROM was analyzed using 2 x 2 ANOVA. We further analyzed the radiographic outcomes of a subset of discs with preoperative height less than 3 mm, the so-called "collapsed" discs. Shorter (3.0 ± 0.4 mm) discs were significantly less mobile preoperatively than taller (4.4 ± 0.5 mm) discs (6.7° vs. 10.5°, P = 0.01). The postoperative ROM did not differ between the shorter and taller discs (5.6° vs. 5.0°, P = 0.63). Tall discs that were less mobile preoperatively had significantly smaller postoperative ROM than short discs with above-median preoperative mobility (P < 0.05). The "collapsed discs" (n = 8) were less mobile preoperatively compared with all discs combined (5.1° vs. 8.6°, P < 0.01). These discs were distracted to more than two times the preoperative height, from 2.6 to 5.7 mm, and had significantly greater postoperative ROM than all discs combined (7.6° vs. 5.3°, P < 0.05). We observed a significant interaction between preoperative index-level disc height and ROM in influencing postoperative ROM. Although limited by small sample

  20. Disc-halo interactions in ΛCDM

    Science.gov (United States)

    Bauer, Jacob S.; Widrow, Lawrence M.; Erkal, Denis

    2018-05-01

    We present a new method for embedding a stellar disc in a cosmological dark matter halo and provide a worked example from a Λ cold dark matter zoom-in simulation. The disc is inserted into the halo at a redshift z = 3 as a zero-mass rigid body. Its mass and size are then increased adiabatically while its position, velocity, and orientation are determined from rigid-body dynamics. At z = 1, the rigid disc (RD) is replaced by an N-body disc whose particles sample a three-integral distribution function (DF). The simulation then proceeds to z = 0 with live disc (LD) and halo particles. By comparison, other methods assume one or more of the following: the centre of the RD during the growth phase is pinned to the minimum of the halo potential, the orientation of the RD is fixed, or the live N-body disc is constructed from a two rather than three-integral DF. In general, the presence of a disc makes the halo rounder, more centrally concentrated, and smoother, especially in the innermost regions. We find that methods in which the disc is pinned to the minimum of the halo potential tend to overestimate the amount of adiabatic contraction. Additionally, the effect of the disc on the subhalo distribution appears to be rather insensitive to the disc insertion method. The LD in our simulation develops a bar that is consistent with the bars seen in late-type spiral galaxies. In addition, particles from the disc are launched or `kicked up' to high galactic latitudes.

  1. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  2. The comparative analysis of rocks' resistance to forward-slanting disc cutters and traditionally installed disc cutters

    Science.gov (United States)

    Zhang, Zhao-Huang; Fei, Sun; Liang, Meng

    2016-08-01

    At present, disc cutters of a full face rock tunnel boring machine are mostly mounted in the traditional way. Practical use in engineering projects reveals that this installation method not only heavily affects the operation life of disc cutters, but also increases the energy consumption of a full face rock tunnel boring machine. To straighten out this issue, therefore, a rock-breaking model is developed for disc cutters' movement after the research on the rock breaking of forward-slanting disc cutters. Equations of its displacement are established based on the analysis of velocity vector of a disc cutter's rock-breaking point. The functional relations then are brought forward between the displacement parameters of a rock-breaking point and its coordinate through the analysis of micro displacement of a rock-breaking point. Thus, the geometric equations of rock deformation are derived for the forward-slanting installation of disc cutters. With a linear relationship remaining between the acting force and its deformation either before or after the leap breaking, the constitutive relation of rock deformation can be expressed in the form of generalized Hooke law, hence the comparative analysis of the variation in the resistance of rock to the disc cutters mounted in the forward-slanting way with that in the traditional way. It is discovered that with the same penetration, strain of the rock in contact with forward-slanting disc cutters is apparently on the decline, in other words, the resistance of rock to disc cutters is reduced. Thus wear of disc cutters resulted from friction is lowered and energy consumption is correspondingly decreased. It will be useful for the development of installation and design theory of disc cutters, and significant for the breakthrough in the design of full face rock tunnel boring machine.

  3. A Simulation Model of Focus and Radial Servos in Compact Disc Players with Disc Surface Defects

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2004-01-01

    Compact Disc players have been on the market in more than two decades.As a consequence most of the control servo problems have been solved. A large remaining problem to solve is the handling of Compact Discs with severe surface defects like scratches and fingerprints. This paper introduces a method...... for making the design of controllers handling surface defects easier. A simulation model of Compact Disc players playing discs with surface defects is presented. The main novel element in the model is a model of the surface defects. That model is based on data from discs with surface defects. This model...

  4. Sonoluminescence and bubble fusion

    OpenAIRE

    Arakeri, Vijay H

    2003-01-01

    Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms o...

  5. Intratracheal Seal Disc

    DEFF Research Database (Denmark)

    Christiansen, Karen J; Moeslund, Niels; Lauridsen, Henrik

    2017-01-01

    . The device consisted of an intratracheal silicone seal disc fixated by a cord through the stoma to an external part. At day 14, computed tomography (CT) was performed before the device was extracted. With the pulling of a cord, the disc unraveled into a thin thread and was extracted through the stoma. At day...

  6. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  7. Leverage bubble

    Science.gov (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  8. MR image assessment of disc configuration and degree of anterior disc displacement in internal derangement related to age

    International Nuclear Information System (INIS)

    Igarashi, Chinami; Kobayashi, Kaoru; Imanaka, Masahiro; Yuasa, Masao; Yamamoto, Akira

    1999-01-01

    This study was designed to evaluate the configuration of the articular disc and degree of anterior disc displacement on magnetic resonance (MR) imagings in temporomandibular joints (TMJs) with internal derangement. A total of 363 joints diagnosed as having anterior disc displacement with reduction (ADD w R) and 523 joints diagnosed as having anterior disc displacement without reduction (ADD wo R) by MR imaging were examined. These joints did not show severe osseous changes on the condylar head or glenoid fossa. We assessed the configuration of the articular disc and degree of anterior disc displacement. In the ADD w R group, 82.6% of the articular discs showed biconcave configuration; enlargement of the posterior band in 4.6%, biconvex configuration in 0.5%, and others in 10.7%. Moreover 62.5% of the discs showed a slight degree of anterior disc displacement; were 27.2% moderately displaced and were 10.2% severe displaced. The prevalence of slightly displaced discs was higher in the TMJs of cases over 50 years of age than in cases under 30 years in the ADD w R group. On the other hand, in the ADD wo R group 35.9% of the articular discs showed biconcave configuration; enlargement of the posterior band in 12.6%, biconvex configuration in 25.4%, and others in 22.3%. Furthermore, 4.4% of the discs were slightly displaced; 43.9% moderately displaced and 51.6% were severely displaced. The prevalence of severely displaced and deformed discs in joints of cases over 40 years of age was high in the ADD wo R group. The prevalence of slightly displaced biconcave discs was higher in the ADD w R group. The other hand, the prevalence of severely displaced deformed discs was higher in the ADD wo R group. MR findings of internal derangement of the TMJ were found to be significantly correlated with age. (author)

  9. Armoring confined bubbles in concentrated colloidal suspensions

    Science.gov (United States)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  10. Manipulating bubbles with secondary Bjerknes forces

    Energy Technology Data Exchange (ETDEWEB)

    Lanoy, Maxime [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France); Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Derec, Caroline; Leroy, Valentin [Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Tourin, Arnaud [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France)

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  11. Manipulating bubbles with secondary Bjerknes forces

    International Nuclear Information System (INIS)

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-01-01

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices

  12. Lumbar disc excision through fenestration

    Directory of Open Access Journals (Sweden)

    Sangwan S

    2006-01-01

    Full Text Available Background : Lumbar disc herniation often causes sciatica. Many different techniques have been advocated with the aim of least possible damage to other structures while dealing with prolapsed disc surgically in the properly selected and indicated cases. Methods : Twenty six patients with clinical symptoms and signs of prolapsed lumbar intervertebral disc having radiological correlation by MRI study were subjected to disc excision by interlaminar fenestration method. Results : The assessment at follow-up showed excellent results in 17 patients, good in 6 patients, fair in 2 patients and poor in 1 patient. The mean preoperative and postoperative Visual Analogue Scores were 9.34 ±0.84 and 2.19 ±0.84 on scale of 0-10 respectively. These were statistically significant (p value< 0.001, paired t test. No significant complications were recorded. Conclusion : Procedures of interlaminar fenestration and open disc excision under direct vision offers sufficient adequate exposure for lumbar disc excision with a smaller incision, lesser morbidity, shorter convalescence, early return to work and comparable overall results in the centers where recent laser and endoscopy facilities are not available.

  13. Nucleation in bubble chambers

    International Nuclear Information System (INIS)

    Harigel, G.G.

    1988-01-01

    Various sources and mechanisms for bubble formation in superheated liquids are discussed. Bubble chambers can be filled with a great variety of liquids, such as e.g. the cryogenic liquids hydrogen, deuterium, neon, neon/hydrogen mixtures, argon, nitrogen, argon/nitrogen mixtures, or the warm liquids propane and various Freon like Freon-13B1. The superheated state is normally achieved by a rapid movement of an expansion piston or membrane, but can also be produced by standing ultrasonic waves, shock waves, or putting liquids under tension. Bubble formation can be initiated by ionizing particles, by intense (laser) light, or on rough surfaces. The creation of embryonic bubbles is not completely understood, but the macroscopic growth and condensation can be calculated, allowing to estimate the dynamic heat load [fr

  14. Metrical analysis of disc-condyle relation with different splint treatment positions in patients with TMJ disc displacement

    Directory of Open Access Journals (Sweden)

    Mu-Qing Liu

    Full Text Available Abstract Objective: To evaluate the effect of bite positions characterizing different splint treatments (anterior repositioning and stabilization splints on the disc-condyle relation in patients with TMJ disc displacement with reduction (DDwR, using magnetic resonance imaging (MRI. Material and Methods: 37 patients, with a mean age of 18.8±4.3 years (7 male and 30 females and diagnosed with DDwR based on the RDC/TMD, were recruited. MRI metrical analysis of the spatial changes of the disc/condyle, as well as their relationships, was done in three positions: maximum intercuspation (Position 1, anterior repositioning splint position (Position 2, and stabilization splint position (Position 3. Disc/condyle coordinate measurements and disc condyle angles were determined and compared. Results: In Position 1, the average disc-condyle angle was 53.4° in the 60 joints with DDwR, while it was −13.3° with Position 2 and 30.1° with Position 3. The frequency of successful "disc recapture" with Position 2 was significantly higher (58/60, 96.7% than Position 3 (20/60, 33.3%. In Positions 2 and 3, the condyle moved forward and downward while the disc moved backward. The movements were, however, more remarkable with Position 2. Conclusions: Anterior repositioning of the mandible improves the spatial relationship between the disc and condyle in patients with DDwR. In addition to anterior and inferior movement of the condyle, transitory posterior movement of the disc also occurred.

  15. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  16. Disc Golf: Teaching a Lifetime Activity

    Science.gov (United States)

    Eastham, Susan L.

    2015-01-01

    Disc golf is a lifetime activity that can be enjoyed by students of varying skill levels and abilities. Disc golf follows the principles of ball golf but is generally easier for students to play and enjoy success. The object of disc golf is similar to ball golf and involves throwing a disc from the teeing area to the target in as few throws as…

  17. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  18. Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2012-01-01

    Full Text Available Here we show an intriguing phenomenon in the bubble electrospinning process that the ruptured film might be stripped upwards by an electronic force to form a very thin and long plate-like strip, which might been received in the metal receiver as discontinuous backbone-like wrinkled materials, rather than smooth nano-fibers or microspheres. The processes are called the bubble electrospinning. The electronic force can be replaced by a blowing air, and the process is called as the blown bubble spinning. We demonstrate that the size and thickness of the ruptured film are the crucial parameters that are necessary to understand the various observations including beads and nanoporous materials. We identify the conditions required for a ruptured film to form discontinuous structure, and a critical width of the ruptured film to form a cylindrical fiber, above which a long and thin plate-like strip might be obtained, and a criterion for oscillatory jet diameter, which leads to bead morphology of the obtained fibers. The space of the adjacent beads depends on the fiber size. We anticipate our assay to be a starting point for more sophisticated study of the bubble electrospinning and the blown bubble spinning and for mass-production of both nanofibers and nanoscale discontinuous materials.

  19. Influence of drag closures and inlet conditions on bubble dynamics and flow behavior inside a bubble column

    Directory of Open Access Journals (Sweden)

    Amjad Asad

    2017-01-01

    Full Text Available In this paper, the hydrodynamics of a bubble column is investigated numerically using the discrete bubble model, which tracks the dispersed bubbles individually in a liquid column. The discrete bubble model is combined with the volume of fluid approach to account for a proper free surface boundary condition at the liquid–gas interface. This improves describing the backflow region, which takes place close to the wall region. The numerical simulation is conducted by means of the open source computational fluid dynamics library OpenFOAM®. In order to validate the numerical model, experimental results of a bubble column are used. The numerical prediction shows an overall good agreement compared to the experimental data. The effect of injection conditions and the influence of the drag closures on bubble dynamics are investigated in the current paper. Here, the significant effect of injection boundary conditions on bubble dynamics and flow velocity in the studied cavity is revealed. Moreover, the impact of the choice of the drag closure on the liquid velocity field and on bubble behavior is indicated by comparing three drag closures derived from former studies.

  20. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A., E-mail: douglasbaroni@ien.gov.b, E-mail: lamy@ien.gov.b, E-mail: bittenc@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Cunha Filho, Jurandyr S. [Escola Tecnica Estadual Visconde de Maua (ETEVM/RJ), Rio de Janeiro, RJ (Brazil); Motta, Mauricio S., E-mail: mmotta@cefet-rj.b [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  1. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    International Nuclear Information System (INIS)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A.; Cunha Filho, Jurandyr S.; Motta, Mauricio S.

    2011-01-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  2. Effects of additional inertia force on bubble breakup

    International Nuclear Information System (INIS)

    Pan Liangming; Zhang Wenzhi; Chen Deqi; Xu Jianhui; Xu Jianjun; Huang Yanping

    2011-01-01

    Through VOF two-phase flow model, the single bubble deformation and breakup in a vertical narrow channel is numerically investigated in the study based on the force balance at the process of bubble breakup. The effect of surface tension force, the additional inertia force and bubble initial shape on bubble breakup are analyzed according to the velocity variation at the break-up point and the minimum necking size when the bubble is breaking up. It is found that the surface tension force, the additional inertia force and the bubble initial shape have significant effects on the bubble breakup through the fluid injection toward to the bubble, which finally induces the onset of bubble breakup. (authors)

  3. [Partial nucleotomy of the ovine disc as an in vivo model for disc degeneration].

    Science.gov (United States)

    Guder, E; Hill, S; Kandziora, F; Schnake, K J

    2009-01-01

    The aim of this study was to develop a suitable animal model for the clinical situation of progressive disc degeneration after microsurgical nucleotomy. Twenty sheep underwent standardised partial anterolateral nucleotomy at lumbar segment 3/4. After randomisation, 10 animals were sacrificed after 12 weeks (group 1). The remainder was sacrificed after 48 weeks (group 2). For radiological examination X-rays, MRI and post-mortem CT scans were performed. Lumbar discs L 3/4 with adjacent subchondral trabecular bone were harvested and analysed macroscopically and histologically. An image-analysing computer program was used to measure histomorphometric indices of bone structure. 17 segments could be evaluated. After 12 weeks (group 1) histological and radiological degenerative disc changes were noted. After 48 weeks (group 2), radiological signs in MRI reached statistical significance. Furthermore, group 2 showed significantly more osteophyte formations in CT scans. Histomorphometric changes of the disc and the adjacent vertebral bone structure suggest a significant progressive degenerative remodelling. The facet joints did not show any osteoarthrosis after 48 weeks. Partial nucleotomy of the ovine lumbar disc leads to radiological and histological signs of disc degeneration similar to those seen in humans after microsurgical nucleotomy. The presented in vivo model may be useful to evaluate new orthopaedic treatment strategies.

  4. Radiological assessment of loss of disc height during acute and chronic degenerative lumbar disc alterations

    International Nuclear Information System (INIS)

    Zoellner, J.; Sancaktaroglu, T.; Nafe, B.; Eysel, P.; Loew, R.

    2001-01-01

    Aim of the study: A loss of disc height with increasing segmental mobility is an important reason for low back pain. The measurement of hyaluronic acid content of the nucleus pulposus prolaps shows a difference between acute (group 1) and chronic (group 2) disc degeneration. The purpose of the present investigation was to determine the decreasing of disc height between these two groups and the no-symptomatic segments of these patients. Methods: 20 human lateral preoperative X-ray measurements according to Frobin et al. were taken; group 1 with 7 patients (mean age 41 years) and group 2 with 13 patients (mean age 44 years). Results: There was a significant tendency (p=0.091) to a reduction of disc height in group 2 between symptomatic and asymptomatic discs. Conclusion: The used method is not suitable to answer the present question conclusively. (orig.) [de

  5. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  6. Actuator disc edge singularity. The key to a revised actuator disc concept and momentum theory

    Energy Technology Data Exchange (ETDEWEB)

    Kuik, G.A.M. van (The Wind Energy Group of the Technical University Eindhoven (NL))

    1989-01-01

    Since the beginning of rotor aerodynamics the actuator disc momentum theory occupies a prominant place in almost any textbook on this subject. Specially in axial flow the theory provides an easy and rather accurate performance prediction. The results first obtained by Lanchester for the induced power of a hovering rotor and the maximum power of a wind turbine are still used as guidelines for complicated calculations. On the other hand, experimental results for propellers are known to deviate systematically (some 10%) from the momentum theory results. This is commonly attributed to the differences between a real rotor and an actuator disc. However, some actuator disc- and actuator strip (the 2-dimensional version) experiments are described in literature, showing the same deviations from momentum theory results. Therefore, apart from the question how representative an actuator disc is for a real rotor, the actuator disc concept itself may be inadequate. This problem is the subject of the work describe here. It will be shown that the classical actuator disc concept ignores discrete forces resulting from a flow singularity at the edge of the disc. The (extended) momentum theory, applied to this actuator strip model, shows a shift of the results towards the experimental data, and for the static case (hover) even a quantitative agreement is obtained. (author) 12 refs.

  7. Vascular complications of prosthetic inter-vertebral discs.

    Science.gov (United States)

    Daly, Kevin J; Ross, E Raymond S; Norris, Heather; McCollum, Charles N

    2006-10-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had eroded into the bifurcation of the inferior vena cava and the left common iliac vein. In three cases the aortic bifurcation was also involved. The fibrosis was so severe that dissecting out the arteries and veins to provide access to the relevant disc proved impossible. Formal division of the left common iliac vein and artery with subsequent repair was our solution. Anterior inter-vertebral disc displacement was associated with severe vascular injury. Preventing anterior disc displacement is essential in disc design. In the event of anterior displacement, disc removal should be planned with a Vascular Surgeon.

  8. Bubbles in the self-accelerating universe

    International Nuclear Information System (INIS)

    Izumi, Keisuke; Tanaka, Takahiro; Koyama, Kazuya; Pujolas, Oriol

    2007-01-01

    We revisit the issue of the stability in the Dvali-Gabadadze-Porrati model by considering the nucleation of bubbles of the conventional branch within the self-accelerating branch. We construct an instanton describing this process in the thin wall approximation. On one side of the bubble wall, the bulk consists of the exterior of the brane, while on the other side it is the interior. The solution requires the presence of a 2-brane (the bubble wall) which induces the transition. However, we show that this instanton cannot be realized as the thin wall limit of any smooth solution. Once the bubble thickness is resolved, the equations of motion do not allow O(4) symmetric solutions joining the two branches. We conclude that the thin wall instanton is unphysical, and that one cannot have processes connecting the two branches, unless negative tension bubble walls are introduced. This also suggests that the self-accelerating branch does not decay into the conventional branch nucleating bubbles. We comment on other kinds of bubbles that could interpolate between the two branches

  9. Deep-down ionization of protoplanetary discs

    Science.gov (United States)

    Glassgold, A. E.; Lizano, S.; Galli, D.

    2017-12-01

    The possible occurrence of dead zones in protoplanetary discs subject to the magneto-rotational instability highlights the importance of disc ionization. We present a closed-form theory for the deep-down ionization by X-rays at depths below the disc surface dominated by far-ultraviolet radiation. Simple analytic solutions are given for the major ion classes, electrons, atomic ions, molecular ions and negatively charged grains. In addition to the formation of molecular ions by X-ray ionization of H2 and their destruction by dissociative recombination, several key processes that operate in this region are included, e.g. charge exchange of molecular ions and neutral atoms and destruction of ions by grains. Over much of the inner disc, the vertical decrease in ionization with depth into the disc is described by simple power laws, which can easily be included in more detailed modelling of magnetized discs. The new ionization theory is used to illustrate the non-ideal magnetohydrodynamic effects of Ohmic, Hall and Ambipolar diffusion for a magnetic model of a T Tauri star disc using the appropriate Elsasser numbers.

  10. Slowing down bubbles with sound

    Science.gov (United States)

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  11. When Will Occur the Crude Oil Bubbles?

    International Nuclear Information System (INIS)

    Su, Chi-Wei; Li, Zheng-Zheng; Chang, Hsu-Ling; Lobonţ, Oana-Ramona

    2017-01-01

    In this paper, we apply a recursive unit root test to investigate whether there exist multiple bubbles in crude oil price. The method is best suited for a practical implementation of a time series and delivers a consistent date-stamping strategy for the origination and termination of multiple bubbles. The empirical result indicates that there exist six bubbles during 1986–2016 when the oil price deviate from its intrinsic value based on market fundamentals. Specifically, oil price contains the fundamentals and bubble components. The dates of the bubbles correspond to specific events in the politics and financial markets. The authorities should actively fight speculative bubbles or just observe their evolutions and speculation activities may decrease, which is favour of the stabilisation of the staple commodities including crude oil price. These findings have important economic and policy implications to recognise the cause of bubbles and take corresponding measures to reduce the impact on the real economy cause of the fluctuation of crude oil price. - Highlights: • Investigate multiple bubbles in crude oil price. • Indicate six bubbles deviate from its intrinsic value based on market fundamentals. • The bubbles correspond to specific events in the politics and financial markets. • Reduce the impact on the real economy cause of the fluctuation of crude oil price.

  12. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakho [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  13. New evidence on the first financial bubble

    NARCIS (Netherlands)

    Frehen, R.G.P.; Goetzmann, W.; Rouwenhorst, K.G.

    2013-01-01

    The Mississippi Bubble, South Sea Bubble and the Dutch Windhandel of 1720 together represent the world's first global financial bubble. We hand-collect cross-sectional price data and investor account data from 1720 to test theories about market bubbles. Our tests suggest that innovation was a key

  14. Comparison of Heidelberg Retina Tomograph with disc-macula distance to disc diameter ratio in diagnosing optic nerve hypoplasia.

    Science.gov (United States)

    Pang, Yi; Frantz, Kelly A

    2016-05-01

    To evaluate whether Heidelberg Retinal Tomograph (HRT) is a valid test for diagnosing congenital optic nerve hypoplasia (CONH) compared to the ratio of the distance between the centre of the optic disc and the centre of the macula and the mean optic disc diameter (DM:DD ratio). Furthermore, to determine the optimal cut-off value of HRT disc area to differentiate a hypoplastic disc from a normal optic disc. A total of 33 subjects with CONH (4-67 years old) and 160 normal subjects (5-65 years old) were recruited and underwent comprehensive eye examinations, fundus photography and HRT. Receiver operating characteristic curves for DM:DD ratio and HRT disc area were constructed based on data from the 46 CONH eyes and 160 control eyes. Mean (±S.D.) HRT disc area was 1.94 (±0.54) mm(2) for the control eyes and 0.84 (±0.35) mm(2) for the CONH eyes (p < 0.0001). The area under the curve (AUC) for DM:DD ratio was 0.83 (95% confidence interval: 0.76-0.90). The AUC for HRT disc area was 0.96 (95% confidence interval: 0.94-0.99). A statistically significant difference was found between AUC for HRT disc area and that for DM:DD ratio (p = 0.0004). The optimal cut-off value for HRT disc area was 1.42 mm(2) with 95% sensitivity and 85% specificity. The optimal cut-off value for DM:DD ratio was 3.20 with 78% sensitivity and 78% specificity. Both HRT and the DM:DD ratio are valid tests to aid diagnosis of CONH. HRT is superior to DM:DD ratio in diagnosing CONH with higher sensitivity and specificity. We suggest the optimal cut-off value for HRT disc area as 1.42 mm(2) in order to discriminate a hypoplastic disc from a normal optic disc. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  15. Pinch-off Scaling Law of Soap Bubbles

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  16. CT findings of lumbar intervertebral disc: II. Disc herniation (HNP)

    International Nuclear Information System (INIS)

    Yang, W. J.; Lee, J. M.; Bahk, Y. W.

    1984-01-01

    In lumbar region the epidural fat pad is relatively abundant so that CT can provides sufficient information in diagnosis of lumbar HNP. Many authors have reported on the CT findings of HNP such as focal nodular protrusion of the posterior disc margin, obliteration of epidural fat pad, impingement of dural sac and nerve root, swelling of nerve root, soft tissue density in the spinal canal and calcification of disc. However there was so previous report describing incidence and reliability of the findings. It is the purpose of the present study to survey the frequency, reliability, and limitation of these CT findings. The clinical material was consisted of 30 operatively proven cases of HNP of the lumbar spine. Each lumbar CT scan was reviewed retrospectively and the findings were analysed by two radiologists independently. There were 20 males and 10 females and the mean age was 36.7 years. Involvement of L4-S5 level was 2.3 times more frequent than that of L5-S1 level. Of 30 cases, 22 were unilateral posterolateral types and 8 cases central or unilateral far lateral types. CT findings observed were nodular protrusion of the posterior margin of the disc, obliteration of epidural fat pad, impingement of dural sac or nerve root, soft tissue density in the spinal canal and calcification in the posterior portion of the protruded disc, in order of decreasing frequency. The conclusions are follows: 1. Nodular protrusion of the posterior disc margin accompanied by obliteration of epidural fat pad was observed in every case. The former findings was designated as direct sign and the latter indirect. 2. Obliteration of the epidural fat appears to be significant in lateral recesses especially when it occurs unilaterally. This was not true, however, in the centrally located fat pad. 3. Impingement of the dural sac and nerve root were observed in 90% and 67%, respectively, and were very helpful in establishing HNP diagnosis when the direct and indirect signs were equivocal

  17. Bubbles with shock waves and ultrasound: a review.

    Science.gov (United States)

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  18. The Galactic stellar disc

    International Nuclear Information System (INIS)

    Feltzing, S; Bensby, T

    2008-01-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies.

  19. Björk-Shiley strut fracture and disc escape: literature review and a method of disc retrieval.

    Science.gov (United States)

    Hendel, P N

    1989-03-01

    Embolization of a prosthetic valve poppet is a rare but life-threatening event. It was reported sporadically before the introduction of the Björk-Shiley 70-degree convexoconcave prosthesis in 1980. Since that time, there have been a large number of reported mechanical failures with disc escape. The rate for the 29-mm to 33-mm mitral valves is estimated as 5.2%. In 29 of 35 patients (including the 2 presented here) in whom the site of disc lodgment could be determined, the disc was in the descending or abdominal aorta. Fifteen of these patients died. Six survivors had the disc removed at the same operation and 6 at a later operation. In 2 patients, the disc was not removed. In 2 patients in whom the disc was not removed initially, it was thought to contribute to postoperative complications. Two more cases of structural failure of the Björk-Shiley convexoconcave prosthesis are presented. A transpericardial approach to the descending aorta on bypass is described. It allows easy removal of the disc and eliminates the need for a second operation.

  20. Single DNA denaturation and bubble dynamics

    International Nuclear Information System (INIS)

    Metzler, Ralf; Ambjoernsson, Tobias; Hanke, Andreas; Fogedby, Hans C

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.

  1. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Debris disc constraints on planetesimal formation

    Science.gov (United States)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  3. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  4. T1 hyperintense disc in alkaptonuria.

    Science.gov (United States)

    Sag, Alan A; Silbergleit, Richard; Olson, Rick E; Wilson, Jon; Krishnan, Anant

    2012-10-01

    Case report. To report a rare case of alkaptonuria presenting as a T1-hyperintense disc herniation. A 46-year-old man without previous diagnosis of alkaptonuria underwent evaluation for progressive back pain revealing a T1-hyperintense disc herniation at the L3-L4 level. Discectomy recovered a blackened disc that was pathologically confirmed to be nucleus pulposus with alkaptonuric involvement. The differential diagnosis of a T1-hyperintense, T2-hypointense disc on magnetic resonance imaging is discussed, with emphasis on the pathophysiology of alkaptonuria. A single patient is reported. Pathologically proven patient presentation with radiological and pathological images. We report a rare case of alkaptonuria presenting as a T1-hyperintense disc herniation.

  5. Low-invasive reconstruction of spine discs under thermo-mechanical effect of fiber laser

    Science.gov (United States)

    Sobol, Emil; Baskov, Andrey; Borshchenko, Igor; Shekhter, Anatoly

    2018-02-01

    The paper considers physical processes and mechanisms of laser reparation of spine cartilage, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces non-homogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 50 °C) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Non-destructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix in the in the immediate vicinity of chondrocytes. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in neurosurgery and orthopedics for the treatment cartilages of spine. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed (i) for more than 3,200 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care; and (ii) for 1100 patients underwent hernia removal surgery. Substantial relief of back pain was obtained in 92.5% of patients treated who returned to their daily activities. LRD allowed also to decrease secondary surgeries more than three times. Optical fiber technique based on light scattering measurements have been used to promote safety and efficacy of the laser procedures.

  6. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  7. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    Science.gov (United States)

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  8. The presence and absence of lymphatic vessels in the adult human intervertebral disc: relation to disc pathology

    International Nuclear Information System (INIS)

    Kliskey, Karolina; Williams, Kelly; Yu, J.; Urban, Jill; Athanasou, Nick; Jackson, David

    2009-01-01

    Although the normal adult human intervertebral disc is considered to be avascular, vascularised cellular fibrous tissue can be found in pathological conditions involving the disc such as disc herniation. Whether lymphatics vessels form a component of this reparative tissue is not known as the presence or absence of lymphatics in herniated and normal disc tissue is not known. We examined spinal tissues and discectomy specimens for the presence of lymphatics. The examination used immunohistochemistry to identify the specific lymphatic endothelial cell markers, podoplanin and LYVE1. Lymphatic vessels were not found in the nucleus pulposus or annulus fibrosus of intact, non-herniated lumbar and thoracic discs but were present in the surrounding ligaments. Ingrowth of fibrous tissue was seen in 73% of herniated disc specimens of which 36% contained LYVE1+/podoplanin + lymphatic vessels. Lymphatic vessels were not seen in the sacrum and coccyx or biopsies of four sacrococcygeal chordomas, but they were noted in surrounding extra-osseous fat and fibrous tissue at the edge of the infiltrating tumour. Our findings indicate that lymphatic vessels are not present in the normal adult intervertebral disc but that, when there is extrusion of disc material into surrounding soft tissue, there is ingrowth of reparative fibrous tissue containing lymphatic vessels. Our findings also indicate that chordoma, a tumour of notochordal origin, spreads to regional lymph nodes via lymphatics in para-spinal soft tissues. (orig.)

  9. Tiny plastic lung mimics human pulmonary function

    Science.gov (United States)

    Careers Inclusion & Diversity Work-Life Balance Career Resources Apply for a Job Postdocs Students Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Releases - 2016 » April » Tiny plastic lung mimics human pulmonary function Tiny plastic lung mimics

  10. Study of Bubble Size, Void Fraction, and Mass Transport in a Bubble Column under High Amplitude Vibration

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-04-01

    Full Text Available Vertical vibration is known to cause bubble breakup, clustering and retardation in gas-liquid systems. In a bubble column, vibration increases the mass transfer ratio by increasing the residence time and phase interfacial area through introducing kinetic buoyancy force (Bjerknes effect and bubble breakup. Previous studies have explored the effect of vibration frequency (f, but minimal effort has focused on the effect of amplitude (A on mass transfer intensification. Thus, the current work experimentally examines bubble size, void fraction, and mass transfer in a bubble column under relatively high amplitude vibration (1.5 mm < A <9.5 mm over a frequency range of 7.5–22.5 Hz. Results of the present work were compared with past studies. The maximum stable bubble size under vibration was scaled using Hinze theory for breakage. Results of this work indicate that vibration frequency exhibits local maxima in both mass transfer and void fraction. Moreover, an optimum amplitude that is independent of vibration frequency was found for mass transfer enhancements. Finally, this work suggests physics-based models to predict void fraction and mass transfer in a vibrating bubble column.

  11. Cutting bubbles with a single wire

    NARCIS (Netherlands)

    Baltussen, M.W.; Segers, Q.I.E.; Kuipers, J.A.M.; Deen, N.G.

    2017-01-01

    Many gas-liquid-solid contactors, such as trickle bed and bubble slurry columns, suffer from heat and mass transfer limitations. To overcome these limitations, new micro-structured bubble column reactor is proposed. In this reactor, a catalyst coated wire mesh is introduced in a bubble column to cut

  12. Reexpression of Prior Stroke Symptoms in Adults: When is a Mimic a Mimic?

    Science.gov (United States)

    Siegler, James E; George, Alexander J; Martin-Schild, Sheryl

    2017-09-01

    A "stroke mimic" refers to any clinical condition that causes neurological symptoms clinically indistinguishable from a cerebral lesion that affects a vascular distribution, but is not caused by ischemia. One subtype of stroke mimic, termed stroke reexpression, is a form of mimicry in which previously recovered or improved stroke symptoms recur in the setting of a neurological disturbance (seizure, hypoperfusion state) or a systemic disturbance (toxic, metabolic, infectious). Many reports of stroke reexpression exist in the literature and are well known to clinicians, but there has been no consensus regarding terminology that has been published to date. The purpose of this review is to summarize several examples of stroke reexpression and propose simple, useful criteria for this clinical condition.

  13. Archival-grade optical disc design and international standards

    Science.gov (United States)

    Fujii, Toru; Kojyo, Shinichi; Endo, Akihisa; Kodaira, Takuo; Mori, Fumi; Shimizu, Atsuo

    2015-09-01

    Optical discs currently on the market exhibit large variations in life span among discs, making them unsuitable for certain business applications. To assess and potentially mitigate this problem, we performed accelerated degradation testing under standard ISO conditions, determined the probable disc failure mechanisms, and identified the essential criteria necessary for a stable disc composition. With these criteria as necessary conditions, we analyzed the physical and chemical changes that occur in the disc components, on the basis of which we determined technological measures to reduce these degradation processes. By applying these measures to disc fabrication, we were able to develop highly stable optical discs.

  14. Flow visualization using bubbles

    International Nuclear Information System (INIS)

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  15. Modeling of mass transfer and chemical reactions in a bubble column reactor using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  16. On the mobility of fission-gas bubbles

    International Nuclear Information System (INIS)

    Nichols, F.A.; Ronchi, C.

    1986-01-01

    The importance of bubble migration in fuel swelling and fission-product release remains a controversial topic in spite of a great deal of research. For steady state analyses some authors ignore bubble motion totally, whereas others use mobilities (based on out-of-pile measurements) which are far below the theoretical diffusion-control predictions. Under transient conditions some continue to use zero or low bubble mobilities, whereas others invoke higher mobilities. Experimental information on mobility of bubbles under irradiation conditions is very limited, but supports the theoretical values for bubble sizes above 1 μm. The authors discuss here some interesting new results which may provide direct evidence for in-pile mobilities comparable with surface-diffusion control predictions for much smaller bubbles (<20nm), where out-of-pile studies indicate greatly reduced mobilities. A brief summary is presented of information available for bubble mobilities, both in- and out-of-pile

  17. Thermochemical modelling of brown dwarf discs

    NARCIS (Netherlands)

    Greenwood, A. J.; Kamp, I.; Waters, L. B. F. M.; Woitke, P.; Thi, W.-F.; Rab, Ch.; Aresu, G.; Spaans, M.

    The physical properties of brown dwarf discs, in terms of their shapes and sizes, are still largely unexplored by observations. ALMA has by far the best capabilities to observe these discs in sub-mm CO lines and dust continuum, while also spatially resolving some discs. To what extent brown dwarf

  18. MIMIC Methods for Assessing Differential Item Functioning in Polytomous Items

    Science.gov (United States)

    Wang, Wen-Chung; Shih, Ching-Lin

    2010-01-01

    Three multiple indicators-multiple causes (MIMIC) methods, namely, the standard MIMIC method (M-ST), the MIMIC method with scale purification (M-SP), and the MIMIC method with a pure anchor (M-PA), were developed to assess differential item functioning (DIF) in polytomous items. In a series of simulations, it appeared that all three methods…

  19. Bubbles and breaking waves

    Science.gov (United States)

    Thorpe, S. A.

    1980-01-01

    The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.

  20. Electron acceleration in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Oliver

    2014-02-03

    The bubble regime of laser-wakefield acceleration has been studied over the recent years as an important alternative to classical accelerators. Several models and theories have been published, in particular a theory which provides scaling laws for acceleration parameters such as energy gain and acceleration length. This thesis deals with numerical simulations within the bubble regime, their comparison to these scaling laws and data obtained from experiments, as well as some specific phenomenona. With a comparison of the scaling laws with numerical results a parameter scan was able to show a large parameter space in which simulation and theory agree. An investigation of the limits of this parameter space revealed boundaries to other regimes, especially at very high (a{sub 0} > 100) and very low laser amplitudes (a{sub 0} < 4). Comparing simulation data with data from experiments concerning laser pulse development and electron energies, it was found that experimental results can be adequately reproduced using the Virtual-Laser-Plasma-Laboratory code. In collaboration with the Institut fuer Optik und Quantenelektronik at the Friedrich-Schiller University Jena synchrotron radiation emitted from the inside of the bubble was investigated. A simulation of the movement of the electrons inside the bubble together with time dependent histograms of the emitted radiation helped to prove that the majority of radiation created during a bubble acceleration originates from the inside of the bubble. This radiation can be used to diagnose the amplitude of oscillation of the trapped electrons. During a further study it was proven that the polarisation of synchrotron radiation from a bubble contains information about the exact oscillation direction. This oscillation was successfully controlled by using either a laser pulse with a tilted pulse front or an asymmetric laser pulse. First results of ongoing studies concerning injecting electrons into an existing bubble and a scheme called

  1. Motion of air bubbles in stagnant water condition

    International Nuclear Information System (INIS)

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    Full text: In this study, air bubble motion in stagnant water condition in a vertical pipe is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature

  2. Motion of air bubbles in stagnant water condition

    International Nuclear Information System (INIS)

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    In this study, air bubble motion in stagnant water condition in a vertical pipe of 4.6 cm diameter is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature. (author)

  3. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  4. Total disc replacement using tissue-engineered intervertebral discs in the canine cervical spine.

    Directory of Open Access Journals (Sweden)

    Yu Moriguchi

    Full Text Available The most common reason that adults in the United States see their physician is lower back or neck pain secondary to degenerative disc disease. To date, approaches to treat degenerative disc disease are confined to purely mechanical devices designed to either eliminate or enable flexibility of the diseased motion segment. Tissue engineered intervertebral discs (TE-IVDs have been proposed as an alternative approach and have shown promise in replacing native IVD in the rodent tail spine. Here we demonstrate the efficacy of our TE-IVDs in the canine cervical spine. TE-IVD components were constructed using adult canine annulus fibrosis and nucleus pulposus cells seeded into collagen and alginate hydrogels, respectively. Seeded gels were formed into a single disc unit using molds designed from the geometry of the canine spine. Skeletally mature beagles underwent discectomy with whole IVD resection at levels between C3/4 and C6/7, and were then divided into two groups that received only discectomy or discectomy followed by implantation of TE-IVD. Stably implanted TE-IVDs demonstrated significant retention of disc height and physiological hydration compared to discectomy control. Both 4-week and 16-week histological assessments demonstrated chondrocytic cells surrounded by proteoglycan-rich matrices in the NP and by fibrocartilaginous matrices in the AF portions of implanted TE-IVDs. Integration into host tissue was confirmed over 16 weeks without any signs of immune reaction. Despite the significant biomechanical demands of the beagle cervical spine, our stably implanted TE-IVDs maintained their position, structure and hydration as well as disc height over 16 weeks in vivo.

  5. Average properties of bidisperse bubbly flows

    Science.gov (United States)

    Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.

    2018-03-01

    Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.

  6. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    Science.gov (United States)

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Bifurcation scenarios for bubbling transition.

    Science.gov (United States)

    Zimin, Aleksey V; Hunt, Brian R; Ott, Edward

    2003-01-01

    Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling, whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random (noise) and fixed (mismatch) perturbations are considered. Results of numerical experiments testing our theoretical predictions are presented.

  8. Notochord Cells in Intervertebral Disc Development and Degeneration

    Science.gov (United States)

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  9. Notochord Cells in Intervertebral Disc Development and Degeneration

    Directory of Open Access Journals (Sweden)

    Matthew R. McCann

    2016-01-01

    Full Text Available The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches.

  10. The life cycles of Be viscous decretion discs: fundamental disc parameters of 54 SMC Be stars

    Science.gov (United States)

    Rímulo, L. R.; Carciofi, A. C.; Vieira, R. G.; Rivinius, Th; Faes, D. M.; Figueiredo, A. L.; Bjorkman, J. E.; Georgy, C.; Ghoreyshi, M. R.; Soszyński, I.

    2018-05-01

    Be stars are main-sequence massive stars with emission features in their spectrum, which originates in circumstellar gaseous discs. Even though the viscous decretion disc model can satisfactorily explain most observations, two important physical ingredients, namely the magnitude of the viscosity (α) and the disc mass injection rate, remain poorly constrained. The light curves of Be stars that undergo events of disc formation and dissipation offer an opportunity to constrain these quantities. A pipeline was developed to model these events that use a grid of synthetic light curves, computed from coupled hydrodynamic and radiative transfer calculations. A sample of 54 Be stars from the OGLE survey of the Small Magellanic Cloud (SMC) was selected for this study. Because of the way our sample was selected (bright stars with clear disc events), it likely represents the densest discs in the SMC. Like their siblings in the Galaxy, the mass of the disc in the SMC increases with the stellar mass. The typical mass and angular momentum loss rates associated with the disc events are of the order of ˜10-10 M⊙ yr-1 and ˜5 × 1036 g cm2 s-2, respectively. The values of α found in this work are typically of a few tenths, consistent with recent results in the literature and with the ones found in dwarf novae, but larger than current theory predicts. Considering the sample as a whole, the viscosity parameter is roughly two times larger at build-up ( = 0.63) than at dissipation ( = 0.26). Further work is necessary to verify whether this trend is real or a result of some of the model assumptions.

  11. The Minnaert bubble: an acoustic approach

    Energy Technology Data Exchange (ETDEWEB)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude [Laboratoire Matiere et Systemes Complexes, Universite Paris Diderot and CNRS UMR 7057, 10 rue Alice Domont et Leonie Duquet, 75013 Paris (France); Leroy, Valentin [Laboratoire Ondes et Acoustique, Universite Paris 7 and CNRS UMR 7587, ESPCI, 10 rue Vauquelin, 75005 Paris (France)], E-mail: martin.devaud@univ-paris-diderot.fr

    2008-11-15

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Perot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  12. A bubble detection system for propellant filling pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng [Robotics Institute, Beihang University, 100191 Beijing (China)

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  13. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  14. Interferometric measurement of film thickness during bubble blowing

    Science.gov (United States)

    Wang, Z.; Mandracchia, B.; Ferraro, V.; Tammaro, D.; Di Maio, E.; Maffettone, P. L.; Ferraro, P.

    2017-06-01

    In this paper, we propose digital holography in transmission configuration as an effective method to measure the time-dependent thickness of polymeric films during bubble blowing. We designed a complete set of experiments to measure bubble thickness, including the evaluation of the refractive index of the polymer solution. We report the measurement of thickness distribution along the film during the bubble formation process until the bubble`s rupture. Based on those data, the variation range and variation trend of bubble film thickness are clearly measured during the process of expansion to fracture is indicated.

  15. Rational Asset Pricing Bubbles Revisited

    OpenAIRE

    Jan Werner

    2012-01-01

    Price bubble arises when the price of an asset exceeds the asset's fundamental value, that is, the present value of future dividend payments. The important result of Santos and Woodford (1997) says that price bubbles cannot exist in equilibrium in the standard dynamic asset pricing model with rational agents as long as assets are in strictly positive supply and the present value of total future resources is finite. This paper explores the possibility of asset price bubbles when either one of ...

  16. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  17. Minimum weight design of inhomogeneous rotating discs

    International Nuclear Information System (INIS)

    Jahed, Hamid; Farshi, Behrooz; Bidabadi, Jalal

    2005-01-01

    There are numerous applications for gas turbine discs in the aerospace industry such as in turbojet engines. These discs normally work under high temperatures while subjected to high angular velocities. Minimizing the weight of such items in aerospace applications results in benefits such as low dead weights and lower costs. High speed of rotation causes large centrifugal forces in a disc and simultaneous application of high temperatures reduces disc material strength. Thus, the latter effects tend to increase deformations of the disc under the applied loads. In order to obtain a reliable disc analysis and arrive at the corresponding correct stress distribution, solutions should consider changes in material properties due to the temperature field throughout the disc. To achieve this goal, an inhomogeneous disc model with variable thickness is considered. Using the variable material properties method, stresses are obtained for the disc under rotation and a steady temperature field. In this paper this is done by modelling the rotating disc as a series of rings of different but constant properties. The optimum disc profile is arrived at by sequentially proportioning the thicknesses of each ring to satisfy the stress requirements. This method vis-a-vis a mathematical programming procedure for optimization shows several advantages. Firstly, it is simple iterative proportioning in each design cycle not requiring involved mathematical operations. Secondly, due to its simplicity it alleviates the necessity of certain simplifications that are common in so-called rigorous mathematical procedures. The results obtained, compared to those published in the literature show agreement and superiority. A further advantage of the proposed method is the independence of the end results from the initially assumed point in the iterative design routine, unlike most methods published so far

  18. Bernoulli Suction Effect on Soap Bubble Blowing?

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  19. A Bubble-Based Drag Model at the Local-Grid Level for Eulerian Simulation of Bubbling Fluidized Beds

    Directory of Open Access Journals (Sweden)

    Kun Hong

    2016-01-01

    Full Text Available A bubble-based drag model at the local-grid level is proposed to simulate gas-solid flows in bubbling fluidized beds of Geldart A particles. In this model, five balance equations are derived from the mass and the momentum conservation. This set of equations along with necessary correlations for bubble diameter and voidage of emulsion phase is solved to obtain seven local structural parameters (uge, upe, εe, δb, ub, db, and ab which describe heterogeneous flows of bubbling fluidized beds. The modified drag coefficient obtained from the above-mentioned structural parameters is then incorporated into the two-fluid model to simulate the hydrodynamics of Geldart A particles in a lab-scale bubbling fluidized bed. The comparison between experimental and simulation results for the axial and radial solids concentration profiles is promising.

  20. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    Science.gov (United States)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  1. Stroke mimic diagnoses presenting to a hyperacute stroke unit.

    Science.gov (United States)

    Dawson, Ang; Cloud, Geoffrey C; Pereira, Anthony C; Moynihan, Barry J

    2016-10-01

    Stroke services have been centralised in several countries in recent years. Diagnosing acute stroke is challenging and a high proportion of patients admitted to stroke units are diagnosed as a non-stroke condition (stroke mimics). This study aims to describe the stroke mimic patient group, including their impact on stroke services. We analysed routine clinical data from 2,305 consecutive admissions to a stroke unit at St George's Hospital, London. Mimic groupings were derived from 335 individual codes into 17 groupings. From 2,305 admissions, 555 stroke mimic diagnoses were identified (24.2%) and 72% of stroke mimics had at least one stroke risk factor. Common mimic diagnoses were headache, seizure and syncope. Medically unexplained symptoms and decompensation of underlying conditions were also common. Median length of stay was 1 day; a diagnosis of dementia (p=0.028) or needing MRI (p=0.006) was associated with a longer stay. Despite emergency department assessment by specialist clinicians and computed tomography brain, one in four suspected stroke patients admitted to hospital had a non-stroke diagnosis. Stroke mimics represent a heterogeneous patient group with significant impacts on stroke services. Co-location of stroke and acute neurology services may offer advantages where service reorganisation is being considered. © Royal College of Physicians 2016. All rights reserved.

  2. Soap Bubbles and Crystals

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 6. Soap Bubbles and Crystals. Jean E Taylor. General Article Volume 11 Issue 6 June 2006 pp 26-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/06/0026-0030. Keywords. Soap bubble ...

  3. Biomaterials for intervertebral disc regeneration and repair.

    Science.gov (United States)

    Bowles, Robert D; Setton, Lori A

    2017-06-01

    The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Development of rupture discs for the FBTR

    International Nuclear Information System (INIS)

    Chetal, S.C.; Raju, C.; Anandkumar, V.; Seetharaman, V.; Rajan, K.K.

    1984-01-01

    Rupture discs are required as a safety device for protecting the secondary sodium circuit and its components against high pressure surges due to accidental water steam leaks in sodium heated steam generator and the consequent sodium water reaction. For identical reasons, rupture discs are also required on the vessels used for decontamination of sodium components. Reverse buckling knife blade concept with austenitic stainless steel disc has been developed for the rupture disc assemblies required for Fast Breeder Test Reactor (FBTR). Hydroforming process without any die has been used for disc fabrication. One rupture disc assembly required for steam generator is undergoing sodium endurance test and has accumulated 4,500 hours. The present status of development work as demonstrated by room temperature experimental results as well as the scope for future work are discussed. (author)

  5. Non-intuitive bubble effects in reactor and containment technology

    International Nuclear Information System (INIS)

    Moody, F.J.

    1991-01-01

    Most people know a lot about bubbles, including how they rise in liquids and the way they appear when the cap is removed from a bottle of carbonated beverage. A lot of bubble knowledge is obtained from bubbling air through water in aquariums to keep the fish alive and happy, or watching scuba divers feed the sharks in large glass tanks at the local zoo. But innocent bubbles can be sources of structural loadings and sometimes destructive fluid behavior. In fact, there are many non-intuitive effects associated with bubbles which have been discovered by experiments and analyses. It has been necessary to design various reactor and containment components in the nuclear energy industry to accommodate the fact that bubbles can expand like compressed springs, or oscillate, or collapse abruptly, and create structural loads. This paper describes several important phenomena associated with bubble action in nuclear reactor and containment systems and the associated loads exerted. An awareness of these effects can help to avoid unwelcome surprises in general thermal-hydraulic applications when a system is disturbed by bubble behavior. Major topics discussed include expanding and collapsing submerged bubbles, steam chugging and ringout, bubble shattering, surprising hot bubble action in a saturated pool, bubble effects on fluid-structure-interaction, waterhammer from collapsing bubble in pipes, and vapor bubble effects on sound speed in saturated mixtures

  6. Rabbit model of intervertebral disc degeneration by external compression device characterized by X-ray, MRI, histology, and cell viability

    Directory of Open Access Journals (Sweden)

    Ismail Ismail

    2006-12-01

    Full Text Available Appropriate experimental animal models, which mimic the degenerative process occurring in human intervertebral disc (IVD breakdown and can be used for new treatment studies such as tissue engineering or disc distraction are lacking. We studied the external compression device that used by Kroeber et al to create intervertebral disc degeneration in rabbit model characterized by X-ray, MRI, Histology, and Cell Viability. Ten NZW rabbit were randomly assigned to one of five groups. Intervertebral disc VL4-L5 are compressed using an external loading device, 1.9 MPa. First group rabbit are loaded for 14 days, second loaded for 28 days, thirth group are loaded for 14 days, and unloaded for 14 days, fourth group loaded for 28 days and unloaded for 28 days. The fifth group, rabbits underwent a sham operation. Additional, rabbits were used as sample for cell viability study. In disc height : sample in group one have biggest decreasing of disc height, that is 23.9 unit. In MRI assessment, the worst grade is grade 3. In histological score, the worst group is group three (58.69, and the best is group 4 (45.69. Group one have the largest dead cell, that are 403.5, and the smallest is group four (124.75. Trypan blue staining showed that group four have better viable cell (91.1 compare than group three (86.4. The study conclude disc degeneration can be created by external axial loading for 14 days in rabbit intervertebral disc. Duration of 28 days unloading gave better result for cells to recover. (Med J Indones 2006; 15:199-207  Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Keywords: Rabbit model –intervertebral disc degeneration- external compression device-X-ray, MRI, Histology, and Cell viabilty /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso

  7. Single DNA denaturation and bubble dynamics

    DEFF Research Database (Denmark)

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...... for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation...

  8. On the diversity and statistical properties of protostellar discs

    Science.gov (United States)

    Bate, Matthew R.

    2018-04-01

    We present results from the first population synthesis study of protostellar discs. We analyse the evolution and properties of a large sample of protostellar discs formed in a radiation hydrodynamical simulation of star cluster formation. Due to the chaotic nature of the star formation process, we find an enormous diversity of young protostellar discs, including misaligned discs, and discs whose orientations vary with time. Star-disc interactions truncate discs and produce multiple systems. Discs may be destroyed in dynamical encounters and/or through ram-pressure stripping, but reform by later gas accretion. We quantify the distributions of disc mass and radii for protostellar ages up to ≈105 yr. For low-mass protostars, disc masses tend to increase with both age and protostellar mass. Disc radii range from of order 10 to a few hundred au, grow in size on time-scales ≲ 104 yr, and are smaller around lower mass protostars. The radial surface density profiles of isolated protostellar discs are flatter than the minimum mass solar nebula model, typically scaling as Σ ∝ r-1. Disc to protostar mass ratios rarely exceed two, with a typical range of Md/M* = 0.1-1 to ages ≲ 104 yr and decreasing thereafter. We quantify the relative orientation angles of circumstellar discs and the orbit of bound pairs of protostars, finding a preference for alignment that strengths with decreasing separation. We also investigate how the orientations of the outer parts of discs differ from the protostellar and inner disc spins for isolated protostars and pairs.

  9. Modelling of boiling bubbly flows using a polydisperse approach

    International Nuclear Information System (INIS)

    Zaepffel, D.

    2011-01-01

    The objective of this work was to improve the modelling of boiling bubbly flows.We focused on the modelling of the polydisperse aspect of a bubble population, i.e. the fact that bubbles have different sizes and different velocities. The multi-size aspect of a bubble population can originate from various mechanisms. For the bubbly flows we are interested in, bubble coalescence, bubble break-up, phase change kinematics and/or gas compressibility inside the bubbles can be mentioned. Since, bubble velocity depends on bubble size, the bubble size spectrum also leads to a bubble velocity spectrum. An averaged model especially dedicated to dispersed flows is introduced in this thesis. Closure of averaged interphase transfer terms are written in a polydisperse framework, i.e. using a distribution function of the bubble sizes and velocities. A quadratic law and a cubic law are here proposed for the modelling of the size distribution function, whose evolution in space and time is then obtained with the use of the moment method. Our averaged model has been implemented in the NEPTUNE-CFD computation code in order to simulate the DEBORA experiment. The ability of our model to deal with sub-cooled boiling flows has therefore been evaluated. (author) [fr

  10. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  11. Queixas auditivas de disc jockeys da cidade de Recife Auditory complaints in disc jockeys in Recife

    Directory of Open Access Journals (Sweden)

    Eliza Maia de Britto Macedo

    2011-06-01

    Full Text Available OBJETIVO: investigar a ocorrência de queixas auditivas em disc jockeys da cidade de Recife/PE. MÉTODOS: foi realizada uma entrevista com 30 disc jockeys, com idade entre 19 e 28 anos, abordando informações ocupacionais, conhecimentos gerais sobre o ruído e queixas auditivas (diminuição da acuidade auditiva, desconforto a sons intensos, zumbido, sensação de ouvido abafado e otalgia. A análise foi realizada por meio de abordagem quantitativa, utilizando o teste estatístico t-student. RESULTADOS: dentre os dados mais relevantes, destacam-se: 46,7% dos disc jockeys apresentaram, espontaneamente, queixas auditivas, em especial, a diminuição da acuidade auditiva (relatada por todos os sujeitos; 14 disc jockeys (46,67% referiram desconforto a sons intensos e 13 (43,33% mencionaram zumbido. Todos afirmaram ter conhecimento sobre os riscos do ruído para a saúde auditiva, mas 76,7% não realizam qualquer medida preventiva de suas consequências. A perda auditiva foi referida pelos sujeitos como o principal risco da exposição a níveis intensos de pressão sonora. CONCLUSÃO: todos os disc jockeys apresentaram queixa de perda auditiva e, entre as demais queixas auditivas, destacaram-se o desconforto a sons intensos e o zumbido. Tendo em vista a irreversibilidade da perda auditiva induzida por elevados níveis de pressão sonora, os disc jockeys devem ser periodicamente avaliados a fim de que se confirme ou não a perda auditiva de que se queixaram e, caso ela exista, deve ser monitorada para que seja passível de intervenção pelo fonoaudiólogo. Desta forma, percebe-se a necessidade de atuação da Fonoaudiologia junto aos disc jockeys, uma vez que poder-se-á propiciar a otimização do exercício profissional com o mínimo de risco possível.PURPOSE: to investigate the occurrence of auditory complaints in disc jockeys from the city of Recife/PE. METHODS: an interview was carried through with 30 disc jockeys aged between 19 and 48 years

  12. The reports of thick discs' deaths are greatly exaggerated. Thick discs are NOT artefacts caused by diffuse scattered light

    Science.gov (United States)

    Comerón, S.; Salo, H.; Knapen, J. H.

    2018-02-01

    Recent studies have made the community aware of the importance of accounting for scattered light when examining low-surface-brightness galaxy features such as thick discs. In our past studies of the thick discs of edge-on galaxies in the Spitzer Survey of Stellar Structure in Galaxies - the S4G - we modelled the point spread function as a Gaussian. In this paper we re-examine our results using a revised point spread function model that accounts for extended wings out to more than 2\\farcm5. We study the 3.6 μm images of 141 edge-on galaxies from the S4G and its early-type galaxy extension. Thus, we more than double the samples examined in our past studies. We decompose the surface-brightness profiles of the galaxies perpendicular to their mid-planes assuming that discs are made of two stellar discs in hydrostatic equilibrium. We decompose the axial surface-brightness profiles of galaxies to model the central mass concentration - described by a Sérsic function - and the disc - described by a broken exponential disc seen edge-on. Our improved treatment fully confirms the ubiquitous occurrence of thick discs. The main difference between our current fits and those presented in our previous papers is that now the scattered light from the thin disc dominates the surface brightness at levels below μ 26 mag arcsec-2. We stress that those extended thin disc tails are not physical, but pure scattered light. This change, however, does not drastically affect any of our previously presented results: 1) Thick discs are nearly ubiquitous. They are not an artefact caused by scattered light as has been suggested elsewhere. 2) Thick discs have masses comparable to those of thin discs in low-mass galaxies - with circular velocities vc< 120 km s-1 - whereas they are typically less massive than the thin discs in high-mass galaxies. 3) Thick discs and central mass concentrations seem to have formed at the same epoch from a common material reservoir. 4) Approximately 50% of the up

  13. The interaction between multiple bubbles and the free surface

    International Nuclear Information System (INIS)

    Zhang Aman; Yao Xiongliang

    2008-01-01

    The flow is assumed to be potential, and a boundary integral method is used to solve the Laplace equation for the velocity potential to investigate the shape and the position of the bubble. A 3D code to study the bubble dynamics is developed, and the calculation results agree well with the experimental data. Numerical analyses are carried out for the interaction between multiple bubbles near the free surface including in-phase and out-of-phase bubbles. The calculation result shows that the bubble period increases with the decrease of the distance between bubble centres because of the depression effect between multiple bubbles. The depression has no relationship with the free surface and it is more apparent for out-of-phase bubbles. There are great differences in dynamic behaviour between the in-phase bubbles and the out-of-phase bubbles due to the depression effect. Furthermore, the interaction among eight bubbles is simulated with a three-dimensional model, and the evolving process and the relevant physical phenomena are presented. These phenomena can give a reference to the future work on the power of bubbles induced by multiple charges exploding simultaneously or continuously

  14. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  15. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas–liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  16. The Correlation between Insertion Depth of Prodisc-C Artificial Disc and Postoperative Kyphotic Deformity: Clinical Importance of Insertion Depth of Artificial Disc.

    Science.gov (United States)

    Lee, Do-Youl; Kim, Se-Hoon; Suh, Jung-Keun; Cho, Tai-Hyoung; Chung, Yong-Gu

    2012-09-01

    This study was designed to investigate the correlation between insertion depth of artificial disc and postoperative kyphotic deformity after Prodisc-C total disc replacement surgery, and the range of artificial disc insertion depth which is effective in preventing postoperative whole cervical or segmental kyphotic deformity. A retrospective radiological analysis was performed in 50 patients who had undergone single level total disc replacement surgery. Records were reviewed to obtain demographic data. Preoperative and postoperative radiographs were assessed to determine C2-7 Cobb's angle and segmental angle and to investigate postoperative kyphotic deformity. A formula was introduced to calculate insertion depth of Prodisc-C artificial disc. Statistical analysis was performed to search the correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity, and to estimate insertion depth of Prodisc-C artificial disc to prevent postoperative kyphotic deformity. In this study no significant statistical correlation was observed between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity regarding C2-7 Cobb's angle. Statistical correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity was observed regarding segmental angle (p<0.05). It failed to estimate proper insertion depth of Prodisc-C artificial disc effective in preventing postoperative kyphotic deformity. Postoperative segmental kyphotic deformity is associated with insertion depth of Prodisc-C artificial disc. Anterior located artificial disc leads to lordotic segmental angle and posterior located artificial disc leads to kyphotic segmental angle postoperatively. But C2-7 Cobb's angle is not affected by artificial disc location after the surgery.

  17. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  18. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  19. Cap Bubble Drift Velocity in a Confined Test Section

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Mamoru Ishii; Lincoln, Frank W.; Beus, Stephen G.

    2002-01-01

    In the two-group interfacial area transport equation, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as group 1 and cap/slug/churn-turbulent bubbles as group 2. The bubble rise velocities for both groups of bubbles may be estimated by the drift flux model by applying different distribution parameters and drift velocities for both groups. However, the drift velocity for group 2 bubbles is not always applicable (when the wall effect becomes important) as in the current test loop of interest where the flow channel is confined by two parallel flat walls, with a dimension of 200-mm in width and 10-mm in gap. The previous experiments indicated that no stable slug flow existed in this test section, which was designed to permit visualization of the flow patterns and bubble characteristics without the distortion associated with curved surfaces. In fact, distorted cap bubbly and churn-turbulent flow was observed. Therefore, it is essential to developed a correlation for cap bubble drift velocity in this confined flow channel. Since the rise velocity of a cap bubble depends on its size, a high-speed movie camera is used to capture images of cap bubbles to obtain the bubble size information. Meanwhile, the rise velocity of cap and elongated bubbles (called cap bubbles hereafter) is investigated by examining the captured images frame by frame. As a result, the conventional correlation of drift velocity for slug bubbles is modified and acceptable agreements between the measurements and correlation estimation are achieved

  20. Hydrodynamics in a swarm of rising bubbles

    International Nuclear Information System (INIS)

    Riboux, G.

    2007-04-01

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α 0,4 , spectrum in k -3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  1. Mechanoreceptors in Diseased Cervical Intervertebral Disc and Vertigo.

    Science.gov (United States)

    Yang, Liang; Yang, Cheng; Pang, Xiaodong; Li, Duanming; Yang, Hong; Zhang, Xinwu; Yang, Yi; Peng, Baogan

    2017-04-15

    We collected the samples of cervical intervertebral discs from patients with vertigo to examine the distribution and types of mechanoreceptors in diseased cervical disc. The aim of this study was to determine whether mechanoreceptors are distributed more abundantly in cervical discs from patients with cervical spondylosis, and whether they are related to vertigo. Previous limited studies have found that normal cervical intervertebral discs are supplied with mechanoreceptors that have been considered responsible for proprioceptive functions. Several clinical studies have indicated that the patients with cervical spondylosis manifested significantly impaired postural control and subjective balance disturbance. We collected 77 samples of cervical discs from 62 cervical spondylosis patients without vertigo, 61 samples from 54 patients with vertigo, and 40 control samples from 8 cadaveric donors to investigate distribution of mechanoreceptors containing neurofilament (NF200) and S-100 protein immunoreactive nerve endings. The immunohistochemical investigation revealed that the most frequently encountered mechanoreceptors were the Ruffini corpuscles in all groups of cervical disc samples. They were obviously increased in the number and deeply ingrown into inner annulus fibrosus and even into nucleus pulposus in the diseased cervical discs from patients with vertigo in comparison with the discs from patients without vertigo and control discs. Only three Golgi endings were seen in the three samples from patients with vertigo. No Pacinian corpuscles were found in any samples of cervical discs. The diseased cervical discs from patients with vertigo had more abundant distribution of Ruffini corpuscles than other discs. A positive association between the increased number and ingrowth of Ruffini corpuscles in the diseased cervical disc and the incidence of vertigo in the patients with cervical spondylosis was found, which may indicate a key role of Ruffini corpuscles in the

  2. Microstreaming from Sessile Semicylindrical Bubbles

    Science.gov (United States)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng

    2014-03-01

    Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.

  3. Are galaxy discs optically thick?

    International Nuclear Information System (INIS)

    Disney, Michael; Davies, Jonathan; Phillipps, Steven

    1989-01-01

    We re-examine the classical optical evidence for the low optical depths traditionally assigned to spiral discs and argue that it is highly model-dependent and unconvincing. In particular, layered models with a physically thin but optically thick dust layer behave like optically thin discs. The opposite hypotheses, that such discs are optically thick is then examined in the light of modern evidence. We find it to be consistent with the near-infrared and IRAS observations, with the surface brightnesses, with the HI and CO column densities and with the Hα measurements. (author)

  4. Vascular complications of prosthetic inter-vertebral discs

    OpenAIRE

    Daly, Kevin J.; Ross, E. Raymond S.; Norris, Heather; McCollum, Charles N.

    2006-01-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had e...

  5. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas¿liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  6. Numerical simulation of high Reynolds number bubble motion

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  7. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  8. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  9. Effect of supercritical water shell on cavitation bubble dynamics

    International Nuclear Information System (INIS)

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  10. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  11. Structure and kinematics of bubble flow

    International Nuclear Information System (INIS)

    Lackme, C.

    1967-01-01

    This report deals with the components and use of resistivity probes in bubble flow. With a single probe, we have studied the longitudinal and radial structure of the flow. The very complicated evolution of the radial structure is shown by the measurement of the mean bubble flux at several points in the tube. A double probe associated with a device the principle of which is given in this report, permits the measure of the local velocity of bubbles. Unlike the mean bubble flux profile, the change in the velocity profile along the tube is not significant. We have achieved the synthesis of these two pieces of information, mean local bubble flux and local velocity, by computing the mean weighed velocity in the tube. This weighed velocity compares remarkably with the velocity computed from the volumetric gas flow rate and the mean void fraction. (author) [fr

  12. Universe out of a breathing bubble

    International Nuclear Information System (INIS)

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-01-01

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, 'domain-wall' type and 'dust' type, with opposite signs. We find stably oscillating solutions, which we call 'breathing bubbles'. By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that 'eats up' the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model

  13. Examination of turbine discs from nuclear power plants

    International Nuclear Information System (INIS)

    Czajkowski, C.J.; Weeks, J.R.

    1982-01-01

    Investigations were performed on a cracked turbine disc from the Cooper Nuclear Power Station, and on two failed turbine discs (governor and generator ends) from the Yankee-Rowe Nuclear Power Station. Cooper is a boiling water reactor (BWR) which went into commercial operation in July 1974, and Yankee-Rowe is a pressurized water reactor (PWR) which went into commercial operation in June 1961. Cracks were identified in the bore of the Cooper disc after 41,913 hours of operation, and the disc removed for repair. At Yankee-Rowe two discs failed after 100,000 hours of operation. Samples of the Cooper disc and both Yankee-Rowe disc (one from the governor and one from the generator end of the LP turbine) were sent to Brookhaven National Laboratory (BNL) for failure analysis

  14. On Bubble Rising in Countercurrent Flow

    Czech Academy of Sciences Publication Activity Database

    Večeř, M.; Leštinský, P.; Wichterle, K.; Růžička, Marek

    2012-01-01

    Roč. 10, č. 2012 (2012), A30 ISSN 1542-6580 R&D Projects: GA ČR GA104/09/0972; GA ČR GA104/07/1110 Grant - others:GA MŠMT(CZ) CZ.1.05/2.1.00/03.0069 Institutional support: RVO:67985858 Keywords : ellipsoidal bubble * bubble shape * bubble velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.790, year: 2011

  15. Shock waves from non-spherically collapsing cavitation bubbles

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed

    2017-11-01

    Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .

  16. Formation of soap bubbles by gas jet

    OpenAIRE

    Zhou, M. L.; Li, M.; Chen, Z. Y.; Han, J. F.; Liu, D.

    2017-01-01

    Soap bubbles can be easily generated by varies methods, while their formation process is complicated and still worth study. A model about the bubble formation process was proposed in Phys. Rev. Lett. 116, 077801 recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after repeating these experiments, we found the bubbles could be generated in two velocities ranges which corresponded to laminar and turbulent gas jet respective...

  17. Formation of soap bubbles by gas jet

    Science.gov (United States)

    Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

    2017-12-01

    Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

  18. Mechanism of bubble detachment from vibrating walls

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjun; Park, Jun Kwon, E-mail: junkeun@postech.ac.kr; Kang, Kwan Hyoung [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kang, In Seok [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of)

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  19. Performance Tests for Bubble Blockage Device

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong

    2014-01-01

    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked

  20. Three-dimensional one-way bubble tracking method for the prediction of developing bubble-slug flows in a vertical pipe. 1st report, models and demonstration

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Tomiyama, Akio

    2004-01-01

    A three-dimensional one-way bubble tracking method is one of the most promising numerical methods for the prediction of a developing bubble flow in a vertical pipe, provided that several constitutive models are prepared. In this study, a bubble shape, an equation of bubble motion, a liquid velocity profile, a pressure field, turbulent fluctuation and bubble coalescence are modeled based on available knowledge on bubble dynamics. Bubble shapes are classified into four types in terms of bubble equivalent diameter. A wake velocity model is introduced to simulate approaching process among bubbles due to wake entrainment. Bubble coalescence is treated as a stochastic phenomenon with the aid of coalescence probabilities that depend on the sizes of two interacting bubbles. The proposed method can predict time-spatial evolution of flow pattern in a developing bubble-slug flow. (author)

  1. Effects of Gas Dynamics on Rapidly Collapsing Bubbles

    OpenAIRE

    Bauman, Spenser; Fomitchev-Zamilov, Max

    2013-01-01

    The dynamics of rapidly collapsing bubbles are of great interest due to the high degree of energy focusing that occurs withing the bubble. Molecular dynamics provides a way to model the interior of the bubble and couple the gas dynamics with the equations governing the bubble wall. While much theoretical work has been done to understand how a bubble will respond to an external force, the internal dynamics of the gas system are usually simplified greatly in such treatments. This paper shows ho...

  2. Simple improvements to classical bubble nucleation models.

    Science.gov (United States)

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  3. Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load

    International Nuclear Information System (INIS)

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Itoh, T.; Sano, A.

    1988-01-01

    Metabolic changes induced by axial vibratory load to the spine were investigated based on water metabolism in normal intervertebral discs of rabbits with or without pentobarbital anesthesia. Tritiated water concentration in the intervertebral discs of unanesthetized rabbits was reduced remarkably by axial vibration for 30 minutes using the vibration machine developed for this study. Repeated vibratory load for 18 and 42 hours duration showed the recovery of 3 H 2 O concentration of the intervertebral disc without anesthesia. Computer simulation suggested a reduction of blood flow surrounding the intervertebral disc following the vibration stress. However, no reduction of the 3 H 2 O concentration in the intervertebral disc was noted under anesthesia. Emotional stress cannot be excluded as a factor in water metabolism in the intervertebral disc

  4. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    Lu, Hong; Miller, D.W.

    1991-01-01

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  5. INJURIES IN DISC GOLF - A DESCRIPTIVE CROSS-SECTIONAL STUDY

    DEFF Research Database (Denmark)

    Rahbek, Martin Amadeus; Nielsen, Rasmus Oestergaard

    2016-01-01

    BACKGROUND: Disc golf is rapidly increasing in popularity and more than two million people are estimated to regularly participate in disc golf activities. Despite this popularity, the epidemiology of injuries in disc golf remains under reported. PURPOSE: The purpose of the present study...... was to investigate the prevalence and anatomic distribution of injuries acquired through disc-golf participation in Danish disc golf players. METHODS: The study was a cross-sectional study conducted on Danish disc-golf players. In May 2015, invitations to complete a web-based questionnaire were spread online via...... social media, and around disc-golf courses in Denmark. The questionnaire included questions regarding disc-golf participation and the characteristics of injuries acquired through disc golf participation. The data was analyzed descriptively. RESULTS: An injury prevalence of 13.3% (95% CI: 6.7% to 19...

  6. Sonoluminescing Air Bubbles Rectify Argon

    NARCIS (Netherlands)

    Lohse, Detlef; Brenner, Michael P.; Dupont, Todd F.; Hilgenfeldt, Sascha; Johnston, Blaine

    1997-01-01

    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent

  7. A note on effects of rational bubble on portfolios

    Science.gov (United States)

    Wang, Chan; Nie, Pu-yan

    2018-02-01

    In general, demand increases in wealth and decreases in price in microeconomics. We thereby propose a completely different perspective. By establishing expected utility function of investors, this article introduces one rational bubble asset and one bubble free asset in portfolios and focuses on the effects of bubble on investment portfolios from wealth and price perspectives. All conclusions are obtained by theoretical analysis with microeconomics theory. We argue that inferior goods and Giffen behavior can occur for the bubble free asset in microeconomic fields. The results can help investors to recognize bubble assets and bubble free assets more scientifically. Both bubble and bubble free assets can be inferior goods under some conditions, so we cannot to say which asset better than the other one absolutely.

  8. Bubble fusion: Preliminary estimates

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure much-lt external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ''sling shot'' that is ''loaded'' to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10 -5 --10 -6 are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted

  9. From Rising Bubble to RNA/DNA and Bacteria

    Science.gov (United States)

    Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech

    2017-04-01

    In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.

  10. Application of coalescence and breakup models in a discrete bubble model for bubble columns

    NARCIS (Netherlands)

    van den Hengel, E.I.V.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    In this work, a discrete bubble model (DBM) is used to investigate the hydrodynamics, coalescence, and breakup occurring in a bubble column. The DBM, originally developed by Delnoij et al. (Chem. Eng. Sci. 1997, 52, 1429-1458; Chem. Eng. Sci. 1999, 54, 2217-2226),1,2 was extended to incorporate

  11. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    Science.gov (United States)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  12. Theoretical aspects of appearing of bubbles in economy

    Directory of Open Access Journals (Sweden)

    Pronoza Pavlo V.

    2014-01-01

    Full Text Available The article considers theoretical aspects of appearing of bubbles in economy. It analyses vies of scientists regarding the essence of this phenomenon and, with the help of content analysis, specifies the essence of the bubble notion in economy. It considers main stages of appearance of such bubbles. It offers classification of their types. It analyses pre-requisites of appearance of bubbles in economy and their features. It considers main existing approaches to detection and modelling appearance of bubbles. It proves that bubbles negatively influence economy of the countries, that is why, the problem of their detection and prevention is one of the central problems in the process of development of policy of state regulation of economy.

  13. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  14. The KEK 1 m hydrogen bubble chamber

    International Nuclear Information System (INIS)

    Doi, Yoshikuni; Araoka, Osamu; Hayashi, Kohei; Hayashi, Yoshio; Hirabayashi, Hiromi.

    1978-03-01

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  15. Hydrodynamic forces on two moving discs

    Directory of Open Access Journals (Sweden)

    Burton D.A.

    2004-01-01

    Full Text Available We give a detailed presentation of a flexible method for constructing explicit expressions of irrotational and incompressible fluid flows around two rigid circular moving discs. We also discuss how such expressions can be used to compute the fluid-induced forces and torques on the discs in terms of Killing drives. Conformal mapping techniques are used to identify a meromorphic function on an annular region in C with a flow around two circular discs by a Mobius transformation. First order poles in the annular region correspond to vortices outside of the two discs. Inflows are incorporated by putting a second order pole at the point in the annulus that corresponds to infinity.

  16. A web-based data visualization tool for the MIMIC-II database.

    Science.gov (United States)

    Lee, Joon; Ribey, Evan; Wallace, James R

    2016-02-04

    Although MIMIC-II, a public intensive care database, has been recognized as an invaluable resource for many medical researchers worldwide, becoming a proficient MIMIC-II researcher requires knowledge of SQL programming and an understanding of the MIMIC-II database schema. These are challenging requirements especially for health researchers and clinicians who may have limited computer proficiency. In order to overcome this challenge, our objective was to create an interactive, web-based MIMIC-II data visualization tool that first-time MIMIC-II users can easily use to explore the database. The tool offers two main features: Explore and Compare. The Explore feature enables the user to select a patient cohort within MIMIC-II and visualize the distributions of various administrative, demographic, and clinical variables within the selected cohort. The Compare feature enables the user to select two patient cohorts and visually compare them with respect to a variety of variables. The tool is also helpful to experienced MIMIC-II researchers who can use it to substantially accelerate the cumbersome and time-consuming steps of writing SQL queries and manually visualizing extracted data. Any interested researcher can use the MIMIC-II data visualization tool for free to quickly and conveniently conduct a preliminary investigation on MIMIC-II with a few mouse clicks. Researchers can also use the tool to learn the characteristics of the MIMIC-II patients. Since it is still impossible to conduct multivariable regression inside the tool, future work includes adding analytics capabilities. Also, the next version of the tool will aim to utilize MIMIC-III which contains more data.

  17. The little holographic bubble chambers

    International Nuclear Information System (INIS)

    Herve, A.

    1983-01-01

    The lifetime study of the charmed particles has readvanced the idea to use holography for the little fast-cycle bubble chambers. A pilot experiment has been realised in 1982 with a little bubble chamber filled up with freon-115. 40000 holograms have been recorded [fr

  18. Identification of stroke mimics among clinically diagnosed acute strokes.

    Science.gov (United States)

    Tuntiyatorn, Lojana; Saksornchai, Pichaya; Tunlayadechanont, Supoch

    2013-09-01

    Stroke is a clinically syndrome of a sudden onset of neurological deficit in a vascular cause. Stroke mimics is the non-vascular disorders with stroke-like clinical symptoms. It is important to distinguish true stroke from mimics since treatment plan may differ To determine the incidence of the stroke mimics and identify their etiologies. All non-contrast head CT of the patients with clinically diagnosed stroke who immediately received imaging upon arrival at the emergency department of the university hospital were retrospectively reviewed in 12-month period between January 1 and December 31, 2008. Medical records, laboratory results, MRI, and 6-month clinical follow-up records were reviewed for final diagnosis. Seven hundred four patients were included in this study, including 363 (51.5%) men and 341 (48.5%) women with range in age from 24 to 108 years. Amongst those, 417 (59.2%) were ischemic stroke, 80 (11.40%) were hemorrhagic stroke, 186 (26.4%) were stroke-mimics, and 21 (3%) were inconclusive. The etiologies among stroke-mimics were metabolic/intoxication (35, 18.8%), sepsis (28, 15.0%), seizure (21, 11.3%), syncope (20, 10.8%), subdural hemorrhage (14, 7.5%), vertigo (11, 6.0%), brain tumor (10, 5.30%), central nervous system infection (5, 2.7%), others (26, 14.0%), and unspecified (16, 8.6%). Incidence rates and etiologies of the stroke mimics were similar to the western reports. However the frequency of each mimic was not.

  19. Open-access MIMIC-II database for intensive care research.

    Science.gov (United States)

    Lee, Joon; Scott, Daniel J; Villarroel, Mauricio; Clifford, Gari D; Saeed, Mohammed; Mark, Roger G

    2011-01-01

    The critical state of intensive care unit (ICU) patients demands close monitoring, and as a result a large volume of multi-parameter data is collected continuously. This represents a unique opportunity for researchers interested in clinical data mining. We sought to foster a more transparent and efficient intensive care research community by building a publicly available ICU database, namely Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II). The data harnessed in MIMIC-II were collected from the ICUs of Beth Israel Deaconess Medical Center from 2001 to 2008 and represent 26,870 adult hospital admissions (version 2.6). MIMIC-II consists of two major components: clinical data and physiological waveforms. The clinical data, which include patient demographics, intravenous medication drip rates, and laboratory test results, were organized into a relational database. The physiological waveforms, including 125 Hz signals recorded at bedside and corresponding vital signs, were stored in an open-source format. MIMIC-II data were also deidentified in order to remove protected health information. Any interested researcher can gain access to MIMIC-II free of charge after signing a data use agreement and completing human subjects training. MIMIC-II can support a wide variety of research studies, ranging from the development of clinical decision support algorithms to retrospective clinical studies. We anticipate that MIMIC-II will be an invaluable resource for intensive care research by stimulating fair comparisons among different studies.

  20. Gas fluxing of aluminum: a bubble probe for optimization of bubbles/bubble distribution and minimization of splashing/droplet formation

    International Nuclear Information System (INIS)

    James W. Evans; Auitumn Fjeld

    2006-01-01

    Aluminum is one of our most important materials and finds major use in transportation (e.g. aircraft) and packaging (e.g. beverage cans). According to International Aluminium Institute statistics (www.world-aluminium.org) 23.46 million metric tons of aluminum were produced last year in the electrolytic cells used to make this metal, continuing an increase seen over the previous four years and sustained for the first half of this year. 23% of this ?primary? production was in North America. A smaller, yet important, source of the nation?s aluminum is ''secondary production'', that is the recycling of aluminum products such as beverage cans. The Aluminum Association reports that 51.4 billion beverage cans were recycled in the U.S. last year (compared to 98.9 billion new cans shipped). Whether from primary or secondary production, it is typically necessary to treat the aluminum to remove small quantities of impurities or unwanted alloying agents before the metal can be further processed and sold. In the case of primary aluminum it is the removal of trace impurities such as sodium that is needed; in the case of recycled aluminum it is the removal of alloy constituents, such as magnesium which is, after aluminum, the principal metal used in beverage cans. The procedure commonly used is known as ''gas fluxing'' and entails bubbling a reactive mixture of chlorine and argon through the molten metal. The intent is that the chlorine react with the impurities to form compounds that can easily separate from the aluminum. Unfortunately a fraction of the chlorine forms volatile aluminum chloride that leaves the fluxing unit. This represents a loss of aluminum product; furthermore the aluminum chloride can react with atmospheric moisture to form hydrogen chloride gas with impact on workers and the environment. Some of these emissions are controlled by bag houses but some escape. For example EPA's Toxic Release Inventory for 1997 has stack emissions of chlorides and chlorine

  1. Interaction of equal-size bubbles in shear flow.

    Science.gov (United States)

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  2. Comparison of cavitation bubbles evolution in viscous media

    Directory of Open Access Journals (Sweden)

    Jasikova Darina

    2018-01-01

    Full Text Available There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.

  3. Shock formation within sonoluminescence bubbles

    International Nuclear Information System (INIS)

    Vuong, V.Q.; Szeri, A.J.; Young, D.A.

    1999-01-01

    A strong case has been made by several authors that sharp, spherically symmetric shocks converging on the center of a spherical bubble driven by a strong acoustic field give rise to rapid compression and heating that produces the brief flash of light known as sonoluminescence. The formation of such shocks is considered. It is found that, although at the main collapse the bubble wall does indeed launch an inwardly-traveling compression wave, and although the subsequent reflection of the wave at the bubble center produces a very rapid temperature peak, the wave is prevented from steepening into a sharp shock by an adverse gradient in the sound speed caused by heat transfer. It is shown that the mathematical characteristics of the flow can be prevented from accumulating into a shock front by this adverse sound speed gradient. A range of results is presented for a variety of bubble ambient radii and sound field amplitudes suggested by experiments. The time scale of the peak temperature in the bubble is set by the dynamics of the compression wave: this is typically in the range 100 - 300 ps (FWHM) in concert with recent measurements of the sonoluminescence pulse width. copyright 1999 American Institute of Physics

  4. Dynamics of bubble formation in highly viscous liquids.

    Science.gov (United States)

    Pancholi, Ketan; Stride, Eleanor; Edirisinghe, Mohan

    2008-04-15

    There has recently been considerable interest in the development of devices for the preparation of monodisperse microbubble suspensions for use as ultrasound contrast agents and drug delivery vehicles. These applications require not only a high degree of bubble uniformity but also a maximum bubble size of 8 mum, and this provides a strong motivation for developing an improved understanding of the process of bubble formation in a given device. The aim of this work was to investigate bubble formation in a T-junction device and determine the influence of the different processing parameters upon bubble size, in particular, liquid viscosity. Images of air bubble formation in a specially designed T-junction were recorded using a high-speed camera for different ratios of liquid to gas flow rate (Ql/Qg) and different liquid viscosities (microl). It was found that theoretical predictions of the flow profile in the focal region based on analysis of axisymmetric Stokes flow were accurate to within 6% when compared with the experimental data, indicating that this provided a suitable means of describing the bubble formation process. Both the theoretical and experimental results showed that Ql/Qg and mul had a significant influence upon bubble formation and eventual size, with higher flow rates and higher viscosities producing smaller bubbles. There were, however, found to be limiting values of Ql/Qg and mul beyond which no further reduction in bubble size was achieved.

  5. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2013-01-01

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  6. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  7. IMPLEMENTATION OF SERIAL AND PARALLEL BUBBLE SORT ON FPGA

    Directory of Open Access Journals (Sweden)

    Dwi Marhaendro Jati Purnomo

    2016-06-01

    Full Text Available Sorting is common process in computational world. Its utilization are on many fields from research to industry. There are many sorting algorithm in nowadays. One of the simplest yet powerful is bubble sort. In this study, bubble sort is implemented on FPGA. The implementation was taken on serial and parallel approach. Serial and parallel bubble sort then compared by means of its memory, execution time, and utility which comprises slices and LUTs. The experiments show that serial bubble sort required smaller memory as well as utility compared to parallel bubble sort. Meanwhile, parallel bubble sort performed faster than serial bubble sort

  8. Bubble gate for in-plane flow control.

    Science.gov (United States)

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  9. Effect of Interbody Fusion on the Remaining Discs of the Lumbar Spine in Subjects with Disc Degeneration.

    Science.gov (United States)

    Ryu, Robert; Techy, Fernando; Varadarajan, Ravikumar; Amirouche, Farid

    2016-02-01

    To study effects (stress loads) of lumbar fusion on the remaining segments (adjacent or not) of the lumbar spine in the setting of degenerated adjacent discs. A lumbar spine finite element model was built and validated. The full model of the lumbar spine was a parametric finite element model of segments L 1-5 . Numerous hypothetical combinations of one-level lumbar spine fusion and one-level disc degeneration were created. These models were subjected to 10 Nm flexion and extension moments and the stresses on the endplates and consequently on the intervertebral lumbar discs measured. These values were compared to the stresses on healthy lumbar spine discs under the same load and fusion scenarios. Increased stress at endplates was observed only in the settings of L4-5 fusion and L3-4 disc degeneration (8% stress elevation at L2,3 in flexion or extension, and 25% elevation at L3,4 in flexion only). All other combinations showed less endplate stress than did the control model. For fusion at L3-4 and degeneration at L4-5 , the stresses in the endplates at the adjacent level inferior to the fused disc decreased for both loading disc height reductions. Stresses in flexion decreased after fusion by 29.5% and 25.8% for degeneration I and II, respectively. Results for extension were similar. For fusion at L2-3 and degeneration at L4-5 , stresses in the endplates decreased more markedly at the degenerated (30%), than at the fused level (14%) in the presence of 25% disc height reduction and 10 Nm flexion, whereas in extension stresses decreased more at the fused (24.3%) than the degenerated level (5.86%). For fusion at L3-4 and degeneration at L2-3 , there were no increases in endplate stress in any scenario. For fusion at L4-5 and degeneration at L3-4 , progression of degeneration from I to II had a significant effect only in flexion. A dramatic increase in stress was noted in the endplates of the degenerated disc (L3-4 ) in flexion for degeneration II. Stresses are greater

  10. Inertial collapse of bubble pairs near a solid surface

    Science.gov (United States)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2017-11-01

    Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.

  11. Local measurements in turbulent bubbly flows

    International Nuclear Information System (INIS)

    Suzanne, C.; Ellingsen, K.; Risso, F.; Roig, V.

    1998-01-01

    Local measurements methods in bubbly flows are discussed. Concerning liquid velocity measurement, problems linked to HFA and LDA are first analysed. Then simultaneously recorded velocity signals obtained by both anemometers are compared. New signal processing are developed for the two techniques. Bubble sizes and velocities measurements methods using intrusive double optical sensor probe are presented. Plane bubbly mixing layer has been investigated. Local measurements using the described methods are presented as examples. (author)

  12. Bursting the bubble of melt inclusions

    Science.gov (United States)

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  13. Fast Initialization of Bubble-Memory Systems

    Science.gov (United States)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1986-01-01

    Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.

  14. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  15. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  16. A prediction for bubbling geometries

    OpenAIRE

    Okuda, Takuya

    2007-01-01

    We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.

  17. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  18. Holography in small bubble chambers

    International Nuclear Information System (INIS)

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments

  19. Raman Spectral Band Oscillations in Large Graphene Bubbles

    Science.gov (United States)

    Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.

    2018-05-01

    Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.

  20. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    Science.gov (United States)

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  1. Approaching behavior of a pair of spherical bubbles in quiescent liquids

    Science.gov (United States)

    Sanada, Toshiyuki; Kusuno, Hiroaki

    2015-11-01

    Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.

  2. Bubble nuclei in relativistic mean field theory

    International Nuclear Information System (INIS)

    Shukla, A.; Aberg, S.; Patra, S.K.

    2011-01-01

    Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied

  3. Methane emission by bubbling from Gatun Lake, Panama

    Science.gov (United States)

    Keller, Michael; Stallard, Robert F.

    1994-01-01

    We studied methane emission by bubbling from Gatun Lake, Panama, at water depths of less than 1 m to about 10 m. Gas bubbles were collected in floating traps deployed during 12- to 60-hour observation periods. Comparison of floating traps and floating chambers showed that about 98% of methane emission occurred by bubbling and only 2% occurred by diffusion. Average methane concentration of bubbles at our sites varied from 67% to 77%. Methane emission by bubbling occurred episodically, with greatest rates primarily between the hours of 0800 and 1400 LT. Events appear to be triggered by wind. The flux of methane associated with bubbling was strongly anticorrelated with water depth. Seasonal changes in water depth caused seasonal variation of methane emission. Bubble methane fluxes through the lake surface into the atmosphere measured during 24-hour intervals were least (10-200 mg/m2/d) at deeper sites (greater than 7 m) and greatest (300-2000 mg/m2/d) at shallow sites (less than 2 m).

  4. Process mining in oncology using the MIMIC-III dataset

    Science.gov (United States)

    Prima Kurniati, Angelina; Hall, Geoff; Hogg, David; Johnson, Owen

    2018-03-01

    Process mining is a data analytics approach to discover and analyse process models based on the real activities captured in information systems. There is a growing body of literature on process mining in healthcare, including oncology, the study of cancer. In earlier work we found 37 peer-reviewed papers describing process mining research in oncology with a regular complaint being the limited availability and accessibility of datasets with suitable information for process mining. Publicly available datasets are one option and this paper describes the potential to use MIMIC-III, for process mining in oncology. MIMIC-III is a large open access dataset of de-identified patient records. There are 134 publications listed as using the MIMIC dataset, but none of them have used process mining. The MIMIC-III dataset has 16 event tables which are potentially useful for process mining and this paper demonstrates the opportunities to use MIMIC-III for process mining in oncology. Our research applied the L* lifecycle method to provide a worked example showing how process mining can be used to analyse cancer pathways. The results and data quality limitations are discussed along with opportunities for further work and reflection on the value of MIMIC-III for reproducible process mining research.

  5. Numerical modeling of bubble dynamics in magmas

    Science.gov (United States)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  6. Bubbly flows around a two-dimensional circular cylinder

    Science.gov (United States)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  7. Modeling of the evolution of bubble size distribution of gas-liquid flow inside a large vertical pipe. Influence of bubble coalescence and breakup models

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk

    2011-01-01

    The range of gas-liquid flow applications in today's technology is immensely wide. Important examples can be found in chemical reactors, boiling and condensation equipments as well as nuclear reactors. In gas-liquid flows, the bubble size distribution plays an important role in the phase structure and interfacial exchange behaviors. It is therefore necessary to take into account the dynamic change of the bubble size distribution to get good predictions in CFD. An efficient 1D Multi-Bubble-Size-Class Test Solver was introduced in Lucas et al. (2001) for the simulation of the development of the flow structure along a vertical pipe. The model considers a large number of bubble classes. It solves the radial profiles of liquid and gas velocities, bubble-size class resolved gas fraction profiles as well as turbulence parameters on basis of the bubble size distribution present at the given axial position. The evolution of the flow along the height is assumed to be solely caused by the progress of bubble coalescence and break-up resulting in a bubble size distribution changing in the axial direction. In this model, the bubble coalescence and breakup models are very important for reasonable predictions of the bubble size distribution. Many bubble coalescence and breakup models have been proposed in the literature. However, some obvious discrepancies exist in the models; for example, the daughter bubble size distributions are greatly different from different bubble breakup models, as reviewed in our previous publication (Liao and Lucas, 2009a; 2010). Therefore, it is necessary to compare and evaluate typical bubble coalescence and breakup models that have been commonly used in the literature. Thus, this work is aimed to make a comparison of several typical bubble coalescence and breakup models and to discuss in detail the ability of the Test Solver to predict the evolution of bubble size distribution. (orig.)

  8. Herds of methane chambers grazing bubbles

    Science.gov (United States)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  9. Hybrid mimics and hybrid vigor in Arabidopsis

    Science.gov (United States)

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  10. How Stressful Is "Deep Bubbling"?

    Science.gov (United States)

    Tyrmi, Jaana; Laukkanen, Anne-Maria

    2017-03-01

    Water resistance therapy by phonating through a tube into the water is used to treat dysphonia. Deep submersion (≥10 cm in water, "deep bubbling") is used for hypofunctional voice disorders. Using it with caution is recommended to avoid vocal overloading. This experimental study aimed to investigate how strenuous "deep bubbling" is. Fourteen subjects, half of them with voice training, repeated the syllable [pa:] in comfortable speaking pitch and loudness, loudly, and in strained voice. Thereafter, they phonated a vowel-like sound both in comfortable loudness and loudly into a glass resonance tube immersed 10 cm into the water. Oral pressure, contact quotient (CQ, calculated from electroglottographic signal), and sound pressure level were studied. The peak oral pressure P(oral) during [p] and shuttering of the outer end of the tube was measured to estimate the subglottic pressure P(sub) and the mean P(oral) during vowel portions to enable calculation of transglottic pressure P(trans). Sensations during phonation were reported with an open-ended interview. P(sub) and P(oral) were higher in "deep bubbling" and P(trans) lower than in loud syllable phonation, but the CQ did not differ significantly. Similar results were obtained for the comparison between loud "deep bubbling" and strained phonation, although P(sub) did not differ significantly. Most of the subjects reported "deep bubbling" to be stressful only for respiratory and lip muscles. No big differences were found between trained and untrained subjects. The CQ values suggest that "deep bubbling" may increase vocal fold loading. Further studies should address impact stress during water resistance exercises. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Two-fluid model LES of a bubble column

    International Nuclear Information System (INIS)

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Eckhard Krepper; Alexandr Zaruba; Horst-Michael Prasser

    2005-01-01

    The hydrodynamics of a rectangular bubble column operating in the dispersed bubbly regime has been numerically investigated using a two-fluid model Large Eddy Simulation (LES). Experimental data were obtained to validate the model. LES computational fluid dynamic calculations of the transient flow for the bubble column were performed to account for the turbulence in the liquid phase. The computational mesh is of the same scale as the bubble size. The sub grid-scale Reynolds stresses were calculated with the Smagorinsky model. Furthermore, the effect of the bubbles on the turbulence in the continuous phase was modeled using Sato's eddy viscosity model for bubble-induced turbulence. Mean quantities were computed by averaging over a time period that was longer than the dynamic time scales of the turbulence, in particular the void fraction and the average velocity of the bubbles. A systematic analysis of the effect of the interfacial momentum transfer terms on these quantities has been conducted. The bubble column was locally aerated using a sparger located in the center of the bottom plate. The experimental studies involve wire-mesh tomography measurements for void fraction and bubble size distributions and digital image processing of high speed camera images for estimation of bubble velocities, size distributions and flow patterns. Experiments were performed for various aspect ratios (height of water column to width ratio) and superficial gas velocities. It was found that the non-drag bubble forces play a very prominent role in the predicting the correct flow pattern and void fraction distributions. In the calculations, the lift force and the wall force were considered. A 'wall peak' in the time averaged void fraction distribution has been experimentally observed and this cannot be predicted without including these non-drag forces in the numerical calculations. In this paper, experimental data are compared with the results of the numerical simulations. (authors)

  12. Numerical investigation of interaction between rising bubbles in a viscous liquid

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ik Roh [Korea Institute of Marine Science and Technology Promotion, Seoul (Korea, Republic of); Shin Seung Won [Hongik University, Seoul (Korea, Republic of)

    2016-07-15

    The rising behavior of bubbles undergoing bubble-bubble interaction in a viscous liquid is studied using a two-dimensional direct numerical simulation. Level contour reconstruction method (LCRM), one of the connectivity-free front tracking methods, is applied to describe a moving interface accurately under highly deformable conditions. This work focuses on the effects of bubble size on the interaction of two bubbles rising side-by-side in a stagnant liquid. Several characteristics of bubble-bubble interaction are analyzed quantitatively as supported by energy analysis. The results showed clear differences between small and large bubbles with respect to their interaction behavior in terms of lateral movement, vortex intensity, suppression of surface deformation, and viscous dissipation rate. Distributions of vorticity and viscous dissipation rate near the bubble interfaces also differed depending on the size of the bubbles. Strong vortices from large bubbles triggered oscillation in bubble-bubble interaction and played a dominant role in the interaction process as the size of bubbles increases.

  13. Mechanical design criteria for intervertebral disc tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2010-04-19

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  15. Bubble coalescence in a Newtonian fluid

    Science.gov (United States)

    Garg, Vishrut; Basaran, Osman

    2017-11-01

    Bubble coalescence plays a central role in the hydrodynamics of gas-liquid systems such as bubble column reactors, spargers, and foams. Two bubbles approaching each other at velocity V coalesce when the thin film between them ruptures, which is often the rate-limiting step. Experimental studies of this system are difficult, and recent works provide conflicting results on the effect of V on coalescence times. We simulate the head-on approach of two bubbles of equal radii R in an incompressible Newtonian fluid (density ρ, viscosity μ, and surface tension σ) by solving numerically the free boundary problem comprised of the Navier Stokes and continuity equations. Simulations are made challenging by the existence of highly disparate lengthscales, i.e. film thickness and drop radii, which are resolved by using the method of elliptic mesh generation. For a given liquid, the bubbles are shown to coalesce for all velocities below a critical value. The effects of Ohnesorge number Oh = μ /√{ ρσR } on coalescence time and critical velocity are also investigated.

  16. Photothermally controlled Marangoni flow around a micro bubble

    International Nuclear Information System (INIS)

    Namura, Kyoko; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi

    2015-01-01

    We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size

  17. Photothermally controlled Marangoni flow around a micro bubble

    Science.gov (United States)

    Namura, Kyoko; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi

    2015-01-01

    We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size.

  18. Bubble coalescence in breathing DNA

    DEFF Research Database (Denmark)

    Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias

    2007-01-01

    We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribu...... vicious walkers in opposite potentials....

  19. Generation of a bubble universe using a negative energy bath

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Yeom, Dong-han

    2011-01-01

    This paper suggests a model for a bubble universe using buildable false vacuum bubbles. We study the causal structures of collapsing false vacuum bubbles using double-null simulations. False vacuum bubbles violate the null energy condition and emit negative energy along the outgoing direction through semi-classical effects. If there are a few collapsing false vacuum bubbles and they emit negative energy to a certain region, then the region can be approximated by a negative energy bath, which means that the region is homogeneously filled by negative energy. If a false vacuum bubble is generated in the negative energy bath and the tension of the bubble effectively becomes negative in the bath, then the bubble can expand and form an inflating bubble universe. This scenario uses a set of assumptions different from those in previous studies because it does not require tunneling to unbuildable bubbles.

  20. Eternal inflation, bubble collisions, and the persistence of memory

    International Nuclear Information System (INIS)

    Garriga, Jaume; Guth, Alan H.; Vilenkin, Alexander

    2007-01-01

    A 'bubble universe' nucleating in an eternally inflating false vacuum will experience, in the course of its expansion, collisions with an infinite number of other bubbles. In an idealized model, we calculate the rate of collisions around an observer inside a given reference bubble. We show that the collision rate violates both the homogeneity and the isotropy of the bubble universe. Each bubble has a center which can be related to 'the beginning of inflation' in the parent false vacuum, and any observer not at the center will see an anisotropic bubble collision rate that peaks in the outward direction. Surprisingly, this memory of the onset of inflation persists no matter how much time elapses before the nucleation of the reference bubble

  1. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  2. Locally prepared antibiotic sensitivity discs: a substitute for imported ...

    African Journals Online (AJOL)

    Zones of inhibition were compared with those obtained from commercial antibiotic discs. Results obtained showed that discs prepared locally from antibiotic tablets, performed comparably with commercially obtained discs. There was no significant statistical difference between the two tested discs. We therefore recommend ...

  3. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  4. Bubble shape in horizontal and near horizontal intermittent flow

    International Nuclear Information System (INIS)

    Gu, Hanyang; Guo, Liejin

    2015-01-01

    Highlights: • The bubble shapes in intermittent flows are presented experimentally. • The nose-tail inversion phenomenon appears at a low Froude number in downward pipe. • Transition from plug to slug flow occurs when the bubble tail changes from staircase pattern to hydraulic jump. - Abstract: This paper presents an experimental study of the shape of isolated bubbles in horizontal and near horizontal intermittent flows. It is found that the shapes of the nose and body of bubble depend on the Froude number defined by gas/liquid mixture velocity in a pipe, whereas the shape of the back of bubble region depends on both the Froude number and bubble length. The photographic studies show that the transition from plug to slug flow occurs when the back of the bubble changes from staircase pattern to hydraulic jump with the increase of the Froude number and bubble length. The effect of pipe inclination on characteristics of bubble is significant: The bubble is inversely located in a downwardly inclined pipe when the Froude number is low, and the transition from plug flow to slug flow in an upward inclined pipe is more ready to occur compared with that in a downwardly inclined pipe

  5. The influence of bubbles on the perception carbonation bite.

    Directory of Open Access Journals (Sweden)

    Paul M Wise

    Full Text Available Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form and at 2.0 atmospheres pressure (at which bubbles did not form. Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  6. Imaging characteristics of noncontained migrating disc fragment and cyst

    International Nuclear Information System (INIS)

    Eerens, I.; Demaerel, P.; Haven, F.; Wilms, G.; Loon, J. van; Calenbergh, F. van

    2001-01-01

    The purpose of this article is to review less common presentations of degenerative disc disease on MR imaging. The images of eight patients were retrospectively analyzed. Six of them had transligamentous (or noncontained) disc herniations, the fragments of which were located in the posterior epidural space in three of them. One patient had a transdural disc fragment and one patient had a disc cyst. The cyst was located in the ventrolateral epidural space. On T2-weighted images, the migrated disc fragment returned a higher signal than the disc of origin in 6 of 7 patients. The disc cyst returned a signal similar to that of cerebrospinal fluid. The MR appearances of disc fragments can be puzzling, particularly if they are located in the posterior epidural space. It is important to recognize the abnormalities in order to differentiate them from less common lesions such as hematoma, abscess and neurinoma. (orig.)

  7. Imaging characteristics of noncontained migrating disc fragment and cyst

    Energy Technology Data Exchange (ETDEWEB)

    Eerens, I.; Demaerel, P.; Haven, F.; Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Loon, J. van; Calenbergh, F. van [Dept. of Neurosurgery, University Hospitals, Leuven (Belgium)

    2001-05-01

    The purpose of this article is to review less common presentations of degenerative disc disease on MR imaging. The images of eight patients were retrospectively analyzed. Six of them had transligamentous (or noncontained) disc herniations, the fragments of which were located in the posterior epidural space in three of them. One patient had a transdural disc fragment and one patient had a disc cyst. The cyst was located in the ventrolateral epidural space. On T2-weighted images, the migrated disc fragment returned a higher signal than the disc of origin in 6 of 7 patients. The disc cyst returned a signal similar to that of cerebrospinal fluid. The MR appearances of disc fragments can be puzzling, particularly if they are located in the posterior epidural space. It is important to recognize the abnormalities in order to differentiate them from less common lesions such as hematoma, abscess and neurinoma. (orig.)

  8. Relationship of condylar position to disc position and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Incesu, L.; Taskaya-Yilmaz, N. E-mail: nergizy@omu.edu.tr; Oeguetcen-Toller, M.; Uzun, E

    2004-09-01

    Introduction/objective: The purpose of this study was to assess whether condylar position, as depicted by magnetic resonance imaging, was an indicator of disc morphology and position. Methods and material: One hundred and twenty two TMJs of 61 patients with temporomandibular joint disorder were examined. Condylar position, disc deformity and degree of anterior disc displacement were evaluated by using magnetic resonance imaging. Results and discussion: Posterior condyle position was found to be the main feature of temporomandibular joints with slight and moderate anterior disc displacement. No statistical significance was found between the condylar position, and reducing and nonreducing disc positions. On the other hand, superior disc position was found to be statistically significant for centric condylar position. Conclusion: It was concluded that posterior condyle position could indicate anterior disc displacement whereas there was no relation between the position of condyle and the disc deformity.

  9. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    International Nuclear Information System (INIS)

    Ramirez-Munoz, J.; Salinas-Rodriguez, E.; Soria, A.; Gama-Goicochea, A.

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. → The leading bubble wake decreases the drag on the trailing bubble. → A new semi-analytical model for the trailing bubble's drag is presented. → The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 ≤ Re ≤ 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 ≤ Er ≤ 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  10. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Munoz, J., E-mail: jrm@correo.azc.uam.mx [Departamento de Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico); Salinas-Rodriguez, E.; Soria, A. [Departamento de IPH, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340 Mexico D.F. (Mexico); Gama-Goicochea, A. [Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico)

    2011-07-15

    Graphical abstract: Display Omitted Highlights: > The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. > The leading bubble wake decreases the drag on the trailing bubble. > A new semi-analytical model for the trailing bubble's drag is presented. > The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 {<=} Re {<=} 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 {<=} Er {<=} 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  11. Effect of microstructure on helium bubble growth in irradiated nickel

    International Nuclear Information System (INIS)

    Sattler, M.L.

    1986-01-01

    Thin nickel films were irradiated with 80 keV helium ions at varying doses and varying temperatures in order to obtain a variety of final microstructures. The growth of bubbles was examined during in-situ irradiations at 950 0 C where migration and coalescence events were observed for bubbles as large as 60 nm. Further direct observations of bubble growth were made during annealing of the irradiated specimens. For sample with no visible bubbles before annealing, the heating to 0.51 T/sub M/ produced bubbles that increased in diameter with annealing time to the power n. For bubbles in the grain interior, n ∼ 1, and on the grain boundaries, n ∼ 0.6. Since no migration and coalescence or ripening theories predict this behavior, a theory described by transient diffusion to spherical sinks was developed to discuss the behavior. This theory predicts that n = 1 for bubbles growing in the grain interior and n = 0.5 for bubbles on the grain boundary. In other annealing of irradiated samples containing large bubble populations, the growth of large bubbles and shrinking of small bubbles was observed at a temperature equal to 0.54 T/sub M/. The theory of Ostwald ripening properly described this type of bubble growth. Mass spectrometer measurements of He content in the irradiated specimens showed a greater He retention in the Ni films that contained a significant bubble population than those with no visible bubbles

  12. Thoracic spine disc-related abnormalities: longitudinal MR imaging assessment

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Charles J.; Schweitzer, Mark E.; Morrison, William B.; Parellada, Joan A. [TJUH Radiology, Philadelphia, Pennsylvania (United States); Carrino, J.A. [Department of Radiology ASB-1, Harvard Medical School, Brigham and Women' s Hospital, L1, Room 002B, 75 Francis Street, MA 02115, Boston (United States)

    2004-04-01

    To describe and characterize the temporal changes in disc-related disorders of the thoracic spine using MR imaging. A retrospective longitudinal cohort study was carried out of 40 patients with two sequential thoracic spine MR images at variable intervals. The images were assessed for baseline presence of, new incidence of and changes in disc herniation, degenerative disc disease, endplate marrow signal alteration and Schmorl nodes. The range of follow-up was 4-149 weeks. Baseline presence was: disc herniation, 10% (49/480); degenerative disc disease, 14% (66/480); endplate marrow signal alteration, 2.3% (11/480); Schmorl nodes 9.6% (46/480). Most pre-existing lesions tended to remain unchanged. Herniations showed the most change, tending to improve in 27%. New incidence was: disc herniation, 1.5% (7/480), degenerative disc disease, 2% (10/480); endplate marrow signal alteration, 1.6% (8/480); Schmorl nodes, 2.1% (10/480). Disc degeneration was first visible at an 11-week interval and once established almost never changed over many weeks to months. Endplate signal alterations (Modic changes) were uncommon. Schmorl nodes show no change from baseline for up to 2 1/2 years. All findings predominated in the lower intervertebral levels from T6 to T10. The most prevalent thoracic spine disc-related findings are degeneration and herniation. Disc herniations predominate in the lower segments and are a dynamic phenomenon. Disc degeneration can be rapidly evolving but tends to remain unchanged after occurrence. Endplate marrow signal changes were an uncommon manifestation of thoracic disc disease. Schmorl nodes showed the least change over time. (orig.)

  13. Use NASA GES DISC Data in ArcGIS

    Science.gov (United States)

    Yang, Wenli; Pham, Long B.; Kempler, Steve

    2015-01-01

    This presentation describes GIS relevant data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), GES DISC Services and Support for GIS Users, and use cases of GES DISC data in ArcGIS.

  14. Sono-chemiluminescence from a single cavitation bubble in water

    International Nuclear Information System (INIS)

    Brotchie, Adam; Shchukin, Dmitry; Moehwald, Helmuth; Schneider, Julia; Pflieger, Rachel

    2012-01-01

    In summary, this study has revealed the conditions required for a single bubble to be sono-chemically active. Evidence of radical-induced processes surrounding the bubble was only observed below the SL threshold, where the bubble was not spatially stable, and did not correlate with emission from excited molecular states inside the bubble. Moreover, this work substantiates recent progress that has been made in bridging the gap between single and multi-bubble cavitation. (authors)

  15. Bubble behavior characteristics based on virtual binocular stereo vision

    Science.gov (United States)

    Xue, Ting; Xu, Ling-shuang; Zhang, Shang-zhen

    2018-01-01

    The three-dimensional (3D) behavior characteristics of bubble rising in gas-liquid two-phase flow are of great importance to study bubbly flow mechanism and guide engineering practice. Based on the dual-perspective imaging of virtual binocular stereo vision, the 3D behavior characteristics of bubbles in gas-liquid two-phase flow are studied in detail, which effectively increases the projection information of bubbles to acquire more accurate behavior features. In this paper, the variations of bubble equivalent diameter, volume, velocity and trajectory in the rising process are estimated, and the factors affecting bubble behavior characteristics are analyzed. It is shown that the method is real-time and valid, the equivalent diameter of the rising bubble in the stagnant water is periodically changed, and the crests and troughs in the equivalent diameter curve appear alternately. The bubble behavior characteristics as well as the spiral amplitude are affected by the orifice diameter and the gas volume flow.

  16. Jet formation in shock-heavy gas bubble interaction

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhai; Ting Si; Li-Yong Zou; Xi-Sheng Luo

    2013-01-01

    The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work.The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D.As a validation,the experiments of a SF6 bubble accelerated by a planar shock were performed.The results indicate that,due to the mismatch of acoustic impedance,the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition.With respect to the same bubble,the manner of jet formation is also distinctly different under different shock strengths.The disparities of the acoustic impedance result in different effects of shock focusing in the bubble,and different behaviors of shock wave inside and outside the bubble.The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation.Moreover,the analysis of the vorticity deposition,and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation.It is concluded that the pressure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.

  17. The formation of planets by disc fragmentation

    Directory of Open Access Journals (Sweden)

    Stamatellos Dimitris

    2013-04-01

    Full Text Available I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc, or suppressed and even reversed (e.g by tidal stripping. I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation.

  18. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    Science.gov (United States)

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  19. Can airborne ultrasound monitor bubble size in chocolate?

    International Nuclear Information System (INIS)

    Watson, N; Hazlehurst, T; Povey, M; Vieira, J; Sundara, R; Sandoz, J-P

    2014-01-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product

  20. Can airborne ultrasound monitor bubble size in chocolate?

    Science.gov (United States)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  1. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF BUOYANT BUBBLES IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    O'Neill, S. M.; De Young, D. S.; Jones, T. W.

    2009-01-01

    We report results of three-dimensional magnetohydrodynamic simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three-dimensional extensions of two-dimensional calculations reported by Jones and De Young. Initially, spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into 'smoke rings', if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with β = P gas /P mag ∼ 3 can influence the dynamics of the bubbles, provided the fields are not tangled on scales comparable to or smaller than the size of the bubbles. Quasi-uniform, horizontal fields with initial β ∼ 10 2 bifurcated our bubbles before they rose more than about a scale height of the ICM, and substantially weaker fields produced clear distortions. These behaviors resulted from stretching and amplification of ICM fields trapped in irregularities along the top surface of the young bubbles. On the other hand, tangled magnetic fields with similar, modest strengths are generally less easily amplified by the bubble motions and are thus less influential in bubble evolution. Inclusion of a comparably strong, tangled magnetic field inside the initial bubbles had little effect on our bubble evolution, since those fields were quickly diminished through expansion of the bubble and reconnection of the initial field.

  2. Intervertebral Disc Characteristic on Progressive Neurological Deficit

    Directory of Open Access Journals (Sweden)

    Farid Yudoyono

    2017-09-01

    Full Text Available Objective: To examine the intervertebral disc characteristic on magnetic resonance imaging (MRI in lumbar herniated disc (LHD patients with progressive neurological deficit. Methods: Patients were collected retrospectively from Dr. Hasan Sadikin General Hospital Database from 2011–2013 with LHD, had neurological deficit such as radiculopathy and cauda equine syndrome for less than four weeks with a positive sign confirmed by neurological examination and confirmatory with MRI examination. Results: A total of 14 patients with lumbar herniated disc disease (10 males, 4 females suffered from progressive neurological deficit with an average age of (52.07±10.9 years old. Early disc height was 9.38±0.5 mm and progressive neurological deficit state disc height was 4.03±0.53 mm, which were significantly different statisticaly (p<0.01. Symptoms of radiculopathy were seen in 11 patients and cauda equine syndrome in three patients. Modic changes grade 1 was found in five patients, grade 2 in eight patients,grade 3 in one patient, Pfirmman grade 2 in eleven patients and grade 3 in three patients. Thecal sac compression 1/3 compression was seen in four patients and 2/3 compression in ten patients. Conclusions: Neurosurgeon should raise concerns on the characteristic changes of intervertebral disc in magnetic resonance imaging examination to avoid further neural injury in lumbar herniated disc patients.

  3. Gas transport into a cavitation bubble during the explosion

    International Nuclear Information System (INIS)

    Oldenziel, D.M.

    1976-01-01

    When considering cavitation bubbles exploding from small stream nuclei the surface tension plays an important role, and mostly negative pressures exist in the surroundings of such a bubble. During the short explosion time, the gas and vapor pressure in the bubble plays no important role in the dynamic process. The high radial velocity of the bubble wall introduces a steep gradient in the concentration of dissolved air near it, which results in some enforced gas transport into the bubble. During the bubble implosion it is necessary to take into account the amount of gas in the bubble, as it certainly plays an important role in exploring the cavitation erosion. In this survey the solution of a mathematical model for the gas diffusion process is compared with some experimental results

  4. Fluctuation effects on bubble growth in hot nuclear matter

    International Nuclear Information System (INIS)

    Santiago, A.J.; Chung, K.C.

    1991-01-01

    The evolution of bubbles with arbitrary density in an infinite nuclear system is studied in a simplified treatment. Kinetic pressure fluctuations on the bubble surface are considered. The critical radius, evolution time and probability for bubble expansion are shown to depend significantly on the initial bubble density. (author)

  5. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    Science.gov (United States)

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  6. The frequency, characteristics and aetiology of stroke mimic presentations: a narrative review.

    Science.gov (United States)

    McClelland, Graham; Rodgers, Helen; Flynn, Darren; Price, Christopher I

    2018-05-01

    A significant proportion of patients with acute stroke symptoms have an alternative 'mimic' diagnosis. A narrative review was carried out to explore the frequency, characteristics and aetiology of stroke mimics. Prehospital and thrombolysis-treated patients were described separately. Overall, 9972 studies were identified from the initial search and 79 studies were included with a median stroke mimic rate of 19% (range: 1-64%). The prehospital median was 27% (range: 4-43%) and the thrombolysis median 10% (range: 1-25%). Seizures, migraines and psychiatric disorders are the most frequently reported causes of stroke mimics. Several characteristics are consistently associated with stroke mimics; however, they do not fully exclude the possibility of stroke. Nineteen per cent of suspected stroke patients had a mimic condition. Stroke mimics were more common with younger age and female sex. The range of mimic diagnoses, a lack of clear differentiating characteristics and the short treatment window for ischaemic stroke create challenges for early identification.

  7. Energy cascading by triple-bubble interactions via time-delayed control

    International Nuclear Information System (INIS)

    Lin, Yen-Liang; Chang, Chia-Ming; Tseng, Fan-Gang; Yang, I-Da; Chieng, Ching-Chang

    2012-01-01

    The triple-bubble interaction controlled by a precise time-delayed technique was investigated in detail with respect to different ignition times, heater spaces and sequential firing modes to promote efficient energy cascading and concentration. The target bubble, which was generated under a specific delay time with two auxiliary bubbles, can have a volume that is two or almost three times larger than that of a single bubble. This result overcomes the limitation of energy usage on an explosive microbubble under a constant heat flux. As the heater space decreases, stronger bubble–bubble interactions were obtained due to the hydrodynamic effect and the intensive pressure wave emission, resulting in highly enhancing and depressing bubble dynamics. Other interesting phenomena, such as bubble shifting, mushroom-shape bubble, rod-shape bubble and bubble extension among heaters, were also recorded by a high-speed phase-averaged stroboscopic technique, displaying special non-spherical bubble dynamics. Artificial manipulation of bubble behavior was further conducted in a two-level sequential firing process. Using various volumetric combinations, the adjustable multi-level fluid transportation can be realized by a digital time-delayed control. The above-mentioned information can be applied to not only the design and operation of inkjet printheads but also cavitation research and fluid pumping in microdevices. (paper)

  8. Helium bubbles aggravated defects production in self-irradiated copper

    Science.gov (United States)

    Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn

    2017-12-01

    Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.

  9. Optical measurement of bubbles: System design and application

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G.de; Cohen, L.H.

    2003-01-01

    Affordable high quality charge-coupled device (CCD) video cameras and image processing software are powerful tools for bubble measurements. Because of the wide variation between bubble populations, different bubble measurement systems (BMSs) are required depending upon the application. Two BMSs are

  10. Molecular mimics of the tumour antigen MUC1.

    Directory of Open Access Journals (Sweden)

    Tharappel C James

    Full Text Available A key requirement for the development of cancer immunotherapy is the identification of tumour-associated antigens that are differentially or exclusively expressed on the tumour and recognized by the host immune system. However, immune responses to such antigens are often muted or lacking due to the antigens being recognized as "self", and further complicated by the tumour environment and regulation of immune cells within. In an effort to circumvent the lack of immune responses to tumour antigens, we have devised a strategy to develop potential synthetic immunogens. The strategy, termed mirror image phage display, is based on the concept of molecular mimicry as demonstrated by the idiotype/anti-idiotype paradigm in the immune system. Here as 'proof of principle' we have selected molecular mimics of the well-characterised tumour associated antigen, the human mucin1 protein (MUC1 from two different peptide phage display libraries. The putative mimics were compared in structure and function to that of the native antigen. Our results demonstrate that several of the mimic peptides display T-cell stimulation activity in vitro when presented by matured dendritic cells. The mimic peptides and the native MUC1 antigenic epitopes can cross-stimulate T-cells. The data also indicate that sequence homology and/or chemical properties to the original epitope are not the sole determining factors for the observed immunostimulatory activity of the mimic peptides.

  11. Neutron Imaging study of bubble behaviors in Nanofluid Through Engineered Orifices

    International Nuclear Information System (INIS)

    Seo, Seok Bin; Bang, In Cheol; Kim, Tae Joo

    2014-01-01

    Most studies focused on the change of surface parameters through deposited nanoparticles, while Vafaei and Wen firstly discussed modification of bubble dynamics by dispersed nanoparticles in fluid as well as deposited ones. The boiling mechanism, as an effective heat transfer mode, includes bubble generation, growth, departure, and coalescence. Therefore the change of bubble dynamics can lead to the change of boiling heat transfer condition. That is, not only surface characteristics but the dispersed nanoparticles would be the essential parameters of boiling mechanism in terms of bubble dynamics. For advanced visualization of opaque fluids, the neutron imaging technique is introduced. In the present study, the bubble dynamics in nanofluid through engineered orifices was studied. The main parameters of engineered orifices are size and geometry. Photographic analysis of bubble departure frequency and averaged bubble departure volume provides as follows: With increasing orifice diameter, averaged bubble departure volume increases, while bubble departure frequency decreases. The results are attributed to enhanced capillary force by increasing contact perimeter. Averaged bubble departure volume and bubble departure frequency remain similar for three different types of orifices. But edges of the triangle and square orifice produce small bubbles which interrupts bubble generation. The converged triple contact line due to the edge may be a reason for the emerged baby bubbles. Nanofluid shows less averaged bubble departure volume and higher bubble departure frequency. Considering little change in physical properties of the fluid, interaction between bubble interface and nanoparticles may be in charge of the results

  12. Bubble Dynamics in Laser Lithotripsy

    International Nuclear Information System (INIS)

    Mohammadzadeh, Milad; Mercado, Julian Martinez; Ohl, Claus-Dieter

    2015-01-01

    Laser lithotripsy is a medical procedure for fragmentation of urinary stones with a fiber guided laser pulse of several hundred microseconds long. Using high-speed photography, we present an in-vitro study of bubble dynamics and stone motion induced by Ho:YAG laser lithotripsy. The experiments reveal that detectable stone motion starts only after the bubble collapse, which we relate with the collapse-induced liquid flow. Additionally, we model the bubble formation and dynamics using a set of 2D Rayleigh-Plesset equations with the measured laser pulse profile as an input. The aim is to reduce stone motion through modification of the temporal laser pulse profile, which affects the collapse scenario and consequently the remnant liquid motion. (paper)

  13. Turbulence modulation induced by bubble swarm in oscillating-grid turbulence

    International Nuclear Information System (INIS)

    Morikawa, Koichi; Urano, Shigeyuki; Saito, Takayuki

    2007-01-01

    In the present study, liquid-phase turbulence modulation induced by a bubble swarm ascending in arbitrary turbulence was experimentally investigated. Liquid-phase homogeneous isotropic turbulence was formed using an oscillating grid in a cylindrical acrylic vessel of 149 mm in inner diameter. A bubble swarm consisting of 19 bubbles of 2.8 mm in equivalent diameter was examined; the bubble size and launching time were completely controlled using a bubble launching device through audio speakers. This bubble launching device was able to repeatedly control the bubble swarm arbitrarily and precisely. The bubble swarm was launched at a frequency of 4 Hz. The liquid phase motion was measured via two LDA (Laser Doppler Anemometer) probes. The turbulence intensity, spatial correlation and integral scale were calculated from LDA data obtained by the two spatially-separate-point measurement. When the bubble swarm was added, the turbulence intensity dramatically changed. The original isotropic turbulence was modulated to the anisotropic turbulence by the mutual interference between the bubble swarm and ambient isotropic turbulence. The integral scales were calculated from the spatial correlation function. The effects of the bubble swarm on the integral scales showed the tendencies similar to those on turbulence intensity. (author)

  14. Beer tapping: dynamics of bubbles after impact

    Science.gov (United States)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  15. Only marginal alignment of disc galaxies

    Science.gov (United States)

    Andrae, René; Jahnke, Knud

    2011-12-01

    Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understanding the formation of this type of galaxies. The tidal-torque theory aims to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness, i.e. alignment of disc galaxies, on short distance scales of 1 Mpc h-1. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering these correlations but are overly optimistic in the reported level of statistical significance of the detections. Errors in redshift, ellipticity and morphological classifications were not taken into account, although they have a significant impact. We explain how to rigorously propagate all the important errors through the estimation process. Analysing disc galaxies in the Sloan Digital Sky Survey (SDSS) data base, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distance scales of 1 Mpc h-1 are plausible but not statistically significant. Current data appear not good enough to constrain parameters of theory. This result agrees with a simple hypothesis test in the Local Group, where we also find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges even for Scd galaxies, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e. PanSTARRS and LSST cannot be used. Conversely, the EUCLID project will not cover the relevant redshift regime. We also discuss the potentials and problems of front-edge classifications of galaxy discs in order to improve the autocorrelation estimates of angular-momentum orientation.

  16. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  17. Modeling of bubble break-up in stirred tanks

    Directory of Open Access Journals (Sweden)

    Živković Goran

    2004-01-01

    Full Text Available The Lagrangian code LAG3D for dispersed phase flow modeling was implemented with the introduction of bubble break-up model. The research was restricted on bubbles with diameter less than 2 mm, i.e. bubbles which could be treated as spheres. The model was developed according to the approach of Martinez-Bazan model. It was rearranged and adjusted for the use in the particular problem of flow in stirred tanks. Developed model is stochastic one, based on the assumption that shear in the flow induces the break of the bubble. As a dominant parameter a dissipation of the turbulent kinetic energy was used. Computations were performed for two different types of the stirrer: Rushton turbine, and Pitch blade turbine. The geometry of the tank was kept constant (four blades. Two different types of liquids with very big difference in viscosity were used, i.e. silicon oil and dimethylsulfoxide, in order to enable computation of the flow in turbulent regime as well. As a parameter of the flow, the number of rotations of the stirrer was varying. As a result of the computation the fields of velocity of both phases were got, as well as the fields of bubble concentration bubble mean diameter and bubble Sauter diameter. To estimate the influence of the break-up model on the processes in the stirred tank a computations with and without this model were performed and compared. A considerable differences were found not only in the field of bubble diameter, but also in the field of bubble concentration. That confirmed a necessity of the introduction of such model. A comparison with the experiments performed with phase Doppler anemometry technique showed very good agreement in velocity and concentration profiles of the gas phase. The results for the average bubble diameter are qualitatively the same, but in almost all computations about 20% smaller bubble diameter was got than in the measurements.

  18. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  19. Bubble chamber: colour enhanced tracks

    CERN Multimedia

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  20. Laser controllable generation and manipulation of micro-bubbles in water

    Science.gov (United States)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.; Maksimyak, A. P.; Hanson, S. G.; Kontush, S. M.

    2018-01-01

    Micrometer-sized vapor bubbles are formed due to local heating of the water suspension containing absorptive pigment particles of 100 nm diameter. The heating is performed by the CW near-infrared laser radiation. By changing the laser power, four regimes are realized: (1) bubble generation, (2) stable growth of the existing bubbles; (3) stationary existence of the bubbles and (4) bubbles' shrinkage and collapse. The generation and evolution of single bubbles and ensembles of bubbles with controllable sizes and numbers is demonstrated. The bubbles are grouped within the laserilluminated region. They can be easily moved and transported together with the focal spot. The results can be useful for applications associated with the precise manipulation and the species delivery in nano- and micro-engineering problems.

  1. Evaluation of bone and disc configuration in TMJ internal derangement

    International Nuclear Information System (INIS)

    Park, Cheol Woo; Hwang, Eui Hwan; Lee, Sang Rae

    2001-01-01

    To investigate bone and disc configuration on MR images in internal derangement related to age. MR images of 150 TMJs in 107 patients were analyzed to determine the morphologic changes. Two groups were distinguished to be correlated with age. Group 1 consisted of TMJs that were diagnosed as having anterior disc displacement with reduction (ADDwR), and Group 2 consisted of TMJs that were diagnosed as having anterior disc displacement without reduction (ADDwR). We assessed the configuration of the articular disc, degree of anterior disc displacement, and osseous changes of TMJs. The third decade (83 of 150 joints) was most frequent in this study. In the ADDwR group biconcave disc was most frequent at all ages except fifth decade, but in the ADDwoR group deformed discs was most frequent at third and forth decades. In the ADDwR group slightly displaced discs was most frequent at all ages, but in the ADDwoR group severely displaced discs was most frequent at second decade, and the degree of disc displacement was increased with aging over 30 years of age. TM joints showed osseous changes in 17% of the ADDwR group, and in 30% of the ADDwoR group. MR findings of osseous changes of the TMJ were not found to be significantly correlated with age. The prevalence of deformation of disc, displacement of disc, and osseous changes of TMJ was higher in the ADDwoR group than in the ADDwR group. MR findings of disc configuration and degree of disc displacement were found to be correlated with age

  2. A computational study of intervertebral disc degeneration in relation to changes in regional tissue composition and disc nutrition

    OpenAIRE

    Ruiz Wills, Carlos

    2015-01-01

    Up to 85% of the world population suffers from low back pain, a clinical condition often related to the intervertebral disc (IVD) degeneration (DD). Altered disc cell nutrition affects cell viability and can generate catabolic cascades that degrade the extracellular matrix (ECM). Also, a major degenerative biochemical change in the disc is the proteoglycan (PG) loss, which affects the osmotic pressure and hydration that is critical for cell nutrition. However, the relationship between biochem...

  3. Inertial manipulation of bubbles in rectangular microfluidic channels.

    Science.gov (United States)

    Hadikhani, Pooria; Hashemi, S Mohammad H; Balestra, Gioele; Zhu, Lailai; Modestino, Miguel A; Gallaire, François; Psaltis, Demetri

    2018-03-27

    Inertial microfluidics is an active field of research that deals with crossflow positioning of the suspended entities in microflows. Until now, the majority of the studies have focused on the behavior of rigid particles in order to provide guidelines for microfluidic applications such as sorting and filtering. Deformable entities such as bubbles and droplets are considered in fewer studies despite their importance in multiphase microflows. In this paper, we show that the trajectory of bubbles flowing in rectangular and square microchannels can be controlled by tuning the balance of forces acting on them. A T-junction geometry is employed to introduce bubbles into a microchannel and analyze their lateral equilibrium position in a range of Reynolds (1 < Re < 40) and capillary numbers (0.1 < Ca < 1). We find that the Reynolds number (Re), the capillary number (Ca), the diameter of the bubble (D[combining macron]), and the aspect ratio of the channel are the influential parameters in this phenomenon. For instance, at high Re, the flow pushes the bubble towards the wall while large Ca or D[combining macron] moves the bubble towards the center. Moreover, in the shallow channels, having aspect ratios higher than one, the bubble moves towards the narrower sidewalls. One important outcome of this study is that the equilibrium position of bubbles in rectangular channels is different from that of solid particles. The experimental observations are in good agreement with the performed numerical simulations and provide insights into the dynamics of bubbles in laminar flows which can be utilized in the design of flow based multiphase flow reactors.

  4. Structure of positive streamers inside gaseous bubbles immersed in liquids

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    Electric discharges and streamers in liquids typically proceed through vapour phase channels produced by the streamer or in gaseous bubbles. The bubbles can originate by enthalpy changes produced by the discharge or can be artificially injected into the liquid. Experiments on streamers in bubbles immersed in liquids have shown that the discharge propagates either along the surface of the bubble or through the volume of the bubble as in conventional streamer propagation in air. In this paper we report on results of a computational investigation of streamer propagation through bubbles immersed in liquids. We found that the dielectric constant of the liquid in large part determines the path the streamer takes. Streamers in bubbles immersed in a liquid with a high permittivity preferentially propagate along the surface of the bubble. Liquids with low permittivity can result in the streamer propagating along the axis of the bubble. The permittivity at which this transition occurs is a function of the applied voltage, size of the bubble and the conductivity of the liquid. (fast track communication)

  5. Schrödinger evolution of self-gravitating discs

    Science.gov (United States)

    Batygin, Konstantin

    2018-04-01

    An understanding of the long-term evolution of self-gravitating discs ranks among the classic outstanding problems of astrophysics. In this work, we show that the secular inclination dynamics of a geometrically thin quasi-Keplerian disc, with a surface density profile that scales as the inverse square-root of the orbital radius, are described by the time-dependent Schrödinger equation. Within the context of this formalism, nodal bending waves correspond to the eigenmodes of a quasi-particle's wavefunction, confined in an infinite square well with boundaries given by the radial extent of the disc. We further show that external secular perturbations upon self-gravitating discs exhibit a mathematical similarity to quantum scattering theory. Employing this framework, we derive an analytic criterion for the gravitational rigidity of a nearly-Keplerian disc under external perturbations. Applications of the theory to circumstellar discs and Galactic nuclei are discussed.

  6. Evidence for accreted component in the Galactic discs

    Science.gov (United States)

    Xing, Q. F.; Zhao, G.

    2018-06-01

    We analyse the distribution of [Mg/Fe] abundance in the Galactic discs with F- and G-type dwarf stars selected from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) archive. The sample stars are assigned into different stellar populations by using kinematic criteria. Our analysis reveals the chemical inhomogeneities in the Galactic thick disc. A few of metal-poor stars in the thick disc exhibit relatively low [Mg/Fe] abundance in respect to the standard thick-disc sample. The orbital eccentricities and maximum Galactocentric radii of low-α metal-poor stars are apparently greater than that of high-α thick-disc stars. The orbital parameters and chemical components of low-α stars in the thick disc suggest that they may have been formed in regions with low star formation rate that were located at large distances from the Galactic centre, such as infalling dwarf spheroidal galaxies.

  7. Expansion of a vapor bubble and aerosols transfer

    International Nuclear Information System (INIS)

    Breton, J.P.; Lapicore, A.; Porrachia, A.; Natta, M.; Amblard, M.; Berthoud, G.

    1979-08-01

    Experimental results on the expansion and collapse of two phase vapor bubble, and on the aerosols transport outside the tank are presented. Two facilities using small source of hot water (2 cm 3 ) or bigger ones (1000 cm 3 ) were used and are described. Two models are developped to analyze the results on the bubble. They show the heat and mass transfer from the bubble to the surroundings and the following reduction in the mechanical energy delivered by the bubble, and the decrease in this reduction due to noncondensables and to scale effect. The models developed or the aerosol transfer show that most particles are likely transported from the bubble to the cover gas

  8. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G.de

    2006-01-01

    Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically

  9. Gas Modelling in the Disc of HD 163296

    Science.gov (United States)

    Tilling, I.; Woitke, P.; Meeus, G.; Mora, A.; Montesinos, B.; Riviere-Marichalar, P.; Eiroa, C.; Thi, W. -F.; Isella, A.; Roberge, A.; hide

    2011-01-01

    We present detailed model fits to observations of the disc around the Herbig Ae star HD 163296. This well-studied object has an age of approx. 4Myr, with evidence of a circumstellar disc extending out to approx. 540AU. We use the radiation thermo-chemical disc code ProDiMo to model the gas and dust in the circumstellar disc of HD 163296, and attempt to determine the disc properties by fitting to observational line and continuum data. These include new Herschel/PACS observations obtained as part of the open-time key program GASPS (Gas in Protoplanetary Systems), consisting of a detection of the [Oi] 63 m line and upper limits for several other far infrared lines. We complement this with continuum data and ground-based observations of the CO-12 3-2, 2-1 and CO-13 J=1-0 line transitions, as well as the H2 S(1) transition. We explore the effects of stellar ultraviolet variability and dust settling on the line emission, and on the derived disc properties. Our fitting efforts lead to derived gas/dust ratios in the range 9-100, depending on the assumptions made. We note that the line fluxes are sensitive in general to the degree of dust settling in the disc, with an increase in line flux for settled models. This is most pronounced in lines which are formed in the warm gas in the inner disc, but the low excitation molecular lines are also affected. This has serious implications for attempts to derive the disc gas mass from line observations. We derive fractional PAH abundances between 0.007 and 0.04 relative to ISM levels. Using a stellar and UV excess input spectrum based on a detailed analysis of observations, we find that the all observations are consistent with the previously assumed disc geometry

  10. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    Energy Technology Data Exchange (ETDEWEB)

    Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-08-01

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  11. Convection in a volcanic conduit recorded by bubbles

    Science.gov (United States)

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Gonnermann, Helge M.; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2013-01-01

    Microtextures of juvenile pyroclasts from Kīlauea’s (Hawai‘i) early A.D. 2008 explosive activity record the velocity and depth of convection within the basaltic magma-filled conduit. We use X-ray microtomography (μXRT) to document the spatial distribution of bubbles. We find small bubbles (radii from 5 μm to 70 μm) in a halo surrounding larger millimeter-size bubbles. This suggests that dissolved water was enriched around the larger bubbles—the opposite of what is expected if bubbles grow as water diffuses into the bubble. Such volatile enrichment implies that the volatiles within the large bubbles were redissolving into the melt as they descended into the conduit by the downward motion of convecting magma within the lava lake. The thickness of the small bubble halo is ∼100–150 μm, consistent with water diffusing into the melt on time scales on the order of 103 s. Eruptions, triggered by rockfall, rapidly exposed this magma to lower pressures, and the haloes of melt with re-dissolved water became sufficiently supersaturated to cause nucleation of the population of smaller bubbles. The required supersaturation pressures are consistent with a depth of a few hundred meters and convection velocities of the order of 0.1 m s−1, similar to the circulation velocity observed on the surface of the Halema‘uma‘u lava lake.

  12. Air bubble migration is a random event post embryo transfer.

    Science.gov (United States)

    Confino, E; Zhang, J; Risquez, F

    2007-06-01

    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  13. DZ Chamaeleontis: a bona fide photoevaporating disc

    Science.gov (United States)

    Canovas, H.; Montesinos, B.; Schreiber, M. R.; Cieza, L. A.; Eiroa, C.; Meeus, G.; de Boer, J.; Ménard, F.; Wahhaj, Z.; Riviere-Marichalar, P.; Olofsson, J.; Garufi, A.; Rebollido, I.; van Holstein, R. G.; Caceres, C.; Hardy, A.; Villaver, E.

    2018-02-01

    Context. DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright protoplanetary disc with evidence of inner disc clearing. Its narrow Hα line and infrared spectral energy distribution suggest that DZ Cha may be a photoevaporating disc. Aims: We aim to analyse the DZ Cha star + disc system to identify the mechanism driving the evolution of this object. Methods: We have analysed three epochs of high resolution optical spectroscopy, photometry from the UV up to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry observations of DZ Cha. Results: Combining our analysis with previous studies we find no signatures of accretion in the Hα line profile in nine epochs covering a time baseline of 20 yr. The optical spectra are dominated by chromospheric emission lines, but they also show emission from the forbidden lines [SII] 4068 and [OI] 6300Å that indicate a disc outflow. The polarized images reveal a dust depleted cavity of 7 au in radius and two spiral-like features, and we derive a disc dust mass limit of Mdust 80 MJup) companions are detected down to 0.̋07 ( 8 au, projected). Conclusions: The negligible accretion rate, small cavity, and forbidden line emission strongly suggests that DZ Cha is currently at the initial stages of disc clearing by photoevaporation. At this point the inner disc has drained and the inner wall of the truncated outer disc is directly exposed to the stellar radiation. We argue that other mechanisms like planet formation or binarity cannot explain the observed properties of DZ Cha. The scarcity of objects like this one is in line with the dispersal timescale (≲105 yr) predicted by this theory. DZ Cha is therefore an ideal target to study the initial stages of photoevaporation. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 097.C-0536. Based on data obtained from the ESO Science Archive Facility under request number 250112.

  14. Can we use volatility to diagnose financial bubbles? lessons from 40historical bubbles

    Directory of Open Access Journals (Sweden)

    Didier Sornette

    2018-03-01

    Full Text Available We inspect the price volatility before, during, and after financial asset bubbles in orderto uncover possible commonalities and check empirically whether volatility might be used as anindicator or an early warning signal of an unsustainable price increase and the associated crash. Someresearchers and finance practitioners believe that historical and/or implied volatility increase beforea crash, but we do not see this as a consistent behavior. We examine forty well-known bubbles and,using creative graphical representations to capture robustly the transient dynamics of the volatility, findthat the dynamics of the volatility would not have been a useful predictor of the subsequent crashes.In approximately two-third of the studied bubbles, the crash follows a period of lower volatility,reminiscent of the idiom of a “lull before the storm”. This paradoxical behavior, from the lensesof traditional asset pricing models, further questions the general relationship between risk and return.

  15. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  16. Three-dimensional reacting shock–bubble interaction

    NARCIS (Netherlands)

    Diegelmann, Felix; Hickel, S.; Adams, Nikolaus A.

    2017-01-01

    We investigate a reacting shock–bubble interaction through three-dimensional numerical simulations with detailed chemistry. The convex shape of the bubble focuses the shock and generates regions of high pressure and temperature, which are sufficient to ignite the diluted stoichiometric

  17. A method for bubble volume calculating in vertical two-phase flow

    International Nuclear Information System (INIS)

    Wang, H Y; Dong, F

    2009-01-01

    The movement of bubble is a basic subject in gas-liquid two-phase flow research. A method for calculating bubble volume which is one of the most important characters in bubble motion research was proposed. A suit of visualized experimental device was designed and set up. Single bubble rising in stagnant liquid in a rectangular tank was studied using the high-speed video system. Bubbles generated by four orifice with different diameter (1mm, 2mm, 3mm, 4mm) were recorded respectively. Sequences of recorded high-speed images were processed by digital image processing method, such as image noise remove, binary image transform, bubble filling, and so on. then, Several parameters could be obtained from the processed image. Bubble area, equivalent diameter, bubble velocity, bubble acceleration are all indispensable in bubble volume calculating. In order to get the force balance equation, forces that work on bubble along vertical direction, including drag force, virtual mass force, buoyancy, gravity and liquid thrust, were analyzed. Finally, the bubble volume formula could be derived from the force balance equation and bubble parameters. Examples were given to shown the computing process and results. Comparison of the bubble volume calculated by geomettic method and the present method have shown the superiority of the proposed method in this paper.

  18. Experimental study of bubbly flow using image processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yucheng, E-mail: ycfu@vt.edu; Liu, Yang, E-mail: liu130@vt.edu

    2016-12-15

    This paper presents an experimental study of bubbly flows at relatively high void fractions using an advanced image processing method. Bubble overlapping is a common problem in such flows and the past studies often treat the overlapping bubbles as a whole, which introduces considerable measurement uncertainties. In this study, a hybrid method combining intersection point detection and watershed segmentation is used to separate the overlapping bubbles. In order to reconstruct bubbles from separated segments, a systematic procedure is developed which can preserve more features captured in the raw image compared to the simple ellipse fitting method. The distributions of void fraction, interfacial area concentration, number density and velocity are obtained from the extracted bubble information. High-speed images of air-water bubbly flows are acquired and processed for eight test runs conducted in a 30 mm × 10 mm rectangular channel. The developed image processing scheme can effectively separate overlapping bubbles and the results compare well with the measurements by the gas flow meter and double-sensor conductivity probe. The development of flows in transverse and mainstream directions are analyzed and compared with the prediction made by the one-dimensional interfacial area transport equation (IATE) and the bubble number density transport equation.

  19. Direct numerical simulation of turbulent channel flow with deformed bubbles

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2010-01-01

    In this study, the direct numerical simulation of a fully-developed turbulent channel flow with deformed bubbles were conducted by means of the refined MARS method, turbulent Reynolds number 150, and Bubble Reynolds number 120. As the results, large-scale wake motions were observed round the bubbles. At the bubble located region, mean velocity was degreased and turbulent intensities and Reynolds shear stress were increased by the effects of the large-scale wake motions round bubbles. On the other hands, near wall region, bubbles might effect on the flow laminarlize and drag reduction. Two types of drag coefficient of bubble were estimated from the accelerated velocity of bubble and correlation equation as a function of Particle Reynolds number. Empirical correlation equation might be overestimated the drag effects in this Particle Reynolds number range. (author)

  20. Measurement of micro Bubbles generated by a pressurized dissolution method

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, S; Tanaka, K; Tomiyama, A [Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Maeda, Y; Yamaguchi, S; Ito, Y, E-mail: hosokawa@mech.kobe-u.ac.j [Panasonic Electric Works Co., Ltd., 1048 Kadoma, Osaka 571-8686 (Japan)

    2009-02-01

    Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.

  1. Measurement of micro Bubbles generated by a pressurized dissolution method

    International Nuclear Information System (INIS)

    Hosokawa, S; Tanaka, K; Tomiyama, A; Maeda, Y; Yamaguchi, S; Ito, Y

    2009-01-01

    Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.

  2. Bubble behavior in a vertical Taylor-Couette flow

    International Nuclear Information System (INIS)

    Murai, Y; Oiwa, H; Takeda, Y

    2005-01-01

    Bubble distributions organized in a vertical Taylor-Couette flow are experimentally investigated. Modification of shear stress due to bubbles is measured with a torque sensor installed on the rotating inner cylinder. The wall shear stress decreases as bubbles are injected in all the tested range of Re from 600 to 4500. The drag reduction ratio per void fraction measured in the present experiment, which indicates net gain of the drag reduction, has been evaluated. The gain was more than unity for Re 4000. The maximum gain achieved was around 10 at Re = 600, at which point the bubbles dispersed widely on the inner cylinder surface and effectively restrict momentum exchange of fluid between the two walls. The expansion of Taylor vortices in the vertical direction by the presence of bubbles was confirmed by flow visualization including particle tracking velocimetry. Such bubble behaviours interacting with Taylor vortices are discussed in detail in this paper

  3. Bubble-induced microstreaming: guiding and destroying lipid vesicles

    Science.gov (United States)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2002-11-01

    Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.

  4. Carbocyclic Carbohydrate Mimics as Potential Glycosidase Inhibitors

    DEFF Research Database (Denmark)

    Fanefjord, Mette; Lundt, Inge

    It has been proven that aminocyclopentanols having the aminogroup adjacent to a carbon sidechain could be potential anomer-selective glycosidase inhibitors [1]. A successful pathway for synthesising mimics to L-carbohydrates 2, by introducing nitrogen to the C6 position in compound 1, has been...... developed in our group. A similar strategy has been used for synthesising mimics of D-carbohydrates. The α,β-unsaturated lactone 3 was cyclised to compound 4 which was further transformed into 5. The nitrogen functionality in compound 7 is introduced by an Overman rearrangement of 6 and the hydroxyl...... functionalities was introduced by either epoxidation or dihydroxylation of 7. Finally, reduction of the lactone ring led to the sugar mimics 8. The synthesis of several isomers of 8 will be presented. [1] a) Kleban, M. ; Hilgers, P. ; Greul, J.N. ; Kugler, R.D. ; Li, J. ; Picasso, S. ; Vogel, P. ; Jäger, V. Chem...

  5. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  6. Modeling the dynamics of single-bubble sonoluminescence

    International Nuclear Information System (INIS)

    Vignoli, Lucas L; De Barros, Ana L F; Thomé, Roberto C A; Nogueira, A L M A; Paschoal, Ricardo C; Rodrigues, Hilário

    2013-01-01

    Sonoluminescence (SL) is the phenomenon in which acoustic energy is (partially) transformed into light. It may occur by means of one bubble or many bubbles of gas inside a liquid medium, giving rise to the terms single-bubble and multi-bubble sonoluminescence (SBSL and MBSL). In recent years some models have been proposed to explain this phenomenon, but there is still no complete theory for the light-emission mechanism (especially in the case of SBSL). In this paper, we do not address this more complicated specific issue, but only present a simple model describing the dynamical behavior of the sonoluminescent bubble in the SBSL case. Using simple numerical techniques within the Matlab software package, we discuss solutions that consider various possibilities for some of the parameters involved: liquid compressibility, surface tension, viscosity and type of gas. The model may be used for an introductory study of SL on undergraduate or graduate physics courses, and as a clarifying example of a physical system exhibiting large nonlinearity. (paper)

  7. Accessing the public MIMIC-II intensive care relational database for clinical research.

    Science.gov (United States)

    Scott, Daniel J; Lee, Joon; Silva, Ikaro; Park, Shinhyuk; Moody, George B; Celi, Leo A; Mark, Roger G

    2013-01-10

    The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a downloadable virtual machine (VM) image. QueryBuilder and the MIMIC-II VM have been developed successfully and are freely available to MIMIC-II users. Simple example SQL queries and the resulting data are presented. Clinical studies pertaining to acute kidney injury and prediction of fluid requirements in the intensive care unit are shown as typical examples of research performed with MIMIC-II. In addition, MIMIC-II has also provided data for annual PhysioNet/Computing in Cardiology Challenges, including the 2012 Challenge "Predicting mortality of ICU Patients". QueryBuilder is a web-based tool that provides easy access to MIMIC-II. For more computationally intensive queries, one can locally install a complete copy of MIMIC-II in a VM. Both publicly available tools provide the MIMIC-II research community with convenient querying interfaces and complement the value of the MIMIC-II relational database.

  8. Magnetic resonance imaging of intervertebral disc degeneration

    International Nuclear Information System (INIS)

    Maeda, Hiroshi; Noguchi, Masao; Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi.

    1993-01-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.)

  9. Magnetic resonance imaging of intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Noguchi, Masao (Kitakyushu City Yahata Hospital, Fukuoka (Japan)); Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi

    1993-02-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.).

  10. Bubble nucleation in an explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  11. Multiple bubbles in a Hele-Shaw cell

    International Nuclear Information System (INIS)

    Vasconcelos, G.L.

    1994-01-01

    A new class of exact solutions is reported for an infinite stream of identical groups of bubbles moving with a constant velocity U in a Hele-Shaw cell when surface tension is neglected. It is suggested that the existence of these solutions might explain some of the complex behavior observed in recent experiments on rising bubbles in a Hele-Shaw cell. Solutions for a finite number of bubbles in a channel are also obtained. In this case, it is shown that solutions with an arbitrary bubble velocity U>V, where V is the fluid velocity at infinity, can in general be obtained from a simple transformation of the solutions for U=2V

  12. Filtering microfluidic bubble trains at a symmetric junction.

    Science.gov (United States)

    Parthiban, Pravien; Khan, Saif A

    2012-02-07

    We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.

  13. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    Science.gov (United States)

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The comparative study of lumbar disc disruption with MRI and CT discography

    International Nuclear Information System (INIS)

    Chen Xingcan; Liu Naifang; Li Xiaohong; Xu Wengen; Zou Qing; Yang Yonghong

    2005-01-01

    Objective: To compare MRI with CT discography (CTD) for diagnostic assessment of lumbar disc disruption. Methods: Paired comparative examination in 16 patients with chronic lower back pain without radicular pain and no disc herniation was conducted using CT or MRI. The standard of CTD classification and positive disc was formulated and the correlation between the induced lower back pain and dosage used in CTD was observed. Results: For a total of 21 discs in the 16 patients, CTD showed the disc as type 2 in 12 discs and type 5 in 1 disc with 13 positive discs, while MRI only showed the high-intensity zone of posterior annulus in 6 discs as the indirect sign of disc disruption and disc degeneration in 7 discs. Conclusion: CTD was the only method for showing the direct sign of disc disruption. The induced lower back pain was related with the type of disc disruption. MRI can show some of the indirect signs of disc disruption and CTD can show the direct sign of disc disruption. (authors)

  15. Exoplanet recycling in massive white-dwarf debris discs

    Science.gov (United States)

    van Lieshout, R.; Kral, Q.; Charnoz, S.; Wyatt, M. C.; Shannon, A.

    2018-05-01

    Several tens of white dwarfs are known to host circumstellar discs of dusty debris, thought to arise from the tidal disruption of rocky bodies originating in the star's remnant planetary system. This paper investigates the evolution of such discs if they are very massive, as may be the case if their progenitor was a terrestrial planet, moon, or dwarf planet. Assuming the discs are physically thin and flat, like Saturn's rings, their evolution is governed by Poynting-Robertson drag or viscous spreading, where the disc's effective viscosity is due to self-gravity wakes. For discs with masses ≳ 1026 g, located in the outer parts of the tidal disruption zone, viscous spreading dominates the evolution, and mass is transported both in- and outwards. When outwards-spreading material flows beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of moonlets at the outer edge of Saturn's rings. The newly formed bodies migrate outwards by exchanging angular momentum with the disc and coalesce into larger objects through mutual collisions. Eventually, the disc's Roche-limit overflow recycles tens of percent of the original disc mass; most ends up in a single large body near 2:1 mean-motion resonance with the disc's outer edge. Hence, the recycling of a tidally disrupted super-Earth, for example, could yield an Earth-mass planet on a ˜10-h orbit, located in the habitable zone for 2-to-10-Gyr-old white dwarfs. The recycling process also creates a population of smaller bodies just outside the Roche limit, which may explain the minor planets recently postulated to orbit WD 1145+017.

  16. Negative wake behind bubbles in non-newtonian liquids

    DEFF Research Database (Denmark)

    Hassager, Ole

    1979-01-01

    Gas bubbles rising by gravity in non-Newtonian elastic liquids are different to gas bubbles in viscous Newtonian fluids in at least two ways. First, the bubbles in the non-Newtonian liquids often have a peculiar tip at the rear pole, and second, the terminal rise velocity versus volume curve ofte...

  17. Appearance of a double bubble in achalasia cardia: a case report

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2008-12-01

    Full Text Available Abstract Introduction Achalasia cardia is characterized by failure of the lower esophageal sphincter to relax in response to swallowing and by an absence of peristalsis in the esophageal body. Absence of a gastric air bubble is a well known radiological finding. Pneumatic balloon dilatation results in reappearance of the gastric bubble. Case presentation We report the case of a 43-year-old Indian man with achalasia cardia whose chest X-ray at the time of presentation showed an air bubble in the gastric region causing a diagnostic quandary. Successful dilatation of the lower esophageal sphincter resulted in the appearance of another air bubble in the gastric region. Proper analysis showed that the first bubble was actually a colonic air bubble of the splenic flexure and the appearance of the second bubble was the anticipated gastric air bubble. Conclusion In patients presenting with achalasia cardia, a colonic air bubble may be seen in the gastric region causing diagnostic difficulty. In these patients, a gastric air bubble may appear after pneumatic dilatation. At the end of the procedure, there will be two air bubbles ("double bubble": a colonic and a gastric air bubble. To our knowledge, this finding has not been reported in the literature thus far.

  18. Disc degeneration: current surgical options

    Directory of Open Access Journals (Sweden)

    C Schizas

    2010-10-01

    Full Text Available Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.

  19. Computational approach for a pair of bubble coalescence process

    International Nuclear Information System (INIS)

    Nurul Hasan; Zalinawati binti Zakaria

    2011-01-01

    The coalescence of bubbles has great value in mineral recovery and oil industry. In this paper, two co-axial bubbles rising in a cylinder is modelled to study the coalescence of bubbles for four computational experimental test cases. The Reynolds' (Re) number is chosen in between 8.50 and 10, Bond number, Bo ∼4.25-50, Morton number, M 0.0125-14.7. The viscosity ratio (μ r ) and density ratio (ρ r ) of liquid to bubble are kept constant (100 and 850 respectively). It was found that the Bo number has significant effect on the coalescence process for constant Re, μ r and ρ r . The bubble-bubble distance over time was validated against published experimental data. The results show that VOF approach can be used to model these phenomena accurately. The surface tension was changed to alter the Bo and density of the fluids to alter the Re and M, keeping the μ r and ρ r the same. It was found that for lower Bo, the bubble coalesce is slower and the pocket at the lower part of the leading bubble is less concave (towards downward) which is supported by the experimental data.

  20. CT in diagnosis of recurrent vertebral disc hernias after preceding lumbar disc prolapse surgery

    International Nuclear Information System (INIS)

    Burval, S.; Nekula, J.; Vaverka, M.; Veliskova, J.

    1992-01-01

    20 patients with recurrent symptoms following operations for disc prolapse and resistant to treatment were studied by CT, using plain and enhanced images. The results have been analysed. In 10 patients a recurrence of disc prolapse was diagnosed, and this was confirmed surgically in 8 cases. In 2 patients there was epidural scarring. The findings indicate that differential diagnosis between scarring and recurring prolapse can by accurately made by this technique. (orig.) [de

  1. Microscopic bubble behaviour in suppression pool during wetwell venting

    Science.gov (United States)

    Zablackaite, G.; Nagasaka, H.; Kikura, H.

    2017-10-01

    During a severe accident PCV failure should be avoided and fission products inside PCV should be confined as much as possible. In order to minimize FPs release, Wetwell venting is conducted by releasing steam-non-condensable gas mixture carrying FPs from the Drywell to Suppression Pool. Steam is condensed by subcooled water in the pool, and most of FPs are retained into water. The removal of FP in the water pool is referred to as “Pool Scrubbing effect”. Hydrodynamic parameters of bubbles have impact on pool scrubbing effect. However, there is only few data available to evaluate quantitatively the bubble behaviour under depressurization and/or thermal stratification conditions. Series of experiments were conducted to evaluate the influence of temperature distribution, non-condensable gas content and pressure in the Wetwell on bubble behaviour. Bubbles were visualized using High Speed Camera and adopting shadowgraphy technique. Applying Particle Tracking Velocimetry, bubble velocity and size distribution were obtained from recorded images. Experimental results show that with increasing suppression pool temperature, bubbles reaching the pool surface decreased in size and traveling velocity became slower. In pressurized wetwell, bubble behaviour was similar to that in the heated up suppression pool case, although bubble parameters were similar to the low temperature case. Higher air content induced water surface movement and bubbles were smaller due to break up.

  2. Establishment of Measurement Techniques for Sliding Bubble on a Horizontal Tube

    International Nuclear Information System (INIS)

    Kim, Yu-Na Kim; Park, Goon-Cherl; Cho, Hyoung-Kyu

    2015-01-01

    The mechanistic wall boiling model includes many parameters relevant with bubble behaviors, such as the bubble departure diameter, bubble lift-off diameter, bubble waiting time, etc. Although there have been a large number of studies investigating bubble behavior, the subjects of observation are almost bubbles on a plane or vertical tube. Since the bubble motion is highly influenced by the directions of gravitational force and the heating surfaces, it is expected that the bubble behavior on a horizontal tube is largely different from those on the other geometry. The heat exchanger of APR+ has horizontal U-tube configuration installed in a water pool, of which diameter is 50mm. The study aims to establish measurement techniques for sliding bubbles on a horizontal tube. The measurement parameters include the diameter, interface area, volume, and velocity of the bubble. Additionally, in order to analyze the force acting on the bubble, liquid velocity measurement method was proposed. This paper presents the procedure of the measurement; the phase separation technique, 3-D reconstruction technique, and velocity measurement techniques. For visualization of the sliding bubble behavior, bubble and liquid velocity measurement methods were established which use two high speed cameras and a continuous LASER for the PTV and PIV. Three steps for the bubble shape and velocity measurement (the phase separation, 3-D reconstruction, and velocity calculation), were successfully set up and verified. A PIV technique which uses two different time duration for two regions where the velocity difference is huge was proposed and tested. Using these methods, various information regarding a sliding bubble can be obtained such as bubble and liquid velocities, shape, volume, surface area etc

  3. Primary study on lesion mimic mutants of rice (oryza sativa L.)

    International Nuclear Information System (INIS)

    Hao Zhongna; Zhang Hongzhi; Tao Rongixang

    2007-01-01

    Nineteen lesion mimic mutants (xsl1-19) of japonica rice Xiushui11 were obtained by γ-rays irradiation treatment. All mutants belonged to whole life lesion mimic. Lesion mimic of mutants didn't largen after tillering stage, leaves didn't wither, and no effect on the plants exsert spikes and seed. When the highest temperature in day exceeded 32 degree C in seedling stage, lesion mimic of all mutant expect xsl19 disappeared. Under 32 degree C, lesion mimic would appear gradually, and symptoms weren't inhibited by high temperature after 5 leaf stage. The plant heights of all lesion mimic mutants were 47.56-63.54 cm in the tillering stage, and that of CK was 83.75 cm; but the dwarf phenomenon of mutants only appeared before tillering stage, and didn't affect plant heights finally; the heading dates of mutants were the same to the CK, the ear length of all mutants were 9.43-15.19 cm, and that of CK was 16.41 cm; the total grain quantity per spike of all mutants were 88.17-165.33, and those of xsl19 and CK were 49.50 and 76.17. The results showed all lesion mimic mutants except xsl19 had short spikes and total grain quantity per spike increasing. All lesion mimic mutants were susceptible to Magnaporthe grisea, and they had no relationship with resistance. (authors)

  4. LUMBOSACRAL TRANSITIONAL ANATOMY TYPES AND DISC DEGENERATIVE CHANGES

    Directory of Open Access Journals (Sweden)

    Chabukovska Radulovska Jasminka

    2014-07-01

    Full Text Available Background and purpose: The relationship between presence of lumbo sacral transitional vertebra (LSTV and disc degenerative changes is unclear. The aim of the study was to examine the relation between different types of LSTV and disc degenerative changes at the transitional and the adjacent cephalad segment. Material and methods: Sixty-three patients (mean age 51.48 ± 13.51 out of 200 adults with low back pain who performed MRI examination of the lumbo sacral spine, classified as positive for LSTV, were included in the study. Annular tears, disc degeneration according to Phirmann classification and disc herniations were evaluated and graded at transitional and adjacent cephalad level. Results: The severity of disc degeneration at the transitional level and the adjacent level correlated with the types of LSTV. Severe disc degenerative changes were most frequent in articulated connection LSTV types and incombined LSTV type at the transitional level and in osseus connection LSTV types at the adjacent cephalad level. These changes were more frequent in unilateral articulated connection LSTV subtype (64% vs 54%; and in unilateral osseus connection LSTV subtype (25% vs no patients at transitional level, and in bilateral osseus connection LSTV subtype (100% vs 50% at the level above. High prevalence of disc herniations was observed in articulated connection LSTV types as well as in unilateral osseus connection LSTV subtype at transitional and the adjacent cephalad level. At the transitional level higher prevalence of disc herniations was characteristic for unilateral articulated connection LSTV sub type (46%vs 41% and for unilateral osseus connection LSTV subtype (50% vs no patients. At the adjacent level higher prevalence of disc herniations was observed in bilateral articulated connection LSTV subtype (38% vs 27% and in bilateral osseus connection LSTV subtype (50% vs 25%. Conclusions: The compact osseus connection (osseus bridging vs articular

  5. Lumbosacral transitional anatomy types and disc degenerative changes

    Directory of Open Access Journals (Sweden)

    Chabukovska-Radulovska Jasminka

    2014-07-01

    Full Text Available Background and purpose: The relationship between presence of lumbosacral transitional vertebra (LSTV and disc degenerative changes is unclear. The aim of the study was to examine the relation between different types of LSTV and disc degenerative changes at the transitional and the adjacent cephalad segment. Material and methods: Sixty-three patients (mean age 51.48 ± 13.51 out of200 adults with low back pain who performed MRI examination of the lumbosacral spine, classified as positive for LSTV, were included in the study. Annular tears, disc degeneration according to Phirmann classification and disc herniations were evaluated and graded at transitional and adjacent cephalad level. Results: The severity of disc degeneration at the transitional level and the adjacent level correlated with the types of LSTV. Severe disc degenerative changes were most frequent in articulated connection LSTV types and in combined LSTV type at the transitional level and in osseus connection LSTV types at the adjacent cephalad level. These changes were more frequent in unilateral articulated connection LSTV subtype (64% vs 54%; and in unilateral osseus connection LSTV subtype (25% vs no patients at transitional level, and in bilateral osseus connection LSTV subtype (100% vs 50% at the level above. High prevalence of disc herniations was observed in articulated connection LSTV types as well as in unilateral osseus connection LSTV subtype at transitional and the adjacent cephalad level. At the transitional level higher prevalence of disc herniations was characteristic for unilateral articulated connection LSTV subtype (46%vs 41% and for unilateral osseus connection LSTV subtype (50% vs no patients. At the adjacent level higher prevalence of disc herniations was observed in bilateral articulated connection LSTV subtype (38% vs 27% and in bilateral osseus connection LSTV subtype (50% vs 25%. Conclusions: The compact osseus connection (osseus bridging vs articular

  6. The evolution of stellar exponential discs

    NARCIS (Netherlands)

    Ferguson, AMN; Clarke, CJ

    2001-01-01

    Models of disc galaxies which invoke viscosity-driven radial flows have long been known to provide a natural explanation for the origin of stellar exponential discs, under the assumption that the star formation and viscous time-scales are comparable. We present models which invoke simultaneous star

  7. Exploding and Imaging of Electron Bubbles in Liquid Helium

    Science.gov (United States)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2017-06-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  8. An experimental study of particle-bubble interaction and attachment in flotation

    KAUST Repository

    Sanchez Yanez, Aaron

    2017-05-01

    The particle-bubble interaction is found in industrial applications with the purpose of selective separation of materials especially in the mining industry. The separation is achieved with the use of bubbles that collect particles depending on their hydrophobicity. There are few experimental studies involving a single interaction between a bubble and a particle. The purpose of this work is to understand this interaction by the study of a single bubble interacting with a single particle. Experiments were conducted using ultra-pure water, glass particles and air bubbles. Single interactions of particles with bubbles were observed using two high speed cameras. The cameras were placed perpendicular to each other allowing to reconstruct the three-dimensional position of the particle, the bubble and the particle-bubble aggregate. A single size of particle was used varying the size for the bubbles. It was found that the attachment of a particle to a bubble depends on its degree of hydrophobicity and on the relative position of the particle and the bubble before they encounter.

  9. Generation of Submicron Bubbles using Venturi Tube Method

    Science.gov (United States)

    Wiraputra, I. G. P. A. E.; Edikresnha, D.; Munir, M. M.; Khairurrijal

    2016-08-01

    In this experiment, submicron bubbles that have diameters less than 1 millimeter were generated by mixing water and gas by hydrodynamic cavitation method. The water was forced to pass through a venturi tube in which the speed of the water will increase in the narrow section, the throat, of the venturi. When the speed of water increased, the pressure would drop at the throat of the venturi causing the outside air to be absorbed via the gas inlet. The gas was then trapped inside the water producing bubbles. The effects of several physical parameters on the characteristics of the bubbles will be discussed thoroughly in this paper. It was found that larger amount of gas pressure during compression will increase the production rate of bubbles and increase the density of bubble within water.

  10. Non-Abelian bubbles in microstate geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Pedro F. [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain); Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers bâtiment 774, F-91191 Gif-sur-Yvette (France)

    2016-11-24

    We find the first smooth bubbling microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of N=1, d=5 Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  11. The MIMIC Method with Scale Purification for Detecting Differential Item Functioning

    Science.gov (United States)

    Wang, Wen-Chung; Shih, Ching-Lin; Yang, Chih-Chien

    2009-01-01

    This study implements a scale purification procedure onto the standard MIMIC method for differential item functioning (DIF) detection and assesses its performance through a series of simulations. It is found that the MIMIC method with scale purification (denoted as M-SP) outperforms the standard MIMIC method (denoted as M-ST) in controlling…

  12. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  13. Grain size segregation in debris discs

    Science.gov (United States)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED

  14. Creeping motion of long bubbles and drops in capillary tubes

    DEFF Research Database (Denmark)

    Westborg, Henrik; Hassager, Ole

    1989-01-01

    The flow of inviscid bubbles and viscous drops in capillary tubes has been simulated by a Galerkin finite element method with surface tension included at the bubble/liquid interface. The results show good agreement with published experimental results. At low capillary numbers the front and the rear...... of the bubble are nearly spherical. As the capillary number increases the thickness of the wetting film between the tube wall and the bubble increases, and the bubble assumes a more slender shape with a characteristic bump at the rear. Recirculations are found in front and behind the bubble, which disappear...

  15. Interaction of a vortex ring and a bubble

    Science.gov (United States)

    Jha, Narsing K.; Govardhan, Raghuraman N.

    2014-11-01

    Micro-bubble injection in to boundary layers is one possible method for reducing frictional drag of ships. Although this has been studied for some time, the physical mechanisms responsible for drag reduction using microbubbles in turbulent boundary layers is not yet fully understood. Previous studies suggest that bubble-vortical structure interaction seems to be one of the important physical mechanisms for frictional drag reduction using microbubbles. In the present work, we study a simplification of this problem, namely, the interaction of a single vortical structure, in particular a vortex ring, with a single bubble for better understanding of the physics. The vortex ring is generated using a piston-cylinder arrangement and the bubble is generated by connecting a capillary to an air pump. The bubble dynamics is directly visualized using a high speed camera, while the vorticity modification is measured using time resolved PIV. The results show that significant deformations can occur of both the bubble and the vortex ring. Effect of different non-dimensional parameters on the interaction will be presented in the meeting.

  16. Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels

    International Nuclear Information System (INIS)

    Anglart, Henryk; Podowski, Michael Z.

    2002-01-01

    Fluid mechanics of Taylor bubbles and slug flows is investigated in vertical, circular channels using detailed, three-dimensional computational fluid dynamics simulations. The Volume of Fluid model with the interface-sharpening algorithm, implemented in the commercial CFX4 code, is used to predict the shape and velocity of Taylor bubbles moving along a vertical channel. Several cases are investigated, including both a single Taylor bubble and a train of bubbles rising in water. It is shown that the potential flow solution underpredicts the water film thickness around Taylor bubbles. Furthermore, the computer simulations that are performed reveal the importance of properly modeling the three-dimensional nature of phenomena governing the motion of Taylor bubbles. Based on the present results, a new formula for the evaluation of bubble shape is derived. Both the shape of Taylor bubbles and the bubble rise velocity predicted by the proposed model agree well with experimental observations. Furthermore, the present model shows good promise in predicting the coalescence of Taylor bubbles

  17. Time Localisation of Surface Defects on Optical Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    Many have experienced problems with their Compact Disc player when a disc with a scratch or a finger print is tried played. One way to improve the playability of discs with such a defect, is to locate the defect in time and then handle it in a special way. As a consequence this time localisation...

  18. Time Localisation of Surface Defects on Optical Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    2004-01-01

    Many have experienced problems with their Compact Disc Player when a disc with a scratch or a fingerprint is tried played. One way to improve the playability of discs with such a defect, is to locate the defect in time and then handle it in a special way. As a consequence this time localization...

  19. Intradiscal injection of simvastatin results in radiologic, histologic, and genetic evidence of disc regeneration in a rat model of degenerative disc disease

    Science.gov (United States)

    Than, Khoi D.; Rahman, Shayan U.; Wang, Lin; Khan, Adam; Kyere, Kwaku A.; Than, Tracey T.; Miyata, Yoshinari; Park, Yoon-Shin; La Marca, Frank; Kim, Hyungjin M.; Zhang, Huina; Park, Paul; Lin, Chia-Ying

    2014-01-01

    BACKGROUND CONTEXT A large percentage of back pain can be attributed to degeneration of the intervertebral disc (IVD). Bone morphogenetic protein-2 (BMP-2) is known to play an important role in chondrogenesis of the IVD. Simvastatin is known to up-regulate expression of BMP-2. Thus, we hypothesized that intradiscal injection of simvastatin in a rat model of degenerative disc disease (DDD) would result in retardation of DDD. PURPOSE To develop a novel conservative treatment for DDD and related discogenic back pain. STUDY DESIGN/SETTING Laboratory investigation. METHODS Disc injury was induced in 272 rats via 21-gauge needle puncture. After 6 weeks, injured discs were treated with simvastatin in a saline or hydrogel carrier. Rats were sacrificed at predetermined time points. Outcome measures assessed were radiologic, histologic, and genetic. Radiologically, the MRI index (number of pixels multiplied by corresponding image densities) was determined. Histologically, disc spaces were read by 3 blinded scorers employing a previously described histological grading scale. Genetically, nuclei pulposi were harvested and polymerase chain reaction was run to determine relative levels of aggrecan, collagen type II, and BMP-2 gene expression. This project was supported by Grant No. R01 AR056649 from NIAMS/NIH. There are no other financial conflicts of interest to report. RESULTS Radiologically, discs treated with 5 mg/mL simvastatin in hydrogel or saline demonstrated MRI indices that were normal through 8 weeks post-treatment, although this was more sustained when delivered in hydrogel. Histologically, discs treated with 5 mg/mL simvastatin in hydrogel demonstrated improved grades in comparison to discs treated at higher doses. Genetically, discs treated with 5 mg/mL of simvastatin in hydrogel demonstrated higher gene expression of aggrecan and collagen type II than control. CONCLUSIONS Degenerate discs treated with 5 mg/mL simvastatin in a hydrogel carrier demonstrated

  20. New Brown Dwarf Discs in Upper Scorpius Observed with WISE

    Science.gov (United States)

    Dawson, P.; Scholz, A.; Ray, T. P.; Natta, A.; Marsh, K. A.; Padgett, D.; Ressler, M. E.

    2013-01-01

    We present a census of the disc population for UKIDSS selected brown dwarfs in the 5-10 Myr old Upper Scorpius OB association. For 116 objects originally identified in UKIDSS, the majority of them not studied in previous publications, we obtain photometry from the Wide-Field Infrared Survey Explorer data base. The resulting colour magnitude and colour colour plots clearly show two separate populations of objects, interpreted as brown dwarfs with discs (class II) and without discs (class III). We identify 27 class II brown dwarfs, 14 of them not previously known. This disc fraction (27 out of 116, or 23%) among brown dwarfs was found to be similar to results for K/M stars in Upper Scorpius, suggesting that the lifetimes of discs are independent of the mass of the central object for low-mass stars and brown dwarfs. 5 out of 27 discs (19 per cent) lack excess at 3.4 and 4.6 microns and are potential transition discs (i.e. are in transition from class II to class III). The transition disc fraction is comparable to low-mass stars.We estimate that the time-scale for a typical transition from class II to class III is less than 0.4 Myr for brown dwarfs. These results suggest that the evolution of brown dwarf discs mirrors the behaviour of discs around low-mass stars, with disc lifetimes of the order of 5 10 Myr and a disc clearing time-scale significantly shorter than 1 Myr.

  1. Nano-scale bubble thermonuclear fusion in acoustically cavitated deuterated liquid

    International Nuclear Information System (INIS)

    Robert I Nigmatulin; Richard T Lahey Jr; Rusi Taleyarkhan

    2005-01-01

    Full text of publication follows: It has been experimentally shown (Taleyarkhan, West, Cho, Lahey, Nigmatulin, Block, 2002, 2004) that neutron emission and tritium formation may occur in deuterated acetone (D-acetone C 3 DO 6 ) under acoustic cavitation conditions. Intensity of the fast neutron (2.45 MeV) emission and tritium nucleus production is ∼ 4 x 10 5 s -1 . This suggests ultrahigh compression of matter produced inside bubbles during their collapse. In the paper a systematic theoretical analysis of the vapor bubble growth and subsequent implosion in intense acoustic fields in D-acetone is presented. The goal is to describe and explain the experimental observations of thermonuclear fusion for collapsing cavitation bubble in D-acetone. The dynamics of bubbles formed during maximum rarefaction in the liquid is numerically studied on the basis of the developed models of a single bubble and bubble clusters. It is supposed that during their growth the bubbles coagulate and form a few bigger bubbles, which then collapse under the action of additional pressure pulses produced in the liquid through the intensification of acoustic waves within the cluster. A shock wave is shown to be formed inside the bubble during the latter's rapid contraction. Focusing of this shock wave in the bubble center initiates dissociation and ionization, violent increases in density (10 4 kg m 3 ), pressure (10 10 -10 11 bar) and temperature (2 x 10 8 K), high enough to produce nuclear fusion reactions. The bubble looks like micro-hydrogen bomb. The diameter of the neutron emission zone is about 100 nm. The highest neutron emission is recorded at about 10-20 nm from the bubble center. It is found out that the intensity of bubble implosion and the number of neutron emitted increase with variations in nucleation phase, positive half-wave amplitude, liquid temperature and also with the involvement of coagulation mechanisms within the cluster during the bubble simultaneous growth. The number

  2. Three-Dimensional Reconstruction of a Gas Bubble Trajectory in Liquid

    Directory of Open Access Journals (Sweden)

    Augustyniak Jakub

    2014-01-01

    Full Text Available The identification of the shape of the bubble trajectory is crucial for understanding the mechanism of bubble motion in liquid. In the paper it has been presented the technique of 3D bubble trajectory reconstruction using a single high speed camera and the system of mirrors. In the experiment a glass tank filled with distilled water was used. The nozzle through which the bubbles were generated was placed in the centre of the tank. The movement of the bubbles was recorded with a high speed camera, the Phantom v1610 at a 600 fps. The techniques of image analysis has been applied to determine the coordinates of mass centre of each bubble image. The 3D trajectory of bubble can be obtained by using triangulation methods. In the paper the measurement error of imaging computer tomography has been estimated. The maximum measurement error was equal to ±0,65 [mm]. Trajectories of subsequently departing bubbles were visualized.

  3. Turbulent shear control with oscillatory bubble injection

    International Nuclear Information System (INIS)

    Park, Hyun Jin; Oishi, Yoshihiko; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi

    2009-01-01

    It is known that injecting bubbles into shear flow can reduce the frictional drag. This method has advantages in comparison to others in simplicity of installation and also in environment. The amount of drag reduction by bubbles depends on the void fraction provided in the boundary layer. It means, however, that certain power must be consumed to generate bubbles in water, worsening the total power-saving performance. We propose oscillatory bubble injection technique to improve the performance in this study. In order to prove this idea of new type of drag reduction, velocity vector field and shear stress profile in a horizontal channel flow are measured by ultrasonic velocity profiler (UVP) and shear stress transducer, respectively. We measure the gas-liquid interface from the UVP signal, as well. This compound measurement with different principles leads to deeper understanding of bubble-originated drag reduction phenomena, in particular for unsteady process of boundary layer alternation. At these experiments, the results have demonstrated that the intermittency promotes the drag reduction more than normal continuous injection for the same void fraction supplied.

  4. THE INFLUENCE OF GAS-DENSITY AND LIQUID PROPERTIES ON BUBBLE BREAKUP

    NARCIS (Netherlands)

    WILKINSON, PM; VANSCHAYK, A; SPRONKEN, JPM; VANDIERENDONCK, LL

    On the basis of a literature review of bubble breakup experiments, it is demonstrated that both liquid viscosity and surface tension have an influence on bubble stability and, thus, bubble breakup, for small as well as large bubbles. Possible influences of the gas properties on bubble breakup have

  5. Ignition modes of nanosecond discharge with bubbles in distilled water

    International Nuclear Information System (INIS)

    Hamdan, Ahmad; Cha, Min Suk

    2015-01-01

    Here, we present the microscopic physical characteristics of nanosecond discharges with an array of bubbles in distilled water. In particular, applying a single high-voltage pulse, four delayed intensified charge-coupled device cameras successfully visualized four successive images during a single discharge event. We identified three distinctive modes of ignition inside a bubble, depending on the relative location of the bubble with respect to pin-to-hollow needle electrodes when a single bubble was located in an inter-electrode gap of 1 mm: anode-driven ignition, cathode-driven ignition, and co-ignition near both electrodes. Anode- and cathode-driven ignitions evolved into either a complete propagation of the streamer or an incomplete propagation, which were limited in location by proximity to an ignition location, while co-ignitions consistently showed complete propagation. When we increased the gap to 2 mm to accommodate multiple bubbles in the gap, an ignited bubble near the cathode was able to cause the ignition of an upper adjacent bubble. Bubble–bubble interface zones can also be spots of ignition, such that we observed simultaneous co-ignitions in the zones of bubble–bubble interfaces and near electrodes with triple bubbles. We compared the experimental results of discharge propagation with different ignition modes between Ar, He, and N 2 bubbles. In addition, numerical simulations for static electric fields reasonably supported observed ignition behavior such that field intensity was locally enhanced. (paper)

  6. MRI findings of traumatic cervical disc herniation

    International Nuclear Information System (INIS)

    Tanaka, Hisato; Kasahara, Takaki; Akiyama, Nanae

    2011-01-01

    In general practice, disc hernia is increasingly being questioned about its relation with traffic injuries. In this study, we examined the image findings of cervical disc herniation for findings indicative of traumatic hernia. In 2008, we examined 35 cases of cervical disc herniation at our hospital by MRI. The patients were divided into two groups; patients with trauma history (19 cases) and those without (16 cases), and their images were compared. Disc herniation in the trauma group showed high intensity at T2, with some of the patients in this group also indicating continuous high intensity of the internal and herniated discs. Traumatic force was found to cause swelling under the laryngeal soft tissue. Cases with further flexion injury showed interspinous ligament hemorrhage. These findings strongly suggest the involvement of injury. But given that some younger patients in the non-trauma group also show high intensity at T2*, attention must be paid not to confuse swelling below the larynx with inflammation of the longus colli muscle. (author)

  7. Review—Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems

    Science.gov (United States)

    Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram

    2018-01-01

    Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself.

  8. Physical Limitations to Tissue Engineering of Intervertabral Disc Cells

    OpenAIRE

    Kobayashi, Shigeru; Baba, Hisatoshi; Takeno, Kenichi; Miyazaki, Tsuyoshi; Meir, Adam; Urban, Jill

    2010-01-01

    There is increasing interest in the using biological methods to repair degenerate discs. Biological repair depends on the disc maintaining a population of viable and active cells. Adequate nutrition of the disc influences the outcome of such therapies and, hence, must be considered to be a crucial parameter. Therefore, it is very important to maintain an appropriate physicochemical environment to achieve successful disc repair by biological methods and tissue engineering procedures.

  9. Effects of mixing methods on phase distribution in vertical bubble flow

    International Nuclear Information System (INIS)

    Monji, Hideaki; Matsui, Goichi; Sugiyama, Takayuki.

    1992-01-01

    The mechanism of the phase distribution formation in a bubble flow is one of the most important problems in the control of two-phase flow systems. The effect of mixing methods on the phase distribution was experimentally investigated by using upward nitrogen gas-water bubble flow under the condition of fixed flow rates. The experimental results show that the diameter of the gas injection hole influences the phase distribution through the bubble size. The location of the injection hole and the direction of injection do not influence the phase distribution of fully developed bubble flow. The transitive equivalent bubble size from the coring bubble flow to the sliding bubble flow corresponds to the bubble shape transition. The analytical results show that the phase distribution may be predictable if the phase profile is judged from the bubble size. (author)

  10. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  11. Nonlinear dynamics of the human lumbar intervertebral disc.

    Science.gov (United States)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2015-02-05

    Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Prevalence of disc cupping in non-glaucomatous eyes

    Directory of Open Access Journals (Sweden)

    José Pablo Chiappe

    2015-02-01

    Full Text Available This study assessed optic disc size and cupping, using a commercially available ophthalmoscope, in order to show norms of these values for clinical practice. Subjects were office-workers referred from their respective workplaces for a routine medical examination, which included eye examination. The optic disc size was classified as small, medium or large, for having a diameter 1.5 times (respectively the diameter of the ophthalmoscope's selected light spot on the posterior pole. The cupping was classified as the ratio of the vertical cupping diameter and the vertical disc diameter on a relative decimal scale from 0.0 to 1.0.This study included 184 subjects with a mean age of 40.5 ± 9.5 years; 149 (81% were males. Their mean ocular pressure was 12.4 ± 1.5 mmHg (range 10-17 mmHg. There was a high correlation between optic disc sizes and cupping in the right and left eyes (Pearson Correlation r = 0.866, p < 0.001; therefore, for simplicity only the data for right eyes are presented. According to our definition, the optic discs in these eyes comprised 27 (14.7% small, 141 (76.6% medium and 16 (8.7% large. The small optic discs were rarely cupped, and the large optic discs were always cupped. Optic disc cupping greater than 0.7 was rarely found and should be suspect of glaucoma. Clinical doctors should be aware of this and refer those subjects with abnormal cupping to the specialist.

  13. Nucleation path of helium bubbles in metals during irradiation

    International Nuclear Information System (INIS)

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  14. Stability of a Bubble Expanding and Translating Through an Inviscid ...

    Indian Academy of Sciences (India)

    A bubble expands adiabatically and translates in an incompressible and inviscid liquid. We investigate the number of equilibrium points of the bubble and the nature of stability of the bubble at these points. We find that there is only one equilibrium point and the bubble is stable there.

  15. Efficacy and safety of Mobi-C cervical artificial disc versus anterior discectomy and fusion in patients with symptomatic degenerative disc disease: A meta-analysis.

    Science.gov (United States)

    Lu, Hui; Peng, Lihua

    2017-12-01

    Total disc replacement (TDR) using Mobi-C cervical artificial disc might be promising to treat symptomatic degenerative disc disease. However, the results remained controversial. We conducted a systematic review and meta-analysis to compare the efficacy and safety of Mobi-C cervical artificial disc and anterior cervical discectomy and fusion (ACDF) in patients with symptomatic degenerative disc disease. PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systematically searched. Randomized controlled trials (RCTs) assessing the effect of Mobi-C versus ACDF on the treatment of symptomatic degenerative disc disease were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcomes were neck disability index (NDI) score, patient satisfaction, and subsequent surgical intervention. Meta-analysis was performed using the random-effect model. Four RCTs were included in the meta-analysis. Overall, compared with ACDF surgery for symptomatic degenerative disc disease, TDR using Mobi-C was associated with a significantly increased NDI score (Std. mean difference = 0.32; 95% CI = 0.10-0.53; P = .004), patient satisfaction (odds risk [OR] = 2.75; 95% confidence interval [CI] = 1.43-5.27; P = .002), and reduced subsequent surgical intervention (OR = 0.20; 95% CI = 0.11-0.37; P degenerative disc disease, TDR using Mobi-C cervical artificial disc resulted in a significantly improved NDI score, patient satisfaction, and reduced subsequent surgical intervention. There was no significant difference of neurological deterioration, radiographic success, and overall success between TDR using Mobi-C cervical artificial disc versus ACDF surgery. TDR using Mobi-C cervical artificial disc should be recommended for the treatment of symptomatic degenerative disc disease.

  16. Visualization study of film drops produced by bubble bursting

    International Nuclear Information System (INIS)

    Ma Chao; Bo Hanliang

    2012-01-01

    The phenomenon that bubble bursting results in drops production is common in the steam generator of the nuclear power plant, and the fine drops generated by this way is one of the most important source of the drop entrainment in the vapor stream. The visualization experiment about the film drops produced by the bursting bubbles at a free water surface was studied using a high-speed video camera. The results show that the bubble cap breaks up in a single point, within the limits of bubble size in the experiment at present. The whole process can be distinguished into four successive stages: A primary inertial drainage, the bubble cap puncture at the foot or on the top, the film rolls-up and the liquid ring appearing with the hole expanding, and fine film drops emission under the effect of destabilization of a Rayleigh-Taylor type. The expression about the bubble radius and the film drops number is obtain by fitting the experiment data at the bubble radius range from 3-25 mm. The result trend agrees well with the previous work. (authors)

  17. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    Science.gov (United States)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  18. Optic Disc Change during Childhood Myopic Shift: Comparison between Eyes with an Enlarged Cup-To-Disc Ratio and Childhood Glaucoma Compared to Normal Myopic Eyes.

    Directory of Open Access Journals (Sweden)

    Hae-Young Lopilly Park

    Full Text Available Progressive disc tilting and the development or enlargement of peripapillary atrophy (PPA are observed during a myopic shift in children. This could be related to the changes around the optic nerve head during eyeball elongation. If the biomechanical properties at or around the optic nerve head are changed after exposure to elevated intraocular pressure (IOP in glaucoma eyes, different response of the disc tilting and PPA changes could take place during eyeball elongation by myopic shift. On the basis of this background, the aim of this study was to compare the morphological changes in the optic disc induced by a myopic shift during childhood between normal control eyes, eyes from disc suspects with an enlarged cup-to-disc ratio (CDR, and eyes with childhood glaucoma.Total of 82 eyes from 82 subjects younger than 14 years of age were included in the study. Serial disc photographs were classified into one of two groups: eyes with an optic nerve head (ONH or peripapillary atrophy (PPA change or without an ONH/PPA change. Using ImageJ software, the outlines of the optic disc and PPA were plotted, and the vertical disc diameter (VDD, horizontal disc diameter (HDD, and maximum PPA width (PPW were measured. The changes in the ratios of these parameters and the relationships between the degree of myopic shift or the ONH/PPA change were analyzed.Twenty-five eyes with normal optic disc appearance, 36 eyes with enlarged cup-to-disc ratio, and 21 eyes of glaucoma patients were analyzed. The initial intraocular pressure (IOP at diagnosis was significantly different among the groups (P<0.001. The degree of myopic shift during follow-up period was not significantly different among the groups (P=0.612. However, the changes in the HDD/VDD and PPW/VDD ratios were significantly greater in the disc suspect group and significantly smaller in the glaucoma group. Among the 42 eyes with an ONH/PPA change, 16 (38.1% were from the normal control group, 24 (57.1% were

  19. Bubble behaviour and mean diameter in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Zeitoun, O.; Shoukri, M. [McMaster Univ., Hamilton, Ontario (Canada)

    1995-09-01

    Bubble behaviour and mean bubble diameter in subcooled upward flow boiling in a vertical annular channel were investigated under low pressure and mass flux conditions. A high speed video system was used to visualize the subcooled flow boiling phenomenon. The high speed photographic results indicated that, contrary to the common understanding, bubbles tend to detach from the heating surface upstream of the net vapour generation point. Digital image processing technique was used to measure the mean bubble diameter along the subcooled flow boiling region. Data on the axial area-averaged void fraction distributions were also obtained using a single beam gamma densitometer. Effects of the liquid subcooling, applied heat flux and mass flux on the mean bubble size were investigated. A correlation for the mean bubble diameter as a function of the local subcooling, heat flux and mass flux was obtained.

  20. Dependence of bubble behavior in subcooled boiling on surface wettability

    International Nuclear Information System (INIS)

    Harada, Takahiro; Nagakura, Hiroshi; Okawa, Tomio

    2010-01-01

    This paper presents the results of visualization experiments that were carried out to investigate the dynamics of vapor bubbles generated in water pool boiling. In the experiments, vapor bubbles were generated on a vertical circular surface of a copper block containing nine cartridge heaters, and the contact angle of the heated surface was used as a main experimental parameter. The experiments were performed under subcooled as well as nearly saturated conditions. To enable clear observation of individual bubbles with a high speed camera, the heat flux was kept low enough to eliminate significant overlapping of bubbles. When the contact angle was small, the bubbles were lifted-off the vertical heated surface within a short period of time after the nucleation. On the other hand, when the contact angle was large, they slid up the vertical surface for a long distance. When bubbles were lifted-off the heated surface in subcooled liquid, bubble life-time was significantly shortened since bubbles collapsed rapidly due to condensation. It was shown that this distinct difference in bubble dynamics could be attributed to the effects of surface tension force.

  1. Observation of high-temperature bubbles in an ECR plasma

    Science.gov (United States)

    Terasaka, K.; Yoshimura, S.; Tanaka, M. Y.

    2018-05-01

    Creation and annihilation of high-temperature bubbles have been observed in an electron cyclotron resonance plasma. The electron temperature in the bubble core is three times higher than that in the ambient region, and the size perpendicular to the magnetic field is much smaller than the plasma diameter. Formation of a bubble accompanies large negative spikes in the floating potential of a Langmuir probe, and the spatiotemporal behavior of the bubble has been visualized with a high-impedance wire grid detector. It is found that the bubble is in a prolate spheroidal shape with the axis along the magnetic field and occurs randomly in time and independently in space.

  2. Champagne experiences various rhythmical bubbling regimes in a flute.

    Science.gov (United States)

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  3. Dechanneling of particles by gas bubbles

    International Nuclear Information System (INIS)

    Ronikier-Polonsky, Danuta.

    1976-01-01

    The dechanneling probability P of a particle hitting a gas bubble in a solid is evaluated theoretically. This probability is found to depend neither on the energy of the particle, nor on the radius of the bubble. A simple expression of P is given in the case of a harmonic channeling potential. Then an experiment is described concerning α particles channeled along (111) planes in aluminium containing helium bubbles. In this particular case, the measured probabilitity (P=0.27+-0.09) is in good agreement with the corresponding theoretical values (0.34 for a harmonic potential and 0.24 for a more realistic potential) [fr

  4. Experimental observation of exploding electron bubbles

    International Nuclear Information System (INIS)

    Classen, J.; Su, C.K.; Hall, S.C.; Pettersen, M.S.; Maris, H.J.

    1996-01-01

    Since free electrons form small voids in liquid helium they are expected to be preferred sites for nucleating macroscopic bubbles when the liquid is exposed to sufficiently large negative pressures. We have performed a series of cavitation experiments using focussed ultrasound where free electrons were introduced into the liquid by a radioactive source. The electron bubbles are found to explode at negative pressures significantly lower than those required for homogeneous nucleation. We present measurements of the thresholds for cavitation at electrons in the temperature range 1 - 4.5 K. Reasonable agreement with a simple model for the stability limit of the electron bubble is obtained. (author)

  5. Partial coalescence from bubbles to drops

    KAUST Repository

    Zhang, F. H.

    2015-10-07

    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  6. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.

    Science.gov (United States)

    Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L

    2016-04-13

    Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Bubble clustering in a glass of stout beer

    Science.gov (United States)

    Iwatsubo, Fumiya; Watamura, Tomoaki; Sugiyama, Kazuyasu

    2017-11-01

    To clarify why the texture in stout beer poured into a pint glass descends, we investigated local time development of the void fraction and velocity of bubbles. The propagation of the number density distribution, i.e. the texture, appearing near the inclined wall is observed. We visualized individual advective bubbles near the inclined wall by microscope and measured the local void fraction using brightness of images while the velocity of bubbles by means of Particle Tracking Velocimetry. As the result of measurements, we found the local void fraction and the bubbles advection velocity increase and decrease repeatedly with a time delay. We conclude the texture pattern is composed of fluid blobs which contain less bubbles; extruding and suction flows respectively toward and from the interior of the container form respectively in front and back of the blobs.

  8. Apparent quasar disc sizes in the "bird's nest" paradigm

    Science.gov (United States)

    Abolmasov, P.

    2017-04-01

    Context. Quasar microlensing effects make it possible to measure the accretion disc sizes around distant supermassive black holes that are still well beyond the spatial resolution of contemporary instrumentation. The sizes measured with this technique appear inconsistent with the standard accretion disc model. Not only are the measured accretion disc sizes larger, but their dependence on wavelength is in most cases completely different from the predictions of the standard model. Aims: We suggest that these discrepancies may arise not from non-standard accretion disc structure or systematic errors, as it was proposed before, but rather from scattering and reprocession of the radiation of the disc. In particular, the matter falling from the gaseous torus and presumably feeding the accretion disc may at certain distances become ionized and produce an extended halo that is free from colour gradients. Methods: A simple analytical model is proposed assuming that a geometrically thick translucent inflow acts as a scattering mirror changing the apparent spatial properties of the disc. This inflow may be also identified with the broad line region or its inner parts. Results: Such a model is able to explain the basic properties of the apparent disc sizes, primarily their large values and their shallow dependence on wavelength. The only condition required is to scatter a significant portion of the luminosity of the disc. This can easily be fulfilled if the scattering inflow has a large geometrical thickness and clumpy structure.

  9. Microlayer Topology And Bubble Growth In Nucleate Boiling

    Science.gov (United States)

    Jawurek, H. H.; Macgregor, H. G.; Bodenheimer, J. S.

    1987-09-01

    During nucleate boiling thin liquid films (nicrolayers) form beneath the base of bubbles and evaporate into the bubble interiors. A technique is presented which permits the simultaneous determination of microlayer topology and the contribution of microlayer evaporation to bubble growth. Isolated-bubble boiling takes place on an electrically heated, transparent tin-oxide coating deposited on a glass plate, the latter forming the floor of a vessel. With coherent Claser) illumination from beneath, the microlayers reflect fringe patterns similar to Newton's rings. Owing to the rapid evaporation of the layers (the process is completed within milliseconds) the fringes are in rapid motion and are recorded by eine photography at some 4 000 frames per second and exposure times of 50 μs. The resulting interferograms provide details of microlayer shape and thickness versus time, and thus evaporation rate. Simultaneously, and on the same film, bubble profiles (and thus volumes) are obtained under white light illumination. The two bubble images are manipulated by mirrors and lenses so as to appear side by side on the same frame of film, the fringes magnified and the profiles reduced. Sample results for methanol boiling at a pressure of 58.5 kPa and with the liquid bulk at saturation temperature, are presented. Under such conditions microlayer evaporation accounts for 37 per cent of the total bubble volume at detachment.

  10. The diagnosis of internal disc disruption with CT discography

    International Nuclear Information System (INIS)

    Liu Miao; Chen Xingcan; Li Xiaohong; Pan Yongqin

    2008-01-01

    Objective: To study the value of diagnosis for internal disc disruption (IDD)with CT discography(CTD). Methods: 42 discs of 32 patients showing no disc herniation on CT or MRI, but suffering from chronic low back pain, were undertaken CTD to work out the types of CTD with correlation between contrast medium dosages and the induction of pain. Results: CTD demonstrated 4 types of IDD which was individually correlated with the contrast dosages and induced pain; furthermore the dosages for positive and negative disc cases showed significant differece (P<0.01). Conclusions: CTD can show the direct sign of internal disc disruption, providing more information than conventional discography. (authors)

  11. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2014-01-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  12. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2014-06-04

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  13. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.

    2013-04-29

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  14. An experimental study of particle-bubble interaction and attachment in flotation

    KAUST Repository

    Sanchez Yanez, Aaron

    2017-01-01

    bubbles were observed using two high speed cameras. The cameras were placed perpendicular to each other allowing to reconstruct the three-dimensional position of the particle, the bubble and the particle-bubble aggregate. A single size of particle was used varying the size for the bubbles. It was found that the attachment of a particle to a bubble depends on its degree of hydrophobicity and on the relative position of the particle and the bubble before they encounter.

  15. Bubble collisions and measures of the multiverse

    International Nuclear Information System (INIS)

    Salem, Michael P.

    2012-01-01

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation

  16. The 2008 oil bubble. Causes and consequences

    International Nuclear Information System (INIS)

    Tokic, Damir

    2010-01-01

    We argue that 'the 2008 Oil Bubble' was directly and indirectly created by the Federal Reserve in response to deflationary risks that resurfaced after the housing bubble burst and the resulting credit crisis of 2008. Deflationary risks first appeared after the dot.com bubble burst in 2000 and after the terrorist attacks on September 11, 2001. Manipulation of the US dollar value has been one of the key emergency tools in the Fed's arsenal. During the entire period from 2000 to 2008, the US dollar has been falling, while the price of crude oil has been rising, with the culmination in July 2008. If other global central banks embrace the Fed's anti-deflationary strategies, the consequences could be dire for the global economy, potentially resulting in an ultimate gold bubble. (author)

  17. Percutaneous treatment of cervical and lumbar herniated disc

    Energy Technology Data Exchange (ETDEWEB)

    Kelekis, A., E-mail: akelekis@med.uoa.gr; Filippiadis, D.K., E-mail: dfilippiadis@yahoo.gr

    2015-05-15

    Therapeutic armamentarium for symptomatic intervertebral disc herniation includes conservative therapy, epidural infiltrations (interlaminar or trans-foraminal), percutaneous therapeutic techniques and surgical options. Percutaneous, therapeutic techniques are imaging-guided, minimally invasive treatments for intervertebral disc herniation which can be performed as outpatient procedures. They can be classified in 4 main categories: mechanical, thermal, chemical decompression and biomaterials implantation. Strict sterility measures are a prerequisite and should include extensive local sterility and antibiotic prophylaxis. Indications include the presence of a symptomatic, small to medium sized contained intervertebral disc herniation non-responding to a 4–6 weeks course of conservative therapy. Contraindications include sequestration, infection, segmental instability (spondylolisthesis), uncorrected coagulopathy or a patient unwilling to provide informed consent. Decompression techniques are feasible and reproducible, efficient (75–94% success rate) and safe (>0.5% mean complications rate) therapies for the treatment of symptomatic intervertebral disc herniation. Percutaneous, imaging guided, intervertebral disc therapeutic techniques can be proposed either as an initial treatment or as an attractive alternative prior to surgery for the therapy of symptomatic herniation in both cervical and lumbar spine. This article will describe the mechanism of action for different therapeutic techniques applied to intervertebral discs of cervical and lumbar spine, summarize the data concerning safety and effectiveness of these treatments, and provide a rational approach for the therapy of symptomatic intervertebral disc herniation in cervical and lumbar spine.

  18. Percutaneous treatment of cervical and lumbar herniated disc

    International Nuclear Information System (INIS)

    Kelekis, A.; Filippiadis, D.K.

    2015-01-01

    Therapeutic armamentarium for symptomatic intervertebral disc herniation includes conservative therapy, epidural infiltrations (interlaminar or trans-foraminal), percutaneous therapeutic techniques and surgical options. Percutaneous, therapeutic techniques are imaging-guided, minimally invasive treatments for intervertebral disc herniation which can be performed as outpatient procedures. They can be classified in 4 main categories: mechanical, thermal, chemical decompression and biomaterials implantation. Strict sterility measures are a prerequisite and should include extensive local sterility and antibiotic prophylaxis. Indications include the presence of a symptomatic, small to medium sized contained intervertebral disc herniation non-responding to a 4–6 weeks course of conservative therapy. Contraindications include sequestration, infection, segmental instability (spondylolisthesis), uncorrected coagulopathy or a patient unwilling to provide informed consent. Decompression techniques are feasible and reproducible, efficient (75–94% success rate) and safe (>0.5% mean complications rate) therapies for the treatment of symptomatic intervertebral disc herniation. Percutaneous, imaging guided, intervertebral disc therapeutic techniques can be proposed either as an initial treatment or as an attractive alternative prior to surgery for the therapy of symptomatic herniation in both cervical and lumbar spine. This article will describe the mechanism of action for different therapeutic techniques applied to intervertebral discs of cervical and lumbar spine, summarize the data concerning safety and effectiveness of these treatments, and provide a rational approach for the therapy of symptomatic intervertebral disc herniation in cervical and lumbar spine

  19. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  20. Experimental Analysis of a Bubble Wake Influenced by a Vortex Street

    Directory of Open Access Journals (Sweden)

    Sophie Rüttinger

    2018-01-01

    Full Text Available Bubble column reactors are ubiquitous in engineering processes. They are used in waste water treatment, as well as in the chemical, pharmaceutical, biological and food industry. Mass transfer and mixing, as well as biochemical or chemical reactions in such reactors are determined by the hydrodynamics of the bubbly flow. The hydrodynamics of bubbly flows is dominated by bubble wake interactions. Despite the fact that bubble wakes have been investigated intensively in the past, there is still a lack of knowledge about how mass transfer from bubbles is influenced by bubble wake interactions in detail. The scientific scope of this work is to answer the question how bubble wakes are influenced by external flow structures like a vortex street behind a cylinder. For this purpose, the flow field in the vicinity of a single bubble is investigated systematically with high spatial and temporal resolution. High-speed Particle Image Velocimetry (PIV measurements are conducted monitoring the flow structure in the equatorial plane of the single bubble. It is shown that the root mean square (RMS velocity profiles downstream the bubble are influenced significantly by the interaction of vortices. In the presence of a vortex street, the deceleration of the fluid behind the bubble is compensated earlier than in the absence of a vortex street. This happens due to momentum transfer by cross-mixing. Both effects indicate that the interaction of vortices enhances the cross-mixing close to the bubble. Time series of instantaneous velocity fields show the formation of an inner shear layer and coupled vortices. In conclusion, this study shows in detail how the bubble wake is influenced by a vortex street and gives deep insights into possible effects on mixing and mass transfer in bubbly flows.

  1. Impurity bubbles in a BEC

    Science.gov (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  2. Guest investigator program study: Physics of equatorial plasma bubbles

    Science.gov (United States)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  3. Discrete bubble modeling for a micro-structured bubble column

    NARCIS (Netherlands)

    Jain, D.; Lau, Y.M.; Kuipers, J.A.M.; Deen, N.G.

    2013-01-01

    Gas–liquid flows with solid catalyst particles are encountered in many applications in the chemical, petrochemical, pharmaceutical industries, etc. Most commonly, two reactor types are applied for large scale in the industry. They are slurry bubble column and trickle bed reactors. Both of these

  4. Positional and morphologic changes of the temporomandibular joint disc using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ahn, Hyoun Suk; Cho, Su Beom; Koh, Kwang Joon

    2001-01-01

    To evaluate displacement and morphologic changes of the temporomandibular joint (TMJ) disc in patient with internal derangement using magnetic resonance imaging (MRI). One hundred and forty five MR images of TMJs in 73 patients were evaluated. Positional and morphologic changes of the TMJ disc were assessed. Lateral or medial disc displacement was also evaluated on cornal images. Among 63 discs with anterior disc displacement, 37 discs were assessed as a biconcave disc and 21 as a deformed disc. Rotational disc displacement was observed in 35 disc. Anteromedial disc displacement was observed in 29 discs, and anterolateral direction in 6 discs. Among 35 rotational displacement, 5 biconcave discs and 21 deformed discs were observed. Rotational and sideways displacement of TMJ discs were found to be common and an important aspect of internal derangement. This study also suggests that sagittal and coronal images of the TMJ have complementary abilities for an assessment of joint abnormality

  5. Numerical simulation of the dynamic flow behaviour in a bubble column: comparison of the bubble-induced turbulence models in K-epsilon model

    NARCIS (Netherlands)

    Zhang, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    Numerical simulations of the gas-liquid bubbly flow in a bubble column were conducted with the commercial CFD package CFX-4.4 to investigate the performance of three models (Pfleger and Becker, 2001; Sato and Sekoguchi, 1975; Troshko and Hassan, 2001) to account for the bubble-induced turbulence in

  6. Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine--a finite element based study.

    Science.gov (United States)

    Faizan, Ahmad; Goel, Vijay K; Biyani, Ashok; Garfin, Steven R; Bono, Christopher M

    2012-03-01

    Studies delineating the adjacent level effect of single level disc replacement systems have been reported in literature. The aim of this study was to compare the adjacent level biomechanics of bi-level disc replacement, bi-level fusion and a construct having adjoining level disc replacement and fusion system. In total, biomechanics of four models- intact, bi level disc replacement, bi level fusion and fusion plus disc replacement at adjoining levels- was studied to gain insight into the effects of various instrumentation systems on cranial and caudal adjacent levels using finite element analysis (73.6N+varying moment). The bi-level fusion models are more than twice as stiff as compared to the intact model during flexion-extension, lateral bending and axial rotation. Bi-level disc replacement model required moments lower than intact model (1.5Nm). Fusion plus disc replacement model required moment 10-25% more than intact model, except in extension. Adjacent level motions, facet loads and endplate stresses increased substantially in the bi-level fusion model. On the other hand, adjacent level motions, facet loads and endplate stresses were similar to intact for the bi-level disc replacement model. For the fusion plus disc replacement model, adjacent level motions, facet loads and endplate stresses were closer to intact model rather than the bi-level fusion model, except in extension. Based on our finite element analysis, fusion plus disc replacement procedure has less severe biomechanical effects on adjacent levels when compared to bi-level fusion procedure. Bi-level disc replacement procedure did not have any adverse mechanical effects on adjacent levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The Milky Way Project: A Census of Small Bubbles

    Science.gov (United States)

    Arvidsson, Kim; Wolf-Chase, G. A.; Way Project, Milky

    2013-01-01

    The first data release (DR1) from the Milky Way Project (MWP) contains 1362 visually identified small bubbles drawn by users. These small infrared bubbles typically have diameters MSX6C point source catalog; >90% of all small bubbles are MSX point sources.

  8. Isolated Optic Disc Tuberculosis

    Science.gov (United States)

    Mansour, Ahmad M.; Tabbara, Khalid F.; Tabbarah, Zuhair

    2015-01-01

    We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation. PMID:26483675

  9. Isolated Optic Disc Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2015-09-01

    Full Text Available We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation.

  10. Size distributions of micro-bubbles generated by a pressurized dissolution method

    Science.gov (United States)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble

  11. Testing for rational bubbles in a co-explosive vector autoregression

    DEFF Research Database (Denmark)

    Engsted, Tom; Nielsen, Bent

    , are derived both for a model without bubbles and for a model with a rational bubble. In both cases we show how the restrictions can be tested through standard chi-squared inference. The analysis for the no-bubble case is done within the traditional Johansen model for I(1) variables, while the bubble model...

  12. Light Scattering by Ice Crystals Containing Air Bubbles

    Science.gov (United States)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  13. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    International Nuclear Information System (INIS)

    Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Wang, L.; Wang, Dezhen

    2015-01-01

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering

  14. Mode transition in bubbly Taylor-Couette flow measured by PTV

    International Nuclear Information System (INIS)

    Yoshida, K; Tasaka, Y; Murai, Y; Takeda, T

    2009-01-01

    The drag acting to the inner cylinder in Taylor-Couette flow system can be reduced by bubble injection. In this research, relationship between drag reduction and change of vortical structure in a Taylor-Couette flow is investigated by Particle Tracking Velocimetry (PTV). The velocity vector field in the r-z cross section and the bubble concentration in the front view (z-θ plane) are measured. This paper describes the change of vortical structures with bubbles, and the mode transition that is sensitively affected by the bubbles is discussed. The bubbles accumulate in the three parts relative to vortex position by the interaction between bubbles and vortices. The status of bubble's distribution is different depending on position. This difference affects mode transition as its trigger significantly. The presence of bubbles affects the transition from toroidal mode to spiral mode but does not induce the transition from spiral mode to toroidal mode. Further we found that Taylor vortex bifurcates and a pair of vortices coalesces when the flow switches between spiral mode and toroidal mode.

  15. Modeling quiescent phase transport of air bubbles induced by breaking waves

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear

  16. Nonlinear behavior of micro bubbles under ultrasound due to heat transfer

    International Nuclear Information System (INIS)

    Lim, Chan Soo; Kwak, Ho Young; Kim, Jeong Eun; Lee, Jae Young

    2009-01-01

    We investigated the nonlinear behavior of a microbubble under ultrasound, taking into account the heat transfer inside the bubble and through the bubble wall. The polytropic relation, which has been used for the process of pressure change depending on the volume variation of ideal gases, cannot properly treat heat transfer involving the oscillating bubble under ultrasound. In this study, a set of solutions of the Navier-Stokes equations for the gas inside the bubble along with an analytical treatment of the Navier-Stokes equations for the liquid adjacent to the bubble wall was used to treat properly the heat transfer process for the oscillating bubble under ultrasound. Entropy generation due to finite heat transfer, which induces the lost work during bubble evolution, reduces the collapsing process and considerably affects the nonlinear behavior of the bubble

  17. Auto fluorescence of intervertebral disc tissue: a new diagnostic tool.

    Science.gov (United States)

    Hoell, T; Huschak, G; Beier, A; Hüttmann, G; Minkus, Y; Holzhausen, H J; Meisel, H J

    2006-08-01

    The paper reports on auto fluorescence phenomena of inter-vertebral human discs. It systematically investigates the auto fluorescence effects of ex vivo disc specimen and reports on surgical cases to demonstrate the potential value of the new method. The paper offers biologic explanations of the phenomenon and discusses the potential value of the UV auto fluorescence technique as a diagnostic tool. Intra- and postoperative observations are made by a surgical microscope with an integrated UV light source. Quantitative measurements were carried out using a photon counter and a spectrometer ex vivo. The auto fluorescence phenomenon allows the differentiation of traumatized and degenerated disc tissue intraoperatively in some cases, it allows the differentiation of bony and collagen endplate in cervical disc surgery. The source of the auto fluorescent light emission are amino acids of the collagen molecules. The proteoglycan components and the liquid components of the disc do not show relevant auto fluorescence. Emission wavelength of disc material is equivalent to color perception. It differs due to different collagen composition of the intervertebral disc components from yellow-green to blue-green and can be visualized in situ by naked eye.UV-auto fluorescence of inter-vertebral discs is a new clinical tool that has the potential to differentiate disc material from the anatomical surrounding, to distinguish between different fractions of the disc and to give information on the quality and status of the disc material. Since the technology has just emerged, it needs further investigations to quantify the clinical observations reported in this paper.

  18. Plasma bubbles near the dawn terminator in the topside ionosphere

    International Nuclear Information System (INIS)

    Burke, W.J.

    1979-01-01

    The physical properties of plasma bubbles in the topside ionosphere near the dawn terminator are investigated. It is assumed that the bubbles result from either a Rayleigh-Taylor or an E X B instability on the bottom side of the F-layer. While the E-region is in darkness, the top and bottomsides of the ionospheres are electrically decoupled and the motion of the bubbles can be described by non-linear, two-dimensional theory. After sunrise, electric fields within the bubbles discharge through the conducting lower ionosphere. The upward drift of the bubbles is effectively halted. To achieve a dayside state of diffusive equilibrium the bubbles slowly begin to collapse from the bottom. (author)

  19. PIV measurement of a contraction flow using micro-bubble tracer

    International Nuclear Information System (INIS)

    Ishikawa, Masaaki; Irabu, Kunio; Teruya, Isao; Nitta, Munehiro

    2009-01-01

    Recently, a technique using the micro-bubbles is focused. It was applied to many fields such as purification of rivers and lakes, washing the industrial parts, growth of plants and marine products. The characteristics of micro-bubbles are small size, wide surface area, low terminal velocity, and so on. If this micro-bubble is available as tracer of PIV (Particle Image Velocimetry), environment load would become lower because it doesn't need to discard particle. In this paper, we make a micro-bubble generator with Venturi type mechanism. The generated micro-bubbles are applied to a vertical channel flow with contraction. We validate about traceability of the micro-bubble tracer in comparison with the particle tracer.

  20. Bubble feature extracting based on image processing of coal flotation froth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Wang, Y.; Lu, M.; Liu, W. [China University of Mining and Technology, Beijing (China). Dept of Chemical Engineering and Environment

    2001-11-01

    Using image processing the contrast ratio between the bubble on the surface of flotation froth and the image background was enhanced, and the edges of bubble were extracted. Thus a model about the relation between the statistic feature of the bubbles in the image and the cleaned coal can be established. It is feasible to extract the bubble by processing the froth image of coal flotation on the basis of analysing the shape of the bubble. By means of processing the 51 group images sampled from laboratory column, it is thought that the use of the histogram equalization of image gradation and the medium filtering can obviously improve the dynamic contrast range and the brightness of bubbles. Finally, the method of threshold value cut and the bubble edge detecting for extracting the bubble were also discussed to describe the bubble feature, such as size and shape, in the froth image and to distinguish the froth image of coal flotation. 6 refs., 3 figs.

  1. Angiogenesis in the degeneration of the lumbar intervertebral disc

    OpenAIRE

    David, Gh; Ciurea, AV; Iencean, SM; Mohan, A

    2010-01-01

    The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth ...

  2. Lumbar disc herniation in patients with chronic backache.

    Science.gov (United States)

    Ali, Asghar; Khan, Shahbaz Ali; Aurangzeb, Ahsan; Ahmed, Ehtisham; Ali, Gohar; Muhammad, Gul; Mehmood, Shakir

    2013-01-01

    Low back pain with or without lower extremity pain is the most common problem among chronic pain disorders with significant economic, social, and health impact. This study was conducted to determine the frequency of lumbar disc herniation and its different levels, among patients with chronic backache. This cross sectional study was conducted in the department of Neurosurgery, Ayub Medical College Abbottabad from January 2011 to January 2013. All the patients presenting with chronic low backache of either gender above the age 14 years were included in the study. Magnetic resonance imaging (MRI) was done in all the patients included in the study to look for lumbar disc herniation. A total of 477 patients with chronic low backache were included in the study out of which 274 (57.4%) were males. Age of the patients ranged from 19 to 75 (39.92 +/- 12.31) years. Out of 477 patients 38 (7.9%) had significant radiological evidence of disc prolapse at lumbar vertebral levels, with 26 (9.5%) males and 12 (5.9%) females. Among these 38 patients with inter-vertebral disc, 20 (52.6%) of patients had disc herniation at L5-S1, 15 (39.5%) at L4-L5, 2 (5.26%) cases at L3-L4 level and only one case (2.6%) had the involvement of L2-L3 level. No cases of L1-L2 disc prolapse were found. Patients with chronic backache can have inter-vertebral lumbar disc prolapsed disease. Middle age group are more affected by lumbar disc disease especially at the lower lumbar regions.

  3. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    Science.gov (United States)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  4. Radiographic identification of ingested disc batteries

    International Nuclear Information System (INIS)

    Maves, M.D.

    1986-01-01

    Recently, the hazards by posed the accidental ingestion and impaction of small disc batteries have been widely publicized in the medical and lay press. These foreign bodies, when lodged in the esophagus, leak a caustic solution of 26 to 45% sodium or potassium hydroxide which can cause a burn injury to the esophagus in a very short period of time. Because of the considerable clinical morbidity and mortality from this foreign body, it becomes imperative for the radiologist to quickly and accurately identify disc batteries on plain radiographs. This communication offers a series of radiologic signs important in the identification of disc batteries demonstrate a double density shadow due to the bilaminar structure of the battery. On lateral view, the edges of most disc batteries are round and again present a step-off at the junction of the cathode and anode. These findings are differentiated from the more common esophageal foreign body of a coin which does not have a double density on frontal projection, has a much sharper edge and no visible stepoff. (orig.)

  5. Fundamental study on articular disc with magnetic resonance imagings

    International Nuclear Information System (INIS)

    Chiba, Toyokazu

    1993-01-01

    In order to establish criteria of reading MRI of the temporomandibular joint, a morphological comparison between MRI and the section, and an observation of the articular disc associated with the opening were made. Five temporomandibular joints isolated from 3 human cadavers were subjected to MRI, and sections were prepared to examine criteria of reading MRI. In 20 male adults, 40 temporomandibular joints underwent MRI in three conditions of the intercuspal position, 10 and 20 mm opening positions, and the kinetics of the articular disc were examined. External feature of the head of mandible and that of the articular fossa, the articular tubercule and the postglenoid process were outlined in a row of blacks. The articular disc was outlined in a row of dark ashen areas of the anterior band, the intermediate region, and the posterior band. In the intercuspal position, the head of mandible was rarely covered with the articular disc, and being situated postero-inferiorly, at the most rear point of the posterior band of the articular disc. In the 10 mm-opening position, the head of mandible was practically covered with the articular disc. In the 20 mm-opening position, the intermediate region of the articular disc, and the head of mandible were situated in an approximate position. Quantitative movement of the articular disc was slower than that of the head of mandible. Comparison of various points of the articular disc revealed that movements of the anterior and posterior band varied almost proportionally to the opening distance, but with lesser movement of the intermediate region. (author)

  6. CT reconstruction technique in lumbar intraneuroforaminal disc herniation

    International Nuclear Information System (INIS)

    Volle, E.; Claussen, C.; Kern, A.; Stoltenburg, G.

    1988-01-01

    The CT appearance of the lumbar neural foramina and contents is described in detail and compared to histopathological specimens. Direct axial scans with secondary sagittal, coronal and paraxial reconstruction series of slices of the neuralforamen were derived from lumbar spine examination of fifty normal adults. These normal parameters were then used to evaluate and subdivide 20 patients with disc herniation involving the neuralforamen. The new paraxial reformation was able to show an intraneuroforaminal disc involvement. CT-reformation technique and operative results in intraneuroforaminal disc herniation correspond in 80%. This improvement in preoperative diagnosis demonstrates to the neurosurgeon the full extent of disc herniation and results in an optimized operative approach. (orig.)

  7. CT reconstruction technique in lumbar intraneuroforaminal disc herniation

    Energy Technology Data Exchange (ETDEWEB)

    Volle, E.; Claussen, C.; Kern, A.; Stoltenburg, G.

    1988-04-01

    The CT appearance of the lumbar neural foramina and contents is described in detail and compared to histopathological specimens. Direct axial scans with secondary sagittal, coronal and paraxial reconstruction series of slices of the neuralforamen were derived from lumbar spine examination of fifty normal adults. These normal parameters were then used to evaluate and subdivide 20 patients with disc herniation involving the neuralforamen. The new paraxial reformation was able to show an intraneuroforaminal disc involvement. CT-reformation technique and operative results in intraneuroforaminal disc herniation correspond in 80%. This improvement in preoperative diagnosis demonstrates to the neurosurgeon the full extent of disc herniation and results in an optimized operative approach.

  8. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  9. Cervical disc hernia operations through posterior laminoforaminotomy.

    Science.gov (United States)

    Yolas, Coskun; Ozdemir, Nuriye Guzin; Okay, Hilmi Onder; Kanat, Ayhan; Senol, Mehmet; Atci, Ibrahim Burak; Yilmaz, Hakan; Coban, Mustafa Kemal; Yuksel, Mehmet Onur; Kahraman, Umit

    2016-01-01

    The most common used technique for posterolateral cervical disc herniations is anterior approach. However, posterior cervical laminotoforaminomy can provide excellent results in appropriately selected patients with foraminal stenosis in either soft disc prolapse or cervical spondylosis. The purpose of this study was to present the clinical outcomes following posterior laminoforaminotomy in patients with radiculopathy. We retrospectively evaluated 35 patients diagnosed with posterolateral cervical disc herniation and cervical spondylosis with foraminal stenosis causing radiculopathy operated by the posterior cervical keyhole laminoforaminotomy between the years 2010 and 2015. The file records and the radiographic images of the 35 patients were assessed retrospectively. The mean age was 46.4 years (range: 34-66 years). Of the patients, 19 were males and 16 were females. In all of the patients, the neurologic deficit observed was radiculopathy. The posterolaterally localized disc herniations and the osteophytic structures were on the left side in 18 cases and on the right in 17 cases. In 10 of the patients, the disc level was at C5-6, in 18 at C6-7, in 2 at C3-4, in 2 at C4-5, in 1 at C7-T1, in 1 patient at both C5-6 and C6-7, and in 1 at both C4-5 and C5-6. In 14 of these 35 patients, both osteophytic structures and protruded disc herniation were present. Intervertebral foramen stenosis was present in all of the patients with osteophytes. Postoperatively, in 31 patients the complaints were relieved completely and four patients had complaints of neck pain and paresthesia radiating to the arm (the success of operation was 88.5%). On control examinations, there was no finding of instability or cervical kyphosis. Posterior cervical laminoforaminotomy is an alternative appropriate choice in both cervical soft disc herniations and cervical stenosis.

  10. Implementation of Serial and Parallel Bubble Sort on Fpga

    OpenAIRE

    Purnomo, Dwi Marhaendro Jati; Arinaldi, Ahmad; Priyantini, Dwi Teguh; Wibisono, Ari; Febrian, Andreas

    2016-01-01

    Sorting is common process in computational world. Its utilization are on many fields from research to industry. There are many sorting algorithm in nowadays. One of the simplest yet powerful is bubble sort. In this study, bubble sort is implemented on FPGA. The implementation was taken on serial and parallel approach. Serial and parallel bubble sort then compared by means of its memory, execution time, and utility which comprises slices and LUTs. The experiments show that serial bubble sort r...

  11. Spiral density waves and vertical circulation in protoplanetary discs

    Science.gov (United States)

    Riols, A.; Latter, H.

    2018-06-01

    Spiral density waves dominate several facets of accretion disc dynamics - planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their vertical structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong vertical motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the vertical structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic profiles, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background vertical entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on observations of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.

  12. Argonne Bubble Experiment Thermal Model Development III

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-11

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vessel geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.

  13. Collimation of particle beams from thick accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [N. Copernicus Astronomical Center, Warszawa (Poland); Wilson, D B [Cambridge Univ. (UK). Inst. of Astronomy

    1981-11-01

    The acceleration and collimation of particle beams in the funnel of thick accretion discs is studied in the approximation that the flow is optically thin. Such flows can be collimated to within approximately 0.1 radians by sufficiently thick discs. The flow cannot convert more than a small fraction of the disc's (super-Eddington) luminosity into the energy flow of a narrow beam without being optically thick.

  14. Shear-induced Bubble Coalescence in Rhyolitic Melts with Low Vesicularity

    Science.gov (United States)

    Okumura, S.; Nakamura, M.; Tsuchiyama, A.

    2006-12-01

    Development of bubble structure during magma ascent controls the dynamics of volcanic eruption, because the bubble structure influences the magma rheology and permeability, and hence magma degassing. In the flowing magmas, the bubble structure is expected to be changed by shear, as pointed out by some previous studies based on geological observations. However, the development of bubble structure has been experimentally studied only in the isostatic magmas. We have experimentally demonstrated for the first time, the shear-induced development of number density, size and shape of bubbles in a rhyolitic melt. The deformation experiments were performed by using an externally heated, piston-cylinder type apparatus with a rotational piston. At 975°C, natural obsidian (initial water content of 0.5 wt%) having cylindrical shape (ca. 4.7 mm in diameter and 5 mm in length) was vesiculated in the graphite container (ca. 5 and 9 mm in the inner and the outer diameters, respectively, and 5 mm in length), and the vesiculated samples were twisted at various rotational speeds up to 1 rpm. The number density, size and shape of bubbles in the quenched samples were then measured by using the X-ray computed tomography. The size distribution of bubbles shows that the number of larger bubbles increases with the rotational speed and at the outer zone of the samples at which the shear rate is high. In the high shear rate zone, the magnitude of bubble deformation is large. The 3D images of large bubbles clearly indicate that they were formed by coalescence. These results indicate that the degree of bubble coalescence is enhanced with the shear rate. The experimental results also demonstrated that the coalescence of bubbles occur even at low vesicularity (ca. 20 vol.%). Because the shear rate induced in this study (in the order of 0.01 1/s) seems to be produced for magmas ascending in a volcanic conduit, we propose the possibility that the vesiculated magmas undergo bubble coalescence at a

  15. Experimental Investigation of Large-Scale Bubbly Plumes

    International Nuclear Information System (INIS)

    Zboray, R.; Simiano, M.; De Cachard, F.

    2004-01-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  16. Bubble collisions and measures of the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Michael P., E-mail: salem@cosmos.phy.tufts.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2012-01-01

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.

  17. Experimental Investigation of Large-Scale Bubbly Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, R.; Simiano, M.; De Cachard, F

    2004-03-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  18. Size distribution of air bubbles entering the brain during cardiac surgery.

    Directory of Open Access Journals (Sweden)

    Emma M L Chung

    Full Text Available Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data.Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature.Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm. Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85% were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles.Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful.

  19. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    International Nuclear Information System (INIS)

    Kutnjak, Josip

    2013-01-01

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super

  20. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kutnjak, Josip

    2013-06-27

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super